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Abstract 

Balancing algorithms challenge the state of the art on how data exchanges as 

messages between programs that execute in the kernel and the applications 

running on top in user space on a modern Operating System. There is always a 

possibility to improve the way applications that rely on different spaces in an 

Operating System can interact. Algorithms must be placed in the picture all the 

time when thinking about next-generation human interaction problems and which 

solutions they require. Artificial Intelligence, Computer Vision, Internet of Things, 

Autonomous Driving are all data-centric applications to solve the next human 

issues that require data to be transported efficiently and fast between different 

programs, no matter whether they reside in the kernel or in user space. Chip 

designs and physical boundaries are putting pressure on software solutions that 

can virtualize and optimize how data is exchanged. This research proposes to 

demonstrate - via experimentation techniques, designs, measurement and 

simulation - that in-place solutions for data optimization transfer between 

applications residing in different Operating System spaces can be compared and 

revised to improve their performance towards a data-centric technology world. 

Specifically, it explores the use of a simulated environment to create a set of 

archetypical scenarios using an experimental design which demonstrates that 

PF_RING optimizes data messages exchange between Operating System kernel 

and user space applications. 

Keywords:  data; operating systems; pf-ring; pf-packet; virtualization; 

simulation; emulation; performance analysis; experimental design; 

algorithms; code complexity; embedded systems; SIMICS; QEMU. 
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Preface 

Data transmission between interconnected devices nowadays demands speed 

and reliability. Wire-speed packet capture and transmission using commodity 

hardware have challenges on performance in a world where every human being 

may be connected through smart devices, exchanging images, documents, music, 

voice and other data for doing business with each other. Relying upon hardware 

development cycle is not fast enough to comply with user demands. Thus the 

implementation of innovative software algorithms that will break hardware barriers 

or optimize hardware capabilities is essential for technology advancement. The 

high-level objective of this research is to propose alternative ways for discovering 

and analyzing algorithms that will impact directly on data transmission in an 

always-connected world.
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Chapter 1. Introduction 

1.1. Fundamentals 

Data and access to information are critical for each person in the world. As of this 

writing, 51% of the global population has Internet access. Most of them access via 

smart mobiles or personal computers. By 2021 the average smartphone user will 

plow through 8.9 GB of data per month [CERWALL, 2016]. Artificial Intelligence 

(AI), Computer Vision, Autonomous Driving, Internet of Things (IoT) will all require 

redesigned computer systems, which is impacting how Computer Science (CS) 

will solve software optimization problems to handle the considerable amount of 

data that will be required for fulfilling the needs of an average person. 

Investigation towards optimizations in CS is mostly related to algorithms in the field 

of Analysis of Algorithms and Data Structures. The use of one algorithm versus 

another, their comparison and their results in real life scenarios are related to 

computer architecture and performance analysis. CS contributions in the field of 

simulation are also fundamental to Theoretical CS in experimentation and formal 

methods [RIVEST, 1990]. 

If a person wants to go from city {R} to city {Z}, there are many ways to do it. He 

or she may take a flight, go by bus, by train or by any other transportation means 

that might be considered. It all depends on availability and convenience and how 

it suits his or her needs. Similarly, in CS there are multiple algorithms to solve a 

problem. When there is more than one algorithm to solve the same problem, we 

need to select the “best” one depending on the usage scenario. Performance 

Analysis creates organic results based on requirements to select the best-suited 

algorithm, from multiple ones, to solve a problem. Algorithm performance is a 

process of making objective judgments on algorithms – mostly through analysis of 

quantitative data. Performance analysis is concerned with predicting the resources 

that are required by an algorithm to perform its task. 
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In general terms, the substance of an algorithm is to provide the exact solution to 

a problem that is understandable and easy to implement, with finite and known 

memory and time requirements. Setting metrics related to the use of memory, 

speed of execution, complexity and even implementation details is required to 

compare algorithms. In this research, factors are reduced to evaluate an algorithm 

for space complexity and time complexity. 

Today most data come from systems related to the World Wide Web or 

interconnected via the Internet. Inter-networked physical devices connected and 

communicating to each other will be around 30 billion objects by 2020 [HWANG, 

2013]. Imagine the amount of raw data that such number of devices can generate 

and that will need to be processed by an endpoint device as fast as possible, so 

that a user does not have to wait. Depending on the medium, these data traverses 

the Internet, where most personal computers and smartphones connect to wireless 

access points utilizing a wireless network card. A card of this type is embedded in 

smartphones, access points, tablets, laptops, and personal computers. All these 

data are taken from the physical medium and processed by embedded software 

that receives the data and transforms it in such a way that the device ‘understands’ 

it and shows it in an easy way for a human brain to interpret. All this process 

involves a means to move data from {R} to {Z}. 

This research intends to characterize an experiment environment with archetypical 

scenarios involving two algorithms known as PF_PACKET and PF_RING. Both 

algorithms are incorporated in alternate builds of an otherwise identical Operating 

System distribution. The only difference between the archetypical scenarios is the 

algorithm used to perform data transmission at the kernel level. A high-level 

objective of the investigation is not only to understand whether replacing one 

algorithm for another is feasible but also to establish whether there is a 

performance improvement regarding storage complexity (memory usage) and time 

complexity (processing cycles). 
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The importance of the study relies on generating similar workloads -- described in 

terms of volume and stress -- to orchestrate and define synthetic situations of 

common scenarios that push the boundaries of the mentioned algorithms. The 

study leverages the use of an experimental design method to objectively compare 

the complexity of the alternate algorithms.  

An additional added value of this research is the creation of a simulated 

environment that serves as a medium to execute the designed experiments. The 

simulated environment uses a Full System Simulator known as SIMICS to 

decouple factors which may affect the observable system or the results. An 

analysis of the reasoning behind which Full System Simulator to choose between 

QUEMU and SIMICS is another added value of the investigation. 

1.2. Problem Generalities  

Computer network equipment contains embedded microprocessors that use 

specialized software to provide the capabilities needed to transmit user data. 

Firmware is code that implements the algorithms necessary for the data to arrive 

from one place to another [e.g., {R} -> {Z}] in an embedded device. Firmware is a 

program at the lowest level, close to the hardware, that establishes the logic for 

controlling the electronic circuits of any type of device. It is strictly related to the 

hardware or electronics of a device, so it is software that interacts with the 

electronic components taking care of the control to execute the instructions 

correctly. 

Network equipment today uses a variety of computer architectures. For example, 

wireless access points typically use a configuration whose sole purpose is to 

transmit data as quickly and efficiently as possible. Such equipment uses 

dedicated Central Processing Units (CPUs) or Application Specific Integrated 

Circuits (ASICs) and devices with low power consumption. Devices primarily use 

computer architectures such as PowerPC, ARM or x86. There are also two 

different types of standard wired and wireless network cards in the industry, 
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provided by companies such as Intel, Qualcomm, Atheros or Broadcom. A 

commonly used Embedded Operating System (EOS) is a reduced open licensed 

GPL Linux distribution known as BusyBox. A simplified Unified Extensible 

Firmware Interface (UEFI) flavor such as seaBIOS (uncomplicated legacy BIOS) 

is also part of the tools used in industry standard embedded devices. 

Advances in network data packet switching, the transmission of data packets from 

the analog medium for its digitalization and processing, tend to focus on hardware 

improvement. This puts the physics of electronic circuits to the limit. However, 

attention is switching towards software and extending its capabilities as a solution 

to many of the problems and limitations of physical circuitry. At companies such as 

Intel, for example, all their designs for the latest generation chips go hand in hand 

with the development of software to impact the market with value-added solutions 

for companies and end consumers. In technology jargon it is often quoted that 

“hardware without software is like a body without a soul.” Today, software is the 

value added on top of the chips. Still, the technology industry does not sell 

software; it sells solutions. 

To understand the world around us, designers and engineers model the 

environment and represent what they need with mathematical equations that follow 

approximately - but faithfully - the behavior of reality. In order to understand the 

impact of one component versus an alternative on the performance, availability 

and reliability of a Network Operation System, this research leverages virtual 

platforms (VP) –pieces of software simulating pieces of hardware--. A model of the 

data flow between resident programs from user space and the Kernel can help 

their efficiency. Fast data transfer brings a better user experience when surfing the 

Internet, listening to a song or watching a movie by streaming. 

Virtualization platforms (VP) are hardware models that live in virtualization 

software such as Simics [SIMICS, 2016] or QEMU [QEMU, 2016]. The emphasis 

of this research is the implementation of the PF_RING algorithm in substitution of 

PF_PACKET in an x86 VP that runs seaBIOS, kernel v4.6, and a custom BusyBox. 
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The methodology uses programs written in a high-level programming language 

such as C/C++ in order to execute unbiased and reproducible experiments to pass 

network packages (or any data type) in frames of the user space to the Kernel 

space performing a factorial analysis that provides objective measures of 

performance regardless of the (physical) hardware on which the algorithm works. 

 

Figure 1. 1 Data transmission between applications on a Linux OS. 

When a packet reaches the wireless network card of an embedded system, the 

Linux kernel takes the data and transfers it across the entire internal network 

segment stack in the OS to process it and thus sends the information to a user 

module or software application which runs in the user space. These copies of data 

from kernel space to user space become expensive in regards to CPU processing 

cycles, memory utilization, among other metrics. A copy of the complete package 
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has to be made in order to have it processed by the user application, typically using 

the system call interface or other types of interfaces [KELLER, 2008]. Figure 1.1 

shows where the research problem is contextualized. The data transmission of OS 

components between user space and kernel space is the subject of this 

investigation.  

Among the improvements made since version 2.6.32 of Linux Kernel, there is the 

ability to pass packets from kernel to user space using the PF_PACKET technique 

(also known as a raw socket) [MCCANNE, 1993]. The difference concerning the 

default network segment of the kernel is that PF_PACKET makes a copy of the 

packet buffer before it enters the network segment of the Kernel and sends the 

entire package to the application in the user space. These copies are always done 

for each one of the packets. Currently, these copies are executed through the 

system call interface which causes the OS to overflow with a significant amount of 

data traffic by continually interrupting the system for each copy of information 

frames. 

1.3. Justification 

When a person is at an airport, restaurant, ice cream shop, train station, hotel, 

home, or even at a football stadium; the chances are high that he or she will wish 

to connect to a wireless network. Nowadays, in urban settings, it is assumed that 

the wireless network service or the 802.11n/ac standard [IEEE, 2015] is available 

to all those who wish to stay connected at any time and location. Studies indicate 

that wireless traffic from mobile devices will grow by 80% by 2018 [WOOD, 2013]. 

The world trend suggests that growth of Internet of Things (IoT), Artificial 

Intelligence (AI), Augmented Reality and Big Data Analytics will cause an 

explosion of data that will escalate the need for information processing, 

increasingly better, more robust and efficient, algorithms. The situation suggests 

that data processing speed on embedded wireless access devices or controllers 

will be determinant to keep up with high data demand. 
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Data Packet Inspection (DPI) [PORTER, 2005] consumes a high amount of CPU 

cycles depending on how much information extracted from the network packets –

metadata - is exchanged between systems. The fewer data packets to be sent to 

the OS kernel1 the better, so they can reach the application directly in the user 

space for further processing or presentation to a human user. It is better to process 

the packets for a service in the application that uses the data, instead of having to 

perform this in the kernel space and wait for it to send them to the user space 

program.  Good utilization of system resources enables the EOS to take care of 

other priority tasks. 

In the case of wireless devices such as smartphones, it is vital to explore hardware 

and software alternatives that expeditiously bring packets where they are needed, 

using more efficient algorithms that require fewer processor cycles and less 

memory. The aim is to diminish or avoid the use of resources that are already very 

scarce in an Embedded System. The proposal is to use a software component (the 

PF_RING algorithm) to pass data directly from the wireless network card (which is 

being managed in the EOS Kernel space using drivers) towards a user-space 

application - the program that consumes this data. Data transfer efficiency is 

becoming especially necessary to meet the extreme demand on wireless networks 

caused by the explosion of IoT and Big Data. The technology community needs to 

explore new algorithms for embedded devices, otherwise wireless communcation 

technologies will become a bottleneck in embedded OS that will be unable to 

accurately process larger number of network packets in the future.  

Communications performance will constrain and impact the markets for IoT, AI, 

Autonomous Driving Systems (ADAS) and Big Data Analytics / Business 

Intelligence. 

                                                

1 Specifically, to the Kernel's network stack segment. 
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1.4. Problem Statement 

Connected devices are growing faster than anyone can imagine. By 2025, about 

80 Billion devices will connect to the Internet [IDC, 2014]. In contrast, 

approximately 11 Billion devices are connected to the Internet today. By 2020 it 

will triple to 30 Billion, and five years later it will reach the mentioned number of 

devices. The total amount of digital data created worldwide is expected to increase 

from 5 zettabytes2 to 44 zettabytes by 2020 [IDC, 2014]. 

The research reported in this paper is concerned with decreasing data processing 

time and memory consumption via algorithms that reside in an Embedded OS. The 

challenge is to create a set of archetypical scenarios that will simulate what 

happens when data comes into a system running an OS with one algorithm or the 

other. The research has aimed to determine a set of experimental design 

techniques that will allow the measurement of observable variables in software 

running on a simulated hardware and network environment. 

The focus is on validating the integration of a new algorithm (PF_RING) within an 

Embedded OS and obtaining objective results to establish whether there is a 

consistent improvement in the transmission of data packets from the user space 

to the Kernel space and vice versa. 

The research addresses replacing the PF_PACKET, component commonly used 

in Linux Kernels (within Embedded OS), with the PF_RING alternative, providing 

objective measures of performance and reliability.  A methodology has been 

designed to run sets of experiments that use a virtual hardware simulation that 

allows to take measurements to compare PF_RING against PF_PACKET. The 

primary approach is to systematically observe different realistic scenarios and  

under which conditions there is an improvement in the copying of data between 

the kernel space and an application in the user space. 

                                                

2 1 zettabyte = 10^21 bytes. 
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To improve the data transmission efficiency of commodity network systems, this 

research addresses data exchange in Operating Systems architectures leveraging 

from data capture algorithms from kernel to user space when reading and writing 

data between applications.  

1.5. Research Objectives 

1.5.1. General Objective 

Determine the impact on system performance of two algorithms for data transfer 

that reside in different spaces of an Operating System. 

1.5.2. Specific Objectives 

1. Design a platform for technical experimentation on operating systems, 

software components, virtual computing, and networking elements.  

2. Create an application that resides in user space to allow Kernel module 

usage with different algorithms for data transmission. 

3. Propose a set of experiments to measure the use of resources by the 

PF_RING and PF_PACKET algorithms. 

4. Execute a set of tests to collect precise performance measurements of both 

data transmission algorithms. 

5. Analyze the obtained results to enable objective quantitative comparisons 

between the PF_RING and PF_PACKET algorithms. 

1.6. Problem Scope and Limitations 

The scope of the problem is enabling the use of the PF_RING technique [DERI, 

2001] within a stable Kernel within a representative Linux-based Embedded 

Operating System targeted at Intel x86 architectures.  The software will be run on 

top of an Intel x86 architecture model available on a virtual platform simulator (such 

as Simics). The research is limited to perform measurements according to the 

methodological definition and experiments (described later) by implementing an 
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application in the user space that allows to objectively compare PF_PACKET 

against PF_RING to establish whether there is an improvement in the exchange 

of data from the Kernel space to the user space that will impact system 

performance in network environments positively. 

It is beyond the scope of the research to modify the Kernel OS, to update it or to 

change its configuration in such a way that the behavior of the OS varies with the 

methodological tests that will be executed. As explained in the methodology, some 

factors are considered outside the scope of the research whether they can affect 

the results positively or negatively. 

The research approach is oriented to assessing alternative algorithms in pursuit of 

conclusive results derived from the methodological approach defined in this 

document. In face of continuous improvements in hardware or models for the x86 

architecture that influence the speed at which packets are captured, it is 

considered as a factor outside the scope of the investigation, and this is considered 

in the experimentation method. Architecture models can vary, improve, and 

models on the virtual platform simulator can impact efficiency or reliability when a 

simulation is performed, but the methodological approach isolates these factors so 

as to remain unbiased. This investigation does not aim to create new data packet 

transfer or inspection algorithms; the intention is rather to establish whether an 

existing alternative surpasses the one commonly used in embedded system 

applications. 

This research project synthesizes concepts and techniques from several areas of 

Computing such as: operating systems, advanced computer networks, algorithms, 

simulation, software engineering, probability, and statistics. 

The research will be limited to the use of a virtual platform hardware model to 

simulate normal conditions and to obtain results regardless of undetermined 

factors in the factor analysis study. Also, the project is developed specifically in the 

firmware embedded in an x86 architecture. The development of any deliverable is 

subject to the above as well as the available hardware models that can be 
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simulated on a virtual platform on top of which the Unified Extensible Firmware 

Interface (UEFI), BIOS and Embedded OS can be run. 

The following is delivered: 

 A methodology to evaluate the performance of PF_RING compared to 

PF_PACKET in a simulated computer architecture model. 

 A set of experiments that test different usage scenarios. 

 An application expressed in a programming language that allows the tests 

to be performed following the methodological approach described herein. 

 A set of experimental results. 

 Analysis of results. 

 Conclusions and recommendations. 

The Kernel module implementing PF_RING is not delivered since this is subject to 

GPL licenses, but the code is provided so that the experiments can be replicated 

elsewhere. 

1.7. Motivation 

Data transmission from user space to the kernel has an associated cost regarding 

the resource utilization of an OS. There is little work on the Linux Kernel to perform 

this task more efficiently. Often reliance is placed on new hardware developments, 

but the software that controls and uses them is not efficient enough to exploit all 

capabilities. 

Incorporating changes to a system that is in use or called into production by 

customers around the world is risky. A simple patch to the kernel can cause a 

company to lose millions of dollars in sales and customer losses. Before making a 

code change to a product or developing a new solution, the industry researches 

new technologies and creates Proofs of Concepts (PoC) that demonstrate their 

feasibility or otherwise; one such situation is management-related techniques of 
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data packets in the kernel space. This research’s objectives will set the basis for 

discerning the following: 

• Have a functional PoC with PF_RING implemented for data transmission 

packets between applications residing on the kernel space and the user 

space in a simulated environment. 

• Feasibility of implementing PF_RING in the Linux Operating System. 

• Use the PoC to apply the methodology for obtaining results and conclude 

whether PF_RING is superior to PF_PACKET. 

By completing the objectives, the research will lead to answering the question: Is 

it possible to make data traverse efficiently the Operating System stack between 

kernel space and the user space by using the PF_RING algorithm? 

Meeting the objectives of the research expectation involves answering the 

following questions: 

• Is it possible to integrate a kernel module that implements PF_RING in the 

kernel code base of an OS in a simulated environment? 

• Is it possible to change the paradigm in which data packages are copied 

between the Kernel and the user space by implementing the PF_RING 

technique? 

• Is it possible to replace default or old algorithms in the Linux Kernel to make 

a way for new implementations for data transfer from one space to another, 

improving the resource utilization? 

• Does the use of factorial analysis and hypothesis testing help to obtain 

conclusive results of PF_RING as an algorithm to improve data 

transmission between applications residing in different OS spaces? 
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1.8. Thesis Structure 

Chapter 2 provides background information about data transmission at the 

Operating Systems level, architecture, data, PF_RING, PF_PACKET, and 

simulation. Chapter 3 delves into the details of designing data transmission 

experiments within an OS. Chapter 4 provides the methodology used to conduct 

the performance analysis of the system. Chapter 5 presents the results and 

analysis of the system performance, and Chapter 6 identifies the conclusions 

drawn from the performance analysis and indicates future recommendations in this 

research field. 
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Chapter 2. Literature Review 

Software design processes and project management [RUPARELIA, 2010] in many 

cases do not allocate sufficient time to investigate in-depth a particular area of 

interest. Frequently there is no allowance for implementing a core solution and to 

conclusively demonstrate whether or not a research proposal is feasible in 

technical and economic terms. In large technology corporations, many projects are 

explicitly contingent on "time to market" (TTM). Several types of research are left 

out or not fully realized because of the priorities of reaching the market with a 

product as soon as possible. 

Marketing departments have an increasing interest on what users are doing on 

social networks, how much time they spend connected to the Internet, the sites 

they visit, and which applications or which networks they use.  

Implementation of PF_RING relates to "Deep Packet Inspection (DPI) [PORTER, 

2005]". It takes each of the network packets or the network traffic data that passes 

through an embedded system, inspects the data components contained in the 

package in detail, and applies machine learning techniques [MOHRI, 2012] and 

heuristics. Quick classification processes help determine whether certain "flows"3 

correspond to an application, web service, particular service, among others. Such 

applications or services can be Facebook, Twitter, Instagram, Google, or Skype, 

among others. DPI allows to create user profiles, to determine the time that a user 

dedicates to a service; information can be collected and shown in dashboards 

allowing businesses to make strategic decisions. 

It is of interest to unveil how the Linux Kernel in an embedded system can take the 

incoming data from the media and pass it through the network card to the driver 

and then to the application in the user space.  Understanding the efficiency with 

which DPI is being applied in data-driven industries will shed light into improving 

the way the algorithms bring data to user applications. The use of DPI requires 

                                                

3 Set of data packets. 
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many data copies, via system calls, from the kernel to the user space making it 

costly for an application to send an interrupt to the system every time it requires 

the data back. PF_RING aims to reduce on expensive system calls; thus, an 

improvement in resource utilization is expected by changing the data transfer 

paradigm through the hardware and OS software stack to place the data where it 

is needed. 

Historically, the common way to adopt a new technique of exchanging packets 

between the kernel and the user space has been to upgrade the OS Kernel from 

one version to another. The latter contains an accepted improvement on this topic 

by the Linux developer community. However, this is not feasible when times to 

market are becoming shorter, and companies need to release their products and 

services. PF_PACKET comes in the latest versions of the Linux kernel by default; 

in the last few years there have been no significant efficiency improvements in the 

way data is copied to the kernel stack. 

Nowadays PF_PACKET supports DPI. However, an alternative technique called 

PF_RING has recently appeared. Its software architecture promises an 

improvement in data exchange efficiency between resident applications either in 

the kernel or at user level [DERI, 2001]. PF_RING is not implemented in the latest 

stable versions of the Linux Kernel or in an open source distribution of an OS in 

the Unix family.  

It is fundamental to understand how Linux architecture works to explain how an 

algorithm (or software component) might be better than another one. 

2.1. Linux Operating System Fundamental Architecture 

Linux is one of the most used Operating Systems [FINLEY, 2018] solutions from 

smart devices to autonomous driving using it. It is widely used for embedded 

devices, and it is running in a wide variety of hardware. Linux is a stable, reliable 

and complete computing platform when compared to other commercial operating 

systems available [WIKIPEDIA, 2018]. Linux, currently, is increasingly being used 
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in businesses as a back-end server. The number of applications for Linux is 

growing and have reached the critical mass where it is changing how we humans 

interact and communicate. 

Characteristics that sets Linux apart are: 

Multiuser Capability:  a capability of Linux OS where the same computer 

resources – hard disk, memory, others; are accessible to multiple users. That 

means every user has its own command terminal. A terminal will consist of at 

least a monitor, keyboard, and mouse as input devices. Client/Server architecture 

is an example of the multiuser capability of Linux, where different clients are 

connected to a Linux server. The client sends a request to the server with particular 

data and the server responds with the processed data or the file requested, the 

client terminal is also known as a “dumb” terminal. 

Multitasking: Linux can handle more than one job at a time, say for example a 

user has executed a command for sorting a huge list and simultaneously typing in 

notepad. It is managed by dividing the CPU time (cycles) by the implementation of 

scheduling policies and context switching. 

 

Portability: Portability is one of the leading features that made Linux so popular 

among users, but portability does not mean that it is smaller in file size and can be 

carried on a flash drive or any portable storage device. Instead, portability means 

that Linux OS and its applications can work on different types of hardware in the 

same way. Linux kernel and application programs support installation even on very 

minimal hardware configurations. 

 

Security: Security is a significant part of any OS, for organizations/users who use 

the system for confidential work. Linux does provide several security concepts for 

protecting their users from unauthorized access of their data and system. Linux 

introduces security concepts such as: 
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• Authentication: Assigning first level authentication such as passwords and 

individual user’s login names to ensure that only the correct person can 

obtain access to their work. 

 

• Authorization: At the file level Linux has authorization in the form of 

reading, writing and executing permissions for each file to decide who can 

access a file, who can modify it and who can execute it. 

 

• Encryption: It encodes a file into an unreadable format that is also known 

as ciphertext so that its content will be safe even if someone succeeds in 

opening it. 

 

Communication: Linux has an excellent feature for communicating between 

users, it can be within a single main computer network or between two or more 

computer networks. Users can exchange mail and data through networked 

machines. 

 

In general terms the Linux System Architecture has the following layers: 

• Hardware layer: Hardware consists of all peripheral devices (RAM/ HDD/ 

CPU). 

• Kernel: A core component of the OS that interacts directly with hardware 

and provides low-level services to upper layer components. 

• Shell: An interface to the kernel, hiding the complexity of kernel’s functions 

from users. Takes commands from a user and executes kernel’s functions. 

• Utilities: Utility programs that give the user most of the functionalities of an 

OS. 

 

The fundamental view of Linux architecture can be summarized in two levels: user 

and kernel spaces as shown in Figure 2.1. 

 

http://en.wikipedia.org/wiki/Ciphertext
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Figure 2. 1 Fundamental Linux Operating System Architecture. 

 

A more fine-grained view of the architecture can be seen in Figure 2.2 below, where 

applications can reside in user space but also other programs can run in the kernel. 

 

 

Figure 2. 2 Linux Operating System Architecture. 
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2.2. Data Transmission 

Nowadays is impossible to imagine the Internet without the Transmission Control 

Protocol/Internet Protocol (TCP/IP) which is widely known as connection-oriented. 

All network services that have been developed use TCP/IP. Understanding how 

data is transferred through the network is fundamental if one wishes to improve 

data transmission performance. 

2.2.1. TCP/IP Characteristics 

TCP/IP was designed as a protocol to transmit information quickly while 

maintaining order in the data and without losing them on the way. Below the main 

characteristics of the protocol: 

• Connection-oriented: First, a connection is made between two points 

(local and remote) and the data is transmitted. The TCP identifier is a 

combination of addresses between these two points having the following 

information in a flow: <ip_src_addr, prt_src, ip_dst_addr, prt_dst> 

• Bidirectional byte flow: Bi-directional communication is done using a byte 

stream. 

• Order in the delivery: A data receiving point receives the information in the 

order in which the issuer sent it. For this, a 32-bit integer is used. 

• Reliability: The sender must receive a response known as acknowledge 

(ACK) from the receiver after sending the data. 

• Data control: An issuer sends the largest amount of data that the receiver 

can handle. The receiver sends to the sender the number of bytes it can 

receive (size if used from the buffer, time window). 

• Congestion control: A congestion window is used to prevent the network 

from becoming congested. Algorithms are used as TCP Vegas, Westwood, 
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BIC, and CUBIC. Normally these algorithms are implemented on the issuer 

side. 

Figure 2.3 shows the structure of a TCP frame that consists of the above 

characteristics. [WIKIPEDIA, 2018] 

 

Figure 2. 3 TCP header structure. 

2.2.2. Data Transmission 

For the transmission of data, it must pass through several layers from the OS, as 

it can be seen in Figure 2.4 [SCHULTZ, 2011]. 

 

Figure 2. 4 Data packet transmission through TCP/IP layers from kernel application.  
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In general terms, it is very important to note that these layers are divided between 

the following two areas: user space, kernel space. 

The system CPU performs most of the tasks that are executed in the user space 

and the kernel. In an Embedded System, some tasks must be executed in the 

space of the kernel but are mainly performed by a software driver of a network 

device or a specific device instead of the CPU. That can be a System on Chip 

(SoC) that is responsible for sending and receiving network packages through the 

medium --cable or air. 

In Figure 2.4, it is observed that an application creates the data to be sent and a 

system call is made through the write() function. In addition to this, previously in 

the OS, it creates a File Descriptor which is a socket (a type of file in the OS). 

When the system call is made, basically what is done is a context switch area, now 

moving to the kernel space. 

The socket in the kernel has two buffers: one that is send_sckt_buff and one for 

reception rcv_sckt_buff. When a system call is made, the user space data is 

copied to the memory used by the kernel space and is added to the end of the 

send_sckt_buff to send the information in the correct order. 

There is a data structure (struct) connected to the socket for memory control 

block called TCP Control Block (TCB) that includes the data required to process a 

TCP connection. The data in that structure are the status (LISTEN, ESTABLISHED, 

TIME_WAIT), reception window, congestion window, sequence number, re-

shipment clock, among others. 

The data (payload) include information that is stored in the send_sckt_buff. The 

maximum size of the data are values given by the previous values in the TCP data 

structure. The sum code for error verification is calculated, and the frame is sent 

to the Internet Protocol (IP) layer that is responsible for adding the routing 

information that the packet carries. After this, the data packet sent requests the 

Network Interface Card (NIC) card. 
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When a data packet is sent or received, the NIC generates interrupts (Message 

Signaled Interrupts, MSI) to the CPU. Each interrupt has a msi_id interrupt 

number that the OS serves with priority so that a callback function is recorded in 

the code to handle the interruption. 

2.2.3. Data Reception 

Now, to know how data is received it is necessary to observe Figure 2.5 [SCHULTZ, 

2011]. Reception is the process that is executed when a package enters the kernel 

space. 

 

Figure 2. 5 Data packet transmission through TCP/IP layers to kernel application.  

 

As it is observed, first the data packet arrives at the NIC in charge of validating the 

package by code correction of errors and sends the package to a buffer in the 

Kernel memory space which is a structure in the OS generally skb_buff. It is 

important to note here that the NIC can reject a package depending on several 

factors defined by the configuration of the card. 

Using the data in skb_buff is how the information is carried through the IP and 

TCP layers. The latter is where the source IP address with its respective port is 

evaluated and where the packet with the destination IP and port is going. Thus, by 
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the rcv_sckt_buff corresponding to a file descriptor, the data is copied to the 

user space. 

2.2.4. Interruption Process When Receiving Data 

The process that is performed in a CPU-level interruption is complex. However, all 

that is needed to understand it is to identify a differentiator or determinant 

regarding efficiency when processing data packets in an embedded system. Figure 

2.6 [SCHULTZ, 2011] shows the process that is performed in an interruption at the 

function level in the OS. 

 

Figure 2. 6 softirq interruption process when receiving data.  

 

Assuming that a program - in the user space - is being executed on the CPU[0], at 

the moment when the NIC receives a packet and generates an interrupt for the 

CPU[0]; the function do_IRQ0() that handles the interruption in the kernel (called 

irq) is executed. The handler uses the unique msi_id interrupt number and then 

calls the napi_schedule() function to process the received packet. This last 

function calls the interrupt do_softirq(). Thus the softirq function context is 

executed in a different but similar thread while blocking any other software 
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interruption but any other interruption by hardware is kept open (non-maskable 

interruption). 

Then, the reception of the package is handled through the net_rx_action() 

function. This function calls the poll() request function which in turn calls the 

netif_receive_skb() function that sends the received data packet one by one 

to the user space. 

It is important to note, as a point of interest for the investigation, that an interruption 

to the system takes place for each packet. This means high and intensive CPU 

use to send data from one space to another in an OS. As a testing method, it is 

normal to check that the CPU is running softirq and its memory usage, especially 

the Resident memory (Resident Set Size, RSS). 

2.2.5. PF_PACKET Protocol 

When a socket is opened with the standard call sock=socket(domain, type, 

protocol), the domain (or protocol family) to be used with that socket must be 

specified. The commonly used families are PF_UNIX, for local communications on 

the same machine and PF_INET for communications based on IPv4 (PF_INETv6 

for IPv6). Also, it must specify the type of socket and the possible values depending 

on the previously selected family. Some common values for the socket type when 

using PF_INET, for example, can be SOCK_STREAM (typically used with TCP) and 

SOCK_DGRAM (associated with UDP). The socket type influences how the kernel 

handles packets before being passed to the application. In this way, it is also a 

must to specify the protocol that will manage the packets. 

In recent versions of Linux kernel (after 2.0) a new family of protocols or domain 

known as PF_PACKET was introduced. This family allows an application to send 

and receive packets dealing directly with the network card driver, thus avoiding the 

usual administration of the kernel network stack (IP / TCP or IP / UDP processing). 

That is, each packet is sent through a socket and goes directly to the Ethernet 
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interface, and any packet received through the interface goes directly to the 

application in the user space [INSOLVIBILE, 2001] 

The PF_PACKET family supports two types of sockets: SOCKET_DGRAM and 

SOCKET_RAW. The first allows the kernel to add and remove the Ethernet headers 

while the latter allows the application to take over the complete control of the 

network header. The protocol field in the socket() function must match the 

Ethernet identifiers defined in the </usr/include/linux/if_ether.h> a library 

that represents all registered protocols that can be sent in an Ethernet frame 

[INSOLVIBILE, 2001]. 

From Linux documentation: “Packet sockets are used to receive or send raw 

packets to the device driver (OSI Layer 2) level. They allow the user to implement 

protocol modules in user space on top of the physical layer. 

 

The  socket_type  is either SOCK_RAW for raw packets including the link level header 

or SOCK_DGRAM for cooked packets with the link level header removed.  The link 

level header information is available in a common format in a sockaddr_ll. The 

protocol is the  IEEE  802.3  protocol number in network order. The 

<linux/if_ether.h> include file for a list of allowed protocols. When the protocol 

is set to htons (ETH_P_ALL), then all protocols are received.  All incoming packets 

of that protocol type will be passed to the packet socket before they are passed to 

the protocols implemented in the kernel.” 

2.2.6. PF_RING protocol 

In simple terms, PF_RING allows packets on a single interface to be segmented 

across multiple threads or cores, allowing for more efficient packet processing. 

Data packets are inspected at a much lower level than traditional packet sniffers 

and engines, therefore reducing resource cost and increasing overall efficiency. 

Passive data packet capture is necessary for many activities including network 

debugging and monitoring. With the advent of fast gigabit networks, packet capture 
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is becoming a problem even on PCs due to the poor performance of popular 

operating systems. The introduction of device polling has improved 

the capture process quite a bit, but it has not solved the problem. 

PF_RING proposes a new approach to passive packet capture that, combined with 

device polling, allows data to be captured and analyzed using the NetFlow protocol 

at almost wire speed on Gbit networks using a commodity system or standard OS. 

It is a new logic for data packets exchange that dramatically improves the capture 

of network packets and is mainly characterized by the following: 

• It is possible to implement it in the latest stable Kernel versions of Linux. 

Available for Linux kernels 2.6.18 and higher. 

• It is independent of the drivers, network card drivers, or the Internet Protocol. 

• It works in the Kernel space. 

• It allows to specify filters and to use Berkeley Packet Filters (BPF) 

[BERKELEY, 2018]. 

• It provides content inspection as described for DPI. 

• As of version 4.X, PF_RING can be used with vanilla kernels (i.e., no kernel 

patch required). 

• PF_RING-aware drivers can increase packet capture acceleration. 

• It works for 10 Gbit Hardware Packet Filtering using commodity network 

adapters. 

• User-space DNA (Direct NIC Access) drivers for extreme packet 

capture/transmission speed as the NIC NPU (Network Process Unit) is 

pushing/getting packets to/from user space without any kernel intervention. 

Using the 10Gbit DNA driver, user can send/receive at wire-speed any size 

packets. 
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• Libzero for DNA for distributing packets in zero-copy across threads and 

applications. 

• Kernel-based packet capture and sampling. 

• Libpcap support for seamless integration with existing pcap-based 

applications. 

• Ability to specify hundreds of header filters in addition to BPF. 

• Content inspection, so that only packets matching the payload filter are passed. 

• PF_RING plugins for advanced packet parsing and content filtering. 

• Ability to work in transparent mode (i.e., the packets are also forwarded to 

upper links so existing applications will work as usual). 

It is a prominent replacement to PF_PACKET and was introduced in 2001 by 

Lucas Deri [DERI, 2001]. Deri found that the Linux network stack introduces 

several bottlenecks that cause loss of data packets when transmitting packets from 

the medium [BRAUN, 2010]. The proposed new architecture was developed to 

eliminate bottlenecks, especially when the size of the data is small, what causes 

many interruptions to the CPU, context changes, memory sharing, among other 

consequences, as it was mentioned above. PF_RING is a modification that allows 

copying packages in a ring, completely forgetting to use the standard logic of the 

Linux Kernel. 

PF_RING differs from PF_PACKET mainly in the number of steps for the exchange 

of data between the user space and the Kernel. Figure 2.7 [BRAUN, 2010] shows 

this difference in detail. 
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Figure 2. 7 Data flow differences between PF_PACKET and PF_RING.  

 

As shown, the exchange of data with PF_RING requires fewer steps, system calls 

or processor cycles, which suggests better efficiency in terms of using OS provided 

resources. 

Its architecture uses kernel rings (sockets) to exchange data between user space 

and kernel as shown in Figure 2.8 [DERI, 2001]. 
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Figure 2. 8 Ring buffer socket in PF_RING architecture.  

 

The advantages of a ring buffer located into a socket are:   

• Data not queued into kernel network data structures. 

• mmap primitive allows user space applications to access the circular buffer 

with no overhead due to system calls as in the case of socket calls. 

• Even with a Kernel that does not support device polling under strong traffic 

data conditions, the system is usable because of the limited time necessary 

to handle an interrupt compared to regular data handling. 

• Packet sampling is simple and effective when implementing, as sample data 

do not need to be passed to upper layers then discarded as it happens with 

conventional pf_packet applications. 

• Multiple applications can open several pf_ring sockets simultaneously 

without cross-interference (slowest application does not affect fastest  

It is important to note that applications need to be re-compiled or be ring/mmap-

aware. 
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2.3. Performance Benchmarks 

It is necessary to perform measurement tests to evaluate the performance of one 

algorithm over the other. In a built-in system many variables and situations can 

occur; therefore, it is necessary to reduce as many as possible unnecessary 

factors. 

2.3.1. Factors that Affect Performance 

Among the factors that can affect performance benchmarks are: 

• The driver of an embedded system NIC card. 

• The type of embedded system processor, 32b or 64b. 

• The bandwidth of the memory in the system. 

• Kernel version. 

• Kernel configuration. 

• The amount of data that you wish to send to the embedded system. 

• The size of the packets and the frequency of arrival of the data. 

Clearly the hardware and the card handler can be an important factor when 

capturing data from the medium. For this research, the factor is isolated or 

dismissed since the embedded system is ideally modeled with the best hardware 

specifications. Also, the idea of using PF_RING is to isolate from this factor and 

take it into account as a dominated factor. Also, as a value added to isolate 

hardware, a hardware simulator is used that will allow to inspect the problem 

without depending on hardware factors. 

The speed of the processor and the architecture can be decisive when processing 

packages since the ability to perform as many instructions in the shortest possible 

time when receiving a package must be considered. This factor is discarded since 
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it is assumed that the processor and architecture model will have the best 

specifications for the tests. Also, it is expected that with new architecture models 

in a virtual platform, the results will depend on the focus of the research in 

PF_RING. 

The speed with which the NIC and the processor can access memory for writing 

and reading is important for each packet as this eventually affects performance. 

This factor is important, and part of the research consists in showing that when 

applying the PF_RING technique the way in which the packages are copied results 

in an improvement over PF_PACKET. 

On the software implementation side, the Linux Kernel version impacts 

performance because the version in the embedded system may be old while new 

versions are constantly being developed. However, it is a controlled factor because 

the tests are going to be performed with a recent stable kernel. Thus, for the tests, 

this factor is obviated in the investigation since it is not a dependency given that 

what changes is the implementation factor of the algorithm in the Kernel. The way 

in which the Kernel of the system is configured can affect the results since it can 

cause unnecessary overload causing the system to react slower. It is assumed 

that the Kernel is compiled with a standard configuration and an improvement in 

the configuration can be evaluated during the investigation. Also, as part of the 

investigation, it is possible to find errors in the NIC driver embedded in the modeled 

device, so this can cause inefficiencies that are beyond the scope of the project. 

Other factors that are not controlled when measuring the effectiveness of an 

improvement can include the load handled by the system and the variety of 

captured packages. There must be a sufficiently varied set of packages to simulate 

the implementation of the research in a normal use environment. Also, as 

mentioned, a quite important variable factor is the size and frequency of data used 

to obtain the results. Depending on the type of packet, it is possible to simulate 1.4 

million (64 bytes) of data per second or as few as 81000 (1522 bytes) per second. 

RFC2544 provides the definition of a methodology that helps define the number of 
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packets, the size, and the frequency and even suggests experiments to make 

appropriate measurements. 

On this research, certain data flows of a certain size are defined in such a way that 

enough consistency is obtained in the results to make a simple comparison 

(following the provisions of RFC2544). In the same way, the idea is to take data 

about real packages and explore the behavior of PF_RING in an OS. 

The objective of this study is to find the best technique for passing packets from 

the kernel space to the user space (even vice versa) that results in the best 

performance regarding the use of resources such as memory, system calls, and 

interruptions to the CPU. It can be measured in Megabits per second (Mbps) or 

the number of data packets per second per Gbps (pps/Gbps). It should take into 

account the minimum size of an Ethernet packet that includes 7 bytes of pre-scope, 

1 byte for the delimiter, 64 bytes of the Ethernet frame and the frame separator (12 

bytes). Also, the historical data of CPU utilization is used. 

2.4. Experimental Design 

The environment setup for the research needs to be performed on a platform that 

enables experimentation. Experiments can be placed in two of three possible 

pathways: pf-packet and pf-ring. Figure 2.9 [SCHULTZ, 2011] details the path that 

a packet takes from a NIC in the Kernel space to the user space. 
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Figure 2. 9 Pathways of an incoming data packet through the OS from Kernel to 
the application.  

    

An OS is built as a binary with a specific configuration that supports pre-defined 

hardware and software platforms and applications. A workspace with an OS “Build 

A” and “Build B” is set to be able to support a specific real hardware platform. More 

interestingly, a binary “build A” and “build B” of an OS is built to be executed in a 

simulation environment. “Build A” is PF_RING OS enabled and “Build B” is 

PF_PACKET OS enabled. Figure 2. 10 There are no other differences between 

builds except the implemented algorithm so they are comparable. 
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Figure 2. 10 Operating System “Build A” and “Build B” differences.  

 

What is more important in the workspace is the creation of a kernel module in an 

OS that runs in a Full System Simulation tool running on top of a hardware model 

that implements the PF_RING technique instead of PF_PACKET. That is, the data 

packets are no longer going to be treated by the regular algorithm of a Linux Kernel 

module directly for data handling, nor by PF_PACKET but by a module that 

implements the PF_RING logic. 

Additionally, an application that interacts with the PF_RING ring will be 

implemented in the user space, receiving packets and sending packets to the 

Kernel module through the libpcap library [see the project at 

http://www.tcpdump.org/] or an implementation that even allows to omit it. In this 

way, it is expected to be able to perform measurements such as speed (in Mbps) 

or "throughput" (in pps / Gbps) in the copy of packets from one space to the other 

in the user/kernel areas of the OS. 

2.4.1. Factorial Experiments 

On multiple occasions, it is interesting to know the influence of two or more factors 

on a response variable. For example, in the study of the behavior of a 

computational algorithm it is interesting to know if the influence on the state of two 
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parameters affects the speed to find the response variable that calculates the 

mentioned algorithm. In this type of case, it is appropriate to use a factorial 

experiment, which means that each treatment is defined by the combination of the 

factors between the input parameters of the algorithm. 

Factorial experiments are defined as those in which two or more main factors are 

compared or studied simultaneously, including different levels or modalities of 

each factor. Normally, variance analysis is used as a statistical technique to 

analyze the effect of two or more independent variables (factors) on a response 

variable. 

In factorial experiments, treatments are formed by combining each level of one 

factor with each of the levels of the other (or of the others, if there are more than 

two). This type of experiment also makes it possible to evaluate the effects of the 

interactions. It is said that between two factors there is interaction if the effects of 

a level of one factor depend on the levels of the other. In other words, the response 

of one factor is influenced differently by the levels of the other. 

The existence of interactions indicates that the effects of the factors on the 

response are not additive and therefore the effects of the factors cannot be 

separated. 

Factorial Experiment Concepts 

Factors are characteristics that involve two or more different modalities, variants 

or levels [LINCOLN, 2014] and can be: 

• Qualitative: Those in which the levels define or express a particular 

modality of the characteristics of the factor; each level has an intrinsic 

interest or is independent of the other levels. These factors respond to the 

characteristics of the qualitative variables. E.g., different types of packages 

(TCP, UDP, etc.). 

Factor: variety of packages (V), Levels: {v1, v2, v3, ...} 
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• Quantitative: Those whose values correspond to numerical quantities, that 

is, values inherent to a quantitative variable. Ex: quantity of packages. 

Factor: packages (N), Levels: {n0, n1, n2, ...} 

To symbolize the factors, the use of the capital letter linked to the name of the 

factor and that letter (which can be uppercase or lowercase) with a numerical 

subscript for the levels has been generalized. It is also possible to use a capital 

letter for the factor and other letters for the levels that replace the names. 

In a factorial experiment, the treatments result from the combination of the levels 

of a factor with the levels of the other factors. For example, if 3 N factors are 

combined with two levels (n1 and n2), the resulting treatments are N1n1, N1n2, 

N2n1, N2n2, N3n1, N3n2. 

The interesting thing about the factorial experiments is that they can be applied to 

different designs: completely randomized, blocks, latin-squares. The complete 

Factorial Experiments include - for balancing reasons - all possible combinations 

between the different levels of the factor involved in the experiment. For example: 

if we assume the simplest factorial experiment: two factors a and b, each with two 

levels 1 and 2, we obtain: a1 and a2; b1 and b2. The possible combinations are 

four. And the respective treatments are identified as a1b1, a1b2, a2b1, a2b2. Thus, 

the structure shown in Table 2.1 can be built. 

Table 2. 1 Two by two factorial experiments 

  a levels 

b levels 

  a1 a2 

b1 a1b1 a2b1 

b2 a1b2 a2b2 

 

As the number of factors and levels increases, the number of treatments increases 

significantly and with it the difficulty of choosing the appropriate design. 
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Factorial experiments generally provide more complete information than common 

experiments since they allow the study of the main factors, the combinations of all 

the levels and the interaction of the factors. In factorial experiments it is common 

to talk about "treatment structure" indicating that treatments are formed by 

combinations of factors [LINCOLN, 2014]. 

Interaction is the reciprocal effect of 2 or more factors or the modification of the 

effect of one factor by the action of another or others. The study of the interaction 

between the factors is one of the important characteristics of factorial experiments. 

The possibility of joint studies of two or more factors with their corresponding levels 

makes factorial experiments very useful for exploratory research and as a previous 

step to subsequently concentrate attention on the aspects that may be of greater 

interest, according to the general conclusions that these experiments provide. 

Among the advantages and disadvantages are [LINCOLN, 2014]: 

• They allow the simultaneous study of two or more factors 

• They allow studying the possible interaction between the factors involved, 

and consequently the effect or behavior of each factor in the different levels of the 

other factor. 

• They are more efficient than simple experiments, where only one factor is 

studied. 

• They also provide general results that make them useful in exploratory 

experiments. 

• Since all the possible combinations of the different levels are included, 

they usually provide a large number of degrees of freedom for the experimental 

error, with the consequent advantage that this means. 

In contrast to the above, as the number of factors and levels increases, the number 

of treatments increases for the whole experiment and in particular for each 
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repetition. With all this, the difficulty of adapting the most appropriate design to the 

experimental material increases and the cost of each repetition rises significantly. 

Although not all the combinations between the different levels are of interest to this 

research, some of the experiment factors cannot be excluded for balancing 

reasons that the analysis requires [LINCOLN, 2014]. 

2.4.2 Statistical Hypothesis Testing 

The purpose of statistics is to test a hypothesis. An experiment executes a series 

of reproducible steps to obtain coherent results. A Statistical Hypothesis or 

confirmatory data analysis is a hypothesis that is testable based on observing a 

process that is modeled via a set of variables. It is a method of statistical inference 

[HANZE, 2001]. 

Experimental data sets are compared, or any data sampling is compared, against 

a synthetic data set from an idealized model. A hypothesis is proposed for the 

statistical relationship between the two data sets, and this is compared as an 

alternative to an idealized null hypothesis that proposes no relationship between 

two data sets. A comparison is statistically significant if the relationship between 

the data sets would be unlikely close to the null hypothesis after calculating the 

probability. Hypothesis tests are used in determining what outcomes of a research 

would lead to a rejection of the null hypothesis for a pre-specified level of 

significance. The process of distinguishing between null hypothesis and alternative 

hypothesis is aided by identifying two conceptual types of errors and selecting 

parametric limits for these errors. One type of error is rejection of a true null 

hypothesis (false positive) and the other type is retaining a false null hypothesis 

(false negative). [HANZE, 2001]. 

 

The p-value is the probability that a given result (or a more significant result) would 

occur under the null hypothesis. For example, say that a fair coin is tested for 
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fairness (the null hypothesis). At a significance level of 0.05, the fair coin would be 

expected to (incorrectly) reject the null hypothesis in about 1 out of every 20 tests. 

The p-value does not provide the probability that either hypothesis is correct (a 

common source of confusion) [NUZZO, 2014]. 

2.5. System Simulation and System Emulation 
Technologies 

2.5.1. Emulations vs. Simulation 

When a system mimics an observable behavior to match an existing target, it is 

called emulation. Emulation does not accurately reflect the internal state of the 

system being emulated.  

On the other hand, simulation requires modeling the underlying state of the target 

system as accurately as possible without affecting simulation speed. The result of 

a simulation is a model that describes system behavior and allows lets to observe 

its internal state. Ideally a simulation can look inside and observe properties that 

are possible to get out of the original target. In a real model simulation there are 

logical shortcuts taken for performance reasons, but at the end, the simulation is 

trustworthy enough to do experimentation that would be impossible to perform with 

an emulation. 

2.5.2. What is SIMICS? 

Simics has a direct impact on the product development process shifting time-to-

market and improving quality. It enables software development to be early 

implemented in a virtualized platform enhancing the overall process of producing 

enterprise-ready software. Simics by itself is a very interesting simulation 

technology. 

Simics is a simulator – a full system simulator program simulating a set of pieces 

of hardware working altogether. A virtual platform is a solution running in Simics 
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providing a virtual hardware solution as running software. It virtualizes embedded 

hardware in a different way that hypervisors do.  

 

A hypervisor will expect an OS to target a particular virtual machine architecture, 

while a Simics virtual platform is a software simulation of a set of pieces of 

hardware logically connected working altogether. Simics is a tool for developing 

software substituting or eliminating the use of hardware. On the other hand, a 

hypervisor is a way to manage hardware at runtime. A hypervisor can run on top 

of a Simics simulation, or a hypervisor can be developed using Simics [WIND 

RIVER, 2010]. 

 

Simics has simulated  from basic embedded boards with a single processor or SoC 

all the way up to servers or even clusters. A virtual platform is a model sufficiently 

complete and correct to fool the target software into believing it is running on real 

physical hardware and it is fast enough to be used for regular software 

development tasks. A “target” in a virtual platform is a model of the hardware being 

simulated. 

 

From a software perspective, Simics simulation is like hardware. A Simics setup 

can load the same binaries that would be used on a physical target board or 

system, execute those binaries practically in the same way they would be executed 

in real hardware. A software stack includes everything from initial boot code to 

hypervisors, operating system, user-level application code. If a model is complete 

enough, there is no need to modify the target code to run on Simics. 

 

Simics is a full software program, nothing else. It does not require special 

hardware, boards, or emulators to simulate. Simics runs on any personal 

computer, anywhere, at any time. Simics available binaries can run on Windows 

or Linux host machines. It is possible to send a Simics model anywhere across the 

globe even by e-mail. One of its main features is that it can replace hardware 
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boards for any global development team. Refer to Figure 2.11 for Simics running 

VxWorks overview [ENGBLOM, 2010] 

 

Figure 2. 11 Simics is running VxWorks Operating System. 

 

Simics is a simulation of a target, board or any system hardware. The Virtual 

Platform contains models of processor cores, buses and other interconnections 

between devices. It contains memories, peripheral devices, and networks. 

The main devices are the fast instruction-set simulators (ISS) which are used to 

execute ARM, DSP, MIPS, Power Architecture, SPARC, x86/IA or other 

processors in binary code. A full set of other devices modeled to let run an OS is 

also necessary. A full simulation on Simics includes models for memory-

management units (MMU) and all the memories and devices found in the memory 

maps of the processors. Refer to Figure 2.12 for Simics architecture overview 

[ENGBLOM, 2010] 

 

http://blogs.windriver.com/wp-content/uploads/images-o/6a00d83451f5c369e2013480351f5b970c-pi.png
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Figure 2. 12 Simics architecture overview. 

 

When a microprocessor does a memory operation, a memory load or storage is 

performed and the access address is first translated through MMU getting back to 

a physical address. This physical address is used to build a memory transaction in 

Simics. The transaction is sent to a memory map, which determines what specific 

part of the target system the transaction is targeting. If it hits the memory, the 

memory content is read or modified depending on which operation comes with the 

transaction. 

When a transaction hits a peripheral device, the simulation model for that device 

is called to determine the effects of the access. The device model has the logic in 

place to work on the access effect. It might send an interrupt to the processor, 

reconfigure the hardware registers, reset a board, set or start a timer, send a 

network packet, drive an IO pin or any other condition. When a transaction does 

not hit anything, the simulation gets an exception back to report the bus error to 

the software. 

As a software application on a host machine, all can be summarized as a function 

call that calls other functions between the objects building up the simulation model. 

On Simics, everything is an object that uses functions to expose communication 

http://blogs.windriver.com/wp-content/uploads/images-o/6a00d83451f5c369e20133ed057b38970b-pi.png
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for transactions related to the simulated system (like memory operations), internal 

communication in the same device model, maintenance, logging, tracing or other 

operations. In hardware, this style of simulation is known as transaction-level 

modeling. It is mainly focused on moving data around transactions, not on clocking, 

pins or low-level hardware concepts. 

As it is designed, Simics can add new objects to a simulation at any given point in 

time. Objects can be reconfigured on how they are connected and their properties 

at run-time modified. It is one of the advantages of using a simulation to develop 

software or run experiments rather than a real system. Its flexibility makes it 

possible to simulate any hardware system and operations like adding or removing 

boards from a rack or changing network cables between boards. 

Objects are built from classes loaded at run-time. Every simulation model is stored 

in its own .dll or .so file and can be loaded while the program simulation is running. 

There is no need to recompile anything to create a new configuration; all that is 

needed to load the required modules when Simics is running is already stored. For 

example, this is very similar to a virtual machine on Java or .net environments on 

how objects are compiled, loaded, connected (interfaces) and managed. It is not 

similar to static linking programmers use in C or C++ programs. Every change in a 

module can be compiled separately making it very easy to recompile after a 

change in a simulated target. It makes it easy to use Simics for experimentation 

and software development. 

Device modules on Simics can be created in C, C++, Python or the Simics device 

modeling language DML. DML is a C-code generator that makes it easy to create 

skeleton code to build complex device models. Any other language can also be 

used as long as it can be linked to a C-language module. 

To interconnect and manage modeled hardware, a virtual platform is created with 

a special object known as a component. It is logical to group hardware device 

models and make them work together. Components group devices, memories, 
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interconnects and processor cores as logical units corresponding to what we know 

as a chip, a SoC, ASIC, any board, racks or any scalable system. These objects 

can be reused and arbitrarily placed into another one, giving the ability to model 

any form of hardware design hierarchy. When the component hierarchy is studied, 

it is easy to understand the structure of a virtual hardware design. 

 

Any processor, board, network, heterogeneous computer architecture and target 

OS can be modeled with Simics. Models can scale and even thousands of 

processors can be modeled, which makes it easy to configure experiment setups 

for research. A simulation can run even months of the target time. Heterogeneous 

simulations include different processor types and families: multi-core, single-core, 

from 8-bit to 64-bit, symmetric shared memory or asymmetric multiprocessing have 

been used to simulate. A model can be created by any user extending the 

hardware library available with any component object needed. The only 

requirement to build target models is to have Simics base binary and Model 

Builder. 

 

On input/output (IO) to a simulated system, Simics has interactive sessions with 

serial consoles and graphical displays. It is also possible to connect simulated 

serial connections on Ethernet networks to real physical networks. The most 

common use cases are to keep target I/O with scripts of various forms of traffic 

generators. Compiled software binaries are the major form of input which Simics 

takes directly. There are many other domain-specific ways to develop Simics 

simulations.  

 

Simics user-interface has a scriptable command-line that comprehends Python a 

simple GUI, an Eclipse GUI, and connections to debuggers such as gdb-serial. 

These interfaces make it simple to manipulate a target system and debug software 

running in a simulation without software being disrupted. It is the main advantage 

of Simics as development and experimental analysis tool. 
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Simics is built from a set of logically connected objects, including user-interface 

components, debugger connections, and command-line interfaces. Any object can 

use the Simics API and function calls into other objects as infinite possibilities to 

create. Therefore, it is very easy to extend, and it is flexible to experiment with 

many use cases. Any user with some programming knowledge can create modules 

and software that runs on those models. Simics capabilities on tracing, fault 

injection, debugging, remote control and even customer graphical user interfaces 

make it a great tool for research. 

2.5.3. What is QEMU? 

QEMU is a generic open source machine, user space emulator and virtualizer. 

QEMU stands for Quick Emulator. It is a software program which features allow it 

to emulate a complete machine in software without any need for hardware 

virtualization support. It uses a dynamic binary translation that allows good 

performance. QEMU can be integrated with Xen and KVM hypervisors to provide 

emulated hardware while allowing the hypervisor to manage the central processor 

unit. QEMU is able to run a hypervisor and can reach almost near-native 

performance for CPUs. It is a software that can run software on top of OS made 

for different machines (ARM or x86).   

Figure 2.13 [QEMU, 2016] below represents a system architecture modeled in 
QEMU. 

 

Figure 2. 13 QEMU system architecture 
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QEMU provides virtualization for Linux virtualization API. It allows binaries 

compiled against one architecture to be run on a host using a different architecture. 

It involves simple CPU and system call emulation. 

QEMU is released under GNU General Public License, version 2. It is a multi-

platform software that can be built in all modern Linux platforms, OS-X, Win32 or 

other UNIX targets. Its source code is maintained under GIT version control 

system: git clone git://git.qemu.org/qemu.git 

QEMU has multiple operating modes: [QEMU, 2016] 

 

• User-model emulation: it runs single Linux programs that were compiled 

for a different instruction set. Fast cross-compilation and cross-debugging 

are the main targets for user-mode emulation. 

• System emulation: it emulates a full computer system, including 

peripherals. QEMU can boot many guest OS including Linux, Windows 

among others. Emulate different instruction sets. 

• Xen hosting: QEMU emulates hardware, the guest execution is done within 

Xen and is hidden from Qemu. 

Qemu can run a Linux Operating System on top of a Windows host machine as 

Figure 2.14 shows [QEMU, 2016]. 
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Figure 2. 14 Linux is running on top of QEMU on a Windows host. 
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Chapter 3. Design 

3.1. Problem Definition 

The data transmission system at the OS level is computationally disadvantaged in 

keeping up with data networks or even same-system produced data rates. This is 

true for systems which are I/O bound that need to store, route or process data. As 

discussed in Chapter 2, there are efforts to apply performance improvements to 

get data from kernel space to user space and vice versa for analysis. Any data 

generated and transacted from one side to another is costly regarding system 

resources. 

3.1.1. Hypothesis 

In simple form, the objective of this research is to improve data transmission 

performance within an OS. There are several options and obvious approaches 

available. Top options include: 1) distribution of network traffic between multiple 

systems to offload data transmission, 2) increase hardware specifications (e.g., 

CPU speed, Memory size and speed, storage controller, storage media, etc.), or 

3) identify opportunities to use existing hardware more efficiently. This research 

targets the latter, optimizations code will allow the first two options to scale to 

handle higher data throughput.  

The removal of bottlenecks creates the opportunity to improve performance at 

every hardware and software level allowing user end applications to leverage 

higher performance without the cost of replacing existing hardware or 

supplementing it with additional more capable hardware. 

Target improvements are: 

 Reduce CPU utilization for data transmission within an OS. 

 Reduce memory consumption of data exchange between kernel and user 

spaces. 
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 Reduce the rate of data packet drops under high data transmission. 

Data transmission between applications residing at different levels in the OS is 

costly due to system calls; considering that, the goal of this research is to enable 

the PF_RING algorithm in the system to handle data transmission at theoretical 

maximum speed with minimum CPU and memory resource consumption, 

regardless of buffer sizes.  

The hypothesis for the system using the PF_RING kernel space algorithm is that 

data transmission between applications is significantly greater with fewer system 

resources than when using PF_PACKET. It is hypothesized that the system with 

PF_RING with the same OS configuration as PF_PACKET can accomplish 

improved data transmission without impacting the OS negatively.  

3.1.2. Approach 

The following subsections provide a high-level roadmap of this research approach 

to the problem of transmitting data in an OS environment. 

Solution Space 

The first step was to determine the path for the bits from the point where a network 

card receives data in its driver’s buffer to the point where an application takes it 

out of the buffer cache by reading it either from memory or directly by a storage 

controller. Ideally, a path is a data packet that starts from the network card and 

ends up in a disk or even CPU cache memory as the end point where an 

application can use it almost in no time, but this is beyond the scope of software 

programmability and more likely a hardware solution. To track every bit as it 

traverses through drivers, frameworks, APIs, queues, and applications is not an 

easy task. It is not even possible with closed source OS code or drivers. Current 

research uses an open-source OS with strong community support. The basis of 

the experiment uses a 64-bit version of Ubuntu 17. The open-source nature of 

Ubuntu Linux and community support provided the best possible chance to easily 

modify and plugin code. Linux Cross Reference (LXR) was an aid to find the path 
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data was traversing by allowing to navigate through the Linux kernel code in a 

completely cross-referenced environment. Most of the data transmission is well 

known in a Linux OS, thus the selection of Ubuntu for the research. 

As mentioned in Chapter 2, a simulation environment decouples the OS and 

applications of any hardware or test board that allow to isolate and inspect 

experiment factors by break pointing into the code, reverse executing, fully pausing 

the simulation, registering and inspecting variables. Selection of Simics as a full 

system simulation using education licenses enables the use of hardware models 

in a way that they can be a controlled factor that is not determinant for the research. 

Direction 

Historically, performance has been achieved despite unnecessary layers of 

abstraction, context switches, and wasteful system calls. PF_RING points to a way 

to remove unnecessary bottlenecks between kernel and user space. The success 

of efforts done in this algorithm place the question “Could this algorithm be used 

instead of another to remove bottlenecks on data transmission between kernel and 

user space?”. The question leads to determine the most viable way to substitute 

PF_PACKET for PF_RING in an OS. Could data transmission within an OS via 

kernel memory mapping into the application space in the same way the upward 

copy is done perform better on a high data rate environment? The hypothesis is 

yes; however further investigation shows that memory mapping was already being 

used by the user-space libraries to get the most of the performance of the 

constrained interface between user-space and kernel-space [DIBONA, 2017]. 

Further attempts to optimize the existing use of memory mapping, combined with 

context switches of system calls, pointed to the use of better algorithms altogether. 

PF_RING functionality is relatively straightforward placing it inside the kernel, 

which means that any system call would be between kernel threads and more 

efficient. 
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Prototype 

Kernel data transmission algorithm interaction is included in the design, 

development and comparative analysis of a PoC for this research. The goal of the 

experimental system is to demonstrate that using an algorithm that leverages on 

kernel-space capabilities improves the performance of data transmission between 

applications that reside at different spaces within the same OS. Performance 

metrics are discussed in Chapter 4, but it is important to understand that the rate 

of data messages dropped in transmission is a relevant metric. CPU utilization, 

memory utilization, and query response rates are also critical metrics although their 

importance gets reduced when data packets drop rate is high. 

3.2. Moving to kernel-space 

PF_RING kernel module builds on the ability to avoid penalties for a user-space to 

kernel-space copy and back, system calls and the overhead derived from context 

switches. PF_RING retrieves data packets from and to applications or network 

cards, provides filtering capabilities to retrieve data of interest, and writes the 

packets of interest to memory where applications make immediate use of them. 

Whether the application is TCPDUMP, Snort or a custom-built tool, each 

application provides fundamental capabilities to make use of algorithm features. 

Moving PF_RING into the kernel and creating an application that leverages from 

these features is a hurdle. The design and development of the application that 

uses the kernel module capability a not straightforward or community supported. 

An added value of this research is the use of the simulation environment to 

implement the integration of PF_RING on an OS kernel to observe detailed 

experimental factors. 

3.2.1. Linux Kernel Modules 

Documentation on understanding and implementing Linux kernel modules is 

widely available on published reference books and through the expert community. 

Linux kernel code has evolved vastly in recent years and approaches to OS 
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scheduling, threading, task management, interrupts and network I/O has changed 

on the recent mainstream code. A good amount of kernel code functionality is 

statically compiled. Device drivers, non-essential functionality, and other features 

are considered volatile and are provided as kernel modules. Linux modularity 

makes it easy to enhance OS functionality to meet changing industry demand. 

The implementation of PF_RING protocol handler is an enhancement as a kernel 

module. Rather than changing the Kernel core or changing Linux kernel stack, 

PF_RING provides the capability to dynamically be inserted without altering 

standard behavior of the existing kernel core code or other user-space code that 

may depend on it. Putting this capability in place is part of this research providing 

dynamically loadable features preventing complex additional conditional logic to 

determine when to use the feature. It is used right when the module is inserted into 

the kernel and nonexistent when unloaded. 

The capability above is key to the research experiments for implementing and 

evaluating kernel-level prototypes. The design and implementation of a kernel-

level algorithm are performed by the PF_RING kernel module. The necessary 

flexibility to dynamically insert these capabilities into a plain vanilla Linux kernel is 

important to accurately measure performance analysis of a System Under Test 

(SUT) which will be discussed in Chapter 4. 

3.2.2. Linux Kernel Threads 

Kernel threads are background processes that act as agents for tasks that may 

typically be blocked. An example is a background process bdflush kernel 

daemon. It is responsible for the task of writing dirty pages from the buffer cache 

to the physical storage. bdflush is implemented as a set of threads that grow and 

shrink in a configurable minimum and maximum thread count boundary to match 

storage demand. The dynamic thread count behavior impacts the experimental 

design and performance evaluation detailed in Chapter 4 and Chapter 5 

respectively. Any write to a physical device as drivers can be blocked, kernel 
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capabilities to respond to such situations are implemented either very carefully as 

a tasklet or as a kernel thread. A tasklet uses a softIRQ that might have 

scheduling pitfalls where the code is running with a high priority. An application 

written for this research has a function specifically tasked to read and write from a 

buffer on a ring. 

On Linux there are different ways to create a kernel thread. For this research, the 

choice is to use kthread_run() macro. It creates a daemon and wakes up the 

thread. A daemon, in simple terms, removes all file descriptors from the thread 

(stdin, stdout, stderr), all signals are disabled, and the parent thread is 

changed to kthreadd, the kernel background thread default for the owner. 

Implementation on kernel module uses kthread_run() to create pkap_thread. 

Kernel threads do not have user-space connections, allowing fast and efficient 

context switching when executing them. 

3.2.3. Data Transmission from Kernel-Space 

When data comes from a network, the multiple variants libpcap library provides 

user-space applications access to packet capture capabilities. No standard 

libraries exist to capture data within the kernel. 

Selection of PF_RING 

The following factors are key to the selection of PF_RING as the algorithm of 

choice for this research: 

1. Efficient 

2. High Performance 

3. Ability to packet filter. 

4. It does not require changes to the Kernel core code. 

5. Can be used by user-space applications or even kernel-space applications 

to control comparative performance analysis. 
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These factors make PF_RING stand out as a choice. Other libraries like libpcap 

require changes to the kernel core to share the ring at kernel-space. Netfilter plug-

in is highly complex and cannot be used by existing user-space applications. A 

custom NIC device driver implementation is also out of the scope of this research 

and it is difficult to share for use with available user-space applications. 

PF_PACKET is the default alternative to PF_RING; however, there are known 

limitations and the subject of this investigation is proposing a substitute. As 

mentioned in Chapter 2, PF_RING offers characteristics like reasonable resource 

utilization, performance above or equivalent to libpcap implementation, and it is a 

dynamically loadable kernel module that can be inserted into a standard plain 

vanilla Linux platform without any changes to kernel core source code. It has a 

lightweight pfring API with essential ring creation features, and the libpcap-ring 

library provides an interface to interact with other widely used user-space 

applications. There is plenty example code to fully demonstrate library usage. 

Sending and Receiving Data with PF_RING 

PF_RING provides a ring buffer memory allocated in kernel space. When used by 

a user-space application, the pfring library maps the kernel-space memory into the 

application's memory. Section 2.1.2 describes how PF_RING performs data 

transmission. As part of the experiments performed in this research, transmission 

of packets was done by using the pfsend and pfcount applications. 
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3.3. Architecture Overview 

 

Figure 3. 1 Architecture overview modeling kernel to user implementing data 
transmission operation using PF_RING. 

Section 3.2.3 describes the design for a system using PF_RING. The architectural 

overview shows how all pieces come together. Figure 3.1 above depicts the 

research architecture. Notice that the figure shows that the kernel handles data 

transmission and action. The application system in user-space is related to the ring 

through the /proc filesystem.  

Use of PF_RING results in a reduction of memory footprint and copy count that is 

provided to user-space applications through pfring and libpcap. Other 

improvements can be made to the algorithm that are out of the scope of this 

research. pflib library copies the data from the ring before passing the copy to the 

application. Kernel module file writing is less expensive that avoiding memcpy() 

calls. As a proof of concept, PF_RING was built into the kernel as a module utilizing 

the built-in mechanism provided by PF_RING reporting status and health of the 

ring buffer and giving an insight of the data transmission process. 
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Chapter 4. Methodology 

A presentation of the methodology used to evaluate the performance of PF_RING 

in an Operating System kernel module compared to a de-facto PF_PACKET 

algorithm used by user-space applications. This research evaluates four metrics: 

CPU utilization, memory usage, packet rate drops and data query delay from an 

application. Section 4.1 defines system boundaries, and section 4.2 presents 

system evaluation methodology. Section 4.3 describes the system simulation 

services provided by a system running on Simics. The workloads and performance 

metrics are described in Section 4.4 and 4.5 respectively. System parameters and 

factors are treated in sections 4.6 and 4.7. Finally, the evaluation technique and 

experiment designs used to test, analyze and interpret system performance are 

detailed in sections 4.8 and 4.9. 

4.1. System Under Test Boundaries 

 

Figure 4. 1 System conditioned under test diagram. 
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Figure 4.1, shows the SUT of the evaluation system. PF_RING provides a 

straightforward capability, but being placed into an Operating System Linux kernel 

it may behave with unknown side effects derived from a general purpose OS, 

multitasking tasks, multiprocessing computer system (multiple cores simulation) 

meaning that there are a considerable amount of elements that affect the system. 

The only purpose of the SUT shown in Figure 4.1 is to clarify the components that 

have a direct influence on the performance of the data transmission algorithm and 

the system under study. 

The essential part of the algorithm is the PF_RING library running as a kernel 

module on a simulated hardware environment running the Operating System 

unchanged binaries on Simics.  Other components are the user-space application 

agent used to retrieve or write data on the ring. Workloads are included in the 

diagram such as data queries for data or simulated network traffic. Details on 

parameters are included in section 4.6.  

Metrics used in the performance analysis are packet drop rate, CPU load, memory 

usage, and query delay. On a real-life system, data query latency or data being 

dropped are important metrics. Metrics and methods are described in greater detail 

in Section 4.5. 

4.2. Evaluation Methodology 

To measure a real system with PF_RING enabled on an embedded network device 

for performance evaluation during the experiment is out of the scope of this 

research but would be ideal. Results are verified and validated using analytic 

analysis in a simulation environment. The proposed system is interconnected and 

dependable on other systems. Accurate modeling of system behavior is ideal but 

also out of the scope of the investigation, but it aims to behave and facilitate 

performance measurement characterization. Interdependent systems of systems 

are highly complex but simulation with Simics provides observability. 
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To evaluate performance characterization of a PF_RING-enabled and a non-

PF_RING system, actual metrics must be obtained for both kernel space 

capabilities and equivalent user-space applications making use of these features. 

On user-space, a tool based on open-source code was written to simulate network 

traffic capture data on a system using libpcap and to write them to pcap-formatted 

files on disk. This tool was also modified to use PF_RING-enabled libpcap. 

The main difference the tool allows is to use PF_PACKET or PF_RING ring buffer. 

There is where the difference relies on the SUT. Both ways utilize the fwrite() 

function that uses buffering by default, generating fewer system calls when 

transmitting large chunks of data or with small data each time. The goal is to use 

also fewer CPU cycles and less memory as per the metrics detailed before. 

Additionally, the tool was modified to be able to write to dev/null as a control in the 

experimental trials. 

4.3. System Services 

The system allows for any given data, either coming from the network or produced 

from the application, to be written or retrieved from the ring on the kernel or an I/O 

storage device accurately. The system must provide determinism as a service for 

storage or read/write from the ring of the data of interest. In general terms, the 

system provides services like: 

1. Providing an experimental environment that allows determinism. 

2. Accurately allowing data disk I/O storage simulation that responds to 

queries from an application. 

3. Being a simulated environment where system factors can be controlled and 

observable. 

4. Running a real OS on a simulated system.  
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Given the overhead rate of the smallest data packets of required information data, 

the modeled system needs to be able to sustain theoretical write speeds to disk of 

70MB/s for an average size of 765 Bytes that can be received by the host system. 

4.4. System Workload 

The SUT workload is determined mainly by a controlled factor such as the data 

traffic sent to the system. Data characteristics are determined by size and rate 

during performance evaluation. Query data workload test is part of the last 

experiment configuration to evaluate access to the ring from an application. 

4.4.1. Simulated Network Traffic 

Traffic Characteristic.  

Data transmission is the principal observable element of system workload. The 

size and frequency of data packets introduce stress to the algorithm read/write 

functions. As part of this research, the workload is produced by pktgen – a Linux 

Kernel module — to create data streams synthetically. It uses the User Datagram 

Protocol bit-spitter to test the transmission and reception of NICs drivers and 

capabilities. This method of data generation is enough to stress the experimental 

systems as described in the following statements: 

1. For the sake of packet size, data payload is not important nor is any protocol 

details above layer 4. 

2. PF_RING algorithm removes the sk_buff from the kernel TCP/IP stack 

before the point where a given protocol can distinguish any data payload. 

3. Protocol does not affect any PF_RING filtering capabilities such as Access 

Control List (ACL). 

Pktgen setup can generate average packet size dropping below 700 Bytes. 

Several instances of pktgen systems can fully saturate a system data processing 
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with small packets. A single packet generation thread creates enough traffic types 

and rates to evaluate the algorithm Kernel module capability initially. A user-space 

application typically stores data sequentially either on a ring buffer or an I/O 

storage device. The focus on this research is to go beyond boundary limits, so 

testing scenarios are repeated while writing to dev/null. Doing this removes any 

bottleneck on a simulated storage hardware device to isolate this factor on 

performance data rates transmission. 

Data streams are changed in size and data transmission rate, so it can test all 

evaluation scenarios. Data bit rate is a significant observable factor in the system 

workload, the number of data packets per second (pps) has more observability 

significance to CPU utilization metric than the data bit rate alone. As mentioned, a 

huge amount of small size data packets at a given rate can add greater system 

workload than lower quantities of big data packets at the same given rate. To 

evaluate system behavior, the size setting is the following: mini, macro and 

random. The mini-test is set to transmit only at 64B frames to impact performance 

on the SUT when the chain of functions on the algorithm handles a data packet 

buffer transferring from memory to another. The macro test is set to transmit to 

1500B frames to impact SUT when moving data with minimum system resource 

spent setting up the data movement. Random is set to transmit an average 

distribution of data packets ranging from 64B to 1500B frames. The purpose of this 

settings is to experiment with system performance when the data input factor is 

varying. 

Data Rate.  

The packet data rate can be adapted by pktgen delay knob. A nanosecond level 

adjustment of delay in-between packets is proportional to the throughput of system 

traffic processing. Using a Real Time OS is out of the scope of this research, but 

a Linux kernel with these characteristics can provide high resolution of data 

processing timing. 
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Time Length.  

In a simulated environment, 5 minutes real time could mean hours of simulation 

time. That time is enough to level up the SUT to a steady state even with the lowest 

trial data rates. Getting to a steady system state is important for valid measurement 

analysis. On a steady system state the test environment settles to a point where 

the Linux ring buffer cache is not a factor in system performance, and any query 

to the ring buffer can be satisfied on every task improving the performance of data 

transmission that represents real world behavior. 

4.4.2. Application Data Tx/Rx 

Data needs to be recognizable to be able to search for it and for the application to 

understand how to accomplish the search and response. 

Data Object Creation.  

Data can be seen as objects (marked packets) that are transmitted over a network 

or within a system that specifies information or addresses (memory location) 

considered as workload. Data can be objects that are beacons sent once at a time 

constantly to make sure the whole system is connected. These marked objects in 

complex systems are a noticeable workload increase, and the SUT is affected by 

them. These marked packets are identical to any other general traffic on an 

Internet Protocol network. 

Query Workload.  

The simulated test environment uses an application that has a background script 

exercising the SUT that starts data packet queries to the ring looking for marked 

objects to get a better grasp on what could happen in a real life connected device. 

The impact of this type of workload on the system is related to the SUT CPU 

resources consumed by additional tasks looking for objects with some type of 

metadata. This also represents a situation where read/write performance is 

impacted and dropped packet rate would also be affected. 
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4.5. System Performance Metrics 

The system must use the kernel module PF_RING algorithm to store data in the 

ring buffer with a higher probability of success and low data drop rate. To 

accomplish this, the system must perform efficiently with the least overhead as 

possible. The following metrics are defined to measure system success: 

 CPU utilization 

 Data drop rate 

 Memory utilization 

 Data query delay response 

These metrics are used because they are standard and universally used to 

compare between algorithms at high-level definition. 

4.6. System Parameters 

SUT properties are the system parameters that directly affect its performance. As 

a system of systems built in Simics running a general purpose OS the complete 

list of parameters is so wide that it is out of the scope of this study. From experience 

and subject matter expertise the list of factors is reduced and chosen for the 

experiments to those that will affect SUT performance in providing services the 

most. System performance, as already mentioned, is primarily affected in this 

research by its workload parameters. The following sections will describe system 

parameters for the SUT. 

4.6.1. Applied Algorithm Capturing Method 

The PF_RING algorithm determines whether the data should be passed to the 

application user-level space or if it can remain in the kernel for its processing inside 
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the SUT. The options are 1) user-space application or 2) pf_ring kernel module 

under study. Both the application and the kernel module use the same library to 

send/retrieve data packets from a NIC and filter them for interest. 

4.6.2. Device Selection 

I/O storage configuration of the system also impacts SUT performance in providing 

services. Any data that comes into the SUT also needs to be stored somewhere. 

Simics provide I/O simulation capabilities, options are 1) SATA hard Drive 

formatted to ext4 with 65MB/s write speed or 2) the dev/null device. Ext4 is 

selected for the experiments since it provides sequential write speeds like other 

Linux file systems. In this research it is not vital for storage to be permanent, and 

dev/null device is adequate for measuring SUT performance without getting too 

much impact on a physical storage device. 

4.6.3. Filtering 

Filtering is a system parameter. It is intentional for discarding some data defined 

by a pre-configured rule set. The SUT through PF_RING is capable of filtering data 

packets. As mentioned in Chapter 4 the ability to perform filtering is a key factor in 

the experiment design; however, for experimentation, all filtering is disabled for 

SUT performance analysis. 

4.6.4. System Specifications 

Hardware specifications for the host system impact SUT performance. Increasing 

CPU performance (adding cores or improving its specifications), memory, buses, 

platform architecture, storage system, NIC directly impacts the performance of the 

studied system. A model can be changed leveraging Simics to improve specs and 

tweak SUT performance; however, it is out of the scope of this research to control 

these factors. The specifications for the test system are constant to get consistent 

test results. Use of Simics is focused on the fact that it allows deeper observation 

into system states facilitating research reproducibility and observability. 
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4.7. Controlled System Factors 

The following section is a presentation of the system and workload parameters to 

be used as factors during the test evaluation. Factors were selected through pilot 

experiments and experience knowledge. Factors are changed during each 

experiment. Experiment 1 and 2 are described in Section 4.9. 

Factors in Experiment 1 are selected based on the impact on the SUT under 

controlled workloads to transmit and receive data with PF_PACKET. Factors in 

Experiment 2 are varied in the same way as in the previous experiment with the 

same workloads, but with PF_RING. Sections 4.9.2 and 4.9.2 outline the factors 

selected from the system and describe the workload parameters used during the 

experiments. 

4.7.1. Data Processing Method 

The method is the PF_RING implementation into the Kernel module where data 

packets traverse kernel-space to user-space and vice versa, or even when they 

do not. The impact of how the algorithm treats data and improves data 

transmission at different resident spaces is a main factor and thus the goal of this 

thesis. 

Kernel Module 

The PF_RING kernel module installed instead of the default solution on an OS is 

the proof of concept for a kernel level capability under test. It is a dynamically 

loaded Linux kernel module that implements a background process of a thread 

type. Details on how the solution in place is designed are located in Chapter 3. 

AppDataPfRingLogger 

The AppDataPfRingLogger application serves as a tool that provides functionality 

and performance threshold for the user-space system. The application resides in 

user-space. It is a libpcap-based data packet application which is a custom 

modification from DaemonLogger written by Martin Roesch. Modifications are 



 

65 

proposed only for this investigation specifically and do not pretend to substitute the 

original solution. The use PF_RING hooks provides an efficient functionality. 

AppDataPfRingLogger leverages the nature of the DaemonLogger base code for 

representing a user-space application. 

AppDataPfRingLogger was modified to support dev/null as logical I/O device and 

compiled with a libpcap-1.8.1-ring library which is the PF_RING enabled version 

of the standard libpcap universal library. This application retrieves data packets 

from the same ring buffer as the PF_RING kernel module. It is an excellent focal 

point for the SUT. It uses the fwrite() call (through libpcap’s pcap_dump() function) 

that uses the write() system call. It is handled by vfs_write() function which passes 

handling of this call to the filesystem’s write() file operation. As discussed in 

Section 3.2, the kernel module uses the write() file operation directly. This 

guarantees the application write access to the data is identical to the one that uses 

the PF_RING kernel module. 

4.7.2. Virtual Device 

Although simulation system services provide an I/O storage model, a virtual device 

is used on the hosted OS. The /dev/null device: 

 Discards all data written to it. 

 Acknowledges with SUCCESS always. 

 Provides End of File (EOF) reporting always. 

This is selected as a method to extend beyond the ability of the simulated hardware 

adding capabilities of sequential block writing between 2.6GBps and infinite. Data 

cannot be verified on correctness since it is immediately disposed. 
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4.7.3. Test Workloads 

Data Size 

A key service of the algorithm running as a kernel module is to provide the data 

available in the ring buffer so an application can access it as fast as possible. The 

most impactful system workload is copying data coming from a NIC to the ring, 

handling it over to an I/O storage device or to an application for user layer. Data 

size is the main contributor to system stress, even more than the data bit rate. On 

a network, devices typically use 64B for stress testing. Developers need to make 

sure proper functionality under too many data packets being filled in the network. 

To simulate that in the experiments data size is controlled by the following criteria: 

 Minimal size: 64B data frames 

 Maximum size: 1500B data frames 

 Random size: distribution from 64B to 1500B data frames. 

Data Rate 

Data rate is also significant as SUT workload. Low stress, stress high point, and 

unlimited theoretical stress of system experiments with rate will be controlled as 

follows: 

 Baseline (b0): 100Mbps: Low-stress testing to explore SUT behavior under 

light workloads. 

 Easy (b1): 140Mbps: Close to data processing routine handle packets per 

second (pps) limits. 1500B + Random (650Mbps): Maximum data rate an 

I/O storage device can handle when writing to it. 

 Moderate (b3): 200Mbps: Above processing handling routines. 1500B + 

Random (700Mbps): Moderately above the maximum data rate the system 

can handle. 

 High (b4): 340Mbps: well beyond the data rate processing handling routines 

can perform requiring 2 pktgen systems to create the desired rate. 1500B + 

Random (980Mbps): well beyond the rate the system can handle. 



 

67 

Experiment 2 configuration involves the SUT reaching a more realistic workload to 

approximate the system, so the data packet sizes are randomly selected between 

64B to 1500B. Distribution of random sizes is normal, and average data size is 

782B. On Experiment 3 levels are more granular to determine data query workload 

effect on the SUT: 100 Mbps, 225 Mbps, 350 Mbps, 575 Mbps, 650 Mbps, 700 

Mbps, and 975 Mbps.  

4.7.4. Application Data Workloads 

Workloads are applied in every experiment. The application will query data from 

the ring buffer for experiment trial. Refer to Figure 2.8. 

4.8. Experimental Technique and Simulation Environment 

SUT evaluation is conducted thorough measurement of the system ability to place 

data on the ring buffer and it being read by the application. System analytical 

modeling and simulation are performed using Simics full system simulator with the 

objective to simplify and add determinism to experiments. A real-life network and 

a system-of-systems would be complex and unreliable. The development of the 

application and Linux OS with PF_RING running on top of a simulation add 

flexibility to observe and adapt functionality to new experiment environments or 

platforms. 

4.8.1. Evaluation and Simulated Environment 

As depicted in Figure 3.2, the environment to evaluate the SUT is a simulated 

Simics platform running a Linux OS with the following characteristics: 

- Intel® Quick Start Platform x86 Simics simulator. 
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Figure 4. 2 Quick Start Platform running Linux. 

- PF_RING version 6.6.0 revision XXXX 

- libpcap-1.8.1-ring (distributed with PF_RING 7.0.0) 

- pktgen single instance 

- Linux genericx86-64 3.14.19-yocto-standard #1 SMP PREEMPT Mon Jan 

25 10:29:05 CET 2016 x86_64 GNU/Linux 

 

Figure 4. 3 QSP running Linux on top of a simulation running Simics. 
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4.8.2. Experimental Technique 

This section describes the method used to get the data and the process used to 

analyze the information for each trial. The metrics selected are used to be able to 

compare design performance to the default traditional approach --that is to 

compare the effect of PF_RING kernel module on SUT performance with the 

AppDataPfRingLogger application. Every trial set experiment discussed in Section 

4.9 provides a specific factor level combination. Each combination of factors has 

a workload configuration level which enables the metrics to be comparable to each 

other. 

Data Drop Rate 

“In this Internet age of network computing, one of the most critical quality attributes 

is system and network availability, along with reliability and security. Requirements 

for high availability by mission-critical operations have existed since society 

became reliant on computer technologies. In the Internet age, software code is 

distributed across networks and businesses increasingly share data, a lack of 

system availability is significantly increasing adverse impacts.” [KAN, 2003] 

As mentioned before, data drop rate is significant to SUT system performance. 

Success of the experiments depends largely on data being dropped or not. If drops 

are too high, there is no sense in running any other experiment. Data drop is 

bounded to the probability (p) of a packet being successfully captured on the ring: 

𝑝 = 1 − 𝑃;  𝑤ℎ𝑒𝑟𝑒 𝑃 =
# 𝑜𝑓 𝑝𝑘𝑡𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑟𝑖𝑛𝑔

# 𝑜𝑓 𝑝𝑘𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
  (4.1) 

Data drop rate is an important measure for being able to compare the pktgen of 

packets generated and stored in the ring. Each test workload will be run five times. 

The number of attempts for each test experiment configuration is established from 

the baseline. The SUT is based on a general-purpose operating system. Trial 

repetition is required to get consistent and reliable results although this can be 

ensured by a simulated environment. 
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CPU Utilization 

SUT load is impacted by the data workload, and the data vary from the options 

described in Section 4.7. CPU utilization information is gathered by pidstat Linux 

utility, part of the systat system status monitoring tools suite. The pidstat will be 

configured to monitor the kernel thread collecting data every five seconds through 

the duration of the test. CPU utilization average for a set of settled factors is the 

main metric of interest; however, historical utilization changes give a clearer view 

of possible bottlenecks reacting to data traffic changes, the influence of other 

kernel tasks, etc. 

Memory Utilization 

Memory utilization data is gathered using the same metrics as CPU utilization. 

Refer to CPU utilization experimental method technique. 

Data Retrieve Delay 

In Experiments 1 and 2 the above metrics are used. Data retrieve is also monitored 

and analyzed. Response metrics of interest are cycle delay in seconds, number of 

queries completed successfully and percentage of the marked packets found. 

4.9. Experimental Design 

There are two experiments. Experiments 1 and 2 leverage from pilot testing to 

determine fixed factors (parameters), controllable factors, data gathering methods, 

simulation infrastructure and the base virtual platform configuration. Experiment 

selections are put under stress testing for normal and atypical workloads to 

simulate a real system connected to the Internet. Workload intention is to provide 

input data to the SUT to measure its performance.  
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4.9.1. Experiment 0: empirical baseline 

This section describes experiment tests based on empirical purposes and 

methods. It is useful to determine controlled parameters but to better understand 

the SUT. 

Configuration. A set of tests conducted to experiment on PF_RING configurations 

for slot count, filesystem formatting, kernel module installation and formatting 

options. 

System Architecture. Determine Linux systems data packet generation and 

evaluate to ensure that the system will be fully exercised. Select to have a 

controllable and observable test environment. Key decisions are: whether to use 

a simulated data generator or an operating system utility, and which simulator 

provides a controllable and deterministic test environment that would best stress 

and provide the SUT environment. 

Data Producer. Set of tests to be conducted to gather baseline configuration 

options of the packet generation tool. It is important to be able to find a 

configuration that would also be deterministic, reliable and easy to set for 

repeatability. Set configuration file format that just easily enables data speed, 

sizes, addresses, and duration of every test. 

Profiling. When a test environment is set and it is possible to send data input to a 

SUT, workloads are sent with oprofile utility test suite to profile the PF_RING 

kernel module. 

Measurement Tools. It is necessary to acquire data from each of the tests tools to 

get metrics, monitor the SUT, get the status of PR_RING ring buffer health and 

drop count, in addition to data transmitted by the generator and data being copied 

to the application from the ring. All this is provided by the SUT with the pf_ring 

library. 
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The experiment focuses on tweaking baseline variable results to set initial data 

test count, set data rate levels to observe SUT characteristics performance from 

baseline and data send to ensure the SUT reaches a stable state. 

 

4.9.2. Experiment 1:  PF_PACKET System Enabled 

This experiment describes the SUT with PF_PACKET configuration running under 

the scenarios described in Table 4.1. After a stable repetition period, the SUT is 

exercised generating data packets that are received and written to dev/null over 

the course of 10 hours of simulation time. 

Table 4. 1 Listing of each configuration test containing three tests every five 
repetitions. 

T1/T2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

pkt_sz min max rand min max rand min max rand min Max rand 

Mbps 100 100 100 140 652 650 200 714 700 340 985 975 

 

T3 S1 S2 S3 S4 S5 S6 S7 

pkt_sz rand rand rand rand rand rand rand 

Mbps 100 100 100 140 652 650 200 

 

4.9.3. Experiment 2: PF_RING System Enabled 

This experiment describes the SUT with PF_RING configuration running under the 

scenarios described in Table 4.1. After a stable repetition period, the SUT is 

exercised generating data packets that are received and written to dev/null over 

the course of 10 hours of simulation time. The ring buffer, which is not available in 

the scenario described in Experiment 1, is monitored in this experiment. 
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4.9.4. Methodology Summary 

This chapter discussed the methodology used to evaluate the performance of the 

system under various data stress scenarios. Experiments 1 and 2 target SUT 

performance characteristics and main kernel module internal features by applying 

workloads during the test. Statistical tests are used to study and analyze the 

effectiveness of PF_RING compared to the default algorithm on the operating 

system depending on the workloads. 
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Chapter 5. Analysis 

This chapter presents and analyzes the results of the experiments as described in 

Chapter 4. Section 5.1 through 5.3 discuss system performance results and how 

the system under test behaves with data. Experimental data analysis is presented 

in Section 5.4. 

5.1. Results and Analysis of Experiment 0 

Experiment 0 gathers basic information about the system to give an empirical idea 

of how the system behaves under certain workloads. This experiment measures 

performance data to obtain the stable or normal operation performance status of 

the system under test. The SUT is configured as an OS with the PF_PACKET 

component and the same OS with the PF_RING component as the only difference, 

to create two experimentation scenarios. The metrics for this experiment are 

categorized by trial set. When executing the experiment, there are twelve trials 

divided into four different buckets of data rates. Instead of exploring the data of 

each experiment trial, Section 5.1.1 shows an overview of the key results of the 

experiment. The other sections detail key points of interest. 

5.1.1. Experiment 0 Overview 

The following graphs in Figure 5.1 show the key SUT metrics. All trial packets are 

randomized. From the packet size factor, random size is the most significant 

standard data traffic. When using minimum packet size (64 Bytes) the experiment 

provides information about system behavior with the worst-case scenario showing 

high data copying overhead. For the experiment trial with maximum packet size 

(1500 Bytes) system behavior had the best-case data copying overhead scenario. 
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Figure 5. 1 Summary graph of Experiment 0 SUT key metrics between pf_packet and 
pf_ring. Dropped packets (%). Blue = PF_PACKET, Red = PF_RING. 

Figure 5.1 shows the key metric of dropped packets between PF_RING and 

PF_PACKET. At data rate level b2 PF_PACKET drops more data packets than 

PF_RING. At b4 level there is no difference between the two. 

 

Figure 5. 2 Summary graph of Experiment 0 SUT key metrics between pf_packet and 
pf_ring. CPU utilization (%). Blue = PF_PACKET, Red = PF_RING. 

The inclusion of the results for trial sets with the lower sized packets introduces 

too much overhead and confusion to represent SUT behavior accurately. 

Figure 5.2 shows the summary graph of the impact of the packet size on CPU 

utilization and drop packet rate when using PF_RING. There are no differences 

between measures on each data rate bucket in the graph due to the advantage of 

using Simics Virtual Platform to simulate the experiments. Because of that, the 

range of confidence is 98% on each data interval. At bitrate 3 (b3), there is a 
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statistical difference between experiment trials using random data size distribution 

and maximum sized packets, but the following descriptions are shown: 

 Experiment trials between random and maximum data size packets behave 

similarly in data loss and CPU characterization. 

 Experiment trials with the minimum packet size differ noticeably in both data 

loss and CPU characterization. 

 

Figure 5. 3 Summary graph of Experiment 0 SUT key metrics between pf_packet and 
pf_ring.  Memory utilization (MB). Blue = PF_PACKET, Red = PF_RING. 

Figure 5.3 shows that PF_RING memory utilization does not change when the data 

rate is incremented. PF_PACKET memory utilization (60 MB) is higher than 

PF_RING (52 MB). 

 

Figure 5. 4 Summary graph of Experiment 0 SUT key metrics when packet size levels 
impact data drop when using pf_ring. 
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Figure 5.4 shows the key metrics when the experiment is performed at different 

packet size levels. With PF_PACKET the behavior of the SUT performs the same 

when packet size is small or big. It drops the almost the same percentage when 

the data rate is high for all packet sizes. 

 

Figure 5. 5 Summary graph of Experiment 0 SUT key metrics when packet size levels 
impact CPU utilization when using pf_ring. 

Figure 5.5 shows when the packet changes to the minimum size the CPU 

utilization rise to its maximum (~90%) no matter the data rate. 

5.1.2. Data Drop Rate 

Beyond data rate b1 where PF_PACKET or PF_RING are fully capable of zero 

packet loss, the PF_RING kernel module packet data drop rate is lower than 

PF_PACKET and even than AppDataPfDataLogger user application using 

PF_RING hooks. Table 5.1 below shows the results of the tests performed 

(hypothesis testing) on the data drop rate for each of the 4 distinct rata bitrate 

levels. 

𝐻0: 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑟𝑖𝑛𝑔
) = 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑝𝑘𝑡

) 

𝐻0: 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑟𝑖𝑛𝑔
) < 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑝𝑘𝑡

) 
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Table 5.1 shows that the null hypothesis needs to be rejected for every b-level 

(data bitrate level) that includes some data drop. The PF_RING kernel module is 

capable of transmitting more data to the buffer or even to disk than the 

AppDataPfRingLogger user-space application. 

Table 5. 1 Experiment 0 hypothesis testing of dropped packets 

Null Hypothesis Scope  Estimate  p-value 

p(PktDrpRatePF_RING ) < p(PktDrpRatePF_PKT) Experiment 0  0.08861 4.76E-79 

p(PktDrpRatePF_RING ) < p(PktDrpRatePF_PKT) b1  0 N/A 

p(PktDrpRatePF_RING ) < p(PktDrpRatePF_PKT) b2 0.16458 1.43E-82 

p(PktDrpRatePF_RING ) < p(PktDrpRatePF_PKT) b3 0.09436 2.42E-08 

p(PktDrpRatePF_RING ) < p(PktDrpRatePF_PKT) b4 0.06853 7.41E-14 

 

Table 5.1 shows the p value. The p values for every experiment scope are less 

than 0.05% (5%) which indicates it is enough to claim that PF_RING drops less 

data at different data rate than PF_PACKET. The p-value on each data rate level 

show the results of this study are solid and repeatable. 

 

Figure 5. 6 Data packets are written to dev/null on Experiment 0 comparing pf_packet 
and pf_ring. 

Figure 5.6 displays the differences in KiloBytes per second (KBps) between 

PF_PACKET and PF_RING. Due to multiple dependencies of the SUT, the actual 
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data rate written to disk varies as the network load changes; however; the data 

shows on average that the kernel-space implementation (PF_RING) is capable of 

transmitting 15-20% more KBps than PF_PACKET with a 98% of confidence 

interval (due to the simulation environment). 

5.1.3. CPU Utilization 

As can be observed in Figure 5.2’s graphical summary of CPU utilization, the 

original hypothesis expressing that the PF_RING component reduces CPU 

utilization appears to be false. 

𝐻0: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑟𝑖𝑛𝑔) = 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡) 

𝐻𝐴: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑟𝑖𝑛𝑔) < 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡) 

Table 5.2 shows the results of the null hypothesis performed on CPU Utilization 

for the 4 different bitrate levels. Both tables show that the inverse of the original 

hypothesis is valid for all the cases but for b3 there is insufficient evidence to reject 

the null hypothesis. This metric shows a failure of the PF_RING kernel module to 

achieve one of the objectives (a reduction of the CPU utilization).  The Summary 

analysis on section 5.1.5 examines the relationship between the metrics and 

provides an insight into the eventual effect on the SUT. 

Table 5. 2 CPU Utilization hypothesis testing in Experiment 0. 

Null Hypothesis Scope  estimate  p-value 

p(CPUPF_RING ) < p(CPUPF_PKT) Experiment 0  -7.85041 1 

p(CPUPF_RING ) < p(CPUPF_PKT) b1  -6.90122 1 

p(CPUPF_RING ) < p(CPUPF_PKT) b2 -16.76033 1 

p(CPUPF_RING ) < p(CPUPF_PKT) b3 -3.67531 0.97152 

p(CPUPF_RING ) < p(CPUPF_PKT) b4 -1.89512 0.94604 

    

 Inverse Null Hypothesis Scope  Estimate  p-value 

p(CPUPF_RING ) > p(CPUPF_PKT) Experiment 0  -7.85041 1.53E-31 

p(CPUPF_RING ) > p(CPUPF_PKT) b1  -6.90122 5.07E-14 

p(CPUPF_RING ) > p(CPUPF_PKT) b2 -16.76033 4.60E-39 

p(CPUPF_RING ) > p(CPUPF_PKT) b3 -3.67531 0.02839 

p(CPUPF_RING ) > p(CPUPF_PKT) b4 -1.89512 0.05396 
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The first part of the table demonstrates that the null hypothesis cannot be rejected 

while the second part shows that the inverse null hypothesis is invalid on the data 

rate b3 level. There is not enough change after evaluating the null and alternate 

hypothesis to reject that PF_RING CPU Utilization outperform PF_PACKET key 

metric. 

5.1.4. Memory Utilization  

The memory utilization shown in Figure 5.3 depicts the measurable memory 

utilization throughout all the experiments. The PF_RING utilizes 52 MB of memory 

and the PF_PACKET 62 MB of memory. This does not vary with the packet size, 

bit rate or any runtime variable on the simulated virtual platform. The use of 

PR_RING ring buffer --sized when initialized-- makes up the most of the memory 

utilized by the kernel module. As much as the snaplen4 or the number of ring slots 

were changed the same memory usage change was seen. Any memory 

consumption outside the ring, PF_RING saves memory by not buffering writes to 

disk and not copying the data from the ring to use it. Section 3.1.1 explained that 

one objective of the PF_RING PoC is to reduce memory utilization and Section 4.5 

detailed memory utilization as a system metric. The objective was for the driver to 

make decisions to reduce memory footprint. As seen in the experiments, PF_RING 

memory utilization is consistently 17% less than PF_PACKET, indicating that the 

objective to reduce memory usage has been achieved. 

5.1.5. Summary Analysis 

As per the experiment, system metrics indicate that PF_RING kernel thread drops 

fewer data packets, consume more CPU resources and use less memory than 

PF_PACKET and AppDataPfRingLogger user-space application. While 

experiment indicators show some information about the impact of the PF_RING 
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capability at kernel-space, they do not provide the full picture without probing the 

dependencies between the data. In particular, note the relationship between data 

dropped packets and CPU utilization. Figure 5.7 and Figure 5.8 provide the 

common interaction of both two metrics. The graph data set from Experiment 0 at 

data rate b2 is an example. Although one single trial was performed for simplicity, 

the relationship between the two metrics represents all trials executed that resulted 

in dropped packets. Any increase in the data drop rate reduces CPU utilization. 

This relationship exists due to data being retrieved from the PF_RING ring buffer. 

Dropped packets never reach the buffer thereby reducing the workload at any 

given data rate. The effect of the dropped data is similar to the effect of filtering 

data though dropped data as an intentional choice. The experiments are not 

focused on capturing the data accurately but on the trade-off of CPU Utilization for 

improving data speed transfer aligned with the aim of this research. Experiment 0 

reveals that PF_RING SUT option uses a greater percentage of CPU resources 

even when the difference cannot be attributed to missing data.  

 

Figure 5. 7 Data that relates data drop rate and CPU Utilization. On the first graph, the 
Y-scales differ to visually show the effect of dropped data has on CPU Utilization. It is 

composed of a single trial but gives the ‘all trials’ trend. 
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Figure 5. 8 Graph compares CPU Utilization using PF_RING showing no data drops 
while AppDataPfRingLogger has the same data drop rate as in the first graph. 

5.2. Results and Analysis of Experiment 1 

Experiment 1 gathers system metrics for the SUT under PF_PACKET while storing 

the data captures to the dev/null device. The SUT is an OS configured with 

PF_PACKET. This experiment measures performance data for the capture and 

storage process alone. No data queries were performed for this experiment during 

this phase of testing. Again, metrics for this experiment 1 were categorized by trial 

set. There are 12 trials, each representing 5 independent trials for several 

combinations of data bit rates and packet size. Section 5.2.1 presents an overview 

of the key results of the experiment, and subsequent sections detail the 

characterizations of interest. 

5.2.1. Experiment 1 Overview 

The three graphs in Figure 5.9, Figure 5.10 and Figure 5.11 below summarize the 

key metrics for all trial sets where the data packets are randomized for 

PF_PACKET SUT configuration. While not perfect, the SUT configuration is the 

most representative data size distribution of standard Internet traffic. Trial sets use 

the minimum packet size (64 B) which gives insight into SUT behavior with the 

worst-case overhead to data transmission ratio. Trial set with maximum data 

packet size (1500 B) does give an insight on system behavior with the best-case 
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overhead-to-data transmission ratio. The same rationale applied to this experiment 

as the one explained in Experiment 0 for general exclusion of trials with minimum 

or maximum sized data packets from the overall summary. The graphs depict the 

influence of data size on SUT performance during Experiment 1 and try to provide 

the best possible assessment and performance indication beyond the limits of what 

a real network system could provide. Using a Simics Virtual Platform simulation 

where the SUT runs, introduces a specific separation from real world testing and 

thus the inclusion of minimum and maximum data size packets is useful for 

revealing certain computational characteristics of the SUT configuration. 

 

Figure 5. 9 Summary graph of Experiment 1 SUT key metrics between pf_packet and 
AppDataPfRingLogger. Dropped packets (%). Red = PF_PACKET. 

Figure 5.9 shows the key metric of dropped packets between PF_PACKET and 

the user space application. On each data rate the amount of data dropped is the 

same. 
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Figure 5. 10 Summary graph of Experiment 1 SUT key metrics between pf_packet and 
AppDataPfRingLogger.CPU utilization (%).Red = PF_PACKET. 

Figure 5.10 shows the key metric of CPU utilization between PF_PACKET and the 

user space application. CPU utilization has same value (40%) at high data rates in 

the user space application. 

 

Figure 5. 11 Summary graph of Experiment 1 SUT key metrics between pf_packet and 
AppDataPfRingLogger. Memory utilization (MB). Red = PF_PACKET. 

Figure 5.11 shows the key metric of Memory utilization between PF_PACKET and 

the user space application. PF_PACKET Memory utilization is lower than 

AppDataPfRingLogger. 
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Figure 5. 12 Data size impact depicts the rate of dropped packets. 

 

Figure 5. 13 Data size impact depicts the CPU utilization. 

Figure 5.13 shows that when the data size is small and the data rate is high there 

is an increment of the amount of data loss when PF_PACKET is enabled. Figure 

5.14 shows that CPU utilization is higher when using small data size. 

5.2.2. Data Drop Rate 

Unlike Experiment 0, where the data drop rate differences are evident after data 

rate level b1, the use of the dev/null virtual device for writing data instead of 

simulated disk maintains very low data drop rates until much higher data rates 



 

86 

come in. This result is due to the fact that every write is virtually non-blocking in 

the simulation. Though all write activity even to dev/null is a potential blocking call 

(from a software perspective) assuming a real OS where the file system delivers 

the data bytes to the bit bucket as fast as it gets them; the simulation removes one 

of the most significant delays on the SUT. The data bytes never hit any buffer 

cache, and therefore the data written to dev/null does not produce any dirty virtual 

page. The bdflush kernel daemon does not increase CPU usage for any write 

function call. It is for these reasons that Experiment 1 is used for comparison with 

PF_RING and identification of SUT processing behavior. 

The results of the tests performed on the data drop rate for each of the 4 different 

data rate levels reveal no statistically significant data packet loss for any data 

bitrate when considering experimentation trials with randomly selected data sizes 

or maximum data packet sizes; therefore, Table 5.3 shows the results of the null 

hypothesis performed on the data packet drop rate trial set with minimum data size 

for each of the 4 different data bitrates of the SUT configuration selected. 

𝐻0: 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓_𝑝𝑘𝑡) = 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑎𝑝𝑝𝑃𝑓𝐷𝐿) 

𝐻0: 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓_𝑝𝑘𝑡) < 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑎𝑝𝑝𝑃𝑓𝐷𝐿) 

The table shows that the null hypothesis is valid. When scoped by level, the null 

hypothesis cannot be rejected with 98% confidence interval (data whiskers on a 

deterministic simulation) for trials on data rate b2 and b3. For practical matters, the 

difference between methods is only visible at data rate level 4 (b4), and estimations 

are below 4%. Yet data rate levels at b4 are 340Mbps for the experiment trials with 

minimal size packets, the 4% result translates to 650,000 packets and 45MB of 

data per second. 

Table 5. 3 Dropped Packet Rate hypothesis testing on Experiment 1 

Inverse Null Hypothesis Scope  Estimate  p-value 

p(PktDrpRatepf_pkt ) < p(PktDrpRateAppPfDL) Experiment 1  0.01508 4.14E-12 

p(PktDrpRatepf_pkt ) < p(PktDrpRateAppPfDL) b1  0 N/A 

p(PktDrpRatepf_pkt ) < p(PktDrpRateAppPfDL) b2 0.00021 0.24550 
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p(PktDrpRatepf_pkt ) < p(PktDrpRateAppPfDL) b3 -0.00600 0.92221 

p(PktDrpRatepf_pkt ) < p(PktDrpRateAppPfDL) b4 0.05349 2.36E-18 

5.2.3. CPU Utilization 

As shown in the graphs for CPU Utilization from Figure 5.10, there is evidence to 

accept original hypothesis, which states that the kernel module of the SUT 

application would reduce CPU utilization when using PF_PACKET. 

𝐻0: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡) = 𝑝(𝐶𝑃𝑈𝑎𝑝𝑝𝑃𝑓𝐷𝐿) 

𝐻𝐴: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡) < 𝑝(𝐶𝑃𝑈𝑎𝑝𝑝𝑃𝑓𝐷𝐿) 

Table 5.4 shows the results of the tests performed on the SUT configuration 

selection when PF_PACKET is enabled in the OS for each of the 4 different data 

rate levels, compared to the user-space application that is not able to use any 

PF_RING hooks. The table evidently indicates that the PF_PACKET utilizes 

significantly less CPU than the AppDataPfRingLogger user-space application. This 

is between 20%-35% less, at 98% confidence interval. Since PF_PACKET does 

not buffer any write, it is not penalized the way AppDataPfRingLogger is set in this 

simulated solution. To accomplish the work AppDataPfRingLogger must copy the 

data to a stream buffer and perform the expensive copy from the user-space to the 

kernel-space without any PF_RING hooks even though the data packets are 

immediately discarded by the file system. The reason the PF_PACKET requires 

less CPU in this specific experiment simulation has no practical value in real-world 

performance; however, the data point to write efficiency within the kernel-space 

and indicate CPU resource utilization in the SUT is handling the data packets to 

the file system in a non-blocking scenario. 

Table 5. 4 CPU Utilization hypothesis testing on Experiment 1 

 

Null 
Hypothesis 

Scope  Estimate  p-value 

p(CPU pf_pkt ) < p(CPU AppPfDL) Experiment 1  26.02810 0 

p(CPU pf_pkt ) < p(CPU AppPfDL) b1  19.56981 0 

p(CPU pf_pkt ) < p(CPU AppPfDL) b2 24.55692 1.57E-283 

p(CPU pf_pkt ) < p(CPU AppPfDL) b3 22.07353 1.20E-77 

p(CPU pf_pkt ) < p(CPU AppPfDL) b4 35.65992 0 
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5.2.4. Memory Utilization 

As per Section 5.1.4, memory utilization is static in this experiment too and does 

not depend on the non-controllable factors or any workload levels. Memory usage 

is not changed for PF_PACKET and, in the case of writing data to dev/null, the 

additional memory and associated copies used by the AppDataPfRingLogger 

user-space application both memory and CPU resources consumption is higher 

without any major impact. 

5.2.5. Summary Analysis 

Given the deterministic and simulated nature of Experiment 1, the data results and 

analysis apply to SUT capability closest to real-world system capability. Both the 

data and the graphs show that a kernel-space data transmission capability 

PF_PACKET can derive more benefit from faster data transmission and faster 

storage than a user-space application. The PF_PACKET OS build is compared 

with a user-space application. Their capabilities are helpful to determine where the 

improvement is located at the SUT. 

5.3. Results and Analysis of Experiment 2 

Results of Experiment 2 gather the information of the SUT configuration with 

PF_RING kernel module while comparing data transmission with a user-space 

application. This experiment measures performance of the data transmitted, stored 

in dev/null and with a data query process. The key metrics for this experiment are 

again categorized by an experimental trial set. Same trial sets as previous 

experiments for the sake of comparison with 4 independent trials for 4 data bit 

rates divided into buckets (b1-b4). This scenario is an OS build analogous to the 

one used for Experiment 1, but with PF_RING kernel module enabled instead of 

PF_PACKET (which is disabled). The experiment relates closely to representing 

real-world workload and network data traffic of a system. The SUT received the 

data packet sizes configured to be randomly selected for all the sets. Figure 5.15, 

Figure 5.16, and Figure 5.17 depict an overview of the key results for the 
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experiment while Figure 5.18 is a representation of an overview of the key query-

based (delay) results for the experiment to show differences between the kernel-

space applications versus the user-space ones. 

5.3.1. Experiment 2 overview 

The graphs shown in Figure 5.15, Figure 5.16, and Figure 5.17 is a summary of 

the key metric results for Experiment 2. In this experiment focus is on PF_RING 

capabilities to be compared against a user-space application while capturing 

enough data to be comparable with Experiments 0 and 1. All experiment trial sets 

use randomly sized packets, ranging from 64 Bytes to 1500 Bytes. During trials at 

all the 4 data bit rates, the AppDataPfRingLogger application does a query process 

on the SUT repeatedly searching for marked packets of interest on the ring buffer. 

Experiment focus is on the effect of query delays on the SUT key metrics. 

 

Figure 5. 14 Summary graph of Experiment 2 SUT key metrics between pf_ring 
and AppDataPfRingLogger. Dropped packets (%). Red = PF_RING. 

Figure 5.15 shows the key metric of dropped packets between PF_RING and the 

user space application. A result that stands out is that at higher data rate PR_RING 

data loss is low. 
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Figure 5. 15 Summary graph of Experiment 2 SUT key metrics between pf_ring and 
AppDataPfRingLogger. CPU utilization (%). Red = PF_RING. 

Figure 5.16 shows the key metric of CPU utilization between PF_RING and the 

user space application. PF_RING CPU utilization is low compared to the user 

space application at the same data rate. 

 

 

Figure 5. 16 Summary graph of Experiment 2 SUT key metrics between pf_ring and 
AppDataPfRingLogger. Memory utilization (MB). Red = PF_RING. 

Figure 5.17 shows the key metric of Memory utilization between PF_RING and the 

user space application. PF_RING Memory utilization is lower by 19% (52 MB) than 

AppDataPfRingLogger (62 MB). 
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Figure 5. 17 Key query metric (query delay) for PF_RING kernel module. 

Figure 5.18 shows the key metric of query delay between PF_RING and the user 

space application. Query response by PF_RING OS enabled to the user space 

application is almost the same at high data rates.  

5.3.2. Query Metrics 

The way the queries are performed on the SUT records the number of queries 

completed, the time delay for the response and the number of data packets marked 

as found. Only results for data query delay are presented in this experiment. The 

workloads are combined to exercise the SUT. Figure 5.18 shows an overview of 

query delay indicating the following: 

 As the data rate level increases, the number of queries answered decreases 

and the delay in the query responses increases proportionally. 

The goal of this research with respect to time delay is that data at the kernel-space 

of the PF_RING capability responsiveness satisfy live queries for the data being 

captured in the ring. Therefore, satisfaction of this goal is achieved by the lack of 

results that show a rejection of the null hypothesis: 

𝐻0: 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑝𝑓_𝑟𝑖𝑛𝑔) = 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑎𝑝𝑝𝑃𝑓𝐷𝐿) 

𝐻𝐴: 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑝𝑓_𝑟𝑖𝑛𝑔) > 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑎𝑝𝑝𝑃𝑓𝐷𝐿) 
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Table 5.5 shows test results for the query delay performed on the PF_RING/OS 

enabled experiment for the above metrics and data bit rate settled by the SUT 

configuration. In this case, there is insufficient evidence (p value is bigger than 

0.05) that the null hypothesis can be rejected; therefore, the table indicates that 

the objective of the query performance is better than a user-space application or 

compared to PF_PACKET when using a kernel-space implementation. 

Table 5. 5 Query SUT performance performed on Experiment 2 

 

5.3.3. Data Drop Rate 

The data drop rate describes the reliable behavior of the SUT. It also describes 

whether the system is performing well under high data volume or SUT stress. In 

Experiment 2, the relationship between data drop rate and CPU Utilization is as 

shown in Figure 5.15. As the data rate increases, the data drops decrease 

compared to the user-space application. Compared to Experiment 1, its behavior 

is better: under the same bit rate levels (b4), using PF_RING less data is dropped 

as compared to PF_PACKET. 

Table 5.6 shows the results depicted in Figure 5.15. It is a test performed on data 

drop and data bit rate for the SUT selection using PF_RING. There is no evidence 

to reject the null hypothesis indicating that SUT selection does not impact data 

drop rates. While the AppDataPfRingLogger data dropped rate is estimated to be 

less than 0.5% better on the b3 level than PF_RING it is not conclusive on all bit 

levels shown in Figure 5.15. 

Table 5. 6 Data dropped packet rate hypothesis testing on Experiment 2 

 

Null Hypothesis Scope  estimate  p-value 

p(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑃𝐹_𝑅𝐼𝑁𝐺) > p(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑎𝑝𝑝𝑃𝑓𝐷𝐿) Experiment 2  -2.0023 0.33484 

Null Hypothesis Scope  Estimate  p-value 

p(PktDrpRate pf_ring ) < p(PktDrpRateAppPfDL) Experiment 2  -0.00964 0.8276 



 

93 

A potential reason for the comparatively better performance of 

AppDataPfRingLogger at the user-space is the PF_RING hooks write buffering. 

Since the PF_RING kernel modules use the memory slot directly for writing the file 

system, the writes are not blocked and are quickly consumed by the free rings in 

the algorithm. This effect is leveraged by the user-space application as the ring is 

freed quickly by a simple memcpy() providing another buffer and reducing the cost 

of transferring data to userland. 

5.3.4. CPU Utilization 

Table 5.7 shows the results of testing performed on CPU Utilization by the SUT 

with PF_RING on Experiment 2. There is strong evidence to accept the null 

hypothesis indicating that the kernel-space SUT configuration with OS PF_RING 

enabled reduces CPU utilization when data traffic workloads are present. The 

estimated reduction of the kernel-space SUT is at 5% with a 98% confidence due 

to the deterministic simulation when running the experiments. The 5% utilization 

difference is significant compared to the PF_PACKET solution. This indicates that 

a kernel-space improved algorithm incurs in a reduced contention of system 

resources in this scenario. 

Table 5. 7 CPU Utilization hypothesis testing in Experiment 2. 

 

5.3.5. Memory Utilization 

As shown in Figure 5.17, the memory utilization indicates the kernel-level buffering 

benefits mentioned in Section 3.2. The memory used by AppDataPfRingLogger is 

62 MB which is higher than the PF_RING kernel module. Overall this indicates 

that, in terms of memory, both Experiments 1 and 2 show that kernel-space 

solutions memory utilization is somewhat static and not dependent on system 

factors if implementations are correct. SUT selection can increase buffering by 

initializing PF_RING’s ring buffer with more slots - which may not be comparable 

between experiments. 

Null Hypothesis  Scope  Estimate  p-value 

p(CPU pf_ring ) < p(CPUAppPfDL) Experiment 2  3.39733 2.90E-08 
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5.3.6. Summary Analysis 

On Experiment 2 PF_RING’s implementation certainly impacted the data drop rate 

when the data bit rate increases: the number of data drops is reduced. Although 

not conclusive due to other bit rate levels where the data drop rate is higher, 

overall, the hypothesis is accepted and conclusive in certain data bit rates 

submitted to the SUT with PF_RING. The Operating System with PF_RING 

enabled performs better when compared with Experiment 1 results. On CPU 

utilization, Experiment 2 demonstrates better performance than 

AppDataPfRingLogger with an estimated reduction of 5% of the kernel-space SUT 

configuration and comparatively better versus CPU Utilization on Experiment 1 

SUT (PF_PACKET configuration). 

5.4. Overall Analysis 

To recapitulate, the key aspects of the PF_RING kernel module during the 

experiments are: 

 The PF_RING kernel module improves data transmission performance to 

user-space either by: 

o Transmitting significant amount of data packets, with increased CPU 

utilization due to the higher data bit rate levels (b3-b4). 

o Transmitting the same percentage of data packets but with reduced 

CPU utilization when writing to the virtual simulated storage device. 

 The PF_RING kernel module algorithm uses significantly less memory; 

which is relevant in today’s embedded devices. On other types of 

applications, computing power takes priority on top of memory utilization, in 

which case our results are less relevant. 



 

95 

 The PF_RING kernel algorithm does not impact user-space queries 

negatively, responding adequately and improving the system compared to 

a user-space application using PF_PACKET. 
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Chapter 6. Discussion 

This chapter presents the overall conclusions reached from the research. Section 

6.1 considers each research objective and determines whether it was met. The 

significance of the research results is presented in Section 6.2. Finally, Section 6.3 

mentions possible directions for related research. 

6.1. Conclusions 

6.1.1. PF_RING Kernel-Space Capability in an OS 

The first goal of the research reported in this thesis was to study the possibility of 

replacing a de-facto kernel-level data transmission component (PF_PACKET) by 

an alternative (PF_RING) to determine whether this impacts performance. The 

design and build of an experimental setting were completed using Simics 

Simulation models that allowed an objective comparison of basic functions of a 

PF_RING OS-enabled capability against another build of an PF_PACKET OS-

enabled. 

To accomplish the goal, a PF_RING kernel module was built in a Linux Operating 

System to expose the ring functionality so that the memory could be mapped and 

addressed by other kernel modules, and also provide the necessary functions to 

select the ring from a user-space application or from the kernel module itself. With 

the PF_RING kernel module in place, it was possible to access the ring buffer itself, 

initialize it and have it recognized by other kernel modules in the kernel-space. 

With PF_RING enabled, it was possible to consume the ring´s memory in slots in 

the same way pfring’s library functionality does it in user-space. The experiment 

enabled to extend the role of a typical Linux kernel module beyond its traditional 

role, so it was able to access the ring through user-space application and to write 

the data to it or any other simulated virtual devices. The experiment proceeded 

similarly with PF_PACKET, using a suitable algorithm architecture to be able to 

compare it against PF_RING. 
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The PF_RING algorithm as a form of a kernel module was loaded into a Linux 

system and tested against simulated real network traffic. This demonstrated the 

ability to transmit data between kernel space and user space and vice versa, 

decide which data to store or to write into the simulated virtual device and maintain 

data lifecycle through live network simulation tests, thus accomplishing the first 

objective of the research. 

6.1.2. Reduce Data Drop Rate When Using PF_RING in a User-Space 
App 

The research subject through the experiments was the goal to improve upon the 

performance characteristics of the PF_PACKET data transmission algorithm by 

replacing it with PF_RING, employing the kernel-space data transmission 

capability in place while using a user-space implementation to leverage it. The 

specific metric for improvement, in this case, was the reduction of the data drop 

rate during simulated virtual time running random network traffic. Testing of the 

system with live simulated network traffic revealed that the PF_RING kernel 

module reduced the data drop rate by an average of 9.0% with 98% confidence, 

using Simics as a deterministic environment and experimentation vehicle. In cases 

where the user-space application was using PF_RING, the experiment scenario 

produced a favorable reduction in CPU utilization compared with PF_PACKET. 

The practical use of PF_RING and a user-space application that could hook with 

the algorithm implementation at kernel-space were demonstrated on a system 

simulating real network data traffic, thus satisfying the conditions for meeting the 

research objective.  

6.1.3. Reduce CPU Utilization When Using PF_RING in an OS 

The goal to reduce the resource demand of the system while using PR_RING by 

reducing CPU utilization was another research subject. Reduction of CPU 

utilization was possible due to the removal of bottlenecks, removing multiple 

memory copies and leveraging the transition from user-space to kernel-space and 
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vice versa to write data either to disk or virtual devices. However, from the 

experiments, CPU utilization reduction was observable when writing to virtual 

devices (dev/null) and when data packets were not so small in size. At those times 

the average utilization was at only 4%, with 98% confidence, according to 

measures taken on the Simics simulation environment. 

As discussed in Chapter 5, CPU utilization is dependent on different factors, one 

of which is data drop rate. By reducing data drop rate by 9% on average, data 

transmission freed resources to handle the additional workload. During the test 

scenarios, the PF_RING kernel module utilization increased to 8% on average with 

a 98% of confidence. The increment on CPU utilization is an acceptable trade-off 

when the data transmission accuracy is more important in higher data network 

traffic situations. This was proven true when the data drop rate decreased in a 

higher proportion than the growth in CPU utilization. 

After considering the behavior of the SUT and the benefits of building an OS with 

PF_RING kernel module enabled, CPU utilization for situations with high data 

transmission and low data drop rate impact, it is concluded that the proposed 

system confirms the research hypothesis. 

6.1.4. Reduce Memory Utilization When Using PF_RING in an OS 

The goal to reduce the resource demand on system memory utilizing PF_RING 

built within an OS was another research subject. Memory utilization reduction was 

possible due to PF_RING kernel-space module direct use of the ring memory slots 

in the call of any user-space application or even between other kernel modules. 

The kernel-space PF_RING implementation did not use any stream buffering since 

the data packets were transmitted directly to the ring, which was memory mapped. 

On Simics, the memory was instantiated as an object since Simics sees any device 

memory mapped in the system, including memory. According to the experiments, 

file system writes within the kernel space appear to be cheaper than any additional 

memory copies required on normal user-space applications. By avoiding data 
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copies while using the PF_RING ring (which is not available in PF_PACKET), the 

kernel implementation reduced the memory for every task by 10MB which 

corresponds to a 17% reduction with a 100% confidence using a simulation. The 

static memory reduction accomplished the research goal. 

6.1.5. On Research Methods and Tools  

The Full System Simulator experiments performed on top of Simics made it 

possible to create a testing environment that was easy to use and enabled the 

handling of repetitive trials on experiments. Setup and configuration required time 

at the beginning but it was only done once on this investigation. This allowed for 

every new experiment setup to be as simple as launching the program and start 

running the simulation, which allowed hardware-free experimental tools. A Full 

System Simulation environment facilitated the isolation of the hardware factor 

reducing any dependencies on physical measurement equipment or laboratory 

availability while being able to launch Simics on any host at any place and time. In 

addition, having an isolated experimental environment was possible, thus 

preventing exogenous perturbations from introducing errors to the experiments 

and allowing systematic data gathering for statistical analysis. 

As an academic tool, Simics provides full-featured free licenses for researching 

new technology architectures and software. The ability to control experimental 

factors and isolate observable variables was key for this research and sets a 

precedent for future work on many computer science research arenas. 

Factorial analysis and statistical hypothesis testing permitted to introduce a 

methodological framework that can be ported to examine similar or related 

hypotheses. A systematic series of experiments allow to gather results with high 

confidence, which in turn permits to conclude objectively. This is a framework that 

can be ported to future work and similar research. 
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6.2. Engineering Significance 

This research provides the Costa Rica Institute of Technology and industry 

interested in exploring and innovating on IoT, Embedded Devices and Networking 

appliances with an improved method for efficiently passing data from Kernel space 

to user space in an (Embedded) Operating System. An Operating System with 

PF_RING enabled benefits the overall security of the information, its integrity, its 

availability, its consistency, its reliability, and data transmission efficiency in high-

density data traffic networks. Any improvement in the performance of data 

transmission reduces the processing footprint and increases the effectiveness of 

the data to be available in any application. The simulation experiments, with the 

PF_RING algorithm enabled on Linux Operating System improves the 

performance of the data transmission process, and provides indications that it 

scales better than PF_PACKET in highly-connected and dense networking data 

traffic - with increased performance in memory usage, less data drops and shorter 

data query delays. 

PF_RING Linux kernel module presents a stable, high-performance application 

that can transmit data with high reliability making it available at a ring buffer or even 

written to an I/O disk. This research provides a unique demonstration of improved 

data transmission on high-density network data traffics where the principal goal is 

to have the data available for consumption by a user space application as fast and 

reliable as possible, and it sets a path for future research to begin addressing the 

performance issues of networked devices facing higher amounts of data traffic 

coming - beyond just capturing some data and sending it to be processed and 

displayed by an application dashboard. 

Even though the PF_RING OS enabled data drop rate reduction of 9% may seem 

small when compared to PF_RING, that percentage delta could translate to losses 

that approach almost 100 Mbps on a Gigabit Ethernet Link. Malicious methods to 

attack and obfuscate a network connected device are to flood it with an 

overwhelming amount of harmless data to slow the device and breach the secured 
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network. When network flood traffic increases, the probability of key data packets 

being lost is high and the connected devices processing power and its value 

decrease. In light of a decreasing data drop rate, 9% is a significant achievement 

of this research. 

A simulation environment that provides determinism and makes it easy to apply 

experimental statistical methods offers the academic community with a baseline 

for future investigations using Simics as a tool to reproduce experiments performed 

in this research or to apply the lessons learned in other computer science research 

areas. 

6.3. Future Work 

Although not all possibilities are listed, the following subsequent research topics 

are suggested: 

 Scale the PF_RING Operating System build from just one simulation to 
1000+ simultaneous simulations running on a powerful server, to study 
scalability and cluster architectures. 

 Modify the PF_RING kernel module to add a robust filtering capability for 
IPv6 data traffic, controllable by the application or from the kernel space. 

 Evaluate performance of other data transmission algorithms, such as Zero 
Copying (ZC), against PF_PACKET and PF_RING, using an experimental 
methodology analogous to the one performed in this research. 

 Leverage PF_RING capabilities built in the Operating System located in the 
kernel space to build a set of indexes of marked data packets to improve 
data query response and reduce delay. 

 Improve PF_RING kernel module implementation by adding crash 
avoidance before the operating system reaches a failure state. 
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Appendix A. AppDataPfringLogger changelog 

Index : daemonlogger − 1.8.1/ daemonlogger.c 
=================================================================== 
−−− daemonlogger − 1.8.1/ daemonlogger.c ( revision 88) 
+++ daemonlogger − 1.8.1/ daemonlogger.c ( revision 89) 
@@ −216,4 +216,8 @@ 
static int maxpct ; 
static int prune_flag ; 
+/* 
+ * Add log to null virtual device 
+ */ 
+ static int logtonull = 0; 
static char * interface; 
@@ −415,4 +419,11 @@ 
{ 
time_t currtime ; 
+ // Virtual device 
+ char * nullfile = "/dev/null " ; 
+ 
+ i f ( logtonull == 1) { 
+ return nullfile; 
+ } 
+ / / End of added code 
memset( logdi r , 0 , STDBUF) ; 
@@ −1137,4 +1148,5 @@ 
printf ( " −u <user name> Set user ID to <user name>\n " ) ; 
printf ( " −v Show daemonlogger version\n " ) ; 
+ printf ( " −X Log to /dev/null\n " ) ; 
} 
@@ −1153,5 +1165,5 @@ 
while ( ( ch = getopt ( argc , argv , 
− " c : df : Fg : hi : l :m:M: n : o : p :P: rR : s : S : t :T: u : vz "))!= − 1) 
+ " c : df : Fg : hi : l :m:M: n : o : p :P: rR : s : S : t :T: u : vXz "))!= −1) 
{ 
switch ( ch ) 
@@ −1300,4 +1312,7 @@ 
prune_flag = PRUNE_OLDEST_IN_RUN; 
break ; 
+ case ’X ’ : /* Added log to null case* / 
+ logtonull = 1; 
+ break ; 
default : 
break ; 
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Appendix B. Simics Configuration Script 

if not defined host_class { $host_class = "jsl" } 

## Search paths should uses %simics% to make sure it will on package 

add-directory (lookup-file "%simics%/targets/x86-jsl/") 

add-directory (lookup-file "%simics%/targets/x86-jsl/images/") 

 

$pmc_image_folder = (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/pmc/images/") 

if ($pmc_image_folder != FALSE) { 

    add-directory $pmc_image_folder 

} 

$ish_image_folder = (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/ish/images/") 

if ($ish_image_folder != FALSE) { 

    add-directory $ish_image_folder 

} 

$hda_image_folder = (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/hda/images/") 

if ($hda_image_folder != FALSE) { 

    add-directory $hda_image_folder 

} 

 

## Common images TODO: include to Common.include 

$common_images = (lookup-file -query "%simics%/common_images/") 

if ($common_images != FALSE) { 

    add-directory $common_images 

} 

 

## Common include for images 

$common_include = (lookup-file -query "%simics%/targets/Common.include") 

if ($common_include != FALSE) { 

    run-command-file $common_include 

} 

 

## Internal definitions 

if not defined wb       { $wb         = NIL } 

if not defined wb_force { $wb_force   = NIL } 

if not defined swm      { $swm        = NIL } 

 

# Loading release helper module 

load-module release-helper 

 

### Software one script settings 

 

if ($swm == NIL) { 

    # default SW config 

    run-command-file "%script%/jsl-sw.include" 

} else { 

    # user defined SW config 

    # look if it is user config 

    $user_swm = (lookup-file -query $swm) 

    if ($user_swm != FALSE) { 

        run-command-file $user_swm 

    } else { 

        # look if it is one of the base 

        $base_swm = (lookup-file -query "%simics%/targets/x86-jsl/"+$swm) 

        if ($base_swm != FALSE) { 

            run-command-file $base_swm 

        } else { 

            interrupt-script "SW MANIFEST FILE WAS NOT FOUND" 

        } 

    } 

    # What is not redefined will be taken from default (???) 

    run-command-file "%script%/jsl-sw.include" 

} 

 

### WB CONFIGURATION one script settings 
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if ($wb != NIL) { 

    if ($wb_force) { 

        rh-load-wb $wb -f 

    } else { 

        rh-load-wb $wb 

    } 

} else { 

    echo "INFO: No WB configuration is specified, running just base" 

} 

 

### WB models disabled by default 

if not defined gfx_wb_enable    { $gfx_wb_enable   = FALSE } 

if not defined csme_wb_enable   { $csme_wb_enable  = FALSE } 

if not defined hda_wb_enable    { $hda_wb_enable   = FALSE } 

if not defined ish_wb_enable    { $ish_wb_enable   = FALSE } 

if not defined pmc_wb_enable    { $pmc_wb_enable   = FALSE } 

if not defined punit_wb_enable  { $punit_wb_enable = FALSE } 

 

@wb_keys = ["csme", "punit"] 

@wb_suffix = "_wb_enable" 

@for w in wb_keys: 

    if conf.sim.env[w + wb_suffix]: 

        location = os.path.join("%simics%", "targets", "x86-" + simenv.host_class + "-

extensions", "wb", w) 

        f = SIM_lookup_file(location) 

        if f: 

            print "Add WB folder " + f 

            #SIM_run_command("add-directory " + f) 

            conf.sim.simics_path += [f] 

        f = SIM_lookup_file(os.path.join(location, "images")) 

        if f: 

            print "Add WB image folder " + f  

            #SIM_run_command("add-directory " + f) 

            conf.sim.simics_path += [f] 

 

### Check all images there 

if not defined sxp_image        { $sxp_image = "" } 

if not defined cd_image         { $cd_image  = "" } 

 

if not defined required_files { $required_files = [] } 

$required_files += [ ["BIOS ROM image",      $bios], 

                     ["Dummy ROM image",            "vbios.stub"], 

                     ["Board ID",                   "empty.brdid"], 

                     ["Board ID",                   "karkomx0.brdid"], 

                     ["ENH VGA GOP driver image",   "QemuVideoDxe.rom"], 

                     ["ENH VGA BIOS Rom image",     "enh_accel_vgabios.bin"]] 

 

if ($pmc_wb_enable != FALSE) { $required_files += [ ["PMC ROM", $pmc_bootstrap_image] ] } 

if ($punit_wb_enable  != FALSE) {  

    if (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/punit/images/"+$punit_pcode_path) { 

        add-directory -prepend (lookup-file "%simics%/targets/x86-jsl-

extensions/wb/punit/images/"+$punit_pcode_path) 

    } 

    $required_files += [ ["PUNIT ROM", $punit_pcode_img] ] 

} 

 

if ($ish_wb_enable  != FALSE)   { $required_files += [ ["ISH ROM", $ish_rom_image] ] } 

if ($hda_wb_enable  != FALSE)   { $required_files += [ ["HDA1 ROM", $hda_Fw1File] ]  } 

if ($hda_wb_enable  != FALSE)   { $required_files += [ ["HDA2 ROM", $hda_Fw2File] ]  } 

if ($csme_wb_enable != FALSE)   { $required_files += [ ["ME ROM", $me_mia_bios] ]    } 

 

# BASE MISC FILES 

if ($bios2 != "")               { $required_files += [ ["BIOS2 (second component)", 

$bios2] ] } 

if ($disk_image != "")          { $required_files += [ ["Disk image", $disk_image] ]          

} 

if ($cd_image != "")            { $required_files += [ ["CD image", $cd_image] ]              

} 

if ($sxp_image != "")           { $required_files += [ ["SXP image", $sxp_image] ]            

} 
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$missed_files = "" 

foreach $file in $required_files { 

    try { 

        if not (lookup-file $file[1]) { throw; } 

    } except { 

        echo ("File not found. " + $file[0] + " : " + $file[1]) 

        if $missed_files != "" { $missed_files += ", " } 

        $missed_files += $file[1] 

    } 

} 

if $missed_files != "" { interrupt-script "Some files have not been found: " + 

$missed_files } 

 

### Print SW configuration 

echo "INFO: SW CONFIGURATION" 

# OS image 

if ($disk_image != "") {  

    echo ("INFO: OS $disk_image = " + (lookup-file $disk_image)) 

} else { 

    echo ("INFO: NO OS. No $disk_image is specified. Using empty image") 

} 

# BIOS 

echo ("INFO: BIOS/IFWI $bios = " + (lookup-file $bios)) 

if ($bios2 != "") { 

    echo ("Using $bios2 (second component) = " + (lookup-file $bios2)) 

} 

 

if ($pmc_wb_enable   != FALSE) {echo ("INFO: PMC ROM  $pmc_bootstrap_image = " + (lookup-

file $pmc_bootstrap_image))} 

if ($punit_wb_enable != FALSE) {echo ("INFO: PUNIT ROM $punit_pcode_img    = " + (lookup-

file $punit_pcode_img))    } 

if ($ish_wb_enable   != FALSE) {echo ("INFO: ISH ROM $ish_rom_image        = " + (lookup-

file $ish_rom_image))      } 

if ($hda_wb_enable   != FALSE) {echo ("INFO: HDA1 ROM $hda_Fw1File         = " + (lookup-

file $hda_Fw1File))        } 

if ($hda_wb_enable   != FALSE) {echo ("INFO: HDA2 ROM $hda_Fw2File         = " + (lookup-

file $hda_Fw2File))        } 

 

if $hda_wb_enable { 

      $external_hda = TRUE 

      $r2s_enable = TRUE 

} 

 

### CONFIG SET UP, let's run everything 

 

# Base 

run-command-file "%script%/jsl-system-pre.include" 

 

# All PRE work for integrating WB components 

run-pre-wb 

 

### This is only ONE instantiation 

instantiate-components 

 

# Base 

run-command-file "%script%/jsl-system-post.include" 

 

# All POST work for integrating WB components 

run-post-wb 

 

sim->handle_outside_memory = TRUE 
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