
OPERATING SYSTEMS DATA TRANSFER

OPTIMIZATION

Dennis Rodríguez R.

Thesis Submitted in Partial Fulfillment of the

requirements for the Degree of

Master of Computer Science

Department of Computer Science

© ITCR

INSTITUTO TECNOLOGICO DE COSTA RICA

2018

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

iii

Approval

Title: Operating System Data Transfer Optimization

Examining Committee:

 Chair: Dr. Roberto Cortés Morales
Program Coordinator
Tutor: Ignacio Trejos Zelaya
Master of Science in Computation

Luis Carlos Loaiza Canet
Master of Science in Telematics

Luis Carlos Solano
Master of Science in Electrical Engineering

Date Defended/Approved: June 2018

iv

Ethics & Copyright

I, DENIS RODRIGUEZ-RODRIGUEZ with IDN° 112200751; declare that the

dissertation “Operating System Data Transfer Optimization” has been developed

completely by myself, having full respect for any intellectual property of the people

who have developed the concepts and using the appropriate citation of the authors

detailed completely in the references. This dissertation is presented only for the

Costa Rica Institute of Technology in partial fulfillment of the requirements for the

degree of Master of Computer Science.

I declare that the content of this document and its scope is authentic, and I take

full responsibility for it.

San José, Costa Rica, June 2018.

v

Abstract

Balancing algorithms challenge the state of the art on how data exchanges as

messages between programs that execute in the kernel and the applications

running on top in user space on a modern Operating System. There is always a

possibility to improve the way applications that rely on different spaces in an

Operating System can interact. Algorithms must be placed in the picture all the

time when thinking about next-generation human interaction problems and which

solutions they require. Artificial Intelligence, Computer Vision, Internet of Things,

Autonomous Driving are all data-centric applications to solve the next human

issues that require data to be transported efficiently and fast between different

programs, no matter whether they reside in the kernel or in user space. Chip

designs and physical boundaries are putting pressure on software solutions that

can virtualize and optimize how data is exchanged. This research proposes to

demonstrate - via experimentation techniques, designs, measurement and

simulation - that in-place solutions for data optimization transfer between

applications residing in different Operating System spaces can be compared and

revised to improve their performance towards a data-centric technology world.

Specifically, it explores the use of a simulated environment to create a set of

archetypical scenarios using an experimental design which demonstrates that

PF_RING optimizes data messages exchange between Operating System kernel

and user space applications.

Keywords: data; operating systems; pf-ring; pf-packet; virtualization;

simulation; emulation; performance analysis; experimental design;

algorithms; code complexity; embedded systems; SIMICS; QEMU.

vi

Dedication

This work stands on its own thanks to a supportive family and amazing academic tutors.

Computer Science is a passion and a way of living, without loved ones around this would

not be possible.

vii

Acknowledgments

To tutor and lecturer, Ignacio Trejos Zelaya who shares the greatest passion in

computer science and education who has contributed to teaching the best Costa

Rican computer scientists producing brilliant software developers shaping the

country’s future in new technologies.

viii

Table of contents

Approval ... iii

Ethics & Copyright .. iv

Abstract ... v

Dedication .. vi

Acknowledgments ... vii

Table of contents ... viii

List of tables ... xi

List of figures ... xii

List of acronyms ... xiv

Preface.. xv

Chapter 1. Introduction .. 1

1.1. Fundamentals .. 1

1.2. Problem Generalities ... 3

1.3. Justification .. 6

1.4. Problem Statement .. 8

1.5. Research Objectives ... 9

1.5.1. General Objective .. 9

1.5.2. Specific Objectives .. 9

1.6. Problem Scope and Limitations ... 9

1.7. Motivation .. 11

1.8. Thesis Structure .. 13

Chapter 2. Literature Review ... 14

2.1. Linux Operating System Fundamental Architecture ... 15

2.2. Data Transmission ... 19

2.2.1. TCP/IP Characteristics .. 19

2.2.2. Data Transmission ... 20

2.2.3. Data Reception .. 22

2.2.4. Interruption Process When Receiving Data ... 23

2.2.5. PF_PACKET Protocol .. 24

2.2.6. PF_RING protocol ... 25

2.3. Performance Benchmarks ... 30

2.3.1. Factors that Affect Performance .. 30

2.4. Experimental Design ... 32

2.4.1. Factorial Experiments .. 34

Factorial Experiment Concepts .. 35

2.4.2 Statistical Hypothesis Testing ... 38

2.5. System Simulation and System Emulation Technologies 39

2.5.1. Emulations vs. Simulation .. 39

2.5.2. What is SIMICS? ... 39

2.5.3. What is QEMU? ... 45

ix

Chapter 3. Design ... 48

3.1. Problem Definition ... 48

3.1.1. Hypothesis ... 48

3.1.2. Approach ... 49

Solution Space ... 49

Direction ... 50

Prototype ... 51

3.2. Moving to kernel-space.. 51

3.2.1. Linux Kernel Modules .. 51

3.2.2. Linux Kernel Threads ... 52

3.2.3. Data Transmission from Kernel-Space .. 53

3.3. Architecture Overview ... 55

Chapter 4. Methodology ... 56

4.1. System Under Test Boundaries ... 56

4.2. Evaluation Methodology .. 57

4.3. System Services .. 58

4.4. System Workload .. 59

4.4.1. Simulated Network Traffic .. 59

Traffic Characteristic. ... 59

Data Rate. .. 60

Time Length. .. 61

4.4.2. Application Data Tx/Rx .. 61

Data Object Creation. ... 61

Query Workload. .. 61

4.5. System Performance Metrics ... 62

4.6. System Parameters ... 62

4.6.1. Applied Algorithm Capturing Method ... 62

4.6.2. Device Selection .. 63

4.6.3. Filtering.. 63

4.6.4. System Specifications .. 63

4.7. Controlled System Factors .. 64

4.7.1. Data Processing Method ... 64

Kernel Module .. 64

AppDataPfRingLogger ... 64

4.7.2. Virtual Device .. 65

4.7.3. Test Workloads .. 66

Data Size ... 66

Data Rate ... 66

4.7.4. Application Data Workloads ... 67

4.8. Experimental Technique and Simulation Environment ... 67

4.8.1. Evaluation and Simulated Environment ... 67

4.8.2. Experimental Technique .. 69

Data Drop Rate .. 69

x

CPU Utilization ... 70

Memory Utilization.. 70

Data Retrieve Delay ... 70

4.9. Experimental Design ... 70

4.9.1. Experiment 0: empirical baseline ... 71

4.9.2. Experiment 1: PF_PACKET System Enabled ... 72

4.9.3. Experiment 2: PF_RING System Enabled ... 72

4.9.4. Methodology Summary .. 73

Chapter 5. Analysis .. 74

5.1. Results and Analysis of Experiment 0 .. 74

5.1.1. Experiment 0 Overview .. 74

5.1.2. Data Drop Rate .. 77

5.1.3. CPU Utilization .. 79

5.1.4. Memory Utilization ... 80

5.1.5. Summary Analysis ... 80

5.2. Results and Analysis of Experiment 1 .. 82

5.2.1. Experiment 1 Overview .. 82

5.2.2. Data Drop Rate .. 85

5.2.3. CPU Utilization .. 87

5.2.4. Memory Utilization ... 88

5.2.5. Summary Analysis ... 88

5.3. Results and Analysis of Experiment 2 .. 88

5.3.1. Experiment 2 overview .. 89

5.3.2. Query Metrics .. 91

5.3.3. Data Drop Rate .. 92

5.3.4. CPU Utilization .. 93

5.3.5. Memory Utilization ... 93

5.3.6. Summary Analysis ... 94

5.4. Overall Analysis ... 94

Chapter 6. Discussion .. 96

6.1. Conclusions ... 96

6.1.1. PF_RING Kernel-Space Capability in an OS ... 96

6.1.2. Reduce Data Drop Rate When Using PF_RING in a User-Space App 97

6.1.3. Reduce CPU Utilization When Using PF_RING in an OS 97

6.1.4. Reduce Memory Utilization When Using PF_RING in an OS 98

6.1.5. On Research Methods and Tools .. 99

6.2. Engineering Significance ... 100

6.3. Future Work ... 101

Appendix A. AppDataPfringLogger changelog... 102

Appendix B. Simics Configuration Script ... 103

Bibliography .. 106

Vita .. 108

xi

List of tables

Table 2. 1 Two by two factorial experiments ... 36

Table 4. 1 Listing of each configuration test containing three tests every five repetitions.
 ... 72

Table 5. 1 Experiment 0 hypothesis testing of dropped packets 78

Table 5. 2 CPU Utilization hypothesis testing in Experiment 0. 79

Table 5. 3 Dropped Packet Rate hypothesis testing on Experiment 1 86

Table 5. 4 CPU Utilization hypothesis testing on Experiment 1 87

Table 5. 5 Query SUT performance performed on Experiment 2................................... 92

Table 5. 6 Data dropped packet rate hypothesis testing on Experiment 2 92

Table 5. 7 CPU Utilization hypothesis testing in Experiment 2. 93

xii

List of figures

Figure 1. 1 Data transmission between applications on a Linux OS. 5

Figure 2. 1 Fundamental Linux Operating System Architecture. 18

Figure 2. 2 Linux Operating System Architecture. ... 18

Figure 2. 3 TCP header structure. .. 20

Figure 2. 4 Data packet transmission through TCP/IP layers from kernel application. .. 20

Figure 2. 5 Data packet transmission through TCP/IP layers to kernel application. 22

Figure 2. 6 softirq interruption process when receiving data. .. 23

Figure 2. 7 Data flow differences between PF_PACKET and PF_RING. 28

Figure 2. 8 Ring buffer socket in PF_RING architecture. .. 29

Figure 2. 9 Pathways of an incoming data packet through the OS from Kernel to the
application. ... 33

Figure 2. 10 Operating System “Build A” and “Build B” differences. 34

Figure 2. 11 Simics is running VxWorks Operating System. ... 41

Figure 2. 12 Simics architecture overview. ... 42

Figure 2. 13 QEMU system architecture ... 45

Figure 2. 14 Linux is running on top of QEMU on a Windows host. 47

Figure 3. 1 Architecture overview modeling kernel to user implementing data
transmission operation using PF_RING. .. 55

Figure 4. 1 System conditioned under test diagram. ... 56

Figure 4. 2 Quick Start Platform running Linux. .. 68

Figure 4. 3 QSP running Linux on top of a simulation running Simics. 68

Figure 5. 1 Summary graph of Experiment 0 SUT key metrics between pf_packet and
pf_ring. Dropped packets (%). Blue = PF_PACKET, Red = PF_RING. .. 75

Figure 5. 2 Summary graph of Experiment 0 SUT key metrics between pf_packet and
pf_ring. CPU utilization (%). Blue = PF_PACKET, Red = PF_RING. 75

Figure 5. 3 Summary graph of Experiment 0 SUT key metrics between pf_packet and
pf_ring. Memory utilization (MB). Blue = PF_PACKET, Red = PF_RING.
 ... 76

Figure 5. 4 Summary graph of Experiment 0 SUT key metrics when packet size levels
impact data drop when using pf_ring. ... 76

xiii

Figure 5. 5 Summary graph of Experiment 0 SUT key metrics when packet size levels
impact CPU utilization when using pf_ring. ... 77

Figure 5. 6 Data packets are written to dev/null on Experiment 0 comparing pf_packet
and pf_ring. .. 78

Figure 5. 7 Data that relates data drop rate and CPU Utilization. On the first graph, the
Y-scales differ to visually show the effect of dropped data has on CPU
Utilization. It is composed of a single trial but gives the ‘all trials’ trend. . 81

Figure 5. 8 Graph compares CPU Utilization using PF_RING showing no data drops
while AppDataPfRingLogger has the same data drop rate as in the first
graph. ... 82

Figure 5. 9 Summary graph of Experiment 1 SUT key metrics between pf_packet and
AppDataPfRingLogger. Dropped packets (%). Red = PF_PACKET. 83

Figure 5. 10 Summary graph of Experiment 1 SUT key metrics between pf_packet and
AppDataPfRingLogger.CPU utilization (%).Red = PF_PACKET. 84

Figure 5. 11 Summary graph of Experiment 1 SUT key metrics between pf_packet and
AppDataPfRingLogger. Memory utilization (MB). Red = PF_PACKET. .. 84

Figure 5. 12 Data size impact depicts the rate of dropped packets. 85

Figure 5. 13 Data size impact depicts the CPU utilization. .. 85

Figure 5. 15 Summary graph of Experiment 2 SUT key metrics between pf_ring and
AppDataPfRingLogger. Dropped packets (%). Red = PF_RING. 89

Figure 5. 16 Summary graph of Experiment 2 SUT key metrics between pf_ring and
AppDataPfRingLogger. CPU utilization (%). Red = PF_RING. 90

Figure 5. 17 Summary graph of Experiment 2 SUT key metrics between pf_ring and
AppDataPfRingLogger. Memory utilization (MB). Red = PF_RING. 90

Figure 5. 18 Key query metric (query delay) for PF_RING kernel module. 91

xiv

List of acronyms

AD
Autonomous Driving is an automatic driver that controls a vehicle.

ASIC

Application-specific Integrated Circuit is an integrated circuit customized for a particular use rather than
intended for general purpose.

API

Application Program Interface is a set of routines, protocols, and tools for building software applications.
Specifies how software components should interact.

BIOS

Basic Input/Output System is a non-volatile firmware used to perform hardware initialization during the
booting process (power-on startup) and to provide routine services for operating systems and programs.

DPI

Deep Packet Inspection is a form of computer network packet filtering that examines the data part (and
possibly also the header) of a packet as it passes an inspection point, searching for protocol non-
compliance, viruses, spam, intrusions, or defined criteria to decide whether the packet may pass or if it needs to
be routed to a different destination, or, for collecting statistical information that works at the Application layer of
the OSI (Open Systems Interconnection model).

ITCR

Costa Rica Institute of Technology is a government-owned Engineering and Management post-secondary
education institution founded in 1971.

IoT

The Internet of things is the network of physical devices, vehicles, home appliances, and other
items embedded with electronics, software, sensors, actuators, and network connectivity which enable these
objects to connect and exchange data using Internet protocols.

NIC

A Network Interface Card is a network hardware adapter in the form of an add-in card that fits in an
expansion slot on a computer motherboard. It provides the interface between a computer and a network.

OS

An Operating System is system software that manages computer hardware and software resources and
provides common services for computer programs. All computer programs, excluding firmware, require an
operating system to function.

PF

Packet Filtering. Data travels on the Internet in small pieces; these are called packets. Each packet has
certain metadata attached, like where it is coming from, and where it should be sent. The easiest thing to do is
to look at the metadata. Based on rules, certain packets are then dropped or rejected. All firewalls can do this.
It is done at the network layer.

QEMU

QEMU (short for Quick Emulator) is a free and open-source hosted hypervisor that performs hardware
virtualization (not to be confused with hardware-assisted virtualization).

SICS
Swedish Institute of Computer Science

SIMICS

Simics is a full-system simulator used to run unchanged production binaries of the target hardware at high-
performance speeds. The SICS originally developed Simics and then spun off to Virtutech for commercial
development in 1998. Intel acquired Virtutech in 2010 and Simics is now marketed through Intel's
subsidiary Wind River Systems.

SoC

System on a Chip is a full system as an integrated circuit that integrates all components of a computer or
other electronic systems.

SUT

System Under Test refers to a system that is tested for correct operation. It is the test object. The term is
used mostly in software testing.

TCP/IP

Transmission Control Protocol/Internet Protocol is a suite of communication protocols used to interconnect
network devices on the Internet. It is in use as a communication protocol in a private network.

VP

Virtual Platform in computing, virtualization is the act to create a virtual version of something on a virtual
computer hardware platform.

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Packet_filter
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Header_(computing)
https://en.wikipedia.org/wiki/Packet_(information_technology)
https://en.wikipedia.org/wiki/Computer_virus
https://en.wikipedia.org/wiki/Spam_(electronic)
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Internet_access
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/System_software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Daemon_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Firmware
https://simple.wikipedia.org/wiki/Packet
https://simple.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Hardware_virtualization
https://en.wikipedia.org/wiki/Hardware_virtualization
https://en.wikipedia.org/wiki/Hardware-assisted_virtualization
https://en.wikipedia.org/wiki/Full_system_simulation
https://en.wikipedia.org/wiki/Virtutech
https://en.wikipedia.org/wiki/Wind_River_Systems

xv

Preface

Data transmission between interconnected devices nowadays demands speed

and reliability. Wire-speed packet capture and transmission using commodity

hardware have challenges on performance in a world where every human being

may be connected through smart devices, exchanging images, documents, music,

voice and other data for doing business with each other. Relying upon hardware

development cycle is not fast enough to comply with user demands. Thus the

implementation of innovative software algorithms that will break hardware barriers

or optimize hardware capabilities is essential for technology advancement. The

high-level objective of this research is to propose alternative ways for discovering

and analyzing algorithms that will impact directly on data transmission in an

always-connected world.

1

Chapter 1. Introduction

1.1. Fundamentals

Data and access to information are critical for each person in the world. As of this

writing, 51% of the global population has Internet access. Most of them access via

smart mobiles or personal computers. By 2021 the average smartphone user will

plow through 8.9 GB of data per month [CERWALL, 2016]. Artificial Intelligence

(AI), Computer Vision, Autonomous Driving, Internet of Things (IoT) will all require

redesigned computer systems, which is impacting how Computer Science (CS)

will solve software optimization problems to handle the considerable amount of

data that will be required for fulfilling the needs of an average person.

Investigation towards optimizations in CS is mostly related to algorithms in the field

of Analysis of Algorithms and Data Structures. The use of one algorithm versus

another, their comparison and their results in real life scenarios are related to

computer architecture and performance analysis. CS contributions in the field of

simulation are also fundamental to Theoretical CS in experimentation and formal

methods [RIVEST, 1990].

If a person wants to go from city {R} to city {Z}, there are many ways to do it. He

or she may take a flight, go by bus, by train or by any other transportation means

that might be considered. It all depends on availability and convenience and how

it suits his or her needs. Similarly, in CS there are multiple algorithms to solve a

problem. When there is more than one algorithm to solve the same problem, we

need to select the “best” one depending on the usage scenario. Performance

Analysis creates organic results based on requirements to select the best-suited

algorithm, from multiple ones, to solve a problem. Algorithm performance is a

process of making objective judgments on algorithms – mostly through analysis of

quantitative data. Performance analysis is concerned with predicting the resources

that are required by an algorithm to perform its task.

2

In general terms, the substance of an algorithm is to provide the exact solution to

a problem that is understandable and easy to implement, with finite and known

memory and time requirements. Setting metrics related to the use of memory,

speed of execution, complexity and even implementation details is required to

compare algorithms. In this research, factors are reduced to evaluate an algorithm

for space complexity and time complexity.

Today most data come from systems related to the World Wide Web or

interconnected via the Internet. Inter-networked physical devices connected and

communicating to each other will be around 30 billion objects by 2020 [HWANG,

2013]. Imagine the amount of raw data that such number of devices can generate

and that will need to be processed by an endpoint device as fast as possible, so

that a user does not have to wait. Depending on the medium, these data traverses

the Internet, where most personal computers and smartphones connect to wireless

access points utilizing a wireless network card. A card of this type is embedded in

smartphones, access points, tablets, laptops, and personal computers. All these

data are taken from the physical medium and processed by embedded software

that receives the data and transforms it in such a way that the device ‘understands’

it and shows it in an easy way for a human brain to interpret. All this process

involves a means to move data from {R} to {Z}.

This research intends to characterize an experiment environment with archetypical

scenarios involving two algorithms known as PF_PACKET and PF_RING. Both

algorithms are incorporated in alternate builds of an otherwise identical Operating

System distribution. The only difference between the archetypical scenarios is the

algorithm used to perform data transmission at the kernel level. A high-level

objective of the investigation is not only to understand whether replacing one

algorithm for another is feasible but also to establish whether there is a

performance improvement regarding storage complexity (memory usage) and time

complexity (processing cycles).

3

The importance of the study relies on generating similar workloads -- described in

terms of volume and stress -- to orchestrate and define synthetic situations of

common scenarios that push the boundaries of the mentioned algorithms. The

study leverages the use of an experimental design method to objectively compare

the complexity of the alternate algorithms.

An additional added value of this research is the creation of a simulated

environment that serves as a medium to execute the designed experiments. The

simulated environment uses a Full System Simulator known as SIMICS to

decouple factors which may affect the observable system or the results. An

analysis of the reasoning behind which Full System Simulator to choose between

QUEMU and SIMICS is another added value of the investigation.

1.2. Problem Generalities

Computer network equipment contains embedded microprocessors that use

specialized software to provide the capabilities needed to transmit user data.

Firmware is code that implements the algorithms necessary for the data to arrive

from one place to another [e.g., {R} -> {Z}] in an embedded device. Firmware is a

program at the lowest level, close to the hardware, that establishes the logic for

controlling the electronic circuits of any type of device. It is strictly related to the

hardware or electronics of a device, so it is software that interacts with the

electronic components taking care of the control to execute the instructions

correctly.

Network equipment today uses a variety of computer architectures. For example,

wireless access points typically use a configuration whose sole purpose is to

transmit data as quickly and efficiently as possible. Such equipment uses

dedicated Central Processing Units (CPUs) or Application Specific Integrated

Circuits (ASICs) and devices with low power consumption. Devices primarily use

computer architectures such as PowerPC, ARM or x86. There are also two

different types of standard wired and wireless network cards in the industry,

4

provided by companies such as Intel, Qualcomm, Atheros or Broadcom. A

commonly used Embedded Operating System (EOS) is a reduced open licensed

GPL Linux distribution known as BusyBox. A simplified Unified Extensible

Firmware Interface (UEFI) flavor such as seaBIOS (uncomplicated legacy BIOS)

is also part of the tools used in industry standard embedded devices.

Advances in network data packet switching, the transmission of data packets from

the analog medium for its digitalization and processing, tend to focus on hardware

improvement. This puts the physics of electronic circuits to the limit. However,

attention is switching towards software and extending its capabilities as a solution

to many of the problems and limitations of physical circuitry. At companies such as

Intel, for example, all their designs for the latest generation chips go hand in hand

with the development of software to impact the market with value-added solutions

for companies and end consumers. In technology jargon it is often quoted that

“hardware without software is like a body without a soul.” Today, software is the

value added on top of the chips. Still, the technology industry does not sell

software; it sells solutions.

To understand the world around us, designers and engineers model the

environment and represent what they need with mathematical equations that follow

approximately - but faithfully - the behavior of reality. In order to understand the

impact of one component versus an alternative on the performance, availability

and reliability of a Network Operation System, this research leverages virtual

platforms (VP) –pieces of software simulating pieces of hardware--. A model of the

data flow between resident programs from user space and the Kernel can help

their efficiency. Fast data transfer brings a better user experience when surfing the

Internet, listening to a song or watching a movie by streaming.

Virtualization platforms (VP) are hardware models that live in virtualization

software such as Simics [SIMICS, 2016] or QEMU [QEMU, 2016]. The emphasis

of this research is the implementation of the PF_RING algorithm in substitution of

PF_PACKET in an x86 VP that runs seaBIOS, kernel v4.6, and a custom BusyBox.

5

The methodology uses programs written in a high-level programming language

such as C/C++ in order to execute unbiased and reproducible experiments to pass

network packages (or any data type) in frames of the user space to the Kernel

space performing a factorial analysis that provides objective measures of

performance regardless of the (physical) hardware on which the algorithm works.

Figure 1. 1 Data transmission between applications on a Linux OS.

When a packet reaches the wireless network card of an embedded system, the

Linux kernel takes the data and transfers it across the entire internal network

segment stack in the OS to process it and thus sends the information to a user

module or software application which runs in the user space. These copies of data

from kernel space to user space become expensive in regards to CPU processing

cycles, memory utilization, among other metrics. A copy of the complete package

6

has to be made in order to have it processed by the user application, typically using

the system call interface or other types of interfaces [KELLER, 2008]. Figure 1.1

shows where the research problem is contextualized. The data transmission of OS

components between user space and kernel space is the subject of this

investigation.

Among the improvements made since version 2.6.32 of Linux Kernel, there is the

ability to pass packets from kernel to user space using the PF_PACKET technique

(also known as a raw socket) [MCCANNE, 1993]. The difference concerning the

default network segment of the kernel is that PF_PACKET makes a copy of the

packet buffer before it enters the network segment of the Kernel and sends the

entire package to the application in the user space. These copies are always done

for each one of the packets. Currently, these copies are executed through the

system call interface which causes the OS to overflow with a significant amount of

data traffic by continually interrupting the system for each copy of information

frames.

1.3. Justification

When a person is at an airport, restaurant, ice cream shop, train station, hotel,

home, or even at a football stadium; the chances are high that he or she will wish

to connect to a wireless network. Nowadays, in urban settings, it is assumed that

the wireless network service or the 802.11n/ac standard [IEEE, 2015] is available

to all those who wish to stay connected at any time and location. Studies indicate

that wireless traffic from mobile devices will grow by 80% by 2018 [WOOD, 2013].

The world trend suggests that growth of Internet of Things (IoT), Artificial

Intelligence (AI), Augmented Reality and Big Data Analytics will cause an

explosion of data that will escalate the need for information processing,

increasingly better, more robust and efficient, algorithms. The situation suggests

that data processing speed on embedded wireless access devices or controllers

will be determinant to keep up with high data demand.

7

Data Packet Inspection (DPI) [PORTER, 2005] consumes a high amount of CPU

cycles depending on how much information extracted from the network packets –

metadata - is exchanged between systems. The fewer data packets to be sent to

the OS kernel1 the better, so they can reach the application directly in the user

space for further processing or presentation to a human user. It is better to process

the packets for a service in the application that uses the data, instead of having to

perform this in the kernel space and wait for it to send them to the user space

program. Good utilization of system resources enables the EOS to take care of

other priority tasks.

In the case of wireless devices such as smartphones, it is vital to explore hardware

and software alternatives that expeditiously bring packets where they are needed,

using more efficient algorithms that require fewer processor cycles and less

memory. The aim is to diminish or avoid the use of resources that are already very

scarce in an Embedded System. The proposal is to use a software component (the

PF_RING algorithm) to pass data directly from the wireless network card (which is

being managed in the EOS Kernel space using drivers) towards a user-space

application - the program that consumes this data. Data transfer efficiency is

becoming especially necessary to meet the extreme demand on wireless networks

caused by the explosion of IoT and Big Data. The technology community needs to

explore new algorithms for embedded devices, otherwise wireless communcation

technologies will become a bottleneck in embedded OS that will be unable to

accurately process larger number of network packets in the future.

Communications performance will constrain and impact the markets for IoT, AI,

Autonomous Driving Systems (ADAS) and Big Data Analytics / Business

Intelligence.

1 Specifically, to the Kernel's network stack segment.

8

1.4. Problem Statement

Connected devices are growing faster than anyone can imagine. By 2025, about

80 Billion devices will connect to the Internet [IDC, 2014]. In contrast,

approximately 11 Billion devices are connected to the Internet today. By 2020 it

will triple to 30 Billion, and five years later it will reach the mentioned number of

devices. The total amount of digital data created worldwide is expected to increase

from 5 zettabytes2 to 44 zettabytes by 2020 [IDC, 2014].

The research reported in this paper is concerned with decreasing data processing

time and memory consumption via algorithms that reside in an Embedded OS. The

challenge is to create a set of archetypical scenarios that will simulate what

happens when data comes into a system running an OS with one algorithm or the

other. The research has aimed to determine a set of experimental design

techniques that will allow the measurement of observable variables in software

running on a simulated hardware and network environment.

The focus is on validating the integration of a new algorithm (PF_RING) within an

Embedded OS and obtaining objective results to establish whether there is a

consistent improvement in the transmission of data packets from the user space

to the Kernel space and vice versa.

The research addresses replacing the PF_PACKET, component commonly used

in Linux Kernels (within Embedded OS), with the PF_RING alternative, providing

objective measures of performance and reliability. A methodology has been

designed to run sets of experiments that use a virtual hardware simulation that

allows to take measurements to compare PF_RING against PF_PACKET. The

primary approach is to systematically observe different realistic scenarios and

under which conditions there is an improvement in the copying of data between

the kernel space and an application in the user space.

2 1 zettabyte = 10^21 bytes.

9

To improve the data transmission efficiency of commodity network systems, this

research addresses data exchange in Operating Systems architectures leveraging

from data capture algorithms from kernel to user space when reading and writing

data between applications.

1.5. Research Objectives

1.5.1. General Objective

Determine the impact on system performance of two algorithms for data transfer

that reside in different spaces of an Operating System.

1.5.2. Specific Objectives

1. Design a platform for technical experimentation on operating systems,

software components, virtual computing, and networking elements.

2. Create an application that resides in user space to allow Kernel module

usage with different algorithms for data transmission.

3. Propose a set of experiments to measure the use of resources by the

PF_RING and PF_PACKET algorithms.

4. Execute a set of tests to collect precise performance measurements of both

data transmission algorithms.

5. Analyze the obtained results to enable objective quantitative comparisons

between the PF_RING and PF_PACKET algorithms.

1.6. Problem Scope and Limitations

The scope of the problem is enabling the use of the PF_RING technique [DERI,

2001] within a stable Kernel within a representative Linux-based Embedded

Operating System targeted at Intel x86 architectures. The software will be run on

top of an Intel x86 architecture model available on a virtual platform simulator (such

as Simics). The research is limited to perform measurements according to the

methodological definition and experiments (described later) by implementing an

10

application in the user space that allows to objectively compare PF_PACKET

against PF_RING to establish whether there is an improvement in the exchange

of data from the Kernel space to the user space that will impact system

performance in network environments positively.

It is beyond the scope of the research to modify the Kernel OS, to update it or to

change its configuration in such a way that the behavior of the OS varies with the

methodological tests that will be executed. As explained in the methodology, some

factors are considered outside the scope of the research whether they can affect

the results positively or negatively.

The research approach is oriented to assessing alternative algorithms in pursuit of

conclusive results derived from the methodological approach defined in this

document. In face of continuous improvements in hardware or models for the x86

architecture that influence the speed at which packets are captured, it is

considered as a factor outside the scope of the investigation, and this is considered

in the experimentation method. Architecture models can vary, improve, and

models on the virtual platform simulator can impact efficiency or reliability when a

simulation is performed, but the methodological approach isolates these factors so

as to remain unbiased. This investigation does not aim to create new data packet

transfer or inspection algorithms; the intention is rather to establish whether an

existing alternative surpasses the one commonly used in embedded system

applications.

This research project synthesizes concepts and techniques from several areas of

Computing such as: operating systems, advanced computer networks, algorithms,

simulation, software engineering, probability, and statistics.

The research will be limited to the use of a virtual platform hardware model to

simulate normal conditions and to obtain results regardless of undetermined

factors in the factor analysis study. Also, the project is developed specifically in the

firmware embedded in an x86 architecture. The development of any deliverable is

subject to the above as well as the available hardware models that can be

11

simulated on a virtual platform on top of which the Unified Extensible Firmware

Interface (UEFI), BIOS and Embedded OS can be run.

The following is delivered:

 A methodology to evaluate the performance of PF_RING compared to

PF_PACKET in a simulated computer architecture model.

 A set of experiments that test different usage scenarios.

 An application expressed in a programming language that allows the tests

to be performed following the methodological approach described herein.

 A set of experimental results.

 Analysis of results.

 Conclusions and recommendations.

The Kernel module implementing PF_RING is not delivered since this is subject to

GPL licenses, but the code is provided so that the experiments can be replicated

elsewhere.

1.7. Motivation

Data transmission from user space to the kernel has an associated cost regarding

the resource utilization of an OS. There is little work on the Linux Kernel to perform

this task more efficiently. Often reliance is placed on new hardware developments,

but the software that controls and uses them is not efficient enough to exploit all

capabilities.

Incorporating changes to a system that is in use or called into production by

customers around the world is risky. A simple patch to the kernel can cause a

company to lose millions of dollars in sales and customer losses. Before making a

code change to a product or developing a new solution, the industry researches

new technologies and creates Proofs of Concepts (PoC) that demonstrate their

feasibility or otherwise; one such situation is management-related techniques of

12

data packets in the kernel space. This research’s objectives will set the basis for

discerning the following:

• Have a functional PoC with PF_RING implemented for data transmission

packets between applications residing on the kernel space and the user

space in a simulated environment.

• Feasibility of implementing PF_RING in the Linux Operating System.

• Use the PoC to apply the methodology for obtaining results and conclude

whether PF_RING is superior to PF_PACKET.

By completing the objectives, the research will lead to answering the question: Is

it possible to make data traverse efficiently the Operating System stack between

kernel space and the user space by using the PF_RING algorithm?

Meeting the objectives of the research expectation involves answering the

following questions:

• Is it possible to integrate a kernel module that implements PF_RING in the

kernel code base of an OS in a simulated environment?

• Is it possible to change the paradigm in which data packages are copied

between the Kernel and the user space by implementing the PF_RING

technique?

• Is it possible to replace default or old algorithms in the Linux Kernel to make

a way for new implementations for data transfer from one space to another,

improving the resource utilization?

• Does the use of factorial analysis and hypothesis testing help to obtain

conclusive results of PF_RING as an algorithm to improve data

transmission between applications residing in different OS spaces?

13

1.8. Thesis Structure

Chapter 2 provides background information about data transmission at the

Operating Systems level, architecture, data, PF_RING, PF_PACKET, and

simulation. Chapter 3 delves into the details of designing data transmission

experiments within an OS. Chapter 4 provides the methodology used to conduct

the performance analysis of the system. Chapter 5 presents the results and

analysis of the system performance, and Chapter 6 identifies the conclusions

drawn from the performance analysis and indicates future recommendations in this

research field.

14

Chapter 2. Literature Review

Software design processes and project management [RUPARELIA, 2010] in many

cases do not allocate sufficient time to investigate in-depth a particular area of

interest. Frequently there is no allowance for implementing a core solution and to

conclusively demonstrate whether or not a research proposal is feasible in

technical and economic terms. In large technology corporations, many projects are

explicitly contingent on "time to market" (TTM). Several types of research are left

out or not fully realized because of the priorities of reaching the market with a

product as soon as possible.

Marketing departments have an increasing interest on what users are doing on

social networks, how much time they spend connected to the Internet, the sites

they visit, and which applications or which networks they use.

Implementation of PF_RING relates to "Deep Packet Inspection (DPI) [PORTER,

2005]". It takes each of the network packets or the network traffic data that passes

through an embedded system, inspects the data components contained in the

package in detail, and applies machine learning techniques [MOHRI, 2012] and

heuristics. Quick classification processes help determine whether certain "flows"3

correspond to an application, web service, particular service, among others. Such

applications or services can be Facebook, Twitter, Instagram, Google, or Skype,

among others. DPI allows to create user profiles, to determine the time that a user

dedicates to a service; information can be collected and shown in dashboards

allowing businesses to make strategic decisions.

It is of interest to unveil how the Linux Kernel in an embedded system can take the

incoming data from the media and pass it through the network card to the driver

and then to the application in the user space. Understanding the efficiency with

which DPI is being applied in data-driven industries will shed light into improving

the way the algorithms bring data to user applications. The use of DPI requires

3 Set of data packets.

15

many data copies, via system calls, from the kernel to the user space making it

costly for an application to send an interrupt to the system every time it requires

the data back. PF_RING aims to reduce on expensive system calls; thus, an

improvement in resource utilization is expected by changing the data transfer

paradigm through the hardware and OS software stack to place the data where it

is needed.

Historically, the common way to adopt a new technique of exchanging packets

between the kernel and the user space has been to upgrade the OS Kernel from

one version to another. The latter contains an accepted improvement on this topic

by the Linux developer community. However, this is not feasible when times to

market are becoming shorter, and companies need to release their products and

services. PF_PACKET comes in the latest versions of the Linux kernel by default;

in the last few years there have been no significant efficiency improvements in the

way data is copied to the kernel stack.

Nowadays PF_PACKET supports DPI. However, an alternative technique called

PF_RING has recently appeared. Its software architecture promises an

improvement in data exchange efficiency between resident applications either in

the kernel or at user level [DERI, 2001]. PF_RING is not implemented in the latest

stable versions of the Linux Kernel or in an open source distribution of an OS in

the Unix family.

It is fundamental to understand how Linux architecture works to explain how an

algorithm (or software component) might be better than another one.

2.1. Linux Operating System Fundamental Architecture

Linux is one of the most used Operating Systems [FINLEY, 2018] solutions from

smart devices to autonomous driving using it. It is widely used for embedded

devices, and it is running in a wide variety of hardware. Linux is a stable, reliable

and complete computing platform when compared to other commercial operating

systems available [WIKIPEDIA, 2018]. Linux, currently, is increasingly being used

16

in businesses as a back-end server. The number of applications for Linux is

growing and have reached the critical mass where it is changing how we humans

interact and communicate.

Characteristics that sets Linux apart are:

Multiuser Capability: a capability of Linux OS where the same computer

resources – hard disk, memory, others; are accessible to multiple users. That

means every user has its own command terminal. A terminal will consist of at

least a monitor, keyboard, and mouse as input devices. Client/Server architecture

is an example of the multiuser capability of Linux, where different clients are

connected to a Linux server. The client sends a request to the server with particular

data and the server responds with the processed data or the file requested, the

client terminal is also known as a “dumb” terminal.

Multitasking: Linux can handle more than one job at a time, say for example a

user has executed a command for sorting a huge list and simultaneously typing in

notepad. It is managed by dividing the CPU time (cycles) by the implementation of

scheduling policies and context switching.

Portability: Portability is one of the leading features that made Linux so popular

among users, but portability does not mean that it is smaller in file size and can be

carried on a flash drive or any portable storage device. Instead, portability means

that Linux OS and its applications can work on different types of hardware in the

same way. Linux kernel and application programs support installation even on very

minimal hardware configurations.

Security: Security is a significant part of any OS, for organizations/users who use

the system for confidential work. Linux does provide several security concepts for

protecting their users from unauthorized access of their data and system. Linux

introduces security concepts such as:

17

• Authentication: Assigning first level authentication such as passwords and

individual user’s login names to ensure that only the correct person can

obtain access to their work.

• Authorization: At the file level Linux has authorization in the form of

reading, writing and executing permissions for each file to decide who can

access a file, who can modify it and who can execute it.

• Encryption: It encodes a file into an unreadable format that is also known

as ciphertext so that its content will be safe even if someone succeeds in

opening it.

Communication: Linux has an excellent feature for communicating between

users, it can be within a single main computer network or between two or more

computer networks. Users can exchange mail and data through networked

machines.

In general terms the Linux System Architecture has the following layers:

• Hardware layer: Hardware consists of all peripheral devices (RAM/ HDD/

CPU).

• Kernel: A core component of the OS that interacts directly with hardware

and provides low-level services to upper layer components.

• Shell: An interface to the kernel, hiding the complexity of kernel’s functions

from users. Takes commands from a user and executes kernel’s functions.

• Utilities: Utility programs that give the user most of the functionalities of an

OS.

The fundamental view of Linux architecture can be summarized in two levels: user

and kernel spaces as shown in Figure 2.1.

http://en.wikipedia.org/wiki/Ciphertext

18

Figure 2. 1 Fundamental Linux Operating System Architecture.

A more fine-grained view of the architecture can be seen in Figure 2.2 below, where

applications can reside in user space but also other programs can run in the kernel.

Figure 2. 2 Linux Operating System Architecture.

19

2.2. Data Transmission

Nowadays is impossible to imagine the Internet without the Transmission Control

Protocol/Internet Protocol (TCP/IP) which is widely known as connection-oriented.

All network services that have been developed use TCP/IP. Understanding how

data is transferred through the network is fundamental if one wishes to improve

data transmission performance.

2.2.1. TCP/IP Characteristics

TCP/IP was designed as a protocol to transmit information quickly while

maintaining order in the data and without losing them on the way. Below the main

characteristics of the protocol:

• Connection-oriented: First, a connection is made between two points

(local and remote) and the data is transmitted. The TCP identifier is a

combination of addresses between these two points having the following

information in a flow: <ip_src_addr, prt_src, ip_dst_addr, prt_dst>

• Bidirectional byte flow: Bi-directional communication is done using a byte

stream.

• Order in the delivery: A data receiving point receives the information in the

order in which the issuer sent it. For this, a 32-bit integer is used.

• Reliability: The sender must receive a response known as acknowledge

(ACK) from the receiver after sending the data.

• Data control: An issuer sends the largest amount of data that the receiver

can handle. The receiver sends to the sender the number of bytes it can

receive (size if used from the buffer, time window).

• Congestion control: A congestion window is used to prevent the network

from becoming congested. Algorithms are used as TCP Vegas, Westwood,

20

BIC, and CUBIC. Normally these algorithms are implemented on the issuer

side.

Figure 2.3 shows the structure of a TCP frame that consists of the above

characteristics. [WIKIPEDIA, 2018]

Figure 2. 3 TCP header structure.

2.2.2. Data Transmission

For the transmission of data, it must pass through several layers from the OS, as

it can be seen in Figure 2.4 [SCHULTZ, 2011].

Figure 2. 4 Data packet transmission through TCP/IP layers from kernel application.

21

In general terms, it is very important to note that these layers are divided between

the following two areas: user space, kernel space.

The system CPU performs most of the tasks that are executed in the user space

and the kernel. In an Embedded System, some tasks must be executed in the

space of the kernel but are mainly performed by a software driver of a network

device or a specific device instead of the CPU. That can be a System on Chip

(SoC) that is responsible for sending and receiving network packages through the

medium --cable or air.

In Figure 2.4, it is observed that an application creates the data to be sent and a

system call is made through the write() function. In addition to this, previously in

the OS, it creates a File Descriptor which is a socket (a type of file in the OS).

When the system call is made, basically what is done is a context switch area, now

moving to the kernel space.

The socket in the kernel has two buffers: one that is send_sckt_buff and one for

reception rcv_sckt_buff. When a system call is made, the user space data is

copied to the memory used by the kernel space and is added to the end of the

send_sckt_buff to send the information in the correct order.

There is a data structure (struct) connected to the socket for memory control

block called TCP Control Block (TCB) that includes the data required to process a

TCP connection. The data in that structure are the status (LISTEN, ESTABLISHED,

TIME_WAIT), reception window, congestion window, sequence number, re-

shipment clock, among others.

The data (payload) include information that is stored in the send_sckt_buff. The

maximum size of the data are values given by the previous values in the TCP data

structure. The sum code for error verification is calculated, and the frame is sent

to the Internet Protocol (IP) layer that is responsible for adding the routing

information that the packet carries. After this, the data packet sent requests the

Network Interface Card (NIC) card.

22

When a data packet is sent or received, the NIC generates interrupts (Message

Signaled Interrupts, MSI) to the CPU. Each interrupt has a msi_id interrupt

number that the OS serves with priority so that a callback function is recorded in

the code to handle the interruption.

2.2.3. Data Reception

Now, to know how data is received it is necessary to observe Figure 2.5 [SCHULTZ,

2011]. Reception is the process that is executed when a package enters the kernel

space.

Figure 2. 5 Data packet transmission through TCP/IP layers to kernel application.

As it is observed, first the data packet arrives at the NIC in charge of validating the

package by code correction of errors and sends the package to a buffer in the

Kernel memory space which is a structure in the OS generally skb_buff. It is

important to note here that the NIC can reject a package depending on several

factors defined by the configuration of the card.

Using the data in skb_buff is how the information is carried through the IP and

TCP layers. The latter is where the source IP address with its respective port is

evaluated and where the packet with the destination IP and port is going. Thus, by

23

the rcv_sckt_buff corresponding to a file descriptor, the data is copied to the

user space.

2.2.4. Interruption Process When Receiving Data

The process that is performed in a CPU-level interruption is complex. However, all

that is needed to understand it is to identify a differentiator or determinant

regarding efficiency when processing data packets in an embedded system. Figure

2.6 [SCHULTZ, 2011] shows the process that is performed in an interruption at the

function level in the OS.

Figure 2. 6 softirq interruption process when receiving data.

Assuming that a program - in the user space - is being executed on the CPU[0], at

the moment when the NIC receives a packet and generates an interrupt for the

CPU[0]; the function do_IRQ0() that handles the interruption in the kernel (called

irq) is executed. The handler uses the unique msi_id interrupt number and then

calls the napi_schedule() function to process the received packet. This last

function calls the interrupt do_softirq(). Thus the softirq function context is

executed in a different but similar thread while blocking any other software

24

interruption but any other interruption by hardware is kept open (non-maskable

interruption).

Then, the reception of the package is handled through the net_rx_action()

function. This function calls the poll() request function which in turn calls the

netif_receive_skb() function that sends the received data packet one by one

to the user space.

It is important to note, as a point of interest for the investigation, that an interruption

to the system takes place for each packet. This means high and intensive CPU

use to send data from one space to another in an OS. As a testing method, it is

normal to check that the CPU is running softirq and its memory usage, especially

the Resident memory (Resident Set Size, RSS).

2.2.5. PF_PACKET Protocol

When a socket is opened with the standard call sock=socket(domain, type,

protocol), the domain (or protocol family) to be used with that socket must be

specified. The commonly used families are PF_UNIX, for local communications on

the same machine and PF_INET for communications based on IPv4 (PF_INETv6

for IPv6). Also, it must specify the type of socket and the possible values depending

on the previously selected family. Some common values for the socket type when

using PF_INET, for example, can be SOCK_STREAM (typically used with TCP) and

SOCK_DGRAM (associated with UDP). The socket type influences how the kernel

handles packets before being passed to the application. In this way, it is also a

must to specify the protocol that will manage the packets.

In recent versions of Linux kernel (after 2.0) a new family of protocols or domain

known as PF_PACKET was introduced. This family allows an application to send

and receive packets dealing directly with the network card driver, thus avoiding the

usual administration of the kernel network stack (IP / TCP or IP / UDP processing).

That is, each packet is sent through a socket and goes directly to the Ethernet

25

interface, and any packet received through the interface goes directly to the

application in the user space [INSOLVIBILE, 2001]

The PF_PACKET family supports two types of sockets: SOCKET_DGRAM and

SOCKET_RAW. The first allows the kernel to add and remove the Ethernet headers

while the latter allows the application to take over the complete control of the

network header. The protocol field in the socket() function must match the

Ethernet identifiers defined in the </usr/include/linux/if_ether.h> a library

that represents all registered protocols that can be sent in an Ethernet frame

[INSOLVIBILE, 2001].

From Linux documentation: “Packet sockets are used to receive or send raw

packets to the device driver (OSI Layer 2) level. They allow the user to implement

protocol modules in user space on top of the physical layer.

The socket_type is either SOCK_RAW for raw packets including the link level header

or SOCK_DGRAM for cooked packets with the link level header removed. The link

level header information is available in a common format in a sockaddr_ll. The

protocol is the IEEE 802.3 protocol number in network order. The

<linux/if_ether.h> include file for a list of allowed protocols. When the protocol

is set to htons (ETH_P_ALL), then all protocols are received. All incoming packets

of that protocol type will be passed to the packet socket before they are passed to

the protocols implemented in the kernel.”

2.2.6. PF_RING protocol

In simple terms, PF_RING allows packets on a single interface to be segmented

across multiple threads or cores, allowing for more efficient packet processing.

Data packets are inspected at a much lower level than traditional packet sniffers

and engines, therefore reducing resource cost and increasing overall efficiency.

Passive data packet capture is necessary for many activities including network

debugging and monitoring. With the advent of fast gigabit networks, packet capture

http://swoolley.org/man.cgi/1/receive
http://swoolley.org/man.cgi/send
http://swoolley.org/man.cgi/raw
http://swoolley.org/man.cgi/1/at
http://swoolley.org/man.cgi/3/device
http://swoolley.org/man.cgi/5/modules
http://swoolley.org/man.cgi/in
http://swoolley.org/man.cgi/1/top
http://swoolley.org/man.cgi/7/raw
http://swoolley.org/man.cgi/n/for
http://swoolley.org/man.cgi/raw
http://swoolley.org/man.cgi/link
http://swoolley.org/man.cgi/1/header
http://swoolley.org/man.cgi/n/for
http://swoolley.org/man.cgi/link
http://swoolley.org/man.cgi/1/header
http://swoolley.org/man.cgi/1/header
http://swoolley.org/man.cgi/in
http://swoolley.org/man.cgi/5/common
http://swoolley.org/man.cgi/n/format
http://swoolley.org/man.cgi/in
http://swoolley.org/man.cgi/6/number
http://swoolley.org/man.cgi/in
http://swoolley.org/man.cgi/file
http://swoolley.org/man.cgi/n/for
http://swoolley.org/man.cgi/n/list
http://swoolley.org/man.cgi/set
http://swoolley.org/man.cgi/3/byteorder
http://swoolley.org/man.cgi/5/protocols
http://swoolley.org/man.cgi/1/builtins
http://swoolley.org/man.cgi/7/packet
http://swoolley.org/man.cgi/socket
http://swoolley.org/man.cgi/5/protocols
http://swoolley.org/man.cgi/in

26

is becoming a problem even on PCs due to the poor performance of popular

operating systems. The introduction of device polling has improved

the capture process quite a bit, but it has not solved the problem.

PF_RING proposes a new approach to passive packet capture that, combined with

device polling, allows data to be captured and analyzed using the NetFlow protocol

at almost wire speed on Gbit networks using a commodity system or standard OS.

It is a new logic for data packets exchange that dramatically improves the capture

of network packets and is mainly characterized by the following:

• It is possible to implement it in the latest stable Kernel versions of Linux.

Available for Linux kernels 2.6.18 and higher.

• It is independent of the drivers, network card drivers, or the Internet Protocol.

• It works in the Kernel space.

• It allows to specify filters and to use Berkeley Packet Filters (BPF)

[BERKELEY, 2018].

• It provides content inspection as described for DPI.

• As of version 4.X, PF_RING can be used with vanilla kernels (i.e., no kernel

patch required).

• PF_RING-aware drivers can increase packet capture acceleration.

• It works for 10 Gbit Hardware Packet Filtering using commodity network

adapters.

• User-space DNA (Direct NIC Access) drivers for extreme packet

capture/transmission speed as the NIC NPU (Network Process Unit) is

pushing/getting packets to/from user space without any kernel intervention.

Using the 10Gbit DNA driver, user can send/receive at wire-speed any size

packets.

27

• Libzero for DNA for distributing packets in zero-copy across threads and

applications.

• Kernel-based packet capture and sampling.

• Libpcap support for seamless integration with existing pcap-based

applications.

• Ability to specify hundreds of header filters in addition to BPF.

• Content inspection, so that only packets matching the payload filter are passed.

• PF_RING plugins for advanced packet parsing and content filtering.

• Ability to work in transparent mode (i.e., the packets are also forwarded to

upper links so existing applications will work as usual).

It is a prominent replacement to PF_PACKET and was introduced in 2001 by

Lucas Deri [DERI, 2001]. Deri found that the Linux network stack introduces

several bottlenecks that cause loss of data packets when transmitting packets from

the medium [BRAUN, 2010]. The proposed new architecture was developed to

eliminate bottlenecks, especially when the size of the data is small, what causes

many interruptions to the CPU, context changes, memory sharing, among other

consequences, as it was mentioned above. PF_RING is a modification that allows

copying packages in a ring, completely forgetting to use the standard logic of the

Linux Kernel.

PF_RING differs from PF_PACKET mainly in the number of steps for the exchange

of data between the user space and the Kernel. Figure 2.7 [BRAUN, 2010] shows

this difference in detail.

28

Figure 2. 7 Data flow differences between PF_PACKET and PF_RING.

As shown, the exchange of data with PF_RING requires fewer steps, system calls

or processor cycles, which suggests better efficiency in terms of using OS provided

resources.

Its architecture uses kernel rings (sockets) to exchange data between user space

and kernel as shown in Figure 2.8 [DERI, 2001].

29

Figure 2. 8 Ring buffer socket in PF_RING architecture.

The advantages of a ring buffer located into a socket are:

• Data not queued into kernel network data structures.

• mmap primitive allows user space applications to access the circular buffer

with no overhead due to system calls as in the case of socket calls.

• Even with a Kernel that does not support device polling under strong traffic

data conditions, the system is usable because of the limited time necessary

to handle an interrupt compared to regular data handling.

• Packet sampling is simple and effective when implementing, as sample data

do not need to be passed to upper layers then discarded as it happens with

conventional pf_packet applications.

• Multiple applications can open several pf_ring sockets simultaneously

without cross-interference (slowest application does not affect fastest

It is important to note that applications need to be re-compiled or be ring/mmap-

aware.

30

2.3. Performance Benchmarks

It is necessary to perform measurement tests to evaluate the performance of one

algorithm over the other. In a built-in system many variables and situations can

occur; therefore, it is necessary to reduce as many as possible unnecessary

factors.

2.3.1. Factors that Affect Performance

Among the factors that can affect performance benchmarks are:

• The driver of an embedded system NIC card.

• The type of embedded system processor, 32b or 64b.

• The bandwidth of the memory in the system.

• Kernel version.

• Kernel configuration.

• The amount of data that you wish to send to the embedded system.

• The size of the packets and the frequency of arrival of the data.

Clearly the hardware and the card handler can be an important factor when

capturing data from the medium. For this research, the factor is isolated or

dismissed since the embedded system is ideally modeled with the best hardware

specifications. Also, the idea of using PF_RING is to isolate from this factor and

take it into account as a dominated factor. Also, as a value added to isolate

hardware, a hardware simulator is used that will allow to inspect the problem

without depending on hardware factors.

The speed of the processor and the architecture can be decisive when processing

packages since the ability to perform as many instructions in the shortest possible

time when receiving a package must be considered. This factor is discarded since

31

it is assumed that the processor and architecture model will have the best

specifications for the tests. Also, it is expected that with new architecture models

in a virtual platform, the results will depend on the focus of the research in

PF_RING.

The speed with which the NIC and the processor can access memory for writing

and reading is important for each packet as this eventually affects performance.

This factor is important, and part of the research consists in showing that when

applying the PF_RING technique the way in which the packages are copied results

in an improvement over PF_PACKET.

On the software implementation side, the Linux Kernel version impacts

performance because the version in the embedded system may be old while new

versions are constantly being developed. However, it is a controlled factor because

the tests are going to be performed with a recent stable kernel. Thus, for the tests,

this factor is obviated in the investigation since it is not a dependency given that

what changes is the implementation factor of the algorithm in the Kernel. The way

in which the Kernel of the system is configured can affect the results since it can

cause unnecessary overload causing the system to react slower. It is assumed

that the Kernel is compiled with a standard configuration and an improvement in

the configuration can be evaluated during the investigation. Also, as part of the

investigation, it is possible to find errors in the NIC driver embedded in the modeled

device, so this can cause inefficiencies that are beyond the scope of the project.

Other factors that are not controlled when measuring the effectiveness of an

improvement can include the load handled by the system and the variety of

captured packages. There must be a sufficiently varied set of packages to simulate

the implementation of the research in a normal use environment. Also, as

mentioned, a quite important variable factor is the size and frequency of data used

to obtain the results. Depending on the type of packet, it is possible to simulate 1.4

million (64 bytes) of data per second or as few as 81000 (1522 bytes) per second.

RFC2544 provides the definition of a methodology that helps define the number of

32

packets, the size, and the frequency and even suggests experiments to make

appropriate measurements.

On this research, certain data flows of a certain size are defined in such a way that

enough consistency is obtained in the results to make a simple comparison

(following the provisions of RFC2544). In the same way, the idea is to take data

about real packages and explore the behavior of PF_RING in an OS.

The objective of this study is to find the best technique for passing packets from

the kernel space to the user space (even vice versa) that results in the best

performance regarding the use of resources such as memory, system calls, and

interruptions to the CPU. It can be measured in Megabits per second (Mbps) or

the number of data packets per second per Gbps (pps/Gbps). It should take into

account the minimum size of an Ethernet packet that includes 7 bytes of pre-scope,

1 byte for the delimiter, 64 bytes of the Ethernet frame and the frame separator (12

bytes). Also, the historical data of CPU utilization is used.

2.4. Experimental Design

The environment setup for the research needs to be performed on a platform that

enables experimentation. Experiments can be placed in two of three possible

pathways: pf-packet and pf-ring. Figure 2.9 [SCHULTZ, 2011] details the path that

a packet takes from a NIC in the Kernel space to the user space.

33

Figure 2. 9 Pathways of an incoming data packet through the OS from Kernel to
the application.

An OS is built as a binary with a specific configuration that supports pre-defined

hardware and software platforms and applications. A workspace with an OS “Build

A” and “Build B” is set to be able to support a specific real hardware platform. More

interestingly, a binary “build A” and “build B” of an OS is built to be executed in a

simulation environment. “Build A” is PF_RING OS enabled and “Build B” is

PF_PACKET OS enabled. Figure 2. 10 There are no other differences between

builds except the implemented algorithm so they are comparable.

34

Figure 2. 10 Operating System “Build A” and “Build B” differences.

What is more important in the workspace is the creation of a kernel module in an

OS that runs in a Full System Simulation tool running on top of a hardware model

that implements the PF_RING technique instead of PF_PACKET. That is, the data

packets are no longer going to be treated by the regular algorithm of a Linux Kernel

module directly for data handling, nor by PF_PACKET but by a module that

implements the PF_RING logic.

Additionally, an application that interacts with the PF_RING ring will be

implemented in the user space, receiving packets and sending packets to the

Kernel module through the libpcap library [see the project at

http://www.tcpdump.org/] or an implementation that even allows to omit it. In this

way, it is expected to be able to perform measurements such as speed (in Mbps)

or "throughput" (in pps / Gbps) in the copy of packets from one space to the other

in the user/kernel areas of the OS.

2.4.1. Factorial Experiments

On multiple occasions, it is interesting to know the influence of two or more factors

on a response variable. For example, in the study of the behavior of a

computational algorithm it is interesting to know if the influence on the state of two

35

parameters affects the speed to find the response variable that calculates the

mentioned algorithm. In this type of case, it is appropriate to use a factorial

experiment, which means that each treatment is defined by the combination of the

factors between the input parameters of the algorithm.

Factorial experiments are defined as those in which two or more main factors are

compared or studied simultaneously, including different levels or modalities of

each factor. Normally, variance analysis is used as a statistical technique to

analyze the effect of two or more independent variables (factors) on a response

variable.

In factorial experiments, treatments are formed by combining each level of one

factor with each of the levels of the other (or of the others, if there are more than

two). This type of experiment also makes it possible to evaluate the effects of the

interactions. It is said that between two factors there is interaction if the effects of

a level of one factor depend on the levels of the other. In other words, the response

of one factor is influenced differently by the levels of the other.

The existence of interactions indicates that the effects of the factors on the

response are not additive and therefore the effects of the factors cannot be

separated.

Factorial Experiment Concepts

Factors are characteristics that involve two or more different modalities, variants

or levels [LINCOLN, 2014] and can be:

• Qualitative: Those in which the levels define or express a particular

modality of the characteristics of the factor; each level has an intrinsic

interest or is independent of the other levels. These factors respond to the

characteristics of the qualitative variables. E.g., different types of packages

(TCP, UDP, etc.).

Factor: variety of packages (V), Levels: {v1, v2, v3, ...}

36

• Quantitative: Those whose values correspond to numerical quantities, that

is, values inherent to a quantitative variable. Ex: quantity of packages.

Factor: packages (N), Levels: {n0, n1, n2, ...}

To symbolize the factors, the use of the capital letter linked to the name of the

factor and that letter (which can be uppercase or lowercase) with a numerical

subscript for the levels has been generalized. It is also possible to use a capital

letter for the factor and other letters for the levels that replace the names.

In a factorial experiment, the treatments result from the combination of the levels

of a factor with the levels of the other factors. For example, if 3 N factors are

combined with two levels (n1 and n2), the resulting treatments are N1n1, N1n2,

N2n1, N2n2, N3n1, N3n2.

The interesting thing about the factorial experiments is that they can be applied to

different designs: completely randomized, blocks, latin-squares. The complete

Factorial Experiments include - for balancing reasons - all possible combinations

between the different levels of the factor involved in the experiment. For example:

if we assume the simplest factorial experiment: two factors a and b, each with two

levels 1 and 2, we obtain: a1 and a2; b1 and b2. The possible combinations are

four. And the respective treatments are identified as a1b1, a1b2, a2b1, a2b2. Thus,

the structure shown in Table 2.1 can be built.

Table 2. 1 Two by two factorial experiments

 a levels

b levels

 a1 a2

b1 a1b1 a2b1

b2 a1b2 a2b2

As the number of factors and levels increases, the number of treatments increases

significantly and with it the difficulty of choosing the appropriate design.

37

Factorial experiments generally provide more complete information than common

experiments since they allow the study of the main factors, the combinations of all

the levels and the interaction of the factors. In factorial experiments it is common

to talk about "treatment structure" indicating that treatments are formed by

combinations of factors [LINCOLN, 2014].

Interaction is the reciprocal effect of 2 or more factors or the modification of the

effect of one factor by the action of another or others. The study of the interaction

between the factors is one of the important characteristics of factorial experiments.

The possibility of joint studies of two or more factors with their corresponding levels

makes factorial experiments very useful for exploratory research and as a previous

step to subsequently concentrate attention on the aspects that may be of greater

interest, according to the general conclusions that these experiments provide.

Among the advantages and disadvantages are [LINCOLN, 2014]:

• They allow the simultaneous study of two or more factors

• They allow studying the possible interaction between the factors involved,

and consequently the effect or behavior of each factor in the different levels of the

other factor.

• They are more efficient than simple experiments, where only one factor is

studied.

• They also provide general results that make them useful in exploratory

experiments.

• Since all the possible combinations of the different levels are included,

they usually provide a large number of degrees of freedom for the experimental

error, with the consequent advantage that this means.

In contrast to the above, as the number of factors and levels increases, the number

of treatments increases for the whole experiment and in particular for each

38

repetition. With all this, the difficulty of adapting the most appropriate design to the

experimental material increases and the cost of each repetition rises significantly.

Although not all the combinations between the different levels are of interest to this

research, some of the experiment factors cannot be excluded for balancing

reasons that the analysis requires [LINCOLN, 2014].

2.4.2 Statistical Hypothesis Testing

The purpose of statistics is to test a hypothesis. An experiment executes a series

of reproducible steps to obtain coherent results. A Statistical Hypothesis or

confirmatory data analysis is a hypothesis that is testable based on observing a

process that is modeled via a set of variables. It is a method of statistical inference

[HANZE, 2001].

Experimental data sets are compared, or any data sampling is compared, against

a synthetic data set from an idealized model. A hypothesis is proposed for the

statistical relationship between the two data sets, and this is compared as an

alternative to an idealized null hypothesis that proposes no relationship between

two data sets. A comparison is statistically significant if the relationship between

the data sets would be unlikely close to the null hypothesis after calculating the

probability. Hypothesis tests are used in determining what outcomes of a research

would lead to a rejection of the null hypothesis for a pre-specified level of

significance. The process of distinguishing between null hypothesis and alternative

hypothesis is aided by identifying two conceptual types of errors and selecting

parametric limits for these errors. One type of error is rejection of a true null

hypothesis (false positive) and the other type is retaining a false null hypothesis

(false negative). [HANZE, 2001].

The p-value is the probability that a given result (or a more significant result) would

occur under the null hypothesis. For example, say that a fair coin is tested for

39

fairness (the null hypothesis). At a significance level of 0.05, the fair coin would be

expected to (incorrectly) reject the null hypothesis in about 1 out of every 20 tests.

The p-value does not provide the probability that either hypothesis is correct (a

common source of confusion) [NUZZO, 2014].

2.5. System Simulation and System Emulation
Technologies

2.5.1. Emulations vs. Simulation

When a system mimics an observable behavior to match an existing target, it is

called emulation. Emulation does not accurately reflect the internal state of the

system being emulated.

On the other hand, simulation requires modeling the underlying state of the target

system as accurately as possible without affecting simulation speed. The result of

a simulation is a model that describes system behavior and allows lets to observe

its internal state. Ideally a simulation can look inside and observe properties that

are possible to get out of the original target. In a real model simulation there are

logical shortcuts taken for performance reasons, but at the end, the simulation is

trustworthy enough to do experimentation that would be impossible to perform with

an emulation.

2.5.2. What is SIMICS?

Simics has a direct impact on the product development process shifting time-to-

market and improving quality. It enables software development to be early

implemented in a virtualized platform enhancing the overall process of producing

enterprise-ready software. Simics by itself is a very interesting simulation

technology.

Simics is a simulator – a full system simulator program simulating a set of pieces

of hardware working altogether. A virtual platform is a solution running in Simics

40

providing a virtual hardware solution as running software. It virtualizes embedded

hardware in a different way that hypervisors do.

A hypervisor will expect an OS to target a particular virtual machine architecture,

while a Simics virtual platform is a software simulation of a set of pieces of

hardware logically connected working altogether. Simics is a tool for developing

software substituting or eliminating the use of hardware. On the other hand, a

hypervisor is a way to manage hardware at runtime. A hypervisor can run on top

of a Simics simulation, or a hypervisor can be developed using Simics [WIND

RIVER, 2010].

Simics has simulated from basic embedded boards with a single processor or SoC

all the way up to servers or even clusters. A virtual platform is a model sufficiently

complete and correct to fool the target software into believing it is running on real

physical hardware and it is fast enough to be used for regular software

development tasks. A “target” in a virtual platform is a model of the hardware being

simulated.

From a software perspective, Simics simulation is like hardware. A Simics setup

can load the same binaries that would be used on a physical target board or

system, execute those binaries practically in the same way they would be executed

in real hardware. A software stack includes everything from initial boot code to

hypervisors, operating system, user-level application code. If a model is complete

enough, there is no need to modify the target code to run on Simics.

Simics is a full software program, nothing else. It does not require special

hardware, boards, or emulators to simulate. Simics runs on any personal

computer, anywhere, at any time. Simics available binaries can run on Windows

or Linux host machines. It is possible to send a Simics model anywhere across the

globe even by e-mail. One of its main features is that it can replace hardware

41

boards for any global development team. Refer to Figure 2.11 for Simics running

VxWorks overview [ENGBLOM, 2010]

Figure 2. 11 Simics is running VxWorks Operating System.

Simics is a simulation of a target, board or any system hardware. The Virtual

Platform contains models of processor cores, buses and other interconnections

between devices. It contains memories, peripheral devices, and networks.

The main devices are the fast instruction-set simulators (ISS) which are used to

execute ARM, DSP, MIPS, Power Architecture, SPARC, x86/IA or other

processors in binary code. A full set of other devices modeled to let run an OS is

also necessary. A full simulation on Simics includes models for memory-

management units (MMU) and all the memories and devices found in the memory

maps of the processors. Refer to Figure 2.12 for Simics architecture overview

[ENGBLOM, 2010]

http://blogs.windriver.com/wp-content/uploads/images-o/6a00d83451f5c369e2013480351f5b970c-pi.png

42

Figure 2. 12 Simics architecture overview.

When a microprocessor does a memory operation, a memory load or storage is

performed and the access address is first translated through MMU getting back to

a physical address. This physical address is used to build a memory transaction in

Simics. The transaction is sent to a memory map, which determines what specific

part of the target system the transaction is targeting. If it hits the memory, the

memory content is read or modified depending on which operation comes with the

transaction.

When a transaction hits a peripheral device, the simulation model for that device

is called to determine the effects of the access. The device model has the logic in

place to work on the access effect. It might send an interrupt to the processor,

reconfigure the hardware registers, reset a board, set or start a timer, send a

network packet, drive an IO pin or any other condition. When a transaction does

not hit anything, the simulation gets an exception back to report the bus error to

the software.

As a software application on a host machine, all can be summarized as a function

call that calls other functions between the objects building up the simulation model.

On Simics, everything is an object that uses functions to expose communication

http://blogs.windriver.com/wp-content/uploads/images-o/6a00d83451f5c369e20133ed057b38970b-pi.png

43

for transactions related to the simulated system (like memory operations), internal

communication in the same device model, maintenance, logging, tracing or other

operations. In hardware, this style of simulation is known as transaction-level

modeling. It is mainly focused on moving data around transactions, not on clocking,

pins or low-level hardware concepts.

As it is designed, Simics can add new objects to a simulation at any given point in

time. Objects can be reconfigured on how they are connected and their properties

at run-time modified. It is one of the advantages of using a simulation to develop

software or run experiments rather than a real system. Its flexibility makes it

possible to simulate any hardware system and operations like adding or removing

boards from a rack or changing network cables between boards.

Objects are built from classes loaded at run-time. Every simulation model is stored

in its own .dll or .so file and can be loaded while the program simulation is running.

There is no need to recompile anything to create a new configuration; all that is

needed to load the required modules when Simics is running is already stored. For

example, this is very similar to a virtual machine on Java or .net environments on

how objects are compiled, loaded, connected (interfaces) and managed. It is not

similar to static linking programmers use in C or C++ programs. Every change in a

module can be compiled separately making it very easy to recompile after a

change in a simulated target. It makes it easy to use Simics for experimentation

and software development.

Device modules on Simics can be created in C, C++, Python or the Simics device

modeling language DML. DML is a C-code generator that makes it easy to create

skeleton code to build complex device models. Any other language can also be

used as long as it can be linked to a C-language module.

To interconnect and manage modeled hardware, a virtual platform is created with

a special object known as a component. It is logical to group hardware device

models and make them work together. Components group devices, memories,

44

interconnects and processor cores as logical units corresponding to what we know

as a chip, a SoC, ASIC, any board, racks or any scalable system. These objects

can be reused and arbitrarily placed into another one, giving the ability to model

any form of hardware design hierarchy. When the component hierarchy is studied,

it is easy to understand the structure of a virtual hardware design.

Any processor, board, network, heterogeneous computer architecture and target

OS can be modeled with Simics. Models can scale and even thousands of

processors can be modeled, which makes it easy to configure experiment setups

for research. A simulation can run even months of the target time. Heterogeneous

simulations include different processor types and families: multi-core, single-core,

from 8-bit to 64-bit, symmetric shared memory or asymmetric multiprocessing have

been used to simulate. A model can be created by any user extending the

hardware library available with any component object needed. The only

requirement to build target models is to have Simics base binary and Model

Builder.

On input/output (IO) to a simulated system, Simics has interactive sessions with

serial consoles and graphical displays. It is also possible to connect simulated

serial connections on Ethernet networks to real physical networks. The most

common use cases are to keep target I/O with scripts of various forms of traffic

generators. Compiled software binaries are the major form of input which Simics

takes directly. There are many other domain-specific ways to develop Simics

simulations.

Simics user-interface has a scriptable command-line that comprehends Python a

simple GUI, an Eclipse GUI, and connections to debuggers such as gdb-serial.

These interfaces make it simple to manipulate a target system and debug software

running in a simulation without software being disrupted. It is the main advantage

of Simics as development and experimental analysis tool.

45

Simics is built from a set of logically connected objects, including user-interface

components, debugger connections, and command-line interfaces. Any object can

use the Simics API and function calls into other objects as infinite possibilities to

create. Therefore, it is very easy to extend, and it is flexible to experiment with

many use cases. Any user with some programming knowledge can create modules

and software that runs on those models. Simics capabilities on tracing, fault

injection, debugging, remote control and even customer graphical user interfaces

make it a great tool for research.

2.5.3. What is QEMU?

QEMU is a generic open source machine, user space emulator and virtualizer.

QEMU stands for Quick Emulator. It is a software program which features allow it

to emulate a complete machine in software without any need for hardware

virtualization support. It uses a dynamic binary translation that allows good

performance. QEMU can be integrated with Xen and KVM hypervisors to provide

emulated hardware while allowing the hypervisor to manage the central processor

unit. QEMU is able to run a hypervisor and can reach almost near-native

performance for CPUs. It is a software that can run software on top of OS made

for different machines (ARM or x86).

Figure 2.13 [QEMU, 2016] below represents a system architecture modeled in
QEMU.

Figure 2. 13 QEMU system architecture

46

QEMU provides virtualization for Linux virtualization API. It allows binaries

compiled against one architecture to be run on a host using a different architecture.

It involves simple CPU and system call emulation.

QEMU is released under GNU General Public License, version 2. It is a multi-

platform software that can be built in all modern Linux platforms, OS-X, Win32 or

other UNIX targets. Its source code is maintained under GIT version control

system: git clone git://git.qemu.org/qemu.git

QEMU has multiple operating modes: [QEMU, 2016]

• User-model emulation: it runs single Linux programs that were compiled

for a different instruction set. Fast cross-compilation and cross-debugging

are the main targets for user-mode emulation.

• System emulation: it emulates a full computer system, including

peripherals. QEMU can boot many guest OS including Linux, Windows

among others. Emulate different instruction sets.

• Xen hosting: QEMU emulates hardware, the guest execution is done within

Xen and is hidden from Qemu.

Qemu can run a Linux Operating System on top of a Windows host machine as

Figure 2.14 shows [QEMU, 2016].

47

Figure 2. 14 Linux is running on top of QEMU on a Windows host.

48

Chapter 3. Design

3.1. Problem Definition

The data transmission system at the OS level is computationally disadvantaged in

keeping up with data networks or even same-system produced data rates. This is

true for systems which are I/O bound that need to store, route or process data. As

discussed in Chapter 2, there are efforts to apply performance improvements to

get data from kernel space to user space and vice versa for analysis. Any data

generated and transacted from one side to another is costly regarding system

resources.

3.1.1. Hypothesis

In simple form, the objective of this research is to improve data transmission

performance within an OS. There are several options and obvious approaches

available. Top options include: 1) distribution of network traffic between multiple

systems to offload data transmission, 2) increase hardware specifications (e.g.,

CPU speed, Memory size and speed, storage controller, storage media, etc.), or

3) identify opportunities to use existing hardware more efficiently. This research

targets the latter, optimizations code will allow the first two options to scale to

handle higher data throughput.

The removal of bottlenecks creates the opportunity to improve performance at

every hardware and software level allowing user end applications to leverage

higher performance without the cost of replacing existing hardware or

supplementing it with additional more capable hardware.

Target improvements are:

 Reduce CPU utilization for data transmission within an OS.

 Reduce memory consumption of data exchange between kernel and user

spaces.

49

 Reduce the rate of data packet drops under high data transmission.

Data transmission between applications residing at different levels in the OS is

costly due to system calls; considering that, the goal of this research is to enable

the PF_RING algorithm in the system to handle data transmission at theoretical

maximum speed with minimum CPU and memory resource consumption,

regardless of buffer sizes.

The hypothesis for the system using the PF_RING kernel space algorithm is that

data transmission between applications is significantly greater with fewer system

resources than when using PF_PACKET. It is hypothesized that the system with

PF_RING with the same OS configuration as PF_PACKET can accomplish

improved data transmission without impacting the OS negatively.

3.1.2. Approach

The following subsections provide a high-level roadmap of this research approach

to the problem of transmitting data in an OS environment.

Solution Space

The first step was to determine the path for the bits from the point where a network

card receives data in its driver’s buffer to the point where an application takes it

out of the buffer cache by reading it either from memory or directly by a storage

controller. Ideally, a path is a data packet that starts from the network card and

ends up in a disk or even CPU cache memory as the end point where an

application can use it almost in no time, but this is beyond the scope of software

programmability and more likely a hardware solution. To track every bit as it

traverses through drivers, frameworks, APIs, queues, and applications is not an

easy task. It is not even possible with closed source OS code or drivers. Current

research uses an open-source OS with strong community support. The basis of

the experiment uses a 64-bit version of Ubuntu 17. The open-source nature of

Ubuntu Linux and community support provided the best possible chance to easily

modify and plugin code. Linux Cross Reference (LXR) was an aid to find the path

50

data was traversing by allowing to navigate through the Linux kernel code in a

completely cross-referenced environment. Most of the data transmission is well

known in a Linux OS, thus the selection of Ubuntu for the research.

As mentioned in Chapter 2, a simulation environment decouples the OS and

applications of any hardware or test board that allow to isolate and inspect

experiment factors by break pointing into the code, reverse executing, fully pausing

the simulation, registering and inspecting variables. Selection of Simics as a full

system simulation using education licenses enables the use of hardware models

in a way that they can be a controlled factor that is not determinant for the research.

Direction

Historically, performance has been achieved despite unnecessary layers of

abstraction, context switches, and wasteful system calls. PF_RING points to a way

to remove unnecessary bottlenecks between kernel and user space. The success

of efforts done in this algorithm place the question “Could this algorithm be used

instead of another to remove bottlenecks on data transmission between kernel and

user space?”. The question leads to determine the most viable way to substitute

PF_PACKET for PF_RING in an OS. Could data transmission within an OS via

kernel memory mapping into the application space in the same way the upward

copy is done perform better on a high data rate environment? The hypothesis is

yes; however further investigation shows that memory mapping was already being

used by the user-space libraries to get the most of the performance of the

constrained interface between user-space and kernel-space [DIBONA, 2017].

Further attempts to optimize the existing use of memory mapping, combined with

context switches of system calls, pointed to the use of better algorithms altogether.

PF_RING functionality is relatively straightforward placing it inside the kernel,

which means that any system call would be between kernel threads and more

efficient.

51

Prototype

Kernel data transmission algorithm interaction is included in the design,

development and comparative analysis of a PoC for this research. The goal of the

experimental system is to demonstrate that using an algorithm that leverages on

kernel-space capabilities improves the performance of data transmission between

applications that reside at different spaces within the same OS. Performance

metrics are discussed in Chapter 4, but it is important to understand that the rate

of data messages dropped in transmission is a relevant metric. CPU utilization,

memory utilization, and query response rates are also critical metrics although their

importance gets reduced when data packets drop rate is high.

3.2. Moving to kernel-space

PF_RING kernel module builds on the ability to avoid penalties for a user-space to

kernel-space copy and back, system calls and the overhead derived from context

switches. PF_RING retrieves data packets from and to applications or network

cards, provides filtering capabilities to retrieve data of interest, and writes the

packets of interest to memory where applications make immediate use of them.

Whether the application is TCPDUMP, Snort or a custom-built tool, each

application provides fundamental capabilities to make use of algorithm features.

Moving PF_RING into the kernel and creating an application that leverages from

these features is a hurdle. The design and development of the application that

uses the kernel module capability a not straightforward or community supported.

An added value of this research is the use of the simulation environment to

implement the integration of PF_RING on an OS kernel to observe detailed

experimental factors.

3.2.1. Linux Kernel Modules

Documentation on understanding and implementing Linux kernel modules is

widely available on published reference books and through the expert community.

Linux kernel code has evolved vastly in recent years and approaches to OS

52

scheduling, threading, task management, interrupts and network I/O has changed

on the recent mainstream code. A good amount of kernel code functionality is

statically compiled. Device drivers, non-essential functionality, and other features

are considered volatile and are provided as kernel modules. Linux modularity

makes it easy to enhance OS functionality to meet changing industry demand.

The implementation of PF_RING protocol handler is an enhancement as a kernel

module. Rather than changing the Kernel core or changing Linux kernel stack,

PF_RING provides the capability to dynamically be inserted without altering

standard behavior of the existing kernel core code or other user-space code that

may depend on it. Putting this capability in place is part of this research providing

dynamically loadable features preventing complex additional conditional logic to

determine when to use the feature. It is used right when the module is inserted into

the kernel and nonexistent when unloaded.

The capability above is key to the research experiments for implementing and

evaluating kernel-level prototypes. The design and implementation of a kernel-

level algorithm are performed by the PF_RING kernel module. The necessary

flexibility to dynamically insert these capabilities into a plain vanilla Linux kernel is

important to accurately measure performance analysis of a System Under Test

(SUT) which will be discussed in Chapter 4.

3.2.2. Linux Kernel Threads

Kernel threads are background processes that act as agents for tasks that may

typically be blocked. An example is a background process bdflush kernel

daemon. It is responsible for the task of writing dirty pages from the buffer cache

to the physical storage. bdflush is implemented as a set of threads that grow and

shrink in a configurable minimum and maximum thread count boundary to match

storage demand. The dynamic thread count behavior impacts the experimental

design and performance evaluation detailed in Chapter 4 and Chapter 5

respectively. Any write to a physical device as drivers can be blocked, kernel

53

capabilities to respond to such situations are implemented either very carefully as

a tasklet or as a kernel thread. A tasklet uses a softIRQ that might have

scheduling pitfalls where the code is running with a high priority. An application

written for this research has a function specifically tasked to read and write from a

buffer on a ring.

On Linux there are different ways to create a kernel thread. For this research, the

choice is to use kthread_run() macro. It creates a daemon and wakes up the

thread. A daemon, in simple terms, removes all file descriptors from the thread

(stdin, stdout, stderr), all signals are disabled, and the parent thread is

changed to kthreadd, the kernel background thread default for the owner.

Implementation on kernel module uses kthread_run() to create pkap_thread.

Kernel threads do not have user-space connections, allowing fast and efficient

context switching when executing them.

3.2.3. Data Transmission from Kernel-Space

When data comes from a network, the multiple variants libpcap library provides

user-space applications access to packet capture capabilities. No standard

libraries exist to capture data within the kernel.

Selection of PF_RING

The following factors are key to the selection of PF_RING as the algorithm of

choice for this research:

1. Efficient

2. High Performance

3. Ability to packet filter.

4. It does not require changes to the Kernel core code.

5. Can be used by user-space applications or even kernel-space applications

to control comparative performance analysis.

54

These factors make PF_RING stand out as a choice. Other libraries like libpcap

require changes to the kernel core to share the ring at kernel-space. Netfilter plug-

in is highly complex and cannot be used by existing user-space applications. A

custom NIC device driver implementation is also out of the scope of this research

and it is difficult to share for use with available user-space applications.

PF_PACKET is the default alternative to PF_RING; however, there are known

limitations and the subject of this investigation is proposing a substitute. As

mentioned in Chapter 2, PF_RING offers characteristics like reasonable resource

utilization, performance above or equivalent to libpcap implementation, and it is a

dynamically loadable kernel module that can be inserted into a standard plain

vanilla Linux platform without any changes to kernel core source code. It has a

lightweight pfring API with essential ring creation features, and the libpcap-ring

library provides an interface to interact with other widely used user-space

applications. There is plenty example code to fully demonstrate library usage.

Sending and Receiving Data with PF_RING

PF_RING provides a ring buffer memory allocated in kernel space. When used by

a user-space application, the pfring library maps the kernel-space memory into the

application's memory. Section 2.1.2 describes how PF_RING performs data

transmission. As part of the experiments performed in this research, transmission

of packets was done by using the pfsend and pfcount applications.

55

3.3. Architecture Overview

Figure 3. 1 Architecture overview modeling kernel to user implementing data
transmission operation using PF_RING.

Section 3.2.3 describes the design for a system using PF_RING. The architectural

overview shows how all pieces come together. Figure 3.1 above depicts the

research architecture. Notice that the figure shows that the kernel handles data

transmission and action. The application system in user-space is related to the ring

through the /proc filesystem.

Use of PF_RING results in a reduction of memory footprint and copy count that is

provided to user-space applications through pfring and libpcap. Other

improvements can be made to the algorithm that are out of the scope of this

research. pflib library copies the data from the ring before passing the copy to the

application. Kernel module file writing is less expensive that avoiding memcpy()

calls. As a proof of concept, PF_RING was built into the kernel as a module utilizing

the built-in mechanism provided by PF_RING reporting status and health of the

ring buffer and giving an insight of the data transmission process.

56

Chapter 4. Methodology

A presentation of the methodology used to evaluate the performance of PF_RING

in an Operating System kernel module compared to a de-facto PF_PACKET

algorithm used by user-space applications. This research evaluates four metrics:

CPU utilization, memory usage, packet rate drops and data query delay from an

application. Section 4.1 defines system boundaries, and section 4.2 presents

system evaluation methodology. Section 4.3 describes the system simulation

services provided by a system running on Simics. The workloads and performance

metrics are described in Section 4.4 and 4.5 respectively. System parameters and

factors are treated in sections 4.6 and 4.7. Finally, the evaluation technique and

experiment designs used to test, analyze and interpret system performance are

detailed in sections 4.8 and 4.9.

4.1. System Under Test Boundaries

Figure 4. 1 System conditioned under test diagram.

57

Figure 4.1, shows the SUT of the evaluation system. PF_RING provides a

straightforward capability, but being placed into an Operating System Linux kernel

it may behave with unknown side effects derived from a general purpose OS,

multitasking tasks, multiprocessing computer system (multiple cores simulation)

meaning that there are a considerable amount of elements that affect the system.

The only purpose of the SUT shown in Figure 4.1 is to clarify the components that

have a direct influence on the performance of the data transmission algorithm and

the system under study.

The essential part of the algorithm is the PF_RING library running as a kernel

module on a simulated hardware environment running the Operating System

unchanged binaries on Simics. Other components are the user-space application

agent used to retrieve or write data on the ring. Workloads are included in the

diagram such as data queries for data or simulated network traffic. Details on

parameters are included in section 4.6.

Metrics used in the performance analysis are packet drop rate, CPU load, memory

usage, and query delay. On a real-life system, data query latency or data being

dropped are important metrics. Metrics and methods are described in greater detail

in Section 4.5.

4.2. Evaluation Methodology

To measure a real system with PF_RING enabled on an embedded network device

for performance evaluation during the experiment is out of the scope of this

research but would be ideal. Results are verified and validated using analytic

analysis in a simulation environment. The proposed system is interconnected and

dependable on other systems. Accurate modeling of system behavior is ideal but

also out of the scope of the investigation, but it aims to behave and facilitate

performance measurement characterization. Interdependent systems of systems

are highly complex but simulation with Simics provides observability.

58

To evaluate performance characterization of a PF_RING-enabled and a non-

PF_RING system, actual metrics must be obtained for both kernel space

capabilities and equivalent user-space applications making use of these features.

On user-space, a tool based on open-source code was written to simulate network

traffic capture data on a system using libpcap and to write them to pcap-formatted

files on disk. This tool was also modified to use PF_RING-enabled libpcap.

The main difference the tool allows is to use PF_PACKET or PF_RING ring buffer.

There is where the difference relies on the SUT. Both ways utilize the fwrite()

function that uses buffering by default, generating fewer system calls when

transmitting large chunks of data or with small data each time. The goal is to use

also fewer CPU cycles and less memory as per the metrics detailed before.

Additionally, the tool was modified to be able to write to dev/null as a control in the

experimental trials.

4.3. System Services

The system allows for any given data, either coming from the network or produced

from the application, to be written or retrieved from the ring on the kernel or an I/O

storage device accurately. The system must provide determinism as a service for

storage or read/write from the ring of the data of interest. In general terms, the

system provides services like:

1. Providing an experimental environment that allows determinism.

2. Accurately allowing data disk I/O storage simulation that responds to

queries from an application.

3. Being a simulated environment where system factors can be controlled and

observable.

4. Running a real OS on a simulated system.

59

Given the overhead rate of the smallest data packets of required information data,

the modeled system needs to be able to sustain theoretical write speeds to disk of

70MB/s for an average size of 765 Bytes that can be received by the host system.

4.4. System Workload

The SUT workload is determined mainly by a controlled factor such as the data

traffic sent to the system. Data characteristics are determined by size and rate

during performance evaluation. Query data workload test is part of the last

experiment configuration to evaluate access to the ring from an application.

4.4.1. Simulated Network Traffic

Traffic Characteristic.

Data transmission is the principal observable element of system workload. The

size and frequency of data packets introduce stress to the algorithm read/write

functions. As part of this research, the workload is produced by pktgen – a Linux

Kernel module — to create data streams synthetically. It uses the User Datagram

Protocol bit-spitter to test the transmission and reception of NICs drivers and

capabilities. This method of data generation is enough to stress the experimental

systems as described in the following statements:

1. For the sake of packet size, data payload is not important nor is any protocol

details above layer 4.

2. PF_RING algorithm removes the sk_buff from the kernel TCP/IP stack

before the point where a given protocol can distinguish any data payload.

3. Protocol does not affect any PF_RING filtering capabilities such as Access

Control List (ACL).

Pktgen setup can generate average packet size dropping below 700 Bytes.

Several instances of pktgen systems can fully saturate a system data processing

60

with small packets. A single packet generation thread creates enough traffic types

and rates to evaluate the algorithm Kernel module capability initially. A user-space

application typically stores data sequentially either on a ring buffer or an I/O

storage device. The focus on this research is to go beyond boundary limits, so

testing scenarios are repeated while writing to dev/null. Doing this removes any

bottleneck on a simulated storage hardware device to isolate this factor on

performance data rates transmission.

Data streams are changed in size and data transmission rate, so it can test all

evaluation scenarios. Data bit rate is a significant observable factor in the system

workload, the number of data packets per second (pps) has more observability

significance to CPU utilization metric than the data bit rate alone. As mentioned, a

huge amount of small size data packets at a given rate can add greater system

workload than lower quantities of big data packets at the same given rate. To

evaluate system behavior, the size setting is the following: mini, macro and

random. The mini-test is set to transmit only at 64B frames to impact performance

on the SUT when the chain of functions on the algorithm handles a data packet

buffer transferring from memory to another. The macro test is set to transmit to

1500B frames to impact SUT when moving data with minimum system resource

spent setting up the data movement. Random is set to transmit an average

distribution of data packets ranging from 64B to 1500B frames. The purpose of this

settings is to experiment with system performance when the data input factor is

varying.

Data Rate.

The packet data rate can be adapted by pktgen delay knob. A nanosecond level

adjustment of delay in-between packets is proportional to the throughput of system

traffic processing. Using a Real Time OS is out of the scope of this research, but

a Linux kernel with these characteristics can provide high resolution of data

processing timing.

61

Time Length.

In a simulated environment, 5 minutes real time could mean hours of simulation

time. That time is enough to level up the SUT to a steady state even with the lowest

trial data rates. Getting to a steady system state is important for valid measurement

analysis. On a steady system state the test environment settles to a point where

the Linux ring buffer cache is not a factor in system performance, and any query

to the ring buffer can be satisfied on every task improving the performance of data

transmission that represents real world behavior.

4.4.2. Application Data Tx/Rx

Data needs to be recognizable to be able to search for it and for the application to

understand how to accomplish the search and response.

Data Object Creation.

Data can be seen as objects (marked packets) that are transmitted over a network

or within a system that specifies information or addresses (memory location)

considered as workload. Data can be objects that are beacons sent once at a time

constantly to make sure the whole system is connected. These marked objects in

complex systems are a noticeable workload increase, and the SUT is affected by

them. These marked packets are identical to any other general traffic on an

Internet Protocol network.

Query Workload.

The simulated test environment uses an application that has a background script

exercising the SUT that starts data packet queries to the ring looking for marked

objects to get a better grasp on what could happen in a real life connected device.

The impact of this type of workload on the system is related to the SUT CPU

resources consumed by additional tasks looking for objects with some type of

metadata. This also represents a situation where read/write performance is

impacted and dropped packet rate would also be affected.

62

4.5. System Performance Metrics

The system must use the kernel module PF_RING algorithm to store data in the

ring buffer with a higher probability of success and low data drop rate. To

accomplish this, the system must perform efficiently with the least overhead as

possible. The following metrics are defined to measure system success:

 CPU utilization

 Data drop rate

 Memory utilization

 Data query delay response

These metrics are used because they are standard and universally used to

compare between algorithms at high-level definition.

4.6. System Parameters

SUT properties are the system parameters that directly affect its performance. As

a system of systems built in Simics running a general purpose OS the complete

list of parameters is so wide that it is out of the scope of this study. From experience

and subject matter expertise the list of factors is reduced and chosen for the

experiments to those that will affect SUT performance in providing services the

most. System performance, as already mentioned, is primarily affected in this

research by its workload parameters. The following sections will describe system

parameters for the SUT.

4.6.1. Applied Algorithm Capturing Method

The PF_RING algorithm determines whether the data should be passed to the

application user-level space or if it can remain in the kernel for its processing inside

63

the SUT. The options are 1) user-space application or 2) pf_ring kernel module

under study. Both the application and the kernel module use the same library to

send/retrieve data packets from a NIC and filter them for interest.

4.6.2. Device Selection

I/O storage configuration of the system also impacts SUT performance in providing

services. Any data that comes into the SUT also needs to be stored somewhere.

Simics provide I/O simulation capabilities, options are 1) SATA hard Drive

formatted to ext4 with 65MB/s write speed or 2) the dev/null device. Ext4 is

selected for the experiments since it provides sequential write speeds like other

Linux file systems. In this research it is not vital for storage to be permanent, and

dev/null device is adequate for measuring SUT performance without getting too

much impact on a physical storage device.

4.6.3. Filtering

Filtering is a system parameter. It is intentional for discarding some data defined

by a pre-configured rule set. The SUT through PF_RING is capable of filtering data

packets. As mentioned in Chapter 4 the ability to perform filtering is a key factor in

the experiment design; however, for experimentation, all filtering is disabled for

SUT performance analysis.

4.6.4. System Specifications

Hardware specifications for the host system impact SUT performance. Increasing

CPU performance (adding cores or improving its specifications), memory, buses,

platform architecture, storage system, NIC directly impacts the performance of the

studied system. A model can be changed leveraging Simics to improve specs and

tweak SUT performance; however, it is out of the scope of this research to control

these factors. The specifications for the test system are constant to get consistent

test results. Use of Simics is focused on the fact that it allows deeper observation

into system states facilitating research reproducibility and observability.

64

4.7. Controlled System Factors

The following section is a presentation of the system and workload parameters to

be used as factors during the test evaluation. Factors were selected through pilot

experiments and experience knowledge. Factors are changed during each

experiment. Experiment 1 and 2 are described in Section 4.9.

Factors in Experiment 1 are selected based on the impact on the SUT under

controlled workloads to transmit and receive data with PF_PACKET. Factors in

Experiment 2 are varied in the same way as in the previous experiment with the

same workloads, but with PF_RING. Sections 4.9.2 and 4.9.2 outline the factors

selected from the system and describe the workload parameters used during the

experiments.

4.7.1. Data Processing Method

The method is the PF_RING implementation into the Kernel module where data

packets traverse kernel-space to user-space and vice versa, or even when they

do not. The impact of how the algorithm treats data and improves data

transmission at different resident spaces is a main factor and thus the goal of this

thesis.

Kernel Module

The PF_RING kernel module installed instead of the default solution on an OS is

the proof of concept for a kernel level capability under test. It is a dynamically

loaded Linux kernel module that implements a background process of a thread

type. Details on how the solution in place is designed are located in Chapter 3.

AppDataPfRingLogger

The AppDataPfRingLogger application serves as a tool that provides functionality

and performance threshold for the user-space system. The application resides in

user-space. It is a libpcap-based data packet application which is a custom

modification from DaemonLogger written by Martin Roesch. Modifications are

65

proposed only for this investigation specifically and do not pretend to substitute the

original solution. The use PF_RING hooks provides an efficient functionality.

AppDataPfRingLogger leverages the nature of the DaemonLogger base code for

representing a user-space application.

AppDataPfRingLogger was modified to support dev/null as logical I/O device and

compiled with a libpcap-1.8.1-ring library which is the PF_RING enabled version

of the standard libpcap universal library. This application retrieves data packets

from the same ring buffer as the PF_RING kernel module. It is an excellent focal

point for the SUT. It uses the fwrite() call (through libpcap’s pcap_dump() function)

that uses the write() system call. It is handled by vfs_write() function which passes

handling of this call to the filesystem’s write() file operation. As discussed in

Section 3.2, the kernel module uses the write() file operation directly. This

guarantees the application write access to the data is identical to the one that uses

the PF_RING kernel module.

4.7.2. Virtual Device

Although simulation system services provide an I/O storage model, a virtual device

is used on the hosted OS. The /dev/null device:

 Discards all data written to it.

 Acknowledges with SUCCESS always.

 Provides End of File (EOF) reporting always.

This is selected as a method to extend beyond the ability of the simulated hardware

adding capabilities of sequential block writing between 2.6GBps and infinite. Data

cannot be verified on correctness since it is immediately disposed.

66

4.7.3. Test Workloads

Data Size

A key service of the algorithm running as a kernel module is to provide the data

available in the ring buffer so an application can access it as fast as possible. The

most impactful system workload is copying data coming from a NIC to the ring,

handling it over to an I/O storage device or to an application for user layer. Data

size is the main contributor to system stress, even more than the data bit rate. On

a network, devices typically use 64B for stress testing. Developers need to make

sure proper functionality under too many data packets being filled in the network.

To simulate that in the experiments data size is controlled by the following criteria:

 Minimal size: 64B data frames

 Maximum size: 1500B data frames

 Random size: distribution from 64B to 1500B data frames.

Data Rate

Data rate is also significant as SUT workload. Low stress, stress high point, and

unlimited theoretical stress of system experiments with rate will be controlled as

follows:

 Baseline (b0): 100Mbps: Low-stress testing to explore SUT behavior under

light workloads.

 Easy (b1): 140Mbps: Close to data processing routine handle packets per

second (pps) limits. 1500B + Random (650Mbps): Maximum data rate an

I/O storage device can handle when writing to it.

 Moderate (b3): 200Mbps: Above processing handling routines. 1500B +

Random (700Mbps): Moderately above the maximum data rate the system

can handle.

 High (b4): 340Mbps: well beyond the data rate processing handling routines

can perform requiring 2 pktgen systems to create the desired rate. 1500B +

Random (980Mbps): well beyond the rate the system can handle.

67

Experiment 2 configuration involves the SUT reaching a more realistic workload to

approximate the system, so the data packet sizes are randomly selected between

64B to 1500B. Distribution of random sizes is normal, and average data size is

782B. On Experiment 3 levels are more granular to determine data query workload

effect on the SUT: 100 Mbps, 225 Mbps, 350 Mbps, 575 Mbps, 650 Mbps, 700

Mbps, and 975 Mbps.

4.7.4. Application Data Workloads

Workloads are applied in every experiment. The application will query data from

the ring buffer for experiment trial. Refer to Figure 2.8.

4.8. Experimental Technique and Simulation Environment

SUT evaluation is conducted thorough measurement of the system ability to place

data on the ring buffer and it being read by the application. System analytical

modeling and simulation are performed using Simics full system simulator with the

objective to simplify and add determinism to experiments. A real-life network and

a system-of-systems would be complex and unreliable. The development of the

application and Linux OS with PF_RING running on top of a simulation add

flexibility to observe and adapt functionality to new experiment environments or

platforms.

4.8.1. Evaluation and Simulated Environment

As depicted in Figure 3.2, the environment to evaluate the SUT is a simulated

Simics platform running a Linux OS with the following characteristics:

- Intel® Quick Start Platform x86 Simics simulator.

68

Figure 4. 2 Quick Start Platform running Linux.

- PF_RING version 6.6.0 revision XXXX

- libpcap-1.8.1-ring (distributed with PF_RING 7.0.0)

- pktgen single instance

- Linux genericx86-64 3.14.19-yocto-standard #1 SMP PREEMPT Mon Jan

25 10:29:05 CET 2016 x86_64 GNU/Linux

Figure 4. 3 QSP running Linux on top of a simulation running Simics.

69

4.8.2. Experimental Technique

This section describes the method used to get the data and the process used to

analyze the information for each trial. The metrics selected are used to be able to

compare design performance to the default traditional approach --that is to

compare the effect of PF_RING kernel module on SUT performance with the

AppDataPfRingLogger application. Every trial set experiment discussed in Section

4.9 provides a specific factor level combination. Each combination of factors has

a workload configuration level which enables the metrics to be comparable to each

other.

Data Drop Rate

“In this Internet age of network computing, one of the most critical quality attributes

is system and network availability, along with reliability and security. Requirements

for high availability by mission-critical operations have existed since society

became reliant on computer technologies. In the Internet age, software code is

distributed across networks and businesses increasingly share data, a lack of

system availability is significantly increasing adverse impacts.” [KAN, 2003]

As mentioned before, data drop rate is significant to SUT system performance.

Success of the experiments depends largely on data being dropped or not. If drops

are too high, there is no sense in running any other experiment. Data drop is

bounded to the probability (p) of a packet being successfully captured on the ring:

𝑝 = 1 − 𝑃; 𝑤ℎ𝑒𝑟𝑒 𝑃 =
𝑜𝑓 𝑝𝑘𝑡𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑟𝑖𝑛𝑔

𝑜𝑓 𝑝𝑘𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
 (4.1)

Data drop rate is an important measure for being able to compare the pktgen of

packets generated and stored in the ring. Each test workload will be run five times.

The number of attempts for each test experiment configuration is established from

the baseline. The SUT is based on a general-purpose operating system. Trial

repetition is required to get consistent and reliable results although this can be

ensured by a simulated environment.

70

CPU Utilization

SUT load is impacted by the data workload, and the data vary from the options

described in Section 4.7. CPU utilization information is gathered by pidstat Linux

utility, part of the systat system status monitoring tools suite. The pidstat will be

configured to monitor the kernel thread collecting data every five seconds through

the duration of the test. CPU utilization average for a set of settled factors is the

main metric of interest; however, historical utilization changes give a clearer view

of possible bottlenecks reacting to data traffic changes, the influence of other

kernel tasks, etc.

Memory Utilization

Memory utilization data is gathered using the same metrics as CPU utilization.

Refer to CPU utilization experimental method technique.

Data Retrieve Delay

In Experiments 1 and 2 the above metrics are used. Data retrieve is also monitored

and analyzed. Response metrics of interest are cycle delay in seconds, number of

queries completed successfully and percentage of the marked packets found.

4.9. Experimental Design

There are two experiments. Experiments 1 and 2 leverage from pilot testing to

determine fixed factors (parameters), controllable factors, data gathering methods,

simulation infrastructure and the base virtual platform configuration. Experiment

selections are put under stress testing for normal and atypical workloads to

simulate a real system connected to the Internet. Workload intention is to provide

input data to the SUT to measure its performance.

71

4.9.1. Experiment 0: empirical baseline

This section describes experiment tests based on empirical purposes and

methods. It is useful to determine controlled parameters but to better understand

the SUT.

Configuration. A set of tests conducted to experiment on PF_RING configurations

for slot count, filesystem formatting, kernel module installation and formatting

options.

System Architecture. Determine Linux systems data packet generation and

evaluate to ensure that the system will be fully exercised. Select to have a

controllable and observable test environment. Key decisions are: whether to use

a simulated data generator or an operating system utility, and which simulator

provides a controllable and deterministic test environment that would best stress

and provide the SUT environment.

Data Producer. Set of tests to be conducted to gather baseline configuration

options of the packet generation tool. It is important to be able to find a

configuration that would also be deterministic, reliable and easy to set for

repeatability. Set configuration file format that just easily enables data speed,

sizes, addresses, and duration of every test.

Profiling. When a test environment is set and it is possible to send data input to a

SUT, workloads are sent with oprofile utility test suite to profile the PF_RING

kernel module.

Measurement Tools. It is necessary to acquire data from each of the tests tools to

get metrics, monitor the SUT, get the status of PR_RING ring buffer health and

drop count, in addition to data transmitted by the generator and data being copied

to the application from the ring. All this is provided by the SUT with the pf_ring

library.

72

The experiment focuses on tweaking baseline variable results to set initial data

test count, set data rate levels to observe SUT characteristics performance from

baseline and data send to ensure the SUT reaches a stable state.

4.9.2. Experiment 1: PF_PACKET System Enabled

This experiment describes the SUT with PF_PACKET configuration running under

the scenarios described in Table 4.1. After a stable repetition period, the SUT is

exercised generating data packets that are received and written to dev/null over

the course of 10 hours of simulation time.

Table 4. 1 Listing of each configuration test containing three tests every five
repetitions.

T1/T2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

pkt_sz min max rand min max rand min max rand min Max rand

Mbps 100 100 100 140 652 650 200 714 700 340 985 975

T3 S1 S2 S3 S4 S5 S6 S7

pkt_sz rand rand rand rand rand rand rand

Mbps 100 100 100 140 652 650 200

4.9.3. Experiment 2: PF_RING System Enabled

This experiment describes the SUT with PF_RING configuration running under the

scenarios described in Table 4.1. After a stable repetition period, the SUT is

exercised generating data packets that are received and written to dev/null over

the course of 10 hours of simulation time. The ring buffer, which is not available in

the scenario described in Experiment 1, is monitored in this experiment.

73

4.9.4. Methodology Summary

This chapter discussed the methodology used to evaluate the performance of the

system under various data stress scenarios. Experiments 1 and 2 target SUT

performance characteristics and main kernel module internal features by applying

workloads during the test. Statistical tests are used to study and analyze the

effectiveness of PF_RING compared to the default algorithm on the operating

system depending on the workloads.

74

Chapter 5. Analysis

This chapter presents and analyzes the results of the experiments as described in

Chapter 4. Section 5.1 through 5.3 discuss system performance results and how

the system under test behaves with data. Experimental data analysis is presented

in Section 5.4.

5.1. Results and Analysis of Experiment 0

Experiment 0 gathers basic information about the system to give an empirical idea

of how the system behaves under certain workloads. This experiment measures

performance data to obtain the stable or normal operation performance status of

the system under test. The SUT is configured as an OS with the PF_PACKET

component and the same OS with the PF_RING component as the only difference,

to create two experimentation scenarios. The metrics for this experiment are

categorized by trial set. When executing the experiment, there are twelve trials

divided into four different buckets of data rates. Instead of exploring the data of

each experiment trial, Section 5.1.1 shows an overview of the key results of the

experiment. The other sections detail key points of interest.

5.1.1. Experiment 0 Overview

The following graphs in Figure 5.1 show the key SUT metrics. All trial packets are

randomized. From the packet size factor, random size is the most significant

standard data traffic. When using minimum packet size (64 Bytes) the experiment

provides information about system behavior with the worst-case scenario showing

high data copying overhead. For the experiment trial with maximum packet size

(1500 Bytes) system behavior had the best-case data copying overhead scenario.

75

Figure 5. 1 Summary graph of Experiment 0 SUT key metrics between pf_packet and
pf_ring. Dropped packets (%). Blue = PF_PACKET, Red = PF_RING.

Figure 5.1 shows the key metric of dropped packets between PF_RING and

PF_PACKET. At data rate level b2 PF_PACKET drops more data packets than

PF_RING. At b4 level there is no difference between the two.

Figure 5. 2 Summary graph of Experiment 0 SUT key metrics between pf_packet and
pf_ring. CPU utilization (%). Blue = PF_PACKET, Red = PF_RING.

The inclusion of the results for trial sets with the lower sized packets introduces

too much overhead and confusion to represent SUT behavior accurately.

Figure 5.2 shows the summary graph of the impact of the packet size on CPU

utilization and drop packet rate when using PF_RING. There are no differences

between measures on each data rate bucket in the graph due to the advantage of

using Simics Virtual Platform to simulate the experiments. Because of that, the

range of confidence is 98% on each data interval. At bitrate 3 (b3), there is a

76

statistical difference between experiment trials using random data size distribution

and maximum sized packets, but the following descriptions are shown:

 Experiment trials between random and maximum data size packets behave

similarly in data loss and CPU characterization.

 Experiment trials with the minimum packet size differ noticeably in both data

loss and CPU characterization.

Figure 5. 3 Summary graph of Experiment 0 SUT key metrics between pf_packet and
pf_ring. Memory utilization (MB). Blue = PF_PACKET, Red = PF_RING.

Figure 5.3 shows that PF_RING memory utilization does not change when the data

rate is incremented. PF_PACKET memory utilization (60 MB) is higher than

PF_RING (52 MB).

Figure 5. 4 Summary graph of Experiment 0 SUT key metrics when packet size levels
impact data drop when using pf_ring.

77

Figure 5.4 shows the key metrics when the experiment is performed at different

packet size levels. With PF_PACKET the behavior of the SUT performs the same

when packet size is small or big. It drops the almost the same percentage when

the data rate is high for all packet sizes.

Figure 5. 5 Summary graph of Experiment 0 SUT key metrics when packet size levels
impact CPU utilization when using pf_ring.

Figure 5.5 shows when the packet changes to the minimum size the CPU

utilization rise to its maximum (~90%) no matter the data rate.

5.1.2. Data Drop Rate

Beyond data rate b1 where PF_PACKET or PF_RING are fully capable of zero

packet loss, the PF_RING kernel module packet data drop rate is lower than

PF_PACKET and even than AppDataPfDataLogger user application using

PF_RING hooks. Table 5.1 below shows the results of the tests performed

(hypothesis testing) on the data drop rate for each of the 4 distinct rata bitrate

levels.

𝐻0: 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑟𝑖𝑛𝑔
) = 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑝𝑘𝑡

)

𝐻0: 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑟𝑖𝑛𝑔
) < 𝑝 (𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓𝑝𝑘𝑡

)

78

Table 5.1 shows that the null hypothesis needs to be rejected for every b-level

(data bitrate level) that includes some data drop. The PF_RING kernel module is

capable of transmitting more data to the buffer or even to disk than the

AppDataPfRingLogger user-space application.

Table 5. 1 Experiment 0 hypothesis testing of dropped packets

Null Hypothesis Scope Estimate p-value

p(PktDrpRatePF_RING) < p(PktDrpRatePF_PKT) Experiment 0 0.08861 4.76E-79

p(PktDrpRatePF_RING) < p(PktDrpRatePF_PKT) b1 0 N/A

p(PktDrpRatePF_RING) < p(PktDrpRatePF_PKT) b2 0.16458 1.43E-82

p(PktDrpRatePF_RING) < p(PktDrpRatePF_PKT) b3 0.09436 2.42E-08

p(PktDrpRatePF_RING) < p(PktDrpRatePF_PKT) b4 0.06853 7.41E-14

Table 5.1 shows the p value. The p values for every experiment scope are less

than 0.05% (5%) which indicates it is enough to claim that PF_RING drops less

data at different data rate than PF_PACKET. The p-value on each data rate level

show the results of this study are solid and repeatable.

Figure 5. 6 Data packets are written to dev/null on Experiment 0 comparing pf_packet
and pf_ring.

Figure 5.6 displays the differences in KiloBytes per second (KBps) between

PF_PACKET and PF_RING. Due to multiple dependencies of the SUT, the actual

79

data rate written to disk varies as the network load changes; however; the data

shows on average that the kernel-space implementation (PF_RING) is capable of

transmitting 15-20% more KBps than PF_PACKET with a 98% of confidence

interval (due to the simulation environment).

5.1.3. CPU Utilization

As can be observed in Figure 5.2’s graphical summary of CPU utilization, the

original hypothesis expressing that the PF_RING component reduces CPU

utilization appears to be false.

𝐻0: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑟𝑖𝑛𝑔) = 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡)

𝐻𝐴: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑟𝑖𝑛𝑔) < 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡)

Table 5.2 shows the results of the null hypothesis performed on CPU Utilization

for the 4 different bitrate levels. Both tables show that the inverse of the original

hypothesis is valid for all the cases but for b3 there is insufficient evidence to reject

the null hypothesis. This metric shows a failure of the PF_RING kernel module to

achieve one of the objectives (a reduction of the CPU utilization). The Summary

analysis on section 5.1.5 examines the relationship between the metrics and

provides an insight into the eventual effect on the SUT.

Table 5. 2 CPU Utilization hypothesis testing in Experiment 0.

Null Hypothesis Scope estimate p-value

p(CPUPF_RING) < p(CPUPF_PKT) Experiment 0 -7.85041 1

p(CPUPF_RING) < p(CPUPF_PKT) b1 -6.90122 1

p(CPUPF_RING) < p(CPUPF_PKT) b2 -16.76033 1

p(CPUPF_RING) < p(CPUPF_PKT) b3 -3.67531 0.97152

p(CPUPF_RING) < p(CPUPF_PKT) b4 -1.89512 0.94604

 Inverse Null Hypothesis Scope Estimate p-value

p(CPUPF_RING) > p(CPUPF_PKT) Experiment 0 -7.85041 1.53E-31

p(CPUPF_RING) > p(CPUPF_PKT) b1 -6.90122 5.07E-14

p(CPUPF_RING) > p(CPUPF_PKT) b2 -16.76033 4.60E-39

p(CPUPF_RING) > p(CPUPF_PKT) b3 -3.67531 0.02839

p(CPUPF_RING) > p(CPUPF_PKT) b4 -1.89512 0.05396

80

The first part of the table demonstrates that the null hypothesis cannot be rejected

while the second part shows that the inverse null hypothesis is invalid on the data

rate b3 level. There is not enough change after evaluating the null and alternate

hypothesis to reject that PF_RING CPU Utilization outperform PF_PACKET key

metric.

5.1.4. Memory Utilization

The memory utilization shown in Figure 5.3 depicts the measurable memory

utilization throughout all the experiments. The PF_RING utilizes 52 MB of memory

and the PF_PACKET 62 MB of memory. This does not vary with the packet size,

bit rate or any runtime variable on the simulated virtual platform. The use of

PR_RING ring buffer --sized when initialized-- makes up the most of the memory

utilized by the kernel module. As much as the snaplen4 or the number of ring slots

were changed the same memory usage change was seen. Any memory

consumption outside the ring, PF_RING saves memory by not buffering writes to

disk and not copying the data from the ring to use it. Section 3.1.1 explained that

one objective of the PF_RING PoC is to reduce memory utilization and Section 4.5

detailed memory utilization as a system metric. The objective was for the driver to

make decisions to reduce memory footprint. As seen in the experiments, PF_RING

memory utilization is consistently 17% less than PF_PACKET, indicating that the

objective to reduce memory usage has been achieved.

5.1.5. Summary Analysis

As per the experiment, system metrics indicate that PF_RING kernel thread drops

fewer data packets, consume more CPU resources and use less memory than

PF_PACKET and AppDataPfRingLogger user-space application. While

experiment indicators show some information about the impact of the PF_RING

81

capability at kernel-space, they do not provide the full picture without probing the

dependencies between the data. In particular, note the relationship between data

dropped packets and CPU utilization. Figure 5.7 and Figure 5.8 provide the

common interaction of both two metrics. The graph data set from Experiment 0 at

data rate b2 is an example. Although one single trial was performed for simplicity,

the relationship between the two metrics represents all trials executed that resulted

in dropped packets. Any increase in the data drop rate reduces CPU utilization.

This relationship exists due to data being retrieved from the PF_RING ring buffer.

Dropped packets never reach the buffer thereby reducing the workload at any

given data rate. The effect of the dropped data is similar to the effect of filtering

data though dropped data as an intentional choice. The experiments are not

focused on capturing the data accurately but on the trade-off of CPU Utilization for

improving data speed transfer aligned with the aim of this research. Experiment 0

reveals that PF_RING SUT option uses a greater percentage of CPU resources

even when the difference cannot be attributed to missing data.

Figure 5. 7 Data that relates data drop rate and CPU Utilization. On the first graph, the
Y-scales differ to visually show the effect of dropped data has on CPU Utilization. It is

composed of a single trial but gives the ‘all trials’ trend.

0

10

20

30

40

50

60

70

80

90

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

D
ro

p
p

ed
 P

ac
ke

ts
 (

%
)

C
P

U
 U

ti
liz

at
io

n
 (

%
)

Time (s)

CPU Utilization (%)

82

Figure 5. 8 Graph compares CPU Utilization using PF_RING showing no data drops
while AppDataPfRingLogger has the same data drop rate as in the first graph.

5.2. Results and Analysis of Experiment 1

Experiment 1 gathers system metrics for the SUT under PF_PACKET while storing

the data captures to the dev/null device. The SUT is an OS configured with

PF_PACKET. This experiment measures performance data for the capture and

storage process alone. No data queries were performed for this experiment during

this phase of testing. Again, metrics for this experiment 1 were categorized by trial

set. There are 12 trials, each representing 5 independent trials for several

combinations of data bit rates and packet size. Section 5.2.1 presents an overview

of the key results of the experiment, and subsequent sections detail the

characterizations of interest.

5.2.1. Experiment 1 Overview

The three graphs in Figure 5.9, Figure 5.10 and Figure 5.11 below summarize the

key metrics for all trial sets where the data packets are randomized for

PF_PACKET SUT configuration. While not perfect, the SUT configuration is the

most representative data size distribution of standard Internet traffic. Trial sets use

the minimum packet size (64 B) which gives insight into SUT behavior with the

worst-case overhead to data transmission ratio. Trial set with maximum data

packet size (1500 B) does give an insight on system behavior with the best-case

0

20

40

60

80

100

0 50 100 150 200 250 300 350

C
P

U
 U

ti
liz

at
io

n
 (

%
)

Time (s)

CPU Utilization Kernel PF_RING
(%)
CPU Utilization
AppPfDataLogger (%)

83

overhead-to-data transmission ratio. The same rationale applied to this experiment

as the one explained in Experiment 0 for general exclusion of trials with minimum

or maximum sized data packets from the overall summary. The graphs depict the

influence of data size on SUT performance during Experiment 1 and try to provide

the best possible assessment and performance indication beyond the limits of what

a real network system could provide. Using a Simics Virtual Platform simulation

where the SUT runs, introduces a specific separation from real world testing and

thus the inclusion of minimum and maximum data size packets is useful for

revealing certain computational characteristics of the SUT configuration.

Figure 5. 9 Summary graph of Experiment 1 SUT key metrics between pf_packet and
AppDataPfRingLogger. Dropped packets (%). Red = PF_PACKET.

Figure 5.9 shows the key metric of dropped packets between PF_PACKET and

the user space application. On each data rate the amount of data dropped is the

same.

84

Figure 5. 10 Summary graph of Experiment 1 SUT key metrics between pf_packet and
AppDataPfRingLogger.CPU utilization (%).Red = PF_PACKET.

Figure 5.10 shows the key metric of CPU utilization between PF_PACKET and the

user space application. CPU utilization has same value (40%) at high data rates in

the user space application.

Figure 5. 11 Summary graph of Experiment 1 SUT key metrics between pf_packet and
AppDataPfRingLogger. Memory utilization (MB). Red = PF_PACKET.

Figure 5.11 shows the key metric of Memory utilization between PF_PACKET and

the user space application. PF_PACKET Memory utilization is lower than

AppDataPfRingLogger.

85

Figure 5. 12 Data size impact depicts the rate of dropped packets.

Figure 5. 13 Data size impact depicts the CPU utilization.

Figure 5.13 shows that when the data size is small and the data rate is high there

is an increment of the amount of data loss when PF_PACKET is enabled. Figure

5.14 shows that CPU utilization is higher when using small data size.

5.2.2. Data Drop Rate

Unlike Experiment 0, where the data drop rate differences are evident after data

rate level b1, the use of the dev/null virtual device for writing data instead of

simulated disk maintains very low data drop rates until much higher data rates

86

come in. This result is due to the fact that every write is virtually non-blocking in

the simulation. Though all write activity even to dev/null is a potential blocking call

(from a software perspective) assuming a real OS where the file system delivers

the data bytes to the bit bucket as fast as it gets them; the simulation removes one

of the most significant delays on the SUT. The data bytes never hit any buffer

cache, and therefore the data written to dev/null does not produce any dirty virtual

page. The bdflush kernel daemon does not increase CPU usage for any write

function call. It is for these reasons that Experiment 1 is used for comparison with

PF_RING and identification of SUT processing behavior.

The results of the tests performed on the data drop rate for each of the 4 different

data rate levels reveal no statistically significant data packet loss for any data

bitrate when considering experimentation trials with randomly selected data sizes

or maximum data packet sizes; therefore, Table 5.3 shows the results of the null

hypothesis performed on the data packet drop rate trial set with minimum data size

for each of the 4 different data bitrates of the SUT configuration selected.

𝐻0: 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓_𝑝𝑘𝑡) = 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑎𝑝𝑝𝑃𝑓𝐷𝐿)

𝐻0: 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑝𝑓_𝑝𝑘𝑡) < 𝑝(𝑃𝑘𝑡𝐷𝑟𝑜𝑝𝑅𝑎𝑡𝑒𝑎𝑝𝑝𝑃𝑓𝐷𝐿)

The table shows that the null hypothesis is valid. When scoped by level, the null

hypothesis cannot be rejected with 98% confidence interval (data whiskers on a

deterministic simulation) for trials on data rate b2 and b3. For practical matters, the

difference between methods is only visible at data rate level 4 (b4), and estimations

are below 4%. Yet data rate levels at b4 are 340Mbps for the experiment trials with

minimal size packets, the 4% result translates to 650,000 packets and 45MB of

data per second.

Table 5. 3 Dropped Packet Rate hypothesis testing on Experiment 1

Inverse Null Hypothesis Scope Estimate p-value

p(PktDrpRatepf_pkt) < p(PktDrpRateAppPfDL) Experiment 1 0.01508 4.14E-12

p(PktDrpRatepf_pkt) < p(PktDrpRateAppPfDL) b1 0 N/A

p(PktDrpRatepf_pkt) < p(PktDrpRateAppPfDL) b2 0.00021 0.24550

87

p(PktDrpRatepf_pkt) < p(PktDrpRateAppPfDL) b3 -0.00600 0.92221

p(PktDrpRatepf_pkt) < p(PktDrpRateAppPfDL) b4 0.05349 2.36E-18

5.2.3. CPU Utilization

As shown in the graphs for CPU Utilization from Figure 5.10, there is evidence to

accept original hypothesis, which states that the kernel module of the SUT

application would reduce CPU utilization when using PF_PACKET.

𝐻0: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡) = 𝑝(𝐶𝑃𝑈𝑎𝑝𝑝𝑃𝑓𝐷𝐿)

𝐻𝐴: 𝑝(𝐶𝑃𝑈𝑝𝑓_𝑝𝑘𝑡) < 𝑝(𝐶𝑃𝑈𝑎𝑝𝑝𝑃𝑓𝐷𝐿)

Table 5.4 shows the results of the tests performed on the SUT configuration

selection when PF_PACKET is enabled in the OS for each of the 4 different data

rate levels, compared to the user-space application that is not able to use any

PF_RING hooks. The table evidently indicates that the PF_PACKET utilizes

significantly less CPU than the AppDataPfRingLogger user-space application. This

is between 20%-35% less, at 98% confidence interval. Since PF_PACKET does

not buffer any write, it is not penalized the way AppDataPfRingLogger is set in this

simulated solution. To accomplish the work AppDataPfRingLogger must copy the

data to a stream buffer and perform the expensive copy from the user-space to the

kernel-space without any PF_RING hooks even though the data packets are

immediately discarded by the file system. The reason the PF_PACKET requires

less CPU in this specific experiment simulation has no practical value in real-world

performance; however, the data point to write efficiency within the kernel-space

and indicate CPU resource utilization in the SUT is handling the data packets to

the file system in a non-blocking scenario.

Table 5. 4 CPU Utilization hypothesis testing on Experiment 1

Null
Hypothesis

Scope Estimate p-value

p(CPU pf_pkt) < p(CPU AppPfDL) Experiment 1 26.02810 0

p(CPU pf_pkt) < p(CPU AppPfDL) b1 19.56981 0

p(CPU pf_pkt) < p(CPU AppPfDL) b2 24.55692 1.57E-283

p(CPU pf_pkt) < p(CPU AppPfDL) b3 22.07353 1.20E-77

p(CPU pf_pkt) < p(CPU AppPfDL) b4 35.65992 0

88

5.2.4. Memory Utilization

As per Section 5.1.4, memory utilization is static in this experiment too and does

not depend on the non-controllable factors or any workload levels. Memory usage

is not changed for PF_PACKET and, in the case of writing data to dev/null, the

additional memory and associated copies used by the AppDataPfRingLogger

user-space application both memory and CPU resources consumption is higher

without any major impact.

5.2.5. Summary Analysis

Given the deterministic and simulated nature of Experiment 1, the data results and

analysis apply to SUT capability closest to real-world system capability. Both the

data and the graphs show that a kernel-space data transmission capability

PF_PACKET can derive more benefit from faster data transmission and faster

storage than a user-space application. The PF_PACKET OS build is compared

with a user-space application. Their capabilities are helpful to determine where the

improvement is located at the SUT.

5.3. Results and Analysis of Experiment 2

Results of Experiment 2 gather the information of the SUT configuration with

PF_RING kernel module while comparing data transmission with a user-space

application. This experiment measures performance of the data transmitted, stored

in dev/null and with a data query process. The key metrics for this experiment are

again categorized by an experimental trial set. Same trial sets as previous

experiments for the sake of comparison with 4 independent trials for 4 data bit

rates divided into buckets (b1-b4). This scenario is an OS build analogous to the

one used for Experiment 1, but with PF_RING kernel module enabled instead of

PF_PACKET (which is disabled). The experiment relates closely to representing

real-world workload and network data traffic of a system. The SUT received the

data packet sizes configured to be randomly selected for all the sets. Figure 5.15,

Figure 5.16, and Figure 5.17 depict an overview of the key results for the

89

experiment while Figure 5.18 is a representation of an overview of the key query-

based (delay) results for the experiment to show differences between the kernel-

space applications versus the user-space ones.

5.3.1. Experiment 2 overview

The graphs shown in Figure 5.15, Figure 5.16, and Figure 5.17 is a summary of

the key metric results for Experiment 2. In this experiment focus is on PF_RING

capabilities to be compared against a user-space application while capturing

enough data to be comparable with Experiments 0 and 1. All experiment trial sets

use randomly sized packets, ranging from 64 Bytes to 1500 Bytes. During trials at

all the 4 data bit rates, the AppDataPfRingLogger application does a query process

on the SUT repeatedly searching for marked packets of interest on the ring buffer.

Experiment focus is on the effect of query delays on the SUT key metrics.

Figure 5. 14 Summary graph of Experiment 2 SUT key metrics between pf_ring
and AppDataPfRingLogger. Dropped packets (%). Red = PF_RING.

Figure 5.15 shows the key metric of dropped packets between PF_RING and the

user space application. A result that stands out is that at higher data rate PR_RING

data loss is low.

90

Figure 5. 15 Summary graph of Experiment 2 SUT key metrics between pf_ring and
AppDataPfRingLogger. CPU utilization (%). Red = PF_RING.

Figure 5.16 shows the key metric of CPU utilization between PF_RING and the

user space application. PF_RING CPU utilization is low compared to the user

space application at the same data rate.

Figure 5. 16 Summary graph of Experiment 2 SUT key metrics between pf_ring and
AppDataPfRingLogger. Memory utilization (MB). Red = PF_RING.

Figure 5.17 shows the key metric of Memory utilization between PF_RING and the

user space application. PF_RING Memory utilization is lower by 19% (52 MB) than

AppDataPfRingLogger (62 MB).

91

Figure 5. 17 Key query metric (query delay) for PF_RING kernel module.

Figure 5.18 shows the key metric of query delay between PF_RING and the user

space application. Query response by PF_RING OS enabled to the user space

application is almost the same at high data rates.

5.3.2. Query Metrics

The way the queries are performed on the SUT records the number of queries

completed, the time delay for the response and the number of data packets marked

as found. Only results for data query delay are presented in this experiment. The

workloads are combined to exercise the SUT. Figure 5.18 shows an overview of

query delay indicating the following:

 As the data rate level increases, the number of queries answered decreases

and the delay in the query responses increases proportionally.

The goal of this research with respect to time delay is that data at the kernel-space

of the PF_RING capability responsiveness satisfy live queries for the data being

captured in the ring. Therefore, satisfaction of this goal is achieved by the lack of

results that show a rejection of the null hypothesis:

𝐻0: 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑝𝑓_𝑟𝑖𝑛𝑔) = 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑎𝑝𝑝𝑃𝑓𝐷𝐿)

𝐻𝐴: 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑝𝑓_𝑟𝑖𝑛𝑔) > 𝑝(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑎𝑝𝑝𝑃𝑓𝐷𝐿)

92

Table 5.5 shows test results for the query delay performed on the PF_RING/OS

enabled experiment for the above metrics and data bit rate settled by the SUT

configuration. In this case, there is insufficient evidence (p value is bigger than

0.05) that the null hypothesis can be rejected; therefore, the table indicates that

the objective of the query performance is better than a user-space application or

compared to PF_PACKET when using a kernel-space implementation.

Table 5. 5 Query SUT performance performed on Experiment 2

5.3.3. Data Drop Rate

The data drop rate describes the reliable behavior of the SUT. It also describes

whether the system is performing well under high data volume or SUT stress. In

Experiment 2, the relationship between data drop rate and CPU Utilization is as

shown in Figure 5.15. As the data rate increases, the data drops decrease

compared to the user-space application. Compared to Experiment 1, its behavior

is better: under the same bit rate levels (b4), using PF_RING less data is dropped

as compared to PF_PACKET.

Table 5.6 shows the results depicted in Figure 5.15. It is a test performed on data

drop and data bit rate for the SUT selection using PF_RING. There is no evidence

to reject the null hypothesis indicating that SUT selection does not impact data

drop rates. While the AppDataPfRingLogger data dropped rate is estimated to be

less than 0.5% better on the b3 level than PF_RING it is not conclusive on all bit

levels shown in Figure 5.15.

Table 5. 6 Data dropped packet rate hypothesis testing on Experiment 2

Null Hypothesis Scope estimate p-value

p(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑃𝐹_𝑅𝐼𝑁𝐺) > p(𝑄𝑟𝑦𝐷𝑒𝑙𝑎𝑦𝑎𝑝𝑝𝑃𝑓𝐷𝐿) Experiment 2 -2.0023 0.33484

Null Hypothesis Scope Estimate p-value

p(PktDrpRate pf_ring) < p(PktDrpRateAppPfDL) Experiment 2 -0.00964 0.8276

93

A potential reason for the comparatively better performance of

AppDataPfRingLogger at the user-space is the PF_RING hooks write buffering.

Since the PF_RING kernel modules use the memory slot directly for writing the file

system, the writes are not blocked and are quickly consumed by the free rings in

the algorithm. This effect is leveraged by the user-space application as the ring is

freed quickly by a simple memcpy() providing another buffer and reducing the cost

of transferring data to userland.

5.3.4. CPU Utilization

Table 5.7 shows the results of testing performed on CPU Utilization by the SUT

with PF_RING on Experiment 2. There is strong evidence to accept the null

hypothesis indicating that the kernel-space SUT configuration with OS PF_RING

enabled reduces CPU utilization when data traffic workloads are present. The

estimated reduction of the kernel-space SUT is at 5% with a 98% confidence due

to the deterministic simulation when running the experiments. The 5% utilization

difference is significant compared to the PF_PACKET solution. This indicates that

a kernel-space improved algorithm incurs in a reduced contention of system

resources in this scenario.

Table 5. 7 CPU Utilization hypothesis testing in Experiment 2.

5.3.5. Memory Utilization

As shown in Figure 5.17, the memory utilization indicates the kernel-level buffering

benefits mentioned in Section 3.2. The memory used by AppDataPfRingLogger is

62 MB which is higher than the PF_RING kernel module. Overall this indicates

that, in terms of memory, both Experiments 1 and 2 show that kernel-space

solutions memory utilization is somewhat static and not dependent on system

factors if implementations are correct. SUT selection can increase buffering by

initializing PF_RING’s ring buffer with more slots - which may not be comparable

between experiments.

Null Hypothesis Scope Estimate p-value

p(CPU pf_ring) < p(CPUAppPfDL) Experiment 2 3.39733 2.90E-08

94

5.3.6. Summary Analysis

On Experiment 2 PF_RING’s implementation certainly impacted the data drop rate

when the data bit rate increases: the number of data drops is reduced. Although

not conclusive due to other bit rate levels where the data drop rate is higher,

overall, the hypothesis is accepted and conclusive in certain data bit rates

submitted to the SUT with PF_RING. The Operating System with PF_RING

enabled performs better when compared with Experiment 1 results. On CPU

utilization, Experiment 2 demonstrates better performance than

AppDataPfRingLogger with an estimated reduction of 5% of the kernel-space SUT

configuration and comparatively better versus CPU Utilization on Experiment 1

SUT (PF_PACKET configuration).

5.4. Overall Analysis

To recapitulate, the key aspects of the PF_RING kernel module during the

experiments are:

 The PF_RING kernel module improves data transmission performance to

user-space either by:

o Transmitting significant amount of data packets, with increased CPU

utilization due to the higher data bit rate levels (b3-b4).

o Transmitting the same percentage of data packets but with reduced

CPU utilization when writing to the virtual simulated storage device.

 The PF_RING kernel module algorithm uses significantly less memory;

which is relevant in today’s embedded devices. On other types of

applications, computing power takes priority on top of memory utilization, in

which case our results are less relevant.

95

 The PF_RING kernel algorithm does not impact user-space queries

negatively, responding adequately and improving the system compared to

a user-space application using PF_PACKET.

96

Chapter 6. Discussion

This chapter presents the overall conclusions reached from the research. Section

6.1 considers each research objective and determines whether it was met. The

significance of the research results is presented in Section 6.2. Finally, Section 6.3

mentions possible directions for related research.

6.1. Conclusions

6.1.1. PF_RING Kernel-Space Capability in an OS

The first goal of the research reported in this thesis was to study the possibility of

replacing a de-facto kernel-level data transmission component (PF_PACKET) by

an alternative (PF_RING) to determine whether this impacts performance. The

design and build of an experimental setting were completed using Simics

Simulation models that allowed an objective comparison of basic functions of a

PF_RING OS-enabled capability against another build of an PF_PACKET OS-

enabled.

To accomplish the goal, a PF_RING kernel module was built in a Linux Operating

System to expose the ring functionality so that the memory could be mapped and

addressed by other kernel modules, and also provide the necessary functions to

select the ring from a user-space application or from the kernel module itself. With

the PF_RING kernel module in place, it was possible to access the ring buffer itself,

initialize it and have it recognized by other kernel modules in the kernel-space.

With PF_RING enabled, it was possible to consume the ring´s memory in slots in

the same way pfring’s library functionality does it in user-space. The experiment

enabled to extend the role of a typical Linux kernel module beyond its traditional

role, so it was able to access the ring through user-space application and to write

the data to it or any other simulated virtual devices. The experiment proceeded

similarly with PF_PACKET, using a suitable algorithm architecture to be able to

compare it against PF_RING.

97

The PF_RING algorithm as a form of a kernel module was loaded into a Linux

system and tested against simulated real network traffic. This demonstrated the

ability to transmit data between kernel space and user space and vice versa,

decide which data to store or to write into the simulated virtual device and maintain

data lifecycle through live network simulation tests, thus accomplishing the first

objective of the research.

6.1.2. Reduce Data Drop Rate When Using PF_RING in a User-Space
App

The research subject through the experiments was the goal to improve upon the

performance characteristics of the PF_PACKET data transmission algorithm by

replacing it with PF_RING, employing the kernel-space data transmission

capability in place while using a user-space implementation to leverage it. The

specific metric for improvement, in this case, was the reduction of the data drop

rate during simulated virtual time running random network traffic. Testing of the

system with live simulated network traffic revealed that the PF_RING kernel

module reduced the data drop rate by an average of 9.0% with 98% confidence,

using Simics as a deterministic environment and experimentation vehicle. In cases

where the user-space application was using PF_RING, the experiment scenario

produced a favorable reduction in CPU utilization compared with PF_PACKET.

The practical use of PF_RING and a user-space application that could hook with

the algorithm implementation at kernel-space were demonstrated on a system

simulating real network data traffic, thus satisfying the conditions for meeting the

research objective.

6.1.3. Reduce CPU Utilization When Using PF_RING in an OS

The goal to reduce the resource demand of the system while using PR_RING by

reducing CPU utilization was another research subject. Reduction of CPU

utilization was possible due to the removal of bottlenecks, removing multiple

memory copies and leveraging the transition from user-space to kernel-space and

98

vice versa to write data either to disk or virtual devices. However, from the

experiments, CPU utilization reduction was observable when writing to virtual

devices (dev/null) and when data packets were not so small in size. At those times

the average utilization was at only 4%, with 98% confidence, according to

measures taken on the Simics simulation environment.

As discussed in Chapter 5, CPU utilization is dependent on different factors, one

of which is data drop rate. By reducing data drop rate by 9% on average, data

transmission freed resources to handle the additional workload. During the test

scenarios, the PF_RING kernel module utilization increased to 8% on average with

a 98% of confidence. The increment on CPU utilization is an acceptable trade-off

when the data transmission accuracy is more important in higher data network

traffic situations. This was proven true when the data drop rate decreased in a

higher proportion than the growth in CPU utilization.

After considering the behavior of the SUT and the benefits of building an OS with

PF_RING kernel module enabled, CPU utilization for situations with high data

transmission and low data drop rate impact, it is concluded that the proposed

system confirms the research hypothesis.

6.1.4. Reduce Memory Utilization When Using PF_RING in an OS

The goal to reduce the resource demand on system memory utilizing PF_RING

built within an OS was another research subject. Memory utilization reduction was

possible due to PF_RING kernel-space module direct use of the ring memory slots

in the call of any user-space application or even between other kernel modules.

The kernel-space PF_RING implementation did not use any stream buffering since

the data packets were transmitted directly to the ring, which was memory mapped.

On Simics, the memory was instantiated as an object since Simics sees any device

memory mapped in the system, including memory. According to the experiments,

file system writes within the kernel space appear to be cheaper than any additional

memory copies required on normal user-space applications. By avoiding data

99

copies while using the PF_RING ring (which is not available in PF_PACKET), the

kernel implementation reduced the memory for every task by 10MB which

corresponds to a 17% reduction with a 100% confidence using a simulation. The

static memory reduction accomplished the research goal.

6.1.5. On Research Methods and Tools

The Full System Simulator experiments performed on top of Simics made it

possible to create a testing environment that was easy to use and enabled the

handling of repetitive trials on experiments. Setup and configuration required time

at the beginning but it was only done once on this investigation. This allowed for

every new experiment setup to be as simple as launching the program and start

running the simulation, which allowed hardware-free experimental tools. A Full

System Simulation environment facilitated the isolation of the hardware factor

reducing any dependencies on physical measurement equipment or laboratory

availability while being able to launch Simics on any host at any place and time. In

addition, having an isolated experimental environment was possible, thus

preventing exogenous perturbations from introducing errors to the experiments

and allowing systematic data gathering for statistical analysis.

As an academic tool, Simics provides full-featured free licenses for researching

new technology architectures and software. The ability to control experimental

factors and isolate observable variables was key for this research and sets a

precedent for future work on many computer science research arenas.

Factorial analysis and statistical hypothesis testing permitted to introduce a

methodological framework that can be ported to examine similar or related

hypotheses. A systematic series of experiments allow to gather results with high

confidence, which in turn permits to conclude objectively. This is a framework that

can be ported to future work and similar research.

100

6.2. Engineering Significance

This research provides the Costa Rica Institute of Technology and industry

interested in exploring and innovating on IoT, Embedded Devices and Networking

appliances with an improved method for efficiently passing data from Kernel space

to user space in an (Embedded) Operating System. An Operating System with

PF_RING enabled benefits the overall security of the information, its integrity, its

availability, its consistency, its reliability, and data transmission efficiency in high-

density data traffic networks. Any improvement in the performance of data

transmission reduces the processing footprint and increases the effectiveness of

the data to be available in any application. The simulation experiments, with the

PF_RING algorithm enabled on Linux Operating System improves the

performance of the data transmission process, and provides indications that it

scales better than PF_PACKET in highly-connected and dense networking data

traffic - with increased performance in memory usage, less data drops and shorter

data query delays.

PF_RING Linux kernel module presents a stable, high-performance application

that can transmit data with high reliability making it available at a ring buffer or even

written to an I/O disk. This research provides a unique demonstration of improved

data transmission on high-density network data traffics where the principal goal is

to have the data available for consumption by a user space application as fast and

reliable as possible, and it sets a path for future research to begin addressing the

performance issues of networked devices facing higher amounts of data traffic

coming - beyond just capturing some data and sending it to be processed and

displayed by an application dashboard.

Even though the PF_RING OS enabled data drop rate reduction of 9% may seem

small when compared to PF_RING, that percentage delta could translate to losses

that approach almost 100 Mbps on a Gigabit Ethernet Link. Malicious methods to

attack and obfuscate a network connected device are to flood it with an

overwhelming amount of harmless data to slow the device and breach the secured

101

network. When network flood traffic increases, the probability of key data packets

being lost is high and the connected devices processing power and its value

decrease. In light of a decreasing data drop rate, 9% is a significant achievement

of this research.

A simulation environment that provides determinism and makes it easy to apply

experimental statistical methods offers the academic community with a baseline

for future investigations using Simics as a tool to reproduce experiments performed

in this research or to apply the lessons learned in other computer science research

areas.

6.3. Future Work

Although not all possibilities are listed, the following subsequent research topics

are suggested:

 Scale the PF_RING Operating System build from just one simulation to
1000+ simultaneous simulations running on a powerful server, to study
scalability and cluster architectures.

 Modify the PF_RING kernel module to add a robust filtering capability for
IPv6 data traffic, controllable by the application or from the kernel space.

 Evaluate performance of other data transmission algorithms, such as Zero
Copying (ZC), against PF_PACKET and PF_RING, using an experimental
methodology analogous to the one performed in this research.

 Leverage PF_RING capabilities built in the Operating System located in the
kernel space to build a set of indexes of marked data packets to improve
data query response and reduce delay.

 Improve PF_RING kernel module implementation by adding crash
avoidance before the operating system reaches a failure state.

102

Appendix A. AppDataPfringLogger changelog

Index : daemonlogger − 1.8.1/ daemonlogger.c
===
−−− daemonlogger − 1.8.1/ daemonlogger.c (revision 88)
+++ daemonlogger − 1.8.1/ daemonlogger.c (revision 89)
@@ −216,4 +216,8 @@
static int maxpct ;
static int prune_flag ;
+/*
+ * Add log to null virtual device
+ */
+ static int logtonull = 0;
static char * interface;
@@ −415,4 +419,11 @@
{
time_t currtime ;
+ // Virtual device
+ char * nullfile = "/dev/null " ;
+
+ i f (logtonull == 1) {
+ return nullfile;
+ }
+ / / End of added code
memset(logdi r , 0 , STDBUF) ;
@@ −1137,4 +1148,5 @@
printf (" −u <user name> Set user ID to <user name>\n ") ;
printf (" −v Show daemonlogger version\n ") ;
+ printf (" −X Log to /dev/null\n ") ;
}
@@ −1153,5 +1165,5 @@
while ((ch = getopt (argc , argv ,
− " c : df : Fg : hi : l :m:M: n : o : p :P: rR : s : S : t :T: u : vz "))!= − 1)
+ " c : df : Fg : hi : l :m:M: n : o : p :P: rR : s : S : t :T: u : vXz "))!= −1)
{
switch (ch)
@@ −1300,4 +1312,7 @@
prune_flag = PRUNE_OLDEST_IN_RUN;
break ;
+ case ’X ’ : /* Added log to null case* /
+ logtonull = 1;
+ break ;
default :
break ;

103

Appendix B. Simics Configuration Script

if not defined host_class { $host_class = "jsl" }

Search paths should uses %simics% to make sure it will on package

add-directory (lookup-file "%simics%/targets/x86-jsl/")

add-directory (lookup-file "%simics%/targets/x86-jsl/images/")

$pmc_image_folder = (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/pmc/images/")

if ($pmc_image_folder != FALSE) {

 add-directory $pmc_image_folder

}

$ish_image_folder = (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/ish/images/")

if ($ish_image_folder != FALSE) {

 add-directory $ish_image_folder

}

$hda_image_folder = (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/hda/images/")

if ($hda_image_folder != FALSE) {

 add-directory $hda_image_folder

}

Common images TODO: include to Common.include

$common_images = (lookup-file -query "%simics%/common_images/")

if ($common_images != FALSE) {

 add-directory $common_images

}

Common include for images

$common_include = (lookup-file -query "%simics%/targets/Common.include")

if ($common_include != FALSE) {

 run-command-file $common_include

}

Internal definitions

if not defined wb { $wb = NIL }

if not defined wb_force { $wb_force = NIL }

if not defined swm { $swm = NIL }

Loading release helper module

load-module release-helper

Software one script settings

if ($swm == NIL) {

 # default SW config

 run-command-file "%script%/jsl-sw.include"

} else {

 # user defined SW config

 # look if it is user config

 $user_swm = (lookup-file -query $swm)

 if ($user_swm != FALSE) {

 run-command-file $user_swm

 } else {

 # look if it is one of the base

 $base_swm = (lookup-file -query "%simics%/targets/x86-jsl/"+$swm)

 if ($base_swm != FALSE) {

 run-command-file $base_swm

 } else {

 interrupt-script "SW MANIFEST FILE WAS NOT FOUND"

 }

 }

 # What is not redefined will be taken from default (???)

 run-command-file "%script%/jsl-sw.include"

}

WB CONFIGURATION one script settings

104

if ($wb != NIL) {

 if ($wb_force) {

 rh-load-wb $wb -f

 } else {

 rh-load-wb $wb

 }

} else {

 echo "INFO: No WB configuration is specified, running just base"

}

WB models disabled by default

if not defined gfx_wb_enable { $gfx_wb_enable = FALSE }

if not defined csme_wb_enable { $csme_wb_enable = FALSE }

if not defined hda_wb_enable { $hda_wb_enable = FALSE }

if not defined ish_wb_enable { $ish_wb_enable = FALSE }

if not defined pmc_wb_enable { $pmc_wb_enable = FALSE }

if not defined punit_wb_enable { $punit_wb_enable = FALSE }

@wb_keys = ["csme", "punit"]

@wb_suffix = "_wb_enable"

@for w in wb_keys:

 if conf.sim.env[w + wb_suffix]:

 location = os.path.join("%simics%", "targets", "x86-" + simenv.host_class + "-

extensions", "wb", w)

 f = SIM_lookup_file(location)

 if f:

 print "Add WB folder " + f

 #SIM_run_command("add-directory " + f)

 conf.sim.simics_path += [f]

 f = SIM_lookup_file(os.path.join(location, "images"))

 if f:

 print "Add WB image folder " + f

 #SIM_run_command("add-directory " + f)

 conf.sim.simics_path += [f]

Check all images there

if not defined sxp_image { $sxp_image = "" }

if not defined cd_image { $cd_image = "" }

if not defined required_files { $required_files = [] }

$required_files += [["BIOS ROM image", $bios],

 ["Dummy ROM image", "vbios.stub"],

 ["Board ID", "empty.brdid"],

 ["Board ID", "karkomx0.brdid"],

 ["ENH VGA GOP driver image", "QemuVideoDxe.rom"],

 ["ENH VGA BIOS Rom image", "enh_accel_vgabios.bin"]]

if ($pmc_wb_enable != FALSE) { $required_files += [["PMC ROM", $pmc_bootstrap_image]] }

if ($punit_wb_enable != FALSE) {

 if (lookup-file -query "%simics%/targets/x86-jsl-

extensions/wb/punit/images/"+$punit_pcode_path) {

 add-directory -prepend (lookup-file "%simics%/targets/x86-jsl-

extensions/wb/punit/images/"+$punit_pcode_path)

 }

 $required_files += [["PUNIT ROM", $punit_pcode_img]]

}

if ($ish_wb_enable != FALSE) { $required_files += [["ISH ROM", $ish_rom_image]] }

if ($hda_wb_enable != FALSE) { $required_files += [["HDA1 ROM", $hda_Fw1File]] }

if ($hda_wb_enable != FALSE) { $required_files += [["HDA2 ROM", $hda_Fw2File]] }

if ($csme_wb_enable != FALSE) { $required_files += [["ME ROM", $me_mia_bios]] }

BASE MISC FILES

if ($bios2 != "") { $required_files += [["BIOS2 (second component)",

$bios2]] }

if ($disk_image != "") { $required_files += [["Disk image", $disk_image]]

}

if ($cd_image != "") { $required_files += [["CD image", $cd_image]]

}

if ($sxp_image != "") { $required_files += [["SXP image", $sxp_image]]

}

105

$missed_files = ""

foreach $file in $required_files {

 try {

 if not (lookup-file $file[1]) { throw; }

 } except {

 echo ("File not found. " + $file[0] + " : " + $file[1])

 if $missed_files != "" { $missed_files += ", " }

 $missed_files += $file[1]

 }

}

if $missed_files != "" { interrupt-script "Some files have not been found: " +

$missed_files }

Print SW configuration

echo "INFO: SW CONFIGURATION"

OS image

if ($disk_image != "") {

 echo ("INFO: OS $disk_image = " + (lookup-file $disk_image))

} else {

 echo ("INFO: NO OS. No $disk_image is specified. Using empty image")

}

BIOS

echo ("INFO: BIOS/IFWI $bios = " + (lookup-file $bios))

if ($bios2 != "") {

 echo ("Using $bios2 (second component) = " + (lookup-file $bios2))

}

if ($pmc_wb_enable != FALSE) {echo ("INFO: PMC ROM $pmc_bootstrap_image = " + (lookup-

file $pmc_bootstrap_image))}

if ($punit_wb_enable != FALSE) {echo ("INFO: PUNIT ROM $punit_pcode_img = " + (lookup-

file $punit_pcode_img)) }

if ($ish_wb_enable != FALSE) {echo ("INFO: ISH ROM $ish_rom_image = " + (lookup-

file $ish_rom_image)) }

if ($hda_wb_enable != FALSE) {echo ("INFO: HDA1 ROM $hda_Fw1File = " + (lookup-

file $hda_Fw1File)) }

if ($hda_wb_enable != FALSE) {echo ("INFO: HDA2 ROM $hda_Fw2File = " + (lookup-

file $hda_Fw2File)) }

if $hda_wb_enable {

 $external_hda = TRUE

 $r2s_enable = TRUE

}

CONFIG SET UP, let's run everything

Base

run-command-file "%script%/jsl-system-pre.include"

All PRE work for integrating WB components

run-pre-wb

This is only ONE instantiation

instantiate-components

Base

run-command-file "%script%/jsl-system-post.include"

All POST work for integrating WB components

run-post-wb

sim->handle_outside_memory = TRUE

106

Bibliography

1. Berkeley Packet Filters. (2018). Linux Socket Filtering aka Berkeley Packet Filtering
(BPF). Kernel.org. Retrieved from
https://www.kernel.org/doc/Documentation/networking/filter.txt, Date April 218.

2. Braun Lothar; Didebulidze, Alexander; Kammenhuber, Nils; Carle, Georg. (2010).
Comparing and Improving Current Packet Capturing Solutions based on Commodity
Hardware. ACM SIGCOMM conference on Internet measurement. Technische
Universität München. NY. ISBN: 978-1-4503-0483-2

3. Cerwall, Patrick. (2016). On the pulse of networked society. Ericsson Mobility Report.
EAB-16:006659 Uen, Revision A © Ericsson AB.

4. Collins, L. M., Dziak, J. D., Kugler, K. C., & Trail, J. B. (2014). Factorial experiments:
Efficient tools for evaluation of intervention components. American Journal of
Preventive Medicine.

5. Deri, Luc. (2011). Improving Passive Packet Capture: Beyond Device polling.
NETikos, Pisa, Italy.

6. DiBona, Chris. (2017). Open Sources: Kernel Space and User Space. Chapter 84
Safari Books. Retrieved from https://www.safaribooksonline.com/library/view/open-
sources/1565925823/ch09s04.html, Date April 2018.

7. Engblom, Jakob. (2010). What is Simics, really?. Wind River Simics Blog Network.
Retrieved from
http://blogs.windriver.com/engblom/2010/04/what_is_simics_really.html, Date: April
2018.

8. Finley, Kilnt. (2016). Linux took over the web. Now it’s taking over the world. Wired
Business. Retrieved from https://www.wired.com/2016/08/linux-took-web-now-taking-
world/, Date: April 2018.

9. Hazewinkel, Michael. (2001). Statistical hypothesis, verification of Encyclopedia
Mathematics. Springer Science + Business Media B.V. / Kluver Academic
Publishers. ISBN 978-1-55608-010-4.

10. Hwang, Jong-Sung; Choe, Young Han. (2013). Smart Cities Seoul: a case study
(PDF). ITU-T Technology Watch. Retrieved from https://www.itu.int/dms_pub/itu-
t/oth/23/01/T23010000190001PDFE.pdf, Date: October 2016.

11. IDC. (2014). Data Growth, Business Opportunities, and the IT imperatives. Retrieved
from https://www.emc.com/leadership/digital-universe/2014iview/executive-
summary.htm, Date: July 2014.

12. IEEE; 802.11 wireless protocol standard. (2015). Retrieved from
https://en.wikipedia.org/wiki/IEEE_802.11ac, Date: March 2018.

13. Insolvible, Gianluca. (2001). The Linux Socket Filter: Sniffing bytes over Network.
The Linux Journal, Issue #86. Mayo 2001. Retrieved from
http://www.linuxjournal.com/article/4659#navigation, Date: August 2014.

14. Kan, Stephen H. (2003). Metrics and models in Software Quality Engineering.
Chapter 13, p359.

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.safaribooksonline.com/library/view/open-sources/1565925823/ch09s04.html
https://www.safaribooksonline.com/library/view/open-sources/1565925823/ch09s04.html
http://blogs.windriver.com/engblom/2010/04/what_is_simics_really.html
https://www.wired.com/2016/08/linux-took-web-now-taking-world/
https://www.wired.com/2016/08/linux-took-web-now-taking-world/
https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000190001PDFE.pdf
https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000190001PDFE.pdf
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://en.wikipedia.org/wiki/IEEE_802.11ac
http://www.linuxjournal.com/article/4659#navigation

107

15. Keller, Arianne. (2008). Kernel space – User space Interfaces. Retrieved from
http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html, Date: June
2014.

16. McCanne Steven; Jacobson Van. 1993. The BSD packet filter: a new architecture for
user-level packet capture. USENIX Association, Berkeley, CA, USA. Retrieved from
http://www.tcpdump.org/papers/bpf-usenix93.pdf, Date: April 2014.

17. Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet. (2012). Foundations of
Machine Learning. MIT Press, Boston, MA, USA. ISBN 9780262018258.

18. Nuzzo, Regia. (2014). Scientific method: Statistical errors. Nature. p506.

19. Porter, Thomas. (2005). The Perils of Deep Packet Inspection. Security Focus.
Retrieved from http://www.symantec.com/connect/articles/perils-deep-packet-
inspection, Date: June 2014.

20. Qemu. (2016). Qemu hypervisor. Retrieved from https://en.wikipedia.org/wiki/QEMU,
Date: March 2018.

21. Qmet201. (2014). Factorial designs. New Zealand Lincoln University. Retrieved from
https://library2.lincoln.ac.nz/documents/Factorial-Design.pdf, Date: December 2014.

22. Rivest, Ronald L. (1990). Cryptology. Handbook of Theoretical Computer Science.
Elsevier.

23. Ruparelia, Nayan B. (2010). Software Development Lifecycle Models. Hewlett
Packard Enterprise Services. ACM Volume 35, Issue 3. New York, USA.

24. Schultz, Michael. (2011). A measurement study of packet reception using Linux.
Washington University in St. Louis. Retrieved from
http://www.cse.wustl.edu/~jain/cse567-11/ftp/pkt_recp/#pfpacket, Date: July 2014.

25. Simics. (2016). Wind River Simics Full System Simulator. Retrieved from
https://en.wikipedia.org/wiki/Simics, Date: March 2018.

26. Streubel, Jennifer. (2003). What is Computer Science?. Retrieved from
http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf, Date: September 2014.

27. Wikipedia, the free encyclopedia. (2018). Comparison of Operating Systems.
Retrieved from https://en.wikipedia.org/wiki/Comparison_of_operating_systems,
Date: April 2018.

28. Wikipedia, the free encyclopedia. (2018). Internet protocol suite. Retrieved from
https://en.wikipedia.org/wiki/Internet_protocol_suite, Date: April 2018.

29. Wind River. (2010). Wind River Hypervisor Product Note. Retrieved from
https://www.windriver.com/products/product-notes/wind-river-hypervisor-product-
note.pdf, Date: February 2018.

30. Wood, Rupert. (2013).Research Forecast Report; Wireless network traffic worldwide:
forecast and analysis 2013 – 2018. Analysis Mason. Retrieved from
http://www.analysysmason.com/Research/Content/Reports/Wireless-traffic-
forecasts-Oct2013-RDTN0/samples-TOC/, Date: July 2014.

http://people.ee.ethz.ch/~arkeller/linux/kernel_user_space_howto.html
http://www.tcpdump.org/papers/bpf-usenix93.pdf
http://www.symantec.com/connect/articles/perils-deep-packet-inspection
http://www.symantec.com/connect/articles/perils-deep-packet-inspection
https://en.wikipedia.org/wiki/QEMU
https://library2.lincoln.ac.nz/documents/Factorial-Design.pdf
http://www.cse.wustl.edu/~jain/cse567-11/ftp/pkt_recp/#pfpacket
https://en.wikipedia.org/wiki/Simics
http://www.cs.bu.edu/AboutCS/WhatIsCS.pdf
https://en.wikipedia.org/wiki/Comparison_of_operating_systems
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://www.windriver.com/products/product-notes/wind-river-hypervisor-product-note.pdf
https://www.windriver.com/products/product-notes/wind-river-hypervisor-product-note.pdf
http://www.analysysmason.com/Research/Content/Reports/Wireless-traffic-forecasts-Oct2013-RDTN0/samples-TOC/
http://www.analysysmason.com/Research/Content/Reports/Wireless-traffic-forecasts-Oct2013-RDTN0/samples-TOC/

108

Vita

Dennis Rodriguez attended the Costa Rica Institute of Technology. He graduated

with an Electronics Engineering LIcenciate (Post-Bachelor’s) Degree in February

2010.

His first engineering experience was working as an Embedded Software

Development Engineer at Hewlett Packard in the Research and Development

Department, where he contributed to the Networking division products from

Wireless to Wired solutions. His contributions spanned in record selling products

for about eight years with the company. After his tenure, he decided to move to

Intel Corporation to lead and develop the next virtual platform software models

running in Wind River Simics Full System Simulation.

On the personal side, Dennis has a lovely family which captures all his attention in

his spare time. Although he is a Software Development Manager, his coding skills

and passion remain alive learning new programming languages.

