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Abstract 

 

A study on specific absorption rate (SAR) measurements using computational tools 

is presented. Using various numerical tools, ranging from full-wave simulators to 

physical optics, a prolate spheroid is irradiated by different polarized plane waves in 

the frequency range of 10 MHz - 100 GHz. For the low frequency range full-wave 

simulators were used to obtain the whole-body SAR of the prolate spheroid. When 

technical limitations were reached by this methodology, a physical optics approach 

was used to reach whole-body SAR measurements to a 100 GHz. As a side study, 

the electrical properties of water were studied with the goal of using them in both 

approaches. This project is a joint effort between the Technical University of 

Hamburg (TUHH) and the Technical Institute of Technology of Costa Rica (TEC). 

 

Keywords: Computational Electromagnetics, Material Electrical 

Properties, Physical Optics, SAR. 
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1. Introduction 
 

In recent years there has been an increase in the quantity of electronic devices that 

require the use of some form of Electromagnetic (EM) radiation to work. While some 

are used on industrial applications, there is a vast quantity that is present in our daily 

activities. From cellphones to WiFi routers, we are in constant interaction with EM 

fields, for this reason there is a necessity of studying the effects caused by the 

interaction between them and our bodies. 

 

This field of study is known as Bioelectromagnetics and one of the mayor interests 

of research is the interaction between the EM radiation and the different tissues of 

our body. One of the methods used for this application is the measurement of the 

specific absorption rate (SAR) which is a very important metric that helps us 

understand some of the effects of EM radiation on our bodies. With SAR, guidelines 

have been developed for the public health in terms of allowed exposure to EM fields 

from devices like cellphones or telecommunication antennas. 

 

Due to ethical and practical reasons, most of the research is conducted via computer 

simulations using different numerical methods to calculate the interaction between 

EM fields and biological tissues. Most of the research studies work in frequencies 

lower than 10 GHz because most of the applications of interest are in this region; 

but with the advent of new technologies that work on frequencies higher than 10 

GHz, there is a need for new SAR studies to understand how these new technologies 

will affect us. This leaves us with a question: How far in frequency can we reach 

using different EM simulations to obtain valid measurements of the interactions 

between EM fields and biological tissues? 

 

This report presents a study on the current state of EM simulations for a classical 

problem of Bioelectromagnetics. The problem consists on the use of a plane wave 

as a source of EM energy radiating on a prolate spheroid made of water or other 
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material using three different wave polarizations. The purpose of this problem is to 

study the Whole-body SAR on the body using the different polarizations.  

 

 

Figure 1.  Prolate spheroid irradiated by a plane wave. 

 

The main objective of this project is to analyze the performance of full-wave 

simulators to tackle complex Bioelectromagnetics problems in high frequencies and 

to develop a methodology to achieve simulations up to a 100 GHz. Simulations will 

be performed using full-wave simulators up to the computational resources available 

start to fail, then a different approach using physical optics will be used to expand on 

the range of the first simulations. 

 

This work is divided in 6 chapters. Chapter 2 covers the fundamentals of 

electromagnetic theory needed to understand the different measurements and 

simulations of the report. From Maxwell equations to EM dosimetry, the idea is to 

give a basic understanding of the topics treated. 

 

Chapter 3 covers the state of the art in terms of SAR computations, giving insight in 

techniques and models used, also frequencies achieved and the specific SAR 

computations that were performed by each research.  
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Chapter 4 covers the calculation of whole-body SAR in a prolate spheroid using 

different full-wave simulators. Technical limitations are presented for each simulator 

and comparisons between solvers are shown. 

 

Chapter 5 covers a study of the electrical properties of materials using a 1D approach 

based on a one dimensional transmitted wave against a vertical surface. The effects 

of the angle of incidence of the wave on the material and the modeling of the material 

are studied and compared between each other. 

 

Finally, chapter 6 covers the development of a methodology to analyze the whole-

body SAR on a prolate spheroid for frequencies higher than 10 GHz using physical 

optics. Comparisons between full-wave simulations results from chapter 2 are made 

and a full picture of the whole-body SAR on frequency is presented.  

  

This report is a joint project at the Technical University of Hamburg (TUHH) with the 

Costa Rica Institute of Technology (TEC). 
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2. Fundamental Information 
 

2.1  Electromagnetics Fundamentals 
 

The study of electromagnetic radiation is possible thanks to Maxwell’s Equations; 

this system of equations helps us to understand the propagation of electromagnetic 

radiation in its entire spectrum. Unfortunately, this set of equations can only solve a 

handful of problems analytically due to the complexity of its solutions. For this 

reason, in practice, the use of numerical tools is favored to solve complex problems 

of electromagnetics which is the basis of the field known as Computational 

Electromagnetics (CEM). 

 

When structures cannot be treated as lumped elements anymore, the use of CEM 

is fundamental to understand the behavior of electromagnetic radiation. With 

different methods, each one with its advantages and disadvantages, Maxwell’s 

Equations are discretized and used to find solutions to different problems. 

 

 
∮ �⃗⃗� ∙ 𝑑𝑆 = ∫𝜌𝑣𝑑𝑉

 

𝑉

 
(1)  ∇ ∙ �⃗⃗� (𝑟 , 𝑡) = 𝜌𝑣(𝑟 , 𝑡) (5) 

 

 
∮�⃗� ∙ 𝑑�⃗� = −

𝑑

𝑑𝑡
∫𝐵 ⋅⃗⃗⃗⃗  ⃗ 𝑑𝑆 

 

𝑉

 
(2)  

∇ × �⃗� (𝑟 , 𝑡) = −
𝜕�⃗� (𝑟 , 𝑡)

𝜕𝑡
 

(6) 

 

 
∮�⃗� ∙ 𝑑𝑆 = 0 

(3)  ∇ ∙ �⃗� (𝑟 , 𝑡) = 0 (7) 

 

 
∮ �⃗⃗� ∙ 𝑑�⃗� = 𝐼 + ∫

𝜕�⃗⃗� 

𝜕𝑡
𝑑𝑆 

 

𝑉

 
(4)  

∇ × �⃗⃗� (𝑟 , 𝑡) = 𝐽 (𝑟 , 𝑡) +
𝜕𝐷(𝑟 , 𝑡)

𝜕𝑡
 
(8) 

 

The scope of this report is to solve a classic problem of Bioelectromagnetics, which 

due to its complexity needs the use of CEM to obtain solutions via computer 

simulations. The methods of CEM used in this report to solve this problem are the 

Finite Integration Technique (FIT) and the Method of Moments (MoM). 
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2.2  Plane Wave Polarizations 
 

When working with EM simulations; most of the time, there will be the need of setting 

up a source of electromagnetic radiation; be it an antenna, a waveguide, a voltage 

source or a plane wave. Sources can be the object of study of the simulation or the 

incident energy on the body of study.  In Bioelectromagnetics, the interest is to 

simulate the interaction between electromagnetic radiation and biological tissues, so 

most of the time sources will be used as field generators that will interact with the 

body or tissue of interest. 

 

When working with full human body models, a plane wave may be preferred due to 

the simplicity of its formulation in comparison to that of an antenna, saving time in 

the simulation duration.  The orientation of the incident E and H Fields of the plane 

wave with respect to these irradiated models has a very strong effect on the strength 

of the fields inside the body. [1] 

 

Depending on the object used, there will be different wave polarizations that can be 

used to irradiate it and obtain different measurements. For objects with circular 

symmetry in the long axis like prolate spheroids; three polarizations are defined:  

 

 E Polarization → Electric Field is parallel to the long axis. 

 H Polarization → Magnetic Field is parallel to the long axis. 

 K Polarization → Propagation Vector is parallel to the long axis. 
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Figure 2. Different wave polarizations for a prolate spheroid. Taken from [21]. 

 

Human body models are very complex geometrically and don’t have circular 

symmetry about their long axis, for this reason ellipsoids can be used as a rough 

approximation. In the case of an ellipsoid 6 polarizations are defined based on its 3 

axes. 

 

As mentioned before, orientation plays a big part on the strength of the inside fields 

generated by a plane wave. This happens because the cross-sections where the 

incident fields radiate are different for each polarization and in some scenarios, like 

K polarizations, the waves have to travel a longer distance through the body which 

also varies the overall effect of the energy absorbed by the body. 
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Figure 3. Different wave polarizations for an ellipsoid. Taken from [21]. 

 

2.3  Electrical Properties of Lossy Materials 
 

Electromagnetic radiation behaves differently when interacting with materials, 

whether they are lossless or lossy. A good way to understand this behavior is using 

the plane wave equations to explain the different effects present. In 

Bioelectromagnetics, tissues are normally lossy and frequency dependent, which 

makes this analysis necessary to understand the effects of radiation and how internal 

fields will behave in a body. Because the focus of this report is in 

Bioelectromagnetics, this section will be focused on lossy material behavior. 

 

When we talk about lossy medium, we are stating that they have a certain 

conductivity σ which generates the losses on the medium. In biological tissues 

losses appear due to the complex permittivity of the tissue. This means that for a 

wave propagating in a lossy material, the propagation constant turns complex and 

must be defined as: 

 
𝛾 = 𝛼 + 𝑗𝛽 = 𝑗𝜔√𝜇𝜀√1 − 𝑗

𝜎

𝜔𝜀
 

(9) 
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If we solve the plane wave equation with this complex propagation constant, for a 

wave travelling in the +z direction, we end with the following equation [22] 

 �⃗� = 𝐸𝑒−𝛼𝑧 cos(𝜔𝑡 − 𝛽𝑧) (10) 

 

Where α is the attenuation constant which serves as a damping factor and β is the 

phase constant which if α = 0, β=k the wave number for a lossless material. Losses 

can also be treated through the use of complex permittivity. If σ= 0 but ε = ε’-j ε’’, the 

propagation constant is defined as 

 𝛾 = 𝑗𝜔√𝜇𝜀 = 𝑗𝜔√𝜇𝜀′(1 − 𝑗 tan 𝛿) (11) 

 

Where tanδ = ε’/ε’’ is the loss tangent of the material [22]. 

 

With some algebra the attenuation and phase constants can be defined as: 

 

𝛼 = 𝑅𝑒{𝛾} = 𝜔√
𝜇𝜀′

2
[√1 + (

𝜀′′

𝜀′
)
2

− 1]

2

        

(12) 

 

 

𝛽 = 𝐼𝑚{𝛾} = 𝜔√
𝜇𝜀′

2
[√1 + (

𝜀′′

𝜀′
)
2

+ 1]

2

     

(23) 

 

Another important quantity for analysis is wave impedance. In vacuum wave 

impedance is defined as: 

 𝜂 = √𝜇0 𝜀0⁄  (34) 

 

 But in lossy materials the relation between electric and magnetic fields is defined 

as: 

  𝜂 = 𝑗𝜔𝜇 𝛾⁄  (45) 
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One last important metric to calculate when making Bioelectromagnetic simulations 

is the skin depth which is derived from the attenuation constant and can be simplified 

if the material behaves as a good conductor; the window where the assumption of a 

good conductor can be made depends on the material chosen for the simulation. 

Skin depth is defined generally as: 

 
𝛿𝑠 =

1

𝛼
  [𝑚] 

(56) 

 

2.4  EM Dosimetry 
 

In Bioelectromagnetics problems, SAR is a valuable metric that helps us represent 

the power deposition in the body. As power is proportional to the field strength is 

important to mention that one characteristic of biological tissue is that it is mostly 

nonmagnetic, which makes the effect of H fields non prominent on EM biological 

interactions and thus power depends in almost all its totality in the strength of the 

electric field. SAR is defined as transferred power divided by the mass of the object 

[21]. It can be represented in different ways but for a time-average the formula is 

given by:  

 
𝑆𝐴𝑅 =

𝜎𝑒𝑓𝑓𝐸
2

2𝜌
       [𝑊/𝐾𝑔] 

(17) 

 

Where ρ is the density of the material. This relation is punctual because only applies 

at the given point where E has that particular value. For a full approximation of how 

much power is transferred to a whole-body, the following formula is also useful.  

 
𝑆𝐴𝑅𝑊ℎ𝑜𝑙𝑒−𝐵𝑜𝑑𝑦 =

𝑃𝑙𝑜𝑠𝑠

𝑀𝑏𝑜𝑑𝑦
     [𝑊/𝐾𝑔] 

(18) 

 

Where Ploss is the power absorbed by the body of interest and Mbody is the mass of 

the body. 
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2.5  Case of Study: Prolate spheroid irradiated by a plane wave 
 

There has been a lot of research regarding the effects of electromagnetic radiation 

in our bodies. Most of it related to the effects of specific devices and a few about the 

general effects of radiation. One of the cornerstones in terms of SAR computations 

is [1]. This research helped to the understanding of electromagnetic dosimetry for 

humans using whole-body SAR as a metric of how much absorption our bodies 

receive from EM radiation. Apart from some other investigations, like [7], there has 

not been an updated revision of this research in terms of newer methods for solving 

the fields.  

 

For this project the problem of interest is the one developed on [1], which is a prolate 

spheroid radiated with a plane wave using different wave polarizations. The idea is 

to obtain the whole-body SAR of this body in three orientations; E, H and K 

polarization. Originally, this problem was solved using different numerical 

approximations depending on the frequency range. 

 

 

Figure 4. Problem of interest: Prolate spheroid radiated with a plane wave. Taken from 
[21]. 
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In this report the same problem is tackled using full-wave simulators to obtain similar 

results as [1]. The idea is to test the capabilities of nowadays hardware and software 

to run this simulation and see if it can achieve the same frequency range obtained 

with more archaic methods. If the full-wave simulators start to fail, other approaches 

will be used to solve the problem. Also a study of the material will be conducted to 

understand how it affects the overall effects of EM radiation on the body. In terms of 

the values used for the original problem and the one developed here, there are some 

punctual differences shown on table 1. 

  

Table 1. Parameters for the model of interest. 

 

 

Where a is the major axis of the prolate spheroid and b the minor axis. The materials 

are 2/3 of muscle for [1] and fresh water for this report. As specified in 2.1, 

simulations will be run using FIT and MoM. The results expected from the 

simulations are based on the results from [1] and [7]. For FIT the software of choice 

is the commercially available software Computer Simulation Technology (CST) 

Microwave Studio and for MoM, the software used an in-house solver developed by 

TUHH called CONCEPT-II. 

 

The expected results tells us that for every polarization, the whole-body SAR will 

behave differently and that every scenario has its own characteristics. The expected 

behavior can be seen in figure 5, which was obtained from [1].   

Durney [1] This Report

a (m) 0.875 0.9

b (m) 0.138 0.15

εr 42.81 78

σeff (S/m) 0.6463 1.59

Power Density 

(mW/cm2)
1 1
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Figure 5. Average whole-body SAR as a function of frequency for models of an average 
man in free space for three polarizations, E, H, and K. The incident wave is a planewave 

with a power density of 1 mW/cm2. 
 

The calculations shown in the figure are the results of early work using a combination 

of simple models (prolate spheroid, cylinder, capped cylinder), empirical techniques, 

and for part of the graph, interpolated estimations [21].  

 

The power absorption can be divided in four regions across the frequency plane. 

These regions are specific for the E polarization due to the resonance peak present 

at lower frequencies and were obtained from [7]. The first one is called the sub-

resonance region, which goes until 30 MHz and has the characteristic of the body 

absorption increasing rapidly with a factor of f2 for all 3 polarizations.  

 

Next is the resonance region, which spans from 30-300 MHz, even though H and K 

polarizations also reach a peak resonance value, they are not as high as the one 

obtained by E polarization. This resonance can be compared to that of a wire 

antenna with the difference that resonance for a biological tissue reaches its peak 

when the object length is about four-tenths of a wavelength whereas the antenna 
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has it at when its size is half of the wavelength. The differences are due to the lower 

conductivity of biological tissues and their size.  

 

The frequency of resonance also depends on the size of the object, in the case of 

prolate spheroids is closely related to the ratio between the major and the minor axis. 

If the dimensions are small, like the ones of a small child, the peak of resonance will 

shift to a higher frequency while if the dimensions are big it will go to a lower 

frequency [8], also when the resonance peak is passed the whole-body SAR 

decreases with a factor of approximately 1/f. 

 

The following is the “Hot-Spots” region; this is due to the absorption being localized 

in some areas. It spans from 300 MHz to 3 GHz. As seen from figure 5, the whole-

body absorption decreases. The final region goes from 3 GHz onwards and it is 

called the surface absorption region because all the energy absorbed is localized at 

the surface tissue of the body [7]. 

 

At frequencies below resonance, the SAR for E polarization is highest, for H 

polarization is lowest, and for K polarization is in between the other two. These 

behaviors are related to the strengths of the internal fields; for example, the internal 

E field is stronger when the incident E field is parallel to the body of interest than 

when it is normal to the surface. Also, the internal E field generated from the incident 

H field is greater when the cross-sectional area intercepted is big [21]. In table 2, a 

summary of these behaviors is made. 

 

  

 
Table 2. Effects of Polarization in Whole-body SAR measurements. Taken from [21]. 

 
  

Polarization Einc Hinc EEint EHint Relative SAR

E Mostly parallel Intercepts large cross section Strong Strong Highest

K Mostly normal Intercepts large cross section Weak Strong Middle

H Mostly normal Intercepts small cross section Weak Weak Lowest
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3. SAR computations at High Frequencies 
 

To get a better understanding on why it is important to study the effects of 

electromagnetic radiation, table 3 shows what has been done for SAR computations 

in terms of simulation performed, models, numerical solvers, frequency ranges and 

excitations.  

Table 3. State of the art for SAR computations. 

*Note: For [17] SE: Small Ellipsoid / LS: Large Ellipsoid 

CST (FIT)[20] SAM Phantom Monopole 938 1818 No specify

SEMCAD-X 

(FDTD)

[19] SEMCAD Phantom Model
Monopole-helix

Monopole
− 1800 No specify

SEMCAD-X 

(FDTD)

[18] 
Layered plannar tissue 

model VH model 
Dipole Antenna 300 6000

Average    

Local

In-house 

FDTD

[17] Sphere and Ellipsoid
Plane Wave in E 

polarization
1000

Sphere 10000           

SE 10000       

LS 3000

Electric Fields

HFSS (FEM) 

CONCEPT 

(MoM)                

CST (FIT)

[16] 
Phantom from University of 

Utah

Plane Wave in E 

polarization
600 3000 Average

XFDTD

[15] Scaled adult voxel model Plane Wave AP and LR 30 3000
Whole-body 

Average

In-house 

FDTD

[14] 

Realistic 3D human head 

and shoulders mesh, 

developed from NMR

Vertically polarized, half-

wave thin wire dipole
900 1800

Whole-Head 

Local           

Peak

CST (FIT)

[13] 
Voxel model from 

University of Florida

Plane Wave in E 

polarization
50 4000 Whole-body 

In-house 

FDTD

[12] Multi-Layer Model Dipole Antenna − 900 Point SAR

[11] Voxel Model Dipole Antenna − 1750 No specify
In-house 

FDTD

CST (FIT)[10] SAM Phantom 60 GHz Antenna − 60000 Peak

In-house 

FDTD

[9] 
Visible Human (VH) model 

and Ellipsoid

Plane Wave in horizontal 

and vertical polarization
− 2100

Whole-body 

Local 

In-house 

FDTD

[8] 
Pregnant woman voxel 

model
Plane Wave AP and LR 10 2000

Whole-body 

Average

CST (FIT)

[7] Ellipsoid
Plane Wave in E, H, K 

polarization
10 2450 Whole-body CST (FIT)

[6] Ellipsoid
Plane Wave in E 

polarization
10 500 Whole-body

In-house 

FDTD

[5] Ellipsoid Analytical Solution − 0.00005

Electric Fields 

Magnetic 

Fields

−

[4] Heterogeneous body model
Plane Wave in vertical 

polarization
10 900

Whole-body 

Local 

In-house 

FDTD

[3] Human Volunteers
Plane Wave in E 

polarization
7 40.68 Whole-body −

[2] MRI male volunteer voxel
Plane Wave in horizontal 

and vertical polarization
600 6000 Average

Solver

[1] Ellipsoid and Spheroid  Analytical Solution 10 100000 Average −

Reference Model Excitation
Min. Freq. 

(MHz)

Max. Freq. 

(MHz)

SAR 

Measurement
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In table 3, we can see that most of the research has used geometrical models [1] [5] 

[6] [7] [17] or complex 3D human models [8]-[11], [13]-[16], [19]-[20]. There is also a 

preference for using the Finite-Difference Time Domain Method (FDTD) to solve 

most of these simulations, this is partly due to the “simplicity” associated with the 

implementation of this method, which makes it easy to be implemented “in house”. 

Others use commercial software like CST or SEMCAD-X.  

 

Finally, there is an important trend. Most of the studies that use a numerical method 

provide results for frequencies minor to 10 GHz. Only a handful of references ([1], 

[10]) performed studies beyond this frequency; this could mean that most of the 

research has been made with the current operating frequency of RF devices in mind, 

leaving a whole part of the spectrum without serious research.  

 

  



16 
 

4. Whole-body SAR on a prolate spheroid using full-wave 

simulators 
  

4.1  Simulation Setup 
 

To set these simulations, there are a lot of parameters that need to be considered. 

For example, the reason why a simpler geometry is chosen for the simulations is 

due to the complexity of 3D models of human bodies for full-wave simulations. The 

prolate spheroid is a relatively good and simple model to calculate the effects of 

different wave polarizations on the human body. It’s important to remember that this 

model only provides an intuitive understanding of the behavior of the electromagnetic 

fields on the human body as they would only be accurate if the human body were 

shaped like a prolate spheroid [21]. 

 

Prolate spheroids have a mayor axis and one minor axis. The mayor axis helps to 

represent the height of the body of interest and the minor one helps to describe the 

width of the model. They also have the advantage of having symmetry, not only in 

the geometrical sense but in the electrical one, which can optimize the solution time 

and reach of the simulations. For the scope of this work, the model was obtained 

using the modelling tools of CST and CONCEPT-II.  

 

The model dimensions, as seen from table 1, for the simulations are a height of 1.8 

meters and a width of 0.3 meters, which corresponds to an approximation of an adult 

male. It is also important to remember that due to the model geometrical symmetry 

there will be no real differences between some polarizations as EHK and EKH, HEK 

and HKE, and, KHE and KEH which simplifies even further the number of simulations 

needed. For this reason, the polarizations used for the simulations will be EHK, HEK 

and KEH. 
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Finally, table 4 gives a summary of all the important parameter needed to run the 

simulations smoothly. With all these parameters we can obtain the values for whole-

body SAR for the prolate spheroid up to high frequencies. 

 

Table 4. Simulation Parameters. 

 

 

4.1.1 Modeling of a prolate spheroid using CST 
 

To model a prolate spheroid on CST the following steps must be followed. On the 

Modeling tab, the following icon must be used . The option Analytical Face helps 

to model more complex geometries like a prolate spheroid. In figure 5, the 

information needed to model the spheroid is shown. The material selected already 

has the values proposed on Table 4. 

 

Once the prolate spheroid is modeled, the next step is to set up the simulation. This 

is done by setting the excitation, the mesh of the model, the boundaries of the 

simulation, the desired measurements and the solution parameters. 

Value

0.3 m

Power Density 1 [mW/cm2]

Excitation Plane Wave

78

Conductivity 1,59 [S/m]

Height 1.8 m

Width

Parameter

Source

Material

Geometry

εr
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Figure 6. Prolate Spheroid Specifications. 

The excitation of interest is a plane wave and can be defined with the information of 

figure 6. The different polarizations of interest are defined on table 5.  

 

Table 5. Polarization Parameters for plane wave in CST. 

 

EHK [1 0 0] [0 0 86.83]

HEK [1 0 0] [0 86.83 0] 

KEH [0 0 1] [0 -86.83 0]

Polarization
Propagation 

Vector
Field Vector
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For the mesh, a good rule of thumb is to have at least 10 basis functions per 

wavelength as long as the computational resources can handle the model. If it is too 

much to handle, the mesh density can be reduced but it may cause a loss in accuracy 

in the simulation, it is an important trade off to have in mind. These properties can 

be seen on figure 8. 

 

 

Figure 8. Mesh properties window in CST. 

Figure 7. Plane wave specifications window in CST. 
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To extend the range of the simulations, the use of symmetry is very important. A lot 

of geometries have the advantage of also being electrically symmetrical. This 

symmetry allows reducing the numbers of unknowns needed to solve a problem 

using a numerical method. In case of CST electrical symmetry can be applied in all 

major planes of interest (XY, XZ, and YZ). Where to apply symmetry will depend on 

the source used. For a plane wave, symmetry depends on the direction of 

propagation and the direction of the electromagnetic fields. For the 3 polarizations 

used in this report, table 6 summarizes the different values needed for every 

scenario. If symmetry is applied in the wrong way, results may vary and become 

unusable. 

 

 

 

 

 

 

 

 

 

  

 

 

            

 

 

 

 

 

 

 

 

XY Plane

Electric

Magnetic

None

HEK None Electric

KEH Magnetic Electric

Polarization YZ Plane XZ Plane

EHK None Magnetic

Figure 9.  Symmetry planes window in CST. 

Table 6. Symmetry parameters used in figure 8. 
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The final step before running the simulation is to set the probes or “monitors” that 

will measure the quantity of interest, which in the case of whole-body SAR is the 

power loss in the body. The monitors are set in the frequencies of interest using the 

field monitor option of the simulation tab in CST. Once all these steps have been 

made, the simulation can be run. Once it is finished the results can be obtained from 

the navigation tree as follows: 1D Results >> Power >> Excitation >> Loss in 

Dielectric. The results obtained here must be divided by the object’s mass which is 

obtained from the volume of the prolate spheroid and the density of the material, in 

this case water. For the dimensions of the prolate spheroid used, the mass is about 

84.83 Kg. 

 

Figure 10. Monitor set up window in CST. 

 

 

Figure 11. Results tab in CST. 
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4.1.2 Modeling of a prolate spheroid using CONCEPT-II 
 

In CONCEPT-II the modeling of the prolate spheroid is done by using the CAD tools 

of the software. Once specified the dimensions of the spheroid, the next step is to 

set up the mesh density of the body. This can be done using the optimal mesh for a 

certain frequency or setting the values manually. When the optimal mesh tool is 

used, the geometry is discretized using the frequency of interest and a number of 

basis functions chosen by the user. The number of basis functions is between 8 and 

12 for this type of bodies. All the model and mesh set up is done in the window of 

figure 12. 

 

Figure 12. CAD tool for geometry modeling in CONCEPT-II. 

 

Once defined the geometry with its mesh, it is necessary to set the source, the 

material properties and the frequency of interest. Like in CST, depending on the 

polarization used, there will be different values to set in the excitation and the 

symmetry. Even though, the prolate spheroid can use electrical symmetry to 

optimize calculations, CONCEPT-II doesn´t have available all the possible 

combinations to fully make advantage of this tool.  
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CONCEPT-II only manages magnetic symmetry for the XZ and YZ plane, and 

electric symmetry for the XY plane. This means that in polarizations like HEK, the 

symmetry option is not available and thus the frequency range is heavily crippled for 

this scenario. For EHK the full symmetry can be used, which means that only a 

quarter of the geometry is needed for the simulation, but KEH can only manage half 

symmetry due to the “electrical symmetry” not being a real option in the general 

sense.  

 

To set the excitation, there’s the option of using a plane wave which can be set in 

almost any direction. To use the polarizations of interest the window of figure 13 

must be filled with the values of table 7. For a power density of 1mW/cm2, the electric 

field is set to a value of 86.83 V/m. Once this is set, the frequencies of interest can 

also be set up to start the simulation. The material values are also the same as used 

in the CST simulation. 

 

Figure 13. Plane wave description window in CONCEPT-II. 
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Table 7. Angle values for different polarizations on CONCEPT-II. 

 

 

Once the simulation is completed, it is necessary to calculate the power loss in the 

model. This can be done in the post-processing tab and using    to calculate the 

power flow through the structure. To calculate the power, another spheroid (slightly 

bigger) needs to be modeled. This new spheroid is used as the surface to calculate 

the power flow. The results obtained by this method represent the power absorbed 

by the spheroid. 

 

4.2  Whole-body SAR on a prolate spheroid using full-wave 

simulators CST and CONCEPT-II 
 

In this subchapter are the results of all the full-wave simulations performed using 

CST and CONCEPT-II for whole-body SAR measurements using different plane 

wave polarizations. For the CST simulations two computers were used: a local 

computer with 4 cores and 16 GB of RAM and a remote computer with 6 cores and 

32 GB of RAM. For the CONCEPT-II simulations, a local computer with 4 cores and 

16 GB was used initially but then for later simulations a server cluster was used 

which had 10 nodes available each one containing 6 CPUs and 32 GB of RAM. 

 

 

 

 

 

EHK 90 180 180

HEK 270 0 270

KEH 180 180 0

Polarization θ φ ψ
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4.2.1 EHK Polarization 
 

 

Figure 14. Whole-body SAR for E Polarization on CST and CONCEPT-II. 

 

In figure 14, it can be seen that the obtained behavior for whole-body SAR with E 

polarization is similar to the one expected from figure SAR. Clearly, the exact values 

are different due to the differences in dimensions and material choices but the values 

follow the expected trend.  

 

Both solvers have very similar results between them and also a similar reach in terms 

of computational power, which can be seen from the maximum frequency achieved 

in the simulations. Differences in values are found in the lower frequency range, from 

10 MHz to the resonance frequency the values obtained in CONCEPT-II are a little 

bit lower than the ones obtained in CST. Once the resonance frequency is passed, 

the values from both solvers stay pretty close to each other up until 4 GHz where 

the solution obtained in CONCEPT-II starts to fall abruptly. 
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* 

This fall is due to numerical limitations of the MoM implementation of CONCEPT-II 

where the damping of the body is so strong that the calculation of the internal fields 

starts to become very difficult to obtain and the values begin to lose accuracy. In 

tables 8 and 9 are summarized the computing power for each implementation and 

the parameters used in the simulations. 

 

Table 8. CST model information for the calculation of whole-body SAR in E polarization. 

 

* bf/wl: basis function per wavelength. 

 

In table 8, we can see the different parameters used by CST to perform the 

simulations and also some results like the time it needed to finish a simulation, the 

number of frequency steps used in the simulation and the memory needed to run 

the simulation. It is clear that when going up in frequency the sweeps are harder to 

compute so the steps used in every simulation start to go down, also the number of 

basis functions per wavelength starts to go down due to the number of mesh cells 

being too big to handle, which is a tradeoff in terms of accuracy. To compute the 6 

GHz simulation a more powerful computer was needed.  

 

10-100 (MHz) 00:00:08 10 120.97 23EHK Local 4 16848

Frequency Time bf/wl
Memory 

(MB)
StepsPolarization Computer # CPUS Mesh cells

2756.3 22EHK Local 4 1987500

100-500 (MHz) 00:01:10 10 793.39 19EKH Local 4 243600

00:20:471-1.8 (GHz) 10EHK Local 4 11215800

0.5-1 (GHz) 00:08:43 10

2-3 (GHz) 01:39:35 10 14368.13 5EHK Local 4 44331140

3-4 (GHz) 01:46:52 9 14089.52 2EHK Local 4 55492535

5 (GHz) 02:45:41 8 14877,1602 1EHK Local 4 75721500

6 (GHz) 04:25:45 7 28139,9805 1EHK Remote 6 83755008

7 (GHz) 07:21:21 7 30639,3047 1EHK Remote 6 131483476

9(GHz) 15:53:14 6 30813,5078 1EHK Remote 6 173837055

7410.81 5
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In the end, this kind of simulation is still very resource consuming, even with newer 

tools and much more processing power. For example, if the simulations were to be 

run using 10 basis functions from 8 GHz onwards it would be needed a much more 

powerful computer because CST requires 35 GB of memory only to solve the core 

model without including the memory needed to compute the monitors which 

calculate the measurements of interest. More information about the computing 

limitations can be read on subsection 4.3.  

 

For CONCEPT-II, memory use works a little bit different whereas in CST the mesh 

density scales with the frequency dependently in CONCEPT-II the density is 

generated by the user and even if its formulation must take into account the 

frequency of interest, it is in no way bound by it. For this reason, in CONCEPT-II a 

unique mesh can work for a large frequency sweep. In table CO, the computing 

power used by CONCEPT-II is presented.  

 

Table 9. CONCEPT-II model information for the calculation of whole-body SAR in E 

polarization. 

 

 

Another simulation run in CST consisted in varying the mesh density of the spheroid 

to see the changes in the values obtained. These results are shown in figure 15. 

bf/wl
Memory 

(GB)
Steps

EHK Local 4 1748 10-100 (MHz) 00:05:00 8

Polarization Computer # CPUS Unknowns Frequency
Time 

(HH:MM:SS)

0,046 23

EHK Cluster 24 6018 100-500 (MHz) 00:05:49 8 0,54 18

EHK Cluster 60 136022 1-7 (GHz) 34:48:31 8 275,70 10
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Figure 15. Whole-body SAR with different mesh density for E Polarization from 10 MHz to 
100 MHz. 

 

Figure 16. Whole-body SAR with different mesh density for E Polarization from 1 GHz to 2 

GHz. 

 

In figure 15, the effect of varying the mesh density in CST for the low frequency end 

of the whole-body SAR in E polarization can be seen. Even though, the behavior 
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and values are quite similar, this trend starts to change when we reach the high 

frequency end due to the fast-changing fields which need a very dense mesh, 

meaning that this kind of variations increase. This also means that there is a trade-

off of accuracy vs memory the higher we go in frequency. The change can be seen 

in figure 16. 

 

4.2.2 HEK Polarization 
 

 

Figure 17. Whole-body SAR for H Polarization on CST and CONCEPT-II. 

 

In figure 17, we see that for H polarization, the results between both solutions are 

quite similar not only to the theory but also between them; also as with E polarization 

CST has more range in terms of frequency than CONCEPT-II. The details of each 

simulation can be seen in tables 10 and 11. 
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Table 10. CST model information for the calculation of whole-body SAR in H polarization. 

 

 

Table 11. CONCEPT-II model information for the calculation of whole-body SAR in H 
polarization. 

 

 

CST allows for more simulations than CONCEPT-II but starts to sacrifice accuracy 

from 5 GHz; on the other side, CONCEPT-II suffers from the lack of a symmetry 

option for the HEK polarization which makes the simulation scale heavily in 

comparison to EHK and KEH polarizations. However, it is still faster (per frequency 

point) than a simulation performed in CST. 

 

 

bf/wl
Memory 

(MB)
Steps

HEK Local 4 16848

Polarization Computer # CPUS Mesh cells Frequency Time

10-100 (MHz) 00:00:08 10 121.1 23

HEK Local 4 239540 19

HEK Local 4 1987500 0.5-1 (GHz) 00:08:21

100-500 (MHz) 00:00:57 10 762.44

5

HEK Local 4 44331140

10 2750.3 22

HEK Local 4 11215800

HEK Local 4 75721500

5

HEK Local 4 55492535 3-4 (GHz) 01:36:22

2-3 (GHz) 01:33:37 10 14526.70

HEK Remote 6 173837055

1

HEK Remote 6 131483476 7 (GHz) 07:25:15

6 (GHz) 07:57:43 7 22122,2852HEK Remote 6 83755008

9(GHz) 11:45:03 6 30966,9648 1

7 30888,9727 1

5 (GHz) 02:56:05 8 15130,1016 1

9 15140,2266 2

1-1.8 (GHz) 00:19:49 10 6900.43

00:21:53 8 1,1 38

HEK Cluster 60 121656 1-5 (GHz) 17:52:25 8 220,54 10

HEK Cluster 24 8592 100-1000 (MHz)

Time 

(HH:MM:SS)
bf/wl

Memory 

(GB)
Steps

HEK Cluster 24 8592 10-100 (MHz) 00:20:50 8 1,1 25

Polarization Computer # CPUS Unknowns Frequency
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4.2.3 KEH Polarization 
 

 

Figure 18. Whole-body SAR for H Polarization on CST and CONCEPT-II. 

 

As with previous polarizations, the results obtained for K polarization match the 

behavior expected from theory and between themselves. One important detail to 

take into account with this scenario is that the values from 1 GHz up to 22 GHz were 

originally estimated values [1]. For that reason, the results obtained from these 

simulations are important because they describe a behavior that was unable to be 

measured with analytical tools. 

 

Another important observation is that for K polarization, CONCEPT-II can reach a 

maximum of 7 GHz which is equal to the limit obtained by the E polarization, although 

in this scenario the values for the Whole-body SAR can be calculated and still match 

the results from CST. 
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Table 12. CST model information for the calculation of whole-body SAR in K polarization. 

 

 

Table 13. CONCEPT-II model information for the calculation of whole-body SAR in K 
polarization. 

 

 

Results from tables 12 and 13 keep the trend of previous simulations, with an 

potential increase of number of mesh cells or unknowns, that reflects in memory use. 

CONCEPT-II is still the faster approach but the memory demand gets higher for 

frequencies that exceed 5 GHz. 

 

 

 

 

 

Polarization

KEH

KEH

KEH

Memory 

(MB)
Steps

KEH Local 4 16055

Computer # CPUS Mesh cells Frequency Time bf/wl

Local 4 2000061

00:00:09

KEH Local 4 242760 00:01:03

Local 4 55648852

00:22:45

KEH Local 4 32245056 01:05:23

KEH Local 4 11265648

KEH Remote 6 174192550

Remote 6 131433747

03:16:44

KEH Remote 6 83755008 07:55:20

KEH Local 4 53895072

1

7(GHz) 7 28139,9805

12:31:279(GHz) 6 30937,1719

07:21:21

7 14945,8633 1

3-4 (GHz)

7 24757,1367 1

5 (GHz)

1

6 (GHz)

02:04:49

10 7751.63 5

0.5-1 (GHz)

10 13832.59 5

1-1.8 (GHz)

9 14573,707 2

2-3 (GHz)

00:08:55

10 121.2 23

10 783.24 19

10-100 (MHz)

10 2799.08 22

100-500 (MHz)

bf/wl
Memory 

(GB)
Steps

KEH Cluster 24 8592 10-100 (MHz) 00:13:45 8

Polarization Computer # CPUS Unknowns Frequency
Time 

(HH:MM:SS)

1,1 25

KEH Cluster 24 8592 100-1000 (MHz) 00:21:53 8 1,1 38

KEH Cluster 60 136022 1-7 (GHz) 38:35:58 8 275,70 10
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4.2.4  Whole-body SAR, final comparisons and other simulations 
 

In this section are presented other simulations that were performed using the EHK 

polarization with the purpose of giving more insight in terms of the resonance 

frequency. Also there are results of the 3 main polarizations against each other for 

each numerical solver. 

 

 

Figure 19. Whole-body SAR for 3 Polarizations in CST. 

 

Figure 20. Whole-body SAR for 3 Polarizations in CONCEPT-II. 
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Figure 21. Whole-body SAR for 3 different size prolate spheroids in CST. 

 

Figure 22. Whole-body SAR for 3 different size prolate spheroids in CONCEPT-II. 

 

The effect of varying the height is described on [21]. If the ratio between the axes 

goes down, the resonance frequency shifts to a higher value. This is important 

because it marks a difference between the analyses done for smaller models (like 

children) versus the ones done in bigger models (adults). For the CONCEPT-II 
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results, the exact value of the resonance frequency is a bit rough to find due to the 

frequency sweep chosen. 

4.3  Computational limitations on full-wave simulations 
 

From the previous subsections, it can be seen that there is still a limit in terms of 

how far these numerical methods can go to really obtain accurate results. For some 

models the limit is higher than for others and it also depends on the type of problem 

that is being worked.  

 

In the problem of interest, the number of elements to solve starts to increase 

drastically as frequency goes up. For example, using the recommended amount of 

basis functions for the prolate spheroid described in section 3.1 on CST gives a 

warning that the number of cells needed to compute the problem exceeds 1 billion 

cells. This message is shown around 20 GHz and basically tells that from that 

frequency and up, the processing power needed for those computations is 

enormous. In table 14, the number of mesh cells is showed with a column of status 

which tells if the program pops up the warning or not. 

 

Table 14. Mesh cells in CST using 10 basis functions per wavelength. 

 

 

10 1,168,676,136

15 3,927,110,544

20 9,286,622,016

30 31,354,101,216

40 74,292,276,128

50 145,070,824,800

60 250,738,794,432

70 398,020,714,689

80 594,240,318,756

90 846,006,700,000

100 1,160,404,930,140

No warning

Warning

Frequency 

(GHz)
Mesh Cells Status
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In relation to the previous table if the simulation does not show a warning, the amount 

of RAM needed to compute the simulations is pretty heavy. This can be seen in table 

15. 

Table 15. Memory needed to perform prolate spheroid simulations using a model with 10 

basis functions per wavelength. 

 

 

Based on these tables and the results from past subsections, the frequency limit 

reached in this report regarding the use of CST for simulations of Whole-body SAR 

measurements is 9 GHz for a prolate spheroid modeled using 6 basis functions per 

wavelength. With a computer with 128 GB of RAM a simulation using 10 basis 

functions per wavelength could be done but higher than that it becomes potentially 

harder to have the resources necessary to run these kinds of simulations. 

 

In terms of CONCEPT-II, the frequency limit reached is a little bit different; because, 

the limit reached to actually run a simulation is not the same limit reached to actually 

calculate the EM fields in a correct way. For example, with all the power available in 

the cluster used for CONCEPT-II simulations (320 GB RAM, 60 CPUs) the limit for 

E polarization simulations is 7 GHz but the fields obtained for values higher than 4 

GHz start to behave in a way that is not compatible to other solutions available like 

CST or [1].  

 

There are also the symmetry options which are limited in CONCEPT-II. This makes 

that the H polarization gets a lower limit (5 GHz) while the others can reach a higher 

one. Table 16 gives an idea of the memory required to run these type of simulations, 

even if they are faster than a CST simulation, the memory capability makes them 

harder to run when trying for higher frequencies. 

6 15

7 24

8 35

9 50

10 88

Frequency 

(GHz)
Memory (GB)
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Table 16. Memory required for running simulations in CONCEPT-II for a prolate spheroid 

with optimized mesh for E and K polarizations. 

 

 

  

5 59930 53.52

6 86788 112.24

7 118990 210.98

7.5 136022 275.70

7.8 147434 323.90

8 154350 355.00

9 196380 574.66

10 241590 869.72

Unknowns Memory (GB)
Frequency 

(GHz)
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5. Influence of material selection on EM radiation problems 
 

In this section the electrical properties of water are studied using a 1D model of a 

reflection problem. The reason of this approach is that when reaching the high 

frequency region (10 GHz - 100 GHz+), the size of the wavelength is decreasing to 

a millimeter size. When this happens, the size of the wave is pretty small in 

comparison to the dimension of the body of interaction. This opens the possibility of 

using the one dimensional approach to study the effects of the incident wave at an 

interface level and obtain different helpful relations that can help in the understanding 

of the interactions between electromagnetic radiation and our bodies. 

 

One important point is that materials can be modeled as frequency independent or 

frequency dependent. Most of the biological tissues have a frequency dependent 

behavior and even though water is not a tissue it also exhibits this behavior. To 

model a frequency dependent material there are different approaches, some are 

simple and others are very complex and in some cases there is the need of using 

experimental results to obtain a fitting curve to describe the behavior of a material.  

 

In this section, the effects of an incident plane wave over a “wall” of water will be 

studied, comparing the differences if water is defined as a frequency dependent 

material or frequency independent and also if the angle of incidence of the wave is 

perpendicular to the surface or different. 

 

5.2  Perpendicular incidence of a plane wave on a water surface 
 

In this scenario, the wave propagates in a perpendicular direction to the surface of 

interest. The power density of the wave is 1 mW/cm2 and the two interfaces are air 

and water. First the frequency independent scenario will be studied and then the 

frequency dependent. The values of interest are the reflection and transmission 

coefficient, the surface impedance, the attenuation and phase constant and the skin 
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effect of the material. All the values were obtained by coding the following set of 

equations in MATLAB. The problem of interest is shown in figure 23.  

 

Figure 23. 1D Perpendicular incidence model. 

 

 

5.2.1 Frequency Independent Material (FIM) Model of Water 
 

For the frequency independent material (FIM) model definition of Water, the values 

from CST were used. Here a constant value for the real term of the complex 

permittivity is used and the imaginary part is obtained from the conductivity value 

given by the material definition. 

 

 𝜀𝑟2
′ = 78 (19) 

 

 𝜎 = 1.59 [𝑆/𝑚] (20) 

 

 𝜀 = 𝜀𝑟2
′ − 𝑗𝜀𝑟2

′′ = 𝜀𝑟2
′ − 𝑗 𝜎 𝜔𝜀0⁄  (21) 
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Figure 24. Water electric permittivity values for a FIM model. 

 

Once the permittivity is defined the next step is to calculate the wave impedance of 

the material, which is obtained with the following equation. It is important to note that 

this values change in frequency and that the propagation constant needs to be 

calculated first. From the propagation constant the attenuation and phase constant 

are calculated. 

 

 𝛾 = 𝛼 + 𝑗𝛽 = 𝑗𝜔√𝜇𝜀 = 𝑗𝜔√𝜇𝜀′(1 − 𝑗 𝜎 𝜔𝜀0⁄ ) (22) 

 

 𝜂2 = 𝑗𝜔𝜇 𝛾⁄  (23) 

 

 
𝜂2 = 𝑗𝜔𝜇 𝛾⁄ =

𝑗𝜔𝜇

𝜔√𝜇𝜀
= √

𝜇𝑟2𝜇0

𝜀0(𝜀𝑟2 − 𝑗𝜀𝑟2)
  

(24) 

 

 𝛼 = 𝑅𝑒(𝛾) (25) 

 

 𝛽 = 𝐼𝑚(𝛾)  (26) 
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Figure 25. Attenuation and phase constant values for a FIM model. 

 

Figure 26. Wave impedance values for a FIM model. 

 

Due to the behavior of the complex permittivity, the phase constant starts to saturate 

at a 100 GHz to a value of 2600 approximately. This behavior is also seen on the 

wave impedance described on figure 26. Once the wave impedance has been 

calculated, the next step is to obtain the reflection and transmission coefficients, 

which are obtained with the following relations. 
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 𝜂0 = √𝜇0 𝜀0⁄ = 120𝜋 ≈ 377Ω (27) 

 

 Γ =
𝜂2 − 𝜂0

𝜂2 + 𝜂0
= |Γ|𝑒𝑗𝜃Γ 

(28) 

 

 𝜏 = 1 + Γ = |𝜏|𝑒𝑗𝜃τ  (29) 

 

 

Figure 27. Reflection coefficient values for a FIM model. 

 

Figure 28. Transmission coefficient values for a FIM model. 
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5.2.2 Frequency Dependent Material (FDM) Model of Water 
 

Unfortunately water does not behave as a frequency independent material; this 

means that to understand the effects of radiation on water a different approach is 

needed. Water as a frequency dependent material can be modeled using different 

methods, the simplest one is using a Debye relaxation model which gives a good 

approach but starts to lose accuracy when reaching higher frequencies.  

 

That is why in this report the method used is the one described by Liebe in [23], 

which is a method based on the Debye approximation but using a fitting curve based 

on experimental results to increase the accuracy of the values. This method takes 

into the account the effects of temperature and for the calculation a temperature of 

25°C was chosen. The next sets of equations are the ones used to obtain the real 

and imaginary part of the complex permittivity of water as a function of frequency. 

With the permittivity the attenuation and phase constant can be obtained using eq. 

(22). 

 

 𝜀0 = 77.66 − 103.3𝜃 (30) 

 

 𝜀1 = 0.0671𝜀0 (31) 

 

 𝛾1 = 20.20 + 146.4𝜃 + 316𝜃2 𝐺𝐻𝑧 (32) 

 

 𝜀2 = 3.52 + 7.52𝜃 (33) 

 

 𝛾2 = 39.8𝛾1 (34) 

 

 
𝜃 = 1 −

300

273.15 + 𝑇(°𝐶)
 

(35) 

 

 
𝜀𝑟2
′ =

𝜀0 − 𝜀1

1 + (
𝑓
𝛾1

)
2 +

𝜀1 − 𝜀2

1 + (
𝑓
𝛾2

)
2 + 𝜀2 

(36) 
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𝜀𝑟2
′′ =

𝜀0 − 𝜀1 (
𝑓
𝛾1

)

1 + (
𝑓
𝛾1

)
2 +

𝜀1 − 𝜀2 (
𝑓
𝛾2

)

1 + (
𝑓
𝛾2

)
2  

(37) 

 

 

Figure 29. Water electric permittivity values for a FDM model. 

 

Figure 30. Attenuation and phase constant values for a FDM model. 
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Once the permittivity is obtained, the next step is to obtain the wave impedance of 

water. Using eq. (24) the wave impedance behaves as: 

 

 

Figure 31. Wave impedance values for a FDM model. 

 

From figures 29 and 30, the differences between models start to show. Apart from 

the obvious changes between the real and imaginary parts of the electric permittivity; 

the phase constant in the FDM model does not saturates and the wave impedance 

shows a very different behavior, it starts going up instead of converging to a single 

value. Finally, using equations (28) and (29) the transmission and reflection 

coefficients are calculated. 

 

In regard to the material properties of the model, a visible difference is seen between 

the frequency dependent model and the frequency independent one. Attenuation 

constants for both model have a similar behavior, while the phase constant for both 

models varies heavily with one saturating (FIM) and the other with a steady grow 

(FDM). 
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Another important difference is the wave impedance behavior between both models. 

While for the frequency independent the real part of the complex permittivity is 

constant, the other model’s real part start decreasing in frequency while the 

imaginary part starts increasing.  

 

 

Figure 32. Reflection coefficient values for a FDM model. 

 

Figure 33. Transmission coefficient values for a FDM model. 
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5.3  General incidence of a plane wave on a water surface 
 

While the 1D perpendicular incidence approach gives very valuable information, it is 

far from real scenarios. In limited cases, the plane wave will travel perpendicular to 

a surface, normally the direction of the propagation vector has an angle of incidence 

with respect to the surface plane and these changes the way reflections, 

transmissions and power behave in the material. The problem of interest is in figure 

30. 

 

 

Figure 34. 1D General incidence model. 

 

The same material definitions from previous subsections were used for the FIM 

model and the FDM model, the differences are in the definition of the reflection and 

transmission coefficients. A wave with a general direction can be divided in two major 

components, one that travels parallel to the plane of interest and one that travels 

perpendicular to it; this components can be obtained from the incidence angle of the 

wave regarding the plane of incidence and from the transmission angle of the wave.  

 

These angles shape the form of the reflection and reflection coefficients where there 

is a reflection coefficient for the perpendicular component and one for the parallel. 

This also applies to the transmission coefficient and the following set of equations 

help understand this behavior.  
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Γ⊥ =

𝜂2 cos 𝜃𝑖 − 𝜂0 cos 𝜃𝑡

𝜂2 cos 𝜃𝑖 + 𝜂0 cos 𝜃𝑡
 

(38) 

 

 
Γ∥ =

𝜂2 cos 𝜃𝑡 − 𝜂0 cos 𝜃𝑖

𝜂2 cos 𝜃𝑡 + 𝜂0 cos 𝜃𝑖
 

(39) 

 

 
τ⊥ =

2𝜂2 cos 𝜃𝑖

𝜂2 cos 𝜃𝑖 + 𝜂0 cos 𝜃𝑡
 

(40) 

 

 
τ∥ =

2𝜂2 cos 𝜃𝑖

𝜂2 cos 𝜃𝑡 + 𝜂0 cos 𝜃𝑖
 

(41) 

 

In the report, the incidence angle was chosen with an increase of 15° up until 60° to 

showcase the behavior of the reflection and transmission coefficients. The angle of 

transmission for the calculations is obtained from the following equation. 

 

 

θ𝑡 = sin−1 (√
𝜇1𝜀1

𝜇2𝜀2
sin 𝜃𝑖) 

(42) 

 

5.3.1 Frequency Independent Material (FIM) Model of Water 
 

 

Figure 35. Reflection coefficient values for a FIM model with different angles on incidence. 
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Figure 36. Transmission coefficient values for a FIM model with different angles on 

incidence. 

 

5.3.2 Frequency Dependent Material (FDM) Model of Water 
 

 

Figure 37. Reflection coefficient values for a FDM model with different angles on 

incidence. 
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Figure 38. Transmission coefficient values for a FDM model with different angles on 

incidence. 

 

5.4  Skin Depth of Water 
 

Due to the electrical properties of water, EM fields dissipate at a certain distance 

once they have been transmitted inside water. How much distance they travel before 

dissipating is related to the attenuation constant and as we saw in previous 

subsections, it depends on the model of the material. Both models behave similarly 

in terms of skin depth but due to the decrease of the electric permittivity of the FDM 

model, the attenuation decreases slowly in comparison. 

 

Table 17. Skin depth for FDM Model and FIM Model. 

 

Frequency 

(GHz)

Skin Depth 

FDM Model 

(mm)

Skin Depth 

FIM Model 

(mm)

1 5.396654074 1.40449438

2 2.706359946 0.97560976

5 1.103630946 0.58582308

10 0.586510264 0.38066235

20 0.346140533 0.23052098

50 0.204750205 0.10414497

100 0.138427464 0.05349204

150 0.106382979 0.03585566
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6. Whole-body SAR on a prolate spheroid using physical 

optics for very high frequencies 
 

Due to the technical limitations of full wave simulations, different methods need to 

be used to calculate the absorption of energy by biological tissues. One of these 

methods is to use physical optics to calculate the absorbed power. The basic 

assumption is that all the energy transmitted into the body (prolate spheroid) is 

absorbed. This is not a simple assumption, it has been found that for certain 

geometries the internally reflected rays may be neglected and also from 6 GHz 

onwards, biological tissue has a depth penetration of 2.6 mm, which makes valid the 

assumption that all energy transmitted is absorbed [24]. 

 

To obtain the whole-body SAR for frequencies higher than 9 GHz, the method 

developed by [25] was coded in MATLAB. This method requires division of the 

surface of the prolate spheroid into small patches, calculation of the area of every 

patch and the definition of a unit-normal vector for each patch. Once these values 

are obtained, the next step is to find the angle of incidence and transmission of the 

wave for each patch. Then the transmission coefficients are obtained for each 

component of the radiation (perpendicular or parallel). Finally the energy transmitted 

into every patch is calculated and the whole-body SAR is found by summation over 

all the patches [25]. 

 

To implement this method the propagation vector of the incident wave is defined to 

lie in the XY plane, the formula is given by equation (43) and α is the angle of general 

incidence of the wave which is defined in figure alpha. The polarizations of the 

incident wave are represented by unit vector e1 and e2, where e1 is parallel to the 

plane defined by the major axis of the prolate spheroid and e2 is perpendicular to 

that plane. 

 

 𝒂𝑘 = sin 𝛼 𝒂𝑥 + cos 𝛼 𝒂𝑧 (43) 

 

 𝒆1 = −cos 𝛼 𝒂𝑥 + sin𝛼 𝒂𝑧 (44) 
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 𝒆2 = 𝒂𝑦 (45) 

 

 

Figure 39. Definition of incident angle alpha for the incident wave. 

 

The angle of incidence for every patch is obtained from equation (46) and once 

obtained the transmission angle can be found with equation (47).  

 

 cos 𝜃𝑖 = −𝒂𝑛 ∙ 𝒂𝑘  (46) 

 

 sin 𝜃𝑡 = sin 𝜃𝑖 (𝜀′ − 𝑗𝜀′′)1 2⁄⁄  
 

(47) 

Due to the prolate spheroid geometry, every patch has two reflection coefficients 

depending on the polarization of the incident wave. Equations (48) and (49) are used 

to calculate the values of the coefficients for each patch. 

 

 

Γ∥ =

cos 𝜃𝑡

(𝜀′ − 𝑗𝜀′′)1 2⁄ − cos 𝜃𝑖

cos 𝜃𝑡

(𝜀′ − 𝑗𝜀′′)1 2⁄ + cos 𝜃𝑖

 

(48) 
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Γ⊥ =

sec 𝜃𝑡

(𝜀′ − 𝑗𝜀′′)1 2⁄ − sec 𝜃𝑖

sec 𝜃𝑡

(𝜀′ − 𝑗𝜀′′)1 2⁄ + sec 𝜃𝑖

 

(49) 

 

Once the reflection coefficients are obtained, the transmission coefficients for each 

patch are calculated using equations (50) and (51). 

 

 〈𝑺𝒕∥〉 = (1 − |Γ∥|
2
) (50) 

 

 〈𝑺𝒕⊥〉 = (1 − |Γ⊥|2) (51) 

 

These coefficients must be implemented in the proper manner, the incident electric 

field must be broken up into two components for each subarea: one parallel to the 

plane of incidence and one perpendicular to this plane. A method of finding these 

components of the incident electric field is to define a unit vector perpendicular to 

the plane of incidence on each patch and then to find components of the incident 

wave's polarization vector, which are parallel and perpendicular to this vector. A unit 

vector perpendicular to the plane of incidence is found in equation (52) [24]. 

 𝒂𝑚 = −[(𝒂𝑛 × 𝒂𝑘)/ sin 𝜃𝑖] (52) 

 

Once this vector is obtained for each patch, equation (53) can be used to obtain the 

power absorbed from each patch for the parallel incident wave. Where Si is the 

incident power density and AP is the projected area of each patch which can be 

found using equation (55). For e2 the formula used is found in equation (54). 

 𝑃1 = 𝑆𝑖𝐴𝑃 {(𝒆1 ∙ 𝒂𝑚)2(1 − |Γ⊥|2) + [1 − (𝒆1 ∙ 𝒂𝑚)2] (1 − |Γ∥|
2
)} (53) 

 

 𝑃2 = 𝑆𝑖𝐴𝑃 {(𝒆2 ∙ 𝒂𝑚)2(1 − |Γ⊥|2) + [1 − (𝒆2 ∙ 𝒂𝑚)2] (1 − |Γ∥|
2
)} (54) 

 

 𝐴𝑃 = 𝐴𝑃𝑎𝑡𝑐ℎ ∗ cos 𝜃𝑖  (55) 
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6.2  EHK Polarization 
 

In this section the results of the physical optics approach are presented for the E 

polarizations. To get a better understanding of the results, the whole-body SAR 

obtained using CST is put against the values obtained with the proposed 

methodology. There is a seemingly good correspondence between both 

measurements. Where the full-wave simulation reaches its limit, the optical approach 

can be seen as a continuation of the tendency marked by the frequency range from 

5 GHz to 9 GHz. 

 

In figure 40, the material used is water modelled as a FI material, while in figure 41 

water is modelled as a FD material. While there are no big differences when plotted 

in the range of interest, some differences in magnitude can be appreciated on figure 

42. 

 

Figure 40. Whole-body SAR for E polarization up to 100 GHz using a FIM model. 
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Figure 41. Whole-body SAR for E polarization up to 100 GHz using a FDM model. 

 

Figure 42. FDM Model vs FIM Model for E polarization. 
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6.3  HEK Polarization 
 

Similar to EHK polarization, EHK exhibits a good correspondence between the full-

wave simulations and the optical approach. Again there seems to be a “saturation” 

value achieved in the higher frequencies which can be addressed to the full 

absorption assumption made by the methodology [24].  

 

In similar fashion to EHK polarization, there are some differences in the results that 

are not quite visible when the full spectrum is presented. Figure 43 showcases the 

use of a FIM model of water and figure 44 a FDM model. Their differences can be 

seen in figure 45 and while they are quite small we can see that they really exist.  

 

 

Figure 43. Whole-body SAR for H polarization up to 100 GHz using a FIM model. 
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Figure 44. Whole-body SAR for H polarization up to 100 GHz using a FDM model. 

 

Figure 45. FDM Model vs FIM Model for H polarization. 
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6.4  KEH Polarization 
 

Finally, in KEH polarization the methodology seems to fail due to the big differences 

between both approaches. There is an important observation to be made. In figure 

5 there is a full characterization of the whole-body SAR when the plane wave is in K 

polarization. The reason behind this complete curve is that values where assumed 

to connect the low frequency end to the high frequency end, so in reality there is no 

real knowledge of the behavior of K polarization in a wide frequency range. 

 

Here, the behavior up to 9 GHz was successfully described using full-wave 

simulators, which increased some of the blank space filled in figure 5. Still, there is 

a big difference for frequencies higher than 9 GHz as shown by the optical approach. 

 

One particular reason for this difference is that the physical optics approach works 

best when there is little to no curvature of the geometry of interest, so while E and H 

polarizations have an almost “planar” surface due to the relative size of the 

wavelength to the size of the body. In the case of K polarization the front on which 

the wave radiates has a surface with a pretty high curvature. This could render the 

approach for this polarization useless. 

 

Another difference is that while E and H polarization waves travel though a small 

length of the prolate spheroid, K polarization travels through the longer part of it. This 

could also make some difference on the utility of the approach. Finally, as with other 

polarizations, there are differences when water is modelled as frequency dependent 

or frequency independent, those differences can be seen on figure 48.  
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Figure 46. Whole-body SAR for K polarization up to 100 GHz using a FIM model. 

 

Figure 47. Whole-body SAR for K polarization up to 100 GHz using a FDM model. 
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Figure 48. FDM Model vs FIM Model for K polarization. 

 

6.5 Full spectrum of whole-body SAR in terms on different wave 

polarizations 
 

In this final subsection, the 3 polarizations are shown against each other for the full 

range of interest from 10 MHz to a 100 GHz. There is an almost equal 

correspondence to that of figure 5, where its differences arise from the different 

values chosen and in case of K polarization to the limitations of the optics approach.  

 

Figure 49 shows the use of water modelled as a FI material for the optics approach 

and figure 50 shows water modelled as a FD material for the optics approach.  
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Figure 49. Whole-body SAR for 3 polarizations up to 100 GHz using a FIM model. 

 

Figure 50. Whole-body SAR for 3 polarizations up to 100 GHz using a FDM model. 
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7. Conclusions  

A full methodology to calculate the whole-body SAR for a prolate spheroid using 

different wave polarizations has been developed. However, this method is far from 

perfect and only can be used with the aforementioned geometry. Also, MATLAB 

scripts were developed to model a 1D problem of reflection to study the behavior of 

water as a material. 

 

Full wave simulations for big electric bodies are still a resource demanding process. 

Even with the technological advances in computing power and the optimization of 

numerical methods for CEM computations, this kind of problems are very difficult to 

simulate in frequencies higher than 10 GHz. The number of elements, be it mesh 

cell or unknowns, needed to compute at these high frequencies scales so greatly 

that there is no way of performing this simulation without the help of super 

computers. It must be noted that these limitations are for a simple geometrical model 

with a homogeneous material, if simulations for more complex bodies were desired, 

the limitations would start in lower frequencies. 

 

Another important aspect of these simulations is that even though using MoM to 

solve the problem proves to be faster, the memory needed to sustain the high 

frequency simulations is much bigger than the one needed for a program like CST. 

This can be seen in the limits reached by both methods, where even if the RAM 

resources to run the CONCEPT-II simulations were bigger than the ones for CST, in 

the end, CST reached a higher frequency limit in the simulations. It is also important 

to note that CONCEPT doesn’t have all the options in terms of symmetry and for this 

reason the H polarization is heavily affected in terms of range in comparison to CST 

where all 3 polarizations reached the same frequency limit. Finally, due to the 

disadvantages of MoM with dielectric modeling, the calculation of EM fields starts to 

fail for certain polarizations albeit being able to calculate the surface currents needed 

to compute the solution. 
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Once the full wave method limit is reached, the physical optics approach is one 

answer to the problem of the computational limitations presented in the simulations. 

Thanks to behavior described by the material definition like skin effect, this approach 

is used to give an approximation of the characteristics of radiation in very high 

frequencies. The formulation of the solution is quick, efficient and gives a valuable 

approximation of the behavior expected by the theory. Unfortunately, this formulation 

is a solution specific to the geometry of interest and limits the application of this 

formulation. 

 

In regard to the material modeling, differences are found, not only with the 

propagation direction of the incident wave, but also the frequency dependence of 

the material. The perpendicular incidence gives us an understanding of the material 

variations in terms of frequency but it is limited to very unique scenarios. For that 

reason, the general incidence scenario helps us understand how radiation behaves 

in a broader sense, which can be applied to the original model of interest.  
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8. Recommendations 
 

The use of more computing power is still a valid recommendation to push the 

simulations limit to a new maximum frequency; however, is the most difficult to 

implement due to economic constraints. Changes in the prolate spheroid dimensions 

can be used to study the effects of other human body types like children or babies. 

Also, changing the prolate spheroid for an ellipsoid can give a better insight of the 

behavior of EM radiation on humans due to the similar cross-section and the use of 

6 wave polarizations instead of 3. 

 

Further analyses can be performed using the prolate spheroid; for example, two 

spheroids next to each other can be used to simulate the effect of a person shielding 

another from EM radiation. Another line of research would be to use the spheroid 

with a thin sheet covering it to simulate clothing, which is a variable often forgot in 

this kind of simulations. These simulations would apply in the realm of full-wave 

simulators and not with the physical optics approach. 

 

It is also recommended to study other methodologies in terms of the high frequency 

range (10 GHz – 100 GHz) due to the geometrical limitations of the physical optics 

approach. If another method can be developed without a geometrical dependency it 

could help get better results of the high frequency effects for more complex models 

like a full human body. 

 

In terms of mesh density of the models, an optimal value should be found in full-

wave simulators in terms of the tradeoff between accuracy of the results and speed 

of the simulations. Finally, the use of a full body will always be demanding for 

simulations, for this reason a localized study is an option to speed up simulation 

times and also to study the SAR in more specific areas. 
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