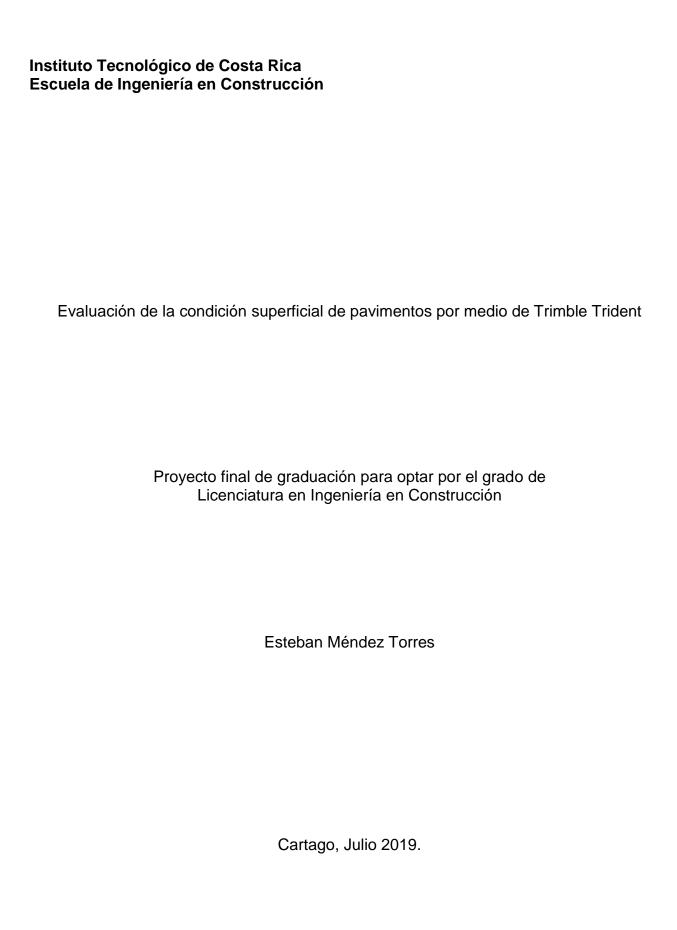


CONSTANCIA DE DEFENSA PÚBLICA DE PROYECTO DE GRADUACIÓN

Proyecto de Graduación defendido públicamente ante el Tribunal Evaluador, integrado por los profesores Ing. Gustavo Rojas Moya, Ing. Pedro Castro Fernández, Ing. Sergio Fernández Cerdas, Ing. Alejandro Medina Angulo, como requisito parcial para optar por el grado de Licenciatura en Ingeniería en Construcción, del Instituto Tecnológico de Costa Rica.

Ing. Gustavo Rojas Moya.

Director


Ing. Pedro Castro Fernández.

Profesor Guía

Ing. Sergio Fernández Cerdas.

Profesor Lector

Ing. Alejandro Medina Angulo. Profesor Observador

Evaluación de la condición superficial de pavimentos por medio de Trimble Trident

Abstract

Resumen

Pavements are designed to comply with a specific useful life before having to be maintained, rehabilitated or reconstructed, however, there are many factors that lead to this expected life not to be fulfilled at full. In Costa Rica, the road infrastructure is currently extremely deteriorated due to the accelerated increase in the vehicle fleet. deficient construction designs, inappropriate materials and the lack of an adequate maintenance, rehabilitation and reconstruction plan for this useful life to last the time it is supposed. Due to this, there is a need to carry out an evaluation of the surface condition of the pavement of the main routes belonging to the national road network, which serves as an input to develop such plan.

To speed up the auscultation process, the "Trident Imaging Hub" software was used. This uses as input, georeferenced images taken by the Geo3D from LanammeUCR. The information from the software is stored in a database for the subsequent calculation of the Pavement Condition Index or PCI. It was found that the distresses called alligator cracking, lane/shoulder drop-off and potholes were the most frequent in the four routes evaluated and those that have done the most damage to the pavement. However, according to ASTM D6433-18, all routes are in a "satisfactory" surface condition, except route 23 that was classified as "fair".

Keywords: pavement, distress, PCI, Trimble Trident, ASTM D6433-18.

Los pavimentos son diseñados para cumplir con un período de vida útil específico antes de tener que ser intervenidos, sin embargo, hay muchos factores que llevan a que esta vida útil prevista no se cumpla en su totalidad. En Costa Rica, la infraestructura vial se encuentra sumamente deteriorada debido al aumento acelerado en la flota vehicular, diseños constructivos deficientes. materiales no apropiados y la falta de un adecuado plan de conservación que haga que esta vida útil se prolongue el tiempo para el cual fue hecha. Debido a esto, surge la necesidad de realizar una evaluación de la condición superficial del pavimento de las principales rutas pertenecientes a la red vial nacional de alta capacidad, la cual sirva de insumo para desarrollar dicho plan.

Para agilizar el proceso de auscultación, se empleó el software "Trident Imaging Hub". Este utiliza como insumo, imágenes georreferenciadas tomadas por el equipo Geo3D de LanammeUCR. La información proveniente del software se almacena en una base de datos para el posterior cálculo del Índice de Condición del Pavimento o PCI. Como principal resultado se obtuvo que los fallos llamados cuero de lagarto, desnivel carril/espaldón y bacheo fueron los más frecuentes en las cuatro rutas evaluadas y, además, los que más daño le han hecho al pavimento. Sin embargo, en su clasificación de acuerdo con la norma ASTM D6433-18, todas las rutas evaluadas se encuentran en una condición superficial "muy buena", a excepción de la ruta 23 que se clasifica como "buena".

Palabras Clave: pavimento, deterioro, PCI, Trimble Trident, ASTM D6433-18.

Evaluación de la condición superficial de pavimentos por medio de Trimble Trident

ESTEBAN MÉNDEZ TORRES

Proyecto final de graduación para optar por el grado de Licenciatura en Ingeniería en Construcción

Julio del 2019

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA EN CONSTRUCCIÓN

Contenido

Pretacio	
Resumen ejecutivo	3
Introducción	
Marco Teórico	11
Metodología	37
Resultados	47
Análisis de los resultados	60
Conclusiones	65
Recomendaciones	67
Referencias	68

Prefacio

Desde hace muchos años Costa Rica tiene un serio problema en relación con la condición de la red vial, tanto nacional como cantonal. La necesidad de mejorar la condición estructural y funcional de dicha red es una preocupación que aqueja a todas las personas que transitan por estas carreteras, a las autoridades, prensa y Sector Transportes. Cabe mencionar que la realidad es alarmante pues, en la mayoría de las rutas, los viajes no son cómodos ni seguros debido a la gran cantidad de deterioros presentes en los pavimentos y que, con el paso del tiempo, estos van empeorando el estado general de la red.

Como solución a esta problemática hay dos entes principales responsables de la conservación de las carreteras, el Consejo Nacional de Vialidad encargado de la red nacional y las municipalidades encargadas de la red cantonal. Para el trabajo adecuado de estas entidades, es requerida información sobre el estado real en el que se encuentra las carreteras.

Sin embargo, la solución no consiste únicamente en distribuir recursos para la reparación de los pavimentos. Es necesario analizar el comportamiento de la estructura de pavimento una vez restaurada, para así tener la información requerida y aplicar, en el futuro, las técnicas de conservación más adecuadas. De la mano con este objetivo está también el de reducir los gastos por trabajos inadecuados a las carreteras, las cuales, dentro de poco tiempo, vuelven a encontrarse en una mala condición.

Una manera de recaudar información periódica sobre las carreteras es mediante una evaluación de la condición superficial al comparar el estado estructural y funcional por medio de la identificación de las patologías de los defectos existentes. Una de las metodologías para el análisis del comportamiento del pavimento corresponde a la norma de ASTM D6433-18 denominada "Práctica Estándar para el Estudio del Índice de Condición de Carreteras y Estacionamientos" o PCI (Índice de Condición del Pavimento).

Este método proporciona un valor cuantitativo, que da a conocer el estado en que se encuentra la capa de rodadura mediante la inspección visual de los distintos tipos de deterioros. El cálculo del índice de condición del pavimento depende del tipo de deterioros existentes, así como su severidad y extensión. Dicho valor posee un rango de acción que varía entre 0, el cual corresponde a un pavimento fallado, y 100, que corresponde a un pavimento en excelente estado.

En este proyecto se hace referencia a la evaluación del estado de la superficie de las rutas pavimentadas pertenecientes a la red vial nacional de alta capacidad, con el objetivo de adquirir información de retroalimentación con respecto a la manera en que el pavimento se deteriora luego de las soluciones adaptadas durante la vida útil, con tal de definir prioridades y procedimientos de conservación. Se busca además adquirir un indicador, que admita la comparación con un criterio homogéneo a lo largo del tiempo.

El procedimiento de auscultación de los deterioros de las rutas seleccionadas se realiza mediante un software denominado "Trident Imaging Hub" con el cual se facilita, tanto la detección y medición de las fallas, como el procesamiento posterior de la información para el cálculo del índice de condición del pavimento. Para su utilización se requieren imágenes georreferenciadas tomadas previamente por LanammeUCR, mediante el equipo Geo3D. El ingeniero Gustavo Avendaño, mediante la creación de un servidor enlazado a Trident, permite que la información obtenida luego de la auscultación pueda ser recopilada en una base de datos.

Un monitoreo constante del PCI es utilizado con el fin de fijar el ritmo y la constancia con que se producen los deterioros del pavimento. Con base en esto se identifican y establecen con anticipación, las necesidades de mejoramiento tanto de diseño como de actividades de mantenimiento, reforzamiento y/o reconstrucción.

1

Agradecimientos

Agradezco primeramente a mis papás, Genaro Méndez y Sandra Torres, por los valores y principios que me han inculcado a lo largo de mi vida y por su apoyo incondicional durante todo este proceso. A Marlen Rodríguez por siempre apoyarme cuando la necesité.

Al Tecnológico de Costa Rica que me brindó los recursos para un desarrollo y educación de calidad; especialmente a la Escuela de Ingeniería en Construcción y a todos los profesores que la integran. De igual manera a mi profesor guía, el Dr. Pedro Castro por ayudarme a concluir este proyecto de la mejor forma.

A todas las personas del Departamento de Planificación Sectorial del MOPT que me brindaron un trato excepcional y todo su apoyo, especialmente a mi guía Ing. Silvia Vásquez, por extenderme la mano y hacer que este proyecto se pudiera llevar a cabo.

Resumen ejecutivo

En la actualidad, Costa Rica posee una gran deficiencia en infraestructura vial, debido a ciertos factores entre los cuales se mencionan el acelerado crecimiento de la flota vehicular que se ha experimentado en los últimos años, diseños y procesos constructivos inadecuados, materiales deficientes y la débil conservación de las rutas. Un adecuado diseño debería corresponder a que el período de vida útil del pavimento sea el previsto, sin embargo, durante este tiempo se pueden presentar variables como las mencionadas anteriormente, por las cuales no se logra cumplir con una condición óptima en el tiempo estipulado. Debido a esto, se incrementa la probabilidad de que la estructura de pavimento se deteriore en un tiempo menor al previsto, agravando la condición de las carreteras.

Para mitigar esta problemática, se definieron dos entes como los encargados de la conservación y mantenimiento de la red vial. Las municipalidades de cada región son las encargadas de brindar la debida conservación de la red cantonal, mientras que el Consejo Nacional de Vialidad es el ente encargado del proceso de planificación de intervenciones en la red vial nacional; sin embargo, para la adecuada aplicación de técnicas de mantenimiento y reforzamiento, se debe tener información sobre el estado actual de cada una de las rutas que se deseen intervenir.

La manera de recaudar información periódica sobre las carreteras es mediante una evaluación de su condición superficial a través de la identificación de las patologías de los defectos existentes. Estas evaluaciones corresponden a una etapa vital en la administración de pavimentos, ya que con ellas es posible verificar si es necesario darle mantenimiento, reforzamiento, reconstrucción, o si está cumpliendo con las especificaciones para las que fue diseñado. Además, la información recaudada puede ser utilizada para generar curvas de desempeño a partir del entendimiento de una serie de antecedentes históricos, así como establecer prioridades en la programación de inversión.

A la hora de analizar una ruta es de suma importancia tener un enfoque integral de todas las variables que afectan de una u otra forma el período de diseño. Las valoraciones modernas efectuadas a los pavimentos cumplen de manera efectiva con este enfoque integral al involucrar análisis que contemplen diagnósticos de la capacidad estructural y funcional de las vías, así como de costo de operación de los vehículos, comodidad, elementos de seguridad vial, diseño geométrico y de su condición superficial.

El objetivo de tomar en cuenta todos estos factores consiste en brindar una guía a los entes encargados de la conservación de la red vial para que ellos, mediante una adecuada administración de pavimentos, puedan determinar políticas y estrategias de intervención que resulten en una distribución eficiente de los recursos limitados del sector público. De acuerdo con los factores mencionados anteriormente, en este proyecto se dio un enfoque al factor de condición superficial de estructuras de pavimento flexible pertenecientes a la red vial nacional de alta capacidad.

La evaluación de la condición superficial de los pavimentos se realiza a través de procedimientos estandarizados de inspecciones visuales, para los que no se requieren equipos experimentados. Una de las metodologías para el análisis del comportamiento del pavimento corresponde a la norma de ASTM D6433-18 denominada "Práctica Estándar para el Estudio del Índice de Condición de Carreteras y Estacionamientos" o PCI (Índice de Condición del Pavimento).

Este método posee un alto nivel de detalle en comparación con otros, ya que brinda una clasificación de la condición superficial, de acuerdo con el valor de PCI obtenido entre 0 y 100, entre fallado – muy pobre – pobre – regular – bueno – muy bueno – excelente. Además, comprende la evaluación tanto de pavimentos flexibles como rígidos; sin embargo, en este trabajo se analizó su aplicación únicamente en estructuras flexibles. El procedimiento es de fácil

implementación y no son necesarias herramientas técnicas ni específicas, ya que se mide la condición superficial indirectamente. Con la utilización de este tipo de programas, disminuye de manera progresiva, la subjetividad que antes existía, para calificar la condición de un pavimento.

Este proyecto brindó un aporte al Ministerio de Obras Públicas y Transportes en su contribución al plan estratégico mediante la recopilación de información y elaboración de una base de datos, así como un informe del estado de la condición superficial de la red vial nacional de alta capacidad. Específicamente fueron evaluadas las siguientes cuatro rutas: un tramo de la ruta 1 Interamericana Norte (Sabana Este – Radial Alajuela), ruta 10 (La Lima – Siquirres), ruta 23 (Barranca – Puerto Caldera) y la ruta 39 Circunvalación (La Uruca – Calle Blancos).

A la hora de analizar estas cuatro rutas mediante el método de índice de condición del pavimento, se utilizó el software "Trident Imaging Hub," el cual, según Trimble (2014), es diseñado para la navegación, visualización y procesamiento de grandes conjuntos de datos de imagen. Dicho software fue utilizado para facilitar el proceso de auscultación de los deterioros y del procesamiento posterior de los datos. Los insumos que utiliza dicho programa corresponden a imágenes georreferenciadas, las cuales fueron tomadas por cámaras del equipo Geo3D que posee el Laboratorio Nacional de Materiales y Modelos Estructurales de la Universidad de Costa Rica. Mediante la creación de un servidor, se enlazó la base de datos creada por el ingeniero Gustavo Avendaño Meza con el software "Trident" para lograr generar y mantener un registro histórico de las fallas de acuerdo con la norma ASTM D6433-18. por medio de índices comparables en un futuro, a partir de un procedimiento aplicable a otras rutas pertenecientes a la red vial nacional.

El proceso de evaluación dejó como resultado una gran cantidad y variedad de deterioros los cuales difirieron en gran magnitud con respecto a cada una de las rutas. La mayor cantidad de apariciones fue distinta para todas ellas, excepto para la ruta 39. En el tramo de la ruta 1, el cuero de lagarto tuvo un total de 7 apariciones lo que representó un 43,8% del total de deterioros hallados. Por su parte, en la ruta 10, el desnivel carril/espaldón tuvo un total de 322 ocurrencias, representando, esta cantidad, el 71,4% de su total evaluado y un 14% de su longitud

total. Con respecto a la ruta 23, el bacheo tuvo un total de 5 repeticiones lo que representa un 55,6% de todas las fallas detectadas en dicha ruta; y en cuanto a la ruta 39, se lograron detectar dos deterioros que aparecieron la misma cantidad de ocasiones, estos fueron el bacheo y el cuero de lagarto, con un total de 76 y aportando cada uno un 30,6% al total de fallas en esta ruta.

La densidad es el porcentaje de área de la unidad de muestra que posee un deterioro determinado, con un mismo nivel de severidad; con base en esto, es importante tener en cuenta no sólo la cantidad de deterioros, sino también la densidad de cada uno de ellos en una misma sección, debido a que una gran cantidad de fallas, en una misma sección, no significa necesariamente que este produzca el mayor daño a la estructura de pavimento ni que corresponda a un deterioro representativo de la ruta.

Como se mencionó anteriormente, en la Ruta 1, la falla más repetitiva fue el cuero de lagarto, sin embargo, en ninguna de las ocasiones su densidad fue mayor a 5%, lo que demostró que, aunque fue el que en más ocasiones apareció, no fue el que presenta una mayor extensión, a diferencia del bacheo, que tuvo densidades de 25,9%. En la ruta 10 la falla con mayor densidad correspondió al bacheo con valores de hasta un 99%. En la ruta 23 el bacheo presentó la mayor densidad en ambos sentidos; en el sentido Barranca - Puerto Caldera fue de 36% y en el sentido Puerto Caldera – Barranca de 21%. Esto demuestra que el bacheo fue tanto el que más ocasiones apareció como el que tuvo mayor extensión. En Circunvalación se analizó la densidad de los dos deterioros con igual cantidad de apariciones: el cuero de lagarto tuvo valores muy bajos de entre 0,2% y 10%, a diferencia de los baches, cuyas densidades llegaron a niveles de hasta 79%. Esto demuestra la gran cantidad de área que cubre este último sobre las secciones de control, por lo que es muy importante no perderlo de vista cuando se efectúa el reemplazo de un área de pavimento.

Por su parte, los deterioros que producen un mayor daño a la estructura del pavimento son los que poseen un mayor valor deducido, por lo tanto, a las causas que originan específicamente dichos deterioros, son a las que se les debe prestar más atención. Los resultados obtenidos en el trabajo con respecto a estos deterioros dejan en evidencia que la falla que representó un mayor daño al pavimento de la sección de control de cada una de las carreteras evaluadas fue: en la ruta 1, el cuero de

lagarto con un valor deducido igual a 64,8%; en la ruta 10, el desnivel carril/espaldón con un valor deducido igual a 57,6%; en la ruta 23, los bacheos con un valor deducido igual a 55,4%; y en la ruta 39 el cuero de lagarto con un valor deducido igual a 44,2%.

Con respecto al índice de condición del pavimento todas presentaron un estado superficial y una clasificación de acuerdo con la norma ASTM D6433-18 muy homogénea. Los valores de PCI fueron los siguientes: ruta 1 tuvo un valor de 76 y una clasificación de muy buena, la ruta 10 un valor de 83 y una clasificación de muy buena, la ruta 23 presentó un valor de 69 y una clasificación de buena, la ruta 39 tuvo un valor de 76 y una clasificación de muy buena. Estas clasificaciones fueron un indicador de la buena condición que presentan las rutas, sin embargo, deben tomarse en consideración otras variables para su análisis. Una de ellas es el tiempo en que fueron rehabilitadas o reconstruidas por última vez, ya que, con dicha información, se puede tener un conocimiento sobre si las rutas se deterioraron más rápido de lo previsto o si van de acuerdo con el periodo de diseño. Cabe recalcar que se debe dar un mantenimiento periódico a las carreteras para que estas alcancen el periodo de diseño, por lo que, aunque la ruta cuente con una condición superficial "buena" o "muy buena", se le debe prestar especial atención a las secciones de control con menor PCI.

Existen varios deterioros los cuales no son contabilizados por la norma ASTM D6433-18, pero que generan un impacto negativo en la integridad de la estructura de pavimento y la seguridad de los usuarios que transitan por la carretera. De acuerdo con el Ministerio de Obras Públicas y Transportes en el informe Manual de Auscultación Visual de Pavimentos de Costa Rica (2010), estos deterioros corresponden a un caso especial y son específicamente dos: tapas de registros pluviales levantadas o hundidas y el desgaste superficial. Estos tipos especiales de deterioro poseen un valor deducido igual a cero debido a que no se toman en cuenta en el cálculo del índice de condición del pavimento. Sin embargo, es de suma importancia tomarlos en cuenta, por lo que, durante la evaluación de las cuatro rutas se levantaron dichas fallas

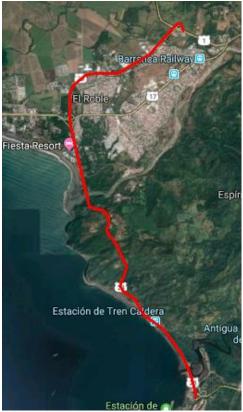
La mayor cantidad de las decisiones sobre la intervención en los proyectos referentes a la conservación vial, se toman de acuerdo con el criterio técnico de ingenieros a cargo de las diferentes zonas en la que fue dividida la red vial nacional. Debido a eso, es de suma importancia el brindar herramientas de gestión, las cuales homogenicen estos criterios y que permitan que, en cualquier zona y proyecto, donde se tome una decisión de conservación vial, tenga el mismo sustento técnico.

Introducción

El período de duración de los pavimentos se ve influenciado por una serie de factores como lo son el clima, las cargas ocasionadas por el flujo vehicular, propiedades de los materiales utilizados y el propio proceso constructivo (Castro, 2018, p.8-9). En teoría, un adecuado diseño debería generar que el período de vida útil del pavimento sea el previsto. Sin embargo, durante este tiempo se pueden presentar una serie de variables por las cuales no se logra cumplir con el período de diseño. Por ejemplo: errores durante la construcción de las vías que conlleven a defectos sobre la superficie, la deficiencia del diseño elaborado, el crecimiento en el volumen del tránsito, drenajes mal construidos que no permiten la evacuación lateral del agua pluvial, entre otros. Por estas razones, es muy probable que el pavimento se deteriore con una mayor rapidez a la esperada, agravando la condición de las carreteras.

Debido a esto, es sumamente importante emplear técnicas de mantenimiento reforzamiento de los pavimentos; y para su adecuada aplicación, se debe tener conocimiento de su estado actual. Para ello. existen una serie de métodos de evaluación que son empleados a lo largo del mundo para recopilar y estudiar la información referente a la condición de las vías. No obstante, en Costa Rica uno de los más utilizados es el denominado índice de condición de pavimentos o método PCI, debido a su versatilidad, al permitir evaluar pavimentos tanto flexibles como rígidos y al no necesitar herramientas técnicas ni específicas, dado que la condición superficial es medida indirectamente (Unidad de Investigación, 2008).

Ahora bien, las valoraciones modernas efectuadas a los pavimentos involucran análisis que contemplan diagnósticos de la capacidad estructural y funcional de las vías, lo cual ha llevado a que, desde antes de los 90's, se dan mejores niveles de confort para los usuarios de las carreteras, logrando con ello una reducción en

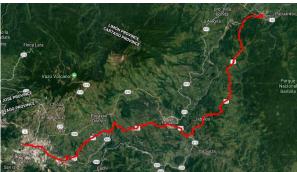

cuanto al consumo de combustible, simultáneamente, los pavimentos tienen una vida útil más prolongada (Smith, 2014).

Lo comentado anteriormente sirvió como base para este trabajo, el cual consiste en brindar un apoyo al Ministerio de Obras Públicas y Transportes en su plan estratégico, mediante la recopilación de datos y elaboración de un informe que contenga el estado de la condición superficial de la red vial nacional de alta capacidad. Específicamente fueron evaluadas cuatro rutas, todas compuestas por una estructura de pavimento flexible, pertenecientes a dicha red, las cuales corresponden a:

Ruta 23: posee una extensión de aproximadamente 12,67 km y se ubica desde Barranca, ruta 1, hasta la caseta de entrada muelle en Puerto Caldera. La configuración de las secciones de control corresponde al cuadro N₀ 1 y a la figura N₀ 1. Cabe destacar que el proceso de auscultación de los deterioros en esta ruta fue realizado mediante Trident en marzo del 2019.

Cuadro 1. Descripción de las secciones de control de la ruta 23

do la lata 20			
Ruta 23			
Sección Longitud (m)		Descripción	
60610	6100	Barranca – Boca río Barranca	
60840	6565	Boca río Barranca – Puerto Caldera	


Figura 1. Extensión de la ruta 23 analizada Fuente: Google Earth, 2018

➤ Ruta 10: posee una extensión de aproximadamente 90,41 km y se ubica desde La Lima en la intersección con la ruta 2 – Florencio del Castillo, hasta Siquirres, ruta 153. La configuración de las secciones de control corresponde al cuadro N₀ 2 y a la figura N₀ 2. Cabe destacar que el proceso de auscultación de los deterioros en esta ruta fue realizado mediante Trident en marzo del 2019.

Cuadro 2. Descripción de las secciones de control de la ruta 10

de la fula 10			
Ruta 10			
Sección	Longitud (m)	Descripción	
30061	1505	La Lima – Guadalupe	
30062	2105	Guadalupe – Barrio los Ángeles	
30040	2990	Barrio los Ángeles – R. Blanquillo	
30021	3320	R. Blanquillo – Paraíso	
30022	9745	Paraíso – Arrabara	

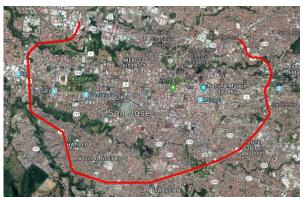
30471	5235	Arrabara – Birris
30472	4350	Birris – Quebrada Honda
30010	7440	Quebrada Honda – Alto Victoria
30480	7025	Alto Victoria – Turrialba
30001	6400	Turrialba – Eslabón
30002	20025	Eslabón – La Amistad
70420	20265	La Amistad – Siquirres

Figura 2. Extensión de la Ruta 10 analizada Fuente: Google Earth, 2018

➤ Tramo de la Ruta 1 (Interamericana Norte): posee una extensión de aproximadamente 15,21 km y se ubica desde Sabana Este hasta la Radial Alajuela, ruta 153. La configuración de las secciones de control corresponde al cuadro N₀ 3 y a la figura N₀ 3. Cabe destacar que el proceso de auscultación de los deterioros en esta ruta fue realizado mediante Trident en marzo del 2019.

Cuadro 3. Descripción de las secciones de control del tramo de la Ruta 1

dei tramo de la ridia i			
	Ruta 1		
Sección	Longitud (m)	Descripción	
19002	2250	Sabana Este – La Uruca	
19003	3370	La Uruca – Rio Virilla	
40040	3430	Rio Virilla – Intersección San Antonio de Belén	
40710	3050	Intersección San Antonio de Belén – Rio Segundo	
20000	3110	Rio Segundo – Radial Alajuela	


Figura 3. Extensión de la Ruta 1 analizada Fuente: Google Earth, 2018

➤ Ruta 39: posee una extensión de aproximadamente 14,91 km y se ubica desde La Uruca, ruta 108 hasta Calle Blancos, ruta 109. La configuración de las secciones de control corresponde al cuadro N₀ 4 y a la figura N₀ 4. Cabe destacar que el proceso de auscultación de los deterioros en esta ruta fue realizado mediante Trident en febrero del 2019.

Cuadro 4. Descripción de las secciones de control de la ruta 39

Ruta 39			
Sección	Longitud (m)	Descripción	
19090	870	La Uruca – Paso superior ruta 1	
19091	880	Paso superior ruta 1 – Boulevard Rohrmoser	
19092	590	Boulevard Rohrmoser – Pavas	
19093	620	Pavas – Paso inferior ruta 167	
19094	995	Paso inferior ruta 167 – Hatillos 7/8	
19095	1170	Hatillos 7/8 – Hatillos 6/3	
19096	810	Hatillos 6/3 – Hatillos 4/5	
19097	525	Hatillos 4/5 – Hatillo	
19098	1605	Hatillo – San Sebastián	
19099	725	San Sebastián – Paso Ancho	
19100	1160	Paso Ancho – La Y griega	
19101	1330	La Y griega – Rotonda de las Garantías Sociales	
19102	770	Rotonda de las Garantías Sociales – Río Ocloro	
19089	750	Río Ocloro – San Pedro	

19103	1175	San Pedro – Betania	
19104	470	Betania - Guadalupe	
10105	19105 465	Guadalupe – Calle	
19103		Blancos	

Figura 4. Extensión de la ruta 39 analizada Fuente: Google Earth, 2018

Este análisis es posible a través de los datos recabados por LanammeUCR, mediante el equipo Geo3D en octubre del 2018, los cuales consisten en imágenes georreferenciadas que muestran en distintas secciones de control, la totalidad del derecho de vía en las rutas nacionales. Dicho procesamiento se efectúa mediante el *software* "Trident Imaging Hub" brindado por el MOPT, en el que se observan los distintos tipos de deterioros que presenta la capa de rodadura del pavimento.

Se espera que la combinación de dichos elementos funcione como un apoyo para las autoridades respectivas, en este caso los funcionarios del Departamento de Planificación Sectorial del Ministerio de Obras Públicas y Transportes, para tomar decisiones en cuanto a la posible intervención de las carreteras nacionales o en la realización de proyectos concretos, contribuyendo de manera significativa en la utilización eficaz y eficiente del presupuesto que es destinado para tales fines.

Planteamiento del problema

En la actualidad, Costa Rica posee una gran necesidad en relación con la infraestructura vial, debido a ciertos factores entre los cuales se mencionan el acelerado crecimiento de la flota vehicular que se ha experimentado en los últimos años, diseños y procesos constructivos inadecuados y la deficiente conservación de las

rutas nacionales. Para mitigar esta problemática, el Consejo Nacional de Vialidad es el ente encargado del proceso de planificación de intervenciones en la red vial nacional, el cual está integrado de las siguientes etapas: a) la recopilación y análisis de datos, b) propuesta y ejecución de soluciones estructurales y funcionales para la conservación de las rutas pavimentadas.

Con el fin de llevar a cabo este proceso, se requiere de insumos fundamentales que corresponden a información de la capacidad estructural y funcional del pavimento, los cuales se obtienen a través del Ministerio de Obras Públicas y Transportes, el Consejo Nacional de Vialidad y el Laboratorio Nacional de Materiales y Modelos Estructurales. Cada una de estas instituciones está encargada de recabar una parte de dicha información para luego ser unificada por el CONAVI y, con base en ella, tomar decisiones orientadas a que toda la red nacional pavimentada llegue a tener una condición óptima.

Sin embargo, el país ha sufrido un descenso en la inversión pública y privada en infraestructura vial y transporte, lo cual es de suma importancia ya que juega un papel significativo en el crecimiento y desarrollo de una nación. Cabe destacar que, en Costa Rica, la asignación de recursos económicos para la construcción y conservación de vías terrestres, respecto al producto interno bruto, no ha superado el 2% en las últimas décadas, lo cual demuestra un deterioro muy significativo en este sector. De acuerdo con el Ministerio de Obras Públicas y Transporte (2018), en su informe denominado "Marco Sectorial 2019-2024", CEPAL, realizó déficit investigaciones acerca del infraestructura. En ellas se determinó que la región centroamericana requiere una inversión promedio anual de aproximadamente 6,2% del producto interno bruto para satisfacer las necesidades o requerimientos mínimos, lo cual denota la decadencia que se tiene como país en este tema.

Antecedentes

Con el paso del tiempo muchas personas han utilizado la metodología del índice de condición del pavimento propuesta por American Society for Testing and Materials como un complemento para la toma de decisiones. En el 2009, Rodríguez presenta su tesis denominada "Cálculo del Índice de

Condición del pavimento flexible en la Av. Luis Motero, distrito de Castilla" en la cual tiene como fin analizar, mediante el método PCI, la avenida Luis Montero. En este proyecto se evaluaron 200 m en los que se levantaron todos los deterioros, así como la severidad asociada. Como etapa final, el estudio culmina con la aplicación de la metodología PCI a la avenida, dando como resultado un valor de 49 v una clasificación de regular en su condición superficial de acuerdo con la norma ASTM D6433-03. Rodríguez indica que la ruta posee dicha condición debido a las obras de mantenimiento que se realizaron en el año 2008 con las que se mejoró la condición general de la carretera. Dentro de sus recomendaciones se aludió únicamente a algunas técnicas de mantenimiento preventivo.

Cerón (2006) expone un proyecto denominado "Evaluación y Comparación de Metodologías VIZIR y PCI sobre el tramo de Vía en Pavimento Flexible y Rígido de la Vía: Museo Quimbaya - CRQ Armenia Quindío (PR 00+000 -PR 02+600)" en el cual se utiliza la metodología VIZIR para el análisis de la condición superficial del pavimento flexible y el índice de condición superficial para analizar el pavimento rígido. La ruta fue analizada por tramos con ambos métodos. El tramo 1 está conformado por pavimento flexible el cual obtuvo un PCI de 54 y una clasificación de regular en su condición superficial, de acuerdo con la norma ASTM D6433-03; con respecto al método VIZIR, se obtuvo un valor de 3 y, de igual manera, una clasificación de regular. El tramo 2 está conformado por un pavimento rígido, el cual obtuvo un PCI de 87 y una clasificación de excelente, mientras que, con el método VIZIR, no se obtuvo ninguna clasificación, ya que esta metodología no está diseñada para interpretar los deterioros en un pavimento rígido, lo cual corresponde a una limitación del mismo método.

En el 2011 se expone la tesis denominada "Determinación y evaluación de las patologías del concreto en las plataformas deportivas de las instituciones Educativas Estatales del Distrito de Tumbes" por Ramos. Este informe analiza el estado que tienen las plataformas deportivas ya que se deterioraron al poco tiempo de que fueron construidas. Entre las posibles causas se encuentran los cambios de temperatura, ya que, durante el día en Tumbes, la temperatura se incrementa notablemente, sin embargo, en la noche es todo lo contrario. Como método de evaluación se propone utilizar el índice de condición del pavimento con el cual se obtuvo un PCI de 54 y una

clasificación de muy bueno en su condición superficial. Se mencionan además los deterioros más repetitivos entre los que se encuentran: grietas longitudinales, pulimiento de agregados y desgaste de juntas.

Objetivos

Se plantea para el presente proyecto el valorar el estado de la superficie de cuatro rutas pavimentadas pertenecientes a la red vial nacional de alta capacidad, con el fin de que se genere un plan estratégico para su oportuna intervención. Además, se tienen los siguientes objetivos específicos:

- Realizar el levantamiento de un portafolio de datos que contenga las capturas de cuatro rutas pavimentadas de la red vial nacional.
- Aplicar la metodología desarrollada a cuatro rutas nacionales en específico.
- Procesar los datos con base en la utilización del software Trimble Trident, para la red vial nacional de alta capacidad.
- Elaborar un informe de acuerdo con la condición superficial de cuatro rutas de la red vial nacional de alta capacidad como contribución del MOPT al plan estratégico.

Alcances y Limitaciones

El presente proyecto consiste en la evaluación de la condición superficial de pavimentos mediante la utilización de un software denominado "Trident Imaging Hub". Se analizan únicamente rutas con estructura de pavimento flexible para limitar el procesamiento de datos a la hora de calcular el índice de condición de pavimento. De acuerdo con la norma ASTM D6433, el procesamiento de datos para el cálculo del PCI varía si se trata de una estructura flexible o rígida: en el cálculo de las unidades de muestreo, ya que se debe tomar en cuenta el tamaño de las losas de concreto hidráulico, a la hora de evaluar los deterioros existentes, debido que cambian de acuerdo con el tipo de estructura, en el cálculo de los valores deducidos, puesto que se deben usar otros gráficos,

Se decide evaluar únicamente rutas pertenecientes a la red vial nacional de alta capacidad por dos razones principales: la primera está relacionada al equipo Geo 3D que posee LanammeUCR, va que se tienen imágenes referenciadas únicamente de algunas de las rutas pavimentadas en el 2018. Esto sucede debido a que por temas de calibración del vehículo y a la sensibilidad de las cámaras, se puede circular únicamente por rutas pavimentadas, y la segunda es debido a que dichas rutas son las que tienen una mayor importancia y generan un impacto considerable al país en comparación con la red vial de mediana capacidad o incluso con la Red Vial Complementaria. Además, se analizan solo cuatro rutas (1, 10, 23 y 39) debido al tiempo de realización del trabajo final de graduación, sin embargo, cabe destacar que lo óptimo sería continuar la evaluación de toda la red y conformar una base de datos la cual pueda ser modificada con el tiempo.

Entre las limitaciones que se tuvieron al realizar este proyecto están:

- La evaluación de la condición superficial del pavimento consiste en inspeccionar la vía caminando sobre ella y tomando notas detalladas de las fallas encontradas en la superficie. Aunque "Trident" es muy preciso al medir longitudes y áreas, no puede medir profundidades; por lo que afecta el cálculo de PCI, ya que algunos deterioros requieren de este dato para la clasificación de su severidad.
- Las imágenes georreferenciadas tomadas por LanammeUCR corresponden a archivos muy pesados, por lo que el traspaso de dicha información a las bases de datos toma varios días. En una ocasión debido al continuo trabajo del disco duro externo, este se quemó atrasando todo el proyecto.

Marco teórico

Introducción a los pavimentos

Pavimentos

El pavimento es una estructura compuesta por una serie de capas, las cuales se encuentran apoyadas en toda su superficie sobre el terreno natural llamado subrasante. Estas capas denominadas paquete estructural (ver figura N_0 5), son las encargadas de transferir los esfuerzos producidos por las cargas de tránsito y el medio ambiente a la subrasante sin que se exceda la capacidad de soporte de ambos elementos.

Figura 5. Paquete estructural de un pavimento. Fuente: Revit, 2017.

Adicionalmente, un pavimento debe proveer al usuario una superficie de ruedo segura, cómoda y permanecer en las mejores condiciones en el tiempo para el que fue diseñado.

Esta estructura debe cumplir con los siguientes requisitos:

- Resistente al desgaste de la capa de ruedo producto del efecto abrasivo por las llantas.
- Presentar una capa de ruedo con una regularidad superficial óptima, la cual brinde comodidad a los usuarios.
- Prevenir la penetración o acumulación interna de la humedad.
- Presentar los espesores suficientes para soportar las cargas del tránsito.
- Presentar una capa de ruedo resistente al derrape.
- Presentar un adecuado diseño y mantenimiento tal, que el ruido de rodadura sea el mínimo posible.
- Resistente a la intemperie, por ejemplo: cambios de temperatura, tormentas tropicales, entre otros.
- Presentar los drenajes adecuados para evitar problemas de hidroplaneo y daños a la estructura interna.

Tipos de pavimentos

Pavimento flexible

Son los pavimentos cuya capa de rodadura está conformada por una mezcla de concreto asfaltico, en el cual, el ligante corresponde a asfalto. Este tipo de estructura permite la mayor magnitud de deformación total en el punto de una carga de nueve mil libras con un rango promedio de entre cuarenta y ciento cincuenta centésimas de centímetro (Castro, 2018, p.3).

Además, el paquete estructural se compone por dos capas denominadas base y subbase, las cuales tienen un papel fundamental en este tipo de pavimentos, ya que aportan una cantidad considerable de rigidez y resistencia a las cargas a las que la estructura está expuesta. Dichas capas tienen las siguientes características:

- Base: construida inmediatamente debajo de la capa de ruedo, de un material granular más fino y de mejor calidad que el de la subbase. Tiene una gran importancia ya que posee una alta capacidad estructural y brinda protección al resto del pavimento. El material granular puede ser agregado triturado. estabilizado con emulsión asfáltica o mezcla asfáltica con agregado de mayor tamaño y de menor contenido de asfalto denominada base asfáltica. espesores típicos para utilizar rondan entre diez y cuarenta centímetros.
- Subbase: construida inmediatamente debajo de la base, normalmente de un material mejor graduado y de mejor calidad que el de la subrasante. Tiene una gran importancia, ya que permite la correcta construcción del resto de la estructura, además de servir como un medio de evacuación del agua para evitar la aceleración del deterioro del paquete estructural. El material de composición corresponde al lastre y los espesores típicos van desde quince a cien centímetros, por lo que resulta más económico que el utilizado en la base.

La vista general de un pavimento flexible se observa en la figura $N_{\rm o}$ 6.

Figura 6. Paquete estructural de un pavimento flexible.

Fuente: Revit, 2017.

Pavimento rígido

Son los pavimentos cuya capa de rodadura está conformada por una mezcla del material concreto hidráulico, en el cual, el ligante corresponde a cemento hidráulico. Este tipo de estructura permite la menor magnitud de deformación total en el punto de una carga de nueve mil libras con un rango de entre cinco y quince centésimas de centímetro (Castro, 2018, p.4).

De igual manera que el pavimento flexible, el paquete estructural puede estar compuesto por dos capas denominadas base y subbase. Sin embargo, la importancia de las capas inferiores no es tan relevante ya que aportan una cantidad menos considerable de rigidez y resistencia a las cargas a las que la estructura está expuesta, en comparación a lo que aporta la losa de concreto hidráulico, ya que su rigidez se encuentra entre los cuatro y seis millones de libra por pulgada cuadrada. Dichas capas tienen las siguientes características:

- Base: construida inmediatamente debajo de la capa de ruedo, de un material granular más fino y de mejor calidad que el de la subbase. Tiene una gran importancia ya que posee una alta capacidad estructural y brinda protección al resto del pavimento. El material granular puede ser agregado triturado, estabilizado con cemento, estabilizado con emulsión asfáltica o mezcla asfáltica con agregado de mayor tamaño y de menor contenido de asfalto denominada base asfáltica. Los espesores típicos para utilizar rondan entre diez y veinte centímetros.
- Subbase: construida inmediatamente debajo de la base, normalmente de un material mejor graduado y de mejor calidad que el de la subrasante. Tiene una gran importancia ya que permite la correcta construcción del resto de la estructura, además de servir como un medio de evacuación del agua para evitar la aceleración del deterioro del paquete estructural. El material de composición corresponde al lastre y los espesores típicos van desde quince a cuarenta centímetros, por lo que resulta más económico que el utilizado en la base.

La vista general de un pavimento rígido se observa en la figura N_o 7.

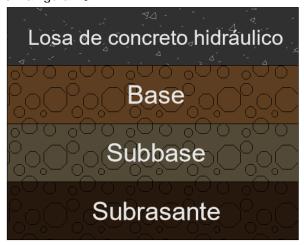
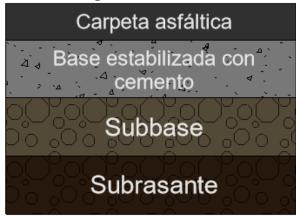


Figura 7. Paquete estructural de un pavimento rígido

Fuente: Revit, 2017.

Pavimento semirrígido


A este tipo de pavimento se le conoce como hibrido o mixto ya que es una combinación entre el flexible y el rígido. La capa de rodadura está conformada por una mezcla asfáltica para superficie de ruedo. Este tipo de estructura permite una magnitud media de deformación total en el punto de una carga de nueve mil libras con un rango de entre veinte y cincuenta centésimas de centímetro (Castro, 2018, p.4).

Además, el paquete estructural se compone por dos capas denominadas base y subbase las cuales tienen las siguientes características:

- Base: construida inmediatamente debajo de la capa de ruedo, de un material granular más fino y de mejor calidad que el de la subbase. Tiene una gran importancia ya que posee una alta capacidad estructural y brinda protección al resto del pavimento. El material granular corresponde a agregado estabilizado con cemento. Los espesores típicos para utilizar rondan los diez y veinticinco centímetros.
- Subbase: construida inmediatamente debajo de la base, normalmente de un material mejor graduado (granulometría

densa) y de mejor calidad que el de la subrasante. Tiene una gran importancia ya que permite la correcta construcción del resto de la estructura, además de servir como un medio de evacuación del agua para evitar la aceleración del deterioro del paquete estructural. El material de composición corresponde al lastre y los espesores típicos van desde quince a sesenta centímetros, por lo que resulta más económico que el utilizado en la base.

La vista general de un pavimento semi-rígido se observa en la figura N_0 8.

Figura 8. Paquete estructural de un pavimento semirrígido.

Fuente: Revit, 2017.

Ventajas y desventajas de los pavimentos

Cada uno de los tipos de pavimento mencionados anteriormente, tiene ventajas y desventajas en relación con temas económicos, funcionales, ambientales, comodidad y seguridad del usuario, entre otros. A continuación, se presentan tres cuadros en los cuales se resumen algunos de los aspectos más importantes a tener en consideración cuando se planea utilizar alguna de estas estructuras en un proyecto de obra civil.

El pavimento flexible tiene las siguientes características presentes en el cuadro N_0 5.

Cuadro 5. Ventajas y desventajas del pavimento flexible

Pavimento flexible

Ventajas

- Menor costo de inversión inicial
- Periodo de diseño puede ser corto o largo de acuerdo con la proyección del diseñador.
- Mayor simplicidad a la hora de realizar rehabilitación y/o reconstrucción

Desventajas

- Requiere de un mantenimiento constante y de mayor costo
- Las cargas de tránsito al detenerse constantemente producen roderas
- Mayores espesores en el paquete estructural
- > En presencia de tránsito alto, es menos factible en cuanto al costo.
- Los deterioros reaparecen con mayor facilidad ante un mantenimiento no óptimo

Fuente: Castro, 2018 & Miranda, 2010.

El pavimento rígido tiene las siguientes características presentes en el cuadro N_0 6.

Cuadro 6. Ventajas y desventajas del pavimento rígido

Pavimento rígido

Ventajas

- Menores espesores en el paquete estructural
- No requiere de un mantenimiento constante y este es de menor costo
- > El concreto hidráulico refracta la luz por lo que la visibilidad aumenta
- Periodo de diseño debe ser largo
- Debido a que en el concreto hidráulico no se producen depresiones, la acumulación de agua pluvial es menor, por lo que disminuye la posibilidad de que ocurra hidroplaneo
- Debido a la alta rigidez de la losa, esta se mantiene plana, lo cual es fundamental para la comodidad y seguridad de los usuarios
- A diferencia del concreto asfáltico, este es más factible en cuanto al costo en presencia de tránsito alto

Desventajas

- Mayor costo de inversión inicial
- Mayor complejidad a la hora de realizar rehabilitación y/o reconstrucción
- Mayor dificultad para la reconstrucción

Fuente: Castro, 2018 & Miranda, 2010.

Al comparar las características del pavimento semirrígido con el flexible, se obtiene el cuadro $N_{\mbox{\scriptsize 0}}$ 7.

Cuadro 7. Ventajas y desventajas del pavimento semirrígido en comparación con el flexible

Pavimento semirrígido

Ventajas

- Menores espesores en el paquete estructural
- Más factible en cuanto al costo en presencia de tránsito alto
- Mayor resistencia al agrietamiento por fatiga en la capa de ruedo
- Más competitivo con altos volúmenes de tránsito que el pavimento flexible

Desventajas

- Más susceptible a la ocurrencia de problemas durante la compactación de la base estabilizada con cemento
- Más susceptible al agrietamiento por contracción en la base estabilizada con cemento

Fuente: Castro, 2018 & Miranda, 2010.

Método PCI

Glosario

De acuerdo con el Ministerio de Obras Públicas y Transportes (2011) se definen los siguientes conceptos:

Unidad de muestra: segmentos en los que se divide cada una de las secciones de control a evaluar. Posee un tamaño estándar entre 225 ± 90 m².

Densidad: es el porcentaje de área de la unidad de muestra que posee un deterioro determinado, con un mismo nivel de severidad.

Deducciones o valor deducido: son un valor de ponderación el cual, toma en cuenta simultáneamente los tres factores asociados a cada deterioro; tipo, extensión y severidad.

Señalan el grado de afectación que cada combinación de los tres factores tiene sobre la condición del pavimento.

Métodos para la evaluación superficial de pavimentos

La evaluación de la condición superficial de los pavimentos se basa en la identificación de las patologías de los defectos existentes. Se realiza a través de procedimientos estandarizados de inspecciones visuales, para los que no se requieren equipos sofisticados necesariamente. Los defectos que se toman en consideración son los que provienen de un proceso de deterioro causado por ciertos factores, entre los que se pueden mencionar: clima, cargas del tránsito, propiedades de los materiales y procesos constructivos. (Castro, 2018, p.8-9)

La selección de la correcta metodología depende de los objetivos que son planteados al inicio del proyecto. De manera paralela, la eficiencia de las técnicas varía de acuerdo con el nivel de detalle requerido y de la cantidad de variables presentes en el proyecto lo cual eleva los costos y dificultad de la evaluación.

El objetivo principal de la evaluación de la condición superficial de un pavimento es determinar los deterioros existentes y la posterior toma de decisiones con base en la recopilación de dichos datos. La identificación de los deterioros se realiza tomando en cuenta tres factores fundamentales:

- Tipo: corresponde a determinar el tipo de deterioro además de la clasificación pertinente de acuerdo con su causa.
- Severidad: corresponde al estado actual del deterioro lo cual se refleja en el estado del área afectada por el deterioro.
- Extensión: corresponde a la magnitud o cobertura del área afectada por el deterioro.

La manera más común de efectuar el levantamiento de datos es realizarlo manualmente por equipos de trabajo, los cuales anotan las características pertenecientes a cada deterioro en plantillas impresas. Posteriormente se le da el debido procesamiento e incluso, en muchas

ocasiones, esta información es transferida a plantillas electrónicas.

En la actualidad existen equipos que toman videos de imágenes georefenciadas con los cuales se realiza el levantamiento de los deterioros para el posterior análisis en oficina. Cuando estos equipos son utilizados en vehículos, normalmente se realiza un levantamiento continuo de toda la red. Cuando la evaluación se debe realizar a pie, lo convencional es que esta sea una evaluación por muestreo.

Ciertas metodologías de evaluación tienen modelos matemáticos los cuales brindan un índice para explicar numéricamente el estado de condición superficial del pavimento. Los parámetros empleados para el cálculo de dicho índice están relacionados con los deterioros existentes en la superficie del pavimento, estos son: tipo, severidad y extensión.

En la actualidad existen varios métodos para la evaluación de la condición superficial de los pavimentos, ya sean flexibles, rígidos o semirrígidos. Entre los más conocidos están: VIZIR, PCI, SHRP.

Método PCI (Pavement Condition Index)

De acuerdo con la Unidad de Investigación de la Universidad de Costa Rica (2008), este método fue desarrollado por el Cuerpo de Ingenieros del Ejército de los Estados Unidos y su objetivo inicial era su uso en pavimentos de aeropuertos. Posteriormente, debido a la necesidad de un método de evaluación superficial, el rango de aplicación fue ampliado a carreteras, autopistas y estacionamientos. Este método comprende la evaluación tanto de pavimentos flexibles como rígidos, sin embargo, en este trabajo se analizará su aplicación únicamente en estructuras flexibles.

El procedimiento es de fácil implementación y no son necesarias herramientas técnicas ni específicas ya que se mide la condición superficial indirectamente. Debido a esa facilidad y a que es uno de los métodos más completos para la valoración de pavimentos, es ampliamente aprobado y adoptado por varias agencias entre las que se mencionan: el APWA (*American Public Work Association*), el MOPT (Ministerio de Obras Públicas y Transportes) e incluso fue publicado

como un método de análisis por ASTM (*American Society for Testing Materials*)

Este sistema corresponde a un procedimiento, el cual determina la condición de la capa de rodadura del pavimento mediante la inspección visual de los distintos tipos de deterioros. El reconocimiento de los deterioros superficiales de una estructura de pavimento está en función de tres factores fundamentales: tipo, severidad y extensión.

La formulación de un índice que simultáneamente tomara en cuenta dichos factores ha sido complicada, ya que existen muchas posibles combinaciones. La solución consistió en la introducción de las deducciones, las cuales corresponden a un valor de ponderación, con el objetivo de señalar el grado de afectación que cada combinación de los tres factores tiene sobre la condición del pavimento.

De acuerdo con la norma D6433-18 (Practica Estándar para el Estudio del Índice de Condición de Carreteras y Estacionamientos) por ASTM (2018), el PCI es un índice numérico cuyo rango de acción varía entre 0, el cual corresponde a un pavimento fallado, y 100, que corresponde a un pavimento en excelente estado. En cuadro N_{\circ} 8 se observa una descripción detallada de todos los rangos de la clasificación.

Cuadro 8. Rangos de clasificación del PCI

Rango	Clasificación	
85 – 100	Excelente	
70 – 85	Muy bueno	
55 – 70	Bueno	
40 – 55	Regular	
25 – 40	Pobre	
10 – 25	Muy pobre	
0 – 10	Fallado	

Fuente: Ministerio de Obras Públicas y Transportes, 2011.

El cálculo del Índice de Condición del Pavimento se basa en los datos recopilados durante la inspección visual ya sea en campo o con imágenes georeferenciadas. Este se desarrolló con el fin de obtener un factor que indique la condición estructural y operacional de la superficie del pavimento en estudio. Los datos obtenidos mediante la evaluación dan una clara percepción de las causas pertenecientes a cada uno de los deterioros, lo cual es de suma

importancia para el mantenimiento y tratamiento futuro.

De acuerdo con Rabanal (2014), cuando se pone en práctica el método PCI para la evaluación de una red o proyecto, se persiguen los siguientes objetivos:

- Adquirir información de retroalimentación con respecto a la manera en que reaccionan las soluciones adoptadas durante la vida útil, esto con el fin de determinar labores, prioridades y procedimientos de mantenimiento.
- Determinar la condición de un pavimento en términos de su nivel de servicio de acuerdo con los usuarios e integridad estructural.
- Obtener un criterio para justificar la planificación y programación de obras de mantenimiento, rehabilitación y reconstrucción de pavimentos de acuerdo con su condición actual.
- Adquirir un indicador que admita la comparación con un criterio homogéneo, el comportamiento y condición superficial de los pavimentos a lo largo del tiempo.

El PCI provee un dato numérico, el cual representa las condiciones actuales basado en las fallas auscultadas en la superficie del pavimento. Este dato brinda un indicador sobre la integridad estructural, así como las condiciones operacionales. Sin embargo, dentro de los alcances de este método no está el medir la capacidad estructural del pavimento, ya que para esto se utilizan otro tipo de pruebas, ni tampoco provee una determinación directa del coeficiente de rugosidad.

Un monitoreo constante del PCI es utilizado con el fin de fijar el ritmo y la constancia con que se producen los deterioros del pavimento. Con base en esto se identifican y establecen, con anticipación, las necesidades de mejoramiento tanto de diseño como de actividades de mantenimiento, reforzamiento o reconstrucción.

De acuerdo con la norma ASTM D6433-18 (2018), las fallas consideradas en la metodología son un total de diecinueve, que involucran las más frecuentes en la degradación de la estructura. Dichas fallas se observan en el cuadro $N_{\rm o}$ 9.

Cuadro 9. Deterioros a evaluar en el método PCI

Descripción	Unidad de medición
Cuero de lagarto	m²
Exudación	m²
Grietas en bloque	m²
Abultamiento y Hundimiento	m
Corrugación	m²
Depresiones	m²
Grietas de borde	m
Agrietamiento por reflejo de juntas	m
Escalonamiento Calzada – Espaldón	m
Grieta Longitudinal – Transversal	m
Baches	m²
Pulimiento de agregados	m²
Huecos	un
Cruce de línea férrea	m²
Roderas – Ahuellamiento	m²
Deformación por desplazamiento	m²
Hinchamientos	m ²
Desprendimiento de agregados	m ²
Desgaste superficial	m²

Es de suma importancia que la persona que realiza la evaluación de la condición superficial del pavimento tenga el conocimiento de los tipos de deterioros, sus niveles de severidad y las distintas maneras de medición. De acuerdo con el Manual de Auscultación Visual de Pavimentos de Costa Rica elaborado por el Ministerio de Obras Públicas y Transportes, la calidad de ruedo para los usuarios deberá ser valorada con el objetivo de establecer un nivel de severidad, el cual tiene tres posibilidades:

- Severidad baja: se perciben las vibraciones del vehículo producto del estado de la capa de rodadura del pavimento, sin embargo, no es necesario reducir la velocidad por confort o seguridad. Baches o asentamientos individuales causan al vehículo un ligero movimiento sin generar incomodidad a los usuarios.
- Severidad media: se perciben las vibraciones del vehículo producto del

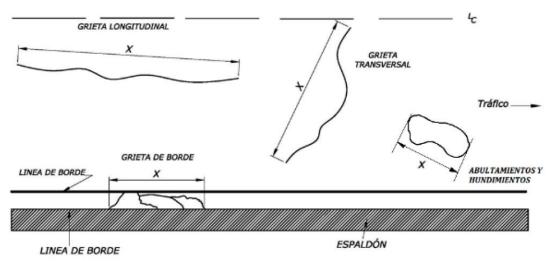
- estado de la capa de rodadura del pavimento y es necesario reducir ligeramente la velocidad por confort o seguridad. Baches o asentamientos individuales causan al vehículo un notable movimiento generando cierta incomodidad a los usuarios.
- Severidad alta: las vibraciones del vehículo producto del estado de la capa de rodadura del pavimento, son excesivas por lo que es necesario reducir considerablemente la velocidad por confort o seguridad. Baches o asentamientos individuales causan al vehículo un movimiento excesivo, lo que genera a los usuarios mucha incomodidad y riesgo en la seguridad; además de un potencial daño al vehículo.

Fallas comunes en los pavimentos flexibles

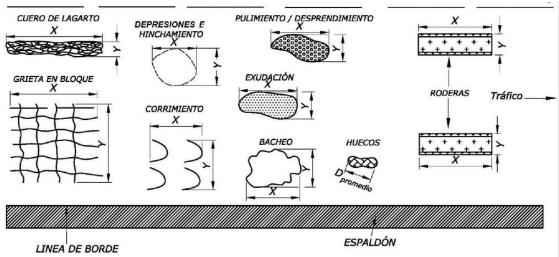
Categorías de fallas en un pavimento

De acuerdo con Castro en Introducción al curso de Pavimentos (2018), los pavimentos flexibles, así como los rígidos, pueden fallar por dos maneras distintas; de manera estructural o de manera funcional.

- Estructural: este tipo de falla ocurre cuando los niveles de los esfuerzos, producto de las cargas de tránsito u otros factores externos sobre el terreno natural, sobrepasan su capacidad de soporte. Otra manera en que se puede dar es cuando se da un deterioro o esfuerzo interno tal que se sobrepase la capacidad de soporte de las capas pertenecientes a la estructura, como lo son la capa de rodadura, la base y la subbase.
- Funcional: este tipo de falla ocurre cuando los niveles de seguridad y comodidad son tales que el usuario se ve afectado de manera directa. Otra manera en que se puede dar es cuando los costos de operación y transporte son excesivos.


Con tal de no llegar a la falla estructural ni funcional, los pavimentos deben ser diseñados con las siguientes propiedades:

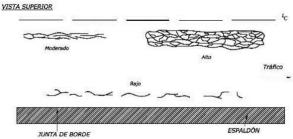
- Que las capas posean los espesores suficientes para transmitir las cargas del tránsito y de otros factores externos al terreno natural.
- Prevenir la penetración o acumulación interna de la humedad ya que esto puede debilitar la estructura interna del pavimento y provocar así una reducción en la capacidad de soporte.
- Presentar una capa de ruedo resistente al derrape para evitar algún accidente donde pueda haber daños materiales o personales.
- Presentar una capa de ruedo resistente al desgaste de la capa de ruedo producto del efecto abrasivo por las llantas.


Deterioros por evaluar

¿Cómo medir la extensión de los deterioros?

En la figura N_{\circ} 9 se muestra la forma correcta de medir en metros lineales algunos de los deterioros más comunes y en la figura N_{\circ} 10 se muestra la forma correcta de medir, en metros cuadrados, algunos de los deterioros más comunes. Para ambos casos se debe tener en cuenta que se deben medir siempre las mayores dimensiones, de modo que toda la extensión del deterioro quede inscrita en el polígono, ya sea regular o irregular. Para definir la extensión de cada tipo de deterioro se debe tomar en cuenta la unidad de medición propuesta por la norma ASTM D6433-18, la cual se observa en el cuadro N_{\circ} 9.

Figura 9. Medida correcta en metros lineales de los deterioros Fuente: Ministerio de Obras Públicas y Transportes, 2011.


Figura 10. Medida correcta en metros cuadrados de los deterioros Fuente: Ministerio de Obras Públicas y Transportes, 2011.

Tipos de deterioros

A continuación, se explican veinte de las fallas más comunes en los pavimentos flexibles, y que están considerados en la norma ASTM D6433-18 (2018), la cual hace referencia al método PCI.

Cuero de lagarto

Descripción: este tipo de deterioro corresponde а una serie de grietas interconectadas, las cuales son causadas por una falla de fatiga en la capa de rodadura de concreto asfaltico debido a repeticiones de carga de tránsito. Las grietas comienzan a formarse en el fondo de la capa de rodadura o de la base donde los esfuerzos de tensión, producto de que las llantas, mayores. cargas de las son Posteriormente, estas se propagan a la parte superior de la estructura como una serie de grietas longitudinales paralelas. Debido a las continuas repeticiones de cargas de tránsito, las grietas se conectan en la superficie desarrollando un patrón parecido al de la piel de un lagarto.

Figura 11. Esquema cuero de lagarto Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- ➢ Baja: las grietas longitudinales paralelas poseen una o muy pocas interconexiones. Además, no están fracturadas ni desprendidas en los bordes. Ver figura N₀ 12.
- Media: las grietas longitudinales paralelas poseen un patrón o conexión entre sí y pueden estar un poco fracturadas en los bordes. Ver figura N₀ 13.
- Alta: el patrón o la conexión entre las grietas tiene un progreso tal, que se denota piezas de asfalto bien definidas y con los bordes totalmente fracturados.

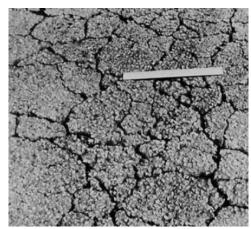

Aquí ya se observa claramente la forma de cuero de lagarto. Ver figura 14.

Figura 12. Cuero de lagarto – severidad baja Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 13. Cuero de lagarto – severidad media Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 14. Cuero de lagarto – severidad alta Fuente: Norma ASTM D6433-18, 2018

Exudación

<u>Descripción</u>: este tipo de deterioro corresponde a una película bituminosa en la parte superior de la estructura, la cual crea una superficie brillante, reflectiva y pegajosa. La exudación es causada por cantidades excesivas de asfalto o alquitrán en la mezcla, por excesos en la aplicación de un sello bituminoso o por un bajo contenido de vacíos de aire.

Niveles de Severidad:

- ▶ Baja: la exudación ha ocurrido en un bajo grado y puede ser vista únicamente unos cuantos días al año. El exceso de asfalto en la superficie no se pega a los zapatos ni a los vehículos. Ver figura N₀ 15.
- Media: la exudación ha ocurrido en un grado tal que el exceso de asfalto en la superficie se pega a los zapatos y a los vehículos unas pocas semanas al año. Ver figura N₀ 16.
- ➤ Alta: la exudación ha ocurrido en un grado excesivo y es tal que el exceso de asfalto en la superficie se pega a los zapatos y a los vehículos varias semanas al año. Ver figura N₀ 17.

Figura 15. Exudación – severidad baja Fuente: Ministerio de Obras Públicas y Transportes, 2011

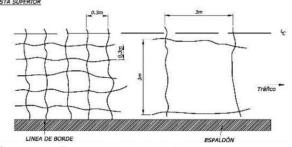

Figura 16. Exudación – severidad media Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 17. Exudación – severidad alta Fuente: Ministerio de Obras Públicas y Transportes, 2011

Grietas en bloque

Descripción: este tipo de deterioro corresponde а una serie de grietas interconectadas las cuales dividen el pavimento en piezas de forma rectangular. Los bloques varían en tamaño desde treinta por treinta centímetros hasta tres por tres metros. Esta falla es producida principalmente por la contracción del concreto asfáltico con bajas temperaturas, así como por ciclos diarios de cambios en la temperatura lo que resulta en esfuerzos de tensión. La diferencia de este deterioro con respecto del cuero de lagarto radica en que este último genera bloques de menor tamaño y con ángulos más agudos.

Figura 18. Esquema grieta en bloque Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de Severidad:

- ➢ Baja: los bloques son definidos por los criterios de baja severidad correspondiente a las grietas longitudinal transversal. Ver figura № 19.
- ➤ Media: los bloques son definidos por los criterios de severidad media correspondiente a las grietas longitudinal transversal. Ver figura N₀ 20.

Alta: los bloques son definidos por los criterios de alta severidad correspondiente a las grietas longitudinal - transversal. Ver figura N_o 21

Figura 19. Grietas en bloque – severidad baja Fuente: Norma ASTM D6433-18, 2018

Figura 20. Grietas en bloque – severidad media Fuente: Norma ASTM D6433-18, 2018

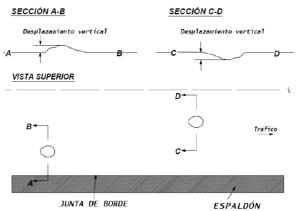


Figura 21. Grietas en bloque – severidad alta Fuente: Norma ASTM D6433-18, 2018

Abultamiento y hundimiento

<u>Descripción</u>: los hundimientos son pequeños y abruptos desplazamientos hacia

debajo de la superficie de concreto asfaltico. Los abultamientos, por el contrario, son pequeños y abruptos desplazamientos hacia arriba de la superficie de concreto asfáltico. La diferencia de este deterioro con la corrugación radica en que este último corresponde a abultamientos transversales al sentido de desplazamiento de los vehículos y con una separación no mayor a tres metros.

Figura 22. Esquema abultamientos y hundimientos

Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- Baja: los abultamientos o los hundimientos provocan una baja calidad de ruedo. Ver figura N_o 23.
- Media: los abultamientos o los hundimientos provocan una calidad media de ruedo. Ver figura N₀ 24.
- ➤ Alta: los abultamientos o los hundimientos provocan una alta calidad de ruedo. Ver figura N₀ 25.

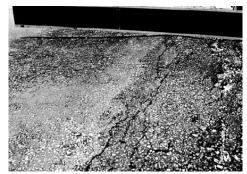


Figura 23. Abultamientos y hundimientos – severidad baja

Fuente: Norma ASTM D6433-18, 2018

Figura 24. Abultamientos y hundimientos – severidad media

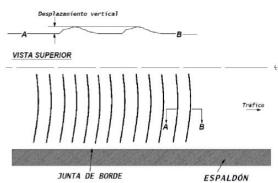


Figura 25. Abultamientos y hundimientos – severidad alta

Fuente: Norma ASTM D6433-18, 2018

Corrugación

<u>Descripción</u>: este tipo de deterioro corresponde a una serie de crestas y ondas, las cuales se dan en intervalos regulares de manera transversal al sentido de desplazamiento de los vehículos. Normalmente en distancias menores a tres metros a lo largo del pavimento.

Figura 26. Esquema corrugación Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de Severidad:

- ▶ Baja: la corrugación produce una baja calidad de ruedo. Ver figura N_o 27.
- Media: la corrugación produce una calidad media de ruedo. Ver figura N₀ 28.
- Alta: la corrugación produce una alta calidad de ruedo. Ver figura N₀ 29.

Figura 27. Corrugación – severidad baja Fuente: Ministerio de Obras Públicas y Transportes, 2011

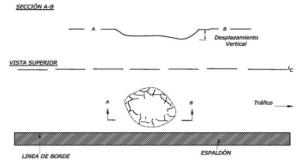

Figura 28. Corrugación – severidad media Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 29. Corrugación – severidad alta Fuente: Ministerio de Obras Públicas y Transportes, 2011

Depresión

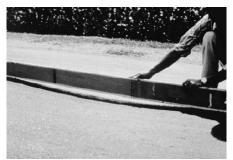
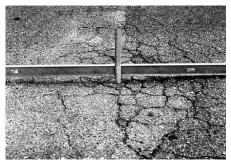
<u>Descripción</u>: las depresiones son áreas localizadas en la superficie de pavimento con una elevación ligeramente menor a la capa asfáltica de los alrededores. En muchas ocasiones, las depresiones ligeras se observan únicamente cuando hay presencia de agua producto de la lluvia. Este tipo de deterioros se crean producto de asentamientos de la subrasante o por construcciones incorrectas.

Figura 30. Esquema depresión Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- ➤ Baja: desde trece hasta veinticinco milímetros de profundidad en el punto con menos elevación. Ver figura N₀ 31.
- Media: desde veinticinco hasta cincuenta milímetros de profundidad en el punto con menos elevación. Ver figura N₀ 32.
- ▶ Baja: más de cincuenta de profundidad en el punto con menos elevación. Ver figura N₀ 33.

Figura 31. Depresión – severidad baja Fuente: Norma ASTM D6433-18, 2018

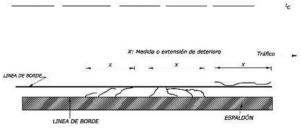

Figura 32. Depresión – severidad media Fuente: Norma ASTM D6433-18, 2018

Figura 33. Depresión – severidad alta Fuente: Norma ASTM D6433-18, 2018

Grietas de borde

<u>Descripción</u>: las grietas de borde son paralelas y normalmente separadas desde treinta hasta cincuenta centímetros del borde externo del pavimento.

Figura 34. Esquema grieta de borde Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- ▶ Baja: bajo o medio agrietamiento sin desprendimiento de agregados ni fracturas. Ver figura N₀ 35.
- Media: medio agrietamiento con algún desprendimiento de agregados o fracturas. Ver figura N₀ 36.

➤ Alta: agrietamiento considerable con desprendimiento de agregados o fracturas a lo largo del borde del pavimento. Ver figura N₀ 37.

Figura 35. Grieta de borde – severidad baja Fuente: Norma ASTM D6433-18, 2018

Figura 36. Grieta de borde – severidad media Fuente: Norma ASTM D6433-18, 2018

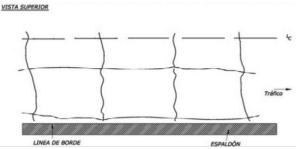


Figura 37. Grieta de borde – severidad alta Fuente: Norma ASTM D6433-18, 2018

Agrietamiento por reflejo de juntas

<u>Descripción</u>: este tipo de deterioro ocurre principalmente cuando la capa asfáltica se coloca por encima de una capa hecha de losas de concreto hidráulico. Esto ocurre normalmente por

movimientos de las losas debido a la humedad o por cargas de tráfico.

Figura 38. Esquema agrietamiento por reflejo de juntas

Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de Severidad:

- ➢ Baja: se da esta severidad cuando existe alguna de las siguientes condiciones: ancho de las grietas sin llenar menos a diez centímetros o grietas selladas de cualquier ancho. Ver figura N₀ 39.
- ➤ Media: se da esta severidad cuando existe alguna de las siguientes condiciones: ancho de las grietas sin llenar entre diez y setenta y cinco centímetros o grietas selladas de cualquier ancho; ambos casos rodeados de pequeñas ramificaciones. Ver figura N₀ 40.
- ➤ Alta: se da esta severidad cuando existe alguna de las siguientes condiciones: ancho de las grietas sin llenar mayor a setenta y cinco centímetros, grietas de cualquier ancho donde aproximadamente diez centímetros de pavimento alrededor de la grieta están severamente fracturados o desprendidos, o cualquier grieta ya sea vacía o llena, la cual esté rodeada por grietas de mediana o alta severidad. Ver figura N₀ 41.

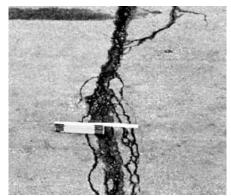
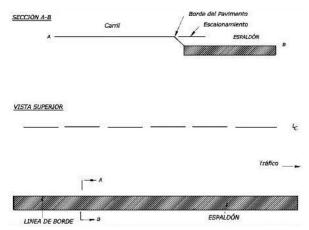

Figura 39. Agrietamiento por reflejo de juntas – severidad baja

Figura 40. Agrietamiento por reflejo de juntas – severidad media

Fuente: Ministerio de Obras Públicas y

Transportes, 2011


Figura 41. Agrietamiento por reflejo de juntas – severidad alta

Fuente: Norma ASTM D6433-18, 2018

Escalonamiento Calzada – Espaldón

<u>Descripción</u>: este tipo de deterioro corresponde a una diferencia de elevación del borde del pavimento con respecto al espaldón de

este. Es causado por erosión o asentamientos del espaldón, o debido a la construcción de la carretera sin ajustar el nivel del espaldón.

Figura 42. Esquema escalonamiento calzada – espaldón

Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- ▶ Baja: la diferencia de elevación entre el borden del pavimento y el espaldón está entre veinticinco y cincuenta milímetros. Ver figura N₀ 43.
- Media: la diferencia de elevación entre el borden del pavimento y el espaldón está entre cincuenta y cien milímetros. Ver figura N_o 44.
- ➢ Baja: la diferencia de elevación entre el borden del pavimento y el espaldón es mayor a cien milímetros. Ver figura N₀ 45.

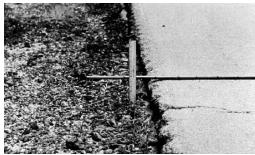


Figura 43. escalonamiento calzada – espaldón severidad baja

Fuente: Norma ASTM D6433-18, 2018

Figura 44. escalonamiento calzada – espaldón severidad media

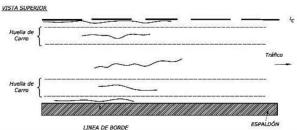
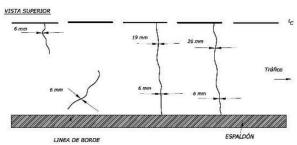


Figura 45. escalonamiento calzada – espaldón severidad alta


Fuente: Norma ASTM D6433-18, 2018

Grieta Longitudinal – Transversal

<u>Descripción</u>: las grietas longitudinales son paralelas al sentido de avance de los vehículos y son causadas por: un empalme entre carriles pobremente construido o por compresión de la capa asfáltica producto de los cambios de temperatura. Las grietas transversales son perpendiculares al sentido de avance de los vehículos.

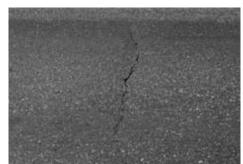

Figura 46. Esquema grietas longitudinales Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 47. Esquema grietas transversales Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- ➢ Baja: se da esta severidad cuando existe alguna de las siguientes condiciones: ancho de las grietas sin llenar menor a diez centímetros o grietas selladas de cualquier ancho. Ver figura N₀ 48.
- ➤ Media: se da esta severidad cuando existe alguna de las siguientes condiciones: ancho de las grietas sin llenar entre diez y setenta y cinco centímetros o grietas selladas de cualquier ancho; ambos casos rodeados de pequeñas ramificaciones. Ver figura N₀ 49.
- ➤ Alta: se da esta severidad cuando existe alguna de las siguientes condiciones: ancho de las grietas sin llenar mayor a setenta y cinco centímetros, grietas de cualquier ancho donde aproximadamente diez centímetros de pavimento alrededor de la grieta están severamente fracturados o desprendidos, o cualquier grieta ya sea vacía o llena, la cual está rodeada por grietas de mediana o alta severidad. Ver figura N₀ 50.

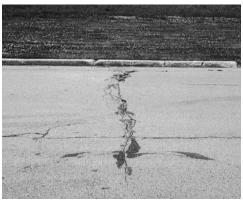


Figura 48. grieta longitudinal – transversal severidad baja

Fuente: Norma ASTM D6433-18, 2018

Figura 49. grieta longitudinal – transversal severidad media

Figura 50. grieta longitudinal – transversal severidad alta

Fuente: Norma ASTM D6433-18, 2018

Baches

<u>Descripción</u>: un bache es un área de un pavimento la cual ha sido reemplazada por un material nuevo para reparar el pavimento existente. Un bache es considerado un deterioro sin importar su estado ni comportamiento, debido a que el comportamiento no es tan bueno como el de una sección de pavimento original.

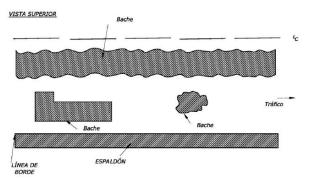


Figura 51. Esquema bache

Fuente: Ministerio de Obras Públicas y

Transportes, 2011

Niveles de severidad:

- ▶ Baja: el bache está en buena condición y la calidad de ruedo es clasificada de severidad baja o mejor. Ver figura N₀ 52.
- Media: el bache está moderadamente deteriorado o la calidad de ruedo es clasificada de severidad media. Ver figura N₀ 53.
- Alta: el bache está muy deteriorado y la calidad de ruedo es clasificada de severidad alta. En ambos casos es necesario el reemplazo. Ver figura N₀ 54.

Figura 52. Bache – severidad baja Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 53. Bache – severidad media Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 54. Bache – severidad alta Fuente: Ministerio de Obras Públicas y Transportes, 2011

Pulimiento de agregados

Descripción: este tipo de deterioro es causado por el paso repetitivo de los vehículos sobre la capa asfáltica del pavimento. El pulimiento de agregados está presente cuando la examinación minuciosa del pavimento revela que una porción de este es, o muy pequeña, o no es lo suficientemente rugosa, o la angularidad de los agregados ha disminuido con el paso del tiempo. Cuando este deterioro está presente, la adhesión con las llantas del vehículo disminuve considerablemente, lo cual afecta la distancia de frenado, ya que la superficie no contribuye a la reducción de velocidad. Ver figura No 55.

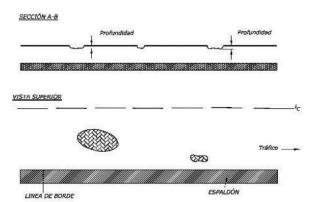

<u>Niveles de severidad</u>: no existe ningún nivel de severidad definido, sin embargo, el nivel de pulimiento debe ser evidente al tacto.

Figura 55. Pulimiento de agregados Fuente: Ministerio de Obras Públicas y Transportes, 2011

Huecos

<u>Descripción</u>: los huecos son depresiones usualmente con forma de tazón y pequeños, con un diámetro menor a setenta y cinco centímetros. Normalmente tienen bordes filosos y lados verticales cerca de la superficie del hueco.

Figura 56. Esquema hueco Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

➤ Si el diámetro del hueco es menor a setenta y cinco centímetros, se debe tomar en consideración el cuadro N₀ 10. **Cuadro 10.** Nivel de severidad con diámetro menor a setenta y cinco centímetros


The state of the s				
Profundidad	Diámetro promedio			
máxima	10-20 cm	20-45 cm	45-75 cm	
13-25 mm	В	В	М	
25-50 m	В	М	Α	
> 50 mm	М	М	Α	

Fuente: Norma ASTM D6433-18, 2018

Si el diámetro del hueco es mayor a setenta y cinco centímetros, se debe tomar en consideración lo siguiente, el área deberá ser medida en términos de metros cuadrados y dividida por cincuenta centímetros y encontrar el número equivalente de huecos. Ver figuras N₀ 57 a N₀ 59.

Figura 57. Hueco – severidad baja Fuente: Norma ASTM D6433-18, 2018

Figura 58. Hueco – severidad media Fuente: Norma ASTM D6433-18, 2018

Figura 59. Hueco – severidad alta Fuente: Norma ASTM D6433-18, 2018

Cruce de línea férrea

<u>Descripción</u>: este tipo de deterioro es causado por el paso de una línea de tren en medio de la calzada. Se denota mediante grietas o abultamientos en los costados del cruce.

Niveles de severidad:

- ▶ Baja: el deterioro causa una calidad de ruedo clasificada como severidad baja. Ver figura N₀ 60.
- Media: el deterioro causa una calidad de ruedo clasificada como severidad media. Ver figura N₀ 61.
- ➤ Alta: el deterioro causa una calidad de ruedo clasificada como severidad alta. Ver figura N_o 62.

Figura 60. Cruce de línea férrea – severidad baja Fuente: Norma ASTM D6433-18, 2018

Figura 61. Cruce de línea férrea – severidad media

Fuente: Norma ASTM D6433-18, 2018

Figura 62. Cruce de línea férrea – severidad alta Fuente: Norma ASTM D6433-18, 2018

Roderas – Ahuellamiento

<u>Descripción</u>: este tipo de deterioro corresponde a una depresión en la capa asfáltica producto de las cargas de los vehículos. Las roderas se producen en el mismo sentido de avance de los vehículos, específicamente debajo de las llantas.

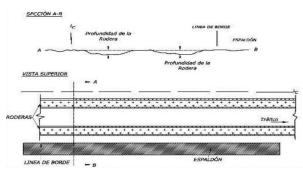


Figura 63. Esquema roderas

Fuente: Ministerio de Obras Públicas y

Transportes, 2011

Niveles de severidad:

- ➢ Baja: profundidad entre seis y trece milímetros. Ver figura N₀ 64.
- ➤ Media: profundidad entre trece y veinticinco milímetros. Ver figura N_o 65.
- Alta: profundidad mayor a veinticinco milímetros. Ver figura N₀ 66.

Figura 64. Rodera – severidad baja Fuente: Ministerio de Obras Públicas y Transportes, 2011

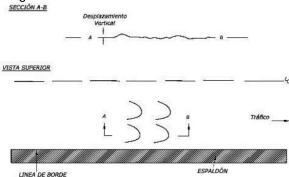

Figura 65. Rodera – severidad media Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 66. Rodera – severidad alta Fuente: Ministerio de Obras Públicas y Transportes, 2011

Deformación por desplazamiento

<u>Descripción</u>: este tipo de deterioro corresponde a un desplazamiento longitudinal en un área específica del pavimento causado por las cargas de los vehículos.

Figura 67. Esquema deformación por desplazamiento

Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- ▶ Baja: el deterioro causa una calidad de ruedo clasificada como severidad baja. Ver figura N₀ 68.
- Media: el deterioro causa una calidad de ruedo clasificada como severidad media. Ver figura No 69.
- ➤ Alta: el deterioro causa una calidad de ruedo clasificada como severidad alta. Ver figura N₀ 70.

Figura 68. Deformación por desplazamiento – severidad baja

Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 69. Deformación por desplazamiento – severidad media

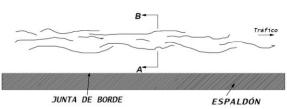
Fuente: Norma ASTM D6433-18, 2018

Figura 70. Deformación por desplazamiento – severidad alta

Fuente: Norma ASTM D6433-18, 2018

Hinchamiento

SECCIÓN A-B


<u>Descripción</u>: este deterioro se caracteriza por un bulto hacia arriba de la superficie del pavimento creando una onda larga y gradual de más de tres metros.

Desplazamiento vertical

A

B

VISTA SUPERIOR

Figura 71. Esquema hinchamiento Fuente: Ministerio de Obras Públicas y Transportes, 2011

Niveles de severidad:

- Baja: el deterioro causa una calidad de ruedo clasificada como severidad baja.
- Media: el deterioro causa una calidad de ruedo clasificada como severidad media.
- Alta: el deterioro causa una calidad de ruedo clasificada como severidad alta.

Figura 72. Ejemplo hinchamiento Fuente: Ministerio de Obras Públicas y Transportes, 2011

Desprendimiento de agregados

<u>Descripción</u>: este deterioro se caracteriza por un desprendimiento de agregado grueso de la capa asfáltica. Entre las causas están: compactación no adecuada, mala calidad de la mezcla, segregación, entre otros.

Niveles de severidad:

- Baja: no aplica
- Media: pérdida considerable de agregado grueso, más de veinte partículas por metro cuadrado. Ver figura № 73.
- Media: la superficie es muy rugosa y picada además puede haber pérdida total de agregado grueso en algunas partes. Ver figura N_o 74.

Figura 73. Desprendimiento de agregados – severidad media Fuente: Norma ASTM D6433-18. 2018

Figura 74. Desprendimiento de agregados – severidad alta Fuente: Norma ASTM D6433-18, 2018

Desgaste superficial

<u>Descripción</u>: este tipo de deterioro corresponde al desgaste del ligante asfaltico y de la matriz del agregado grueso.

Niveles de severidad:

- ➢ Baja: la superficie de asfalto comienza a mostrar señales de envejecimiento, lo que puede ser acelerado por las condiciones climáticas. La pérdida de la matriz de agregado fino es notable y puede estar acompañado por la pérdida de color del asfalto. Ver figura N₀ 75.
- Media: la pérdida de la matriz de agregado fino es notable y se ha expuesto al menos un cuarto de los bordes del agregado grueso. Ver figura № 76.
- ➤ Alta: la pérdida de la matriz de agregado fino es notable y se ha expuesto más de un cuarto de los bordes del agregado grueso. Ver figura N₀ 77.

Figura 75. Desgaste superficial – severidad baja Fuente: Norma ASTM D6433-18, 2018

Figura 76. Desgaste superficial – severidad media

Fuente: Norma ASTM D6433-18, 2018

Figura 77. Desgaste superficial – severidad alta Fuente: Ministerio de Obras Públicas y Transportes, 2011

Jerarquización de la Red Vial Nacional

En el análisis del sistema de transporte hecho por el Ministerio de Obras Públicas y Transportes (2011) para la formulación del Plan Nacional de Transportes, se menciona que, para el estudio de la cobertura geográfica es necesario tomar en consideración la totalidad de la red vial, tanto la nacional como la cantonal.

La red vial nacional se subdivide en tres niveles jerárquicos; red primaria, la cual es la de mayor importancia, secundaria y terciaria, la cual es la de menor importancia de acuerdo con esta clasificación. La red vial cantonal, de igual manera, se subdivide en tres niveles jerárquicos; caminos vecinales, calles locales y caminos públicos no clasificados.

Con base en la asignación de funciones que constituye la Ley General de Caminos Públicos, se clasifica la red vial en dos grupos:

- Primer grupo: rutas troncales de ámbito nacional y los ejes básicos de conexión regional.
- Segundo grupo: rutas de integración territorial y acceso capilar final.

El primer grupo es denominado la Red Vial Estratégica y es por donde va a circular la mayor parte del tránsito nacional e internacional. El segundo grupo es denominado la Red Vial Complementaria y en comparación con el primero, tiene una menor importancia, sin embargo, es imprescindible ya que será el responsable de garantizar que el territorio quede interconectado.

Se realiza un análisis territorial y por ruta para valorar que vías, tanto nacionales como cantonales, deben integrar los dos subgrupos mencionados anteriormente. De acuerdo con el Ministerio de Obras Públicas y Transportes (2011), se llegaron a dos conclusiones en concreto:

- La red vial cantonal (RVC) posee una función complementaria en relación con las necesidades fundamentales de conectividad del país. Debido a esto, dicha red no cumple con los requisitos para formar parte de la Red Vial Estratégica.
- No toda la red vial nacional clasifica como prescindible para integrar la Red Vial Estratégica, ya que una parte satisface requisitos de movilidad con un carácter complementario.

En el Plan Nacional de Transportes 2011-2035 se definen dos niveles jerárquicos para la Red Vial Estratégica: el primero es la Red de Alta Capacidad y el segundo está compuesto con rutas de mediana capacidad para la adecuada distribución de la flota vehicular hacia los principales centros de población, turismo o producción del país.

Trimble Trident Imaging Hub

De acuerdo con Trimble (2014), "Trident Imaging Hub" es un *software* diseñado para la navegación, visualización y procesamiento de grandes conjuntos de datos de imagen. Además, su interfaz está diseñada para el posicionamiento de objetos, medición y la población de la capa de

datos, ideal para el análisis de imágenes georreferenciadas y datos de escáner láser. Entre las ventajas de su uso en la industria se tiene la aceleración de los proyectos, así como un aumento en la productividad, incluidos los procesos clave como el modelado de superficies, la detección de señales de carreteras, la detección de señalización de vías, la detección de bordes de carril, la geometría de carreteras y las mediciones de espacio tal como la extensión de los distintos tipos de deterioros en la superficie del pavimento.

En el presente proyecto, "Trimble Trident" fue utilizado únicamente para el proceso de auscultación de los deterioros superficiales de las rutas 1, 10, 23 y 39 de la red vial nacional. Para su desarrollo, este software requiere de imágenes georreferenciadas por lo que se utilizan las tomadas por el equipo Geo3D que posee LanammeUCR, en el año 2018.

De acuerdo con Sáez (2017), dicho equipo corresponde a un vehículo el cual tiene incorporadas 6 cámaras calibradas de fábrica; tres orientadas hacia adelante en el sentido de avance de la siguiente manera:

- Adelante
- Adelante izquierda
- Adelante derecha

Las otras tres cámaras están orientadas hacia atrás de la siguiente manera:

- Atrás
- Atrás izquierda
- Atrás derecha

Dichas imágenes son fijas y pueden ser observadas detenidamente en Trident por lo que, la extracción y auscultación de toda la información referente a los deterioros se puede efectuar mediante el empleo de una herramienta que puede crear puntos, líneas y áreas sobre la superficie del pavimento, sin embargo, no es posible realizar desplazamientos libres. Todas las imágenes son georreferenciadas, lo que indica que son vinculadas a la trayectoria del vehículo por la ruta.

Una vez capturada toda la información requerida de la ruta en campo, se procede al procesamiento en "Trimble Trident", el cual realiza un postprocesamiento de dicha información tridimensional. El software consta con dos ventanas fundamentales; una es donde se realiza la gestión de imágenes y videos relacionados a una base de datos, aquí es donde este proyecto se enfoca. La segunda ventana corresponde al 3D

Map, donde se encuentra todo lo relacionado con la nube de puntos con la cual se puede realizar un análisis tridimensional de la carretera.

Cabe destacar que la utilización del software es exclusivamente para el proceso de auscultación de deterioros y no toma parte en el cálculo del índice de condición del pavimento, ya que la obtención del PCI se realiza de manera manual con base en un procedimiento establecido por ASTM en la norma D6433-18.

Proceso innovador

Si bien "Trimble Trident" se utiliza para el proceso de auscultación de los deterioros, hay muchas ventajas asociadas a su uso entre las cuales están:

- Mayor rapidez al evaluar una carretera ya sea para la auscultación de deterioros, realizar levantamiento de inventarios, levantamiento de implementos de seguridad, etc.
- Posibilidad de enlazar Trident con un servidor para que varios usuarios puedan agregar y manipular la información.
- Posibilidad de editar y/o crear tablas u formularios alfanuméricos en otros softwares y su importación.
- Menor gasto en recursos al efectuar la inspección visual mediante el uso de tecnología, en lugar de ir al campo.
- Fácil exportación de datos a otros softwares, como por ejemplo Microsoft Excel.
- Transposición de la ruta a analizar con el mapa de la red vial nacional con el objetivo de facilitar la localización del sitio en análisis en las secciones de control.
- Posibilidad de enlazar Trident con Microsoft Access para que funcione como base de datos. De esta manera lograr generar y mantener un registro histórico de los deterioros, por medio de índices comparables en un futuro.

Limitaciones

Si bien al utilizar "Trimble Trident" se optimizan ciertos proceros, también existen limitaciones entre las cuales están:

- ➤ La evaluación de la condición superficial del pavimento consiste en inspeccionar la vía caminando sobre ella y tomando notas detalladas de las fallas encontradas en la superficie. Aunque "Trident" es muy preciso al medir longitudes y áreas, no puede medir profundidades; por lo que afecta el cálculo de PCI, ya que algunos deterioros requieren de este dato para la clasificación de su severidad.
- Las imágenes georreferenciadas tomadas por LanammeUCR corresponden a archivos muy pesados, por lo que el traspaso de dicha información a las bases de datos toma varios días. En una ocasión debido al continuo trabajo del disco duro externo, este se quemó atrasando todo el proyecto.
- A la hora de abrir las cámaras en el software, estas requieren de una calibración la cual puede ser algo tediosa.
- La fecha en que son capturadas las imágenes georreferenciadas no coincide con la fecha de evaluación por lo que existe una cierta perdida de veracidad.

Metodología

La metodología empleada para la ejecución de este proyecto se basa en cinco etapas principales.

- Etapa 1: recopilación y análisis de información referente a la evaluación de la condición superficial del pavimento.
- Etapa 2: escogencia de las rutas de la red vial nacional a evaluar.
- Etapa 3: capacitación sobre el uso del software "Trimble Trident".
- Etapa 4: aplicación previa del método PCI y auscultación de deterioros mediante Trimble Trident.
- Etapa 5: obtención del índice de condición del pavimento para las rutas analizadas.

Las etapas mencionadas se realizan en la Secretaria de Planificación Sectorial del Ministerio de Obras Públicas y Transportes ubicado en San José. Además, se tuvo comunicación con LanammeUCR, ya que ellos poseen los insumos necesarios para la evaluación de las rutas en "Trimble Trident".

Recopilación y análisis de información

La primera etapa de la metodología se fundamenta en la recopilación de información con respecto del Índice de Condición de Pavimento, procedimientos y metodologías asociadas.

Como primera instancia se realiza la visita al Laboratorio Nacional de Materiales y Métodos Estructurales con el propósito de recolectar los insumos necesarios para la evaluación de las carreteras en "Trident Imaging Hub". LanammeUCR cuenta con un equipo de cámaras digitales de alta resolución el cual toma imágenes referenciadas espacialmente en un sistema de

coordenadas nacional. Este equipo realiza un levantamiento digital de imágenes a trescientos sesenta grados que permiten analizar la mayoría de los detalles relevantes de la infraestructura vial, tales como elementos de seguridad vial, deterioros superficiales, elementos geométricos, entre otros.

Figura 78. Equipo Geo 3D Fuente: Laboratorio Nacional de Materiales y Métodos Estructurales, 2010

El estudio de distintos documentos relacionados con tópicos como deterioros superficiales o el método PCI, específicamente la norma ASTM D6433-18, se efectúa con el objetivo de conocer cada uno de los requerimientos especificados en las normas, con el objetivo de preparar ciertos criterios técnicos en la evaluación correcta de los procesos.

Escogencia de las rutas a evaluar

Para la definición del alcance de este proyecto es de suma importancia tener claro que la red vial de Costa Rica se compone de rutas cantonales y nacionales, así como la clasificación que da el Ministerio de Obras Públicas y Transportes (2011) en el Plan Nacional de Transporte 2011-2035 en el que se clasifica la red vial en dos grupos principales. El primer grupo corresponde a la Red Vial Estratégica v es por donde va a circular la mayor parte del tránsito nacional e internacional, y el segundo grupo es denominado la Red Vial Complementaria y será el responsable de garantizar que el territorio quede interconectado.

A su vez, la Red Vial Estratégica se divide en dos subgrupos: la red de alta capacidad y una red de mediana capacidad para la distribución de los tráficos hacia los principales centros de población, turismo y producción.

En la realización de este proyecto, se va a trabajar con las rutas pertenecientes a la red de alta capacidad debido a dos causas principales. La primera está relacionada al equipo Geo 3D que posee LanammeUCR, ya que se tienen imágenes referenciadas únicamente de algunas de las rutas pavimentadas en el 2018. Esto sucede debido a que por temas de calibración del vehículo y a la sensibilidad de las cámaras, se puede circular únicamente por rutas pavimentadas. Y la segunda causa es debido a la importancia que tienen las rutas de alta capacidad en comparación con las demás.

Tomando en consideración lo anterior, el alcance del proyecto se delimita a las rutas pavimentadas de la red vial nacional. De acuerdo con el Ministerio de Obras Públicas y Transportes en el informe Plan Nacional de Transportes de Costa Rica 2011-2035, las carreteras más importantes del país se definen como rutas de alta capacidad y son a las cuales se les dará un enfoque.

Capacitación sobre el uso de Trimble Trident

Para el uso adecuado de este software, fue requerida una explicación exhaustiva tanto del programa en si, como de otros programas externos, los cuales son vitales para su correcto funcionamiento. Entre esos softwares externos se encuentran Microsoft Access y un programa elaborado por el ingeniero Gustavo Avedaño Meza, como complemento al "Trimble Trident" a la hora del procesamiento de los datos.

La capacitación fue dada por el ingeniero Javier Brenes Pochet mediante una serie de cuatro módulos los cuales se evaluaron de acuerdo con los cuadros No 11 a No 14.

Cuadro 11. Primer módulo de la capacitación

Modulo n.º 1							
Fecha	18 de enero del 2019						
Lugar	MOPT						
٦	Temas tratados						
Introducción del	software Trident Imaging Hug,						
versión 7.3							
Antecedentes de	el s <i>oftware</i>						
Financiamiento	y obtención del <i>software</i>						
Objetivos – alca	nces						
Introducción del	equipo de auscultación visual						
de LanammeUC	CR						
Presentación ge	eneral de la aplicación y uso del						
software							
Visualización de	las principales interfaces del						
sistema							
	Acuerdos						
Realizar la insta	lación del software "Trident						
Imaging Hub" er	n la computadora portátil.						
Realizar la insta	lación de la ODBC con punto						

Realizar la instalación de la ODBC con punto de convergencia el servidor denominado "Recolección de Información Multimodal"

Revisar el tema de exportación de datos y definición del sistema de coordenadas geográficas para iniciar la corrida de un determinado proyecto.

Cuadro 12. Segundo módulo de la capacitación

Modulo n.º 2								
Fecha	25 de enero del 2019							
Lugar MOPT								
٦	Temas tratados							
Carga de software Trident en la portátil								
Estructura de los Geo3D	s proyectos creados con el							
Manera adecua	da de enlazar el programa a							
las bases de da	tos							
Definición del si	stema principal de							
coordenadas								
Activación y con	Activación y configuración de cámaras							
Exportación de	Exportación de datos para su debido							
procesamiento								
	Acuerdos							

Se realiza la explicación de la exportación de datos, sin embargo, se presenta un problema desconocido el cual no permite la correcta exportación de la información generada. El

ingeniero Javier Brenes queda encargado de revisar este inconveniente.

Abordar los temas de unidades de muestreo y la segmentación por secciones de control en rutas de la red vial nacional.

Cuadro 13. Tercer módulo de la capacitación

Cuadro 13. Tercer modulo de la capacitación								
Modulo n.º	3							
Fecha	6 de febrero del 2019							
Lugar	MOPT							
Temas tratados								
Presentación gráfica de un proyecto								
Introducción en	el tema de unidades de							
muestreo								
Análisis de arch	ivos de Microsoft Access para							
conformación de	e base de datos							
Registro de form	nularios de software Trident							
Acuerdos								
Se realiza la pru	ieba de velocidad de corrida,							
para determinar	la opción más útil entre utilizar							
el servidor Tride	nt o el disco duro de la misma							

para determinar la opción más útil entre utilizar el servidor Trident o el disco duro de la misma computadora portátil, con el objetivo de aumentar la fluidez a la hora del procesamiento de los deterioros.

Cuadro 14. Cuarto módulo de la capacitación

Guadio 14: Guarto modulo de la capacitación								
Modulo Nº	4							
Fecha	11 de febrero del 2019							
Lugar	MOPT							
Temas tratados								
Calibración de la	Calibración de las cámaras en Trident,							
producto de un	mal acomodo de estas en el							
equipo Geo3D								
Desarrollo final	del formulario en Microsoft							
Access para el p	proceso de auscultación de los							
deterioros.								
Explicación del	programa SISCOPAV							
generado por el	Ing. Avendaño para el							
procesamiento d	de las unidades de muestreo.							

Aplicación previa del método PCI y auscultación de deterioros

Unidades de muestreo

El primer proceso que se debe llevar a cabo en la obtención de la condición de la superficie de una carretera es denominado selección de las unidades de muestreo, las cuales corresponden a tramos de la ruta que van a ser evaluados tomando en consideración los objetivos planteados. De acuerdo con el MOPT en el Manual de Auscultación Visual de Pavimentos de Costa Rica — Guía para profesionales (2011), las unidades de muestra dependen de los siguientes factores:

- Tipo de evaluación: de acuerdo con los objetivos, la evaluación puede ser a nivel de red o de un proyecto. En la primera, lo ideal sería analizar la totalidad de las unidades de muestra, sin embargo, por el elevado costo de recursos y tiempo, se recomienda analizar la ruta aplicando el proceso de muestreo aleatorio, el cual posibilita el cálculo del Índice de condición de la ruta sin la necesidad de evaluarla por completo.
- Tipo de pavimento: el área de las unidades de muestreo se calcula de una manera distinta de acuerdo con el tipo de pavimento que posea la ruta, sea flexible o rígido.
- Características de la sección de la carretera: se considerará una fracción con una construcción uniforme y homogénea. Es decir, construida con los mismos materiales, con los mismos equipos, durante la misma época del año, con la misma sección transversal, entre otras características. Para este proyecto se van a utilizar las secciones de control en las cuales se divide la red vial nacional.

Cabe destacar que en este proyecto se van a analizar las cuatro rutas mediante el seccionamiento aleatorio de las unidades de muestreo debido a que, para analizar el 100% de las rutas se requiere una gran cantidad de tiempo.

La ASTM, en la norma D6433-18 (2018) dicta el procedimiento para el cálculo de las unidades de muestra de cada una de las secciones de control de una ruta en específico. Dicha metodología se observa a continuación:

1. Longitud de las unidades de muestreo

Cuando se está en presencia de un pavimento flexible, la longitud de la unidad de muestra depende del ancho de la calzada. El área debe estar en el rango de 225 \pm 90 m² por lo que sus valores extremos corresponden a 135 y 315 m². En el cuadro N_{\circ} 15 se observan valores de longitud de cada unidad de acuerdo con un ancho de calzada específico.

Cuadro 15. Longitudes de unidad de muestra para distintos anchos de calzada

Ancho de calzada (m)	Longitud de UM (m)
3,5 – 6,5	47
4,0 – 7,5	42
4,5 – 8,5	38
5,0 - 9,0	35
5,5 – 10	32

Fuente: Ministerio de Obras Públicas y

Transportes, 2011

En caso de que el ancho de la calzada sea mayor a diez metros, se debe crear la cantidad pertinente de particiones imaginarias con anchos de carril con los que se pueda ingresar al cuadro $N_{\rm o}$ 15.

2. Número total de unidades de muestra (N)

Se calcula el número total de unidades de muestreo (N) para cada una de las secciones de control que posea cierta ruta de la red vial nacional. La ecuación es la siguiente:

$$N = \frac{Long.Proyecto}{Long.UM}$$

Donde:

Long.Proyecto: longitud total de la sección de control [m]

Long.UM: longitud total de la unidad de muestreo [m]

3. Número mínimo de unidades de muestra a evaluar (n)

Lo ideal sería analizar toda la longitud de cada una de las secciones de control, sin embargo, la cantidad de recursos para realizar todo este análisis es demasiado grande. Así, se recomienda evaluar una muestra, que sea representativa de toda la ruta. Teniendo esto en cuenta, se calcula el número mínimo de unidades de muestreo a analizar (n) con la siguiente ecuación:

$$n = \frac{Nx\sigma^2}{\frac{e^2}{4}(N-1) + \sigma^2}$$

Donde:

N: número total de unidades de muestreo [m] σ: desviación estándar del PCI entre las unidades de muestra [ad]

e: error admisible a la hora de calcular el PCI [%]

De acuerdo con la norma D6433-18 (2018), se asume durante la inspección visual una desviación estándar de 15% para el pavimento rígido y 10% para el pavimento flexible. Además de un error admisible del 5% para asegurar una confiabilidad del 95%.

4. Selección de las unidades de muestra para la posterior evaluación

Se deben tener en cuenta dos situaciones:

- > n < 5: evaluar todas las unidades de muestreo.
- N > 100: se deberá subdividir la ruta en una cantidad "x" de tramos los cuales, cada uno de ellos, cumpla con que la cantidad total de unidades de muestreo sea menor a cien. Para cada uno de estos tramos se le asignara un N₁, N₂...Nx, así como n₁, n₂...nx. En este apartado se recomienda que la ruta se separe en tramos con la misma cantidad de unidades de muestreo, que estén igualmente espaciadas y que la primera de ellas sea elegida de manera aleatoria.

5. Intervalo de muestreo (i)

El intervalo de muestreo dicta la separación que debe haber entre cada una de las unidades de muestra que se van a inspeccionar y las que no. Se calcula con la siguiente ecuación:

$$i = \frac{N}{n}$$

Donde:

N: número total de unidades de muestreo [m] n: número mínimo de unidades de muestra a

evaluar [m]

i: intervalo de muestreo, se redondea al número entero inferior [ad]

6. Selección aleatoria del inicio de la unidad de muestra (S)

La primera unidad de muestreo a evaluar corresponde a un número aleatorio entre 1 y el intervalo de muestreo "i". En este proyecto, se utilizó la función de aleatoriedad de Microsoft Excel para elegir el indicador S.

7. Selección de unidades de muestra adicionales

Debido a que la escogencia de las unidades de muestreo es un proceso aleatorio, existe la posibilidad de que se excluyan de la evaluación algunas unidades en muy mal estado, las cuales sean relevantes para el proyecto en general.

Con el objetivo de evitar que suceda lo anteriormente mencionado, se pueden incluir en el análisis las unidades de muestreo que el evaluador considere necesario como unidades adicionales y no como unidades aleatorias o representativas. En estos casos, se deben hacer ciertas modificaciones en el cálculo del índice de condición del pavimento.

Auscultación de deterioros

El procedimiento para el levantamiento de los deterioros cambia de acuerdo con el tipo de pavimento presente en el proyecto, ya sea flexible o rígido, debido a los distintos tipos de deterioros que pueda presentar cada uno. Es de suma importancia que se siga el lineamiento de los tipos

de deterioros de la norma ASTM D6433-18 para obtener un valor del PCI estándar y confiable.

El proceso de auscultación de los deterioros superficiales de las rutas 1, 10, 23 y 39 de la red vial nacional, se desarrolló utilizando un software denominado "Trident Imaging Hub". Los insumos que utiliza dicho programa corresponden a imágenes georreferenciadas, las cuales son tomadas por cámaras del equipo Geo3D que posee LanammeUCR. El procedimiento para la evaluación utilizando Trident corresponde al siguiente.

1. Iniciar la interfaz del programa

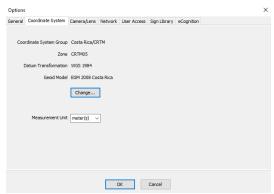

Seleccionar y abrir el programa en el icono Trident v7.3.1 de donde se desplegará la interfaz principal, de acuerdo con la figura N_0 79.

Figura 79. Interfaz principal de Trident Fuente: Trident Imaging Hub

2. Definición de coordenadas geográficas

Se deben establecer y determinar las coordenadas geográficas para un determinado proyecto, de acuerdo con los objetivos establecidos. Las coordenadas por utilizar en este proyecto corresponden a las CRTM05/WGS 1984, y el resultado final de este proceso debe verse como la figura $N_{\rm o}$ 80.

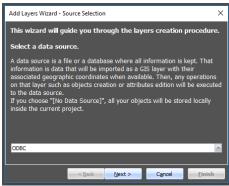


Figura 80. Definición de coordenadas geográficas

Fuente: Trident Imaging Hub

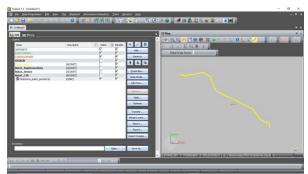
3. Definición de las capas

Se cuenta con tres tipos de capas: puntos, polilíneas y polígonos. Estos últimos son los se utilizan en la mayoría de los deterioros ya que la unidad de medición corresponde a metros cuadrados. El ingeniero Gustavo Avendaño mediante la creación de un servidor exclusivo y una ODBC, logró enlazar el programa Microsoft Access con las capas de Trident. Dicho proceso se puede observar en la figura No 81.

Figura 81. Generación de capa polígono mediante la ODBC

Fuente: Trident Imaging Hub

Una vez creada la capa del polígono, se enlaza dicha capa con el programa Microsoft Access con el fin de llamar un formulario generado previamente en dicho programa. Dicho formulario aparece cada vez que el usuario detecta y evalúa un deterioro, por lo cual es de suma importancia las variables que se analizan ya que, de este procedimiento, se conforma la base de datos de cada uno de los deterioros auscultados. Las


primeras trece entradas son predeterminadas por el ingeniero Gustavo Avendaño como información básica de cada ruta, mientras que las últimas diez son escogidas de acuerdo con los requisitos para la obtención del índice de condición del pavimento de cada sección de control. El formulario se observa en el cuadro No 16.

Cuadro 16. Formulario asignado a cada deterioro evaluado

valuauu	
Entrada	Unidad
ID Deterioro polígono	#
G3D Reserved	#
LFrame	#
RFrame	#
TC	#
Chain1	#
Chain2	#
Sequence	Nombre de la ruta
Heading	#
ObjSide	Right/Left
ObjShift	#
ObjHead	#
ConfLevel	#
Ruta	#
Sección de control	#
Sentido	ida/vuelta
Estacionamiento	m
Tipo de deterioro	Formulario Access
Severidad	ALTA/MEDIA/BAJA
Área	m ²
Perímetro	m
Longitud	m
Fecha	fecha

4. Definición y selección de la ruta a analizar

deben seleccionar las imágenes georreferenciadas, obtenidas con el Geo3D, que serán previamente evaluadas. Dichos archivos deben estar en formato ".tridb" y deben estar almacenados en una ubicación accesible para el computador y se observan en la pestaña de "3D Map". En este proyecto los archivos se almacenaron en un servidor creado por el ingeniero Gustavo Avendaño con el objetivo de tener una base de datos, con los resultados de la auscultación, la cual pueda ser modificada y accesada en el futuro conforme sea requerido. Ver la figura N₀ 82.

Figura 82. Tramo de la ruta 1 vista en 3D Map Fuente: Trident Imaging Hub

5. Mapa de la red vial nacional

Como una herramienta adicional se utiliza la transposición de la ruta a analizar con el mapa de la red vial nacional brindado por la ingeniera Catherine Salazar Rodríguez. Este mapa puede ser habilitado o deshabilitado en la pestaña de 3D Map. Ver figura $N_{\rm o}$ 83.

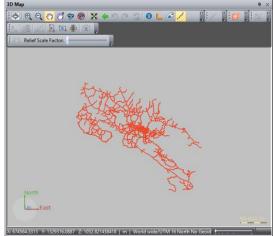
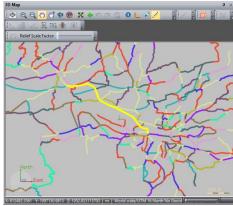



Figura 83. Mapa de la red vial nacional visto en 3D Map

Fuente: Trident Imaging Hub

Una de las ventajas más importantes de utilizar este mapa consiste en la opción de visualizar todas las secciones de control de la red vial nacional tal las cuales aparecen de distintos colores para su fácil distinción y como se observa en la figura No 84. Al comparar esto con los inventarios en físico, se reduce la imprecisión a la hora de la auscultación con respecto a los estacionamientos de la ruta, así como al posicionamiento de cada uno de los deterioros.

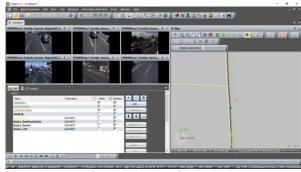


Figura 84. Transposición de un tramo de la ruta 1 con el mapa de la red vial nacional en secciones de control

Fuente: Trident Imaging Hub

6. Analizando las imágenes georreferenciadas

Posteriormente se debe abrir las imágenes georreferenciadas que LanammeUCR obtuvo mediante el uso del equipo Geo 3D. Para realizar esto se selecciona en 3D Map la ruta de color amarillo abierta previamente, lo cual abre las seis cámaras con dichas imágenes. Además, se muestra en la ruta, la posición exacta correspondiente a lo que se observa en las imágenes. Ver figura No 85.

Figura 85. Análisis de las imágenes georreferenciadas

Fuente: Trident Imaging Hub

7. Proceso de auscultación

El paso final corresponde propiamente a la auscultación de cada uno de los deterioros existentes en las rutas que se van a analizar. Es de suma importancia tener el conocimiento previo sobre los deterioros existentes en un pavimento

flexible de acuerdo con la norma ASTM D6433-18 ya que conceptos como severidad, la manera de medir e identificar los distintos deterioros, tienen influencia sobre el índice de condición del pavimento.

Con respecto a las cámaras, se utilizan las traseras debido a que son las ideales cuando de auscultación se trata. Las delanteras son utilizadas para el levantamiento de inventarios o para el levantamiento de implementos de seguridad. Ver figura $N_{\rm o}$ 86.

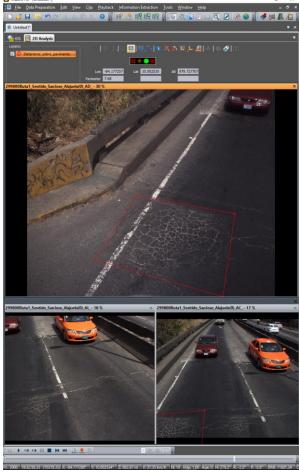
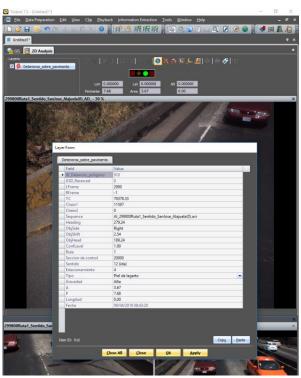



Figura 86. Proceso de auscultación de un cuero de lagarto

Fuente: Trident Imaging Hub

Una vez que se identifica y se miden las dimensiones del deterioro, se ingresan al software las características pertenecientes a dicho deterioro en el formulario mencionado anteriormente. Ese proceso se muestra en la figura N_0 87.

Figura 87. Proceso de detalle de los deterioros Fuente: Trident Imaging Hub

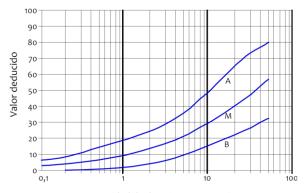
Índice de Condición del Pavimento

Una vez que culmina la evaluación de los deterioros superficiales en las rutas deseadas, se procede a calcular el índice de condición del pavimento. Este método se basa en deducciones las cuales representan el daño que causa cierto deterioro superficial al pavimento de acuerdo con su severidad y dimensión.

El cálculo del PCI para el pavimento flexible se divide en dos etapas generales; el cálculo de las unidades de muestra y posteriormente el cálculo del tramo de la ruta evaluado.

Cálculo del PCI de las unidades de muestreo

El índice de condición del pavimento se debe calcular para cada una de las unidades de muestra


que presenten deterioros en la capa de rodadura. Los pasos para dicho cálculo son los siguientes:

1. Cálculo de Deducciones (VD)

Para esta etapa se generó el cuadro N_o 17 en Microsoft Excel como apoyo:

- 1.1. Rellenar los espacios "a, b, c, d y e" con los datos obtenidos de la evaluación de los deterioros superficiales.
- 1.2. El valor en el espacio "f" corresponde a la densidad y se obtiene al dividir la medida de cada deterioro entre el área de la unidad de muestreo.
- 1.3. El valor en el espacio "g" corresponde a las deducciones y para su cálculo se debe ingresar en las gráficas de la norma ASTM D6433-18. Estas gráficas toman en cuenta que las unidades de la medición varían de acuerdo con cada deterioro y no siempre corresponden a metros cuadrados por lo que, al dividir entre el área de la unidad de muestra

para obtener la densidad, sus unidades no siempre logran cancelarse. En la figura N_0 88 se observa una gráfica para obtener el valor deducido del bacheo como ejemplo.

Densidad de deterioro-Porcentaje

Figura 88. Gráfica del valor deducido con respecto a la densidad de bacheo Fuente: Ministerio de Obras Públicas y Transportes, 2011

Cuadro 17. Ejemplo del cálculo de Deducciones en la Ruta 39

			а	b	С	d	е	f	g
ID	Sección de control	Estacionamiento (m)	UM	Área UM (m²)	Deterioros	Medida	Severidad	Densidad	VD
1	19090	144	5	198.4	Bacheo	36.1 m ²	BAJA	18.2	21
2	19099	136	5	304	Cuero de lagarto	1.1 m ²	BAJA	0.4	5
3	19099	540	17	304	Bacheo	119.0 m ²	MEDIA	39.1	30

2. Cálculo del número máximo admisible de valores deducidos (m)

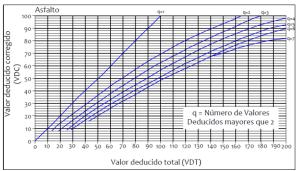
Al analizar las deducciones de cada unidad de muestreo individualmente obtenidos en el paso anterior, se pueden obtener dos posibles situaciones:

- a) Ninguno o solo una deducción es mayor a dos.
- b) Uno o más deducciones son mayores a dos.

En el caso a) no es necesario calcular el valor "m" ya que se utiliza directamente el valor deducido total sin corregir, el cual corresponde a la suma de todos los valores deducidos. En el caso b) es

necesario calcular el valor "m" para lo cual se deben seguir los siguientes pasos:

- 2.1. Ordenar las deducciones de manera descendente; del mayor al menor.
- Obtener la deducción de mayor magnitud, a ese valor se le conoce como mayor valor deducido individual (MVD).
- 2.3. Ingresar el MVD en la siguiente ecuación:


$$m = 1 + \frac{1}{98}(100 - MVD)$$

El valor "m" hace referencia a la cantidad de deterioros en una misma unidad de muestreo que pueden ser utilizados para el cálculo del valor deducido total (VDT), de manera que se van seleccionando los deterioros de forma descendente hasta completar el valor de "m", en caso de haber menos valores deducidos que "m", se utilizan todos los valores deducidos.

3. Cálculo del máximo valor deducido corregido (MVDC)

Cabe destacar que los valores a deducidos a utilizar son los seleccionados del paso anterior. Existen dos maneras de calcular el valor VDC, la primera corresponde a un proceso iterativo de acuerdo con los siguientes pasos:

- 3.1. Determinar el número de valores deducidos mayores que dos. Esa cantidad se denomina "q".
- 3.2. Determinar el VDT al sumar todos los valores deducidos.
- 3.3. Ingresar a las curvas de corrección de la figura N_o 89 con el VDT para obtener el valor deducido corregido (VDC) de acuerdo con el "q" correspondiente.

Figura 89. Grafica de VDC con respecto del VDT Fuente: Ministerio de Obras Públicas y Transportes, 2011

- 3.4. Cambiar por dos la menor deducción que sea mayor que dos. Repetir los pasos del apartado 3 hasta que el valor de "q" sea igual a uno.
- 3.5. Una vez que el valor de "q" sea igual a 1, se procede a elegir el mayor valor de VDC, a este valor se le conoce como el máximo valor deducido corregido (MVDC).

La segunda forma de calcular el MVDC se emplea cuando ninguno de los valores deducidos de una misma unidad de muestreo es mayor que dos. En esta circunstancia, el máximo valor deducido corregido se calcula mediante la suma de todos los valores deducidos.

4. Cálculo del índice de condición del pavimento de una unidad de muestreo

El valor del índice de condición del pavimento se calcula mediante la siguiente ecuación:

$$PCI_{UM} = 100 - MVDC$$

Cálculo del PCI de las secciones de control y la ruta

Una vez calculado el índice de condición de cada una de las unidades de muestra, se debe calcular el PCI para la sección de control. Posteriormente, cuando se tienen el índice para todas las secciones, se obtiene el índice para la ruta. En ambos casos la ecuación utilizada es la siguiente:

$$PCI = \frac{\sum_{i=1}^{n} (PCI_i * A_i)}{\sum_{i=1}^{n} (A_i)}$$

Donde:

PCI_i: índice de condición de la unidad de muestreo A_i: área de la unidad de muestreo n: número total evaluado de unidades de muestreo con deterioros superficiales

Resultados

Unidades de muestreo y evaluación de la condición superficial

El apartado #4 de la metodología se divide en dos partes principales. La primera consiste en una aplicación previa del método PCI con el objetivo de verificar si se debe auscultar la totalidad de la ruta o únicamente ciertas unidades de muestreo. La segunda etapa consiste en una evaluación de la condición superficial de las rutas 1, 10, 23 y 39 mediante el software "Trident Imaging Hub".

Ya que se van a analizar las rutas en unidades de muestreo y no en su totalidad, para la primera etapa se generó en Microsoft Excel una plantilla programada la cual, de acuerdo con ciertas entradas del usuario, calcula cuáles unidades de muestreo deben ser analizadas. Debido a que Trident trabaja con una unidad de longitud denominada "frame", se debe hacer una conversión matemática ya que cada uno de estos "frames" equivale a cuatro metros, por lo que en dicha plantilla se muestran los debidos

estacionamientos tanto en metros como en "frames".

Para la segunda etapa se utilizó Microsoft Access como una base de datos, la cual almacena toda la información procesada en el software Trident sobre la auscultación de los deterioros superficiales. Posteriormente se exportó dicha información a Microsoft Excel donde se acomodó la información de manera que pudiera ser utilizada para el posterior cálculo del PCI.

La información de estas dos etapas es la base con la cual se da inicio al análisis de resultados. Dichos datos se observan a continuación para cada una de las rutas analizadas.

Primera etapa:

Ver cuadros N₀ 18 a N₀ 21.

Cuadro 18. Unidades de muestreo a analizar para la sección de control 19002 de la Ruta 1

Ruta Nacional n.°	1			Unidades	s de muestre	o por analizar	·
Sección de control	19002	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	2250.00	1	1	0+0	0+032	2	10
Ancho de la calzada (m)	8.65	2	6	0+160	0+192	42	50
Pavimento	Flexible	3	11	0+320	0+352	82	90
Longitud de la UM (m)	32.00	4	16	0+480	0+512	122	130
UM Totales (N)	70.31	5	21	0+640	0+672	162	170
UM Mínimas (n)	13.19	6	26	0+800	0+832	202	210
Intervalo de Muestreo (i)	5.00	7	31	0+960	0+992	242	250
Valor al azar (S)	1.00	8	36	0+1120	0+1152	282	290
Frame inicial	2	9	41	0+1280	0+1312	322	330
Sentido	1-2 (ida)	10	46	0+1440	0+1472	362	370
Cantidad de UM a analizar	14.00	11	51	0+1600	0+1632	402	410
¿Cumple las UM mínimas?	CUMPLE	12	56	0+1760	0+1792	442	450
		13	61	0+1920	0+1952	482	490
		14	66	0+2080	0+2112	522	530

Cuadro 19. Unidades de muestreo a analizar para la sección de control 30062 de la Ruta 10

Ruta Nacional n.°	10	Unidades de muestreo por analizar							
Sección de control	30062	N°	им	Estación Inicial	Estación Final	Frame Inicial	Frame Final	ĺ	
Longitud (m)	2105.00	1	1	0+0	0+032	352	360		
Ancho de la calzada (m)	8.80	2	6	0+160	0+192	392	400		
Pavimento	Flexible	3	11	0+320	0+352	432	440	1	
Longitud de la UM (m)	32.00	4	16	0+480	0+512	472	480	1	
UM Totales (N)	65.78	5	21	0+640	0+672	512	520	1	
UM Mínimas (n)	13.03	6	26	0+800	0+832	552	560	1	
Intervalo de Muestreo (i)	5.00	7	31	0+960	0+992	592	600		
Valor al azar (S)	1.00	8	36	0+1120	0+1152	632	640		
Frame inicial	352	9	41	0+1280	0+1312	672	680		
Sentido	1-2 (ida)	10	46	0+1440	0+1472	712	720		
Cantidad de UM a analizar	13.00	11	51	0+1600	0+1632	752	760		
¿Cumple las UM mínimas?	NO CUMPLE	12	56	0+1760	0+1792	792	800		
		13	61	0+1920	0+1952	832	840		

Cuadro 20. Unidades de muestreo a analizar para la sección de control 19090 de la Ruta 39

Ruta Nacional n.°	39			Unidades d	le muestreo _l	oor anali <mark>z</mark> ar	
Sección de control	19090	N°	UM	Estación Inicial	Estación Final	Frame Inicial	Frame Final
Longitud (m)	870.00	1	1	0+0	0+032	0	8
Ancho de la calzada (m)	6.20	2	3	0+64	0+96	16	24
Pavimento	Flexible	3	5	0+128	0+160	32	40
Longitud de la UM (m)	32.00	4	7	0+192	0+224	48	56
UM Totales (N)	27.19	5	9	0+256	0+288	64	72
UM Mínimas (n)	10.32	6	11	0+320	0+352	80	88
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	96	104
Valor al azar (S)	1.00	8	15	0+448	0+480	112	120
Frame inicial	0	9	17	0+512	0+544	128	136
Sentido	1-2 (ida)	10	19	0+576	0+608	144	152
Cantidad de UM a analizar	14.00	11	21	0+640	0+672	160	168
¿Cumple las UM mínimas?	CUMPLE	12	23	0+704	0+736	176	184
		13	25	0+768	0+800	192	200
		14	27	0+832	0+864	208	216

Las rutas 1, 10 y 39 tienen treinta y dos metros como longitud de unidad de muestra debido a que los anchos de las calzadas se encuentran en un rango entre cinco metros y medio y diez metros.

Las secciones de control de la ruta 23 poseen anchos de calzada menores a cinco

metros y medio, por lo que la longitud de las unidades de muestra se eleva al menor número posible como lo indica la norma ASTM D6433-18, lo que, para estos casos corresponde a cuarenta y ocho metros.

Cuadro 21. Unidades de muestreo a analizar para la sección de control 60610 de la Ruta 23

Ruta Nacional n.°	23			Unidades	de muestreo ¡	oor analizar	
Sección de control	60610	N°	UM	Estación Inicial	Estación Final	Fr. Inicial	Fr. Final
Longitud (m)	6100.00	1	1	0+0	0+048	0	12
Ancho de la calzada (m)	3.75	2	6	0+240	0+288	60	72
Pavimento	Flexible	3	11	0+480	0+528	120	132
Longitud de la UM (m)	48.00	4	16	0+720	0+768	180	192
UM Totales (N)	127.08	5	21	0+960	0+1008	240	252
UM Mínimas (n)	24.21	6	26	0+1200	0+1248	300	312
Intervalo de Muestreo (i)	5.00	7	31	0+1440	0+1488	360	372
Valor al azar (S)	1.00	8	36	0+1680	0+1728	420	432
Frame inicial	0	9	41	0+1920	0+1968	480	492
Sentido	1-2 (ida)	10	46	0+2160	0+2208	540	552
Cantidad de UM a analizar	26.00	11	51	0+2400	0+2448	600	612
¿Cumple las UM mínimas?	CUMPLE	12	56	0+2640	0+2688	660	672
		13	61	0+2880	0+2928	720	732
		14	66	0+3120	0+3168	780	792
		15	71	0+3360	0+3408	840	852
		16	76	0+3600	0+3648	900	912
		17	81	0+3840	0+3888	960	972
		18	86	0+4080	0+4128	1020	1032
		19	91	0+4320	0+4368	1080	1092
		20	96	0+4560	0+4608	1140	1152
		21	101	0+4800	0+4848	1200	1212
		22	106	0+5040	0+5088	1260	1272
		23	111	0+5280	0+5328	1320	1332
		24	116	0+5520	0+5568	1380	1392
		25	121	0+5760	0+5808	1440	1452
		26	126	0+6000	0+6048	1500	1512

En el Apéndice N_{\circ} 1 se adjuntan los cuadros restantes con las unidades de muestreo de cada una de las secciones de control de las rutas analizadas.

extensas por lo que la cantidad de deterioros es un gran número. El tramo de la ruta 1 y la ruta 23 por el contrario, no presentaron tantos deterioros superficiales por lo que se presentan en los cuadros $N_{\rm o}$ 22 a $N_{\rm o}$ 29, todos los encontrados.

Segunda etapa:

En el Apéndice N_{o} 2 se adjuntan los cuadros completos con los resúmenes de los deterioros auscultados para las rutas 10 y 39 debido a que son muy

Cuadro 22. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 1 sentido Sabana Este – Radial Alajuela

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	Deterioros	Medidas	Severidad	Densidad (%)
1	19002	4	1	276.8	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4
2	19002	20	1	276.8	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4
3	19002	1472	46	276.8	Cuero de lagarto	1.40 m ²	MEDIA	0.5
4	19002	1604	51	276.8	Cuero de lagarto	5.32 m ²	MEDIA	1.9
5	19002	1760	56	276.8	Cuero de lagarto	0.70 m ²	MEDIA	0.3
6	19002	1764	56	276.8	Cuero de lagarto	1.63 m ²	MEDIA	0.6
7	19002	2100	66	276.8	Cuero de lagarto	4.56 m ²	MEDIA	1.6
8	19003	352	11	315.2	Grieta longitudinal y transversal	13.88 m	ALTA	4.4
9	19003	2720	86	315.2	Desgaste superficial	4.02 m ²	ALTA	1.3
10	19003	2728	86	315.2	Desgaste superficial	6.54 m ²	ALTA	2.1
11	40040	8	1	308.8	Bacheo	22.58 m ²	BAJA	7.3
12	40710	2884	91	308.8	Cuero de lagarto	39.43 m²	ALTA	12.8
13	40710	2888	91	308.8	Bacheo	36.28 m ²	MEDIA	11.7
14	20000	4	1	304.0	Bacheo	38.40 m ²	ALTA	12.6
15	20000	8	1	304.0	Cuero de lagarto	15.22 m ²	ALTA	5.0
16	20000	8	1	304.0	Exudación	25.37 m ²	MEDIA	8.3

Cuadro 23. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 1 sentido Radial Alajuela – Sabana Este

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	UM Deterioros		Severidad	Densidad (%)
1	20000	32	1	276.8	Bacheo	71.56 m ²	BAJA	25.9
2	19003	3232	101	276.8	Bacheo	2.13 m ²	MEDIA	0.8
3	19002	4	1	276.8	276.8 Bacheo		MEDIA	0.9
4	19002	1944	61	276.8	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4

Cuadro 24. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 10 sentido La Lima - Siguirres

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	Deterioros	Medidas	Severidad	Densidad (%)
1	30062	208	6	281.6	Cuero de lagarto	5.42 m ²	ALTA	1.9
2	30062	412	11	281.6	281.6 Cuero de lagarto		ALTA	1.9
3	30062	416	11	281.6	Cuero de lagarto	3.34 m ²	ALTA	1.2
4	30062	600	21	281.6	Desplazamiento	17.04 m²	MEDIA	6.1
5	30062	772	26	281.6	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4
6	30062	784	26	281.6	Bacheo	2.11 m ²	BAJA	0.7
7	30062	992	31	281.6	Profundidad de rodera	7.19 m²	MEDIA	2.6
8	30062	992	31	281.6	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4
9	30062	1164	36	281.6	Cuero de lagarto	1.55 m ²	ALTA	0.6
10	30062	1172	36	281.6	Bacheo	2.21 m²	BAJA	0.8

Cuadro 25. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 10 sentido Siquirres – La Lima

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	Deterioros	Medidas	Severidad	Densidad (%)
1	30040	584	19	281.6	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4
2	30040	992	31	281.6	desnivelada		MEDIA	0.4
3	30040	1368	43	281.6	Tapa de registro pluvial desnivelada		ALTA	0.4
4	30040	1356	43	281.6	Profundidad de rodera	40.53 m ²	MEDIA	14.4
5	30040	1376	43	281.6	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4
6	30040	2496	79	281.6	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4
7	30040	2896	91	281.6	Profundidad de rodera	36.26 m ²	MEDIA	12.9
8	30021	588	19	281.6	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4
9	30021	772	25	281.6	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4

Cuadro 26. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 23 sentido Barranca – Puerto Caldera

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	Deterioros	Medidas	Severidad	Densidad (%)
1	60610	3376	71	180.0	Bacheo	63.94 m ²	BAJA	35.5
2	60840	5548	116	223.2	Bacheo	19.76 m²	BAJA	8.9
3	60840	5556	116	223.2	Hueco	1.38 m ²	MEDIA	0.6
4	60840	5556	116	223.2	Bacheo	23.75 m ²	BAJA	10.6
5	60840	5800	121	223.2	Hueco	3.60 m ²	ALTA	1.6

Cuadro 27. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 23 sentido Puerto Caldera - Barranca

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	Lightorioros		Severidad	Densidad (%)
1	60610	240	6	180.0	180.0 Bacheo 2		ALTA	13.4
2	60610	3376	71	180.0	Bacheo	38.05 m ²	BAJA	21.1
3	60610	3648	76	180.0	180.0 Cuero de lagarto		MEDIA	2.2
4	60840	4608	96	223.2	Desnivel carril / espaldón	40.00 m	BAJA	17.9

Cuadro 28. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 39 sentido La Uruca – Calle Blancos

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	Deterioros	Medidas	Severidad	Densidad (%)
1	19090	96	3	198.4	Bacheo	23.7 m ²	BAJA	12.0
2	19090	144	5	198.4	198.4 Bacheo		BAJA	18.2
3	19090	220	7	198.4	198.4 Bacheo		BAJA	15.0
4	19090	260	9	198.4	8.4 Bacheo		BAJA	5.8
5	19090	816	25	198.4	98.4 Grieta de reflexión de junta		MEDIA	5.3
6	19091	16	1	240	Bacheo	5.0 m ²	BAJA	2.1
7	19091	96	3	240	Desnivel carril / espaldón	67.1 m ²	MEDIA	28.0
8	19092	152	5	240	Desnivel carril / espaldón	29.0 m ²	ALTA	12.1
9	19093	160	5	224	Bacheo	66.8 m²	MEDIA	29.8
10	19093	592	19	224	4 Desnivel carril / espaldón		BAJA	9.7
11	19094	280	9	224	Bacheo	0.6 m ²	BAJA	0.3

Cuadro 29. Resumen del proceso de evaluación de los deterioros superficiales en la ruta 39 sentido Calle Blancos – La Uruca

ID	Sección de control	Estacionamiento	UM	Área de la UM (m²)	Deterioros	Medidas	Severidad	Densidad (%)
1	19105	240	8	320	Cuero de lagarto	4.98 m ²	BAJA	1.6
2	19105	272	9	320	320 Cuero de lagarto		BAJA	0.7
3	19105	308	10	320	320 Bacheo		MEDIA	2.1
4	19105	312	10	320	Bacheo		MEDIA	1.7
5	19105	312	10	320	Bacheo	1.29 m ²	MEDIA	0.4
6	19105	316	10	320	Bacheo	6.74 m ²	MEDIA	2.1
7	19105	324	11	320	Bacheo	2.54 m ²	MEDIA	0.8
8	19105	328	11	320	Bacheo	3.90 m ²	MEDIA	1.2
9	19105	332	11	320	Bacheo	2.96 m ²	MEDIA	0.9
10	19105	344	11	320	Bacheo	1.62 m²	MEDIA	0.5
11	19105	344	11	320	Bacheo	5.72 m ²	ALTA	1.8

Deducción de los deterioros auscultados y PCI de las rutas

El apartado #5 de la metodología se divide en dos partes principales. La primera consiste en la obtención de la deducción de cada uno de los deterioros auscultados, lo cual es un indicativo del daño que genera el deterioro al pavimento flexible. La segunda y final etapa del proyecto consiste en la obtención del índice de condición del pavimento para las rutas 1, 10, 23 y 39.

Primera etapa:

De manera específica, en los cuadros $N_{\rm o}$ 30 a $N_{\rm o}$ 37 se muestran las deducciones para cada ruta con su debido sentido de dirección, producto del procesamiento de la información obtenida en el software "Trident Imaging Hub".

Cuadro 30. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 1

Ruta 1								
Sentido: Sabana	Este -	- Radia	I Alajuel	а				
Deterioro	#	%	VD	%				
Tapa de registro pluvial desnivelada	2.0	12.5	0.0	0.0				
Bacheo	2.0	12.5	33.0	11.1				
Cuero de lagarto	7.0	43.8	214.0	71.9				
Desgaste superficial	2.0	12.5	0.0	0.0				
Desnivel carril/espaldón	1.0	6.3	17.5	5.9				
Exudación	1.0	6.3	12.0	4.0				
Grieta longitudinal y transversal	1.0	6.3	21.0	7.1				

Cuadro 31. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 1

Ruta 1									
Sentido: Radial Alajuela – Sabana Este									
Deterioro	#	%	VD	%					
Tapa de registro pluvial desnivelada	1.0	25.0	76.2	69.8					
Bacheo	3.0	75.0	33.0	30.2					

Cuadro 32. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 10

	Ruta 10)		
Sentido: La	a Lima ·	– Siqui	rres	
Deterioro	#	%	VD	%
Tapa de registro pluvial desnivelada	20.0	7.7	0.0	0.0
Bacheo	53.0	20.4	1110.7	32.0
Cuero de lagarto	7.0	2.7	189.0	5.4
Depresión	1.0	0.4	7.0	0.2
Desnivel carril/espaldón	169.0	65.0	1995.0	57.4
Desplazamiento	2.0	0.8	39.5	1.1
Desprendimiento de agregados	1.0	0.4	30.0	0.9
Grieta de borde	2.0	0.8	21.5	0.6
Grieta longitudinal y transversal	3.0	1.2	31.0	0.9
Hueco	1.0	0.4	25.0	0.7
Profundidad de rodera	1.0	0.4	27.0	0.8

Cuadro 33. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 10

I	Ruta 10)							
Sentido: Si	quirres	– La L	.ima						
Deterioro	Deterioro # % VD %								
Tapa de registro pluvial desnivelada	10.0	5.2	0.0	0.0					
Bacheo	26.0	13.6	794.5	37.5					
Desnivel carril/espaldón	153.0	80.1	1231.0	58.1					
Profundidad de rodera	2.0	1.0	95.0	4.5					

Cuadro 34. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 23

ipo de deterioro existente en la rata 20								
Ruta 23								
Sentido: Barranca – Puerto Caldera								
Deterioro # % VD %								
Bacheo	3.0	60.0	73.0	46.8				
Hueco	2.0	40.0	83.0	53.2				

Cuadro 35. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 23

Ruta 23				
Sentido: Puerto Caldera - Barranca				
Deterioro	#	%	VD	%
Bacheo	2.0	50.0	76.0	67.3
Cuero de lagarto	1.0	25.0	29.0	25.7

Desnivel				
	1.0	25.0	8.0	7.1
carril/espaldón		_0.0	0.0	

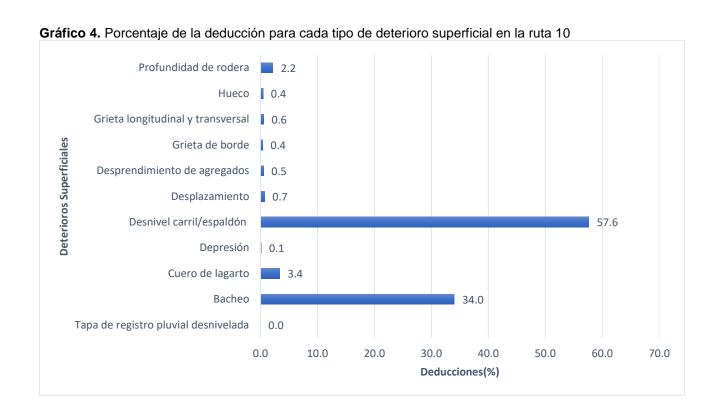
Cuadro 36. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 39

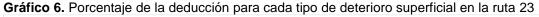
Ruta 39				
Sentido: La Uruca – Calle Blancos				
Deterioro	#	%	VD	%
Tapa de registro pluvial desnivelada	2.0	2.0	0.0	0.0
Bacheo	42.0	41.2	657.7	57.1
Cruce de vía férrea	1.0	1.0	37.5	3.3
Cuero de lagarto	21.0	20.6	234.0	20.3
Desgaste superficial	2.0	2.0	0.0	0.0
Desnivel carril/espaldón	3.0	2.9	40.0	3.5
Exudación	5.0	4.9	21.5	1.9
Grieta de borde	1.0	1.0	9.0	0.8
Grieta de reflexión de junta	1.0	1.0	11.0	1.0
Grieta longitudinal y transversal	16.0	15.7	89.5	7.8
Hueco	8.0	7.8	51.0	4.4

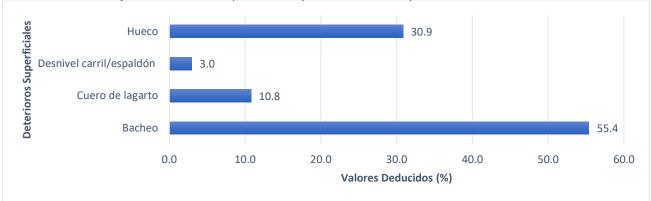
Cuadro 37. Resumen de las deducciones por cada tipo de deterioro existente en la ruta 39

Ruta 39				
Sentido: Calle Blancos – La Uruca				
Deterioro	#	%	VD	%
Agrietamiento en bloque	3.0	2.0	24.5	0.9
Tapa de registro pluvial desnivelada	4.0	2.7	0.0	0.0
Bacheo	34.0	23.0	485.0	18.8
Cruce de vía férrea	1.0	0.7	30.0	1.2
Cuero de lagarto	55.0	37.2	1374.0	53.2
Desgaste superficial	4.0	2.7	0.0	0.0
Desplazamiento	9.0	6.1	206.5	8.0
Exudación	7.0	4.7	77.0	3.0
Grieta de borde	2.0	1.4	23.0	0.9
Grieta de reflexión de junta	1.0	0.7	12.0	0.5
Grieta longitudinal y transversal	28.0	18.9	349.2	13.5

Se muestra en los gráficos $N_{\rm o}$ 1 a $N_{\rm o}$ 8 un reporte general, mediante gráficos de barras, de la cantidad y tipo de los deterioros, así como de los valores deducidos por cada ruta analizada.

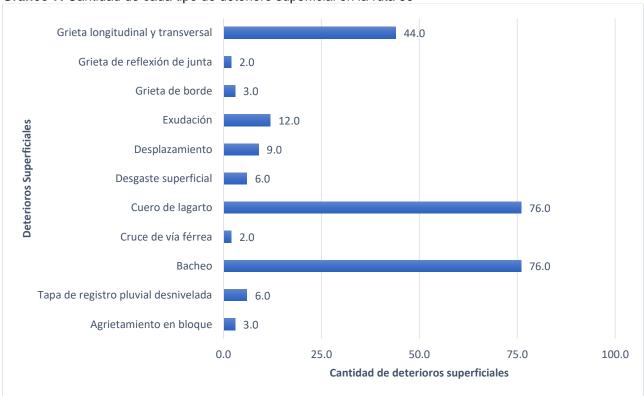

Ruta 1

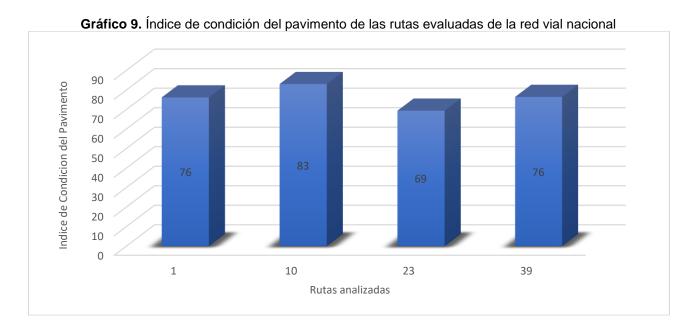

Ruta 10



Ruta 23

Ruta 39




Gráfico 8. Porcentaje de la deducción para cada tipo de deterioro superficial en la ruta 39

Segunda etapa:

De manera específica se muestra en el grafico $N_{\rm o}$ 9 el índice de condición del pavimento para las rutas 1, 10, 23 y 39. Además, en el cuadro $N_{\rm o}$ 38 se observa la clasificación del nivel de condición desde fallado hasta excelente de acuerdo con la norma ASTM D6433-18.

Cuadro 38. Clasificación del PCI de acuerdo con la norma ASTM D6433-18

Ruta	Clasificación		
1	Muy bueno		
10	Muy bueno		
23	Bueno		
39	Muy bueno		

EVALUACION DE LA CONDICION SUPERFICIAL DE PAVIMENTOS POR MEDIO DE TRIMBLE TRIDENT

Análisis de los resultados

Ruta 1 (Sabana – San Ramón)

La sección evaluada de la ruta 1 corresponde desde su inicio en la Sabana hasta San Ramón, específicamente se tomaron en cuenta las secciones de control 19002, 19003, 40040, 40710 y 20000. La longitud del tramo analizado corresponde a 15,21 km.

Los deterioros más frecuentes encontrados en las unidades de muestreo son el cuero de lagarto, con un total de 7 ocurrencias y una severidad MEDIA-ALTA; y el bacheo con un total de 5 ocurrencias y una severidad BAJA-MEDIA. El cuero de lagarto se presenta en áreas muy pequeñas del pavimento de alrededor de 3 m², a excepción de una falla con un área de 40 m². Los bacheos por otro lado poseen extensiones algo mayores llegando hasta 71 m².

De acuerdo con Rodríguez (2009), la densidad es el porcentaje de área de la unidad de muestra que posee un deterioro determinado, con un mismo nivel de severidad. Es importante tener en consideración la dimensión de un deterioro y no sólo la cantidad de ellos en una misma sección, ya que puede haber una gran cantidad de deterioros con un área más pequeña y en otra zona de la misma sección, un solo deterioro con un área significativa el cual tenga un mayor riesgo para la integridad estructural del pavimento, así como de los usuarios que transitan por esta carretera.

La falla más repetitiva es el cuero de lagarto, sin embargo, en ninguna de las ocasiones su densidad es mayor a 5%. Esto demuestra que este deterioro, aunque es el que en más ocasiones aparece, no es el que tiene mayor extensión en la ruta 1. Las fallas con mayores densidades corresponden al bacheo y desnivel carril/espaldón con valores de 25,9% y 12,6% respectivamente.

Los deterioros que producen un mayor daño a la estructura del pavimento son los que poseen una mayor deducción. De acuerdo con el gráfico N_o 2, de todos los deterioros evaluados los que representan un mayor daño al pavimento de la sección de control son el cuero de lagarto con un valor deducido igual a 64,8% seguido del bacheo con 20.0%.

De acuerdo con la información anterior, queda en evidencia que el deterioro más perjudicial corresponde al cuero de lagarto, por lo que se debe prestar una mayor atención a las causas que originan dicha falla. De acuerdo con el Ministerio de Obras Públicas y Transportes (2010), entre las posibles causas están: la poca capacidad que tienen los pavimentos para drenar, la falta de un mantenimiento preventivo, el ligante presenta un severo envejecimiento o una falla por fatiga en la capa asfáltica debido a la repetición de las cargas de tránsito.

De acuerdo con el gráfico N_0 9, se observa que el valor del índice de condición del pavimento obtenido para el tramo Sabana – San Ramón de la ruta 1 es de 76. Según la norma ASTM D6433-18, la condición superficial de la ruta asfaltada se clasifica como "muy buena". Este estado es un indicador de la buena condición que presenta dicha ruta, sin embargo, deben tomarse en consideración ciertas variables para su análisis.

Una de ellas es el tiempo en que fue rehabilitada o reconstruida por última vez, ya que, con dicha información, se puede tener un conocimiento sobre si la ruta se deterioró más rápido de lo que fue diseñada o si va de acuerdo con el periodo de diseño. Cabe recalcar que se debe dar un mantenimiento constante a las carreteras para que estas alcancen el periodo de diseño, por lo que, aunque la ruta cuente con una condición superficial "muy buena" se le debe prestar especial atención a las secciones de control con menor PCI.

De acuerdo con lo mencionado, la sección de control que cuenta con el menor PCI es la 20000 con un valor de 59. Esto le da una clasificación de "bueno" en relación con la condición superficial, lo cual está debajo del promedio de toda la ruta, dejando en evidencia que dicha sección requiere de una intervención, ya que se encuentra en un peor estado que las demás secciones.

Existen varios deterioros los cuales, no son contabilizados por la norma ASTM D6433-18, pero que generan un impacto negativo en la integridad de la estructura de pavimento y la seguridad de los usuarios que transitan por la carretera. De acuerdo con el Ministerio de Obras Públicas y Transportes en el informe Manual de Auscultación Visual de Pavimentos de Costa Rica (2010); estos deterioros corresponden a un caso especial y son específicamente dos: tapas de registros pluviales levantadas o hundidas y el desgaste superficial. Ver figuras N_{\odot} 90 y N_{\odot} 91.

Figura 90. Tapa de registro pluvial hundida Fuente: Ministerio de Obras Públicas y Transportes, 2011

Figura 91. Tapa de registro pluvial levantada Fuente: Ministerio de Obras Públicas y Transportes, 2011

Estos tipos especiales de deterioro poseen una deducción igual a cero debido a que no se toman en cuenta en el cálculo del índice de condición del pavimento. Sin embargo, es de suma importancia tomarlos en cuenta, por lo que, durante la evaluación de las cuatro rutas se levantaron dichas fallas; por unidad y con una severidad asociada. En la sección de control 19002 se encontraron dos tapas de registros pluviales desniveladas.

Ruta 10

La ruta 10 fue analizada en su totalidad para lo cual, se tomaron en cuenta las secciones de control 30061, 30062, 30040, 30021, 30022, 30471, 30010, 30480, 30001, 30002 y 70420. La longitud de la ruta corresponde a 90,41 km.

Los deterioros que más se reiteraron en las unidades de muestreo fueron el desnivel carril/espaldón con un total de 322 apariciones y una severidad desde BAJA hasta ALTA deiando en evidencia la alta frecuencia de este tipo de fallas en zonas rurales. Por otro lado, el bacheo tuvo un total de 79 apariciones y, de igual manera, una severidad desde BAJA hasta ALTA. El bacheo se presenta en áreas muy grandes del pavimento de más de 100 m², a excepción de 11 fallas las cuales no superan los 10 m². Los desniveles carril/espaldón, por otro lado, se miden en unidades longitudinales y se presentaron en una gran cantidad de las unidades de muestra analizadas. Esta falla tiene extensiones. en la mayoría de los casos, de 32 y 48 metros lo cual corresponde a toda la longitud de la unidad de muestreo. En general, la falla desnivel carril/espaldón se presentó en 12,68 km lo cual representa a un 14% de la longitud total de la ruta 10.

Es importante tener en consideración la dimensión de un deterioro y no sólo la cantidad de ellos en una misma sección, por lo que la falla más repetitiva es el desnivel carril/espaldón, sin embargo, en ninguna de las ocasiones su densidad es mayor a 42%. Esto demuestra que este deterioro, aunque es el que más ocasiones aparece, no es el que tiene mayor extensión en la ruta 10. La falla con mayor densidad corresponde al bacheo en ambos sentidos con valores de 98% en el sentido (La Lima – Siquirres) y 60% en el sentido (Siquirres – La Lima). Las densidades encontradas en esta ruta son las mayores de las cuatro rutas analizadas.

Los deterioros que producen un mayor daño a la estructura del pavimento son los que poseen una mayor deducción. De acuerdo con el gráfico No 4, de todos los deterioros evaluados, los que representan un mayor daño al pavimento de la sección de control son el desnivel carril/espaldón con un valor de deducción igual a 57,6% seguido del bacheo con 34%. Al comparar la falla con mayor valor deducido entre esta y la ruta anterior, el cual corresponde a cuero de lagarto con un 64%, queda en evidencia que este último representa un mayor daño al pavimento aún con menores densidades y severidades.

De acuerdo con la información anterior, el deterioro que produce más daño al pavimento corresponde al desnivel carril/espaldón, por lo que se debe prestar una mayor atención a las causas que originan dicha falla. De acuerdo con el Ministerio de Obras Públicas y Transportes (2010), entre las posibles causas están: la erosión o asentamiento del espaldón, así como un aumento de la estructura de pavimento sin ajustar el nivel del espaldón ya que esto puede generar una perdida considerable del confinamiento, así como propiciar la creación de grietas de borde.

Según el gráfico N_{\circ} 9, se denota que el valor del índice de condición del pavimento obtenido para la ruta 10 es de 83. De acuerdo con la norma ASTM D6433-18, la condición superficial de la ruta en asfalto se clasifica como "muy buena". A pesar de que se tiene una condición superficial óptima, se deben analizar las secciones de control con PCI menores al promedio ya que puede ser un indicador de diseños constructivos deficientes, materiales inapropiados, entre otras causas.

Al tomar en consideración el tiempo en que fue rehabilitada o reconstruida por última vez, se puede tener un conocimiento sobre si la ruta se deterioró de una manera acelerada o si va de acuerdo con diseño previsto. Lo óptimo sería llevar un registro en el tiempo de los deterioros y sus características para así darle el debido mantenimiento a la ruta y mejorar las técnicas de rehabilitación o reconstrucción.

La sección de control que cuenta con el menor PCI es la 30040 con un valor de 69. Esto le da una clasificación de "bueno" en relación con la condición superficial, lo cual está debajo del promedio de toda la ruta; por lo que dicha sección requiere de una evaluación sobre las causas de los deterioros, ya que se encuentra en un peor estado que las demás secciones. Sin embargo, cabe destacar que todas las secciones de control

presentan un índice de condición superior a 85 por lo que denota un estado general óptimo de la carretera.

En esta ruta se presentaron deterioros pertenecientes a los casos especiales, los que hay una deducción igual a cero debido a que no se toman en cuenta en el cálculo del índice de condición del pavimento. Sin embargo, tienen una alta relevancia por lo que se contabilizaron 30 tapas de registros pluviales desniveladas con severidad desde BAJA hasta ALTA. Dichas fallas se encontraron específicamente en las secciones de control: 30062, 30040, 30021, 30001 y 30002.

Ruta 23

La ruta 23 fue analizada en su totalidad, para lo cual, se tomaron en cuenta las secciones de control 60610 y 60840. La longitud de la ruta es de 12,67 km y corresponde a la de menor extensión entre las cuatro analizadas.

Las fallas que más se reiteraron en las unidades de muestreo fueron el bacheo con un total de 4 apariciones con severidad BAJA y uno con una severidad ALTA; además de huecos con un total de 2 ocurrencias y una severidad MEDIA-ALTA. El bacheo se presenta en áreas grandes del pavimento entre 20 y 64 m², a excepción de una, la cual está por debajo de este rango. Los huecos, al contrario, se presentaron en extensiones más pequeñas de entre 1,38 y 3,60 m².

Es importante tener en consideración la dimensión de un deterioro y no sólo la cantidad de ellos en una misma sección. En esta ruta, a diferencia de las dos anteriores, la falla más repetitiva coincide con la falla que posee la mayor densidad. El bacheo presenta la mayor densidad en ambos sentidos; en el sentido (Barranca – Puerto Caldera) es de 36% y en el sentido (Puerto Caldera – Barranca) es de 21%. Esto demuestra que el bacheo, es tanto el que en más ocasiones aparece, como el que tiene mayor extensión en la ruta 23.

Los deterioros que producen un mayor daño a la estructura del pavimento son los que poseen un mayor valor deducido. De acuerdo con el gráfico N_{\circ} 6, de todos los deterioros evaluados, los que representan un mayor daño al pavimento de la sección de control son los bacheos con un valor deducido igual a 55,4% seguido de los huecos con 30,9%. Al comparar el bacheo con mayor valor deducido entre esta y las dos rutas anteriores,

queda en evidencia que tal deterioro ha afectado a esta ruta en mayor medida.

De acuerdo con la información anterior, el deterioro que produce más daño al pavimento corresponde al bacheo, por lo que se debe prestar una mayor atención a las causas que originan dicha falla. De acuerdo con el Ministerio de Obras Públicas y Transportes (2010), entre las posibles causas están: la reparación de una extensión de la capa de rodadura debido a la existencia de deterioros o reparación de una tubería, entre otros.

Según el gráfico N_o 9, se observa que el valor del índice de condición del pavimento obtenido para la ruta 23 es de 69. De acuerdo con la norma ASTM D6433-18, la condición superficial de la ruta asfaltada se clasifica como "buena". Ya que no se tiene una condición superficial esperada, se deben analizar todas las secciones de control con PCI ya que pueden ser un indicador de una mala gestión o administración del pavimento.

Con base en la información anterior, la sección de control que cuenta con el menor PCI es la 60610 con un valor de 68,5 y la sección 60840 tiene un valor de 70. Esto le da una clasificación de "bueno" a ambas en relación con la condición superficial, lo cual está en la misma línea del promedio de toda la ruta. Esto deja en evidencia la necesidad de analizar los orígenes de los deterioros de ambas secciones por igual, ya que las dos no están en un estado óptimo.

Esta es la única carretera de las cuatro analizadas en la que no se presentaron deterioros pertenecientes a los casos especiales como el desgaste superficial o las tapas de registros pluviales levantadas o hundidas.

Ruta 39

La ruta de Circunvalación fue analizada en su totalidad, para lo cual se tomaron en cuenta las secciones de control 19090, 19091, 19092, 19093, 19094, 19095, 19096, 19097, 19098, 19099, 19100, 19101, 19102, 19089, 19103, 19104 y 19105. La longitud de la ruta corresponde a 14,91 km.

Dos deterioros fueron los que más se reiteraron en las unidades de muestreo: el bacheo y el cuero de lagarto con un total de 76 apariciones con severidades desde BAJA hasta ALTA. Seguidamente se encuentran las grietas longitudinales y transversales con un total de 44 ocurrencias y una severidad desde BAJA hasta

ALTA. El bacheo se presentó en extensiones con un rango sumamente amplio, el cual varía entre 0,5 y 176 m² mientras que el cuero de lagarto, a diferencia de los baches, se encuentra en áreas muy pequeñas que varían entre 0,5 y 10 m², a excepción de 5 fallas que están por encima de dicho rango. Las grietas por otro lado, se miden en unidades longitudinales mediante una sumatoria siempre y cuando estas se presenten en una misma sección de control y posean la misma severidad; en algunas unidades de muestreo llegaron a tener longitudes de 48 m.

Es de suma importancia tener en consideración la densidad, ya que esta es un indicador del porcentaje de un deterioro con respecto al área total del área de muestreo. Teniendo esto en cuenta, el cuero de lagarto tuvo densidades muy bajas de entre 0,2 y 10%, a diferencia de los baches para los que las densidades llegaron a niveles de 79%. Esto demuestra la gran cantidad de área que cubre este último deterioro sobre las secciones de control, por lo que es muy importante controlar cuando se efectúa el reemplazo de un área de pavimento por cualquier motivo.

De acuerdo con el gráfico N_o 8, de todos los deterioros evaluados, los que representan un mayor daño al pavimento son el cuero de lagarto con un valor deducido igual a 44,2% seguido del bacheo con 31,4%. Aunque estos dos deterioros presentaron una cantidad igual de apariciones, el daño que le proporcionan al pavimento es muy distinto, de ahí la importancia y necesidad de evaluar estos valores y no sólo cantidad o densidad.

Al igual que el tramo analizado de la ruta 1, el deterioro que produce un mayor daño a la estructura de pavimento corresponde al cuero de lagarto, por lo que se debe prestar una mayor atención a las causas que originan dicha falla.

Según el gráfico No 9, se muestra que el valor del índice de condición del pavimento obtenido para la ruta 39 es de 76. De acuerdo con la norma ASTM D6433-18, la condición superficial de la ruta asfaltada se clasifica como "muy buena". Es prudencial analizar las secciones de control con los menores valores de PCI ya que puede ser un indicador de diseños constructivos deficientes, materiales inapropiados, técnicas de conservación ineficientes, entre otras causas.

La sección de control que cuenta con el menor PCI es la 19102 con un valor de 46. Esto le da una clasificación de "regular" en relación con la condición superficial, lo cual está debajo del promedio de toda la ruta; por lo que dicha sección requiere de una evaluación sobre las causas de los deterioros, ya que se encuentra en un peor estado que las demás secciones. Sin embargo, cabe destacar que todas las secciones de control presentan un índice de condición superior a 70 a excepción de cuatro secciones, por lo que denota un estado general óptimo de la carretera.

En esta ruta se presentaron deterioros pertenecientes a los casos especiales con deducciones iguales a cero, debido a que no se toman en cuenta en el cálculo del índice de condición del pavimento. Sin embargo, tienen una alta relevancia por lo que se contabilizaron 6 tapas de registros pluviales desniveladas y otros 6 sectores con un desgaste superficial notable. Dichas fallas se encontraron específicamente en las secciones de control: 19099, 19101, 19102, 19103 y 19104.

demás rutas a solicitud de la Secretaría de Planificación Sectorial.

Elaboración de informe

Como se comentó anteriormente, es necesario tener información de la condición superficial de las carreteras con el fin de elaborar estrategias de intervención, que resulten en una distribución eficiente y eficaz de los recursos limitados del país. Los resultados y análisis obtenidos de este provecto son parte de esa información, con la cual, se pueden llegar a generar curvas de desempeño para así determinar las mejores técnicas de conservación de acuerdo con antecedentes históricos en una cierta ruta, e identificar si es necesario darle un mantenimiento o reforzamiento a alguna ruta existente. Cabe destacar que este proyecto hace enfoque únicamente a la parte de deterioros superficiales y deja de lado otros componentes tales como comportamiento estructural, seguridad vial. inventario vial y desempeño por lo que se debe dar un seguimiento para alcanzar resultados que favorezcan a la red vial.

Con la información generada en este proyecto se elaboró un informe para el Ministerio de Obras Públicas y Transportes en el cual se especifica la condición superficial de las rutas 39, 23, 10 y un tramo de la ruta 1 como aporte al plan estratégico. Ver apéndice No 3. Además, se brinda una hoja de Excel programada y una base de datos modificable para continuar con la evaluación de las

Conclusiones

- La metodología PCI corresponde a una de las más idóneas debido a que no necesita de herramientas técnicas ni especificas porque la condición es medida indirectamente y se puede utilizar en pavimentos rígidos y flexibles. Esta metodología a diferencia de VIZIR presenta diferencia en los rangos de grado de severidad por lo que resulta más rigurosa.
- Los deterioros más frecuentes en las cuatro rutas analizadas corresponden a: cuero de lagarto, desnivel carril/espaldón el cual se presenta con mayor frecuencia en las zonas rurales, bacheo y las grietas longitudinales y transversales.
- Al comparar con otros proyectos que obtuvieron el PCI para cierta ruta, se denota una mayor rapidez al realizar la evaluación visual gracias a la utilización de Trimble Trident.
- Se confirma que el bacheo es el deterioro con mayores densidades, al punto de tener extensiones de 98% sobre el área de las unidades de muestreo analizadas en la ruta 10.
- Se comprueba que los deterioros con mayor valor deducido tales como el cuero de lagarto, el desnivel carril/espaldón y los bacheos son los que generan un mayor daño a la estructura de pavimento en las cuatro rutas evaluadas.
- Se confirma la posibilidad de enlazar Trident con Microsoft Access para que funcione como base de datos. De esta manera lograr generar y mantener un registro histórico de los deterioros, por

- medio de índices comparables en el tiempo.
- Es posible evaluar largas distancias de manera más sencilla gracias a la transposición de la ruta a analizar con el mapa de la red vial.
- Se determina que el pavimento flexible del tramo de la Ruta 1 (Sabana Este – Radial Alajuela) tiene un índice de condición del pavimento de 76 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "muy bueno".
- Se determina que el pavimento flexible de la Ruta 10 (La Lima – Siquirres) tiene un índice de condición del pavimento de 83 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "muy bueno".
- ➤ Se determina que el pavimento flexible de la ruta 23 (Barranca Puerto Caldera) tiene un índice de condición del pavimento de 69 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "bueno".
- Se determina que el pavimento flexible de la ruta 39 (La Uruca – Calle Blancos) tiene un índice de condición del pavimento de 76 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "muy bueno".
- Se debe tener una especial atención con las secciones de control que posean índices de condición del pavimento muy bajos. El peor estado encontrado de acuerdo con la norma ASTM D6433-18 fue "regular" específicamente para las secciones: 20000 de la ruta 1, 30040 de la

- ruta 10, 60640 de la ruta 23 y 19092, 19101, 19102 y 19089 de la ruta 39.
- Existen deterioros, como las tapas de registros pluviales desniveladas, las cuales no son contabilizados por la norma ASTM D6433-18, pero que generan un impacto negativo en la integridad de la estructura del pavimento y la seguridad de los usuarios que transitan por la carretera, por lo que es de suma importancia contabilizarlos. Todas las rutas analizadas, a excepción de la ruta 23, contaron con la aparición de este tipo de deterioros.

Recomendaciones

- Se recomienda que el uso de la metodología PCI sea de manera continua por parte de los entes encargados del mantenimiento de la red vial para así determinar políticas y estrategias de intervención que resulten en una distribución eficiente de los recursos limitados del sector público.
- Se recomienda realizar una inversión para adaptar la norma ASTM D6433-18 a la realidad costarricense. En Costa Rica existen deterioros que no se toman en cuenta en dicha norma, como por ejemplo, las tapas de registros pluviales desniveladas.
- Se recomienda ampliar el estudio de evaluación en las cuatro rutas analizadas, para de esta manera, determinar los tramos más deteriorados y así tomar las medidas necesarias.
- Se recomienda un monitoreo continuo del PCI en toda la red para determinar el ritmo de deterioro del pavimento y establecer con anticipación las necesidades de mantenimiento o reforzamiento.
- "Trident Imaging Hub" es un software muy exacto al medir áreas y longitudes, sin embargo, no es capaz de medir profundidades lo cual incrementa la incertidumbre ya que cuatro de los deterioros requieren de este dato para clasificar adecuadamente su severidad; por lo que se recomienda medir directamente en campo las profundidades necesarias tomando como guía la base de datos la cual muestra la estación de los deterioros en cada sección de control.

- Se recomienda realizar la toma de imágenes georrefenciadas mediante el equipo Geo3D con periodos de uno y no dos años como se realiza actualmente. Esto con el objetivo de tener la información sobre las rutas, lo más actualizada posible en caso de tener que tomar alguna decisión estratégica.
- Se recomienda la utilización del software "Trident Imaging Hub" para la auscultación de los deterioros y el procesamiento posterior ya que facilita de gran manera esta labor.
- Analizar la condición superficial en las secciones de control por kilómetro para así tener información de una manera más detallada.
- ➤ Revisar los componentes ligados a la capacidad de drenar del pavimento como alcantarillas, cunetas, entre otros, para verificar el estado en que estos se encuentran y así complementar la información sobre las rutas evaluadas.
- Revisar manualmente las alcantarillas desniveladas para complementar la información sobre las rutas evaluadas, ya que, si existe este problema en las capas inferiores de la estructura del pavimento, esto se va a ver reflejado en la superficie del mismo afectando así, la calidad de ruedo de los usuarios y la integridad de la carretera.

Referencias

- American Society for Testing and Materials. (2018). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. Designation: D6433-18.
- Castro, P. (2018). Capítulo 1. Introducción al Curso de Pavimentos. Tecnológico de Costa Rica. Cartago, Costa Rica.
- Díaz, J. (2014). Evaluación de la metodología PCI como herramienta para la toma de decisiones en las intervenciones en los pavimentos flexibles. Universidad Militar Nueva Granada. Bogotá, Colombia.
- Edgar, D. (2009). Cálculo del índice de condición del pavimento flexible en la Av. Luis Montero, distrito de Castilla. Universidad de PIURA. Perú. Recuperado de https://pirhua.udep.edu.pe/bitstream/hand le/11042/1350/ICI_180.pdf
- Laboratorio Nacional de Materiales y Métodos Estructurales (2010) Ficha Técnica FT-UGERVN-02-13. Universidad de Costa Rica. San José, Costa Rica.
- Miranda, R. (2010). Deterioros en pavimentos flexibles y rígidos. Universidad Austral de Chile. Valdivia, Chile. Recuperado de http://cybertesis.uach.cl/tesis/uach/2010/b mfcim672d/doc/bmfcim672d.pdf
- Ministerio de Obras Públicas y Transportes. (2016). Manual de Auscultación Visual de Pavimentos de Costa Rica Guía para profesionales. San José, Costa Rica. Recuperado de https://www.lanamme.ucr.ac.cr/repositorio /handle/50625112500/850

- Ministerio de Obras Públicas y Transportes. (2011). Plan Nacional de Transportes de Costa Rica 2011-2035. Recuperado de https://www.mopt.go.cr/wps/wcm/connect/6e288b23-0582-400f-a71d-a99d516a87e1/Resultados-Tramos.pdf?MOD=AJPERES
- Programa de Infraestructura del Transporte. (2016). Evaluación del PCI, de los deterioros y del desempeño de la losa de rodamiento mediante los parámetros de IRI y GRIP proyecto: Ampliación y rehabilitación de la ruta nacional No. 1, Carretera Interamericana Norte, Sección Cañas-Liberia. Universidad de Costa Rica. San José, Costa Rica.
- Rabanal, J. (2014). Análisis del estado de conservación del pavimento flexible de la vía de evitamiento norte, utilizando l método del índice de condición del pavimento. Universidad Privada del Norte. Cajamarca, Perú. Recuperado de http://repositorio.upn.edu.pe/bitstream/ha ndle/11537/5511/Rabanal%20Pajares%2 OJaime%20Enrique.pdf?sequence=1&isAl lowed=y
- Sáez, C. (2017) Inventario de carreteras mediante tecnología mobile mapping: extracción de geometría y de información tridimensional. Universidad Politécnica de Madrid. Madrid, España.
- Smith, B. (2014). Factors Affecting the IRI of Asphalt Overlays. Transportation Research Board 93rd Annual Meeting. South Carolina.

- Trimble. (2014). *Trimble Trident Software User Guide*. Estados Unidos
- Unidad de Gestión y Evaluación de la Red Vial Nacional. (2017). Informe de Evaluación de la Red Vial Nacional Pavimentada de Costa Rica Años 2016-2017. Universidad de Costa Rica. San José, Costa Rica.
- Unidad de Investigación. (2008). Desarrollo de herramientas de gestión con base en la determinación de índices red vial nacional. Universidad de Costa Rica. San José, Costa Rica.

Apéndices

Apéndice 1. Unidades de muestreo para las rutas 1, 10, 23 y 39.

Apéndice 2. Resumen de deterioros y valores deducidos para las rutas 10 y 39.

Apéndice 3. Informe elaborado al MOPT como contribución al plan estratégico.

Apéndice 1. Unidades de muestreo para las rutas 1, 10, 23 y 39.

Ruta Nacional N°	1		•	Unidades	de Muestre	Por Analizar	
Sección de control	19002	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	2250.00	1	1	0+0	0+032	2	10
Ancho de la calzada (m)	8.65	2	6	0+160	0+192	42	50
Pavimento	Flexible	3	11	0+320	0+352	82	90
Longitud de la UM (m)	32.00	4	16	0+480	0+512	122	130
UM Totales (N)	70.31	5	21	0+640	0+672	162	170
UM Mínimas (n)	13.19	6	26	0+800	0+832	202	210
Intervalo de Muestreo (i)	5.00	7	31	0+960	0+992	242	250
Valor al azar (S)	1.00	8	36	0+1120	0+1152	282	290
Frame inicial	2	9	41	0+1280	0+1312	322	330
Sentido	1-2 (ida)	10	46	0+1440	0+1472	362	370
Cantidad de UM a analizar	14.00	11	51	0+1600	0+1632	402	410
¿Cumple las UM mínimas?	CUMPLE	12	56	0+1760	0+1792	442	450
		13	61	0+1920	0+1952	482	490
		14	66	0+2080	0+2112	522	530

Ruta Nacional N°	1			Unidades	de Muestre	Por Analizar	
Sección de control	19003	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	3370.00	1	1	0+0	0+032	532	540
Ancho de la calzada (m)	9.85	2	6	0+160	0+192	572	580
Pavimento	Flexible	3	11	0+320	0+352	612	620
Longitud de la UM (m)	32.00	4	16	0+480	0+512	652	660
UM Totales (N)	105.31	5	21	0+640	0+672	692	700
UM Mínimas (n)	18.10	6	26	0+800	0+832	732	740
Intervalo de Muestreo (i)	5.00	7	31	0+960	0+992	772	780
Valor al azar (S)	1.00	8	36	0+1120	0+1152	812	820
Frame inicial	532	9	41	0+1280	0+1312	852	860
Sentido	1-2	10	46	0+1440	0+1472	892	900
Cantidad de UM a analizar	21.00	11	51	0+1600	0+1632	932	940
¿Cumple las UM mínimas?	CUMPLE	12	56	0+1760	0+1792	972	980
		13	61	0+1920	0+1952	1012	1020
		14	66	0+2080	0+2112	1052	1060
		15	71	0+2240	0+2272	1092	1100
		16	76	0+2400	0+2432	1132	1140
		17	81	0+2560	0+2592	1172	1180
		18	86	0+2720	0+2752	1212	1220
		19	91	0+2880	0+2912	1252	1260
		20	96	0+3040	0+3072	1292	1300
		21	101	0+3200	0+3232	1332	1340

Ruta Nacional N°	1 Unidades de Muestreo Por Analizar							
Sección de control	40040	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final	
Longitud (m)	3430.00	1	1	0+0	0+032	1350	1358	
Ancho de la calzada (m)	9.65	2	6	0+160	0+192	1390	1398	
Pavimento	Flexible	3	11	0+320	0+352	1430	1438	
Longitud de la UM (m)	32.00	4	16	0+480	0+512	1470	1478	
UM Totales (N)	107.19	5	21	0+640	0+672	1510	1518	
UM Mínimas (n)	19.10	6	26	0+800	0+832	1550	1558	
Intervalo de Muestreo (i)	5.00	7	31	0+960	0+992	1590	1598	
Valor al azar (S)	1.00	8	36	0+1120	0+1152	1630	1638	
Frame inicial	1350	9	41	0+1280	0+1312	1670	1678	
Sentido	1-2	10	46	0+1440	0+1472	1710	1718	
Cantidad de UM a analizar	22.00	11	51	0+1600	0+1632	1750	1758	
¿Cumple las UM mínimas?	CUMPLE	12	56	0+1760	0+1792	1790	1798	
		13	61	0+1920	0+1952	1830	1838	
		14	66	0+2080	0+2112	1870	1878	
		15	71	0+2240	0+2272	1910	1918	
		16	76	0+2400	0+2432	1950	1958	
		17	81	0+2560	0+2592	1990	1998	
		18	86	0+2720	0+2752	2030	2038	
		19	91	0+2880	0+2912	2070	2078	
		20	96	0+3040	0+3072	2110	2118	
		21	101	0+3200	0+3232	2150	2158	

Ruta Nacional N°	1		•	Unidades	de Muestre	Por Analizar	_
Sección de control	40710	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	3050.00	1	1	0+0	0+032	2165	2173
Ancho de la calzada (m)	9.65	2	7	0+192	0+224	2213	2221
Pavimento	Flexible	3	13	0+384	0+416	2261	2269
Longitud de la UM (m)	32.00	4	19	0+576	0+608	2309	2317
UM Totales (N)	95.31	5	25	0+768	0+800	2357	2365
UM Mínimas (n)	13.82	6	31	0+960	0+992	2405	2413
Intervalo de Muestreo (i)	6.00	7	37	0+1152	0+1184	2453	2461
Valor al azar (S)	1.00	8	43	0+1344	0+1376	2501	2509
Frame inicial	2165	9	49	0+1536	0+1568	2549	2557
Sentido	1-2	10	55	0+1728	0+1760	2597	2605
Cantidad de UM a analizar	16.00	11	61	0+1920	0+1952	2645	2653
¿Cumple las UM mínimas?	CUMPLE	12	67	0+2112	0+2144	2693	2701
		13	73	0+2304	0+2336	2741	2749
		14	79	0+2496	0+2528	2789	2797
		15	85	0+2688	0+2720	2837	2845
		16	91	0+2880	0+2912	2885	2893

Ruta Nacional N°	1			Unidades	de Muestred	Por Analizar	
Sección de control	20000	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	3110.00	1	1	0+0	0+032	2900	2908
Ancho de la calzada (m)	9.50	2	8	0+224	0+256	2956	2964
Pavimento	Flexible	3	15	0+448	0+480	3012	3020
Longitud de la UM (m)	32.00	4	22	0+672	0+704	3068	3076
UM Totales (N)	97.19	5	29	0+896	0+928	3124	3132
UM Mínimas (n)	13.86	6	36	0+1120	0+1152	3180	3188
Intervalo de Muestreo (i)	7.00	7	43	0+1344	0+1376	3236	3244
Valor al azar (S)	1.00	8	50	0+1568	0+1600	3292	3300
Frame inicial	2900	9	57	0+1792	0+1824	3348	3356
Sentido	1-2	10	64	0+2016	0+2048	3404	3412
Cantidad de UM a analizar	14.00	11	71	0+2240	0+2272	3460	3468
¿Cumple las UM mínimas?	CUMPLE	12	78	0+2464	0+2496	3516	3524
		13	85	0+2688	0+2720	3572	3580
		14	92	0+2912	0+2944	3628	3636

Ruta Nacional N°	10			Unidades	de Muestred	Por Analizar	
Sección de control	30061	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	1505.00	1	1	0+0	0+032	0	8
Ancho de la calzada (m)	7.30	2	4	0+96	0+128	24	32
Pavimento	Flexible	3	7	0+192	0+224	48	56
Longitud de la UM (m)	32.00	4	10	0+288	0+320	72	80
UM Totales (N)	47.03	5	13	0+384	0+416	96	104
UM Mínimas (n)	12.13	6	16	0+480	0+512	120	128
Intervalo de Muestreo (i)	3.00	7	19	0+576	0+608	144	152
Valor al azar (S)	1.00	8	22	0+672	0+704	168	176
Frame inicial	0	9	25	0+768	0+800	192	200
Sentido	1-2	10	28	0+864	0+896	216	224
Cantidad de UM a analizar	16.00	11	31	0+960	0+992	240	248
¿Cumple las UM mínimas?	CUMPLE	12	34	0+1056	0+1088	264	272
		13	37	0+1152	0+1184	288	296
		14	40	0+1248	0+1280	312	320
		15	43	0+1344	0+1376	336	344
		16	46	0+1440	0+1472	360	368

Ruta Nacional N°	10		•	Unidades	de Muestre	Por Analizar	
Sección de control	30062	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	2105.00	1	1	0+0	0+032	352	360
Ancho de la calzada (m)	8.80	2	6	0+160	0+192	392	400
Pavimento	Flexible	3	11	0+320	0+352	432	440
Longitud de la UM (m)	32.00	4	16	0+480	0+512	472	480
UM Totales (N)	65.78	5	21	0+640	0+672	512	520
UM Mínimas (n)	13.03	6	26	0+800	0+832	552	560
Intervalo de Muestreo (i)	5.00	7	31	0+960	0+992	592	600
Valor al azar (S)	1.00	8	36	0+1120	0+1152	632	640
Frame inicial	352	9	41	0+1280	0+1312	672	680
Sentido	1-2	10	46	0+1440	0+1472	712	720
Cantidad de UM a analizar	13.00	11	51	0+1600	0+1632	752	760
¿Cumple las UM mínimas?	NO CUMPLE	12	56	0+1760	0+1792	792	800
		13	61	0+1920	0+1952	832	840

Ruta Nacional N°	10			Unidades	de Muestre	Por Analizar	
Sección de control	30040	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	2990.00	1	1	0+0	0+032	840	848
Ancho de la calzada (m)	6.00	2	7	0+192	0+224	888	896
Pavimento	Flexible	3	13	0+384	0+416	936	944
Longitud de la UM (m)	32.00	4	19	0+576	0+608	984	992
UM Totales (N)	93.44	5	25	0+768	0+800	1032	1040
UM Mínimas (n)	13.79	6	31	0+960	0+992	1080	1088
Intervalo de Muestreo (i)	6.00	7	37	0+1152	0+1184	1128	1136
Valor al azar (S)	1.00	8	43	0+1344	0+1376	1176	1184
Frame inicial	840	9	49	0+1536	0+1568	1224	1232
Sentido	1-2	10	55	0+1728	0+1760	1272	1280
Cantidad de UM a analizar	16.00	11	61	0+1920	0+1952	1320	1328
¿Cumple las UM mínimas?	CUMPLE	12	67	0+2112	0+2144	1368	1376
		13	73	0+2304	0+2336	1416	1424
		14	79	0+2496	0+2528	1464	1472
		15	85	0+2688	0+2720	1512	1520
		16	91	0+2880	0+2912	1560	1568

Ruta Nacional N°	10	10 Unidades de Muestreo Por Analizar							
Sección de control	30021	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final		
Longitud (m)	3320.00	1	1	0+0	0+032	1568	1576		
Ancho de la calzada (m)	7.00	2	7	0+192	0+224	1616	1624		
Pavimento	Flexible	3	13	0+384	0+416	1664	1672		
Longitud de la UM (m)	32.00	4	19	0+576	0+608	1712	1720		
UM Totales (N)	103.75	5	25	0+768	0+800	1760	1768		
UM Mínimas (n)	17.11	6	31	0+960	0+992	1808	1816		

Intervalo de Muestreo (i)	6.00	7	37	0+1152	0+1184	1856	1864	\
Valor al azar (S)	1.00	8	43	0+1344	0+1376	1904	1912	
Frame inicial	1568	9	49	0+1536	0+1568	1952	1960	
Sentido	1-2	10	55	0+1728	0+1760	2000	2008	7
Cantidad de UM a analizar	18.00	11	61	0+1920	0+1952	2048	2056	7
¿Cumple las UM mínimas?	CUMPLE	12	67	0+2112	0+2144	2096	2104	7
		13	73	0+2304	0+2336	2144	2152	_
		14	79	0+2496	0+2528	2192	2200	٦,
		15	85	0+2688	0+2720	2240	2248	٦,
		16	91	0+2880	0+2912	2288	2296	┦,
		17	97	0+3072	0+3104	2336	2344	1

Ruta Nacional N°	10								
Sección de control	30022	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final		
Longitud (m)	9745.00	1	1	0+0	0+032	2358	2366		
Ancho de la calzada (m)	5.70	2	7	0+192	0+224	2406	2414		
Pavimento	Flexible	3	13	0+384	0+416	2454	2462		
Longitud de la UM (m)	32.00	4	19	0+576	0+608	2502	2510		
UM Totales (N)	304.53	5	25	0+768	0+800	2550	2558		
UM Mínimas (n)	45.45	6	31	0+960	0+992	2598	2606		
Intervalo de Muestreo (i)	6.00	7	37	0+1152	0+1184	2646	2654		
Valor al azar (S)	1.00	8	43	0+1344	0+1376	2694	2702		
Frame inicial	2358	9	49	0+1536	0+1568	2742	2750		
Sentido	1-2 / 2-1	10	55	0+1728	0+1760	2790	2798		
Cantidad de UM a analizar	51.00	11	61	0+1920	0+1952	2838	2846		
¿Cumple las UM mínimas?	CUMPLE	12	67	0+2112	0+2144	2886	2894		
		13	73	0+2304	0+2336	2934	2942		
		14	79	0+2496	0+2528	2982	2990		
		15	85	0+2688	0+2720	3030	3038		
		16	91	0+2880	0+2912	3078	3086		
		17	97	0+3072	0+3104	3126	3134		
		18	103	0+3264	0+3296	3174	3182		
		19	109	0+3456	0+3488	3222	3230		
		20	115	0+3648	0+3680	3270	3278		
		21	121	0+3840	0+3872	3318	3326		
		22	127	0+4032	0+4064	3366	3374		
		23	133	0+4224	0+4256	3414	3422		
		24	139	0+4416	0+4448	3462	3470		
		25	145	0+4608	0+4640	3510	3518		
		26	151	0+4800	0+4832	3558	3566		
		27	157	0+4992	0+5024	3606	3614		
		28	163	0+5184	0+5216	3654	3662		
		29	169	0+5376	0+5408	3702	3710		
		30	175	0+5568	0+5600	3750	3758		

31	181	0+5760	0+5792	3798	3806	_
32	187	0+5952	0+5984	3846	3854	_
33	193	0+6144	0+6176	3894	3902	_
34	199	0+6336	0+6368	3942	3950	\ \
35	205	0+6528	0+6560	3990	3998	\
36	211	0+6720	0+6752	4038	4046	7
37	217	0+6912	0+6944	4086	4094	٦,
38	223	0+7104	0+7136	4134	4142	\
39	229	0+7296	0+7328	4182	4190	7
40	235	0+7488	0+7520	4230	4238	٦,
41	241	0+7680	0+7712	4278	4286	\
42	247	0+7872	0+7904	4326	4334	\
43	253	0+8064	0+8096	4374	4382	٦,
44	259	0+8256	0+8288	4422	4430	\
45	265	0+8448	0+8480	4470	4478	\
46	271	0+8640	0+8672	4518	4526	٦,
47	277	0+8832	0+8864	4566	4574	\
48	283	0+9024	0+9056	4614	4622	٦,
49	289	0+9216	0+9248	4662	4670	٦,
50	295	0+9408	0+9440	4710	4718	1
51	301	0+9600	0+9632	4758	4766	1

Ruta Nacional N°	10	Unidades de Muestreo Por Analizar						
Sección de control	30471	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final	
Longitud (m)	5235.00	1	1	0+0	0+032	4682	4690	
Ancho de la calzada (m)	6.50	2	7	0+192	0+224	4730	4738	
Pavimento	Flexible	3	13	0+384	0+416	4778	4786	
Longitud de la UM (m)	32.00	4	19	0+576	0+608	4826	4834	
UM Totales (N)	163.59	5	25	0+768	0+800	4874	4882	
UM Mínimas (n)	26.86	6	31	0+960	0+992	4922	4930	
Intervalo de Muestreo (i)	6.00	7	37	0+1152	0+1184	4970	4978	
Valor al azar (S)	1.00	8	43	0+1344	0+1376	5018	5026	
Frame inicial	4682	9	49	0+1536	0+1568	5066	5074	
Sentido	1-2	10	55	0+1728	0+1760	5114	5122	
Cantidad de UM a analizar	28.00	11	61	0+1920	0+1952	5162	5170	
¿Cumple las UM mínimas?	CUMPLE	12	67	0+2112	0+2144	34	42	
		13	73	0+2304	0+2336	82	90	
		14	79	0+2496	0+2528	130	138	
		15	85	0+2688	0+2720	178	186	
		16	91	0+2880	0+2912	226	234	
		17	97	0+3072	0+3104	274	282	
		18	103	0+3264	0+3296	322	330	
			109	0+3456	0+3488	370	378	
		20	115	0+3648	0+3680	418	426	

21	121	0+3840	0+3872	466	474
22	127	0+4032	0+4064	514	522
23	133	0+4224	0+4256	562	570
24	139	0+4416	0+4448	610	618
25	145	0+4608	0+4640	658	666
26	151	0+4800	0+4832	706	714
27	157	0+4992	0+5024	754	762
28	163	0+5184	0+5216	802	810

Ruta Nacional N°	10			Unidades	de Muestred	Por Analizar	
Sección de control	30472	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	4350.00	1	1	0+0	0+032	754	762
Ancho de la calzada (m)	6.30	2	6	0+160	0+192	794	802
Pavimento	Flexible	3	11	0+320	0+352	834	842
Longitud de la UM (m)	32.00	4	16	0+480	0+512	874	882
UM Totales (N)	135.94	5	21	0+640	0+672	914	922
UM Mínimas (n)	25.20	6	26	0+800	0+832	954	962
Intervalo de Muestreo (i)	5.00	7	31	0+960	0+992	994	1002
Valor al azar (S)	1.00	8	36	0+1120	0+1152	1034	1042
Frame inicial	5930	9	41	0+1280	0+1312	1074	1082
Sentido	1-2	10	46	0+1440	0+1472	1114	1122
Cantidad de UM a analizar	27.00	11	51	0+1600	0+1632	1154	1162
¿Cumple las UM mínimas?	CUMPLE	12	56	0+1760	0+1792	1194	1202
		13	61	0+1920	0+1952	1234	1242
		14	66	0+2080	0+2112	1274	1282
		15	71	0+2240	0+2272	1314	1322
		16	76	0+2400	0+2432	1354	1362
		17	81	0+2560	0+2592	1394	1402
		18	86	0+2720	0+2752	1434	1442
		19	91	0+2880	0+2912	1474	1482
		20	96	0+3040	0+3072	1514	1522
		21	101	0+3200	0+3232	1554	1562
		22	106	0+3360	0+3392	1594	1602
		23	111	0+3520	0+3552	1634	1642
		24	116	0+3680	0+3712	1674	1682
		25	121	0+3840	0+3872	1714	1722
		26	126	0+4000	0+4032	1754	1762
		27	131	0+4160	0+4192	1794	1802

Ruta Nacional N°	10			Unidades	Unidades de Muestreo Por Analizar				
Sección de control	30010	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final		
Longitud (m)	7940.00	1	1	0+0	0+032	1772	1780		
Ancho de la calzada (m)	6.30	2	7	0+192	0+224	1820	1828		
Pavimento	Flexible	3	13	0+384	0+416	1868	1876		
Longitud de la UM (m)	32.00	4	19	0+576	0+608	1916	1924		
UM Totales (N)	248.13	5	25	0+768	0+800	1964	1972		
UM Mínimas (n)	40.02	6	31	0+960	0+992	2012	2020		
Intervalo de Muestreo (i)	6.00	7	37	0+1152	0+1184	2060	2068		
Valor al azar (S)	1.00	8	43	0+1344	0+1376	2108	2116		
Frame inicial	6948	9	49	0+1536	0+1568	2156	2164		
Sentido	1-2	10	55	0+1728	0+1760	2204	2212		
Cantidad de UM a analizar	42.00	11	61	0+1920	0+1952	2252	2260		
¿Cumple las UM mínimas?	CUMPLE	12	67	0+2112	0+2144	2300	2308		
		13	73	0+2304	0+2336	2348	2356		
		14	79	0+2496	0+2528	2396	2404		
		15	85	0+2688	0+2720	2444	2452		
		16	91	0+2880	0+2912	2492	2500		
		17	97	0+3072	0+3104	2540	2548		
		18	103	0+3264	0+3296	2588	2596		
		19	109	0+3456	0+3488	2636	2644		
		20	115	0+3648	0+3680	2684	2692		
		21	121	0+3840	0+3872	2732	2740		
		22	127	0+4032	0+4064	2780	2788		
		23	133	0+4224	0+4256	2828	2836		
		24	139	0+4416	0+4448	2876	2884		
		25	145	0+4608	0+4640	2924	2932		
		26	151	0+4800	0+4832	2972	2980		
		27	157	0+4992	0+5024	3020	3028		
		28	163	0+5184	0+5216	3068	3076		
		29	169	0+5376	0+5408	3116	3124		
		30	175	0+5568	0+5600	3164	3172		
		31	181	0+5760	0+5792	3212	3220		
		32	187	0+5952	0+5984	3260	3268		
		33	193	0+6144	0+6176	3308	3316		
		34	199	0+6336	0+6368	3356	3364		
		35	205	0+6528	0+6560	3404	3412		
		36	211	0+6720	0+6752	3452	3460		
		37	217	0+6912	0+6944	3500	3508		
		38	223	0+7104	0+7136	3548	3556		
		39	229	0+7296	0+7328	3596	3604		
		40		0+7488	0+7520	3644	3652		
		41	241	0+7680	0+7712	3692	3700		
		46		2 -2-2	2 7001	0=40	2=12		

0+7872

0+7904

3740

42 247

Ruta Nacional N°	10			Unidades	de Muestred	Por Analizar	
Sección de control	30480	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	7025.00	1	1	0+0	0+048	3556	3568
Ancho de la calzada (m)	3.60	2	6	0+240	0+288	3616	3628
Pavimento	Flexible	3	11	0+480	0+528	3676	3688
Longitud de la UM (m)	48.00	4	16	0+720	0+768	3736	3748
UM Totales (N)	146.35	5	21	0+960	0+1008	3796	3808
UM Mínimas (n)	26.00	6	26	0+1200	0+1248	3856	3868
ntervalo de Muestreo (i)	5.00	7	31	0+1440	0+1488	3916	3928
/alor al azar (S)	1.00	8	36	0+1680	0+1728	3976	3988
Frame inicial	8732	9	41	0+1920	0+1968	4036	4048
Sentido	1-2	10	46	0+2160	0+2208	4096	4108
Cantidad de UM a analizar	42.00	11	51	0+2400	0+2448	4156	4168
Cumple las UM mínimas?	CUMPLE	12	56	0+2640	0+2688	4216	4228
	•	13	61	0+2880	0+2928	4276	4288
		14	66	0+3120	0+3168	4336	4348
		15	71	0+3360	0+3408	4396	4408
		16	76	0+3600	0+3648	4456	4468
		17	81	0+3840	0+3888	4516	4528
		18	86	0+4080	0+4128	4576	4588
		19	91	0+4320	0+4368	4636	4648
		20	96	0+4560	0+4608	4696	4708
		21	101	0+4800	0+4848	4756	4768
		22	106	0+5040	0+5088	8	20
		23	111	0+5280	0+5328	68	80
		24	116	0+5520	0+5568	128	140
		25	121	0+5760	0+5808	188	200
		26	126	0+6000	0+6048	248	260
		27	131	0+6240	0+6288	308	320
		28	136	0+6480	0+6528	368	380
		29	141	0+6720	0+6768	428	440
		-					

Ruta Nacional N°	10			Unidades	de Muestre	Por Analizar	
Sección de control	30001	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	6400.00	1	1	0+0	0+048	440	452
Ancho de la calzada (m)	3.55	2	6	0+240	0+288	500	512
Pavimento	Flexible	3	11	0+480	0+528	560	572
Longitud de la UM (m)	48.00	4	16	0+720	0+768	620	632
UM Totales (N)	133.33	5	21	0+960	0+1008	680	692
UM Mínimas (n)	24.95	6	26	0+1200	0+1248	740	752
Intervalo de Muestreo (i)	5.00	7	31	0+1440	0+1488	800	812
Valor al azar (S)	1.00	8	36	0+1680	0+1728	860	872
Frame inicial	10424	9	41	0+1920	0+1968	920	932

0+6960

0+7008

488

500

Sentido	1-2	10	46	0+2160	0+2208	980	992
Cantidad de UM a analizar	39.00	11	51	0+2400	0+2448	1040	1052
¿Cumple las UM mínimas?	CUMPLE	12	56	0+2640	0+2688	1100	1112
	-1	13	61	0+2880	0+2928	1160	1172
		14	66	0+3120	0+3168	1220	1232
		15	71	0+3360	0+3408	1280	1292
		16	76	0+3600	0+3648	1340	1352
		17	81	0+3840	0+3888	1400	1412
		18	86	0+4080	0+4128	1460	1472
		19	91	0+4320	0+4368	1520	1532
		20	96	0+4560	0+4608	1580	1592
		21	101	0+4800	0+4848	1640	1652
		22	106	0+5040	0+5088	1700	1712
		23	111	0+5280	0+5328	1760	1772
		24	116	0+5520	0+5568	1820	1832
		25	121	0+5760	0+5808	1880	1892
		26	126	0+6000	0+6048	1940	1952

0+6240

0+6288

27 131

Ruta Nacional N°	10	Unidades de Muestreo Por Analizar						
Sección de control	30002	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final	
Longitud (m)	20025.00	1	1	0+0	0+048	1960	1972	
Ancho de la calzada (m)	3.50	2	7	0+288	0+336	2032	2044	
Pavimento	Flexible	3	13	0+576	0+624	2104	2116	
Longitud de la UM (m)	48.00	4	19	0+864	0+912	2176	2188	
UM Totales (N)	417.19	5	25	0+1152	0+1200	2248	2260	
UM Mínimas (n)	64.20	6	31	0+1440	0+1488	2320	2332	
Intervalo de Muestreo (i)	6.00	7	37	0+1728	0+1776	2392	2404	
Valor al azar (S)	1.00	8	43	0+2016	0+2064	2464	2476	
Frame inicial	11944	9	49	0+2304	0+2352	2536	2548	
Sentido	1-2	10	55	0+2592	0+2640	2608	2620	
Cantidad de UM a analizar	70.00	11	61	0+2880	0+2928	2680	2692	
¿Cumple las UM mínimas?	CUMPLE	12	67	0+3168	0+3216	2752	2764	
		13	73	0+3456	0+3504	2824	2836	
		14	79	0+3744	0+3792	2896	2908	
		15	85	0+4032	0+4080	2968	2980	
		16	91	0+4320	0+4368	3040	3052	
		17	97	0+4608	0+4656	3112	3124	
		18	103	0+4896	0+4944	3184	3196	
		19	109	0+5184	0+5232	3256	3268	
		20	115	0+5472	0+5520	3328	3340	
		21	121	0+5760	0+5808	3400	3412	
		22	127	0+6048	0+6096	3472	3484	
		23	133	0+6336	0+6384	3544	3556	

2012

					,	
24	139	0+6624	0+6672	3616	3628	~
25	145	0+6912	0+6960	3688	3700	~
26	151	0+7200	0+7248	3760	3772	~
27	157	0+7488	0+7536	3832	3844	~
28	163	0+7776	0+7824	3904	3916	~
29	169	0+8064	0+8112	3976	3988	~
30	175	0+8352	0+8400	4048	4060	~
31	181	0+8640	0+8688	4120	4132	~
32	187	0+8928	0+8976	4192	4204	~
33	193	0+9216	0+9264	4264	4276	~
34	199	0+9504	0+9552	4336	4348	√
35	205	0+9792	0+9840	4408	4420	~
36	211	0+10080	0+10128	4480	4492	~
37	217	0+10368	0+10416	4552	4564	~
38	223	0+10656	0+10704	4624	4636	~
39	229	0+10944	0+10992	4696	4708	V
40	235	0+11232	0+11280	36	48	~
41	241	0+11520	0+11568	108	120	~
42	247	0+11808	0+11856	180	192	~
43	253	0+12096	0+12144	252	264	/
44	259	0+12384	0+12432	324	336	~
45	265	0+12672	0+12720	396	408	/
46	271	0+12960	0+13008	468	480	/
47	277	0+13248	0+13296	540	552	~
48	283	0+13536	0+13584	612	624	~
49	289	0+13824	0+13872	684	696	/
50	295	0+14112	0+14160	756	768	~
51	301	0+14400	0+14448	828	840	/
52	307	0+14688	0+14736	900	912	/
53	313	0+14976	0+15024	972	984	~
54	319	0+15264	0+15312	1044	1056	~
55	325	0+15552	0+15600	1116	1128	V
56	331	0+15840	0+15888	1188	1200	V
57	337	0+16128	0+16176	1260	1272	V
58	343	0+16416	0+16464	1332	1344	V
59	349	0+16704	0+16752	1404	1416	V
60	355	0+16992	0+17040	1476	1488	V
61	361	0+17280	0+17328	1548	1560	V
62	367	0+17568	0+17616	1620	1632	V
63	373	0+17856	0+17904	1692	1704	V
64	379	0+18144	0+18192	1764	1776	\ \
65	385	0+18432	0+18480	1836	1848	\ \
66	391	0+18720	0+18768	1908	1920	, ,

67	397	0+19008	0+19056	1980	1992	✓
68	403	0+19296	0+19344	2052	2064	✓
69	409	0+19584	0+19632	2124	2136	
70	415	0+19872	0+19920	2196	2208	

Ruta Nacional N°	10	10 Unidades de Muestreo Por Analizar					
Sección de control	70420	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	20265.00	1	1	0+0	0+048	2088	2100
Ancho de la calzada (m)	3.50	2	7	0+288	0+336	2160	2172
Pavimento	Flexible	3	13	0+576	0+624	2232	2244
Longitud de la UM (m)	48.00	4	19	0+864	0+912	2304	2316
UM Totales (N)	422.19	5	25	0+1152	0+1200	2376	2388
UM Mínimas (n)	65.20	6	31	0+1440	0+1488	2448	2460
Intervalo de Muestreo (i)	6.00	7	37	0+1728	0+1776	2520	2532
Valor al azar (S)	1.00	8	43	0+2016	0+2064	2592	2604
Frame inicial	12072	9	49	0+2304	0+2352	2664	2676
Sentido	1-2	10	55	0+2592	0+2640	2736	2748
Cantidad de UM a analizar	71.00	11	61	0+2880	0+2928	2808	2820
¿Cumple las UM mínimas?	CUMPLE	12	67	0+3168	0+3216	2880	2892
		13	73	0+3456	0+3504	2952	2964
		14	79	0+3744	0+3792	3024	3036
		15	85	0+4032	0+4080	3096	3108
		16	91	0+4320	0+4368	3168	3180
		17	97	0+4608	0+4656	3240	3252
		18	103	0+4896	0+4944	3312	3324
		19	109	0+5184	0+5232	3384	3396
		20	115	0+5472	0+5520	3456	3468
		21	121	0+5760	0+5808	3528	3540
		22	127	0+6048	0+6096	3600	3612
		23	133	0+6336	0+6384	3672	3684
		24	139	0+6624	0+6672	3744	3756
		25	145	0+6912	0+6960	3816	3828
		26	151	0+7200	0+7248	3888	3900
		27	157	0+7488	0+7536	3960	3972
		28	163	0+7776	0+7824	4032	4044
		29	169	0+8064	0+8112	4104	4116
		30	175	0+8352	0+8400	4176	4188
		31	181	0+8640	0+8688	4248	4260
		32	187	0+8928	0+8976	4320	4332
		33	193	0+9216	0+9264	4392	4404
		34	199	0+9504	0+9552	4464	4476
		35	205	0+9792	0+9840	4536	4548
		36	211	0+10080	0+10128	4608	4620
		37	217	0+10368	0+10416	4680	4692

38	223	0+10656	0+10704	-1	11
39	229	0+10944	0+10992	71	83
40	235	0+11232	0+11280	143	155
41	241	0+11520	0+11568	215	227
42	247	0+11808	0+11856	287	299
43	253	0+12096	0+12144	359	371
44	259	0+12384	0+12432	431	443
45	265	0+12672	0+12720	503	515
46	271	0+12960	0+13008	575	587
47	277	0+13248	0+13296	647	659
48	283	0+13536	0+13584	719	731
49	289	0+13824	0+13872	791	803
50	295	0+14112	0+14160	863	875
51	301	0+14400	0+14448	935	947
52	307	0+14688	0+14736	1007	1019
53	313	0+14976	0+15024	1079	1091
54	319	0+15264	0+15312	1151	1163
55	325	0+15552	0+15600	1223	1235
56	331	0+15840	0+15888	1295	1307
57	337	0+16128	0+16176	1367	1379
58	343	0+16416	0+16464	1439	1451
59	349	0+16704	0+16752	1511	1523
60	355	0+16992	0+17040	1583	1595
61	361	0+17280	0+17328	1655	1667
62	367	0+17568	0+17616	1727	1739
63	373	0+17856	0+17904	1799	1811
64	379	0+18144	0+18192	1871	1883
65	385	0+18432	0+18480	1943	1955
66	391	0+18720	0+18768	2015	2027
67	397	0+19008	0+19056	2087	2099
68	403	0+19296	0+19344	2159	2171
69	409	0+19584	0+19632	2231	2243
70	415	0+19872	0+19920	2303	2315
71	421	0+20160	0+20208	2375	2387

Ruta Nacional N°	23			Unidades	de Muestre	Por Analizar	
Sección de control	60610	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	6100.00	1	1	0+0	0+048	0	12
Ancho de la calzada (m)	3.75	2	6	0+240	0+288	60	72
Pavimento	Flexible	3	11	0+480	0+528	120	132
Longitud de la UM (m)	48.00	4	16	0+720	0+768	180	192
UM Totales (N)	127.08	5	21	0+960	0+1008	240	252
UM Mínimas (n)	24.21	6	26	0+1200	0+1248	300	312
Intervalo de Muestreo (i)	5.00	7	31	0+1440	0+1488	360	372
Valor al azar (S)	1.00	8	36	0+1680	0+1728	420	432
Frame inicial	0	9	41	0+1920	0+1968	480	492
Sentido	1-2	10	46	0+2160	0+2208	540	552
Cantidad de UM a analizar	26.00	11	51	0+2400	0+2448	600	612
¿Cumple las UM mínimas?	CUMPLE	12	56	0+2640	0+2688	660	672
		13	61	0+2880	0+2928	720	732
		14	66	0+3120	0+3168	780	792
		15	71	0+3360	0+3408	840	852
		16	76	0+3600	0+3648	900	912
		17	81	0+3840	0+3888	960	972
		18	86	0+4080	0+4128	1020	1032
		19	91	0+4320	0+4368	1080	1092
		20	96	0+4560	0+4608	1140	1152
		21	101	0+4800	0+4848	1200	1212
		22	106	0+5040	0+5088	1260	1272
		23	111	0+5280	0+5328	1320	1332
		24	116	0+5520	0+5568	1380	1392
		25	121	0+5760	0+5808	1440	1452
		26	126	0+6000	0+6048	1500	1512

Ruta Nacional N°	23			Unidades	de Muestre	Por Analizar	
Sección de control	60840	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	6565.00	1	1	0+0	0+048	1440	1452
Ancho de la calzada (m)	4.65	2	6	0+240	0+288	1500	1512
Pavimento	Flexible	3	11	0+480	0+528	1560	1572
Longitud de la UM (m)	48.00	4	16	0+720	0+768	1620	1632
UM Totales (N)	136.77	5	21	0+960	0+1008	1680	1692
UM Mínimas (n)	25.28	6	26	0+1200	0+1248	1740	1752
Intervalo de Muestreo (i)	5.00	7	31	0+1440	0+1488	1800	1812
Valor al azar (S)	1.00	8	36	0+1680	0+1728	1860	1872
Frame inicial	1440	9	41	0+1920	0+1968	1920	1932
Sentido	1-2	10	46	0+2160	0+2208	1980	1992
Cantidad de UM a analizar	28.00	11	51	0+2400	0+2448	2040	2052

-							
¿Cumple las UM mínimas?	CUMPLE	12	56	0+2640	0+2688	2100	2112
		13	61	0+2880	0+2928	2160	2172
		14	66	0+3120	0+3168	2220	2232
		15	71	0+3360	0+3408	2280	2292
		16	76	0+3600	0+3648	2340	2352
		17	81	0+3840	0+3888	2400	2412
		18	86	0+4080	0+4128	2460	2472
		19	91	0+4320	0+4368	2520	2532
		20	96	0+4560	0+4608	2580	2592
		21	101	0+4800	0+4848	2640	2652
		22	106	0+5040	0+5088	2700	2712
		23	111	0+5280	0+5328	2760	2772
		24	116	0+5520	0+5568	2820	2832
		25	121	0+5760	0+5808	2880	2892
		26	126	0+6000	0+6048	2940	2952
		27	131	0+6240	0+6288	3000	3012
		28	136	0+6480	0+6528	3060	3072

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19090	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	870.00	1	1	0+0	0+032	0	8
Ancho de la calzada (m)	6.20	2	3	0+64	0+96	16	24
Pavimento	Flexible	3	5	0+128	0+160	32	40
Longitud de la UM (m)	32.00	4	7	0+192	0+224	48	56
UM Totales (N)	27.19	5	9	0+256	0+288	64	72
UM Mínimas (n)	10.32	6	11	0+320	0+352	80	88
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	96	104
Valor al azar (S)	1.00	8	15	0+448	0+480	112	120
Frame inicial	0	9	17	0+512	0+544	128	136
Sentido	1-2	10	19	0+576	0+608	144	152
Cantidad de UM a analizar	14.00	11	21	0+640	0+672	160	168
¿Cumple las UM mínimas?	CUMPLE	12	23	0+704	0+736	176	184
	•	13	25	0+768	0+800	192	200
		14	27	0+832	0+864	208	216

Ruta Nacional N°	39		Unidades de Muestreo Por Analizar								
Sección de control	19091	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final				
Longitud (m)	880.00	1	1	0+0	0+032	208	216	\ \			
Ancho de la calzada (m)	7.50	2	3	0+64	0+96	224	232	\ \			
Pavimento	Flexible	3	5	0+128	0+160	240	248	V			
Longitud de la UM (m)	32.00	4	7	0+192	0+224	256	264	V			

UM Totales (N)	27.50	5	9	0+256	0+288	272	280	,
UM Mínimas (n)	10.35	6	11	0+320	0+352	288	296	Ι,
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	304	312	│,
Valor al azar (S)	1.00	8	15	0+448	0+480	320	328	\
Frame inicial	208	9	17	0+512	0+544	336	344	,
Sentido	1-2	10	19	0+576	0+608	352	360	\
Cantidad de UM a analizar	14.00	11	21	0+640	0+672	368	376	\
¿Cumple las UM mínimas?	CUMPLE	12	23	0+704	0+736	384	392	\
		13	25	0+768	0+800	400	408	,
		14	27	0+832	0+864	416	424	1

Ruta Nacional N°	39			Unidades	de Muestred	Por Analizar	
Sección de control	19092	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	590.00	1	1	0+0	0+032	416	424
Ancho de la calzada (m)	7.50	2	3	0+64	0+96	432	440
Pavimento	Flexible	3	5	0+128	0+160	448	456
Longitud de la UM (m)	32.00	4	7	0+192	0+224	464	472
UM Totales (N)	18.44	5	9	0+256	0+288	480	488
UM Mínimas (n)	8.82	6	11	0+320	0+352	496	504
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	512	520
Valor al azar (S)	1.00	8	15	0+448	0+480	528	536
Frame inicial	416	9	17	0+512	0+544	544	552
Sentido	1-2						
Cantidad de UM a analizar	9.00						
¿Cumple las UM mínimas?	CUMPLE						

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19093	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	620.00	1	1	0+0	0+032	556	564
Ancho de la calzada (m)	7.00	2	3	0+64	0+96	572	580
Pavimento	Flexible	3	5	0+128	0+160	588	596
Longitud de la UM (m)	32.00	4	7	0+192	0+224	604	612
UM Totales (N)	19.38	5	9	0+256	0+288	620	628
UM Mínimas (n)	9.02	6	11	0+320	0+352	636	644
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	652	660
Valor al azar (S)	1.00	8	15	0+448	0+480	668	676
Frame inicial	556	9	17	0+512	0+544	684	692
Sentido	1-2	10	19	0+576	0+608	700	708
Cantidad de UM a analizar	10.00		•		•	•	•
¿Cumple las UM mínimas?	CUMPLE						

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19094	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	975.00	1	1	0+0	0+032	708	716
Ancho de la calzada (m)	7.00	2	3	0+64	0+96	724	732
Pavimento	Flexible	3	5	0+128	0+160	740	748
Longitud de la UM (m)	32.00	4	7	0+192	0+224	756	764
UM Totales (N)	30.47	5	9	0+256	0+288	772	780
UM Mínimas (n)	10.72	6	11	0+320	0+352	788	796
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	804	812
Valor al azar (S)	1.00	8	15	0+448	0+480	820	828
Frame inicial	708	9	17	0+512	0+544	836	844
Sentido	1-2	10	19	0+576	0+608	852	860
Cantidad de UM a analizar	15.00	11	21	0+640	0+672	868	876
¿Cumple las UM mínimas?	CUMPLE	12	23	0+704	0+736	884	892
	•	13	25	0+768	0+800	900	908
		14	27	0+832	0+864	916	924
		15	29	0+896	0+928	932	940

Ruta Nacional N°	39			Unidades	de Muestred	Por Analizar	
Sección de control	19095	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	1170.00	1	1	0+0	0+032	940	948
Ancho de la calzada (m)	10.00	2	5	0+128	0+160	964	980
Pavimento	Flexible	3	9	0+256	0+288	996	1012
Longitud de la UM (m)	32.00	4	13	0+384	0+416	1028	1044
UM Totales (N)	36.56	5	17	0+512	0+544	1060	1076
UM Mínimas (n)	11.35	6	21	0+640	0+672	1092	1108
Intervalo de Muestreo (i)	3.00	7	25	0+768	0+800	1124	1140
Valor al azar (S)	1.00	8	29	0+896	0+928	1156	1172
Frame inicial	940	9	33	0+1024	0+1056	1188	1204
Sentido	1-2				•		
Cantidad de UM a analizar	9.00						
¿Cumple las UM mínimas?	CUMPLE						

Ruta Nacional N°	39		•	Unidades	de Muestre	Por Analizar	
Sección de control	19096	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	810.00	1	1	0+0	0+032	1220	1228
Ancho de la calzada (m)	8.70	2	3	0+64	0+96	1236	1244
Pavimento	Flexible	3	5	0+128	0+160	1252	1260
Longitud de la UM (m)	32.00	4	7	0+192	0+224	1268	1276
UM Totales (N)	25.31	5	9	0+256	0+288	1284	1292
UM Mínimas (n)	10.05	6	11	0+320	0+352	1300	1308
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	1316	1324
Valor al azar (S)	1.00	8	15	0+448	0+480	1332	1340
Frame inicial	1220	9	17	0+512	0+544	1348	1356

Sentido	1-2	10	19	0+576	0+608	1364	1372	✓
Cantidad de UM a analizar	13.00	11	21	0+640	0+672	1380	1388	✓
¿Cumple las UM mínimas?	CUMPLE	12	23	0+704	0+736	1396	1404	✓
		13	25	0+768	0+800	1412	1420	✓

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19097	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	525.00	1	1	0+0	0+032	1420	1428
Ancho de la calzada (m)	10.00	2	2	0+32	0+64	1432	1436
Pavimento	Flexible	3	3	0+64	0+96	1440	1444
Longitud de la UM (m)	32.00	4	4	0+96	0+128	1448	1452
UM Totales (N)	16.41	5	5	0+128	0+160	1456	1460
UM Mínimas (n)	8.36	6	6	0+160	0+192	1464	1468
Intervalo de Muestreo (i)	1.00	7	7	0+192	0+224	1472	1476
Valor al azar (S)	1.00	8	8	0+224	0+256	1480	1484
Frame inicial	1420	9	9	0+256	0+288	1488	1492
Sentido	1-2	10	10	0+288	0+320	1496	1500
Cantidad de UM a analizar	16.00	11	11	0+320	0+352	1504	1508
¿Cumple las UM mínimas?	CUMPLE	12	12	0+352	0+384	1512	1516
		13	13	0+384	0+416	1520	1524
		14	14	0+416	0+448	1528	1532
		15	15	0+448	0+480	1536	1540
		16	16	0+480	0+512	1544	1548

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19098	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	1542.00	1	1	0+0	0+032	1532	1540
Ancho de la calzada (m)	10.00	2	4	0+96	0+128	1552	1564
Pavimento	Flexible	3	7	0+192	0+224	1576	1588
Longitud de la UM (m)	32.00	4	10	0+288	0+320	1600	1612
UM Totales (N)	48.19	5	13	0+384	0+416	1624	1636
UM Mínimas (n)	12.20	6	16	0+480	0+512	1648	1660
Intervalo de Muestreo (i)	3.00	7	19	0+576	0+608	1672	1684
Valor al azar (S)	1.00	8	22	0+672	0+704	1696	1708
Frame inicial	1532	9	25	0+768	0+800	1720	1732
Sentido	1-2	10	28	0+864	0+896	1744	1756
Cantidad de UM a analizar	16.00	11	31	0+960	0+992	1768	1780
¿Cumple las UM mínimas?	CUMPLE	12	34	0+1056	0+1088	1792	1804
		13	37	0+1152	0+1184	1816	1828
		14	40	0+1248	0+1280	1840	1852
		15	43	0+1344	0+1376	1864	1876
		16	46	0+1440	0+1472	1888	1900

Ruta Nacional N°	39			Unidades	de Muestred	Por Analizar	
Sección de control	19099	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	715.00	1	1	0+0	0+032	1900	1908
Ancho de la calzada (m)	9.50	2	3	0+64	0+96	1916	1924
Pavimento	Flexible	3	5	0+128	0+160	1932	1940
Longitud de la UM (m)	32.00	4	7	0+192	0+224	1948	1956
UM Totales (N)	22.34	5	9	0+256	0+288	1964	1972
UM Mínimas (n)	9.57	6	11	0+320	0+352	1980	1988
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	1996	2004
Valor al azar (S)	1.00	8	15	0+448	0+480	2012	2020
Frame inicial	1900	9	17	0+512	0+544	2028	2036
Sentido	1-2	10	19	0+576	0+608	2044	2052
Cantidad de UM a analizar	11.00	11	21	0+640	0+672	2060	2068
¿Cumple las UM mínimas?	CUMPLE						

Ruta Nacional N°	39			Unidades	de Muestrec	Por Analizar	
Sección de control	19100	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	1160.00	1	1	0+0	0+032	2074	2082
Ancho de la calzada (m)	9.00	2	4	0+96	0+128	2094	2106
Pavimento	Flexible	3	7	0+192	0+224	2118	2130
Longitud de la UM (m)	32.00	4	10	0+288	0+320	2142	2154
UM Totales (N)	36.25	5	13	0+384	0+416	2166	2178
UM Mínimas (n)	11.32	6	16	0+480	0+512	2190	2202
Intervalo de Muestreo (i)	3.00	7	19	0+576	0+608	2214	2226
Valor al azar (S)	1.00	8	22	0+672	0+704	2238	2250
Frame inicial	2074	9	25	0+768	0+800	2262	2274
Sentido	1-2	10	28	0+864	0+896	2286	2298
Cantidad de UM a analizar	12.00	11	31	0+960	0+992	2310	2322
¿Cumple las UM mínimas?	CUMPLE	12	34	0+1056	0+1088	2334	2346

Ruta Nacional N°	39			Unidades	de Muestrec	Por Analizar	
Sección de control	19101	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	1330.00	1	1	0+0	0+032	2350	2358
Ancho de la calzada (m)	10.00	2	4	0+96	0+128	2370	2382
Pavimento	Flexible	3	7	0+192	0+224	2394	2406
Longitud de la UM (m)	32.00	4	10	0+288	0+320	2418	2430
UM Totales (N)	41.56	5	13	0+384	0+416	2442	2454
UM Mínimas (n)	11.76	6	16	0+480	0+512	2466	2478
Intervalo de Muestreo (i)	3.00	7	19	0+576	0+608	2490	2502
Valor al azar (S)	1.00	8	22	0+672	0+704	2514	2526
Frame inicial	2350	9	25	0+768	0+800	2538	2550
Sentido	1-2	10	28	0+864	0+896	2562	2574
Cantidad de UM a analizar	14.00	11	31	0+960	0+992	2586	2598
¿Cumple las UM mínimas?	CUMPLE	12	34	0+1056	0+1088	2610	2622

13	37	0+1152	0+1184	2634	2646	√
14	40	0+1248	0+1280	2658	2670	

Ruta Nacional N°	39			Unidades	de Muestred	Por Analizar		
Sección de control	19102	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final	1
Longitud (m)	770.00	1	1	0+0	0+032	2658	2666	Ī
Ancho de la calzada (m)	9.00	2	3	0+64	0+96	2674	2682	1
Pavimento	Flexible	3	5	0+128	0+160	2690	2698	
Longitud de la UM (m)	32.00	4	7	0+192	0+224	2706	2714	
UM Totales (N)	24.06	5	9	0+256	0+288	2722	2730	
UM Mínimas (n)	9.86	6	11	0+320	0+352	2738	2746	
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	2754	2762	Ϊ.
Valor al azar (S)	1.00	8	15	0+448	0+480	2770	2778	Ϊ.
Frame inicial	2658	9	17	0+512	0+544	2786	2794],
Sentido	1-2	10	19	0+576	0+608	2802	2810	Ι.
Cantidad de UM a analizar	12.00	11	21	0+640	0+672	2818	2826	1,
¿Cumple las UM mínimas?	CUMPLE	12	23	0+704	0+736	2834	2842	1,
		13	25	0+352	0+384	2746	2754	
		14	27	0+416	0+448	2762	2770	1

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar]
Sección de control	19089	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final	Ī
Longitud (m)	750.00	1	1	0+0	0+032	2834	2842	\ \
Ancho de la calzada (m)	9.20	2	3	0+64	0+96	2850	2858]、
Pavimento	Flexible	3	5	0+128	0+160	2866	2874]、
Longitud de la UM (m)	32.00	4	7	0+192	0+224	2882	2890	,
UM Totales (N)	23.44	5	9	0+256	0+288	2898	2906	,
UM Mínimas (n)	9.76	6	11	0+320	0+352	2914	2922	,
Intervalo de Muestreo (i)	2.00	7	13	0+384	0+416	2930	2938]、
Valor al azar (S)	1.00	8	15	0+448	0+480	2946	2954	,
Frame inicial	2834	9	17	0+512	0+544	2962	2970	,
Sentido	1-2	10	19	0+576	0+608	2978	2986	\
Cantidad de UM a analizar	12.00	11	21	0+640	0+672	2994	3002	\
¿Cumple las UM mínimas?	CUMPLE	12	23	0+704	0+736	3010	3018	

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19103	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	1175.00	1	1	0+0	0+032	3010	3018
Ancho de la calzada (m)	10.00	2	4	0+96	0+128	3030	3042
Pavimento	Flexible	3	7	0+192	0+224	3054	3066
Longitud de la UM (m)	32.00	4	10	0+288	0+320	3078	3090
UM Totales (N)	36.72	5	13	0+384	0+416	3102	3114
UM Mínimas (n)	11.36	6	16	0+480	0+512	3126	3138
Intervalo de Muestreo (i)	3.00	7	19	0+576	0+608	3150	3162

Valor al azar (S)	1.00	8	22	0+672	0+704	3174	3186] 🗸
Frame inicial	3010	9	25	0+768	0+800	3198	3210] 🗸
Sentido	1-2	10	28	0+864	0+896	3222	3234] 🗸
Cantidad de UM a analizar	12.00	11	31	0+960	0+992	3246	3258	\
¿Cumple las UM mínimas?	CUMPLE	12	34	0+1056	0+1088	3270	3282	1

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19104	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	470.00	1	1	0+0	0+032	3286	3294
Ancho de la calzada (m)	10.00	2	2	0+32	0+64	3298	3302
Pavimento	Flexible	3	3	0+64	0+96	3306	3310
Longitud de la UM (m)	32.00	4	4	0+96	0+128	3314	3318
UM Totales (N)	14.69	5	5	0+128	0+160	3322	3326
UM Mínimas (n)	7.92	6	6	0+160	0+192	3330	3334
Intervalo de Muestreo (i)	1.00	7	7	0+192	0+224	3338	3342
Valor al azar (S)	1.00	8	8	0+224	0+256	3346	3350
Frame inicial	3286	9	9	0+256	0+288	3354	3358
Sentido	1-2	10	10	0+288	0+320	3362	3366
Cantidad de UM a analizar	14.00	11	11	0+320	0+352	3370	3374
¿Cumple las UM mínimas?	CUMPLE	12	12	0+352	0+384	3378	3382
		13	13	0+384	0+416	3386	3390
		14	14	0+416	0+448	3394	3398

Ruta Nacional N°	39			Unidades	de Muestre	Por Analizar	
Sección de control	19105	N°	UM	Est. Inicial	Est. Final	Frame Inicial	Frame Final
Longitud (m)	465.00	1	1	0+0	0+032	3394	3402
Ancho de la calzada (m)	10.00	2	2	0+32	0+64	3406	3410
Pavimento	Flexible	3	3	0+64	0+96	3414	3418
Longitud de la UM (m)	32.00	4	4	0+96	0+128	3422	3426
UM Totales (N)	14.53	5	5	0+128	0+160	3430	3434
UM Mínimas (n)	7.87	6	6	0+160	0+192	3438	3442
Intervalo de Muestreo (i)	1.00	7	7	0+192	0+224	3446	3450
Valor al azar (S)	1.00	8	8	0+224	0+256	3454	3458
Frame inicial	3394	9	9	0+256	0+288	3462	3466
Sentido	1-2	10	10	0+288	0+320	3470	3474
Cantidad de UM a analizar	14.00	11	11	0+320	0+352	3478	3482
¿Cumple las UM mínimas?	CUMPLE	12	12	0+352	0+384	3486	3490
		13	13	0+384	0+416	3494	3498
		14	14	0+416	0+448	3502	3506

Apéndice 2. Resumen de deterioros y valores deducidos para las rutas 10 y 39.

> Ruta 10 sentido La Lima – Siquirres

ID	Sección de control	Estacionamiento	UM	Deterioros	Medidas	Severidad	Densidad (%)	Valor deducido
1	30062	208	6	Cuero de lagarto	5.42 m²	ALTA	1.9	40
2	30062	412	11	Cuero de lagarto	5.38 m²	ALTA	1.9	40
3	30062	416	11	Cuero de lagarto	3.34 m²	ALTA	1.2	31
4	30062	600	21	Desplazamiento	17.04 m²	MEDIA	6.1	27
5	30062	772	26	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4	-
6	30062	784	26	Bacheo	2.11 m ²	BAJA	0.7	1.5
7	30062	992	31	Profundidad de rodera	7.19 m²	MEDIA	2.6	27
8	30062	992	31	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4	-
9	30062	1164	36	Cuero de lagarto	1.55 m²	ALTA	0.6	24
10	30062	1172	36	Bacheo	2.21 m ²	BAJA	0.8	1.8
11	30062	1176	36	Desplazamiento	4.36 m²	MEDIA	1.5	12.5
12	30062	1184	36	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4	-
13	30062	1184	36	Tapa de registro pluvial desnivelada	6.0 un	BAJA	2.1	-
14	30062	1380	46	Bacheo	0.91 m²	BAJA	0.3	0
15	30062	1380	46	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
16	30062	1380	46	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4	-
17	30062	1552	51	Bacheo	2.53 m ²	BAJA	0.9	2
18	30062	1556	51	Bacheo	1.87 m²	BAJA	0.7	1.5
19	30062	1568	51	Bacheo	1.57 m²	BAJA	0.6	1.5
20	30062	1568	51	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
21	30062	1736	51	Bacheo	9.13 m²	BAJA	3.2	17.5
22	30062	1752	51	Bacheo	3.81 m ²	BAJA	1.4	2

23	30062	1924	61	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4	-
24	30062	1924	61	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
25	30062	1944	61	Desprendimiento de agregados	14.08 m²	ALTA	5.0	30
26	30062	1948	61	Bacheo	1.00 m²	MEDIA	0.4	6
27	30062	1952	61	Bacheo	7.41 m²	BAJA	2.6	5.2
28	30062	1948	61	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4	-
29	30040	32	1	Bacheo	4.57 m²	BAJA	2.4	5
30	30040	32	1	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.5	-
31	30040	800	25	Bacheo	42.63 m ²	BAJA	22.2	22.5
32	30040	1152	37	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.5	-
33	30040	1536	49	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.5	-
34	30040	1552	49	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.5	-
35	30040	1560	49	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.5	-
36	30040	1728	55	Tapa de registro pluvial desnivelada	2.0 un	MEDIA	1.0	-
37	30040	1952	61	Cuero de lagarto	1.13 m²	MEDIA	0.6	17
38	30021	192	7	Bacheo	42.82 m²	BAJA	19.1	21.5
39	30021	396	13	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4	-
40	30021	1184	37	Bacheo	77.03 m²	BAJA	34.4	28
41	30021	1368	43	Hueco	3.26 m ²	BAJA	1.5	25
42	30021	2144	67	Bacheo	20.93 m ²	MEDIA	9.3	29
43	30021	2144	67	Cuero de lagarto	1.40 m²	MEDIA	0.6	17
44	30021	2144	67	Bacheo	74.07 m²	BAJA	33.1	28
45	30021	2692	85	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
46	30021	3104	97	Bacheo	71.13 m²	BAJA	31.8	27.5

47	30022	28	1	Cuero de lagarto	1.74 m²	MEDIA	1.0	20
48	30022	32	1	Grieta longitudinal y transversal	7.02 m	MEDIA	3.8	10
49	30022	224	7	Desnivel carril / espaldón	32.00 m	ALTA	17.5	21
50	30022	416	13	Desnivel carril / espaldón	24.00 m	ALTA	13.2	18
51	30022	608	19	Desnivel carril / espaldón	24.00 m	MEDIA	13.2	9.5
52	30022	1184	37	Desnivel carril / espaldón	16.00 m	MEDIA	8.8	8
53	30022	1376	43	Desnivel carril / espaldón	12.00 m	ALTA	6.6	3
54	30022	1568	49	Desnivel carril / espaldón	12.00 m	BAJA	6.6	3
55	30022	1752	55	Grieta de borde	12.00 m	MEDIA	6.6	12.5
56	30022	1752	55	Desnivel carril / espaldón	8.00 m	MEDIA	4.4	2.5
57	30022	2112	67	Grieta longitudinal y transversal	16.60 m	MEDIA	9.1	18
58	30022	2692	85	Grieta de borde	6.00 m	MEDIA	3.3	9
59	30022	3296	103	Desnivel carril / espaldón	32.00 m	ALTA	17.5	21
60	30022	3468	109	Desnivel carril / espaldón	12.00 m	MEDIA	6.6	3
61	30022	3480	109	Grieta longitudinal y transversal	2.76 m	MEDIA	1.5	3
62	30022	3872	121	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
63	30022	4064	127	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
64	30022	4256	133	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
65	30022	4832	1511	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
66	30022	5024	157	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
67	30022	5216	163	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
68	30022	5408	169	Desnivel carril / espaldón	32.00 m	ALTA	17.5	21
70	30022	5792	181	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
71	30022	6176	193	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
72	30022	6368	199	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
73	30022	6560	205	Desnivel carril / espaldón	16.00 m	BAJA	8.8	8
74	30022	6728	211	Desnivel carril / espaldón	8.00 m	MEDIA	4.4	2.5
75	30022	7136	223	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
76	30022	7328	229	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5

77	30022	7520	235	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
78	30022	7712	241	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
79	30022	7904	247	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
80	30022	8096	253	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
81	30022	8288	259	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
82	30022	8480	265	Desnivel carril / espaldón	32.00 m	MEDIA	17.5	11.5
83	30022	8672	271	Desnivel carril / espaldón	32.00 m	ALTA	17.5	21
84	30022	8864	277	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
85	30022	9248	289	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
86	30022	9440	295	Desnivel carril / espaldón	32.00 m	BAJA	17.5	8
87	30471	32	1	Desnivel carril / espaldón	24.00 m	MEDIA	11.5	19
88	30471	224	7	Desnivel carril / espaldón	32.00 m	MEDIA	15.4	10
89	30471	416	13	Desnivel carril / espaldón	32.00 m	MEDIA	15.4	10
90	30471	608	19	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
91	30471	800	25	Desnivel carril / espaldón	32.00 m	ALTA	15.4	19.5
92	30471	992	31	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
93	30471	1376	43	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
94	30471	1568	49	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
95	30471	2144	67	Desnivel carril / espaldón	20.00 m	BAJA	9.6	4.5
96	30471	2336	73	Desnivel carril / espaldón	28.00 m	BAJA	13.5	6
97	30471	2528	79	Desnivel carril / espaldón	32.00 m	MEDIA	15.4	10
98	30471	2720	85	Desnivel carril / espaldón	12.00 m	MEDIA	5.8	7
99	30471	3096	97	Desnivel carril / espaldón	24.00 m	MEDIA	11.5	19
100	30471	3296	103	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
101	30471	3488	109	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
102	30471	3680	115	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
103	30471	3680	115	Bacheo	104.00 m²	BAJA	50.0	32
104	30471	3872	121	Bacheo	104.00 m²	BAJA	50.0	32
105	30471	4064	127	Desnivel carril / espaldón	32.00 m	MEDIA	15.4	10
106	30471	4064	127	Bacheo	104.00 m ²	BAJA	50.0	32
				-				

		Т	1					1
107	30471	4256	133	Bacheo	104.00 m ²	BAJA	50.0	32
108	30471	4256	133	Desnivel carril / espaldón	32.00 m	MEDIA	15.4	10
109	30471	4448	139	Bacheo	39.00 m ²	BAJA	18.8	21.5
110	30471	4448	139	Desnivel carril / espaldón	32.00 m	BAJA	15.4	7
111	30471	4640	145	Bacheo	104.00 m ²	BAJA	50.0	32
112	30471	4640	145	Desnivel carril / espaldón	32.00 m	MEDIA	15.4	10
113	30471	4832	151	Bacheo	104.00 m	BAJA	50.0	32
114	30471	4832	151	Desnivel carril / espaldón	32.00 m	MEDIA	15.4	10
115	30472	32	1	Bacheo	104.00 m ²	BAJA	51.6	32
116	30472	192	6	Bacheo	75.00 m	BAJA	37.2	29
117	30472	192	6	Desnivel carril / espaldón	24.00 m	BAJA	11.9	5
118	30472	352	11	Bacheo	104.00 m ²	BAJA	51.6	32
119	30472	512	16	Bacheo	88.00 m	BAJA	43.7	31.5
120	30472	512	16	Desnivel carril / espaldón	32.00 m	MEDIA	15.9	11
121	30472	672	21	Bacheo	104.00 m ²	BAJA	51.6	32
122	30472	672	21	Desnivel carril / espaldón	32.00 m	MEDIA	15.9	11
123	30472	832	26	Bacheo	100.00 m ²	BAJA	49.6	32
124	30472	832	26	Desnivel carril / espaldón	32.00 m	MEDIA	15.9	11
125	30472	1148	36	Bacheo	88.00 m	BAJA	43.7	31.5
126	30472	1152	36	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
127	30472	1312	41	Bacheo	100.00 m ²	BAJA	49.6	32
128	30472	1472	46	Bacheo	100.00 m ²	BAJA	49.6	32
129	30472	1632	51	Bacheo	100.00 m ²	BAJA	49.6	32
130	30472	1632	51	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
131	30472	1792	56	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
132	30472	1952	61	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
133	30472	2112	66	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
134	30472	3072	96	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
135	30472	3552	111	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
136	30010	32	1	Desnivel carril / espaldón	28.00 m	BAJA	13.9	6

137	30010	224	7	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
138	30010	416	13	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
139	30010	800	25	Desnivel carril / espaldón	12.00 m	MEDIA	6.0	7
140	30010	1952	61	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
141	30010	2720	85	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
142	30010	2912	91	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
143	30010	3488	109	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
144	30010	3680	115	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
145	30010	4064	127	Bacheo	100.00 m²	BAJA	49.6	32
146	30010	4064	127	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
147	30010	4240	133	Bacheo	16.00 m	BAJA	7.9	3
148	30010	4832	151	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
149	30010	5024	157	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
150	30010	5216	163	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
151	30010	5408	169	Bacheo	100.00 m²	BAJA	49.6	32
152	30010	5600	175	Desnivel carril / espaldón	32.00 m	BAJA	15.9	7
153	30010	5984	187	Bacheo	37.00 m	BAJA	18.4	21
154	30010	6368	199	Desnivel carril / espaldón	28.00 m	BAJA	13.9	6
155	30480	48	1	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
156	30480	288	6	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
157	30480	528	11	Bacheo	100.00 m ²	BAJA	57.9	34
158	30480	528	11	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
159	30480	768	16	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
160	30480	1008	21	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
161	30480	1248	16	Bacheo	151.20 m	BAJA	87.5	40
162	30480	1248	16	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
163	30480	1488	31	Bacheo	50.40 m	BAJA	29.2	27
164	30480	1488	31	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
165	30480	1728	36	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
166	30480	1968	41	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
	· · · · · · · · · · · · · · · · · · ·			-				

167	30480	2208	46	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
168	30480	3648	76	Desnivel carril / espaldón	48.00 m	MEDIA	27.8	18
169	30480	3888	81	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
170	30480	4848	101	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
171	30480	5088	106	Desnivel carril / espaldón	48.00 m	MEDIA	27.8	18
172	30480	5328	111	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
173	30480	5568	116	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
174	30480	5808	121	Desnivel carril / espaldón	48.00 m	BAJA	27.8	11
175	30001	48	1	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.6	ı
176	30001	1248	26	Bacheo	112.36 m	BAJA	98.9	0
177	30001	1728	36	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
178	30001	1968	41	Desnivel carril / espaldón	48.00 m	MEDIA	42.3	24
179	30001	2208	46	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
180	30001	2448	51	Desnivel carril / espaldón	48.00 m	MEDIA	42.3	24
181	30001	2688	56	Desnivel carril / espaldón	48.00 m	MEDIA	42.3	24
182	30001	2928	61	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
183	30001	3168	66	Desnivel carril / espaldón	48.00 m	MEDIA	42.3	24
184	30001	3408	71	Desnivel carril / espaldón	48.00 m	MEDIA	42.3	24
185	30001	3648	76	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
186	30001	4608	96	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
187	30001	5088	106	Desnivel carril / espaldón	48.00 m	MEDIA	42.3	24
188	30001	5328	111	Desnivel carril / espaldón	48.00 m	MEDIA	42.3	24
189	30001	5568	116	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
190	30001	5808	121	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
191	30001	6048	126	Desnivel carril / espaldón	48.00 m	BAJA	42.3	16
192	30002	48	1	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.6	ı
193	30002	336	7	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
194	30002	624	13	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
195	30002	1200	25	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19

196	30002	1488	31	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
197	30002	1776	37	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
198	30002	2064	43	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
199	30002	2352	49	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
200	30002	2640	55	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
201	30002	2928	61	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
202	30002	3216	67	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
203	30002	3504	73	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
204	30002	3792	79	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
205	30002	4080	85	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
206	30002	4368	91	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
207	30002	4656	97	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
208	30002	4944	103	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
209	30002	5232	109	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
210	30002	5520	115	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
211	30002	5808	121	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
212	30002	6672	139	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
213	30002	6960	145	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
214	30002	10400	217	Bacheo	7.96 m²	BAJA	4.7	9
215	30002	11280	235	Desnivel carril / espaldón	12.00 m	BAJA	7.1	3.5
216	30002	12432	259	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
217	30002	12720	265	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
218	30002	13008	271	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
219	30002	13296	277	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
220	30002	13584	283	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
221	30002	13872	289	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
222	30002	14160	295	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
223	30002	14448	301	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
224	30002	15024	313	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
225	30002	15312	319	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
				-				

226	30002	15600	325	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
227	30002	15888	331	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
228	30002	16176	337	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
229	30002	17328	361	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
230	30002	17616	367	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
231	30002	17904	373	Desnivel carril / espaldón	48.00 m	ALTA	28.6	31
232	30002	18192	379	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
233	30002	18480	385	Desnivel carril / espaldón	44.00 m	BAJA	26.2	11
234	70420	624	13	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
235	70420	1488	31	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
236	70420	1776	37	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
237	70420	2928	61	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
238	70420	2928	61	Bacheo	36.48 m²	BAJA	21.7	22.5
239	70420	3176	67	Bacheo	36.27 m²	BAJA	21.6	22.5
240	70420	3216	67	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
241	70420	3504	73	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
242	70420	4368	91	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
243	70420	4624	97	Bacheo	23.32 m²	BAJA	13.9	18.5
244	70420	4944	103	Desnivel carril / espaldón	48.00 m	MEDIA	28.6	19
245	70420	5200	109	Bacheo	6.61 m ²	BAJA	3.9	8
246	70420	5224	109	Bacheo	18.87 m²	BAJA	11.2	16.5
247	70420	5516	115	Bacheo	20.90 m ²	BAJA	12.4	17.2
248	70420	5520	115	Bacheo	31.34 m²	BAJA	18.7	22
249	70420	6096	127	Bacheo	19.95 m²	BAJA	11.9	17
250	70420	6936	145	Bacheo	28.72 m²	BAJA	17.1	19.5
251	70420	6960	145	Desnivel carril / espaldón	36.00 m	BAJA	21.4	9
252	70420	7216	151	Bacheo	25.44 m²	MEDIA	15.1	19
253	70420	7216	151	Depresión	0.80 m²	MEDIA	0.5	7
254	70420	7524	157	Desnivel carril / espaldón	24.00 m	BAJA	14.3	7
255	70420	7824	163	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5

256	70420	8104	169	Desnivel carril / espaldón	40.00 m	BAJA	23.8	10
257	70420	10704	223	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
258	70420	11280	235	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
259	70420	12432	259	Desnivel carril / espaldón	48.00 m	BAJA	28.6	11.5
260	70420	13296	277	Desnivel carril / espaldón	40.00 m	BAJA	23.8	11.5
261	70420	15580	325	Desnivel carril / espaldón	28.00 m	BAJA	16.7	7.5

Ruta 10 sentido Siquirres – La Lima

ID	Sección de control	Estacionamiento	UM	Deterioros	Medidas	Severidad	Densidad (%)	Valor deducido
1	30040	584	19	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
2	30040	992	31	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
3	30040	1368	43	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.4	-
4	30040	1356	43	Profundidad de rodera	40.53 m ²	MEDIA	14.4	48
5	30040	1376	43	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4	-
6	30040	2496	79	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
7	30040	2896	91	Profundidad de rodera	36.26 m ²	MEDIA	12.9	47
8	30021	588	19	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
9	30021	772	25	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
10	30021	1536	49	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
11	30021	1536	49	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.4	-
12	30021	1920	61	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.4	-
13	30022	3664	115	Desnivel carril / espaldón	16.00 m	MEDIA	5.7	6
14	30022	3872	121	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9

					_			
15	30022	4064	127	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
16	30022	4256	133	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
17	30022	4832	151	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
18	30022	5024	157	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
19	30022	5216	163	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
20	30022	5408	169	Desnivel carril / espaldón	32.00 m	ALTA	11.4	16
21	30022	6368	199	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
22	30022	6560	205	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
23	30022	6752	211	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
24	30022	6944	217	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
25	30022	7136	223	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
26	30022	7328	229	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
27	30022	7520	235	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
28	30022	7712	241	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
29	30022	7904	247	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
30	30022	8096	253	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
31	30022	8288	259	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
32	30022	8480	265	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
33	30022	8672	271	Desnivel carril / espaldón	32.00 m	ALTA	11.4	16
34	30022	8864	277	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
35	30022	9440	295	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
36	30471	32	1	Desnivel carril / espaldón	12.00 m	MEDIA	4.3	5
37	30471	224	7	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
38	30471	416	13	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
39	30471	608	19	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
40	30471	800	25	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
41	30471	992	31	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
42	30471	1184	37	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
43	30471	1376	43	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
44	30471	1568	49	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5

45	30471	2144	67	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
46	30471	2336	73	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
47	30471	2720	85	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
48	30471	3104	97	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
49	30471	3296	103	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
50	30471	3488	109	Desnivel carril / espaldón	28.00 m	BAJA	9.9	5
51	30471	3680	115	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
52	30471	3680	115	Bacheo	104.00 m ²	BAJA	36.9	29
53	30471	3840	121	Bacheo	104.00 m²	BAJA	36.9	29
54	30471	3840	121	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
55	30471	4064	127	Bacheo	104.00 m ²	BAJA	36.9	29
56	30471	4256	133	Bacheo	104.00 m²	BAJA	36.9	29
57	30471	4256	133	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
58	30471	4448	139	Bacheo	39.00 m²	BAJA	13.8	18.5
59	30471	4448	139	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
60	30471	4640	145	Bacheo	104.00 m	BAJA	36.9	29
61	30471	4832	151	Bacheo	78.00 m	BAJA	27.7	26
62	30472	32	1	Bacheo	104.00 m	BAJA	36.9	29
63	30472	352	11	Bacheo	104.00 m	BAJA	36.9	29
64	30472	512	16	Bacheo	104.00 m	BAJA	36.9	29
65	30472	512	16	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
66	30472	672	21	Bacheo	104.00 m	BAJA	36.9	29
67	30472	672	21	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
68	30472	992	31	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
69	30472	1152	36	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
70	30472	1312	41	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
71	30472	1472	46	Bacheo	75.00 m	BAJA	26.6	25
72	30472	1632	51	Bacheo	100.00 m	BAJA	35.5	28
73	30472	3552	111	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
74	30010	224	7	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5

75	30010	416	13	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
76	30010	1760	55	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
77	30010	1952	61	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
78	30010	2144	67	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
79	30010	2336	73	Desnivel carril / espaldón	32.00 m	MEDIA	11.4	9
80	30010	2720	85	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
81	30010	3680	115	Bacheo	88.00 m	BAJA	31.3	27
82	30010	3872	121	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
83	30010	4064	127	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
84	30010	4248	133	Bacheo	16.00 m	BAJA	5.7	10
85	30010	4424	133	Bacheo	12.00 m	BAJA	4.3	8.5
86	30010	5024	157	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
87	30010	5216	163	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
88	30010	5408	169	Bacheo	100.00 m	BAJA	35.5	28
89	30010	5600	175	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
90	30010	5600	175	Bacheo	50.00 m	BAJA	17.8	20.5
91	30010	6176	193	Desnivel carril / espaldón	32.00 m	BAJA	11.4	5
92	30480	48	1	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
93	30480	288	6	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
94	30480	288	6	Bacheo	113.00 m	BAJA	40.1	29
95	30480	528	11	Bacheo	151.00 m	BAJA	53.6	33
96	30480	768	16	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
97	30480	1008	21	Bacheo	151.20 m	BAJA	53.7	33
98	30480	1248	26	Bacheo	151.00 m	BAJA	53.6	33
99	30480	1248	26	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
100	30480	1488	31	Bacheo	126.00 m	BAJA	44.7	32
101	30480	1488	31	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
102	30480	1728	36	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
103	30480	1968	41	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
104	30480	2208	46	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8

105	30480	2688	56	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
106	30480	3888	81	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
107	30480	5088	106	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
108	30480	6280	131	Desnivel carril / espaldón	40.00 m	BAJA	14.2	6
109	30001	1968	41	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
110	30001	2208	46	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
111	30001	2448	51	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
112	30001	2688	56	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
113	30001	2928	61	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
114	30001	3168	66	Desnivel carril / espaldón	40.00 m	BAJA	14.2	6
115	30001	3408	71	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
116	30001	3648	76	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
117	30001	5088	106	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
118	30001	5328	111	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
119	30001	5568	116	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
120	30001	5808	121	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
121	30002	336	7	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
122	30002	624	13	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
123	30002	912	19	Desnivel carril / espaldón	44.00 m	BAJA	15.6	7
124	30002	1200	25	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
125	30002	1200	25	Bacheo	168.00 m	ALTA	59.7	83
126	30002	1488	31	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
127	30002	1488	31	Bacheo	168.00 m	ALTA	59.7	83
128	30002	1776	37	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
129	30002	2064	43	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
130	30002	2352	49	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
131	30002	2640	55	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
132	30002	2928	61	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
133	30002	3216	67	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
134	30002	3504	73	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8

135	30002	3792	79	Desnivel carril / espaldón	8.00 m	BAJA	2.8	2
136	30002	4368	91	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
137	30002	4656	97	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
138	30002	4944	103	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
139	30002	5232	109	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
140	30002	5808	121	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
141	30002	6096	127	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
142	30002	6672	139	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
143	30002	6960	145	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
144	30002	7248	151	Desnivel carril / espaldón	40.00 m	BAJA	14.2	6
145	30002	7536	157	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
146	30002	7824	163	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
147	30002	8112	169	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
148	30002	8400	175	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
149	30002	8688	181	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
150	30002	9264	193	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
151	30002	9552	199	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
152	30002	9840	205	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
153	30002	10128	211	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
154	30002	10416	217	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
155	30002	10704	223	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
156	30002	10992	229	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
157	30002	11280	235	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
158	30002	11568	241	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
159	30002	11856	247	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
160	30002	12144	253	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
161	30002	12432	259	Desnivel carril / espaldón	48.00 m	ALTA	17.0	21
162	30002	12720	265	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
163	30002	13008	271	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
164	30002	13296	277	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8

165	30002	13584	283	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
166	30002	13872	289	Desnivel carril / espaldón	16.00 m	MEDIA	5.7	6.5
167	30002	14160	295	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
168	30002	14448	301	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
169	30002	15024	313	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
170	30002	16464	343	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
171	30002	16752	349	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
172	30002	17040	355	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
173	30002	17328	361	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
174	30002	17616	367	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
175	30002	17904	373	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
176	30002	18192	379	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
177	30002	18480	385	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
178	30002	18768	391	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
179	30002	19056	397	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
180	30002	19344	403	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
181	70420	912	19	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
182	70420	1776	37	Desnivel carril / espaldón	48.00 m	MEDIA	17.0	11.5
183	70420	2640	55	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
184	70420	2928	61	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
185	70420	3216	67	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
186	70420	9536	199	Bacheo	27.01 m²	BAJA	9.6	16
187	70420	10992	229	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
188	70420	11280	235	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8
189	70420	12432	259	Desnivel carril / espaldón	48.00 m	BAJA	17.0	8

Ruta 39 sentido La Uruca – Calle Blancos

ID	Sección de control	Estacionamiento	UM	Deterioros	Medidas	Severidad	Densidad (%)	Valor deducido
1	19090	96	3	Bacheo	23.7 m²	BAJA	12.0	17
2	19090	144	5	Bacheo	36.1 m²	BAJA	18.2	21
3	19090	220	7	Bacheo	29.8 m²	BAJA	15.0	19
4	19090	260	9	Bacheo	11.5 m²	BAJA	5.8	11
5	19090	816	25	Grieta de reflexión de junta	10.6 m²	MEDIA	5.3	11
6	19091	16	1	Bacheo	5.0 m²	BAJA	2.1	4
7	19091	96	3	Desnivel carril / espaldón	67.1 m²	MEDIA	28.0	18
8	19092	152	5	Desnivel carril / espaldón	29.0 m²	ALTA	12.1	17
9	19093	160	5	Bacheo	66.8 m²	MEDIA	29.8	48
10	19093	592	19	Desnivel carril / espaldón	21.7 m²	BAJA	9.7	5
11	19094	280	9	Bacheo	0.6 m²	BAJA	0.3	0
12	19094	644	21	Bacheo	0.7 m²	BAJA	0.3	0
13	19094	704	23	Bacheo	2.8 m²	MEDIA	1.2	9.5
14	19094	720	23	Bacheo	1.7 m²	BAJA	0.7	1.5
15	19094	736	23	Bacheo	3.1 m²	BAJA	1.4	2
16	19097	124	4	Bacheo	2.2 m²	BAJA	0.7	1.5
17	19097	248	8	Cuero de lagarto	0.8 m²	BAJA	0.3	4
18	19099	64	3	Cuero de lagarto	2.9 m²	BAJA	0.9	10
19	19099	136	5	Cuero de lagarto	1.1 m²	BAJA	0.4	5
20	19099	540	17	Bacheo	119.0 m²	BAJA	39.1	30
21	19100	220	7	Bacheo	53.9 m²	BAJA	18.7	21.5
22	19100	988	31	Bacheo	77.1 m²	MEDIA	26.8	45
23	19100	1040	34	Bacheo	38.3 m²	MEDIA	13.3	32
24	19100	1040	34	Bacheo	4.9 m²	MEDIA	1.7	12
25	19101	580	19	Bacheo	2.5 m²	BAJA	0.8	1.5
26	19101	592	19	Bacheo	2.1 m²	BAJA	0.7	1.5
27	19101	876	28	Grieta longitudinal y transversal	6.24 m	BAJA	2.0	0

28	19101	944	31	Bacheo	24.23 m	BAJA	7.6	3
29	19101	944	31	Hueco	0.54 m	MEDIA	0.2	10
30	19101	944	31	Hueco	0.11 m	BAJA	0.0	1
31	19101	964	31	Grieta longitudinal y transversal	19.15 m	BAJA	6.0	4
32	19101	976	31	Cuero de lagarto	6.50 m	BAJA	2.0	18
33	19101	976	31	Cuero de lagarto	6.92 m	BAJA	2.2	18.5
34	19101	988	31	Cuero de lagarto	3.92 m	BAJA	1.2	12
35	19101	988	31	Grieta longitudinal y transversal	2.28 m	BAJA	0.7	0
36	19101	992	31	Grieta longitudinal y transversal	8.48 m	BAJA	2.7	0
37	19101	992	31	Grieta de borde	9.47 m	MEDIA	3.0	9
38	19101	1068	34	Bacheo	1.23 m	BAJA	0.4	0.5
39	19101	1152	37	Cuero de lagarto	1.97 m	BAJA	0.6	7
40	19101	1184	37	Cuero de lagarto	3.06 m	BAJA	1.0	11
41	19101	1184	37	Cuero de lagarto	3.27 m	BAJA	1.0	11
42	19102	20	1	Cuero de lagarto	1.98 m	BAJA	0.7	8
43	19102	64	3	Hueco	1.04 m	BAJA	0.4	10
44	19102	84	3	Bacheo	23.24 m	MEDIA	8.1	27.5
45	19102	128	5	Cuero de lagarto	1.36 m	BAJA	0.5	4.5
46	19102	140	5	Cuero de lagarto	0.48 m	BAJA	0.2	4
47	19102	152	5	Cuero de lagarto	0.52 m	BAJA	0.2	4
48	19102	288	9	Cuero de lagarto	1.48 m	BAJA	0.5	4.5
49	19102	336	11	Bacheo	24.07 m	MEDIA	8.4	27.7
50	19102	340	11	Bacheo	7.01 m	MEDIA	2.4	15
51	19102	344	11	Cuero de lagarto	2.60 m	BAJA	0.9	10
52	19102	352	11	Bacheo	8.66 m	BAJA	3.0	17.5
53	19102	356	11	Bacheo	6.13 m	MEDIA	2.1	14
54	19102	356	11	Bacheo	2.99 m	BAJA	1.0	2
55	19102	360	11	Bacheo	4.71 m	MEDIA	1.6	12
56	19102	364	11	Bacheo	8.44 m	MEDIA	2.9	17.5

57	19102	372	13	Bacheo	12.34 m	MEDIA	4.3	19.5
58	19102	412	13	Bacheo	16.01 m	BAJA	5.6	10.5
59	19102	448	15	Bacheo	67.65 m	MEDIA	23.5	42
60	19089	568	19	Grieta longitudinal y transversal	3.23 m	MEDIA	1.1	1.5
61	19089	576	19	Hueco	0.14 m	MEDIA	0.0	4.5
62	19089	576	19	Hueco	0.19 m	MEDIA	0.1	5.5
63	19089	576	19	Bacheo	2.01 m	MEDIA	0.7	8
64	19089	600	19	Bacheo	1.59 m	ALTA	0.5	14
65	19089	600	19	Hueco	0.10 m	MEDIA	0.0	4.5
66	19089	608	19	Bacheo	20.29 m	ALTA	6.9	41.5
67	19089	608	19	Grieta longitudinal y transversal	3.40 m	ALTA	1.2	9
68	19103	80	4	Grieta longitudinal y transversal	13.93 m	ALTA	4.4	21
69	19103	88	4	Grieta longitudinal y transversal	3.92 m	MEDIA	1.2	2
70	19103	92	4	Grieta longitudinal y transversal	3.89 m	MEDIA	1.2	2
71	19103	96	4	Grieta longitudinal y transversal	3.20 m	MEDIA	1.0	1
72	19103	96	4	Grieta longitudinal y transversal	3.93 m	ALTA	1.2	9
73	19103	96	4	Grieta longitudinal y transversal	3.77 m	ALTA	1.2	9
74	19103	96	4	Grieta longitudinal y transversal	3.91 m	ALTA	1.2	9
75	19103	96	4	Grieta longitudinal y transversal	2.41 m	ALTA	0.8	7
76	19103	96	4	Grieta longitudinal y transversal	4.33 m	ALTA	1.4	10
77	19103	100	4	Bacheo	21.03 m	ALTA	6.6	41.5
78	19103	100	4	Grieta longitudinal y transversal	1.67 m	ALTA	0.5	5
79	19103	100	4	Hueco	0.7 m ²	MEDIA	0.2	10
80	19103	224	7	Cruce de vía férrea	28.2 m²	MEDIA	8.8	37.5

81	19103	512	16	Bacheo	3.8 m ²	MEDIA	1.2	9.5
82	19103	568	19	Cuero de lagarto	6.4 m²	MEDIA	2.0	28
83	19103	584	19	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.3	-
84	19103	588	19	Bacheo	1.5 m²	MEDIA	0.5	7
85	19103	596	19	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.3	-
86	19103	608	19	Bacheo	77.9 m²	BAJA	24.3	23.5
87	19103	668	22	Cuero de lagarto	10.4 m²	BAJA	3.3	33.5
88	19103	692	22	Cuero de lagarto	4.1 m²	BAJA	1.3	12.5
89	19103	752	25	Cuero de lagarto	3.9 m²	BAJA	1.2	12
90	19103	760	25	Cuero de lagarto	4.1 m²	BAJA	1.3	12.5
91	19103	784	25	Desgaste superficial	1.3 m²	BAJA	0.4	-
92	19103	796	25	Hueco	0.2 m ²	MEDIA	0.1	5.5
93	19104	372	12	Bacheo	2.6 m²	ALTA	0.8	18
94	19104	384	12	Desgaste superficial	0.9 m²	MEDIA	0.3	-
95	19104	416	13	Exudación	15.8 m²	MEDIA	4.9	9
96	19104	416	13	Exudación	13.8 m²	MEDIA	4.3	8
97	19105	20	1	Cuero de lagarto	0.6 m²	BAJA	0.2	4
98	19105	168	6	Bacheo	0.5 m²	BAJA	0.2	0
99	19105	340	11	Bacheo	2.2 m²	MEDIA	0.7	8
100	19105	344	11	Exudación	11.8 m²	BAJA	3.7	2.5
101	19105	420	14	Exudación	4.3 m²	BAJA	1.3	1
102	19105	408	13	Exudación	3.0 m ²	BAJA	0.9	1

Ruta 39 sentido Calle Blancos – La Uruca

ID	Sección de control	Estacionamiento	UM	Deterioros	Medidas	Severidad	Densidad (%)	Valor deducido
1	19105	240	8	Cuero de lagarto	4.98 m²	BAJA	1.6	15
2	19105	272	9	Cuero de lagarto	2.16 m ²	BAJA	0.7	8
3	19105	308	10	Bacheo	6.61 m²	MEDIA	2.1	14
4	19105	312	10	Bacheo	5.47 m²	MEDIA	1.7	0
5	19105	312	10	Bacheo	1.29 m²	MEDIA	0.4	6
6	19105	316	10	Bacheo	6.74 m²	MEDIA	2.1	14
7	19105	324	11	Bacheo	2.54 m²	MEDIA	0.8	8.5
8	19105	328	11	Bacheo	3.90 m²	MEDIA	1.2	9.5
9	19105	332	11	Bacheo	2.96 m²	MEDIA	0.9	9
10	19105	344	11	Bacheo	1.62 m²	MEDIA	0.5	6
11	19105	344	11	Bacheo	5.72 m²	ALTA	1.8	23
12	19105	348	11	Bacheo	1.31 m²	MEDIA	0.4	6
13	19105	348	11	Bacheo	2.91 m²	ALTA	0.9	19
14	19105	352	11	Bacheo	0.54 m²	MEDIA	0.2	3.5
15	19105	380	12	Bacheo	0.72 m²	MEDIA	0.2	3.5
16	19105	380	12	Cuero de lagarto	2.32 m²	MEDIA	0.7	18
17	19105	384	12	Cuero de lagarto	0.99 m²	MEDIA	0.3	12
18	19105	384	12	Cuero de lagarto	1.55 m²	MEDIA	0.5	16
19	19105	392	13	Bacheo	1.32 m²	MEDIA	0.4	6
20	19105	416	13	Cuero de lagarto	1.14 m²	MEDIA	0.4	14
21	19104	8	1	Cuero de lagarto	1.06 m²	MEDIA	0.3	12
22	19104	12	1	Tapa de registro pluvial desnivelada	1.0 un	BAJA	0.3	-
23	19104	20	1	Cuero de lagarto	7.12 m²	ALTA	2.2	41
24	19104	72	3	Cuero de lagarto	2.65 m ²	MEDIA	0.8	19
25	19104	148	5	Cuero de lagarto	1.82 m²	MEDIA	0.6	17
26	19104	168	6	Cuero de lagarto	7.53 m²	MEDIA	2.4	28
27	19104	168	6	Cuero de lagarto	3.80 m ²	ALTA	1.2	31

28	19104	176	6	Cuero de lagarto	4.27 m ²	MEDIA	1.3	23
29	19104	188	6	Cuero de lagarto	3.88 m²	ALTA	1.2	31
30	19104	188	6	Cuero de lagarto	0.59 m²	ALTA	0.2	16
31	19104	204	7	Grieta de borde	2.57 m	MEDIA	0.8	6
32	19104	212	7	Cuero de lagarto	3.99 m²	MEDIA	1.2	22
33	19104	240	8	Cuero de lagarto	1.64 m²	MEDIA	0.5	16
34	19104	256	8	Cuero de lagarto	1.97 m²	BAJA	0.6	7
35	19104	336	11	Cuero de lagarto	0.52 m²	BAJA	0.2	4
36	19103	208	7	Cuero de lagarto	0.99 m²	BAJA	0.3	4
37	19103	220	7	Cuero de lagarto	1.61 m²	MEDIA	0.5	16
38	19103	292	10	Bacheo	0.54 m²	MEDIA	0.2	3.5
39	19103	320	10	Cuero de lagarto	2.07 m ²	MEDIA	0.6	17
40	19103	872	28	Cruce de vía ferrea	20.52 m²	MEDIA	6.4	30
41	19103	996	34	Bacheo	11.89 m²	MEDIA	3.7	19
42	19089	128	5	Grieta longitudinal y transversal	7.35 m	MEDIA	2.5	7.6
43	19089	140	5	Grieta longitudinal y transversal	2.17 m	ALTA	0.7	6
44	19089	148	5	Grieta longitudinal y transversal	3.84 m	MEDIA	1.3	2.5
45	19102	272	9	Cuero de lagarto	9.85 m²	ALTA	3.4	48
46	19102	272	9	Cuero de lagarto	9.57 m²	MEDIA	3.3	34
47	19102	284	9	Cuero de lagarto	23.58 m ²	MEDIA	8.2	43
48	19102	284	9	Cuero de lagarto	8.93 m²	BAJA	3.1	21
49	19102	276	9	Desplazamiento	3.33 m ²	MEDIA	1.2	11
50	19102	288	9	Grieta de reflexión de junta	18.37 m	MEDIA	6.4	12
51	19102	300	9	Bacheo	26.87 m²	BAJA	9.3	14.5
52	19102	308	9	Cuero de lagarto	7.10 m²	ALTA	2.5	43
53	19102	308	9	Cuero de lagarto	7.58 m²	ALTA	2.6	44
54	19102	316	9	Cuero de lagarto	7.87 m²	ALTA	2.7	46
55	19102	316	9	Cuero de lagarto	5.38 m²	ALTA	1.9	40
56	19102	308	9	Desplazamiento	2.56 m²	MEDIA	0.9	9

57 19102 316 11 Desplazamiento 2.42 m² MEDIA 0.8 8 58 19102 316 11 Cuero de lagarto 4.66 m² BAJA 1.6 15 59 19102 336 11 Cuero de lagarto 10.46 m² ALTA 3.6 49 60 19102 336 11 Desplazamiento 2.71 m² ALTA 0.9 18 61 19102 348 11 Bacheo 14.73 m² BAJA 5.1 9.5 63 19102 348 11 Desplazamiento 2.14 m² MEDIA 0.7 7 64 19102 352 11 Cuero de lagarto 2.33 m² MEDIA 0.7 19 65 19102 392 13 Bacheo 6.54 m² BAJA 2.3 5 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67				1			ı	1	
59 19102 336 11 Cuero de lagarto 10.46 m² ALTA 3.6 49 60 19102 336 11 Cuero de lagarto 4.26 m² ALTA 1.5 35 61 19102 336 11 Desplazamiento 2.71 m² ALTA 0.9 18 62 19102 348 11 Bacheo 14.73 m² BAJA 5.1 9.5 63 19102 348 11 Desplazamiento 2.14 m² MEDIA 0.7 7 64 19102 352 11 Cuero de lagarto 2.33 m² MEDIA 0.8 19 65 19102 392 13 Bacheo 6.54 m² BAJA 2.3 5 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 404 13 Cuero de lagarto 14.96 m² BAJA 5.2 9.5 68	57	19102	316	11	Desplazamiento	2.42 m²	MEDIA	0.8	8
60 19102 336 11 Cuero de lagarto 4.26 m² ALTA 1.5 35 61 19102 336 11 Desplazamiento 2.71 m² ALTA 0.9 18 62 19102 348 11 Bacheo 14.73 m² BAJA 5.1 9.5 63 19102 348 11 Desplazamiento 2.14 m² MEDIA 0.7 7 64 19102 352 11 Cuero de lagarto 2.33 m² MEDIA 0.8 19 65 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69	58	19102	316	11	Cuero de lagarto	4.66 m ²	BAJA	1.6	15
61 19102 336 11 Desplazamiento 2.71 m² ALTA 0.9 18 62 19102 348 11 Bacheo 14.73 m² BAJA 5.1 9.5 63 19102 348 11 Desplazamiento 2.14 m² MEDIA 0.7 7 64 19102 352 11 Cuero de lagarto 2.33 m² MEDIA 0.8 19 65 19102 392 13 Bacheo 6.54 m² BAJA 2.3 5 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 3.78 m² MEDIA 1.3 23 70 19102	59	19102	336	11	Cuero de lagarto	10.46 m²	ALTA	3.6	49
62 19102 348 11 Bacheo 14.73 m² BAJA 5.1 9.5 63 19102 348 11 Desplazamiento 2.14 m² MEDIA 0.7 7 64 19102 352 11 Cuero de lagarto 2.33 m² MEDIA 0.8 19 65 19102 392 13 Bacheo 6.54 m² BAJA 2.3 5 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 7.09 m² MEDIA 1.3 23 70 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19	60	19102	336	11	Cuero de lagarto	4.26 m ²	ALTA	1.5	35
63 19102 348 11 Desplazamiento 2.14 m² MEDIA 0.7 7 64 19102 352 11 Cuero de lagarto 2.33 m² MEDIA 0.8 19 65 19102 392 13 Bacheo 6.54 m² BAJA 2.3 5 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 7.09 m² MEDIA 1.3 23 70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 2.5 30 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72	61	19102	336	11	Desplazamiento	2.71 m²	ALTA	0.9	18
64 19102 352 11 Cuero de lagarto 2.33 m² MEDIA 0.8 19 65 19102 392 13 Bacheo 6.54 m² BAJA 2.3 5 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 3.78 m² MEDIA 1.3 23 70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 1.3 23 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73	62	19102	348	11	Bacheo	14.73 m²	BAJA	5.1	9.5
65 19102 392 13 Bacheo 6.54 m² BAJA 2.3 5 66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 3.78 m² MEDIA 1.3 23 70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 1.3 23 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 1.7 75 </td <td>63</td> <td>19102</td> <td>348</td> <td>11</td> <td>Desplazamiento</td> <td>2.14 m²</td> <td>MEDIA</td> <td>0.7</td> <td>7</td>	63	19102	348	11	Desplazamiento	2.14 m ²	MEDIA	0.7	7
66 19102 396 13 Cuero de lagarto 2.09 m² MEDIA 0.7 18 67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 3.78 m² MEDIA 1.3 23 70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 1.3 23 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14	64	19102	352	11	Cuero de lagarto	2.33 m ²	MEDIA	0.8	19
67 19102 400 13 Bacheo 14.96 m² BAJA 5.2 9.5 68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 3.78 m² MEDIA 1.3 23 70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 2.5 30 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14	65	19102	392	13	Bacheo	6.54 m²	BAJA	2.3	5
68 19102 404 13 Cuero de lagarto 4.31 m² MEDIA 1.5 25 69 19102 532 17 Cuero de lagarto 3.78 m² MEDIA 1.3 23 70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 2.5 30 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 2.72 m² ALTA 0.9 29	66	19102	396	13	Cuero de lagarto	2.09 m ²	MEDIA	0.7	18
69 19102 532 17 Cuero de lagarto 3.78 m² MEDIA 1.3 23 70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 2.5 30 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 -	67	19102	400	13	Bacheo	14.96 m²	BAJA	5.2	9.5
70 19102 540 17 Cuero de lagarto 7.09 m² MEDIA 2.5 30 71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Cuero de lagarto 2.72 m² ALTA 0.9 29 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4	68	19102	404	13	Cuero de lagarto	4.31 m²	MEDIA	1.5	25
71 19102 580 19 Cuero de lagarto 5.06 m² MEDIA 1.8 27 72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29	69	19102	532	17	Cuero de lagarto	3.78 m²	MEDIA	1.3	23
72 19102 588 19 Desgaste superficial 4.79 m² ALTA 1.7 - 73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Cuero de lagarto 2.72 m² ALTA 0.9 29 78 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29	70	19102	540	17	Cuero de lagarto	7.09 m²	MEDIA	2.5	30
73 19102 592 19 Desgaste superficial 3.62 m² ALTA 1.3 - 74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Cuero de lagarto 2.72 m² ALTA 0.9 29 78 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7	71	19102	580	19	Cuero de lagarto	5.06 m ²	MEDIA	1.8	27
74 19102 592 19 Grieta de borde 14.39 m ALTA 5.0 17 75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Cuero de lagarto 2.72 m² ALTA 0.9 29 78 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 <td< td=""><td>72</td><td>19102</td><td>588</td><td>19</td><td>Desgaste superficial</td><td>4.79 m²</td><td>ALTA</td><td>1.7</td><td>-</td></td<>	72	19102	588	19	Desgaste superficial	4.79 m²	ALTA	1.7	-
75 19102 592 19 Cuero de lagarto 1.09 m² MEDIA 0.4 14 76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Cuero de lagarto 2.72 m² ALTA 0.9 29 78 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5	73	19102	592	19	Desgaste superficial	3.62 m ²	ALTA	1.3	-
76 19102 604 19 Cuero de lagarto 3.82 m² BAJA 1.3 12.5 77 19102 608 19 Cuero de lagarto 2.72 m² ALTA 0.9 29 78 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 <t< td=""><td>74</td><td>19102</td><td>592</td><td>19</td><td>Grieta de borde</td><td>14.39 m</td><td>ALTA</td><td>5.0</td><td>17</td></t<>	74	19102	592	19	Grieta de borde	14.39 m	ALTA	5.0	17
77 19102 608 19 Cuero de lagarto 2.72 m² ALTA 0.9 29 78 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	75	19102	592	19	Cuero de lagarto	1.09 m²	MEDIA	0.4	14
78 19102 608 19 Desgaste superficial 0.94 m² MEDIA 0.3 - 79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	76	19102	604	19	Cuero de lagarto	3.82 m²	BAJA	1.3	12.5
79 19102 640 21 Grieta longitudinal y transversal 4.65 m MEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	77	19102	608	19	Cuero de lagarto	2.72 m²	ALTA	0.9	29
79 19102 640 21 transversal 4.65 ml IMEDIA 1.6 4 80 19102 648 21 Cuero de lagarto 2.69 m² ALTA 0.9 29 81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	78	19102	608	19	Desgaste superficial	0.94 m²	MEDIA	0.3	-
81 19102 648 21 Grieta longitudinal y transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	79	19102	640	21		4.65 m	MEDIA	1.6	4
81 19102 648 21 transversal 7.67 m MEDIA 2.7 8 82 19102 672 21 Cuero de lagarto 0.70 m² BAJA 0.2 4 83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	80	19102	648	21	Cuero de lagarto	2.69 m²	ALTA	0.9	29
83 19102 712 23 Cuero de lagarto 47.48 m² MEDIA 16.5 51 84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	81	19102	648	21		7.67 m	MEDIA	2.7	8
84 19101 8 1 Cuero de lagarto 55.68 m² ALTA 17.4 67	82	19102	672	21	Cuero de lagarto	0.70 m ²	BAJA	0.2	4
<u> </u>	83	19102	712	23	Cuero de lagarto	47.48 m²	MEDIA	16.5	51
85 19101 32 1 Cuero de lagarto 76.88 m² ALTA 24.0 72	84	19101	8	1	Cuero de lagarto	55.68 m ²	ALTA	17.4	67
	85	19101	32	1	Cuero de lagarto	76.88 m²	ALTA	24.0	72

86	19101	96	4	Grieta longitudinal y transversal	11.34 m	MEDIA	3.5	9.5
87	19101	96	4	Cuero de lagarto	3.92 m²	BAJA	1.2	12
88	19101	96	4	Grieta longitudinal y transversal	10.72 m	MEDIA	3.4	9.3
89	19101	96	4	Grieta longitudinal y transversal	8.36 m	MEDIA	2.6	7.8
90	19101	108	4	Grieta longitudinal y transversal	10.23 m	MEDIA	3.2	9
91	19101	108	4	Grieta longitudinal y transversal	7.26 m	BAJA	2.3	7.5
92	19101	120	4	Grieta longitudinal y transversal	14.70 m	MEDIA	4.6	11
93	19101	128	4	Grieta longitudinal y transversal	4.91 m	MEDIA	1.5	3
94	19101	196	7	Agrietamiento en bloque	12.29 m²	MEDIA	3.8	9
95	19101	224	7	Grieta longitudinal y transversal	48.91 m	MEDIA	15.3	22
96	19101	224	7	Grieta longitudinal y transversal	45.17 m	MEDIA	14.1	21
97	19101	220	7	Grieta longitudinal y transversal	40.16 m	MEDIA	12.6	20
98	19101	224	7	Agrietamiento en bloque	8.42 m²	ALTA	2.6	13
99	19101	296	10	Cuero de lagarto	7.70 m²	MEDIA	2.4	28
100	19101	300	10	Bacheo	0.75 m²	BAJA	0.2	0
101	19101	316	10	Grieta longitudinal y transversal	35.29 m	MEDIA	11.0	19
102	19101	304	10	Desgaste superficial	1.25 m²	MEDIA	0.4	-
103	19101	308	10	Grieta longitudinal y transversal	24.52 m	MEDIA	7.7	26
104	19101	308	10	Grieta longitudinal y transversal	17.05 m	MEDIA	5.3	12
105	19101	312	10	Agrietamiento en bloque	4.28 m²	MEDIA	1.3	2.5
106	19101	308	10	Cuero de lagarto	6.15 m²	MEDIA	1.9	27
107	19101	320	10	Grieta longitudinal y transversal	16.84 m	MEDIA	5.3	12
108	19101	320	10	Grieta longitudinal y transversal	10.53 m	MEDIA	3.3	9

109	19100	672	22	Grieta longitudinal y transversal	18.99 m	MEDIA	6.6	13
110	19100	692	22	Grieta longitudinal y transversal	34.90 m	MEDIA	12.1	19.5
111	19100	704	22	Grieta longitudinal y transversal	17.62 m	ALTA	6.1	25
112	19100	692	22	Grieta longitudinal y transversal	11.91 m	MEDIA	4.1	10
113	19100	704	22	Grieta longitudinal y transversal	11.66 m	MEDIA	4.0	10
114	19100	800	25	Bacheo	103.46 m ²	BAJA	35.9	28.5
115	19100	788	25	Bacheo	0.95 m²	MEDIA	0.3	5
116	19100	788	25	Cuero de lagarto	2.13 m ²	MEDIA	0.7	18
117	19100	800	25	Grieta longitudinal y transversal	22.27 m	MEDIA	7.7	26
118	19099	148	5	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.3	-
119	19099	240	5	Tapa de registro pluvial desnivelada	1.0 un	MEDIA	0.3	-
120	19099	532	17	Grieta longitudinal y transversal	14.79 m	MEDIA	4.9	11.5
121	19099	544	17	Grieta longitudinal y transversal	8.57 m	MEDIA	2.8	8
122	19099	576	19	Cuero de lagarto	0.90 m ²	MEDIA	0.3	12
123	19099	668	21	Tapa de registro pluvial desnivelada	1.0 un	ALTA	0.3	-
124	19098	4	1	Cuero de lagarto	6.73 m²	BAJA	2.1	18
125	19098	196	7	Cuero de lagarto	4.22 m²	BAJA	1.3	12.5
126	19097	464	15	Exudación	11.97 m²	ALTA	3.7	13
127	19097	464	15	Exudación	12.90 m²	ALTA	4.0	14
128	19096	736	23	Exudación	32.99 m²	MEDIA	11.8	13
129	19096	736	23	Exudación	10.94 m²	MEDIA	3.9	8
130	19095	352	13	Bacheo	5.44 m²	MEDIA	1.7	12
131	19095	960	29	Exudación	26.60 m ²	MEDIA	8.3	12
132	19095	1136	33	Exudación	16.03 m²	MEDIA	5.0	9
133	19095	1136	33	Exudación	13.32 m²	MEDIA	4.2	8

134	19093	32	1	Bacheo	114.49 m²	BAJA	51.1	32
135	19093	96	3	Bacheo	176.08 m²	BAJA	78.6	38
136	19093	160	5	Bacheo	171.70 m²	BAJA	76.7	38
137	19093	224	7	Bacheo	29.97 m²	BAJA	13.4	18
138	19093	416	13	Bacheo	4.43 m²	BAJA	2.0	4
139	19093	472	15	Desplazamiento	40.98 m²	ALTA	18.3	63
140	19093	464	15	Bacheo	77.16 m²	BAJA	34.4	28
141	19092	136	5	Desplazamiento	8.69 m²	ALTA	3.6	31.5
142	19092	136	5	Bacheo	2.88 m²	ALTA	1.2	19
143	19092	480	15	Bacheo	111.56 m²	BAJA	46.5	32
144	19092	480	15	Desplazamiento	13.16 m ²	ALTA	5.5	39
145	19091	224	7	Bacheo	118.21 m²	BAJA	49.3	31.5
146	19091	800	25	Desplazamiento	8.67 m²	MEDIA	3.6	20
147	19090	16	1	Cuero de lagarto	2.21 m ²	MEDIA	1.1	21
148	19090	20	1	Bacheo	11.31 m²	BAJA	5.7	10

Apéndice 3. estratégico.	. Informe	elaborado	al	MOPT	como	contribución	al	plan

INFORME Evaluación de la condición superficial de pavimentos por medio de Trimble Trident

SECRETARÍA DE PLANIFICACIÓN SECTORIAL PROCESO DE PLANIFICACIÓN ESTRATÉGICA MULTIMODAL

2019

INFORME EVALUACIÓN DE LA CONDICIÓN SUPERFICIAL DE PAVIMENTOS POR MEDIO DE TRIMBLE TRIDENT

Elaborado por
Esteban Méndez Torres Subproceso de Modelación y Planificación.
Revisado por
ng. Silvia Elena Vásquez Álvarez

Coordinadora Subproceso de Modelación y Planificación.

Julio 2019 San José, Costa Rica

Teléfono: 2523-2037 Correo electrónico: dirplan@mopt.go.cr

pág. 1

Abstract

Pavements are designed to comply with a specific useful life before having to be maintained, rehabilitated or reconstructed, however, there are many factors that lead to this expected life not to be fulfilled at full. In Costa Rica, the road infrastructure is currently extremely deteriorated due to the accelerated increase in the vehicle fleet, deficient construction designs, inappropriate materials and the lack of an adequate maintenance, rehabilitation and reconstruction plan for this useful life to last the time it is supposed. Due to this, there is a need to carry out an evaluation of the surface condition of the pavement of the main routes belonging to the national road network, which serves as an input to develop such plan.

To speed up the auscultation process, the "Trident Imaging Hub" software was used. This uses as input, georeferenced images taken by the Geo3D from LanammeUCR. The information from the software is stored in a database for the subsequent calculation of the Pavement Condition Index or PCI. It was found that the distresses called alligator cracking, lane/shoulder drop-off and potholes were the most frequent in the four routes evaluated and those that have done the most damage to the pavement. However, according to ASTM D6433-18, all routes are in a "satisfactory" surface condition, except route 23 that was classified as "fair".

Keywords: pavement, distress, PCI, Trimble Trident, ASTM D6433-18.

Resumen

Los pavimentos son diseñados para cumplir con un período de vida útil específico antes de tener que ser intervenidos, sin embargo, hay muchos factores que llevan a que esta vida útil prevista no se cumpla en su totalidad. En Costa Rica, la infraestructura vial se encuentra sumamente deteriorada debido al aumento acelerado en la flota vehicular, diseños constructivos deficientes, materiales no apropiados y la falta de un adecuado plan de conservación que haga que esta vida útil se prolongue el tiempo para el cual fue hecha. Debido a esto, surge la necesidad de realizar una evaluación de la condición superficial del pavimento de las principales rutas pertenecientes a la red vial nacional de alta capacidad, la cual sirva de insumo para desarrollar dicho plan.

Para agilizar el proceso de auscultación, se empleó el software "Trident Imaging Hub". Este utiliza como insumo, imágenes georreferenciadas tomadas por el equipo Geo3D de LanammeUCR. La información proveniente del software se almacena en una base de datos para el posterior cálculo del Índice de Condición del Pavimento o PCI. Como principal resultado se obtuvo que los fallos llamados cuero de lagarto, desnivel carril/espaldón y bacheo fueron los más frecuentes en las cuatro rutas evaluadas y, además, los que más daño le han hecho al pavimento. Sin embargo, en su clasificación de acuerdo con la norma ASTM D6433-18, todas las rutas evaluadas se encuentran en una condición superficial "muy buena", a excepción de la ruta 23 que se clasifica como "buena".

Palabras Clave: pavimento, deterioro, PCI, Trimble Trident, ASTM D6433-18.

Teléfono: 2523-2037 Correo electrónico: dirplan@mopt.go.cr

pág. 2

Tabla de Contenido

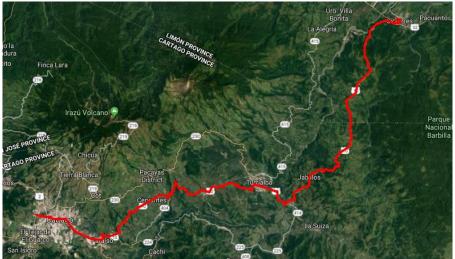
Introducción	4
Marco Teórico	8
Resultados	12
Análisis de Resultados	
Conclusiones	
Recomendaciones	
Referencias	24

Introducción

El período de duración de los pavimentos se ve influenciado por una serie de factores como lo son el clima, las cargas ocasionadas por el flujo vehicular, propiedades de los materiales utilizados y el propio proceso constructivo (Castro, 2018, p.8-9). En teoría, un adecuado diseño debería generar que el período de vida útil del pavimento sea el previsto. Sin embargo, durante este tiempo se pueden presentar una serie de variables por las cuales no se logra cumplir con el período de diseño. Por ejemplo: errores durante la construcción de las vías que conlleven a defectos sobre la superficie, la deficiencia del diseño elaborado, el crecimiento en el volumen del tránsito, drenajes mal construidos que no permiten la evacuación lateral del agua pluvial, entre otros. Por estas razones, es muy probable que el pavimento se deteriore con una mayor rapidez a la esperada, agravando la condición de las carreteras.

Debido a esto, es sumamente importante emplear técnicas de mantenimiento y reforzamiento de los pavimentos; y para su adecuada aplicación, se debe tener un conocimiento de su estado actual. Para ello, existen una serie de métodos de evaluación que son empleados a lo largo del mundo para recopilar y estudiar la información referente a la condición de las vías. No obstante, en Costa Rica uno de los más utilizados es el denominado *índice de condición de pavimentos o método PCI*, debido a su versatilidad, al permitir evaluar pavimentos tanto flexibles como rígidos y al no necesitar herramientas técnicas ni específicas, dado que la condición superficial es medida indirectamente (Unidad de Investigación, 2008).

Ahora bien, las valoraciones modernas efectuadas a los pavimentos involucran análisis que contemplan diagnósticos de la capacidad estructural y funcional de las vías, lo cual ha llevado a que, desde antes de los 90's, se dan mejores niveles de confort para los usuarios de las carreteras, logrando con ello una reducción en cuanto al consumo de combustible, simultáneamente, los pavimentos tienen una vida útil más prolongada (Smith, 2014).


Lo comentado anteriormente sirvió como base para este trabajo, el cual consiste en brindar un apoyo al Ministerio de Obras Públicas y Transportes en su plan estratégico, mediante la recopilación de datos y elaboración de un informe que contenga el estado de la condición superficial de la red vial nacional de alta capacidad. Específicamente fueron evaluadas cuatro rutas, todas compuestas por una estructura de pavimento flexible, pertenecientes a dicha red, las cuales corresponden a:

- ➤ Tramo de la Ruta 1 (Interamericana Norte): posee una extensión de aproximadamente 15,21 km y se ubica desde Sabana Este hasta la Radial Alajuela, ruta 153. Ver la figura N₀ 1.
- ➤ Ruta 10: posee una extensión de aproximadamente 90,41 km y se ubica desde La Lima en la intersección con la ruta 2 Florencio del Castillo, hasta Siquirres, ruta 153. Ver la figura N_o 2.
- ➤ Ruta 23: posee una extensión de aproximadamente 12,67 km y se ubica desde Barranca, ruta 1, hasta la caseta de entrada muelle en Puerto Caldera. Ver la figura N₀ 3.
- ➤ Ruta 39: posee una extensión de aproximadamente 14,91 km y se ubica desde La Uruca, ruta 108 hasta Calle Blancos, ruta 109. Ver la figura N₀ 4.

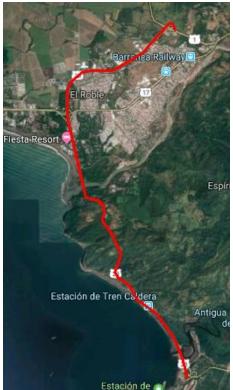


Figura 1. Extensión de la Ruta 1 analizada Fuente: Google Earth, 2018

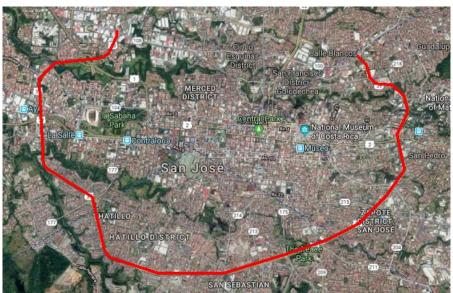


Figura 2. Extensión de la Ruta 10 analizada Fuente: Google Earth, 2018

Figura 3. Extensión de la Ruta 23 analizada Fuente: Google Earth, 2018

Figura 4. Extensión de la Ruta 39 analizada Fuente: Google Earth, 2018

Alcance

El presente proyecto consiste en la evaluación de la condición superficial de pavimentos mediante la utilización de un software denominado Trident Imaging Hub. Se analizan únicamente rutas con estructura de pavimento flexible para limitar el procesamiento de datos a la hora de calcular el índice de condición de pavimento. De acuerdo con la norma ASTM D6433, el procesamiento de datos para el cálculo del PCI varía si se trata de una estructura flexible o rígida de la siguiente manera: en el cálculo de las unidades de muestreo ya que se deben tomar en cuenta el tamaño de las losas de concreto hidráulico, a la hora de evaluar los deterioros existentes ya que cambian de acuerdo con el tipo de estructura, en el cálculo de los valores deducidos ya que se deben usar otros gráficos, etc.

Se decide evaluar únicamente rutas pertenecientes a la red vial nacional de alta capacidad por dos razones principales: la primera es debido a que el Ministerio de Obras Públicas y Transportes es el ente encargado de dichas rutas, mientras que las municipalidades de cada región son las encargadas del mantenimiento de la red cantonal, y la segunda es debido a que dichas rutas son las que tienen una mayor importancia y generan un impacto considerable al país. Además, se analizan solo cuatro rutas (1, 10, 23 y 39) debido al tiempo de realización del trabajo final de graduación, sin embargo, cabe destacar que lo óptimo sería continuar la evaluación de toda la red y conformar una base de datos la cual pueda ser modificada con el tiempo.

Marco Teórico

Métodos para la evaluación superficial de pavimentos

La evaluación de la condición superficial de los pavimentos se basa en la identificación de las patologías de los defectos existentes. Se realiza a través de procedimientos estandarizados de inspecciones visuales, para los que no se requieren equipos sofisticados necesariamente. Los defectos que se toman en consideración son los que provienen de un proceso de deterioro causado por ciertos factores, entre los que se pueden mencionar: clima, cargas del tránsito, propiedades de los materiales y procesos constructivos. (Castro, 2018, p.8-9).

La selección de la correcta metodología depende de los objetivos que son planteados al inicio del proyecto. De manera paralela, la eficiencia de las técnicas varía de acuerdo con el nivel de detalle requerido y de la cantidad de variables presentes en el proyecto lo cual eleva los costos y dificultad de la evaluación.

El objetivo principal de la evaluación de la condición superficial de un pavimento es determinar los deterioros existentes y la posterior toma de decisiones con base en la recopilación de dichos datos. La identificación de los deterioros se realiza tomando en cuenta tres factores fundamentales:

- Tipo: corresponde a determinar el tipo de deterioro además de la clasificación pertinente de acuerdo con su causa.
- Severidad: corresponde al estado actual del deterioro lo cual se refleja en el estado del área afectada por el deterioro.
- Extensión: corresponde a la magnitud o cobertura del área afectada por el deterioro.

La manera más común de efectuar el levantamiento de datos es realizarlo manualmente por equipos de trabajo, los cuales anotan las características pertenecientes a cada deterioro en plantillas impresas. Posteriormente se le da el debido procesamiento e incluso, en muchas ocasiones, esta información es transferida a plantillas electrónicas.

En la actualidad existen equipos que toman videos de imágenes georrefenciadas con los cuales se realiza el levantamiento de los deterioros para el posterior análisis en oficina. Cuando estos equipos son utilizados en vehículos, normalmente se realiza un levantamiento continuo de toda la red. Cuando la evaluación se debe realizar a pie, lo convencional es que esta sea una evaluación por muestreo.

Ciertas metodologías de evaluación tienen modelos matemáticos los cuales brindan un índice para explicar numéricamente el estado de condición superficial del pavimento. Los parámetros empleados para el cálculo de dicho índice están relacionados con los deterioros existentes en la superficie del pavimento, estos son: tipo, severidad y extensión.

En la actualidad existen varios métodos para la evaluación de la condición superficial de los pavimentos, ya sean flexibles, rígidos o semirrígidos. Entre los más conocidos están: VIZIR, PCI, SHRP.

Método PCI (Pavement Condition Index)

De acuerdo con la Unidad de Investigación de la Universidad de Costa Rica (2008), este método fue desarrollado por el Cuerpo de Ingenieros del Ejército de los Estados Unidos y su objetivo inicial era su uso en pavimentos de aeropuertos. Posteriormente, debido a la necesidad de un método de evaluación superficial, el rango de aplicación fue ampliado a carreteras, autopistas y estacionamientos. Este método comprende la evaluación tanto de pavimentos flexibles como rígidos, sin embargo, en este trabajo se analizará su aplicación únicamente en estructuras flexibles.

El procedimiento es de fácil implementación y no son necesarias herramientas técnicas ni específicas ya que se mide la condición superficial indirectamente. Debido a esa facilidad y a que es uno de los métodos más completos para la valoración de pavimentos, es ampliamente aprobado y adoptado por varias agencias entre las que se mencionan: el APWA (*American Public Work Association*), el MOPT (Ministerio de Obras Públicas y Transportes) e incluso fue publicado como un método de análisis por ASTM (*American Society for Testing Materials*).

Este sistema corresponde a un procedimiento, el cual determina la condición de la capa de rodadura del pavimento mediante la inspección visual de los distintos tipos de deterioros. El reconocimiento de los deterioros superficiales de una estructura de pavimento está en función de tres factores fundamentales: tipo, severidad y extensión.

La formulación de un índice que simultáneamente tomara en cuenta dichos factores ha sido complicada, ya que existen muchas posibles combinaciones. La solución consistió en la introducción de las deducciones, las cuales corresponden a un valor de ponderación, con el objetivo de señalar el grado de afectación que cada combinación de los tres factores tiene sobre la condición del pavimento.

De acuerdo con la norma D6433-18 (Practica Estándar para el Estudio del Índice de Condición de Carreteras y Estacionamientos) por ASTM (2018), el PCI es un índice numérico cuyo rango de acción varía entre 0, el cual corresponde a un pavimento fallado, y 100, que corresponde a un pavimento en excelente estado. En cuadro N_0 1 se observa una descripción detallada de todos los rangos de la clasificación.

Cuadro 1. Rangos de clasificación del PCI

<u> </u>			
Rango	Clasificación		
85 – 100	Excelente		
70 – 85	Muy bueno		
55 – 70	Bueno		
40 – 55	Regular		
25 – 40	Pobre		
10 – 25	Muy pobre		
0 – 10	Fallado		

Fuente: Ministerio de Obras Públicas y Transportes, 2011.

El cálculo del Índice de Condición del Pavimento se basa en los datos recopilados durante la inspección visual ya sea en campo o con imágenes georeferenciadas. Este se desarrolló con el fin de obtener un factor que indique la condición estructural y operacional de la superficie del pavimento en estudio. Los datos obtenidos mediante la evaluación dan una clara percepción de las causas pertenecientes a cada uno de los deterioros, lo cual es de suma importancia para el mantenimiento y tratamiento futuro.

De acuerdo con Rabanal (2014), cuando se pone en práctica el método PCI para la evaluación de una red o proyecto, se persiguen los siguientes objetivos:

- Adquirir información de retroalimentación con respecto a la manera en que reaccionan las soluciones adoptadas durante la vida útil, esto con el fin de determinar labores, prioridades y procedimientos de mantenimiento.
- > Determinar la condición de un pavimento en términos de su nivel de servicio de acuerdo con los usuarios e integridad estructural.
- > Obtener un criterio para justificar la planificación y programación de obras de mantenimiento, rehabilitación y reconstrucción de pavimentos de acuerdo con su condición actual.
- Adquirir un indicador que admita la comparación con un criterio homogéneo, el comportamiento y condición superficial de los pavimentos a lo largo del tiempo.

El PCI provee un dato numérico, el cual representa las condiciones actuales basado en las fallas auscultadas en la superficie del pavimento. Este dato brinda un indicador sobre la integridad estructural, así como las condiciones operacionales. Sin embargo, dentro de los alcances de este método no está el medir la capacidad estructural del pavimento, ya que para esto se utilizan otro tipo de pruebas, ni tampoco provee una determinación directa del coeficiente de rugosidad.

Un monitoreo constante del PCI es utilizado con el fin de fijar el ritmo y la constancia con que se producen los deterioros del pavimento. Con base en esto se identifican y establecen, con anticipación, las necesidades de mejoramiento tanto de diseño como de actividades de mantenimiento, reforzamiento o reconstrucción.

Es de suma importancia que la persona que realiza la evaluación de la condición superficial del pavimento tenga el conocimiento de los tipos de deterioros, sus niveles de severidad y las distintas maneras de medición. De acuerdo con el Manual de Auscultación Visual de Pavimentos de Costa Rica elaborado por el Ministerio de Obras Públicas y Transportes, la calidad de ruedo para los usuarios deberá ser valorada con el objetivo de establecer un nivel de severidad, el cual tiene tres posibilidades:

- Severidad baja: se perciben las vibraciones del vehículo producto del estado de la capa de rodadura del pavimento, sin embargo, no es necesario reducir la velocidad por confort o seguridad. Baches o asentamientos individuales causan al vehículo un ligero movimiento sin generar incomodidad a los usuarios
- Severidad media: se perciben las vibraciones del vehículo producto del estado de la capa de rodadura del pavimento y es necesario reducir ligeramente la velocidad por confort o seguridad. Baches o asentamientos individuales causan al vehículo un notable movimiento generando cierta incomodidad a los usuarios.
- Severidad alta: las vibraciones del vehículo producto del estado de la capa de rodadura del pavimento, son excesivas por lo que es necesario reducir considerablemente la velocidad por confort o seguridad. Baches o asentamientos individuales causan al vehículo un movimiento excesivo, lo que genera a los usuarios mucha incomodidad y riesgo en la seguridad; además de un potencial daño al vehículo.

Trimble Trident

De acuerdo con Trimble (2014), "Trident Imaging Hub" es un software diseñado para la navegación, visualización y procesamiento de grandes conjuntos de datos de imagen. Además, su interfaz está diseñada para el posicionamiento de objetos, medición y la población de la capa de datos, ideal para el análisis de imágenes georreferenciadas y datos de escáner láser. Entre las ventajas de su uso en la industria se tiene la aceleración de los proyectos, así como un aumento en la productividad, incluidos los procesos clave como el modelado de superficies, la detección de señales de carreteras, la detección de señalización de vías, la detección de bordes de carril, la geometría de carreteras y las mediciones de espacio tal como la extensión de los distintos tipos de deterioros en la superficie del pavimento.

En el presente proyecto, "Trimble Trident" fue utilizado únicamente para el proceso de auscultación de los deterioros superficiales de las rutas 1, 10, 23 y 39 de la red vial nacional. Para su desarrollo, este software requiere de imágenes georreferenciadas por lo que se utilizan las tomadas por el equipo Geo3D que posee LanammeUCR, en el año 2018.

De acuerdo con Sáez (2017), dicho equipo corresponde a un vehículo el cual tiene incorporadas 6 cámaras calibradas de fábrica; tres orientadas hacia adelante en el sentido de avance de la siguiente manera:

- Adelante
- Adelante izquierda
- > Adelante derecha

Las otras tres cámaras están orientadas hacia atrás de la siguiente manera:

- Atrás
- Atrás izquierda
- Atrás derecha

Dichas imágenes son fijas y pueden ser observadas detenidamente en Trident por lo que, la extracción y auscultación de toda la información referente a los deterioros se puede efectuar mediante el empleo de una herramienta que puede crear puntos, líneas y áreas sobre la superficie del pavimento, sin embargo, no es posible realizar desplazamientos libres. Todas las imágenes están georreferenciadas, lo que indica que son vinculadas a la trayectoria del vehículo por la ruta.

Secretaría de Planificación Sectorial

Una vez capturada toda la información requerida de la ruta en campo, se procede al procesamiento en "Trimble Trident", el cual realiza un postprocesamiento de dicha información tridimensional. El software consta con dos ventanas fundamentales; una es donde se realiza la gestión de imágenes y videos relacionados a una base de datos, aquí es donde este proyecto se enfoca. La segunda ventana corresponde al 3D Map, donde se encuentra todo lo relacionado con la nube de puntos con la cual se puede realizar un análisis tridimensional de la carretera.

Cabe destacar que la utilización del software es exclusivamente para el proceso de auscultación de deterioros y no toma parte en el cálculo del índice de condición del pavimento, ya que la obtención del PCI se realiza de manera manual con base en un procedimiento establecido por ASTM en la norma D6433-18.

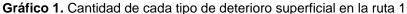
Proceso innovador

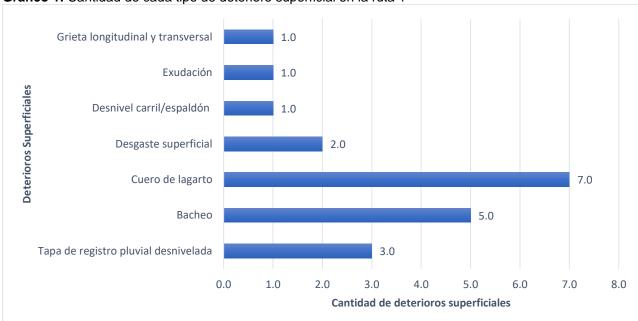
Si bien "Trimble Trident" se utiliza para el proceso de auscultación de los deterioros, hay muchas ventajas asociadas a su uso entre las cuales se mencionan:

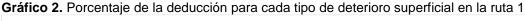
- Mayor rapidez al evaluar una carretera ya sea para la auscultación de deterioros, realizar levantamiento de inventarios, levantamiento de implementos de seguridad, etc.
- Posibilidad de enlazar Trident con un servidor para que varios usuarios puedan agregar y manipular la información.
- > Posibilidad de editar y/o crear tablas u formularios alfanuméricos en otros softwares y su importación.
- Menor gasto en recursos al efectuar la inspección visual mediante el uso de tecnología, en lugar de ir al campo.
- Fácil exportación de datos a otros softwares, como por ejemplo Microsoft Excel.
- > Transposición de la ruta a analizar con el mapa de la red vial nacional con el objetivo de facilitar la localización del sitio en análisis en las secciones de control.
- Posibilidad de enlazar Trident con Microsoft Access para que funcione como base de datos. De esta manera lograr generar y mantener un registro histórico de los deterioros, por medio de índices comparables en un futuro.

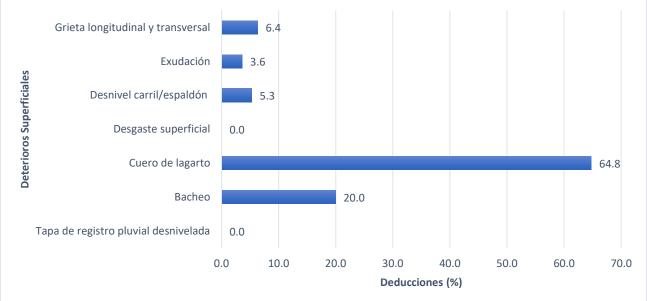
Limitaciones

Si bien al utilizar "Trimble Trident" se optimizan ciertos proceros, también existen limitaciones entre las cuales se mencionan:

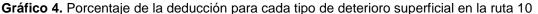

- La evaluación de la condición superficial del pavimento consiste en inspeccionar la vía caminando sobre ella y tomando notas detalladas de las fallas encontradas en la superficie. Aunque "Trident" es muy preciso al medir longitudes y áreas, no puede medir profundidades; por lo que afecta el cálculo de PCI, ya que cuatro deterioros requieren de este dato para la clasificación de su severidad.
- Las imágenes georreferenciadas tomadas por LanammeUCR corresponden a archivos muy pesados, por lo que el traspaso de dicha información a las bases de datos toma varios días. En una ocasión debido al continuo trabajo del disco duro externo, este se quemó atrasando todo el proyecto.
- La fecha en que son capturadas las imágenes georreferenciadas no coincide con la fecha de evaluación por lo que existe una cierta perdida de veracidad.
- A la hora de abrir las cámaras en el software, estas requieren de una calibración la cual puede ser algo tediosa.



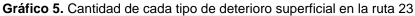

Resultados

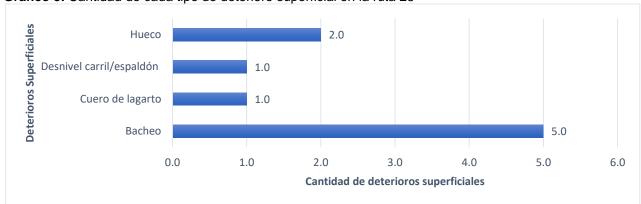

Se muestra en los gráficos No 1 a No 8 un reporte general, mediante gráficos de barras, sobre la cantidad y tipo de los deterioros, así como de los valores deducidos para cada ruta analizada.

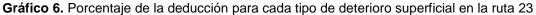
Tramo de la ruta 1:



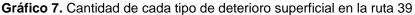
Ruta 10

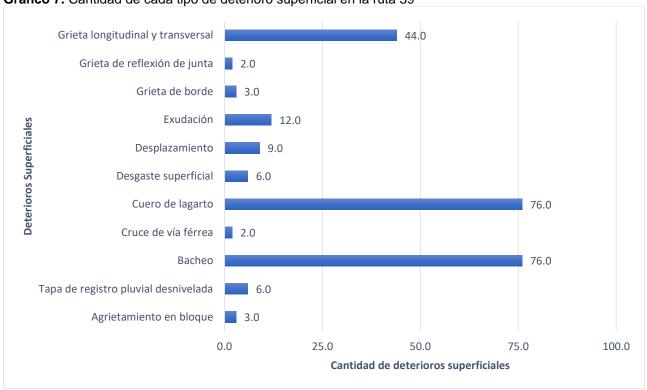


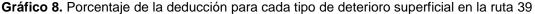




Ruta 23

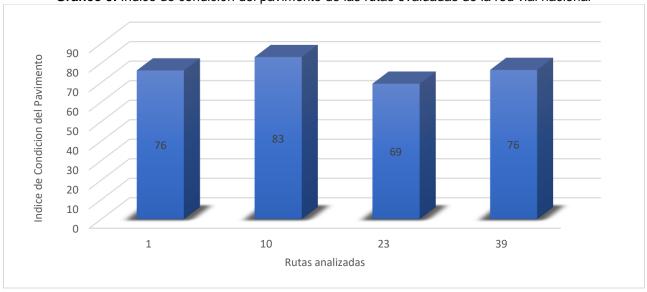








Ruta 39


Secretaría de Planificación Sectorial

De manera específica se muestra en el grafico N_{\circ} 9 el índice de condición del pavimento para las rutas 1, 10, 23 y 39. Además, en el cuadro N_{\circ} 2 se observa la clasificación del nivel de condición desde fallado hasta excelente de acuerdo con la norma ASTM D6433-18.

Cuadro 2. Clasificación del PCI de acuerdo con la norma ASTM D6433-18

Ruta	Clasificación
1	Muy bueno
10	Muy bueno
23	Bueno
39	Muy bueno

Gráfico 9. Índice de condición del pavimento de las rutas evaluadas de la red vial nacional

Análisis de Resultados

Ruta 1 (Sabana – San Ramón)

La sección evaluada de la ruta 1 corresponde desde su inicio en la Sabana hasta San Ramón, específicamente se tomaron en cuenta las secciones de control 19002, 19003, 40040, 40710 y 20000. La longitud del tramo analizado corresponde a 15,21 km.

Los deterioros más frecuentes encontrados en las unidades de muestreo son el cuero de lagarto, con un total de 7 ocurrencias; y el bacheo con un total de 5 ocurrencias. El cuero de lagarto se presenta en áreas muy pequeñas del pavimento de alrededor de 3 m², a excepción de una falla con un área de 40 m². Los bacheos por otro lado poseen extensiones algo mayores llegando hasta 71 m².

De acuerdo con Rodríguez (2009), la densidad es el porcentaje de área de la unidad de muestra que posee un deterioro determinado, con un mismo nivel de severidad. Es importante tener en consideración la dimensión de un deterioro y no sólo la cantidad de ellos en una misma sección, ya que puede haber una gran cantidad de deterioros con un área más pequeña y en otra zona de la misma sección, un solo deterioro con un área significativa el cual tenga un mayor riesgo para la integridad estructural del pavimento, así como de los usuarios que transitan por esta carretera.

La falla más repetitiva es el cuero de lagarto, sin embargo, en ninguna de las ocasiones su densidad es mayor a 5%. Esto demuestra que este deterioro, aunque es el que en más ocasiones aparece, no es el que tiene mayor extensión en la ruta 1. Las fallas con mayores densidades corresponden al bacheo y desnivel carril/espaldón con valores de 25,9% y 12,6% respectivamente.

Los deterioros que producen un mayor daño a la estructura del pavimento son los que poseen una mayor deducción. De acuerdo con el gráfico N_{\circ} 2, de todos los deterioros evaluados los que representan un mayor daño al pavimento de la sección de control son el cuero de lagarto con un valor deducido igual a 64,8% seguido del bacheo con 20,0%.

De acuerdo con la información anterior, queda en evidencia que el deterioro más perjudicial corresponde al cuero de lagarto, por lo que se debe prestar una mayor atención a las causas que originan dicha falla, entre las que se mencionan: la poca capacidad que tienen los pavimentos para drenar, la falta de un mantenimiento preventivo o una falla por fatiga en la capa asfáltica debido a la repetición de las cargas de tránsito. Se observa en el gráfico No 9 que el valor del índice de condición del pavimento obtenido para el tramo Sabana – San Ramón de la ruta 1 es de 76. Según la norma ASTM D6433-18, la condición superficial de la ruta asfaltada se clasifica como "muy buena". Este estado es un indicador de la buena condición que presenta dicha ruta, sin embargo, deben tomarse en consideración ciertas variables para su análisis.

Una de ellas es el tiempo en que fue rehabilitada o reconstruida por última vez, ya que, con dicha información, se puede tener un conocimiento sobre si la ruta se deterioró más rápido de lo que fue diseñada o si va de acuerdo con el periodo de diseño. Cabe recalcar que se debe dar un mantenimiento constante a las carreteras para que estas alcancen el periodo de diseño, por lo que, aunque la ruta cuente con una condición superficial "muy buena" se le debe prestar especial atención a las secciones de control con menor PCI.

De acuerdo con lo mencionado, la sección de control que cuenta con el menor PCI es la 20000 con un valor de 59. Esto le da una clasificación de "bueno" en relación con la condición superficial, lo cual está debajo del promedio de toda la ruta, dejando en evidencia que dicha sección requiere de una intervención, ya que se encuentra en un peor estado que las demás secciones.

Existen varios deterioros los cuales, no son contabilizados por la norma ASTM D6433-18, pero que generan un impacto negativo en la integridad de la estructura de pavimento y la seguridad de los usuarios que transitan por la carretera. De acuerdo con el Ministerio de Obras Públicas y Transportes en el informe Manual de Auscultación Visual de Pavimentos de Costa Rica (2010); estos deterioros corresponden a un caso especial y son específicamente dos: tapas de registros pluviales levantadas o hundidas y el desgaste superficial. Ver figura $N_{\rm o}$ 5.

Figura 5. Tapa de registro pluvial hundida Fuente: Ministerio de Obras Públicas y Transportes, 2011

Estos tipos especiales de deterioro poseen una deducción igual a cero debido a que no se toman en cuenta en el cálculo del índice de condición del pavimento. Sin embargo, es de suma importancia tomarlos en cuenta, por lo que, durante la evaluación de las cuatro rutas se levantaron dichas fallas; por unidad y con una severidad asociada. En la sección de control 19002 se encontraron dos tapas de registros pluviales desniveladas de baja severidad y una de alta severidad.

Ruta 10

La ruta 10 fue analizada en su totalidad para lo cual, se tomaron en cuenta las secciones de control 30061, 30062, 30040, 30021, 30022, 30471, 30010, 30480, 30001, 30002 y 70420. La longitud de la ruta corresponde a 90,41 km.

Los deterioros que más se reiteraron en las unidades de muestreo fueron el desnivel carril/espaldón con un total de 322 apariciones dejando en evidencia la alta frecuencia de este tipo de fallas en zonas rurales; y el bacheo con un total de 79 ocurrencias. El bacheo se presenta en áreas muy grandes del pavimento de más de 100 m², a excepción de 11 fallas las cuales no superan los 10 m². Los desniveles carril/espaldón, por otro lado, se miden en unidades longitudinales y se presentaron en una gran cantidad de las unidades de muestra analizadas. Esta falla tiene extensiones, en la mayoría de los casos, de 32 y 48 metros lo cual corresponde a toda la longitud de la unidad de muestreo. En general, la falla desnivel carril/espaldón se presentó en 12,68 km lo cual representa a un 14% de la longitud total de la ruta 10.

La falla más repetitiva es el desnivel carril/espaldón, sin embargo, en ninguna de las ocasiones su densidad es mayor a 42%. Esto demuestra que este deterioro, aunque es el que más ocasiones aparece, no es el que tiene mayor extensión en la ruta 10. La falla con mayor densidad corresponde al bacheo en ambos sentidos con valores de 98% en el sentido (La Lima – Siquirres) y 60% en el sentido (Siquirres – La Lima). Las densidades encontradas en esta ruta son las mayores de las cuatro rutas analizadas.

De acuerdo con el gráfico N_o 4, los deterioros que representan un mayor daño al pavimento de la sección de control son el desnivel carril/espaldón con un valor de deducción igual a 57,6% seguido del bacheo con 34%, por lo que se debe prestar una mayor atención a las causas que originan dichas fallas.

Se observa en el gráfico N_0 9 que el valor del índice de condición del pavimento obtenido para la ruta 10 es de 83. De acuerdo con la norma ASTM D6433-18, la condición superficial de la ruta en asfalto se clasifica como "muy buena". A pesar de que se tiene una condición superficial óptima, se deben analizar las secciones de control con PCI menores al promedio ya que puede ser un indicador de diseños constructivos deficientes, materiales inapropiados, entre otras causas.

La sección de control que cuenta con el menor PCI es la 30040 con un valor de 69. Esto le da una clasificación de "bueno" en relación con la condición superficial, lo cual está debajo del promedio de toda la ruta; por lo que dicha sección requiere de una evaluación sobre las causas de los deterioros, ya que se encuentra en

un peor estado que las demás secciones. Sin embargo, cabe destacar que todas las secciones de control presentan un índice de condición superior a 85 por lo que denota un estado general óptimo de la carretera.

En esta ruta se presentaron deterioros pertenecientes a los casos especiales, los que hay una deducción igual a cero debido a que no se toman en cuenta en el cálculo del índice de condición del pavimento. Sin embargo, tienen una alta relevancia por lo que se contabilizaron 34 tapas de registros pluviales desniveladas con severidad desde BAJA hasta ALTA. Dichas fallas se encontraron específicamente en las secciones de control: 30062, 30040, 30021, 30001 y 30002.

Ruta 23

La ruta 23 fue analizada en su totalidad, para lo cual, se tomaron en cuenta las secciones de control 60610 y 60840. La longitud de la ruta es de 12,67 km y corresponde a la de menor extensión entre las cuatro analizadas.

Las fallas que más se reiteraron en las unidades de muestreo fueron el bacheo con un total de 4 apariciones y los huecos con un total de 2 ocurrencias. El bacheo se presenta en áreas grandes del pavimento entre 20 y 64 m², a excepción de una, la cual está por debajo de este rango. Los huecos, al contrario, se presentaron en extensiones más pequeñas de entre 1,38 y 3,60 m².

En esta ruta, a diferencia de las dos anteriores, la falla más repetitiva coincide con la falla que posee la mayor densidad. El bacheo presenta la mayor densidad en ambos sentidos; en el sentido (Barranca – Puerto Caldera) es de 36% y en el sentido (Puerto Caldera – Barranca) es de 21%. Esto demuestra que el bacheo, es tanto el que en más ocasiones aparece, como el que tiene mayor extensión en la ruta 23.

 \dot{A} l observar el gráfico N_o 6, de todos los deterioros evaluados, los que representan un mayor daño al pavimento de la sección de control son los bacheos con un valor deducido igual a 55,4%, seguido de los huecos con 30,9%. Al comparar el bacheo con mayor valor deducido entre esta y las dos rutas anteriores, queda en evidencia que tal deterioro ha afectado a esta ruta en mayor medida. De acuerdo con la información anterior, el deterioro que produce más daño al pavimento corresponde al bacheo, por lo que se debe prestar una mayor atención a las causas que originan dicha falla.

Se observa en el gráfico N_o 9 que el valor del índice de condición del pavimento obtenido para la ruta 23 es de 69. De acuerdo con la norma ASTM D6433-18, la condición superficial de la ruta asfaltada se clasifica como "buena". La sección de control que cuenta con el menor PCI es la 60610 con un valor de 68,5 y la sección 60840 tiene un valor de 70. Esto le da una clasificación de "bueno" a ambas en relación con la condición superficial, lo cual está en la misma línea del promedio de toda la ruta. Esto deja en evidencia la necesidad de analizar los orígenes de los deterioros de ambas secciones por igual, ya que las dos no están en un estado óptimo.

Esta es la única carretera de las cuatro analizadas en la que no se presentaron deterioros pertenecientes a los casos especiales como el desgaste superficial o las tapas de registros pluviales levantadas o hundidas.

Ruta 39

La ruta de Circunvalación fue analizada en su totalidad, para lo cual se tomaron en cuenta las secciones de control 19090, 19091, 19092, 19093, 19094, 19095, 19096, 19097, 19098, 19099, 19100, 19101, 19102, 19089, 19103, 19104 y 19105. La longitud de la ruta corresponde a 14,91 km.

Dos deterioros fueron los que más se reiteraron en las unidades de muestreo: el bacheo y el cuero de lagarto con un total de 76 apariciones. Seguidamente se encuentran las grietas longitudinales y transversales con un total de 44 ocurrencias. El bacheo se presentó en extensiones con un rango sumamente amplio, el cual varía entre 0,5 y 176 m² mientras que el cuero de lagarto, a diferencia de los baches, se encuentra en áreas muy pequeñas que varían entre 0,5 y 10 m², a excepción de 5 fallas que están por encima de dicho rango. Las grietas por otro lado, se miden en unidades longitudinales mediante una sumatoria siempre y cuando estas se presenten en una misma sección de control y posean la misma severidad; en algunas unidades de muestreo llegaron a tener longitudes de 49 m.

Es de suma importancia tener en consideración la densidad, ya que esta es un indicador del porcentaje de un deterioro con respecto al área total del área de muestreo. Teniendo esto en cuenta, el cuero de lagarto

Secretaría de Planificación Sectorial

tuvo densidades muy bajas de entre 0,2 y 10%, a diferencia de los baches para los que las densidades llegaron a niveles de 79%. Esto demuestra la gran cantidad de área que cubre este último deterioro sobre las secciones de control, por lo que es muy importante controlar cuando se efectúa el reemplazo de un área de pavimento por cualquier motivo.

De acuerdo con el gráfico N_0 8, de todos los deterioros evaluados, los que representan un mayor daño al pavimento son el cuero de lagarto con un valor deducido igual a 44,2% seguido del bacheo con 31,4%. Aunque estos dos deterioros presentaron una cantidad igual de apariciones, el daño que le proporcionan al pavimento es muy distinto, de ahí la importancia y necesidad de evaluar estos valores y no sólo cantidad o densidad.

Al igual que el tramo analizado de la ruta 1, el deterioro que produce un mayor daño a la estructura de pavimento corresponde al cuero de lagarto, por lo que se debe prestar una mayor atención a las causas que originan dicha falla.

Según el gráfico N_0 9, se muestra que el valor del índice de condición del pavimento obtenido para la ruta 39 es de 76. De acuerdo con la norma ASTM D6433-18, la condición superficial de la ruta asfaltada se clasifica como "muy buena". Es prudencial analizar las secciones de control con los menores valores de PCI ya que puede ser un indicador de diseños constructivos deficientes, materiales inapropiados, técnicas de conservación ineficientes, entre otras causas. La sección de control que cuenta con el menor PCI es la 19102 con un valor de 46. Esto le da una clasificación de "regular" en relación con la condición superficial, lo cual está debajo del promedio de toda la ruta; por lo que dicha sección requiere de una evaluación sobre las causas de los deterioros, ya que se encuentra en un peor estado que las demás secciones. Sin embargo, cabe destacar que todas las secciones de control presentan un índice de condición superior a 70 a excepción de cuatro secciones, por lo que denota un estado general óptimo de la carretera.

En esta ruta se presentaron deterioros pertenecientes a los casos especiales con deducciones iguales a cero, debido a que no se toman en cuenta en el cálculo del índice de condición del pavimento. Sin embargo, tienen una alta relevancia por lo que se contabilizaron 6 tapas de registros pluviales desniveladas y otros 6 sectores con un desgaste superficial notable. Dichas fallas se encontraron específicamente en las secciones de control: 19099, 19101, 19102, 19103 y 19104.

Conclusiones

- La metodología PCI corresponde a una de las más idóneas debido a que no necesita de herramientas técnicas ni especificas porque la condición es medida indirectamente y se puede utilizar en pavimentos rígidos y flexibles. Esta metodología a diferencia de VIZIR presenta diferencia en los rangos de grado de severidad por lo que resulta más rigurosa.
- Los deterioros más frecuentes en las cuatro rutas analizadas corresponden a: cuero de lagarto, desnivel carril/espaldón el cual se presenta con mayor frecuencia en las zonas rurales, bacheo y las grietas longitudinales y transversales.
- Al comparar con otros proyectos que obtuvieron el PCI para cierta ruta, se denota una mayor rapidez al realizar la evaluación visual gracias a la utilización de Trimble Trident.
- > Se confirma que el bacheo es el deterioro con mayores densidades, al punto de tener extensiones de 98% sobre el área de las unidades de muestreo analizadas en la ruta 10.
- Se comprueba que los deterioros con mayor valor deducido tales como el cuero de lagarto, el desnivel carril/espaldón y los bacheos son los que generan un mayor daño a la estructura de pavimento en las cuatro rutas evaluadas.
- Se confirma la posibilidad de enlazar Trident con Microsoft Access para que funcione como base de datos. De esta manera lograr generar y mantener un registro histórico de los deterioros, por medio de índices comparables en el tiempo.
- > Es posible evaluar largas distancias de manera más sencilla gracias a la transposición de la ruta a analizar con el mapa de la red vial.
- ➤ Se determina que el pavimento flexible del tramo de la Ruta 1 (Sabana Este Radial Alajuela) tiene un índice de condición del pavimento de 76 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "muy bueno".
- ➤ Se determina que el pavimento flexible de la Ruta 10 (La Lima Siquirres) tiene un índice de condición del pavimento de 83 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "muy bueno".
- Se determina que el pavimento flexible de la ruta 23 (Barranca Puerto Caldera) tiene un índice de condición del pavimento de 69 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "bueno".
- Se determina que el pavimento flexible de la ruta 39 (La Uruca Calle Blancos) tiene un índice de condición del pavimento de 76 y de acuerdo con la norma ASTM D6433-18 corresponde a la clasificación "muy bueno".
- Se debe tener una especial atención con las secciones de control que posean índices de condición del pavimento muy bajos. El peor estado encontrado de acuerdo con la norma ASTM D6433-18 fue "regular" específicamente para las secciones: 20000 de la ruta 1, 30040 de la ruta 10, 60640 de la ruta 23 y 19092, 19101, 19102 y 19089 de la ruta 39.

Secretaría de Planificación Sectorial

➤ Existen deterioros, como las tapas de registros pluviales desniveladas, las cuales no son contabilizados por la norma ASTM D6433-18, pero que generan un impacto negativo en la integridad de la estructura del pavimento y la seguridad de los usuarios que transitan por la carretera, por lo que es de suma importancia contabilizarlos. Todas las rutas analizadas, a excepción de la ruta 23, contaron con la aparición de este tipo de deterioros.

Recomendaciones

- > Se recomienda que el uso de la metodología PCI sea de manera continua por parte de los entes encargados del mantenimiento de la red vial para así determinar políticas y estrategias de intervención que resulten en una distribución eficiente de los recursos limitados del sector público.
- Se recomienda realizar una inversión para adaptar la norma ASTM D6433-18 a la realidad costarricense. En Costa Rica existen deterioros que no se toman en cuenta en dicha norma, como por ejemplo, las tapas de registros pluviales desniveladas.
- Se recomienda ampliar el estudio de evaluación en las cuatro rutas analizadas, para de esta manera, determinar los tramos más deteriorados y así tomar las medidas necesarias.
- > Se recomienda un monitoreo continuo del PCI en toda la red para determinar el ritmo de deterioro del pavimento y establecer con anticipación las necesidades de mantenimiento o reforzamiento.
- Se debe tener en consideración que "Trident Imaging Hub" es un software muy exacto al medir áreas y longitudes, sin embargo, no es capaz de medir profundidades lo cual incrementa la incertidumbre ya que cuatro de los deterioros requieren de este dato para clasificar adecuadamente su severidad; por lo que se recomienda medir directamente en campo las profundidades necesarias tomando como quía la base de datos la cual muestra la estación de los deterioros en cada sección de control.
- Se recomienda realizar la toma de imágenes georrefenciadas mediante el equipo Geo3D con periodos de uno y no dos años como se realiza actualmente. Esto con el objetivo de tener la información sobre las rutas, lo más actualizada posible en caso de tener que tomar alguna decisión estratégica.
- > Se recomienda la utilización del *software* "Trident Imaging Hub" para la auscultación de los deterioros y el procesamiento posterior ya que facilita de gran manera esta labor.
- Analizar la condición superficial en las secciones de control por kilómetro para así tener información de una manera más detallada.
- Revisar los componentes ligados a la capacidad de drenar del pavimento como alcantarillas, cunetas, entre otros, para verificar el estado en que estos se encuentran y así complementar la información sobre las rutas evaluadas.
- Revisar manualmente las alcantarillas desniveladas para complementar la información sobre las rutas evaluadas, ya que, si existe este problema en las capas inferiores de la estructura del pavimento, esto se va a ver reflejado en la superficie de este afectando así, la calidad de ruedo de los usuarios y la integridad de la carretera.

Referencias

- American Society for Testing and Materials. (2018). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. Designation: D6433-18.
- Castro, P. (2018). Capítulo 1. Introducción al Curso de Pavimentos. Tecnológico de Costa Rica. Cartago, Costa Rica.
- Ministerio de Obras Públicas y Transportes. (2016). Manual de Auscultación Visual de Pavimentos de Costa Rica Guía para profesionales. San José, Costa Rica. Recuperado de https://www.lanamme.ucr.ac.cr/repositorio/handle/50625112500/850
- Ministerio de Obras Públicas y Transportes. (2011). Plan Nacional de Transportes de Costa Rica 2011-2035.

 Recuperado de https://www.mopt.go.cr/wps/wcm/connect/6e288b23-0582-400f-a71d-a99d516a87e1/Resultados-Tramos.pdf?MOD=AJPERES
- Rabanal, J. (2014). Análisis del estado de conservación del pavimento flexible de la vía de evitamiento norte, utilizando I método del índice de condición del pavimento. Universidad Privada del Norte. Cajamarca, Perú. Recuperado de http://repositorio.upn.edu.pe/bitstream/handle/11537/5511/Rabanal%20Pajares%20Jaime%20Enriq ue.pdf?sequence=1&isAllowed=y
- Sáez, C. (2017) Inventario de carreteras mediante tecnología mobile mapping: extracción de geometría y de información tridimensional. Universidad Politécnica de Madrid. Madrid, España.
- Smith, B. (2014). Factors Affecting the IRI of Asphalt Overlays. Transportation Research Board 93rd Annual Meeting. South Carolina.
- Trimble. (2014). Trimble Trident Software User Guide. Estados Unidos
- Unidad de Investigación. (2008). Desarrollo de herramientas de gestión con base en la determinación de índices red vial nacional. Universidad de Costa Rica. San José, Costa Rica.