Implementación y simulación del tokamak esférico MEDUSA-CR: Etapa 1

Informe final
Investigador coordinador:
Dr. Iván Vargas Blanco

2018
Contenido

Código y Título del Proyecto: ... 3
Autores y correos-e... 4
Resumen... 5
Palabras clave.. 6
Introducción... 7
Marco teórico... 10
 Operación de Tokamaks.. 10
 Modo de corriente alterna.. 11
 Simulación de confinamiento.. 12
A. Fiesta ... 12
B. EFIT.. 15
Metodología.. 17
Resultados y discusión.. 21
 1. Implementación del sistema de vacío para el tokamak esférico MEDUSA-CR 21
 Propuesta de diseño de una cámara de vacío de acero inoxidable... 23
 2. Sistema de inyección de gas... 25
 Control de la válvula piezoeléctrica .. 26
 3. Sistema de control de corriente... 30
 Sistema de almacenamiento de energía... 30
 Sistema de descarga... 33
 4. Instalación de EFIT... 37
 5. Simulación con Fiita.. 38
 Muestra del código... 38
 Resultados de simulación... 39
Conclusiones .. 43
 Simulación de confinamiento en MEDUSA-CR con el código Fiesta .. 44
Recomendaciones.. 45
Referencias... 46
Agradecimientos... 48
Código y Título del Proyecto:

VICERRECTORÍA DE INVESTIGACIÓN Y EXTENSIÓN
ESCUELA DE FÍSICA

Título del Proyecto

Implementación y simulación del tokamak esférico
MEDUSA-CR: Etapa 1

Código del Proyecto (Centro Funcional): 14500016
Investigador coordinador: Dr. Iván Vargas Blanco
Escuela de Física
Instituto Tecnológico de Costa Rica
e-mail: ivargas@itcr.ac.cr

Investigador colaborador: M.Sc. Jaime Mora Meléndez
Área Académica de Ingeniería Mecatrónica
Instituto Tecnológico de Costa Rica
e-mail: jamora@itcr.ac.cr

Investigador colaborador: M.Sc. Luis Alonso Araya Solano
Escuela de Física
Instituto Tecnológico de Costa Rica
e-mail: luaraya@itcr.ac.cr

Investigador colaborador: M.Sc. Laura Barillas Mora
Escuela de Ingeniería Electromecánica
Instituto Tecnológico de Costa Rica
e-mail: laobarimo@gmail.com
Resumen

El tokamak esférico MEDUSA (Madison EDUCation Small Aspect ratio spherical tokamak, con un radio mayor de \(R < 0.14 \) m, radio menor de \(a < 0.10 \) m, campo toroidal \(B_T < 0.5 \) T, corriente del plasma \(I_p < 40 \) kA, y 3 ms de pulso) fue construido y operado en la Universidad de Wisconsin en Madison en EE.UU. En el 2013 el Instituto Tecnológico de Costa Rica recibió en donación este dispositivo experimental junto con un banco de 3000 capacitores (1500 \(\mu \)F, 450 VDC) que se encuentran hoy en día en el Laboratorio de Plasmas para Energía de Fusión y Aplicaciones.

Un Tokamak esférico es un tipo de dispositivo que confina magnéticamente plasmas de alta temperatura para investigación en energía de fusión basado en el principio Tokamak (acrónimo de palabras rusas que en español significan cámara toroidal con bobinas magnéticas). La investigación en estos dispositivos se realiza con el objetivo futuro de tener una nueva fuente de energía renovable a partir de fusión nuclear.

El objetivo general de este proyecto fue “Implementar el sistema de vacío, inyección de gas, diseñar y simular el sistema de carga y descarga de los capacitores, así como simular plasmas en el tokamak esférico MEDUSA-CR”. Para alcanzarlo se definió una metodología basada en el diseño de los sistemas utilizando el criterio de experto, referencias del estado del arte y uso de códigos computacionales para simulación de plasma disponibles en la comunidad científica de Tokamaks. Como principales resultados de este proyecto se logró implementar un nuevo sistema de vacío para MEDUSA-CR, así como un nuevo sistema de inyección de gas compacto y móvil que permite picos de 1 ms, tiempo que es lo suficientemente rápido para la inercia inherente al gas inyectado.

Se logró diseñar y simular un sistema de control de corriente para las bobinas del Tokamak Esférico MEDUSA-CR que presenta la oportunidad de habilitar otros modos de operación en este dispositivo. En este caso se diseñó y simuló para que pueda operar en modo AC, el cual permite realizar descargas de larga duración. Esto le da más relevancia al experimento pues amplia la capacidad de experimentación.

Finalmente, se simuló el confinamiento de equilibrio para MEDUSA-CR usando los parámetros de construcción originales. Se encontró que las bobinas de campo poloidal externos de radio más pequeño son prescindibles. Además, se concluyó que la geometría para la forma del plasma más conveniente es la forma \textit{bean shape}.

Palabras clave

Tokamak esférico, confinamiento magnético, física de plasmas.
Introducción

La fusión nuclear es una de las disciplinas aplicadas más prominentes de la física en la actualidad. La fusión nuclear representa una de las alternativas más prometedoras con respecto a la creciente demanda de energía a nivel mundial, y es también una de las opciones cuya implementación y uso causaría un menor impacto ambiental. Además; la fusión a diferencia de la fisión; es una reacción que no puede sostenerse por sí misma, siendo así; es una fuente de energía que no representa peligros inherentes a su implementación. La fusión es un proceso que constituye parte de lo que se considera formas de energía nuclear, su propósito principal es la obtención de energía eléctrica. Como el nombre lo indica, la fusión nuclear es la mezcla o fusión de átomos livianos como hidrógeno, en sus isótopos deuterio y tritio; dando lugar a reacciones que generan una ganancia energética. La fusión de átomos de hidrógeno es de hecho el proceso mediante el cual el sol genera energía [1,2].

Como parte de un esfuerzo internacional, la Unión Europea, está llevando a cabo uno de los proyectos a gran escala más ambiciosos dentro del contexto de fusión nuclear, es el llamado proyecto ITER (originalmente International Thermonuclear Experimental Reactor); actualmente el reactor de tipo tokamak más grande del mundo, con el cual se pretende demostrar la generación eléctrica masiva mediante fusión nuclear por confinamiento magnético. Se proyecta la operación del ITER para el 2035 y además su costo es de alrededor de los 20 mil millones de dólares, el cual es financiado principalmente por la Unión Europea y los Estados Unidos de América [4]. Un tokamak es un sistema de confinamiento magnético toroidal para plasmas [3]. A la fecha los tokamaks figuran como el concepto de confinamiento más atractivo en conjunto con los dispositivos tipo stellarator. Una de las características que hace al ITER atractivo es la posibilidad de tener una razón de potencia de fusión a potencia de entrada mayor o igual 10; la meta propuesta del proyecto ITER es lograr una salida de 500 MW por cada 50 MW entregados al dispositivo [4]. Con el Tokamak ITER se espera alcanzar temperaturas de aproximadamente 150 millones °C (10 veces la temperatura del núcleo solar) usando como combustible deuterio y tritio para formar plasma. El proyecto ITER es un puente hacia DEMO (Demonstration Power Plant), la siguiente etapa en la escalada hacia la puesta en marcha de plantas de poder basadas en fusión nuclear [4].

Proyectos como ITER son proyectos cumbre en el encadenamiento de proyectos que se gradúan y desarrollan según el grado de conocimiento obtenido en cada proyecto antecesor. Se podría decir que ITER es la convergencia de proyectos internacionales como MEDUSA, START, MAST, PEGASUS entre otros, todos ellos experimentos basados en el concepto de tokamak esférico. Los dispositivos de confinamiento magnético como los tokamaks y los stellaratos se suelen caracterizar por su razón de aspecto, esto es el cociente del radio de máquina o radio de curvatura de la forma toroidal y el radio medio del plasma [5]. Particularmente se ha despertado el interés por los tokamaks de razón de aspecto pequeña debido a que se ha demostrado que generan menos inestabilidades en el plasma [6]. Una forma de disminuir la razón de aspecto es reduciendo el círculo central de la forma toroidal y el radio medio del plasma [5]. Particularmente se ha despertado el interés por los tokamaks de razón de aspecto pequeña debido a que se ha demostrado que generan menos inestabilidades en el plasma [6]. Una forma de disminuir la razón de aspecto es reduciendo el círculo central de la forma toroidal de la cámara de vacío que confina el plasma. Un tokamak con razón de aspecto baja y por tanto más compacto es llamado hoy en día tokamak esférico. En el mundo existen en operación 8 tokamaks esféricos que se listan a continuación:

- MAST, Culham Science Center, Reino Unido.
La invención de los tokamaks esféricos ha despertado el interés en estos dispositivos al constituir un reactor de fusión más compacto y con un menor costo. El tokamak esférico MEDUSA (Madison EDUcation Small Aspect ratio spherical tokamak, con un radio mayor de \(R < 0.14 \) m, radio menor de \(a < 0.10 \) m, campo toroidal \(BT < 0.5 \) T, corriente del plasma \(Ip < 40 \) kA, y 3 ms de pulso) fue construido y operado en la Universidad de Wisconsin en Madison [5]. Su objetivo fue formar a los estudiantes y allanar el camino para el diseño del tokamak esférico mediano PEGASUS, ya en operación en esta institución.

Este dispositivo ha sido donado para investigación al Instituto Tecnológico de Costa Rica y junto al Stellarator de Costa Rica 1 (SCR-1) actualmente en operación en esta institución constituyen dos dispositivos muy relevantes para contribuir a la ingeniería y física para fusión nuclear. Tanto MEDUSA-CR como el SCR-1 son dispositivos pequeños, que permiten a bajo costo realizar investigación en fusión. Debido a los altos costos en los que se debe incurrir para construir dispositivos grandes resulta una opción de menor inversión y permiten guiar máquinas de gran tamaño en varias tareas que son relevantes para la fusión [5].

Los dispositivos de confinamiento magnéticos pequeños (como MEDUSA-CR) pueden actuar como un banco de pruebas de dispositivos para reducir la proporción de costo/beneficio en dispositivos de gran tamaño, haciendo inviable la evolución de lo contrario. MEDUSA-CR (como se llamará el tokamak esférico en Costa Rica) desempeñará un papel importante para la obtención de conocimiento necesario para creación de tokamaks esféricos de mayor escala, escalas que, según un nuevo estudio, no necesariamente tiene que ser comparables a la escala del tokamak ITER; puesto que el parámetro llamado de ganancia de fusión tiene una dependencia sobre el poder de fusión y la energía de confinamiento y no depende fuertemente de las dimensiones del dispositivo [7].

Además MEDUSA-CR permitirá abordar cuestiones importantes de la física pertinentes para tokamaks convencionales y esféricos, como el transporte anómalo, interacción plasma pared, inestabilidades, la carga térmica del plasma mediante el escalado de los datos de un tokamak esférico en operación con una configuración de divertor natural bajo un limitador magnético ergódico, explorando también las posibilidades de calentamiento y transmisión de corrientes a través de un sistema de ondas de Alfvén [8], además del desarrollo de diagnósticos para el dispositivo [9].

MEDUSA-CR desempeñará un papel muy relevante para la formación de una nueva generación de científicos y tecnólogos necesarios a nivel local e internacional en creciente demanda, debido a la nueva ola de búsqueda de energías con un perfil renovable y sostenible. Es destacable señalar que los dispositivos MEDUSA-CR y SCR-1 serán los primeros nuevos experimentos en investigación en
fusión operativos en toda América Latina durante más de una década, lo que convierte a Costa Rica en uno de los países de la región líderes en el campo, ayudando de esta manera a nuestro país a mantener y contribuir eficazmente al esfuerzo mundial en la investigación de la energía de fusión [9].
Marco teórico

Operación de Tokamaks

Existen 4 métodos de operación de los Tokamaks esféricos y Tokamaks clásicos. Estos modos son: pulsados, operación híbrida o estado estacionario, corriente alterna (AC) y Low dwell time pulsed. En la Tabla se muestra una comparación entre los métodos de operación de los Tokamaks.

Tabla 1. Comparación entre los métodos de operación. [1,5]

<table>
<thead>
<tr>
<th>Método de operación</th>
<th>Funcionamiento</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsado</td>
<td>Este modo de operación es el natural de cualquier Tokamak. Esto se debe a que para generar cualquier descarga se necesita inducir una corriente, esto se logra al generar una rampa ascendente en el sistema de calentamiento óhmico. Por supuesto no se puede generar una rampa infinita lo cual lleva a tener un tiempo definido máximo de descarga.</td>
<td>Entre sus ventajas está generar una descarga a máxima potencia, inducir la máxima corriente en el plasma y optimizar el dispositivo para picos de fusión.</td>
<td>Su principal desventaja es que el tiempo de descarga suele ser muy corto.</td>
</tr>
<tr>
<td>Híbrido/Estado estacionario</td>
<td>En este modo buena parte de la corriente del plasma es generada por la bootstrap current de las partículas capturadas en las orbitas bananas (banana orbits). El restante de la corriente puede ser obtenida por los sistemas NBI, corriente electrónica-ciclotronica y el accionamiento de la corriente híbrida baja ("lower-hybrid current drive")</td>
<td>Entre sus ventajas encontramos una mayor duración de las descargas. Un potencial de operación en estado estacionario si toda la corriente del plasma es generada por medios no inductivos.</td>
<td>Sus desventajas son: que usualmente las potencias son menores que en la operación pulsada en el máximo de corriente del plasma. Y se convierten en escenarios de descarga más inestables.</td>
</tr>
</tbody>
</table>
Corriente Alterna (AC)

En este modo de operación se busca invertir la corriente al momento de la rampa negativa de corriente en vez de quedar en cero, con lo cual si se hace lo suficientemente rápido se logra no perder la ionización del plasma.

Entre sus ventajas podemos encontrar: se puede lograr realizar descargas a máxima potencia. Además, combina las ventajas de una operación pulsada mientras tiene un bajo tiempo de permanencia (*low dwell time*) en la producción de energía.

Entre sus desventajas podemos encontrar: los sistemas NBI deben ser rediseñados pues se pierde la simetría de eje (*Non-axisymmetric*). Se dan esfuerzos en las bobinas durante el proceso de inversión de la corriente. Se dan pérdidas en el confinamiento y deposición de energía durante la inversión de corriente.

Low dwell time pulsed

Este modo de operación es igual al AC, la diferencia radica en que el tiempo que pasa por cero es mayor, con lo cual se pierde la ionización del proceso. En este caso particular podemos hablar de que estamos ante múltiples descargas de pulso.

Las ventajas que presenta este sistema son las mismas que el modo de operación AC

Las desventajas que presenta este sistema son las mismas que el modo de operación AC

Modo de corriente alterna

Este modo de operación utiliza el concepto de un transformador tradicional en el cual una bobina central actúa como el primario, para inducir una corriente en el secundario que es el plasma tal cual. Cabe destacar, que el plasma es variable en resistencia e inductancia dependiendo de su temperatura y su densidad, el cual para su análisis debe ser considerado como una resistencia e inductancia en función del tiempo [5].

Este tipo de descargas ya se han conseguido en dispositivos Tokamaks clásicos. La primera vez fue en el STOR-1M [10]. Por otro lado, el Tokamak JET consiguió realizar una descarga de plasma en modo de operación AC con una corriente de 2 MA [11]. De igual forma, el Tokamak ISTTOK, ubicado en Portugal, opera en AC, con corrientes en el plasma entre 4-5 kA [12] [13] [14] [15]. En el Tokamak CT-6B se consiguió un ciclo completo con una corriente en el plasma de 2,5 kA, el de mayor corriente en este dispositivo [16]. Anteriormente se consiguió realizar descargas en dos, cuatro y ocho ciclos [17]. El Tokamak HT-7 superconductor consiguió el modo de operación en AC asistido por LHW (*Lower Hybrid wave*) y alcanzó 125 kA de corriente en el plasma [18].
Uno de los problemas presentes en las descargas de un Tokamak es la saturación que se da en el núcleo del primario para inducir la corriente en el plasma, el cual limita el tiempo de la descarga, ya que antes de que llegue a saturación se debe descargar. Para solucionar este problema se realizan las descargas AC, las cuales invierten la corriente del plasma, antes de saturar el núcleo del primario. En la Figura 1 se puede ver la operación de un Tokamak trabajando en régimen pulsado y uno trabajando en AC.

![Figura 1. Descarga pulsada comparada a una descarga AC](image)

Simulación de confinamiento

A. Fiesta

Introducción al Código Fiesta

Fiesta (el nombre del programa no corresponde a ningún acrónimo según el autor) es un programa escrito en Matlab. Este programa fue desarrollado por Geoffrey Cunningham del CCFE (Culham Centre for Fusion Energy). (Nota: El programa nos fue facilitado por el autor con la ayuda de los contactos en Princeton Plasma Physics Laboratory (PPPL). El autor del código había estado colaborando con el ex investigador del laboratorio de plasmas del TEC, el Dr. Celso Ribeiro.

Fiesta es un programa para la resolución de equilibrio magneto-hidro-dinámico para el caso en el que no se tiene una imposición en las condiciones de frontera (free boundary) y el caso estático, o de balance de fuerzas. Es adecuado para la configuración original del tokamak esférico MEDUSA-CR pues éste tiene paredes de vidrio, esto es; no hay paredes conductoras que interactúen con la expansión del plasma. Una de las ventajas del vidrio es que este no puede inducir corrientes (llamadas “Eddy currents”) que afecten el equilibrio del plasma. La simulación para una cámara de vacío de metal es (dentro de Fiesta) en esencia la misma; con diferencias que se tienen que considerar una vez construida la cámara.

En general; el programa funciona con una solución numérica inicial a la forma de la función de flujo ψ de la ecuación de Grad-Shafranov (GS) sin utilizar retroalimentación de diagnósticos magnéticos (como en el caso del código EFIT). Dicha ecuación se presenta a continuación:
\[-\Delta^* \psi = F \frac{dF}{d\psi} + \mu_0 R^2 \frac{dP}{d\psi} \equiv \mu_0 RJ_\phi \]

(1)

\[\Delta^* \psi = \frac{\partial^2 \psi}{\partial R^2} - \frac{\partial \psi}{R \partial R} + \frac{\partial^2 \psi}{\partial Z^2} \]

(2)

A \psi se le conoce como la función de flujo (ó la función del flujo magnético poloidal), \(R \) y \(Z \) son variables espaciales de las coordenadas cilíndricas, \(F \) y \(P \) son funciones arbitrarias de \(\psi \) y \(J_\phi \), esta última es la densidad de corriente en la dirección toroidal.

La ecuación GS se obtiene para a partir de la ecuación de balance de fuerzas para el caso estático \((J \times B = \nabla P) \) donde participan la presión magnética y la presión termodinámica considerando además las ecuaciones de Maxwell [19].

A Fiesta le han sido agregadas utilidades para resolver problemas relacionados al equilibrio. El código funciona resolviendo la ecuación de GS en un modo iterativo (proceso iterativo de Picard), y además utiliza funciones de Green para la resolución de dicha ecuación (ecuación diferencial no lineal). El código está escrito en Matlab, por lo tanto, tiene una estructura de programación orientada a objetos.

Estructura de Fiesta

Fiesta fue inicialmente desarrollado para la simulación de confinamiento del *Mega Ampere Spherical Tokamak* (MAST); un tokamak esférico y como tal es perfecto para su aplicación al tokamak esférico MEDUSA-CR.

En general, Fiesta tiene una estructura que utiliza dos objetos fundamentales: el *fiesta_configuration* y el *fiesta_equilibrium*. El *fiesta_configuration* contiene la geometría particular del tokamak de estudio, como por ejemplo las bobinas; las condiciones de frontera y el mallado de la simulación. El *fiesta_equilibrium* contiene los script necesarios para la resolución iterativa del equilibrio. La estructura de los campos magnéticos está ordenada en una jerarquía de bobinas simples; filamentos (los cuales contienen las bobinas); y los circuitos; que finalmente forma la configuración magnética de MEDUSA-CR.

Resolviendo la ecuación de GS, la función de flujo determina la componente poloidal del campo magnético (componente usualmente medida con los diagnósticos magnéticos), el componente toroidal del campo no es necesario para obtener la solución del equilibrio, simplemente afecta el factor de seguridad \(q \) (razón del número de vueltas toroidales por vueltas poloidales del campo) [20].

La corriente \(rod current \), establece la componente toroidal del campo (se puede entender el plasma como el secundario de un transformador). Las dos bobinas externas más la corriente de plasma \(I_p \) dan el campo poloidal de equilibrio. El valor inicial para la densidad de corriente se obtiene mediante las funciones determinadas en el artículo de L.L. Lao et al. [21]; la cual determina la forma de las funciones \(F(\psi) \) y \(P(\psi) \). Una de las soluciones
analíticas para la ecuación GS viene dada por el equilibrio de Solov [22]; para el cual la solución toma la forma;

\[\psi = \psi_{vac} - \frac{AR^2}{8} - \frac{BZ^2}{2} \]

Donde \(A \) y \(B \) son constantes y \(\psi_{vac} \) es la solución para la ecuación homogénea:

\[-\Delta^* \psi = 0 \]

En el código Fiesta la sección transversal del volumen del plasma se cambia con las funciones high field side HFS. Además, se puede variar la posición de dos circuitos magnéticos poloidales, así como el número de vueltas, valor de la corriente y ángulo del arreglo del bobinado.

Configuración magnética de MEDUSA-CR y parámetros a considerar en Fiesta

Fiesta trabaja según la configuración de campo magnéticos dada por el bobinado del tokamak en cuestión. MEDUSA-CR tiene ocho circuitos alrededor de la cámara de vacío que producen el componente toroidal del campo. Tiene dos bobinados externos que suman al componente poloidal del campo dado por la corriente del plasma. Estos se encuentran una distancia radial de 0,323 m y 0,181 m; arriba y abajo del plano \(z=0 \) [1]. Adicionalmente se consideró agregar un bobinado entre el solenoide de inducción y la cámara de vacío, al cual se le da el nombre de espira ergódica, esta configuración podría potencialmente mejorar el confinamiento de equilibrio [23]. Más adelante se muestran los resultados para la variación de ciertos parámetros magnéticos y la comparación entre la forma D (forma típica de la sección transversal del plasma en tokamaks esféricos) y la forma denominada frijol o “bean shape” en inglés. Los parámetros de elongación y triangularidad se obtienen de la última superficie magnética cerrada LCFS (por sus siglas en inglés: last closed flux surface ó separatrix) y se definen como:

\[\kappa = \frac{b}{a} \quad (3) \]
\[\delta = \frac{d}{a} \quad (4) \]

Donde \(a \) es el radio menor del plasma (definido como \(\frac{r_{mayor} - r_{menor}}{2} \)) según la LCFS [24], \(b \) la altura del ecuador hasta el punto máximo en \(z \) y \(d \) la distancia desde \(r_{menor} \) hasta el punto \(b \) en el eje \(r \). El parámetro beta está definido como la razón de la presión del plasma a la presión del campo magnético, y en general se busca que tenga un valor alto:
EFIT: Breve reseña histórica.

Inicialmente; después de que se estableció la teoría de equilibrio de magneto-hidrodinámica; la comunidad científica de fusión empezó a desarrollar códigos para la simulación y diseño de tokamaks; esto alrededor de 1970 [25]. Desde 1980; reconstrucciones de equilibrio fueron elaboradas por Jim Luxon and Dr. Bruce Brown (de General Atomics; empresa privada de investigación científica y militar de E.U.A.) para el tokamak DIII-D [26]. Los resultados de esto dieron cabida al Filament Current Fitting code (MFIT) y eventualmente obtuvieron el EFIT (Equilibrium Fitting code) durante la última fase de operación del DIII-D. Desde entonces, Lang Lao ha mejorado este código, agregando más diagnósticos y datos a la operación del mismo [27].

Fundamento matemático de EFIT.

La raíz del código funciona resolviendo la ecuación de Grad-Shafranov; ecuación (1). Esta ecuación determina la función de flujo que cumple con los requisitos para la conservación del flujo magnético [28]; lo cual determina el equilibrio del confinamiento. El método de resolución es el siguiente:

a. Off line Equilibrium Fitting: Esta es el único modo del programa que permite hacer simulaciones sin inputs de los diagnósticos como densidad de corriente; es decir es el único que se podría usar para simular MEDUSA-CR en su etapa de implementación 1. La forma inicial general de la densidad de corriente toroidal se obtiene como:

\[
J_\phi(R, \psi) = J_0 \left(\beta_{0p} \frac{r}{R} + (1 - \beta_{0p}) \frac{r}{R} \right) g(\psi) \tag{6}
\]

Donde \(g(\psi) \) es una función definida según los valores de \(\psi \) (función de flujo) en el eje magnético y la frontera del plasma; \(\beta_{0p} \) es un parámetro libre y corresponde al valor del beta poloidal en el vacío y \(J_0 \) es también un parámetro libre y se obtiene con el valor de la corriente del plasma total (si esta se desconoce, debe de tomar un valor cualquiera que se irá corrigiendo en la simulación).

b. Se determinan los valores óptimos para los parámetros libres de \(J_\phi \), se comparan los valores medidos con los valores calculados, mediante un métodos de mínimos cuadrados se reduce la diferencia entre estos dos. La solución de GS se escribe mediante funciones de Green como:

\[
\beta = \frac{2\mu \langle p \rangle}{B^2} \tag{5}
\]
\[\psi^{m+1} = \sum G(r)I + \int G(r)J_\phi(r', \psi^m) \] (7)

La iteración (método de Picard) se calcula para minimizar el cuadrado de la diferencia entre los valores de campo poloidal medidos y calculados según:

\[X = \sum_{i=1}^{n_M} \left(\frac{M_i - C_i}{\sigma_i} \right)^2 \] (8)

Donde \(M_i \) y \(C_i \) son los valores medidos y calculados respectivamente.

c. La superficie de flujo (según función de flujo) se reconstruye a partir de datos magnéticos
d. Parámetros de temperatura son mapeados dentro de las superficies de flujo y se obtiene el perfil de presión y un nuevo perfil de densidad de corriente toroidal
e. Este último paso permite obtener una nueva función de flujo; lo cual permite generar una nueva aproximación repitiendo los pasos anteriores; hasta que se obtenga un error mínimo en el parámetro \(X \) (ecuación 8) de \(10^{-4} \) [28, 29].
Metodología

A continuación se describe la metodología utilizada para el desarrollo de este proyecto de investigación.

1. **Implementar el sistema de vacío de MEDUSA-CR**

 1.1 Realizar dibujos CAD de la cámara de vacío y puertos del tokamak esférico MEDUSA-CR.

 Realizando un trabajo de análisis se tomaron medidas de las partes relevantes del tokamak esférico MEDUSA-CR para luego hacer uso del software INVENTOR 3D CAD de Autodesk disponible en la institución, para generar un dibujo de ingeniería que integre todos estos componentes con sus dimensiones reales.

 1.2 Elaborar el diagrama final de componentes del sistema de vacío de MEDUSA-CR.

 Se consideraron los componentes estándares disponibles en el Laboratorio de Plasmas del TEC, además con la ayuda del criterio de experto se planteó un nuevo diagrama final de componentes del sistema de vacío de MEDUSA-CR.

 1.3 Manufacturar o enviar a comprar componentes o adaptadores faltantes para el acople con la cámara de vacío de MEDUSA-CR.

 Tomando como referencia los componentes estándares disponibles en el Laboratorio de Plasmas del TEC y el diagrama propuesto en la actividad 1.2, además del tipo de accesos con el que cuenta el tokamak esférico MEDUSA-CR en la actualidad se identificaron componentes o adaptadores faltantes tanto para el acople con la cámara de vacío de MEDUSA-CR como para integrar como un todo el sistema de vacío propuesto en la actividad 1.2. Se manufacturaron los componentes faltantes y se envieron a comprar los que así correspondía.

 1.4 Realizar el montaje de todos los componentes según el diagrama definido en la actividad 1.2.

 Haciendo uso de las herramientas mecánicas, tornillos y sellos para condiciones de vacío disponibles en el Laboratorio de Plasmas, se procedió al montaje de todos los componentes según el diagrama definido en la actividad 1.2. Adicional se instalaron sensores de presión en distintos puntos del sistema de vacío.

 1.5 Realizar pruebas de vacío una vez instalados todos los componentes.

 Una vez instalados todos los componentes del sistema de vacío se procedió a encender las bombas de vacío con las que se cuenta en el laboratorio de plasmas del TEC. Se midieron la presión interna en la cámara y en el sistema como un todo. El bombeo se mantuvo por el periodo de tiempo que se consideró necesario. Durante las primeras horas de bombeo se realizaron pruebas de fugas con acetona, una vez se logró una presión inferior a 10⁻⁴ Torr se realizó un estudio de fugas haciendo uso del RGA (Residual gas analyzer) y gas Helio. Las fugas encontradas
fueron reparadas con los distintos recursos con los que se cuenta en el Laboratorio de Plasmas.

1.6 Optimizar la presión final en la cámara de vacío utilizando técnicas conocidas.

La presión en la cámara se optimizó en primera instancia a partir de la reparación de las fugas encontradas en la actividad 1.5 y no fue necesario utilizar mantas térmicas para desplazar el agua presente en el interior de la cámara de vacío.

2. Implementar el sistema de inyección de gas para MEDUSA-CR.

2.1 Elaborar el diagrama final de componentes del sistema de inyección de gas de MEDUSA-CR.

Considerando los componentes estándares disponibles en el Laboratorio de Plasmas del TEC, además del criterio de experto se planteó un nuevo diagrama final de componentes del sistema de inyección de gas de MEDUSA-CR.

2.2 Manufacturar o enviar a comprar componentes o adaptadores faltantes para el acople con la cámara y el sistema de inyección de gas de MEDUSA-CR según el diagrama final de la actividad 2.1.

Tomando como referencia los componentes estándares disponibles en el Laboratorio de Plasmas del TEC y el diagrama propuesto en la actividad 2.1, además del tipo de accesos con el que cuenta el tokamak esférico MEDUSA-CR en la actualidad; se identificaron componentes de inyección de gas o adaptadores faltantes tanto para el acople con la cámara de vacío de MEDUSA-CR así como para integrar como un todo el sistema de inyección de gas propuesto en la actividad 2.1. Se compró una válvula piezoeléctrica y se diseñó e implementó su controlador haciendo uso del presupuesto. Se enviaron a comprar los componentes faltantes.

2.3 Realizar el montaje de todos los componentes del sistema de inyección de gas según el diagrama definido en la actividad 2.1.

Haciendo uso de las herramientas mecánicas, tornillos y accesorios swagelok para inyección de gas, disponibles en el Laboratorio de Plasmas, así como los diferentes componentes comprados se procedió al montaje de todos los componentes según el diagrama definido en la actividad 2.1.

2.4 Realizar pruebas de inyección de gas una vez instalados todos los componentes.

Una vez instalados todos los componentes del sistema de inyección de gas, se procedió a encender las bombas de vacío con las que se cuenta en el laboratorio de plasmas del TEC. Se midió la presión interna en la cámara y en el sistema como un todo. El bombeo se mantuvo por el periodo de tiempo que se considere necesario. Una vez alcanzada la presión de trabajo, esto es 10^{-6} Torr se procedió a inyectar gas con valores entre 1 a 20 sccm mediante el uso del controlador de la válvula piezoeléctrica. Cuando la presión no superó los 10^4 Torr se realizó un estudio de presencia de gas haciendo uso del RGA (Residual gas analyzer) y gas Helio.
3. Diseñar y simular el sistema de control para la carga y la descarga del sistema de alimentación de las bobinas de MEDUSA-CR.

3.1 Identificar el banco de capacitores a utilizar.

Se estudió la tesis de MEDUSA-CR para identificar los parámetros de capacitancia y tensión en el banco de capacitores. Seguidamente se buscó una empresa como Tokamak Energy (http://www.tokamakenergy.co.uk/) que puede suplir y vender este banco de capacitores (Se solicitó cotización). Tomando en cuenta los resultados de la actividad de fortalecimiento titulada “Diagnóstico del Tokamak Esférico MEDUSA-CR” en ejecución durante el 2015 y el criterio de experto se decidió si se utilizará el banco de capacitores existente en el TEC o se recomienda la compra de un nuevo banco de capacitores.

3.2 Diseñar y simular un sistema de carga para el banco de capacitores.

Se diseñó un circuito de electrónica de potencia que se encargará del trasiego de la energía para la carga del banco de los capacitores. Además, se diseñó el circuito de control que se encargará de regular la corriente para la carga de capacitores. Luego se hizo una simulación utilizando softwares disponibles en la institución para validar los diseños antes planteados. Finalizando esta etapa se cotizó los componentes necesarios para su futura construcción en un nuevo proyecto de investigación.

3.3 Diseñar y simular un sistema de regulación de corriente para el banco de capacitores.

Se diseñó un circuito de electrónica de potencia que se encargará del trasiego de la energía para la descarga del banco de capacitores. Además, se diseñó el circuito de control que se encargará de regular la corriente para la descarga de capacitores. Luego se hizo una simulación utilizando softwares disponibles para validar los diseños antes planteados. Finalizando esta etapa se cotizó los componentes necesarios para su futura construcción en un nuevo proyecto de investigación.

4. Simular los plasmas en el tokamak esférico MEDUSA-CR.

Se desarrolló en paralelo con los objetivos relacionados a la implementación de sistemas en MEDUSA-CR; una fase de modelado en plasmas haciendo uso de los recursos computacionales existentes en distintos centros de investigación de fusión. Inicialmente se consideró la utilización de los códigos como por ejemplo EFIT (Equilibrium Fitting).

4.1 Estudiar ampliamente los principios y el uso de los códigos apropiados y disponibles para la simulación en MEDUSA-CR.

Se solicitó información y los códigos al Princeton Plasma Physics Laboratory (PPPL) en EE.UU, más específicamente al personal del grupo del tokamak esférico NSTX. Se coordinó con este mismo grupo una visita de pasantía para familiarizarnos con el uso del código EFIT. Haciendo uso de documentación existente se estudió ampliamente los principios utilizados en los cálculos realizados por el código. El M.Sc. Alonso Araya, investigador de este proyecto, realizó una pasantía en el
Princeton Plasma Physics Laboratory para recibir capacitación en el uso del código EFIT gracias a los contactos en PPPL.

4.2 Implementar el código o códigos elegidos en la actividad 4.1 en hardware institucional.

En la visita al PPPL, se obtuvo acceso a la red privada del laboratorio, así como a su base de datos. Se inició el estudio de EFIT utilizado para las simulaciones en el tokamak esférico NSTX-U. El código tiene fuentes bajo la herramienta SVN. Se puede correr e instalar en estaciones Linux. Se compila con el compilador Fortran PGF90. Para correrlo se usan archivos de inputs Snap. Se usa la aplicación Efit Viewer (simulación y diagnóstico en tiempo real con interface operable) para ver simulaciones de pulsos en NSTX-U. Se analizó cómo se implementó este código al NSTX; se procedió con la instalación utilizando los servidores del PPPL con estaciones Linux. Se operó según los archivos disponibles; pero no se tuvo éxito con la instalación (ver más adelante; resultados de la instalación de EFIT.) Se inició solicitud de ayuda al Colaboratorio Nacional de Computación Avanzada (CNCA) del CeNAT donde se procedió con la instalación local del código EFIT, sin embargo, a la fecha es necesario corroborar que todo fue bien instalad. Complementario a lo anterior se procedió con la búsqueda de otro código de simulación, eligiéndose el código FIESTA.

4.3 Obtener resultados de simulación utilizando el código o los códigos elegidos en condiciones experimentales conocidas de MEDUSA-CR.

Se ingresaron en el código las condiciones de frontera, parámetros, y geometría del tokamak esférico MEDUSA-CR para simular la corriente del plasma y flujos magnéticos en el plasma haciendo uso del código elegido en la actividad 4.1 y 4.2. Se realizaron cálculos de simulación de confinamiento considerando la geometría magnética del MEDUSA-CR; así como varias posibilidades para el plasma shaping; factor de gran relevancia que sirve a estudios en tokamaks de dimensiones mayores.
Resultados y discusión

A continuación, se muestran los principales resultados del proyecto de investigación.

1. Implementación del sistema de vacío para el tokamak esférico MEDUSA-CR

El desarrollo de un nuevo sistema de vacío se debe al hecho de que el tokamak esférico MEDUSA-CR en el momento de iniciado de este proyecto no contaba con uno. El nuevo sistema de vacío para MEDUSA-CR, está pensando en la necesidad de poder estandarizar el sistema al uso de puertos “conflat” como el resto de los equipos en el laboratorio.

![Diagrama de vacío del Tokamak Esférico MEDUSA-CR.](image)

En la figura 2 se muestra el diseño del sistema de vacío propuesto por este proyecto de investigación el cual se compone de una bomba mecánica que genera 10^{-4} Torr y una bomba turbo-molar que genera 10^{-10} Torr. Los niveles de presión normales para el Tokamak Esférico MEDUSA-CR son de aproximadamente 2×10^{-7} Torr. Después de un ciclo de diez minutos, la presión base suele ser del orden de 5×10^{-8} Torr. El sistema cuenta con una válvula de venteo, una válvula de compuerta y una válvula en ángulo, todas dispuestas como muestra el diagrama. Estas válvulas cumplen con el objetivo de regular el flujo en el sistema de acuerdo a lo que se desea en el experimento.

Para optimizar el vacío se requirió instalar sensores de presión, los cuales son de tipo pirani (convectron) para medir en el rango de presión atmosférica a un militorr. Para medir de 1 militorr a un nanotorr se utilizó un sensor iongauge. Estos se conectan directamente a la cámara de vacío buscando medir el valor de presión dentro de la cámara.

Como parte del diseño se elaboraron los dibujos CAD de la cámara de vacío y sus bobinas. Los cuales se muestran en la figura 3 y 4 con las medidas generales del mismo en milímetros.
Una vez propuesto el diseño se procedió a realizar el montaje de todos los componentes del Tokamak Esférico MEDUSA-CR, el cual se puede observar en la Figura 5. A su vez se realizaron pruebas de vacío, luego de una limpieza de la cámara de vacío se logró optimizar el mismo, obteniendo la curva mostrada en la figura 6.
Figura 5. Montaje del sistema de vacío del Tokamak Esférico MEDUSA-CR.

Figura 6. Gráfica de presión a través del tiempo en la cámara de vacío de vidrio del Tokamak Esférico MEDUSA-CR.

Propuesta de diseño de una cámara de vacío de acero inoxidable

Con el objetivo de optimizar el vacío se propuso un nuevo diseño de cámara de vacío, para generar un mejor sello y así lograr presiones más bajas. En contraste con el recipiente original de vacío de MEDUSA-CR, el nuevo, está construido completamente en acero inoxidable (LS 304) en lugar de vidrio. El recipiente se basa en una forma cilíndrica delimitada por una placa superior y una placa inferior. Estas placas tienen un radio de 30,5 cm y un grosor de 6 mm. Este espesor es necesario para manejar una carga máxima de corte de 3 toneladas de presión atmosférica. La pared exterior es un cilindro de acero inoxidable de 5 mm de espesor. Este segmento mide 28 cm de alto con un
radio exterior de 30,5 cm. Por otro lado, la pared interior es también un cilindro de acero inoxidable de 5 mm de espesor.

Figura 7. Cámara de vacío en acero inoxidable 304L

Tanto la pared interna como la externa están acopladas a la placa inferior mediante una transición de soldadura. La placa superior no está soldada con las paredes exterior e interior, por lo que permitirá un acceso completo al interior del recipiente de vacío para su mantenimiento.

Se eligió acero inoxidable para la superficie exterior del recipiente de vacío por varias razones. Primero, el acero inoxidable es relativamente barato de mecanizar. En segundo lugar, este material también permite altas cargas de cizallamiento producidas por la presión atmosférica durante la experimentación al vacío. En tercer lugar, permite fácilmente que un proceso de soldadura se acople a diferentes puertos.

En total, hay 32 puertos en el nuevo recipiente de vacío de MEDUSA-CR. Estos son medios puertos estandarizados que se soldarán en las superficies de acero inoxidable. Estos puertos se distribuyen a través de la pared exterior del cilindro y las placas superior e inferior. El acceso al plasma en el cilindro exterior se proporciona mediante seis puertos de rosca completa de 13 1/4 ", diez de 10" y diez de 6". Estos puertos están distribuidos geométricamente con un ángulo de treinta y seis grados entre ellos. Los diámetros y otras dimensiones de cada puerto estandarizado se eligieron para maximizar el acceso al plasma. Cada puerto está ubicado para optimizar el espacio libre disponible entre las bobinas. Con el rediseño de la cámara de vacío, se decidió utilizar otro material con mejores propiedades físicas, instalaciones mecánicas y técnicas, como durabilidad, resistencia a la compresión, ciclos de uso aumentados y facilidad de mantenimiento, respectivamente. Se ha seleccionado utilizando el acero inoxidable LS 304, que satisface satisfactoriamente las características y requisitos mencionados anteriormente. Usualmente los sistemas de vacío, en
particular una cámara de vacío, no hacen uso de un material ferromagnético porque implicaría la interacción de estos materiales con los campos magnéticos generados por las bobinas y el plasma para su confinamiento. El uso de este material también nos permite mejorar las tareas de mantenimiento, aumentar la vida útil y, a su vez, los ciclos de trabajo.

Finalmente indicar que ya se encuentran en el sistema de compras del Departamento de Aprovisionamiento las solicitudes de bienes N° 239234 y N° 239326, correspondientes a las compras internacionales de la cámara de vacío diseñada en este proyecto y los accesorios de vacío, respectivamente.

2. Sistema de inyección de gas

Este sistema permite que el gas se inyecte en la cámara de vacío mediante la coordinación y acción de 3 válvulas de aguja, 3 válvulas de medición y 1 válvula piezoeléctrica. Esta última es la válvula que controla el tiempo, la cantidad y la forma en que se introduce el gas en la cámara, que es proporcional y depende principalmente de la cantidad de voltaje aplicado en la entrada. En la figura 8 se observa el diagrama del diseño del sistema de inyección de gas. Este diseño se planteó para ser construido con partes de la marca sawgelock, con el fin de facilitar el ensamblaje.

Figura 8. Diagrama del sistema de inyección de gas.
Uno de los objetivos del proyecto es hacer que el Tokamak Esférico MEDUSA-CR sea tan móvil como sea posible, por lo tanto, el diseño del sistema se realizó en una caja de acrílico transparente, por lo que puede usarse no solo para el Tokamak Esférico MEDUSA-CR sino también para otros fines en el laboratorio. De esta forma, si el Tokamak Esférico MEDUSA-CR necesita ser movido, el sistema de inyección de gas puede desenchufarlo fácilmente y moverse por separado, evitando problemas durante el transporte.

La caja está hecha de un acrílico transparente debido a la necesidad de tener todo el sistema a la vista en caso de una fuga, mantenimiento, peso o simple chequeo de los componentes. El objetivo principal es reacomodar el sistema en el espacio mínimo que podía ocupar con la distribución más cómoda cuando se necesitara mantenimiento, siempre teniendo en cuenta el diseño original, por lo tanto, se diseñó una caja de 21 x 20.5 x 7.78 pulgadas. En la figura 9 se muestra el sistema implementado tanto en el diseño de la caja como en la distribución del sistema.

La tubería fue diseñada para ser de ¼ de pulgada, a la vista de la estandarización del laboratorio de plasma completo, así como de los componentes utilizados en el sistema. El diseño contempla presión, flujo y temperatura.

Este diseño también permite controlar qué partes del sistema están en vacío y también la cantidad de gas que se inyecta en la cámara a través del sistema de control de la válvula piezoeléctrica o incluso inyectarse manualmente en la cámara hasta que alcanza cierta presión.

Control de la válvula piezoeléctrica

Para controlar la apertura de la válvula piezoeléctrica, es obligatorio regular la tensión que llega al terminal BNC en la válvula. Para hacer eso, es útil usar PWM (Modulación de onda de pulso) para regular el ciclo de trabajo y poder regular el voltaje promedio que se aplica.

El control está diseñado en un ARDUINO UNO, debido a su bajo costo, es fácil reemplazar el microcontrolador ATmega328 si se rompe, es fácil de programar y es capaz de generar las salidas analógicas que permitirán el ciclo PWM.

El control se basa en la variación del ciclo de trabajo de 0 % a 100 %, por lo que se regula la tensión promedio. Actuará de la misma manera que una señal de voltaje analógica.
Las curvas necesarias para inyectar el gas en la cámara, están programadas en el microcontrolador, y esta curva representa y controla el proceso de apertura y cierre en la válvula.

Ahora, como el microcontrolador opera a 5 V y la válvula necesita 100 V para abrirse a su capacidad máxima, no es posible alimentar la válvula con la misma fuente de voltaje que el microcontrolador, por lo que se necesita una fuente de alimentación externa. Como estas dos fuentes de alimentación son diferentes, es obligatorio aislarrlas, en esta configuración el microcontrolador funciona como un interruptor para abrir el circuito de alimentación que alimentará la válvula.

Figura 10. Circuito de potencia de control de la válvula piezoeléctrica.

Al montar el circuito y probarlo la salida del PWM se puede observar en la figura 11 y 12, las mismas cambian su ciclo de trabajo, de esta forma mostrando que el controlador está realizando su trabajo como lo esperado y de acuerdo al diseño.

Figure 11. Señal del PWM del microcontrolador a un ciclo de trabajo a 25%.

Figure 12. Señal del PWM del microcontrolador a un ciclo de trabajo a 75%.

Puesto que la válvula necesita una señal DC continua se debe suavizar las curvas obtenidas en las figuras 11 y 12, con lo cual se procede a implementar un filtro RC con el objetivo de generar esa señal constante que necesita la electroválvula. Este diseño se observa en la figura 13.
Utilizando el puerto serie de la arduino se obtuvieron las siguientes graficas con las señales de control enviadas a la piezoeléctrica para su inyección de gas. Las mismas se contrastan con las curvas de presión que deben tener un comportamiento similar.

Figure 13. Diagrama de control final.

Figure 14. Tensión aplicada a la piezoeléctrica.

Figure 15. Respuesta en presión a la figura 12.
Figure 16. Tensión aplicada a la piezoeléctrica.

Figure 17. Respuesta en presión a la figura 14.

Figure 18. Tensión aplicada a la piezoeléctrica.
En las curvas anteriores podemos observar cómo se comporta el sistema de acuerdo a los patrones programadas. Con lo cual en la figura 14, 16 y 18 se ve el PWM aplicado a la válvula y en la figura 15, 17 y 19 las respuestas en presión a esos patrones de inyección, logrando obtener un sistema flexible que permite al investigador definir el patrón que desee de inyección.

Para concluir, se colocó en una PCB, para hacerlo más duradero y seguro, también se cambió el microcontrolador por un Arduino Nano, para hacer el control más pequeño y al mismo tiempo capaz de comunicarse con la computadora. También se consideró un Arduino Pro Mini, pero debido a la falta de un puerto USB que permita la comunicación serial, no fue la mejor opción.

3. Sistema de control de corriente

En esta sección se detalla el diseño del sistema de almacenamiento de energía y el sistema de descarga; más precisamente el subsistema de potencia de cada uno. Cada una de las secciones explicará la razón del diseño y a su vez las consideraciones técnicas tomadas en el camino.

Sistema de almacenamiento de energía

El sistema de almacenamiento de energía encuentra su limitante en la acometida con la que cuenta el nuevo edificio del laboratorio de Plasmas, donde se va a ubicar el Tokamak Esférico MEDUSA-CR. Por esta razón, se decide utilizar un sistema que almacene la energía para luego realizar el trasiego de la misma hasta las bobinas, sin demandarle a la red eléctrica en un periodo muy corto una gran cantidad de energía. Al tener este sistema de almacenamiento se puede cargar todo el sistema de una forma lenta con una baja potencia. La única repercusión que tiene este sistema es el tiempo de carga. El Tokamak Esférico necesita de un tiempo de enfriamiento entre descargas de al menos 5 minutos por lo que si se amplía el tiempo no es problema esperar entre descargas.
El sistema propuesto se observa en la figura 20. Este sistema coloca todos los bancos de capacitores en paralelo para la carga, los cuales van a ser de una tensión máxima de 350 V. Estos se instalarán en serie para que alcance la tensión necesaria para cada sistema de bobinas del Tokamak Esférico MEDUSA-CR. Es importante destacar que los mismos no se van a cargar a 350 V. En cambio, se van a cargar a 280 V: la capacidad de salida del rectificador. El rectificador se va a realizar con los diodos STTH50W06SW que soportan una tensión de 600V y 50A. Una vez que alcanzan su tensión máxima se mantendrán en estado de carga hasta que se llegue a realizar un experimento.

En la figura 21 se observa el sistema de control que va a cambiar los bancos de capacitores de serie a paralelo, en el mismo no se observan todos los bancos puesto que muestra el concepto a utilizarse. En color marrón se observan los contactores para poner los bancos en paralelo y cargarlos además de aislarlos de las cargas, mientras que los de color verde conectan los bancos en serie y con las cargas a su vez aislándolos del sistema de carga. A su vez, el sistema se encarga de aislar la
red eléctrica al momento de la descarga del Tokamak Esférico MEDUSA-CR. Cabe destacar que este sistema se manejará con contactores pues no se requiere de una conmutación rápida entre un sistema y otro, además que simplifica el problema a la hora de aislar la red eléctrica del momento de la descarga. Los contactores color marrón son los que ponen los capacitores en paralelo y los contactores color verde son los que ponen los bancos de capacitores en serie. Cuando los marrón estén cerrados los verdes estarán abiertos y viceversa.

Los bancos de capacitores se montarán con base en los capacitores ALS70A103NP350 con una tensión de 350 V DC y una capacitancia de 0,01 Faradios. Los cuales se formarán en bancos como los descritos en la Tabla 2. Bancos de capacitores para el sistema de almacenamiento de energía. En el caso de las bobinas de campo vertical (VF) se utilizará un banco de baterías ya que simplifica el problema. Se usará un banco de baterías industrial de tensión 50 V y 300 amperios hora. Este sistema se comprará con su propio cargador de baterías ya que al ser de ácido-plomo requieren un sistema que las mantenga en estado flotante, cuando no se use. Este sistema es de ácido-plomo, pues el costo es mucho más bajo y el proveedor AISA tiene muy buenas relaciones con el laboratorio y ya ha instalado en el pasado otros sistemas similares.

Tabla 2. Bancos de capacitores para el sistema de almacenamiento de energía.

<table>
<thead>
<tr>
<th>Bobina</th>
<th>Tensión</th>
<th>Capacitancia</th>
<th>Cantidad de capacitores</th>
<th>Cantidad de bancos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohmic (OH)</td>
<td>350 V</td>
<td>12 F</td>
<td>1200</td>
<td>12</td>
</tr>
<tr>
<td>Campo toroidal (TF)</td>
<td>350 V</td>
<td>9 F</td>
<td>900</td>
<td>18</td>
</tr>
</tbody>
</table>

Por tanto, estos capacitores se cargan de acuerdo con lo observado en la Figura 22. En el caso del banco de baterías al tener una capacidad alta de almacenamiento no se requiere cargar entre descargas. Actualmente el Stellarator de Costa Rica 1 funciona con un banco de baterías y, por experiencia, no se hacen más de 8 descargas por el tiempo que tarda en llevarse a cabo el protocolo de seguridad, así como también los tiempos de análisis de datos entre descargas. Por esta razón esta solución es viable y no presenta problemas críticos para limitar las descargas antes de realizar una carga.
Figura 22.2 Curva de carga de los bancos de capacitores del Tokamak Esférico MEDUSA-CR

Sistema de descarga

En el sistema de descarga se presentarán los tres sistemas que se utilizan para cada conjunto de bobinas en el Tokamak Esférico MEDUSA-CR. Éste posee el sistema de bobinas Ohmic (OH), las bobinas de campo toroidal (TF) y las bobinas de campo vertical (VF). En la tabla 3 se observan los parámetros físicos de cada una.

<table>
<thead>
<tr>
<th>Tabla 3. Parámetros de las bobinas del Tokamak Esférico MEDUSA-CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobina</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Campo Toroidal</td>
</tr>
<tr>
<td>Ohmic</td>
</tr>
<tr>
<td>Campo Vertical</td>
</tr>
</tbody>
</table>
Para estos sistemas se diseñaron dos circuitos: uno para las bobinas de campo toroidal y el sistema ohmic (mostrado en la Figura 23) y otro circuito distinto para el campo vertical (mostrado en la figura 23). La razón principal de esta diferencia es que las bobinas de campo toroidal y el sistema ohmic deben tener un comportamiento de corriente alterna. Por eso, se necesita que ambos tengan un puente H que permita generar a partir de una corriente directa una corriente alterna.

![Circuito de potencia para las bobinas de campo toroidal y el sistema ohmic](image)

Figura 23. Circuito de potencia para las bobinas de campo toroidal y el sistema ohmic

Como se puede observar tiene una resistencia auxiliar. Esto fue necesario ya que las bobinas del Tokamak se pueden ver como una bobina ideal en serie con una resistencia, es decir un circuito RL. El problema es que volvía el circuito muy lento y era necesario agregar una resistencia mayor para que el transiente sea mucho más rápido. Mediante simulación sin la bobina auxiliar el circuito se comporta como se muestra en la Figura 24. Desde el punto de vista científico, no es una curva aceptable pues el control necesita de una rampa y se obtiene una curva diferente: aunque es una corriente alterna no es la esperada.

![Circuito de potencia para las bobinas de campo vertical.](image)

Figura 24. Circuito de potencia para las bobinas de campo vertical.

En consecuencia, para corregir esto se aumenta la resistencia del circuito y se disminuye el τ para hacer que su transiente sea de un tiempo menor. Se realizó una simulación para obtener un resultado en el cual la curva se asemeje a la forma de la curva de control. Por lo que la resistencia auxiliar que se obtuvo para el sistema ohmic requiere 0,165 Ohm y para el campo toroidal requiere una resistencia de 0,471 Ohm. Esto da como resultado las gráficas de la Figura 26. Como se puede observar la curva de corriente y tensión se asemejan más a la curva de control: el resultado esperado.
Figura 25. Curva de corriente, tensión, control y descarga del banco de capacitores para el sistema OH sin la resistencia auxiliar.

Figura 26. Curva de corriente, tensión, control y descarga del banco de capacitores para el sistema OH con la resistencia auxiliar.

Ahora bien, esto conlleva a un precio bastante alto, pues la tensión que se requiere para lograr la corriente necesaria en cada una de las bobinas se debe aumentar. Se pasa a 3,2 kilovoltios el sistema OH y para el sistema TF se requiere 5 kilovoltios. Por lo tanto, se deben comprar bancos de capacitores más grandes, lo cual eleva el costo considerablemente. Para poner en perspectiva esto, el banco necesario para generar la Figura 25 tiene un costo de 25.000 dólares para todas las bobinas y para obtener las gráficas de la Figura 26 se requiere de 1.435.000 dólares para alimentar todas las...
bobinas. Si bien parece una suma astronómica, se justifica porque sería la primera vez que se estudiaría descargas en corriente alterna en un tokamak esférico: este sería un experimento sin precedentes y abre una nueva rama de investigación en el área de fusión en dispositivos de tipo tokamak esférico.

Para el circuito de potencia del sistema TF se utilizarán IGBTs modelo FZ750R65KE3, los cuales manejan 6500 Volts y una corriente 1500 Amper en pico. Se pondrán 11 en paralelo en cada una de las ramas. Y para el circuito de potencia del sistema OH se usará el IGBT modelo DD1200S45KL3_B5 ya que maneja 4,5 kilovolts y una corriente pico de 2400 Amperios, por lo que se pondrán 7 en paralelo para manejar la corriente necesaria en cada una de las ramas del puente H. Para ambas resistencias se utilizará una barra de acero inoxidable 304L. De forma experimental, se obtuvo que una barra redonda de 1/8 de pulgada de diámetro y una longitud de 1,15 metros hay 0.1 Ohm. Por lo cual, al ser lineal se debe de utilizar para el circuito de potencia del sistema TF como resistencia auxiliar una barra redonda de 1/8 de pulgada con una longitud de 5,41 metros para obtener 0,471 Ohm de resistencia. Para el circuito de potencia del sistema OH se requiere una resistencia de 0,165 Ohm por tanto se requiere una barra redonda de 1/8 de pulgada con una longitud de 1,90 metros.

Para el sistema de campo vertical, se sigue otra estrategia puesto que esas bobinas se utilizan para mover el plasma verticalmente dentro de la cámara de vacío. Se plantea un convertidor Buck pero con la salvedad de que la misma bobina se utiliza como filtro y la resistencia es la carga del sistema. Las curvas de salida se observan en la Figura 27. El cuidado que hay que tener es que se diseñó de manera tal que la descarga solo se dé después del transiente del sistema en aproximadamente 60 milisegundos, dejando 100 milisegundos de descarga.

Para este sistema se usará tres IGBT en paralelo del modelo FZ1200R45HL3 que soporta 4500 Voltios y una corriente de 1200 Ampere en corriente continua. Se utilizará dos diodos en paralelo modelo D721S el cual soporta 4000 Voltios en reversa y 1700 Ampere en corriente continua. Para el
4. Instalación de EFIT
Debido a su antigüedad, EFIT presenta inconvenientes a la hora de su instalación. El programa fue escrito en Fortran77 para computadores Cray (actualmente en desuso). El programa utiliza editores de texto y otras utilidades y versiones de sistemas operativos relativamente muy antiguos (de los 80). Estas son las instrucciones que se siguieron para la instalación de EFIT en su modo off line. Una vez que se obtiene el código fuente (mediante un contacto de General Atomics); se puede proceder con los siguientes pasos [1]:

a) Para facilitar la instalación se debe crear la estructura de directorios utilizada por el código original: crear el directorio efit; dentro de éste crear los siguientes cinco directorios 1) ex 2) green 3) p 4) u 5) ex. Dentro de Green crear 1) com 2) run 3) u.

b) Dentro de efit/green/run construir el archivo de datos de entrada ef950711.d3d para el programa EFUND según los valores del campo magnético y corrientes según sea el caso de equilibrio analizado. Los contenidos de este archivo de datos son enviados al archivo dprobe.dat para ser usado por EFIT.

c) Dentro de efund/green/u se encuentra efund.for. Se debe revisar que los parámetros definidos en ef950711.d3d sean los mismos que los usados en el programa EFUND en el archivo efund.for.

d) Dentro de efund/green/u ejecutar el comando make_all.com para generar un set de funciones EFUND con distintos mallados. Las tablas de las funciones de Green son calculadas y guardadas cuando se corre EFUND.

e) Compilar cada uno de los códigos EFUND con el comando compile_all.com

f) Dentro de efit/green/run editar el script de run_all.com para que las variables de control de EFUND no sean incluidas en el archivo dprobe.dat.

g) Se deben de ejecutar todos los códigos EFUND con el comando run_all.com. Las tablas de las funciones de Green son guardadas en efit/p.

h) Modificar el archivo eparmidx.for (que se encuentra en efit/x) para asegurarse de que las dimensiones de las variables mafpr2, nesum, necoil, nfoil, nsilop, nacoil, nvesel sean iguales a las usadas en efund.for.
Para la creación de los módulos ejecutables de EFIT; se usa el comando `make` dentro de efit/u.

Ahora es posible correr EFIT con el archivo de datos de entrada `efitd90 65` (para el mallado de 65 por ejemplo)

Nota: Convenio con el Colaboratorio Nacional de Computación Avanzada (CNCA)

Se está trabajando dentro de un convenio con el CNCA, en el cual el director de dicho departamento (Esteban Meneses) y el director del Grupo de Plasmas (Iván Vargas) establecieron un interés bilateral en el desarrollo de simulaciones y asesoría de la parte computacional de fusión y física de plasmas aplicada.

Hasta el momento para poder realizar la instalación se han hecho los siguientes cambios al proceso descrito anteriormente:

- En el paso d, los archivos `.com` fueron cambiados a archivos `.sh` y los `tedi` fueron cambiados a `ops`.
- Los archivos `ifix` fueron cambiados a `int`
- Ejecutar `make_all.sh` y `compile_all.sh`

PS: No se ha completado la instalación del programa EFIT debido a la falta de algunos archivos; que solo pueden ser facilitados por el creador y la empresa privada: L. Lao y General Atomics respectivamente. Actualmente contamos con el apoyo de Esteban Meneses y Daniel Alvarado CNCA y además del apoyo de Gustavo Paganini (Universidad of São Paulo Brasil), quien también está interesado en colaborar con nosotros y también tiene la necesidad de la instalación de EFIT. Recientemente se logró el ofrecimiento del Dr. Richard Buttery de General Atomics, para recibir ayuda y colaboración de parte de ellos en la instalación local en recursos del CNCA del código EFIT.

5. **Simulación con Fiesta**

Muestra del código

Se muestra a continuación el código de la función principal `medusa` con algunos comentarios agregados (también el código fue modificado en algunos `scripts`).

```plaintext
n=2^6+1;
grid=fiesta_grid(0.02, 0.4, n, -0.2, 0.2, n); % mallado

irod=(0.344*2*pi*0.132) / (4*pi*1e-7); %corriente de campo toroidal
  %irod 50 MA para MAST

z=get(grid, 'z');
r=0.03*ones(size(z)); %numero de elementos de z
limiter=fiesta_line('limiter', r, z); %frontera

f=fiesta_filament(0.325, 0.2, 0.01, 0.01, 7); %esta funcion define la
  %posicion/anocho/angulo de los filamentos
```
Existen más de 100 funciones dentro del programa; medusa es la función que acuerpa todas las funciones del programa y que finalmente da los resultados de convergencia y demás parámetros.

Resultados de simulación

Fiesta se puede correr desde cualquier computadora con Matlab instalado. El programa es relativamente grande y su entendimiento se complica puesto que el código no es explícito. Las imágenes en esta parte muestran el confinamiento en secciones transversales del volumen del plasma para cualquier ángulo toroidal (puesto que existe eje-simetria).
La misma corriente de plasma I_p fue utilizada para todas las simulaciones, esta es 0.23 MA y la corriente en las bobinas externas 0.018 MA, valores que corresponden a los presentados en [5]. El uso de corrientes más altas o más bajas produce de-confinamiento o volúmenes de plasma muy reducidos (hecho que podría ser utilizado para extender la duración de los pulsos). El uso de los circuitos en $r=0.185$ m con más de 25 vueltas (de bobinado) o menos de 4 vueltas no produce equilibrio, i.e. la solución diverge.
Los contornos de las superficies de flujo según las figuras 29 y 30 son en esencia los mismos. El contorno azul representa la LCFS. Los contornos representados en estas figuras se obtienen proyectando los recorridos helicoidales de las superficies de campo magnético sobre el plano RZ. La desviación de Shafranov (*Shafranov shift*) es notable considerando el punto rojo como en centro inicial del volumen del plasma en el plano del equilibrio. Esta desviación indica como es natural una fuerza radial hacia afuera debido a la geometría toroidal propia del *tokamak*. Es importante indicar que los contornos de la función de flujo corresponden a las superficies de campo magnético (superficies donde el campo tiene el mismo valor). El flujo magnético poloidal viene dado por la diferencia de dos funciones de flujo. Los contornos de las superficies magnéticas indican cómo se logra un mismo flujo de partículas para el área transversal del volumen del plasma, es decir donde se logra un confinamiento equilibrado.

La proporción de área de flujo magnético con valores por encima 11.5×10^{-3} Wb sobre el área total es considerablemente más grande para la geometría “D”.
Las figuras 31 y 32 nos permiten comparar las diferencias más relevantes entre la geometría D y la geometría “frijol” (en adelante geometría B).

Los resultados obtenidos son para la geometría B: beta poloidal $\beta_p=0.25$, beta toroidal $\beta_T=0.0016$, volumen del plasma 0.0518 m3, elongación $\kappa=1.432478$ and triangularidad $\delta=0.547298$.

Mientras que los resultados para la geometría D son: beta poloidal $\beta_p=0.27$, beta toroidal $\beta_T=0.0019$, volumen del plasma 0.0664 m3, elongación $\kappa=1.287416$ and triangularidad $\delta=0.427311$. Estos resultados muestran que aumentar el volumen de plasma produce una ganancia en β. La triangularidad mejora la curvatura de los campos magnéticos y también beneficia la supresión de instabilidades “kink” en tokamaks de mayor tamaño debido a que incrementa la tensión magnética en la frontera del plasma [31], y además, aumentar la elongación puede tener un efecto favorable en la tolerancia de la estabilidad aumentando el factor de seguridad; pues aumenta la distancia de recorrido de las partículas en el sentido poloidal [31]. Adicionalmente; la implementación de una geometría B puede justificarse pues actualmente hay dispositivos para los cuales los limitadores ergódicos se usan para mitigar modos inestables localizados en los bordes (“edge localized modes”) y reducir el gradiente de presión en la zona superficial interna [32, 33, 34].
Para aumentar la razón del área transversal total al área de alto flujo magnético (sobre los 1.5×10^3 Wb) se podría aumentar la altura del limitador ergódico, sin embargo, esto podría reducir el valor de β.

Las dos geometrías para la sección transversal dan resultados similares para la densidad de corriente (figuras 33 y 34); entonces, también se obtiene un resultado similar para el perfil de presión. Con la geometría B se obtienen valores relativamente más altos para la densidad de corriente en el centro del volumen del plasma, esto presumiblemente debido al trabajo hecho por el limitador ergódico.

Figura 33. Densidad de corriente para las geometrías D

Figura 34. Densidad de corriente para la geometría B.

En los gráficos de la figura 35 se presentan varios parámetros de equilibrio fundamentales; de MEDUSA-CR y el Mega Ampere Spherical Tokamak (MAST). El perfil de la densidad de corriente muestra mejor conductividad y flujo en el centro. El perfil de presión se puede obtener a partir del perfil de corriente. Es importante lograr la mayor densidad de corriente posible para así poder mejorar lo que se conoce como potencia de fusión; esto se logra mejorando el confinamiento y aumentado al máximo el volumen de plasma, por eso de nuevo; no se hacen necesarios las bobinas externas en el radio de 0.185 m
Idealmente el perfil de presión no debe de ser muy pronunciado o aplastado y esto se logra con un pequeño incremento en el gradiente de presión hacia el centro del plasma tal como sucede en una barrera de transporte débil [31]. En MEDUSA-CR el perfil de presión parece muy pronunciado, esto puede ser compensado aumentando el volumen del plasma sin comprometer el equilibrio. MEDUSA-CR muestra una asimetría más pronunciada para el flujo magnético.

Figura 35. Perfiles para distintos parámetros de MEDUSA-CR (izquierda) y MAST (derecha).

Conclusiones

Para el correcto funcionamiento del Tokamak Esférico MEDUSA-CR se implementó un sistema de vacío que permite alcanzar presiones de hasta 1×10^{-9} Torr. A su vez el mismo sistema permite el monitoreo de la presión de la cámara de vacío permitiendo controlar de manera precisa la presión de esta. Por otro lado, se plantea un nuevo diseño de la cámara de vacío que permite estandarizar las conexiones de los equipos a los que ya existe en el laboratorio. Finalmente cabe destacar que todos estos equipos ya están preparados con puertos de comunicación para su integración al sistema de control rápido y lento.

La implementación del sistema de inyección de gas permite inyectar gas en picos de 1 ms, tiempo que es lo suficientemente rápido para la inercia inherente al gas inyectado. De igual forma se diseñó lo más compacto posible y capaz de movilizarse dentro del laboratorio para futuras necesidades.

El diseño y simulación del sistema de control de corriente de las bobinas del Tokamak Esférico MEDUSA-CR presenta la oportunidad de habilitar otros modos de operación en este dispositivo. En este caso se diseñó y simuló para que pueda operar en modo AC, el cual permite realizar descargas de larga duración. Esto le da más relevancia al experimento pues amplía la capacidad de experimentación.
Simulación de confinamiento en MEDUSA-CR con el código Fiesta

La configuración magnética original de MEDUSA-CR permite varias predisposiciones para el confinamiento en equilibrio. Las bobinas externas en el radio menor son prescindibles, pues el campo producido por estas reduce significativamente el volumen de plasma o produce divergencia en la solución del equilibrio. En general la geometría D produjo resultados de beta ligeramente distintos, pero hay que tomar en cuenta que la geometría B posee una mejor compatibilidad con modos de alto confinamiento en tokamaks de mayor dimensión [35]. Además, la geometría B produce mayor triangularidad y elongación, lo cual favorece mayores límites de β y a su vez esto puede aumentar el factor de seguridad q y elevar la corriente del plasma; aparte, una configuración con un divertor natural (tal como lo previa la configuración original de MEDUSA) es más factible usando una geometría B. Pruebas experimentales deben de llevarse a cabo para validar los resultados de simulación.
Recomendaciones

Con la intención de volver más eficiente el proceso de vacío se recomienda la compra de un sistema de bombeo exclusivo para el Tokamak Esférico MEDUSA-CR, esto permitiría mantener condiciones más limpias del sistema y facilita su operación. Para garantizar un vacío adecuado es recomendable mantener la cámara en vacío el mayor tiempo posible. Esto implica no ventear la cámara, a menos claro que se requiera realizar un mantenimiento o algún cambio de montaje experimental.

Para la manufactura de la cámara de vacío se recomienda utilizar un proveedor internacional como LESKER o MDC, los cuales son expertos en la manufactura de equipos sometidos a condiciones de vacío.

Es imperativo que el sistema de inyección de gas solo sea utilizado con el Hidrogeno, esto se debe que al utilizar cualquier otro gas se contaminaría la tubería y perdería la pureza el hidrogeno que se llegue a inyectar a la cámara de vacío. Es por esto por lo que si se requiere el uso de algún otro gas se implemente un sistema aparte.

Para la implementación del sistema de carga y descarga de los capacitores es importante tomar en cuenta que se maneja una gran cantidad de energía, por lo cual es imperativo poner sistemas que puedan abrir el circuito de manera independiente al sistema de control, en caso de que se requiera deshabilitar el trasiego de energía.

Con respecto a la simulación de confinamiento; las recomendaciones que se pueden dar son las siguientes. Con la experiencia del proyecto; se recomienda el uso de programas de simulación en lenguajes de programación modernos. Además, considerando que en la simulación presentada aquí se consideraba siempre un eje simetría en el sentido toroidal; es recomendable y podría dar resultados interesantes, simulaciones considerando cambios en la derivada toroidal. El uso de EFIT tiene la limitante de que, para explotar todo su verdadero potencial, se necesita tener paralelamente un sistema de lectura de diagnósticos en tiempo real. Adicionalmente; aparte de las simulaciones de equilibrio, es también importante generar simulaciones según el método de field line tracing que puede servir a propósitos de una visualización más atractiva.
Referencias

[10] [En línea] https://s-media-cache-ak0.pinimg.com, Recuperado el 10 agosto 2017

[17] I. S. Carvalho, “ISTTOK real-time architecture” Fusion engineering and design, 2013

[28] Luo Jia-rong, Review of the Equilibrium Fitting for Non-Circular Tokamak,

[34] D. Gates, et al., “Overview of results from the National Spherical Torus Experiment (NSTX),” Nuclear Fusion 49, 104016, 2009

Agradecimientos

El grupo de investigadores de este proyecto agradece a la Vicerrectoría de Investigación y Extensión del Instituto Tecnológico de Costa Rica y a la Escuela de Física por el apoyo brindado para el desarrollo de este proyecto.