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ESTABLISHMENT AND CHARACTERIZATION OF A BRAIN CELL CULTURE 

MODEL SYSTEM OF MYOTONIC DYSTROPHY TYPE 1  

 

 

Annette Vaglio Garro* 

ABSTRACT 

 
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by the expansion of an 

unstable CTG repeat in the 3’UTR of the dystrophia myotonica-protein kinase (DMPK) gene. DM1 is the 

most common form of adult muscular dystrophy. It was initially considered as a muscle disease, but today it 

is known that DM1 is a multisystemic disease that affects many tissues and organs, including the central 

nervous system (CNS). Indeed, DM1 patients present debilitating neurological manifestations, such as 

hypersomnia, cognitive and learning impairment. Congenital DM1 shows severe mental retardation. The 

unsteady CTG sequence in DM1 tends to expand in size when it is transmitted vertically from one generation 

to the next. Intergenerational trinucleotide repeat instability serves as the molecular explanation of the 

phenomenon of anticipation, meaning the increasing severity and decreasing age of onset in successive 

generations of a DM1 families The repeat is also unstable in somatic tissues, continuing to expand 

throughout the patient´s life. 

Important symptoms of DM1 are explained by the nuclear accumulation of toxic, expanded DMPK 

transcripts and subsequent deregulation of RNA-binding proteins, which leads to missplicing in multiple 

tissues, including brain. However the molecular pathways contributing to DM1 neuropsychological 

dysfunction are still unknown. 

To investigate the disease pathogenesis, DMSXL transgenic mice, carrying large CTG expansions (>1000 

repeats) within the human DM1 locus, were generated and studied. In the CNS, these animals show RNA 
missplicing, as well as Tau hyperphosphorylation, recreating, to a certain extent, the spliceopathy and 

tauopathy described in humans. A global proteomic approach and the study of candidate genes on DMSXL 

brains revealed molecular abnormalities in proteins involved in the regulation of calcium metabolism. These 

findings suggest that the DM1 CTG expansions may affect calcium homeostasis in the CNS. 

To validate this hypothesis, neuroblastoma and astroglioma cell lines have were transfected with a large CTG 

repeat expansion. These cell model systems recreate important features of the DM1 molecular pathology, 

such as toxic RNA accumulation in the nuclei, missplicing of critical candidate genes. Nevertheless, no 

obvious splicing abnormalities were detected in the list of genes involved in calcium metabolism, selected for 

this study.  

In contrast to the findings reported in skeletal muscle and heart of DM1 patients, CELF1 expression was not 

significantly changed by the CTG expansion in cultured brain cells. 

In conclusion, the presence of foci and missplicing of some candidate genes validates our brain model system 

of DM1-associated RNA toxicity. However, the system may require further studies and refinement to 

perform functional analysis of calcium metabolism and flux at later stages. 

 

Key words: myotonic dystrophy, calcium metabolism, transgenic mice, RNA toxicity, alternative 
splicing, cell culture model system. 
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ESTABLISHMENT AND CHARACTERIZATION OF A BRAIN CELL CULTURE 

MODEL SYSTEM OF MYOTONIC DYSTROPHY TYPE 1 

  
 

Annette Vaglio Garro* 

 

RESUMEN 
La Distrofia Miotónica tipo 1 (DM1) es una enfermedad genética autosómica dominante causada por la 

expansión inestable de las repeticiones CTG en la región 3’UTR del gen de la distrofia miotónica de una 

proteína kinasa (DMPK). DM1 es la forma adulta más común de distrofia muscular. Inicialmente fue 

considerada como una enfermedad muscular, hoy en día se sabe que DM1 es una enfermedad multisistémica 

que afecta a varios tejidos y órganos, incluyendo el sistema nervioso central (SNC). En efecto, los pacientes 

con DM1 presentan debilitamiento neurológico, así como hipersomnolencia, discapacidades cognitivas y de 

aprendizaje. La forma congénita de DM1 muestra retardo mental severo. La poca estabilidad de la secuencia 

CTG en DM1  tiende a expandirse en tamaño cuando se transmite de manera vertical de una generación a la 

siguiente. El desequilibrio de las repeticiones trinucleótidas intergeneracionales sirve como explicación 

molecular del fenómeno de anticipación, indicando un aumento en la severidad y una disminución en la edad 

de inicio en generaciones sucesivas de una familia con DM1. La repetición también es inestable en tejidos 

somáticos, expandiéndose a través de la vida del paciente. 

Algunos síntomas importantes de DM1 son explicados por la acumulación nuclear de toxinas, transcritos 

extendidos de DMPK y subsecuentemente la desregulación de ARNs que unen proteínas, lo cual origina el 

editaje incorrecto en múltiples tejidos, incluyendo el cerebro. Por otro lado el mecanismo molecular que 

contribuye a la neurodisfunción sicológica en DM1 sigue siendo desconocido. 

Para investigar la patogénesis de la enfermedad, se creó y estudio el ratón transgénico DMSXL, que contiene 

largas expansiones de CTG (>1000 repeticiones) de humanos. En el SNC, estas anormalidades muestran 

missplicing del ARN, así como la hiperfosforilación de Tau, recreando la spliceopatía y taupatía descrita en 

humanos. Un enfoque global proteómico y el estudio de genes candidatos en muestras de cerebro del ratón 

DMSXL revela anormalidades moleculares en proteínas involucradas en la regulación del metabolismo del 

calcio. Estos descubrimientos sugieren que las expansiones de la repetición CTG en DM1 pueden afectar la 

homeostasis de calcio en el SNC. 

Para validar esta hipótesis, líneas celulares de neuroblastoma y astroglioma fueron transfectadas con 

expansiones de las repeticiones de CTG. Este modelo celular recrea importantes características de la 

patología molecular de DM1, como la acumulación de ARN tóxico en el núcleo y el missplicing en genes 

candidatos críticos. Sin embargo, no se detectó anormalidades en el proceso de corte y empalme para la lista 

de genes candidatos analizados y relacionados al metabolismo del calcio en este estudio. 

En contraste con lo reportado en estudios previos de muestras musculares y cardiacas de pacientes con DM, 

los cambios en la expresión de CELF1 no fueron significativos en las células cerebrales que contenían la 

expansión de CTG. 

En conclusión, la presencia de foci y missplicing en algunos genes candidatos valida este sistema modelo de 

células cerebrales como útil para estudiar la enfermedad DM1 asociado a la toxicidad del ARN. Por otro 

lado, el sistema requiere otros estudios y el desarrollo refinado de análisis funcionales del metabolismo y 

flujo de calcio en etapas posteriores. 

 

Palabras claves: distrofia miotónica, metabolismo del calcio, ratón transgénico, toxicidad del ARN, splicing 

alternativo, sistema modelo de cultivo celular. 
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INTRODUCTION 
 

For a long time, the human genome was considered as an intrinsically stable entity. At 

present we know that our genome contains many unstable elements consisting of tandem 

repetitive elements that range in length from two to several thousand of nucleotides 

(Bermudez & Cisneros, 2008). 

  

Triplets repeat mutations were discovered in 1991, and since that date they have been 

identified as the cause of multiple human diseases. The repeats are polymorphic in the 

normal, non-affected population, and they are believed to have no phenotypic 

consequences until reaching a certain pathogenic length, characteristic of each gene. 

Actually, 16 human neurological and neuromuscular disorders are known to be caused by 

the expansion of (CUG)n, (CGG)n, (CCG)n, (GAA)n, and (CAG)n trinucleotide repeats in 

single genes.  These diseases include myotonic dystrophy type 1, fragile X syndrome, 

Friedreich ataxia, spinocerebellar ataxias and Huntington disease. Their common feature is 

genetic anticipation, whereby the age of disease onset decreases in successive generations 

of an affected family (Bermudez & Cisneros, 2008; Kohwi, 2004). 

 

Myotonic dystrophy (DM) is one of the most variable human disorders and the most 

common adult onset muscular dystrophy, affecting mainly skeletal muscle, heart, and the 

central nervous system (CNS). DM worldwide prevalence is estimated to be ~1/8,000. 

Mutations in two genes cause DM. DM type 1 (DM1) is caused by the expansion of a CTG 

repeat within the 3' untranslated region of the DMPK (myotonic dystrophy protein kinase) 

gene; and DM type 2 (DM2) is caused by a CCTG repeat expansion in intron 1 of the 

ZNF9 (zinc finger protein in gene 9). The pathogenic mechanism involves a novel RNA 

gain of function in which repeat-containing transcripts from the expanded DMPK or ZNF9 

allele accumulate in nuclei and alter the functions and distribution of RNA binding 

proteins involved in regulating alternative splicing, mRNA transcription and translation 

(Ranum & Cooper, 2006). 
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DM1 research initially concentrated on muscle and cardiac pathology, while the 

neurological symptoms were somehow overlooked and neglected. This view has changed 

dramatically over the last few years. Research scientists, medical doctors and other health 

professionals have recognized the heavy impact of the disease on the CNS and on the 

patient’s quality of life. The congenital form of the disease is characterized by a severe 

mental retardation. Some of the symptoms like hypersomnia (excessive daytime 

sleepiness), learning problems, personality disturbances, reduced initiative and social 

avoidance have all been reported and considered as highly debilitating by adult and 

juvenile DM1 patients (Meola & Sansone, 2007; Bermudez & Cisneros, 2008; Morales et 

al., 2001). 

 

Although circumstantial data have supported a role of trans-dominant toxic RNA 

transcripts in DM1 brain dysfunction, the molecular pathophysiology of the neurological 

symptoms remains elusive. The establishment of a functional link between trinucleotide 

repeat expansion, expression and accumulation of toxic RNA molecules, cell dysfunction 

and the development of neurological symptoms will provide scientific advances in the 

understanding of the mechanisms of DM and other repeat expansion disorders.  

 

The INSERM U781 host laboratory takes advantage of transgenic mice to investigate the 

mechanisms of DM. Transgenic DM mice express an expanded DMPK gene in multiple 

tissues, such as the CNS. These animals recreate important aspects of the DM1 repeat 

dynamics and phenotype, notably brain abnormalities, and provide a unique resource to 

investigate the far-reaching biological consequences of the trans-acting pathogenic 

expansion in the CNS. Preliminary evidence suggests deregulation of calcium metabolism 

in the CNS of DM transgenic mice in response to the expression of toxic CUG-containing 

transcripts. Calcium homeostasis plays an important role in the CNS, so calcium 

abnormalities might have important physiological consequences, and contribute to the 

neurological manifestations of the disease. 
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The advances in biotechnology have resulted in the development of transgenic mouse 

models of complex human diseases, such as DM. Indeed, more than 20 DM mouse models 

are currently available. The study of multiple transgenic lines over the years has greatly 

contributed to dissect the molecular mechanisms behind the onset of symptoms, and to put 

forward a new disease mechanism based on the toxicity of non-coding RNAs. Currently, 

the new challenge for Biotechnology is to make use of these animals to identify targets for 

therapeutic intervention. The understanding of molecular mechanisms of disease will help 

design and test new and efficient methods of therapy. New therapies might be first tested in 

transgenic animal models generated by biotechnological methods and which recreate key 

features of the disease. The on-going research will contribute to the establishment of a 

rational basis for the development of future therapeutic assays. 

 

The project described and discussed in this report, addresses the molecular and cellular 

bases of the neurological dysfunction reported in DM1 patients, focusing in possible 

alterations in calcium metabolism in brain cells (neuroblastoma and glioblastoma). 
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LITERATURE REVIEW__________________________________ 

Clinical picture of myotonic dystrophy (DM): 

DM is the most common form of adult muscular dystrophy; including two genetically 

distinct but clinically similar disease forms. DM1 accounts for the majority of DM cases 

(traditionally >95%). The remaining 5% are usually attributed to myotonic dystrophy type 

2 (DM2). DM1 is a truly multisystemic disorder, showing great variability of disease 

manifestations and age of onset. The adult onset form of DM1 typically shows progressive 

muscle weakness and wasting, myotonia, presenile cataracts, cardio-respiratory problems, 

hypersomnia and hyperinsulinism. Behavioural changes and cognitive dysfunction are also 

frequent. The progressive nature of the disease often leads to significant disability. The 

more severe congenital form of DM1 is characterized by general hypotonia and respiratory 

distress at birth, as well as delayed motor development and severe mental retardation 

(Harper, 2001). Currently there is no satisfactory treatment. 

Neuropsychological symptoms of DM1: 

Given the prominent muscle weakness and myotonia (slow relaxation of the muscles after 

voluntary contraction), DM was initially considered a muscle disease. However, DM is a 

multisystemic disease affecting virtually all tissues and organs, including the CNS. 

Hypersomnia, cognitive deficits and learning difficulties, reduced initiative, anhedonia, as 

well as avoidant, obsessive-compulsive, and passive-aggressive personalities have been 

reported to a variable extent (Harper, 2001). The marked impairment of the cognitive 

control of behaviour suggests mental dysfunction (Meola et al., 2003). Congenital patients 

suffer from severe mental retardation. Neuropsychological symptoms are usually milder in 

DM2 (Meola & Sansone, 2007). DM1 patients, in particular suffering from the juvenile 

form of the disease, present cognitive impairment in all measures of general intelligence 

and verbal fluency and particularly frontal, executive, visuospatial, arithmetic, and 

attention ability deficits (Abe et al., 1994; Modoni et al., 2004; Winblad et al., 2006). 
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Neuropathology of DM1: 

Neuropathology studies revealed a number of findings associated with DM1. Cell loss in 

the cerebral cortex, neuronal inclusion bodies (mostly in the thalamus, caudate and other 

brainstem nuclei), decreased myelin sheathing, and increased neurofibrillary tangles. 

Neurofibrillary tangles are present in the limbic system and/or the brainstem, 

hippocampus, entorhinal cortex, and temporal areas. Corpus callosum atrophy was 

described in association with sleep perturbation, one of the most distinctive DM1 features. 

No significant decrease in the volume of parietal cortex has been found in DM1 patients. 

No senile plaques or amyloid beta deposits have been detected so far. The increased levels 

of phosphocreatine, choline, and myoinositol found in DM1 patients suggest increased 

glial content and cell membrane abnormalities in brain (Bermudez & Cisneros, 2008). 

Recent imaging studies will help elucidating the relationship between brain structural 

abnormalities, metabolism abnormalities and DM neuropsychological manifestations 

(Romeo et al., 2010; Wozniak et al., 2011).  

 

Despite circumstantial evidence suggest on-going and progressive CNS dysfunction DM1, 

little is known about the mechanistic link connecting DNA mutation, to molecular 

abnormalities, histopathology, dysfunctional pathways and development of 

neuropsychological symptoms. 

Genetics of DM: 

DM1 is caused by the autosomal dominant expansion of an unstable CTG repeat in the 

3’UTR of the DM protein kinase (DMPK) gene (Brook et al., 1992). There is a broad 

correlation between repeat size and the age of onset and the severity of symptoms. The 

repeat normally ranges between 5–37 CTG in the non-affected population (Tsilfidis et al., 

1992). Individuals with 50-100 CTG repeats present late-onset DM1, mainly characterized 

by premature cataracts. Repeat sizes of 100-500 CTG repeats are associated with the 

classical adult onset of DM1, which presents myotonia, muscle weakness, cardiac 

conduction defects, endocrine dysfunction, cognitive decline, behavioural changes and 

hypersomnia. The most severe form of the disease, the congenital form, is developed by 

individuals that inherit more than 500, up to >4000 CTG repeats (Harper et al., 2001). The 

boundaries are not rigid, and there might be some overlapping of repeat lengths between 

different forms of the disease.  
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The expanded CTG sequence is unstable and tends to expand in size as it is transmitted 

vertically within a family (from one generation to the next). For this reason, 

intergenerational, expansion-biased, trinucleotide repeat instability serves as the molecular 

explanation of the phenomenon of anticipation, whereby disease severity increases and age 

of onset decreases in successive generations of a DM1 family (Harper et al., 1992). 

 

The CTG repeat is also unstable in somatic tissues. The somatic instability of DM1 CTG 

repeats has been reported in a wide range of human tissues. Somatic expansion in DM1 is 

clearly age dependent, with longer average DM1 repeat lengths and broader ranges of 

variability observed in older patients. Somatic mosaicism analysis have revealed a gradual 

increase in allele length and variation with age, demonstrating that expansion is mediated 

by multiple small length changes in a highly deterministic pathway, which most certainly 

contributes to phenotypic variability and disease progression (Gomes-Pereira & Monckton, 

2006).  

 

The DM2 is caused by the expansion of a CCTG tetranucleotide in the first intron of ZNF9 

gene (Liquori et al., 2001). 

Differences between DM1 and DM2 

DM2 is generally milder than DM1 and lacks a severe congenital form. The muscle 

histopathology observed in DM1 is also seen in DM2. The main difference between DM1 

and DM2 consists in the muscle groups mainly affected in each disease: DM1 affects 

mainly distal muscles, while DM2 affects primarily proximal muscles. The non-muscle 

manifestation, cataracts, cardiac arrhythmias, abnormalities of the cerebral hemispheric 

white matter and hypogonadism are presented in both diseases. The in vitro and cell 

culture work have suggested the possibility that methylation occurring at the DM1 locus in 

congenital cases, may increase DMPK expression by activating the nearby SIX5 enhancer, 

a model consistent with the idea that increased expression of CUG expansion transcripts in 

congenital DM1 may cause the more severe phenotype than in DM2 (Mankodi et al., 2001; 

Ramun & Cooper, 2006).  
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The parallel between DM1 and DM2 is explained by a common mechanism of 

pathogenesis, mediated by a dominant gain of function of expanded mRNAs (Ranum & 

Cooper, 2006). 

Molecular pathogenesis of DM1: the toxic RNA hypothesis 

The development of transgenic mice pointed to a novel disease mechanism mediated by 

toxic RNA repeats. Expanded DMPK transcripts accumulate in the nuclei of DM1 cells, 

interfering with at least two protein families that act antagonistically on the regulation of 

alternative splicing throughout development: the muscleblind-like (MBNL) and 

CUGBP/Elav-like family (CELF) proteins: MBNL1 function is loss due to sequestration 

by ribonuclear aggregates or foci, and CELF1 (or CUG-binding protein 1, CUGBP1) is 

upregulated. MBNL1 sequestration and CELF1 upregulation recreate a foetal scenario, 

resulting in aberrant expression of embryonic splicing profiles of MBNL1- and/or CELF1-

regulated transcripts in adult skeletal muscle and heart. CLCN1 chloride channel 

missplicing in skeletal muscle results in myotonia, whereas abnormal splicing of the 

insulin receptor may contribute to insulin resistance (Ranum & Cooper, 2006). More than 

20 alternative splicing events in more than 20 different genes are misregulated in different 

DM1 tissues, contributing to the multisystemic nature of DM (Osborne, 2006). It is likely 

than many more remain to be identified. Nevertheless, DM molecular pathogenesis may go 

beyond spliceopathy and involve deregulated gene expression (Ebralidze et al., 2004; 

Osborne et al., 2009; Botta et al., 2007).  
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Splicing Abnormalities: 

Alternative splicing provides a regulatory mechanism by which vertebrates can regulate 

the expression of tissue-specific or developmental stage-specific protein isoforms. RNA 

binding proteins, which regulate the alternative splicing, bind to specific sequence 

elements in the pre-mRNA to enhance or repress inclusion of alternative exons. 

Deregulation of alternative splicing can cause the expression of inappropriate isoforms 

leading to human disease. Missplicing in DM1 is limited to specific pre-mRNA targets, 

rather than affecting splicing in general. In all cases the expression of foetal protein 

isoforms that are inappropriate for adult tissues have been observed in DM1 patients. 

Misppliced genes in skeletal and cardiac muscles include cardiac troponin T (TNNT2), 

insulin receptor (IR), muscle-specific chloride channel (CLCN1), myotubularin- related 

protein 1 (MTMR1), fast skeletal troponin T (TNNT3), ryanodine receptor (RyR), and 

sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA1) (Osborne et al., 2009). 

Two splicing events have been associated with muscle symptoms: insulin resistance and 

myotonia observed in DM1 correlate with disruption of splicing of IR and CLCN1, 

respectively (Osborne et al., 2009). The physiological consequences of other splicing 

defects are not fully understood. 

 

Some other genes are affected in DM1 brains: TAU (MAPT), N-methyl- D-aspartate 

receptor 1 (NMDAR1), and amyloid precursor protein (APP) (Jiang et al., 2004). 

Nevertheless the impact of these abnormalities on brain dysfunction and contribution to 

DM1 neuropsychological manifestations requires further studies. 
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MBNL Sequestration: 

Two different alternative splicing regulator families have been implicated in the DM 

molecular pathogenesis: MBNL and CELF proteins. 

 

MBNL1 and MBNL2 (muscleblind-like proteins) are RNA bindings proteins, mainly 

involved in the regulation of alternative splicing of pre-mRNA targets. MBNL1 and 

MBNL2 colocalize with DM1 and DM2 ribonuclear foci (Fardaei et al., 2002). The role of 

MBNL1 loss of function in DM (due to protein sequestration) is corroborated by the 

phenotype observed of Mbnl1 knock-out mice, which develop myotonia associated with 

splicing misregulation of CLCN1, and decreased expression of the chloride channel in 

skeletal muscle. In addition Mbnl1 knock-out mice develop the same type of cataracts than 

DM1 patients (Kanadia et al., 2003). In summary, MBNL1 sequestration by nuclear foci 

and subsequent loss of function is sufficient to generate some key features of the DM1 

phenotype. 

CELF upregulation:   

CELF1 has been originally identified given its ability to bind CUG RNA repeats in vitro 

(Timchenko et al., 1996). Six CELF genes have been identified in humans. All six CELF 

proteins have been shown to regulate pre-mRNA alternative splicing and two (CELF1 and 

CELF2) have cytoplasmic RNA processing functions (Barreau et al., 2006). CELF1, as 

well as other CELF family members, regulates alternative splicing of at least three of the 

pre-mRNAs that are mis-regulated in DM1 striated muscle: cardiac troponin T (cTNT), 

insulin receptor (IR) and CLCN1. In brain, CELF proteins regulate the alternative splicing 

of TAU and NMDAR1 mRNAs (pre-mRNAs that displayed missplicing in DM1 cortical 

neurons) (Barreau et al., 2006). 

 

In DM1 tissues, CELF1 is hyperphosphorylated by PKC, resulting in increased stability 

and subsequent upregulation (Kuyumcu-Martinez et al., 2007). CELF1 upregulation per 

se, is sufficient to induce missplicing in the heart and skeletal muscle of transgenic mice 

overexpressing this protein (Koshelev et al., 2010; Ward et al., 2010). CELF1 is therefore 

a central player in DM1 pathology. The role of other CELF members in the mechanisms of 

DM1 is less clear. Currently it is not known to which extent CELF deregulation contributes 

to DM2 or brain dysfunction (in both DM1 and DM2). 
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RNA missplicing in the CNS: findings and implications 

The analysis of post-mortem DM1 brains has revealed defects in the alternative splicing of 

some genes (Jiang et al., 2004). Nevertheless the implications of these molecular 

abnormalities to DM1 neuropathophysiology are not fully understood. 

Missplicing  of TAU: 

TAU (MAPT) protein belongs to the microtubule associated family, and it is essentially 

expressed in neurons, where its main function is to regulate the microtubule network. This 

protein plays an important role maintaining the stability of the neuronal cytoskeleton 

through the interaction with microtubules. TAU is involved in the pathogenesis of 

neurodegenerative disorders. In adult human brain the alternative splicing of exons 2, 3 

and 10 transcripts give six TAU isoforms. The DM1 CTG repeat expansion alters TAU 

alternative splicing, probably affecting TAU protein binding to microtubule or affecting 

the post transcriptional maturation of TAU pre-mRNA. Although it is unclear how TAU 

missplicing is related to DM1 neuronal dysfunction, neurofibrillary tangles containing 

TAU have been described in DM1 patients (Bermudez & Cisneros, 2008). 

Missplicing of NMDAR1: 

N-methyl- D-aspartate receptor 1 (NMDAR1) is required for normal long term potentiation 

in the hippocampus as well as in learning processes. An increased inclusion of NMDAR1 

exon 5 has been observed in the temporal cortex of DM1 patients (Jiang et al., 2004). 

Inclusion of this exon influences pharmacological behaviour, gating, and subcellular 

distributions (somatic rather than somato-dendritic expression) of this receptor (Zukin et 

al., 1995). It has been suggested that exon 5 altered splicing may account for the memory 

impairment observed in DM1 patients. It is thought that CELF proteins participate in the 

regulation of exon 5 alternative splicing of NMDAR1 mRNA. Nevertheless, it is still 

unclear how the DM1 mutant transcripts could interfere with this NMDAR1 missplicing in 

brain and explains some neurological manifestations of the disease process. No 

colocalization has been observed between CELF proteins and DM1 associated RNA foci in 

neurons (Jiang et al., 2004). 
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Misscplicing in APP: 

The APP may function as a “cell surface receptor”, controlling intracellular signalling 

pathways. APP and its derivatives have been implicated in the regulation of G-protein 

coupling, calcium homeostasis, neurite outgrowth and adhesion (Linde et al., 2011). It is 

known that alternative splicing generates three different APP splicing variants. An 

increased expression of APP foetal splice isoform lacking exon 7 in the temporal cortex of 

DM1 patients has been reported (Jiang et al., 2004), yet no information is available about 

the functional significance of this splicing alteration in DM1 (Bermudez & Cisneros, 

2008). 

Others missplicing genes: 

Has been proved that NMDAR, TAU and APP genes have an obvious splicing defect in 

brain human samples, based on this is probable to evaluate the possibility to find others 

missplicing sites or defects and changes in the expression levels of genes in brain, 

associated with the CNS in DM1 which have not been described yet. 

The DMSXL mice: a transgenic model of RNA toxicity  

The mouse presents an ideal animal model to assess repeat biology in vivo, given its 

relatively short generation time, genetic similarity to humans and ability to be genetically 

manipulated. Transgenic mice have been generated to provide in vivo models to study 

repeat instability in the germ line and during somatic development, as well as to provide 

models of disease pathogenesis. These mouse models have proved to be an excellent tool 

to investigate the molecular mechanisms mediating simple repeat expansion. Mouse 

models have been generated to explore the mechanisms to DM molecular pathogenesis 

(Wansink & Wieringa, 2003). 
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In the host laboratory, and in order to dissect the pathophysiology associated with toxic 

RNA transcripts, a large genomic fragment of the human DM1 locus, comprising the 

DMPK gene and a variable number of CTG repeats, was inserted in the mouse genome. 

Transgenic lines were created carrying control 20-CTG tracts (DM20 lines) or disease-

associated 320-CTG sequences (DM300 lines). The DM300 mice recreate nuclear RNA 

foci accumulation, as well as histological and electrophysiological abnormalities, including 

myotonia, atrophy and fibrosis of skeletal muscle. In the CNS, DM300 exhibit TAU 

hyperphosphorylation and misdistribution of TAU protein isoforms (Seznec et al., 2001), 

mirror the tauopathy described in DM1 patients (Sergeant et al., 2001). The dramatic 

expansion based intergenerational repeat instability resulted in mice carrying more than 

1000 CTG repeats (DMSXL mice). These animals show a more severe phenotype, 

including extensive foci accumulation and splicing defects of relevant genes in the CNS, 

and represent an excellent tool to unravel the neuropathogenesis of DM1 (Gomes-Pereira 

et al., 2007). 

 

The DMSXL mice of the host laboratory represent the only animal model that recreates 

both trinucleotide repeat instability and a phenotype associated with DM1, notably brain 

specific abnormalities. Currently, no other DM1 mouse model has recreated molecular or 

physiological abnormalities in the CNS. Therefore, these animals present the best available 

tool to decipher the molecular and cellular aspects of DM1 neuropathology and to test 

future therapeutic strategies.   
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Preliminary results: investigation of disease targets in the CNS of a mouse model of 

DM1 

In order to identify new proteins and pathways affected by the trinucleotide repeat 

expansion in the CNS of transgenic mice, the host laboratory has used a global proteomic 

approach. The comparison of the proteomic profiles of frontal cortex and brainstem 

between the expansion line available at the time of the analysis (DM300) and the short 

repeat line (DM20) resulted in the identification of ~30 candidate target proteins, which 

appear to be affected by the CTG expansion. The proteomic approach reveals not only 

differences in the expression levels of proteins targeted by the mutation, but also disease 

associated post transcriptional and/or post translational modifications (such as differences 

in phosphorylation). The proteomic analysis is currently being extended to DMSXL mice 

(carrying more than ~1000 CTG, up to ~1800 CTG), in order to identify molecular 

abnormalities triggered by larger repeat expansions, which might have been disregarded in 

DM300 mice previously used (carrying ~600 CTG). Some of the proteins identified are 

involved in the regulation of calcium metabolism and homeostasis, suggesting that the 

CTG repeat expansion may affect calcium signalling pathways in the CNS. In further 

support of this hypothesis, other research groups have performed microarray expression 

analysis of skeletal muscle collected from DM1 patients and other transgenic mouse 

models, and found expression abnormalities in genes involved in calcium homeostasis 

(Botta et al., 2007; Osborne et al., 2009). 
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Cell lines used to validate and complement the analysis of DMSXL transgenic mice. 

For the development of this project three human cell lines were chosen: SH-SY5Y, T98-G 

(both from brain) and HeLa (epithelium). The following information was taken from 

www.lgcstandards-atcc.org  

 

• SH-SY5Y is a neuron cell line obtained from human neuroblastoma, which 

provides a neuronal cell system in culture to study the molecular and cellular 

effects of the CTG repeat expansion.   

• T98-G is an astrocyte cell line derived from a brain glioblastoma, which retains 

important glial properties and is therefore used to model the pathophysiological 

consequences of the DM1 mutation in astrocytes. 

• HeLa cells are epithelium cells derived from the adenocarcinoma cervix. These 

cells have been selected given that in contrast with neurons and astrocytes, HeLa 

cells are easy to transfect by standard procedures, and serve as a transfection 

control in these experiments. 

Advantages and Limitations of cell lines 

The use of cell lines could be an option to develop some investigation that are no possible 

on human or mouse tissue samples. They present some advantages, like the possibility to 

control the culture conditions (as pH, temperature, osmotic pressure, O2 and CO2 tension) 

using the appropriated mediums, serums and constituents. Importantly, cell lines are 

homogeneous populations, which self-replicate and provide a continuous source of 

material. In vitro cultures reduce expenses, and have less legal, moral and ethical 

requirements, when compared to animal experiments. The development of histotypic and 

organotypic models also increases the accuracy of in vivo modelling. However, there are 

also some limitations:  occasionally the dedifferentiation of some cell lines is required to 

get a suitable model for obtaining appropriated results, sometimes it is difficult to relate the 

cultured cells to functional cells in the tissue from which they were derived and also 

genetic instability is a big problem with many continuous cell lines, as a result of their 

unstable aneuploidy chromosomal constitution. Even with short-term cultures of 

untransformed cells, heterogeneity in growth rate and the capacity to differentiate within 

the population can produce variability (Freshney, 2005). 

 

http://www.lgcstandards-atcc.org/
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The transfection of the neurons and astrocytes is very important to confirm the previous 

results obtained in the transgenic mice supporting the idea that molecular abnormalities 

detected in mice are the consequence of the expression of toxic CTG repeats. Together will 

be useful to provide a cell model system that is easy to manipulate and in which it is 

possible to test the functional consequences of the molecular abnormalities in calcium 

metabolism.   

 

In order to study the calcium metabolism and follow the validation of RNA toxicity, was 

used a cell culture model system of DM1 transfected cells with 960 CTG repeats (neuron 

and astrocyte). In addition, HeLa cell lines with a DMPK construct containing 960 CTG 

repeat, were used. Epithelium cells worked as a control for transfection, knowing that this 

cell line is easier to transfect than neurons and astrocytes. A construct containing no CTG 

repeats was used as control to evaluate if the presence of the DMPK gene without repeats 

could generate some defect in the transfected cells. 
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OBJETIVES 
 

GENERAL OBJETIVE: 

 

• To establish and characterize a brain cell culture model system of myotonic dystrophy 

type 1 to study calcium metabolism deregulation and homeostasis.  

 

SPECIFIC OBJETIVES: 

 

1. To detect the presence and the right sizes of the CTG repeat expansion in the 

plasmid DT960 and compare with DMPKS plasmid as control. 

 

2. Once the right CTG repeat size were confirmed, transfected cell lines were used to 

identify the presence and the quantity of foci in transfected SH-SY5Y (neurons), 

T98-G (astrocytes) and HeLa (epithelium) cells lines. 

 

3. To study the impact of the 960 expanded CTG repeats on the alternative splicing of 

candidate genes in SH-SY5Y (neurons), T98-G (astrocytes) and HeLa (epithelium) 

cells lines transfected with expanded and control DMPK construct. 

 

4. To measure the expression levels of candidate genes SH-SY5Y, T98-G and HeLa 

cells lines transfected with DMPK, containing or not the CTG repeat expansion. 

 

5. To investigate the steady levels of the candidate proteins in the population cells 

lines (SH-SY5Y, T98-G and HeLa), transfected with expanded and control DMPK 

construct. 
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MATERIALS AND METHODS: 

1. PLASMID TEST: 

Two plasmids were used to transfect cells: 

• The DT960 plasmid contains a fragment of the human DMPK gene carrying 960 

CTG repeats in the 3’UTR; 

• The DMPKS plasmid contains a fragment of the human DMPK gene carrying no 

CTG repeats in the 3’UTR. 

 

Escherichia coli bacteria were transformed with DT960 (bacteria variety Sure 2) and 

DMPKS (bacteria wild type) plasmids using the TRANSFORMATION PROTOCOL FOR 

DT960  (AMPICILLIN RESISTANT) (WITH SURE 2 SUPERCOMPONENT CELLS) 

from Agilent Technologies 200152, the culture medium used was SOC medium for the 

bacteria transformation liquid culture.  

 

The DNA was extracted from the transformed colonies using the protocol 2, 

PREPARATION OF PLASMID DNA BY ALKALINE LYSIS WITH SDS: 

MIDIPREPARATON, from the Molecular Cloning book Volume I from Sambrook and 

Russell Book (2001). 

 

To evaluate the presence of the plasmids in the bacteria, the PCR 300 (2,5 l of Buffer 

10X from Thermo Scientific, 1 l of primer 101, 1 l of primer 102 both primers from 

Eurogentec Company, 0,04 l of  Taq PFU from Thermo Scientific, 1 l of DNAc and 

20,46 l of water) was run in the Applied Biosystem PCR Thermo Cycler Version 2.09 

following the program attached in the Table 1 from the Appendix. This PCR was created to 

evaluate the right size of the plasmids. The bands were checked on a 0,7 % agarose gel, run 

at 100 V during 1 hour. The PCR samples were prepared with 5 l of bromophenol blue. 

Later, 10 l of sample and 10 l of the Invitrogen ladders (100 bp DNA ladder and 250 bp 

DNA ladder) were loaded. The gel was analysed by the BioRad Gel Doc System using the 

Quality One Software 4.6.3. 
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To reconfirm that the plasmids had the right sizes, a digestion of the DNA plasmids 

(DMPKS and DT 960) was developed, the samples were prepared using 2 l of buffer 10X 

BamHI and 1 l of enzime BamHI (both reagents from the company Bio Labs). The 

concentration of the DNA was measured with the Nanodrop spectrophotometer 1000 from 

Thermo Scientific (the quantity of water was regulated in based of the DNA concentration 

to obtain a 20 l as final volume). To check the result a 0,7 % agarose gel was run at 120 V 

for 2 hours. The samples were mixed with 5 l of orange color 10X and then loaded in the 

gel. To check the right sizes of the bands the 100 bp DNA ladder, 250 bp DNA ladder and 

Hind III ladders from Invitrogen were used. The gel was analysed by the BioRad Gel Doc 

Machine using the Quality One Software 4.6.3. 

  

To prepare a midi prep the bacteria were cultured in Falcon tubes with 5 ml of LB medium 

supplemented with 5 l of antibiotic (Kanamycine for DMPKS and Ampiciline for DT960) 

during 7 hours, at 275 rpm and 37 °C. Then 400 l of the colonies were taken from the 

Falcon tube and transferred to an 1 L Erlenmeyer with 400 ml of LB medium and 400 l of 

antibiotic, then the midi prep was incubated at 37 °C and 275 rpm overnight 

(approximately 14,5 hours). 

 

The DNA was extracted from the bacteria colonies using the protocol PLASMID OR 

COSMID DNA PURIFICATION USING HISPEED PLASMID MIDI AND MAXI KITS 

from Qiagen. The bacteria colonies were centrifuged at 4500 rpm and 20 minutes at 8 °C. 

To elute the DNA 10 ml of buffer QF was added, and the DNA was precipitated adding 7 

ml of isopropanol at room temperature.  

 

To evaluate the right sizes from the DNA plasmids extracted with the midi prep protocol, a 

digestion was performed, using the same conditions explained before. One sample of 

DT960 and other one of DMPKS were used as controls. A 0,8% agarose gel (supplemented 

with etidium bromide) was used with the same conditions that the first digestion. The gel 

was analysed using the BioRad Gel Doc System using the Quality One Software 4.6.3. 
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2. CELL CULTURE AND TRANSFECTION: 

The cell lines (SH-SY5Y, T98-G and HeLa) were cultured in DMEM medium supplied 

with Foetal Bovine Serum, Penicillin and Streptomycin. For T98-G medium also had 

Gentamycin. In each culture, the cells were washed with DPBS and raised from the plates 

(diameter size 10 cm) with Trypsine 0.35% and incubated during 5 min at 37 °C. The 

Trypsine was not removed. In each plate was added 4 ml of medium and transferred in new 

15 ml Falcon tubes. The tubes were centrifuged at 800 rpm during 5 minutes. To suspend 

the pellet 1 ml of new medium was added. Finally 200 l for SH-SY5Y, 50 l for T98-G 

and 250 l for HeLa were plated in new dishes with 10 ml of fresh medium. This protocol 

was developed in three repeats for each cell type. All the cultures were incubated at 37 °C 

with 5% of CO2 and humidity (the details of the culture media are attached on the section 1 

CELL CULTURE MEDIA COMPOSITION in the Appendix). 

 

The cell lines were transfected with DMPKS and DT960 plasmids, the TRANFECTION 

BY USING LIPOFECTAMINE LTX AND PLUS-REAGENTS PROTOCOL from 

Invitrogen Company was used to develop the transfection step. 

3. FOCI DETECTION: 

To detect the presence and the quantity of nuclear RNA foci in the transfected cell lines 

(SH-SY5Y, T98-G and HeLa) a fluorescent in situ hybridization (FISH) was developed. 

The standard protocol IN SITU HIBRIDIZATION FROZEN MUSCLE TISSUE with the 

(CAG)5 probe was used. The cell counting was done manually using the Fluorescent 

Microscope Axioplan 2 to detect the foci and the software Qcapture Pro Fluoresce was 

used to take the pictures. 
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4. RNA EXTRACTION: 

The RNA was extracted from the transfected cell lines with the EXTRACTION RNA 

WITH THE KIT TRIZOL MORE RNA PURIFICATION KIT FOR CELLS from 

Invitrogen protocol. In the section of binding, washing and elution: the Buffer I was added, 

the samples were centrifuged at 12 000 rpm during 15 seconds at room temperature, the 

flow was discarded, the DNAse was added and incubated during 15 seconds, the Buffer I 

was added again and the samples were centrifuged at 12 000 rpm during 15 seconds at 

room temperature, the flow was removed and the Buffer II with ethanol was added. The 

samples were centrifuged at 12 000 rpm, for 15 seconds at room temperature, the flow was 

discarded and Buffer II with ethanol was added, the samples were centrifuged at 12 000 

rpm during 1 minute at room temperature. The membrane tubes were transferred into 1,5 

ml collect tubes and the RNase-Free water was added, the samples were incubated for 10 

minutes and centrifuged for 2 minutes at 12 000 rpm at room temperature. The samples 

were run in 1% agarose gel (supplement with Etidium Bromure). The samples were 

prepared with 3 l of 5X orange, 6 l water and 1l RNA extracted. The sizes were 

checked using the 250 bp DNA ladder from Invitrogen. The gel was run for 30 minutes at 

100 V and was analysed by the BioRad Gel Doc System using the Quality One Software 

4.6.3. 

 

The RNA was synthesized in cDNA using the protocol cDNA SYNTHESIS BY 

REVERSE TRANSCRIPTION from Invitrogen Company. The cDNA samples were 

verified using ß-actin primers provided for Eurogentec Company, the Applied Biosystems 

PCR Amplificator was programmed with 57 °C as annealing temperature and 26 cycles. 

The PCR products were loaded in 2% agarose gel, the sizes were checked using the 100 bp 

DNA ladder from Invitrogen and the gel was run for 20 minutes at 100 V, and then 

analysed by the BioRad Gel Doc System using the Quality One Software 4.6.3.   
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5. RT-PCR FOR CANDIDATE GENES: 

The samples were homogenized relative to the intensity of the ß-actin RT-PCR products to 

ensure that similar amounts of cDNA were used in each reaction. 

 

To evaluate the splicing defect and the expression of different genes in DM1 the following 

genes were studied by semi-quantitative RT-PCR: MBNL1, MBNL2, TAU, NMDAR1, 

CaMK2ß, CaMK2δ, CaMK2γ, RyR1, SK3, KCND3, CACNA2B, APP and INSR. See the 

PCR oligonucleotide primer sequences and conditions in Table 2 of the Appendix Section. 

 

Semi-quantitative analysis of splicing defects was performed on three replicates for each 

condition in the three cell types studied (SH-SY5Y, T98-G and HeLa cells). RT-PCR 

products were loaded and electrophoresed on agarose gels. The intensity of the bands was 

quantified with Quality One Software 4.6.3. (BioRad). Microsoft Excel was used to 

perform statistical analysis (t-student test). 

6. PROTEIN EXTRACTION: 

The cell cultures were harvested with 200 l of homogenization solution (1X complete 

mini (protease inhibitor), 0,5% w/v of CHAPS (from SIGMA Company), 100 nM okadaїc 

acid (phosphate inhibitor), 1 mM orthovanadate (phosphate inhibitor) in RIPA 1X (from 

TERMO SCIENTIFIC Company). The lysate was shook slowly at 4°C for 5 minutes, and 

transferred into a 2 ml tube with metal beads and then shook 3 times for 15 seconds each at 

room temperature. Between each step the protein lysates were cooled down in ice for 3 

minutes. The lysates were sonicated on ice at 50 of amplitude (5 times for 2 seconds each 

time). Then the samples were rotated during 1 hour at 4 °C, centrifuged at 12000 rpm for 5 

minutes at 4°C. The quantity of protein was estimated with the BioRad PROTEIN ASSAY 

PROTOCOL. 

 

Protein quality was verified by polyacrylamide gel electrophoresis. For the preparation of 

the samples each protein solution was denatured in SDS buffer and 5% ß-mercaptoethanol 

at 95°C for 5 min. The proteins were subsequently electropheresed through a 12% SDS 

polyacrilamide gel, and detected with Commassie Blue. For details on the preparation of 

the gels see Table 3 in the Appendix. 
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7. WESTERN BLOT: 

For western blot analysis proteins were first electrophoresed through SDS polyacrylamide 

gels, as previously described. Proteins were then transferred onto PVDF membrane at 350 

mA, for 2 hours in an ice container. At the end of the procedure, the membranes were 

stained with Ponceau staining solution to confirm protein transfer from gel onto 

membrane. 

 

Membranes were blocked in 5% blotto solution with TBS-T 1X for 1 hour at room 

temperature, and then incubated with the primary antibody in 5% blotto at 4°C over night. 

The membrane was washed 3 times in TBS-T 1X and incubated with HRP-conjugated 

secondary antibody in 5% blotto for 1 hour at room temperature. Following 3 additional 

washes, western blot was revealed with Plus-ECL chemiluminiscent reagent 

(PerkinElmer). Membranes were stripped in stripping buffer at 50°C for 30 minutes prior 

to the incubation with additional antibodies.  (See the details of the antibodies in the Table 

5, in the appendix). 

 

The proteins were quantified from the films by Quality One 4.6.3. (BioRad). Statistical 

analyses were performed with Microsoft Excel (t-student).  
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RESULTS 

 

1. EVALUATION OF THE SIZES OF THE PLASMIDS: 

In order to produce enough plasmid for the transfection experiments, DT960 and DMPKS 

plasmids were purified from large bacterial cultures (400 ml). While standard E. coli 

strains were transformed with DMPKS control constructs, E. coli (variety Sure 2) was used 

to amplify the repeat-containing DT960 plasmid, and avoid genetic instability and repeat 

size mutation. 

 

A digestion of the extracted DNA from plasmid (DT960 and DMPKS) was performed to 

check the presence of the CTG repeats in the DT960 plasmid and absence of the CTG 

sequence in DMPKS control construct. Digested samples were loaded in a 0,8% agarose 

gel.  

 

Figure 1 shows the expected sizes of the bands at 4784bp and 1349bp for the DMPKS 

plasmid, and 4469bp and 4098bp for DT960 plasmid, following digestion with DT960.  

The two digested bands were not fully resolved for the DT960 plasmid and they migrated 

together in the gel presented in Figure 1. However they have been observed independently 

in other experiments.  

 

The sizes of the bands showed the restriction sites in where the enzyme BamHI cut the 

plasmids. The negative samples were used as a control for the no digestion of the samples. 
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Quality One Software 4.6.3. 

Figure 1.  Digestion of the DMPKS and DT960 plasmid DNA obtained from transformed bacteria. The 

HindIII: lambda DNA digested with HindIII, the molecular weight ladder; (-: undigested plasmid; +: BamHI 

digested plasmid). DT960: expanded DMPK construct, two sizes expected (4469 base-pair (bp) and 4098bp). 

DMPKS: short DMPK construct, two sizes expected (4784bp and 1349 bp). 

2. VALIDATION OF RNA TOXICITY IN DM1 CELL CULTURE SYSTEM: 

2.1 Accumulation of foci in transfected cells:  

The FISH was performed in order to identify the presence and quantity of foci in 

transfected with DT960 plasmid SH-SY5Y, T98-G and HeLa cells (figure 2). Foci are the 

result of the accumulation of expanded DMPK transcripts in the cell nuclei. Making use of 

the tool Fluorescent Microscope Axioplan 2 foci were identified and quantified in the 

different cell types.   

 

 

 Qcapture Pro Fluoresce Software. 

Figure 2.  Foci expression in transfected cell lines SH-SY5Y (A), T98-G (B) and HeLa (C) cells. The arrow 

is focusing the example of foci in each picture, the blue (dapi): nuclei of the cells; red spot: toxic RNA (foci). 

 

The three transfected population of cell lines presented RNA foci in the nuclei, 

characteristic of DM1, showing that transfected cells recreate RNA toxicity. 

 

 

  A.                                          B.                                  C. 
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In order to quantify the accumulation of foci in different cell types, one hundred cells per 

cell line were carefully examined under the Fluorescent Microscope. The average of foci in 

each cell population was calculated, as the well as the number of foci per individual cell.  

 

  

Microsoft Excel Software 

Figure 3.  Quantification of CUG-containing RNA foci in SH-SY5Y (A),  T98-G (B) and HeLa (C) cells 

transfected with DT960 construct. Foci were detected by FISH and manually counted on a fluorescent 

microscope.  

 

 

The percentage of HeLa cells (figure 3, C) that presented foci was 42% (7% with one 

focus, 8% with two foci, 7% with two to four foci and 20% presented more than four foci). 

This numbers suggest that at least 42% of HeLa cells were successfully transfected with 

the expanded DMPK construct. The actual transfection rate might be higher, as there might 

be a minor portion of cells, which although successfully transfected with this construct do 

not form foci.  

 

For T98-G cells (figure 3, B), the transfection result was very similar to HeLa cells. 

Astrocytes are easier to transfect in compare with neurons. The final result for the 

population of T98-G is 41% (10% with one focus, 1% with two foci, 15% with two to four 

foci and 15% presented more than four foci).  

 

SH-SY5Y (figure 3, A) presented the lowest average of foci-positive cells, in comparison 

with HeLa cells and T98-G, which is not surprising based on the difficulty to transfect 

neurons on in vitro culture. Only 33% had foci (6% with one focus, 7% for two foci, 8% 

with two to four foci, and 12% present more than 4 foci).  

 

It is possible to confirm that this cell line model system accumulates foci and recreate a 

molecular hallmark of DM1 making it useful to study the molecular consequences of RNA 

toxicity.  

(1) 

A. B. C. 
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3. DEREGULACION OF ALTERNATIVE SPLICING IN DM1 CELL MODELS 

3.1. RNA extraction and cDNA synthesis: 

The RNA of the transfected cell lines with DT960 and DMPKS was extracted. An 

electrophoresis was performed to check the quality of the extracted RNA. An example is 

presented in Figure 17 in the appendix, where it is possible to observe a ribosomal RNA 

population of the expected right size. All the cell lines showed a good quality and not 

degraded RNA, the gel showed sharp bands, for 28S and 18S. 

 

In order to study the impact of the 960 expanded CTG repeats on the alternative splicing of 

candidate genes in the three cell lines population (SH- S5Y5,  T98-G and HeLa), cDNA 

was synthesized from RNA. The quality of cDNA was evaluated by semi-quantitative RT-

PCR amplification using the ß-actin gene. The quality of cDNA was controlled with a 

positive control of genomic DNA.  

 

In parallel non-transfected (NT), mock, GFP-transfected (Green Fluorescent Protein) and 

DMPKS samples were used as control. NT was used as control of cell without transfection.  

Mock transfection is a control that evaluates if the presence of the reagents used in the 

transfection can cause some effect of alteration of splicing or expression in the cells. GFP 

was used as a control to evaluate if the presence of a plasmid per se can have some defect 

in the cells. DMPKS was used to evaluate if the defect in the splicing can be caused for the 

DMPK gene, through the comparison with the effect generated by DT960 plasmids.  

 

All the sample conditions were homogenized using the ß-actin gene expression, testing 

different quantities of cDNA until all the bands in all the conditions looked with the same 

intensity of profile. See an example of homogenization cDNA in figure 3 of the Appendix 

Section. 

 

Once the homogenization was ended, the next step was the analysis of candidate genes to 

evaluate the alternative splicing. The candidate genes were selected based in two main 

reasons: previous analysis have shown defects in DM1 patients or mice samples and/or 

play an important role in calcium metabolism. 
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3.2. MBNL1  

In order to test the effect of expanded CTG repeats in the alternative splicing of exon 7 of 

MBNL1 and MBNL2, a semi-quantitative RT-PCR was performed with oligonucleotides 

flanking the alternative exon. The analysis was done in SH-SY5Y, T98-G and HeLa cells 

to assess possible cell type-specific effects. Non-transfected, mock-transfected and 

DMPKS-transfected controls were included in the analysis, as previously described. 

 

Figure 4 shows an example of the analysis of the MBNL1 gene in the three cell lines, for all 

the conditions tested. The amplification generated two products with the following sizes:  

216bp, corresponding to the isoform containing exon 7, and 162bp corresponding to the 

isoform non-containing exon 7. 

 

 

Quality One Software 4.6.3. 

Figure 4.  MBNL1 PCR to evaluate the missplicing in the exon 7.  The graphs represent the splicing defect in 

SH-SY5Y (A) and T98-G (B) cells; NT: cell with non-transfection; Mock: cells with mock-transfection, 

GFP: cells transfected with the GFP plasmid; DMPKS: cells transfected with short CTG repeats insert 

(DMPKS); DT960: cells transfected with expanded CTG repeats (DT960); H2O: used to evaluate the non-

contamination in the PCR; 100bp: 100bp molecular weight ladder; red arrow: remark the change of profile 

from all the conditions in comparison with DT960 sample; + exon 7: isoform containing exon 7; -exon 7: 

isoform non-containing exon 7. 

 

 

The analysis revealed that the intensity of the band corresponding to the inclusion of exon 

7 increases in DT960-transfected cells, compared to all the other controls. This result 

appears to be true for SH-SY5Y and T98-G cells, indicating that the expression of toxic 

CTG repeats in this cell lines affect the alternative splicing of this gene, inducing an 

abnormal inclusion of exon 7. 

 

The results show that mock and GFP transfection do not greatly affect alternative splicing. 

However, the overexpression of DMPK without repeats (DMPKS plasmid) may already 

have an effect on the splicing of target genes, which is accentuated by the presence of the 

CTG repeats. 

A. B. 
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In order to quantify the inclusion of exon 7 in MBNL1, three samples with transfected cell 

lines have been repeated to analysis the alternative splicing, using three independent 

replicates for each condition tested: non-transfected, DMPKS- and DT960-transfected. 

Since mock and GFP transfection do not alter the splicing pattern, when compared to non-

transfected cells, these controls had been excluded from the quantitative analysis (see 

figure 4). 

 

The intensity of the bands was determined with the Quality One Software 4.6.3. and the 

ratio of inclusion of the alternative exon for each independent replicate has been calculated 

with the Microsoft Excel Software as follows: (intensity of “+exon 7” band)/[(intensity of 

“+exon 7” band)+(intensity of “–exon 7” band)] x100. 

 

Results are shown in figure 5. Statistically significant differences were assessed by student 

t-test. Representative gels used for the quantification are shown in the Appendix Section 

(see appendix number 7). 

 

There is an increasing of the inclusion of the exon 7 in different cell lines SH-SY5Y 

(figure 5, A), T98-G (figure 5, B) and HeLa (figure 5, C) transfected with DT960. The 

relations DT960/DMPKS and DT960/ NT did not show significant statistical results for 

SH-SY5Y and T98-G. Also it is important to remark the existence of a significant 

difference between NT/DMPKS for HeLa cell lines checking what was regarded in the 

qualitative data. DMPK gene could generate a missplicing effect in some genes; this is 

seen increasingly in the presence of the expansion of the CTG repeats. 

 

 

Microsoft Excel Software 

Figure 5.  Quantitative analyses of MBNL1 exon 7 missplicing. The picture represent the average ratio of 

inclusion of exon 7 (± SD) in SH-SY5Y (A), T98-G (B) and HeLa cells (C) under three different conditions: 

non-transfection (NT), transfection with control short DMPK construct (DMPKS); transfection with 

expanded DMPK construct (DT960) statistically significant differences were assessed by student t-test (*, p 

< 0,05; **, p <0,01 and ***, p < 0,001). 

 

A. B. C. 
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In synthesis, the quantitative analyses of MBNL1 splicing defects in SH-SYHY, T98-G and 

HeLa cells showed the expression of expanded CTG repeats affects exon 7 splicing and 

increases its inclusion ratio. This is primary good evidence that these cell lines recreate 

important aspects of RNA toxicity associated with DM1, notably abnormal alternative 

splicing of target genes known to be affected in DM1 patients and mouse models of the 

disease. 

3.3 MBNL2:  

The quantitative analysis of MBNL2 for alternative splicing was performed as for MBNL1, 

and they revealed the amplification of two products with the following sizes: 212bp, 

corresponding to the inclusion of exon 7, and 158bp corresponding to the exclusion of 

exon 7 (figure 6).   

 

 

Quality One Software 4.6.3. 

Figure 6.  MBNL2 PCR to evaluate the missplicing in the exon 7. The picture represent the splicing defect in 

SH-SY5Y (A) and T98-G (B) cells; NT: cell with non-transfection; Mock: cells with mock-transfection, 

GFP: cells transfected with the GFP plasmid; DMPKS: cells transfected with short CTG repeats insert 
(DMPKS); DT960: cells transfected with expanded CTG repeats (DT960); H2O: used to evaluate the non-

contamination in the PCR; 100bp: 100bp molecular weight ladder; red arrow: remark the change of profile 

from all the conditions in comparison with DT960 sample; + exon 7: isoform containing exon 7; -exon 7: 

isoform non-containing exon 7. 

 

The identical analysis of MBNL2 generated similar results; they indicated an increase of 

inclusion of exon 7 in cells expressing CTG expansions repeats (figures 20, 21, 22 from 

the appendix). A mild effect could also be observed when the cells were transfected with 

no-repeat DMPKS construct. Otherwise this minor effect is not significant in compared to 

NT (see figure 7). 

 

A. B. 
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Microsoft Excel Software 

Figure 7.  Quantitative analyses of MBNL2 exon 7 missplicing. The graphs represent the average ratio of 

inclusion of exon 7 (± SD) in SH-SY5Y (A), T98-G (B) and HeLa cells (C) under three different conditions: 

non-transfection (NT), transfection with control short DMPK construct (DMPKS); transfection with 

expanded DMPK construct (DT960) statistically significant differences were assessed by student t-test (*, p 

< 0,05; **, p <0,01 and ***, p < 0,001). 

 

It is important to mention the inclusion of the exon 7 in all the cell lines (SH-SY5Y, T98-G 

and HeLa cells) for MBNL2 under the DT960-transfection condition. 

3.4 INSR:  

The semi-quantitative RT-PCR analysis of SH-SY5Y (A) and T98-G (B) generated two 

products with the following sizes: 165bp, corresponding to the exclusion of exon 11, and 

129bp corresponding to the inclusion of exon 11 of INSR (the figure 20 and 21 in the 

appendix illustrated the results). HeLa cells did not show the expression of the two 

alternative splicing isoform for INSR (figure 22 in the appendix), and showed a lot of 

unspecific bands on the gel which do the quantification impossible. 

 

 

Microsoft Excel Software 

Figure 8.  Quantitative analyses of INSR exon 11 missplicing.  The graphs represent the average ratio of 

inclusion of exon 11 (± SD) in SH-SY5Y (A) and T98-G (B) cells under three different conditions: non-

transfection (NT), transfection with control short DMPK construct (DMPKS); transfection with expanded 

DMPK construct (DT960) statistically significant differences were assessed by student t-test (*, p < 0,05; **, 

p <0,01 and ***, p < 0,001). 

 

 

 

A. B. C. 

A. B. 
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The results (figure 8)  show a tendency towards a decreased inclusion of exon 11 in DT960 

condition in SH-SY5Y and T98-G cells transfected with large CTG repeat expansions, but 

the difference in the mean inclusion ratio was not statistically significant when compared 

to non-transfected and DMPKS control cultures. In contrast, T98-G (figure 8, B) showed 

significant value for the decreasing of the inclusion of the exon 11 for the condition 

DMPKS/DT960 and NT/DT960. 

 

The quantitative analysis of INSR splicing defects showed a decrease of the exon 11 in 

INSR gene, especially in T98-G cells.   

3.5 APP: 

The amplification of the APP gene was developed to evaluate the splicing defect in SH-

SY5Y (A), T98-G (B) and HeLa (C) cells. The semi-quantitative RT-PCR generated two 

products with the following sizes: 285bp, corresponding to the exclusion of exon 8, and 

117bp corresponding to the inclusion of exon 8 isoform of APP (figure 9). The two 

splicing alternative isoforms in the three cell lines was quantified but only T98-G (B) 

showed a splicing defect between DT960/NT comparisons. See the gels used for the 

quantification in the figure 20, 21 and 22 in the Appendix Section. 

 

The statistical analysis only revealed significant results in the decrease of the exon 8 in 

T98-G cells (figure 9, B) for the condition NT/DT960, for the other cell lines (SH-SY5Y 

and HeLa) there is a mild tendency to the decrease of the inclusion of exon 8 but the 

average inclusion ratio did not give out statistical significance for the relation NT/DT960 

or DMPKS/DT960. 

 

 

Microsoft Excel Software 

Figure 9.  Quantitative analyses of APP exon 8 missplicing. The graphs represent the average ratio of 

inclusion of exon 8 (± SD) in SH-SY5Y (A), T98-G (B) and HeLa cells (C) under three different conditions: 

non-transfection (NT), transfection with control short DMPK construct (DMPKS); transfection with 

expanded DMPK construct (DT960) statistically significant differences were assessed by student t-test (*, p 

< 0,05; **, p <0,01 and ***, p < 0,001). 

A. B. C. 
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The quantitative analysis of T98-G cells showed missplicing of APP gene for the 

decreasing of exon 8. These results are already confirmed in DM1 patients and transgenic 

model mouse samples analysed on the laboratory. 

 

3.6. Other genes 

Other genes have been tested, such as CaMK2. Two splicing isoforms were detected as 

199bp corresponding to the isoform that did non-contain the exon 13 and 136bp associated 

to the isoform that contained the exon 13. The primary analysis in T98-G and SH-SY5Y 

showed non-obvious splicing abnormalities of exon 13 in CaMK2, for cells with the large 

expanded CTG repeats (See figure 10).  

 

 

Quality One Software 4.6.3. 

Figure 10.  CaMK2  PCR to evaluate the missplicing in the exon 13. The picture represent the expression of 

the two isoform corresponding to the alternative splicing in SH-SY5Y (A) and T98-G (B) cells; NT: cell with 

non-transfection; Mock: cells with mock-transfection, GFP: cells transfected with the GFP plasmid; DMPKS: 

cells transfected with short CTG repeated insert (DMPKS); DT960: cells transfected with expanded CTG 

repeats (DT960); H2O: used to evaluate the non-contamination in the PCR; 100bp: 100bp molecular weight 

ladder. - exon 13: isoform not-containing exon 13; + exon 13: isoform containing exon 13. 

  

 

These results were confirmed by semi-quantitative analysis. The intensity of each band 

was quantified to confirm that this gene did not show a splicing defect for the exon 13 in 

the gene CaMK2γ in T98-G and HeLa cells (figure 11). 

 

A. B. 
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Microsoft Excel Software 

Figure 11.  Quantitative analyses of CaMK2 exon 13 alternative splicing. The graphs represent the average 

ratio of inclusion of exon 13 (± SD) in  T98-G (A) and HeLa (B) cells under three different conditions: non-

transfection (NT), transfection with control short DMPK construct (DMPKS); transfection with expanded 

DMPK construct (DT960).  

 

SH-SY5Y did not present an important visual 136bp band, making the quantification of the 

alternative splicing not possible for CaMK2γ gene (figure 20 in the Appendix Section). 

 

The cells with the expanded CTG repeats do not seem to have an alternative splicing of 

CaMK2 of exon 13 affected.  

 

Additional genes such as NMDAR1 (for exon 5 and exon 21), CaMK2ß (for exons 

18/19/20), CaMK2δ (exons 14/15/16), RyR1 expression, KCND3 (exon 6) were tested, but 

semi-quantitative RT-PCR was not sensitive enough to detect their expression in cultured 

cells. As a result these genes were not subsequently studied. See figure 19 from the 

appendix to get more details. 

4. EXPRESSION DEFECT 

4.1 SK3: 

Semi-quantitative RT-PCR analyses of candidate genes in the three cell types, under 

different conditions of transfection provide preliminary evidence about the effect of the 

CTG repeat expansion on gene expression. Changes in gene expression upon transfection 

can be measured by variation in the intensity of the bands corresponding to the semi-

quantitative RT-PCR amplification products. 

 

The preliminary RT-PCR study suggested increased SK3 transcript levels in SH-SY5Y 

cells, in the presence of CTG repeat expansions (figure 12), consistent with the previously 

reported, upregulation of this gene in DM1 tissue (Kimura et al., 2000). 

A.

> 

B.

> 
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Quality One Software 4.6.3. 

Figure 12.  Semi-quantitative RT-PCR analysis of SK3 transcript in SH-SY5Y cells under different 

conditions. NT: cell with non-transfection; Mock: cells with mock-transfection, GFP: cells transfected with 

the GFP plasmid; DMPKS: cells transfected with short CTG repeats insert (DMPKS); DT960: cells 

transfected with expanded CTG repeats (DT960); H2O: used to evaluate the non-contamination in the PCR; 

100bp: 100bp molecular weight ladder used for checking the right sizes of the bands. 

  

In an attempt to quantify the effect of the CTG repeat expansion on the expression of SK3 

gene, a more detailed semi-quantitative RT-PCR analysis of three samples per transfected 

cell line was performed. 

 

The intensity of the bands was determined with the Quality One Software 4.6.3.  and the 

level of expression was quantified for each independent replicate and calculated with the 

Microsoft Excel Software as follows: (intensity of “gene expression” band)/[(intensity of “ß-

ACTIN” band) x100. 

 

Results are shown in Figure 13, for SK3 and the means were statistically compared by a t-

student statistical test of significance. Representative gels used for the quantification are 

shown in Figure 20 and 21 in Appendix Section. 

 

Results in figure 13 showed the tendency of the expression decreasing for the SK3 gene for 

the cell line SH-SY5Y, but the statistically results did not support this observation with 

significant values. 
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Microsoft Excel Software 

Figure 13.  Semi-Quantitative RT-PCR analyses of the expression of SK3. The graphs represent the average 

of expression (± SD) in SH-SY5Y (A) and T98-G (B) cells under three different conditions: non-transfection 

(NT), transfection with control short DMPK construct (DMPKS); transfection with expanded DMPK 

construct (DT960).  

  

SK3 was also tested in HeLa cells but this cell did not show any expression of this gene. 

See figure 22 in the Appendix Section. 

 

In contrast to the preliminary results, the analysis has shown that SK3 gene expression is 

not altered in DT960-transfected cells (figure 13), when compared to non-transfected of 

DMPKS controls. 

5. PROTEIN EXPRESSION 

5.1. CELF1: 

CELF1 upregulation in DM1 muscle and heart contributes to DM1 splicing deregulation 

(Cooper, 2009). Therefore, it is possible that a similar effect operates in neurons and 

muscle cells, leading to the splicing defects detected in transfected cells lines. To explore 

this hypothesis, a quantitative western blot analysis was performed with antibodies directed 

against CELF1 on protein extracts from non-transfected cells, cells transfected with control 

DMPKS and transfected with expanded DT960 plasmids (figure 14).  

 

 

 

 

 

 

 

 

A.

> 

B.

> 



 48 

A. SH-SY5Y 

 

                                                               B. T98-G 

 

                                                               C. HeLa 

 

 

 

 

Quality One Software 4.6.3. 

Figure 14.  Western Blot analyses of CELF1 expression. The picture represent the expression of CELF1 in 

SH-SY5Y (A), T98-G (B) and HeLa cells (C); NT: cell with non-transfection;  DMPKS: cells transfected 

with short CTG repeats insert (DMPKS); DT960: cells transfected with expanded CTG repeats (DT960); ß-

actin was used as an internal control to make sure that identical protein quantities were loaded on every lane. 

 

The western blot analysis revealed CELF1 expression in all the cell lines types (SH-SY5Y, 

T98-G and HeLa) at 50 kDa as size band. The densitometric quantification of bands 

revealed a tendency of increasing of the expression in SH-SY5Y cells following 

transfection with large CTG repeat (figure 15); this result is not supported by statistical 

values. 

 

      

Microsoft Excel Software. 

Figure 15.  Quantitative analyses of the CELF1 expression. The graph represents normalized level of CELF1 

expression (± SD) relative to ß-actin in SH-SY5Y (A), T98-G (B) and HeLa cells (C) under three different 

conditions: non-transfection (NT), transfection with control short DMPK construct (DMPKS); transfection 

with expanded DMPK construct (DT960).  

  

CELF1 does not show an obvious upregulation in SH-SY5Y, T98-G and HeLa cells upon 

transfection, suggesting that CELF1 upregulation is not the major mechanism behind 

missplicing in transfected cells. Nevertheless, the trend detected in neuroblastoma cells, 

suggests a possibility of CELF1 upregulation in this cell type. 

CELF1 

 
ß-ACTIN 

   CELF1 

 
ß-ACTIN 

ß-ACTIN 

   CELF1 

 

NT DMPKS DT960 

A. B. C. 
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RESULTS DISCUSSION 
 

In order to establish a cell culture model system to study the impact of DM1 mutation on 

calcium metabolism and homeostasis, the RNA foci accumulation, missplicing and 

expression of candidates genes and steady-state level of candidate proteins were evaluated 

in transfected neuroblastoma (SH-SY5Y), astroglioma and (T98-G) and epithelial (HeLa) 

cells. 

 

The cell lines SH-SY5Y, T98-G and HeLa that had been transfected with CTG expansion 

construct, presented an important number of foci, recreating an important aspect associated 

with DM1 pathology. However neither of them presented more than 50% of foci in the 

total population. Is important to remark the importance of using another technique to insert 

the CTG expansion repeats in the cells, as infection that can generate 90% of foci in each 

cell line, as least. 

 

The fact that each cell line presented foci can confirm the presence of toxic RNA 

accumulation in the nuclei. Other authors have studied fibroblast, myoblast, and muscle 

and nervous system tissue samples of DM1 patients and have found the accumulation of 

CUG-containing DMPK mutant transcripts (Bermudez & Cisneros, 2008). 

 

The accumulation of toxic RNA in the nuclei generated a splicing defect of MBNL family 

genes. The results in figure 5 and 7 showed an increase of exon 7 inclusion for MBNL1 and 

MBNL2 in all cell lines. One of the main functions of MBNL proteins is the regulation of 

the alternative splicing of pre-mRNAs. These proteins have been shown as splicing 

regulators in skeletal muscle, cardiac tissue and nervous system tissue of MBNL1 and 

MBNL2 have been shown to colocalize with ribonuclear foci in muscle (in cell culture and 

tissue) and cortical neurons in DM1 and DM2 (Ranum & Day, 2004). 
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The splicing defect for MBNL1 and MBNL2 exon 7 could give more evidence that the cell 

line systems reproduce certain aspects of DM1 pathology. Other genes like INSR and APP 

showed mild missplicing for T98-G cells (astrocytes). But it is still important to stress that 

SH-SY5Y cells also presented a tendency of inclusion decreasing for exon 11 of INSR. 

However, the fact that the result was not statistically significant could be explained for the 

number of nuclear RNA foci in neuroblastoma cells that was just around 30%, perhaps not 

enough to generate more severe missplicing defect of exon 11 in the overall cell 

population.  

 

The MBNL1 missplicing studied in this research depends uniquely on MBNL1 

sequestration into nuclear foci, according to previous reports (Kalsotra et al., 2008). These 

results mean that MBNL1 sequestration (and possibly MBNL2 as well) in the transfected 

cell lines is sufficient to alter Mbnl1 exon 7 missplicing. 

 

It would be interesting to detect if CELF upregulation is also responsible for missplicing in 

these cells. In relation with the study of steady-level of candidate proteins, CELF1 was not 

upregulated in these cell culture model, however SH-SY5Y showed a pattern of increasing 

expression level (Figure 16), but a significant difference was not obtained. It is possible 

that the mean transfection rate, as assessed by the presence of RNA foci (30%) was not 

enough to detect an obvious effect on CELF1 expression level when looking at the global 

population of cells. One cannot discard the hypothesis that individual cells could recreate 

an overexpression of CELF1, but the effect is diluted in the general cell population. 

 

The overexpression of DMPK without repeats (DMPKS plasmid) observed in MBNL1 for 

HeLa cells (figure 6), may already have an effect on the splicing of target genes, that is 

accentuated by the presence of the CTG repeats, maybe through an effect of the DMPK 

3’UTR per se, in the absence of CTG repeats altering the metabolism of the cell lines. A 

similar effect was observed through the overexpression of the DMPK 3’-UTR region in 

wildtype and expanded CTG repeats in DM1 transgenic mice and myoblasts cell culture 

from DM1 human patients, which delayed muscle development in mice and myoblast 

differentiation (Sabourin et al., 1997). 
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 APP, NMDAR1 and TAU genes are associated with CNS symptoms, only APP presented a 

mild missplicing defect for T98-G cells lines, SH-SY5Y did not showed splicing defect for 

APP, NMDAR1 or TAU. The need to dedifferentiate the cell could be important to obtain 

an obvious missplicing of these genes, based on the fact that neuron needs to be 

differentiating so they can be useful in cell culture.   

 

Some candidate genes as CaMK2γ did not show missplicing in SH-SY5Y and T98-G cells, 

meaning that this gene was not greatly affected for the CTG expanded construct. Other 

calcium genes NMDAR1, CaMK2β, CaMK2δ, CACNA2B and RyR1 did not express in the 

cell lines used as model. It is important to extend the research to other calcium candidate 

genes that could be affected. 

 

SK3 gene did not present an over expression in the SH-SY5Y and T98-G cells which 

contain the DT960 construct, in contrast with the Kimura et al. (2000) previous results, 

where SK3 presented upregulation in DM1 skeletal muscle. This could be explained by the 

fact that SK3 was evaluated in brain cell lines; perhaps the effect in the brain samples is not 

as obvious as it is in muscle samples. 

 

In conclusion, brain cells transfected with large CTG repeat expansion within the DMPK 

3’UTR are a promising model system because they accumulate toxic RNA transcripts and 

recreate important missplicing events (MBNL1, MBNL2, INSR and APP). 

 

Further analysis are required to understand the mechanisms of missplicing, to study the 

impact of CTG repeat expansions on calcium metabolism and maybe to increase the 

efficiency of transfection/infection. 
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CONCLUSIONS 

• The presence of foci in SH-SY5Y, T98-G and HeLa cells transfected with long 

CTG repeats construct validate these cells as a good model system to study the 

DM1-associated RNA toxicity in brain. Occasionally short CTG repeats construct 

generates mild splicing defects. 

• The missplicing of some candidate genes in SH-SY5Y, T98-G and HeLa cells 

transfected with long CTG repeats construct recreate some previous results 

obtained in DM1 human patients and transgenic mice. For example MBNL1, 

MBNL2 and INSR missplicing. 

• Candidate calcium genes were not greatly affected by the CTG expanded repeats 

construct. 

• Missplicing in transfected SH-SY5Y, T98-G and HeLa cells is not associated with 

CELF1 upregulation. 

 

RECOMMENDATIONS 
• To confirm if these cell lines are useful as a model system to study the calcium 

metabolism in brain is essential to use infection as a technique to insert the CTG 

expanded repeats in the SH-SY5Y, T98-G and HeLa cells, to study additional 

calcium genes and to use differentiated cells. 

• It is necessary to search for the mechanisms involved in splicing deregulation in 

SH-SY5Y, T98-G and HeLa cells through MBNL1, MBNL2 and MBNL3 co-

localization with foci and the steady-state levels of CELF1 and CELF2.  

• Measurements of calcium levels and flux should be performed in transfected or 

infected brain cells to investigate the consequences of the CTG repeat expansion on 

calcium dynamics and homeostasis. 
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APPENDIX SECTION 

1. PLASMID STRUCTURES: 

 
 

 

Figure 16.  Plasmids used to transfect SH-SY5Y, T98-G and HeLa cell lines. (A) DT960 plasmid 

(containing expansion of the CTG repeats), the enzyme BAMHI was used to cut the restriction sites (1218 bp 

and 5687 bp) complete size of the plasmid 8567 bp, (B) DMKS plasmid (contains short CTG repeats), the 

enzyme BAMHI was used to cut the restriction sites (1140 bp and 2489 bp), complete size of the plasmid 

6133 bp. 

 

2. CELL CULTURE MEDIUM COMPOSITION: 

 

HeLa: 

DMEM 1X hight glucose (4,5g/L) GLUTAMAX  

+ 5% feotal bovine serum (25ml) 

+ 100U/ml penicillin streptomycine 

 

Astrocytes T98-G: 

DMEM 1X hight glucose (4,5 g/L) GLUTAMAX  

+ 10% feotal bovine serum (50 ml) 

+ 100 U/ml penicillim streptomycine (5ml) 

+ 25 g/ml gentamycine  (12,5 ml of 10 mg/ml stock) 

 

Neurons SH-SY5Y: 

DMEM (D5648 from SIGMA) 

+ 10% foetal bovine serum 

+ 100U/ml penicillum and 100 g/ml streptomycin  

 

 

 

 

 

 

 

  A. B. 
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3. PCR 300 PROTOCOL: 

 

DNA extraction using phenol/chloroform. 

Take 15 ng of DNA for a final reaction volume of 25 l. 

 
Table 1.   PCR 300 profile. 

Primer oligonucleotide sequences Reaction 

conditions 

PCR program 

Forward primer: 101 
5’-CTTCCCAGGCCTGCAGTTTGCCCATC-3’ 

 

Reverse primer:102 
5’-GAACGGGGCTCGAAGGGTCCTTGTAGC -

3’ 

 

1X  PCR  Master 

Mix (cat: SM-

0005 10X+ 4,72 

l ß-Mercapto) 

0,4 M reverse 

primer. 

0,4 M forward 

primer. 

0,04 U Taq DNA 

polymerase 

(Integro) 

96 °C for 5 

min. 

30 cycles 

96 °C for 45s 

68 °C for 30s 

72 °C for 3 min 

68 °C for 1 min 

72 °C for 10 

min 

10 +∞ 

Microsoft Office Word Software. 
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4. OLIGO’S SEQUENCES AND CONDITIONS: 

Table 2.  PCR´s oligonucleotides primers, sequences and conditions. 

 

 
GENE Splicing/Expression Oligo’s 1 name Oligo 1 sequence Oligo’s 2 name Oligo 2 sequence Size Annealing 

Temperature 
(°C) 

%  
Agaros
e Gel 

MgCl2 Cycles SH-SY5Y T98-
G-G 

HeLa 

HS ¾ Expression (ex8/9) HS-GS1 AGTCCATGCCATCACTGCCAC HS-GS2 TCCACCACCCTGTTGCT
GTAG 

447 59 2 1,5 27 30 30 30 

ß-ACTINE Expression (ex8/9) ß-ACTINE-GS1 CCGTCTTCCCCTCCATCG ß-ACTINE-GS2 CCTCGTCGCCCACATAG
G 

87 57 2 1,5 26 21 19 20 

MBNL1 Exon 7 hMBNL1-GS1 GCTGCCCAATACCAGGTCAAC hMBNL1-GS2 TGGYGGGAGAAATGCTG
TATGC 

216/162 57 2,5 1,5 28 25 22/23 24/25/28 

MBNL2 Exon 7 hMBNL2-GS1 ACAAGTGACAACACCGTAACC
G 

hMBNL2-GS2 TTTGGTAAAGGATGAAGA
GCACC 

212/158 58 3 1,5 29 25 23/24/
25 

25/29 

TAU Exon 10 hTAU-GS1 GCCACCAGGATTCCAGCAAAA
AC 

hTAU-GS2 TACGGACCACTGCCACC
TTCTTGG 

244/190 62 2 1,5 30/32/3
6 

- - - 

NMDAR1 Exon 5 hNMDAR1-GS1 CAGTCCAGCGTGTGGTTTGAG
ATG 

hNMDAR1-GS2 TGGCAGAAAGGATGATG
ACCCG 

295/232 60 2,5 1,5 29/36 - - 29 

NMDAR1 Exon 21 hNMDAR1-GS3 CGTGTGGCGGAAGAACCTG hNMDAR1-GS4 CTGTCTGCGGGGGAGG
GG 

292/181 60 2,5 1,5 29/36 29 29 29 

CaMK2ß Exon 18/19/20 hCaMK2ß-GS1 GACAGTGCCAATACCACCATAG hCaMK2ß-GS2 CCTCAAAGTCACCGTTGT
TG 

481/109 59 2 1,5 29/36 - - - 

CaMK2γ Exon 13 hCaMK2γ-GS1 CGTCAGGAGACTGTGGAGAGT
GTTTGC 

hCaMK2γ-GS2 CACCGCCATCCGACTTC
TTGTTC 

199/136 61 2,5 1,5 29/36 25 25 29 

CaMK2δ Exon 14/15/16 hCaMK2δ-GS1 TGACAACTATGCTGGCTACAAG
G 

hCaMK2δ-GS2 TCACATCTTCATCCTCAA
TTGTTG 

117/79 50 3 1,5 28/36 - - - 

RyR1 Expression hRyR1-GS1 TTTCTCGCCCCCCTGTTTCG hRyR1-GS2 CTCCTCGTCCTCCTCCTC
TTCTTCC 

316 62 2 1,5 32/35 - - - 

SK3 Expression hSK3-MGP1 TCATCGCCTACCACACACG hSK3-MGP3 TGCCAGTGAGGAGACAG
ACAC 

585 57 1 1,25 32 27/32 27/32 32 

KCND3 Exon 6 hKCND3-GS1 GCAAGACCTCATCATCG hKCND3-GS2 AGGGACTTCTTGTGGAT
GGGTAG 

207/150 56 3 1,5 29/34 29 29 29 

CACNA2B Exon 18a hCACNA2B-GS12 GATGGAAGAAGCAGCCAATC hCACNA2B-
GS13 

AGGTTCTGCAGCCGTAG
C 

231 59 2,5 1,5 31 31 31 31 

APP Exon 8 hAPP-GS1 CCACAGAGAGAACCACCAGCA
TTGC 

hAPP-GS2 GATACTTGTCAACGGCAT
CAGGGG 

285/117 57 2 1,5 30 30 30 30 

INSR Exon 11 hINSR-GS1 CCAAAGACAGACTCTCAGAT hINSR-GS2 AACATCGCCAAGGGACC
TGC 

165/129 53 3 1,5 29 29/30 29 29/30 

RyR1 Expression hRyR1-GS3 ATCCTGACTGAAGACCACAGTT hRyR1-GS4 AGCATAGGCCATGTACA
GGTAA 

195 55 2 1,5 28 28 28 28 

*Information from INSERM U781, took from different articles. 

Microsoft Office Word Software. 

Evaluated cycles in the quantitative 

PCR section 
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5. PROTEIN DETAILS: 
Table 3.  Gel components concentration. 

% of Gel 3,9 4,5 10 12 

30% 

acrylamide/bis 

(SIGMA A3574) 

0,39 ml 2 ml 2,66 ml 3,2 ml 

Tris Cl/SDS pH 

8,8-1,5 M 

0,75 ml (pH 6,8-

0,5 M) 

2 ml 2 ml 2 ml 

Water 1,83 ml 4 ml 3 ml 2,8 ml 

APS 10% 

(SIGMA 

7727540) 

50 l 65 l 65 l 65 l 

Temed 

(Invitrogen 

15524-010) 

5 l 5,5 l 5,5 l 5,5 l 

Microsoft Office Word Software. 

 

Table 4.  Buffer Solutions components. 

Buffer Components and preparation of the buffer 

5X Electrophoresis Buffer 15,1 g Tris base 

94 g Glycine 

5 g SDS (25 ml) 

Water up to 1 L 

10X Transfer Buffer 3 g Tris base 

14,4 g Glycine 

200 ml Methanol 

1 g SDS (5 ml) 

Water up to 1 L 

TBS-T 10X 12,1 g Tris base 

87,75 g NaCl 

5 ml Tween 20 

Water up to 1L 

Stripping Buffer 1 ml at 20% SDS 

78,1 l ß-mercapthoethanol 

0,625 ml 1M TrisHCl pH 6,8 

Water up to 1L 

0,5 M Tris HCl/SDS pH 6,8 6,05 g Tris base in 40 ml of water 

pH 6,8 (use HCl 1M) 

Water up 100 ml 

Filter the solution with 0,45 l filter 

2 ml (0,4 g) SDS 

1,5 M Tris-HCl/SDS pH 8,8 91 g Tris base in 300 ml of water 

pH 8,8 (use HCl 1M) 

Water up to 500 ml 

Filter the solution with 0,45 l filter 

10 ml (2 g) SDS 

SDS samples buffer 6X 1,5 M Tris-HCl/ SDS pH 8,8 7 ml 

Glycerol 3 ml 

SDS 1g (5 ml) 

Traces of bromophenol blue 
Microsoft Office Word Software. 
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6. ANTIBODIES SOLUTIONS USED BY WESTERN BLOT: 

 

Table 5.  Specifications of the Antibodies. 

Antibody Name  Origin Dilution in 

5 ml of 5% 

Blotho 

Dilution 

in 2 ml 

of 5% 

Blotho 

MW 

KDa 

ß-Actin - Mouse 1:3000 - 44 

CUGBP1 Anti- 

CUGBP1 

Mouse 1:1000 - 50 

IgG-HRP 

conjugated 

Seconday 

Antibody 

(anti-mouse) 

Sheep 1:7000 - - 

*INSERM U781:  “Mechanisms and consequences of CTG repeats instability in a mouse model for myotonic dystrophy” 

Microsoft Office Word Software. 

7.  RNA EXTRACTION AND HOMOGENIZATION: 

 

 

Quality One Software 4.6.3. 

Figure 17.  Extracted RNA from SH-SY5Y, T98-G and HeLa transfected cell lines with the plasmids DMPKS 

and DT960. The ladder in the left shows the different sizes of the bands 18S (999bp) and 28S (1089bp) (Michot 

et al, 1983). 

 

 

Quality One Software 4.6.3. 

Figure 18.  Example of ß-actin PCR, using in the homogenization of the cDNA samples of transfected T98-G 

(A) and SH-SY5Y (B) cell lines. NT: cell with non-transfection; Mock: cells with mock-transfection, GFP: cells 

transfected with the GFP plasmid; DMPKS: cells transfected with short CTG repeats insert (DMPKS); DT960: 

cells transfected with expanded CTG repeats (DT960); 100 bp: 100bp molecular weight ladder. 

  

 
 

 

 

 

 

28S 

18S 
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8. OLIGOS TESTED GELS PICTURES FROM THE QUALITATIVE RESULTS: 

 

 
 

Quality One Software 4.6.3. 

Figure 19.  Qualitative gels data for check the splicing defect and the expression. These genes did not show 

expression, splicing defect or right sizes bands. SH-SY5Y (A) and T98-G (B) transfected cell lines under the 

conditions NT: cell with non-transfection; Mock: cells with mock-transfection, GFP: cells transfected with the 

GFP plasmid; DMPKS: cells transfected with short CTG repeats insert (DMPKS); DT960: cells transfected with 

expanded CTG repeats (DT960).  
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9. OLIGOS TESTED GELS PICTURES FROM THE QUANTITATIVE RESULTS: 
 

SH-SY5Y cells: 

 

 
Quality One Software 4.6.3. 

Figure 20.  Qualitative gels data for check the splicing defect and the expression in transfected SH-SY5Y cells. 
This gene did not show expression, splicing defect or right sizes bands. Conditions NT: cell with non-

transfection; DMPKS: cells transfected with short CTG repeats insert (DMPKS); DT960: cells transfected with 

expanded CTG repeats (DT960).  
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T98-G cells: 

 

 

 
Quality One Software 4.6.3. 

Figure 21.  Qualitative gels data for check the splicing defect and the expression in transfected T98-G cells. 

These genes did not show expression, splicing defect or right sizes bands. Conditions NT: cell with non-

transfection; DMPKS: cells transfected with short CTG repeats insert (DMPKS); DT960: cells transfected with 

expanded CTG repeats (DT960).  
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HeLa cells: 

 

 
Quality One Software 4.6.3. 

Figure 22.  Qualitative gels data for check the splicing defect and the expression in transfected HeLa cells. 

These genes did not show expression, splicing defect or right sizes bands. Condition NT: cell with non-

transfection; DMPKS: cells transfected with short CTG repeats insert (DMPKS); DT960: cells transfected with 

expanded CTG repeats (DT960).  
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