CONSTANCIA DE DEFENSA PÚBLICA DE PROYECTO DE GRADUACIÓN

Proyecto de Graduación defendido públicamente ante el Tribunal Evaluador, integrado por los profesores Ing. Gustavo Rojas Moya, Ing. Ángel Navarro Mora, Ing. Giannina Ortiz Quesada, Ing. Alejandro Alfaro Acuña, como requisito parcial para optar por el grado de Licenciatura en Ingeniería en Construcción, del Instituto Tecnológico de Costa Rica.

GUSTAVO Firmado
ADOLFO digitalmente por GUSTAVO
ROJAS ADOLFO ROJAS MOYA (FIRMA)
Fecha: 2021.06.11
13:29:34-06'00'

TEC Tecnológico de Costa Rica MORA (FIRMA)
Fecha: 2021.06.11
13:17:53 -06'00'

Ing. Gustavo Rojas Moya. Director

GIANNINA Firmado digitalmente por GIANNINA ORTIZ QUESADA (FIRMA)

(FIRMA) Fecha: 2021.06.11
15:26:44-06'00'

Ing. Ángel Navarro Mora. Profesor Guía

ALEJANDRO Firr por ALFARO ALF ACUÑA (FIR (FIRMA) 14:

Firmado digitalmente por ALEJANDRO ALFARO ACUÑA (FIRMA) Fecha: 2021.06.11 14:05:51 -06'00'

Ing. Giannina Ortiz Quesada. Profesora Lectora Ing. Alejandro Alfaro Acuña. Profesor Observador Estandarización del proceso de diseño de puentes de concreto reforzado para Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento. (SENARA)

Abstract

This work was carried out with the objective of standardizing the design of concrete bridges for SENARA projects, which contains the minimum technical requirements that must be applied for the design, both slab-type bridges up to 15 meters of light and the girder-slab bridges up to 40 meters of span, both in simply reinforced concrete.

A tool was generated that standardizes the design of bridges, the entire document is based on the regulations in force at the time of writing, the tool can be used by engineers who have basic knowledge and who have the ability to analyze At the time of obtaining the results, a design guide was also generated that contains everything necessary for the design.

Also to the above, standard plans were generated for different bridge lights, together with their calculation memory, focusing on plans provided by SENARA, updating them to current regulations and the standardization that is being generated with this work.

The results obtained are complying with the parameters according to current regulations, both for service checks and resistance checks.

Keywords: Standardization, Bridges, Design.

Resumen

Este trabajo se realizo con el objetivo de estandarizar el diseño de puentes de concreto para los proyectos de SENARA, que contenga los requisitos técnicos mínimos que se deben de aplicar para el diseño, se analizan tanto puente tipo losa hasta los 15 metros de luz y los puentes tipo viga-losa hasta los 40 metros de luz, ambos en concreto simplemente reforzado.

Se generó una herramienta que estandariza el diseño de los puentes, todo el documento esta basado en la normativa vigente al momento de la redacción del mismo, la herramienta puede ser utilizada por ingenieros que cuenten con el conocimiento básico y que cuenten con la capacidad de análisis para el momento de la obtención de los resultados, además se generó una guía de diseño que contiene todo lo necesario para el diseño.

Además de lo anterior, se generaron planos tipo para distintas luces de puente, junto con su memoria de cálculo, enfocándose en planos facilitados por SENARA, actulizándolos a la normativa actual y a la estandarización que se esta generando con este trabajo.

Los resultados que se obtuvieron están cumpliendo con los parámetros según la normativa vigente, tanto para revisiones por servicio como revisiones por resistencia.

Palabras claves: Estandarización, Puentes, Diseño.

Estandarización del proceso de diseño de puentes de concreto reforzado para Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento. (SENARA)

VICTOR GUTIÉRREZ AGUILAR. MARIA FERNANDA GUILLÉN ROMERO.

Proyecto final de graduación para optar por el grado de Licenciatura en Ingeniería en Construcción

Junio del 2021

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA EN CONSTRUCCIÓN

Índice

Índice de figuras	2
Índice de cuadros	3
Resumen Ejecutivo	4
Introducción	5
Alcances y limitaciones	61
Metodología	63
Resultados	70
Análisis de los resultados	87
Conclusiones	95
Recomendaciones	96
Apéndices	99
Anexos	273

Índice de figuras

1.	Partes Bastión	8
2.	Estructura Puente	10
3.	Características camión de diseño	11
4.	Características tándem de diseño	11
5.	Curvas Esfuerzo-Deformación, dependiendo del grado de dureza y factor de forma.	32
6.	Distribución de presiones en sobre el cimiento del bastión	49
7.	Módulo de deformación y módulo de reacción vertical del suelo	53
8.	Diagrama flujo diseño de puente tipo losa.	65
9.	Diagrama flujo diseño de puente tipo viga-losa para el elemento losa	66
10.	Diagrama flujo diseño de puente tipo viga-losa para el elemento viga	67
11.	Diagrama flujo diseño de los apoyos.	68
12.	Diagrama flujo diseño de bastión	69
13.	Estructura Puente Red de Distribución Subdistrito Abangares 2m	70
14.	Estructura Puente Red de Distribución Subdistrito Abangares 3m	71
15.	Estructura Puente Red de Distribución Subdistrito Abangares 4m	71
16.	Estructura Puente Red de Distribución Subdistrito Abangares 5m	72
17.	Estructura Puente Red de Distribución Subdistrito Abangares 6.20m	72
18.	Estructura Puente Red de Distribución Subdistrito Abangares 8m	73
19.	Estructura Puente Canal Oeste 8m	74
20.	Estructura Puente Canal Oeste 18.20m	75
21.	Capacidad soportante por tipo de material	76
22.	Estructura bastión Puente Red de Distribución Subdistrito Abangares 2m	77
23.	Estructura bastión Puente Red de Distribución Subdistrito Abangares 3m	78
24.	Estructura Puente Red de Distribución Subdistrito Abangares 4m	79
25.	Estructura Puente Red de Distribución Subdistrito Abangares 5m	80
26.	Estructura Puente Red de Distribución Subdistrito Abangares 6.20m	81
27.	Estructura Puente Red de Distribución Subdistrito Abangares 8m	82
28.	Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 8m	83
29.	Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 8m	84
30.	Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 18.20m	85
31.	Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 18.20m	86
32.	Esquema dimensionamiento bastión	90

Índice de cuadros

1.	Factores y combinaciones de carga	17
2.	Factores de carga para cargas permanentes, γ_P	18
3.	Condiciones de diseño Puente tipo Losa	87
4.	Puente tipo Losa, Franja Interior, Acero para distintas longitudes	88
5.	Puente tipo Losa, Franja Borde, Acero para distintas longitudes	88
6.	Dimensiones de los bastiones, puente tipo losa	90
7.	Acero Pantalla Bastión Puente Tipo Losa	91
8.	Acero Cimentación Bastión Puente Tipo Losa	91
9.	Condiciones de diseño Puente tipo Viga-Losa	92
10.	Puente tipo Viga-Losa, Losa, Acero para distintas longitudes	92
11.	Puente tipo Viga-Losa, Vigas, Acero para distintas longitudes	92
12.	Dimensiones de los bastiones, puente tipo viga-losa	93
13.	Acero Pantalla Bastión Puente Tipo Viga-Losa	94
14.	Acero Cimentación Bastión Puente Tipo Viga-Losa	94

Resumen Ejecutivo

Se desarrolló una herramienta que estandariza el diseño de los puentes de concreto simplemente reforzados para SENARA, también se genero una guía de diseño que tiene como propósito guiar al usuario en el diseño de puentes, tanto tipo losa, como tipo losa-viga, contempla todos los requisitos técnicos mínimos que se deben de cumplir en el diseño de puentes vehiculares en Costa Rica, también la guía funciona como un complemento a la herramienta electrónica que se proporciono como insumo junto con este documento, la guía permite entender y si es posible llegar a actualizar la herramienta a la normativa vigente una vez entregada, y que los ingenieros responsables del diseño de puentes puedan realizar modificaciones y comprender bien el diseño de los mismos.

Este proyecto es de gran importancia para la comunidad estudiantil en especial para la Escuela de Ingeniería en Construcción, ya que todo el proceso de enseñanza del diseño estructural es enfocado en edificaciones y los puentes siquiera se mencionan, con la gran problemática que tienen estos para el desarrollo del país, básicamente este proyecto es de gran valor ya que cuenta con todo lo necesario para que un estudiante, un ingeniero sin experiencia en puentes pueda analizar y aprender y diseñar puentes en concreto simplemente reforzado.

Al igual para el Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento, fue de gran importancia ya que además de brindarles una herramienta de diseño, se les brindan insumos como lo son los planos, memorias de cálculo de los puentes que más se utiliza en sus proyectos.

Para el diseño de los puentes de concreto se realizó una investigación de normas nacionales e internacionales referentes al tema, entre ellas se encuentran el Código de Cimentación de Costa Rica, los Lineamientos para el Diseño Sismoresistente de Puentes y la norma AASHTO LRFD Bridge Design Specifications. Gracias a esta investigación realizada se consigue elaborar la herramienta y la guía de diseño que permite obtener el producto deseado.

Este trabajo realiza una adaptación de la norma AASHTO LRFD Bridge Design Specifications a las condiciones especificas del país, en cuanto a parámetros de diseño de sismo y viento.

Tanto la herramienta como la guía de diseño desarrollada en este trabajo, contienen todo el proceso para el diseño de puentes de concreto tipo losa y tipo losa-viga. Incluyendo los criterios de cargas, el análisis estructural, diseño estructural, el diseño de bastiones y apoyos, así como la elaboración de planos constructivos.

Introducción

El siguiente proyecto se desarrollo para SENARA, Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento, que es una institución que nació como el gestor de los recursos hídricos, fue creado mediante la Ley 6877, en donde se fusionaron tres instituciones, eliminando duplicidad de actividades en materia de riego, y esta nueva institución fomentaría el desarrollo agropecuario con el establecimiento y operación de sistemas de riego y drenaje.

La organización está en la obligación de brindar todas las obras necesarias para el funcionamiento de todos sus sistemas, y por esto cuenta con ciertos puentes tipo en donde se puede variar su longitud, pero está muy limitado, por lo cual nace la necesidad de una actualización.

SENARA en este momento cuenta con proyectos de importancia para el país como es el caso del proyecto PAACUME, que es un proyecto de riego, donde el agua antes de utilizarse para el riego se utiliza en la generación de energía eléctrica, para hacer posible este proyecto se deben de construir aproximadamente 55 kilómetros de canales de riego en donde será indispensable la construcción de puentes, para el tránsito de personas, animales y vehículos.

El presente proyecto de la estandarización del diseño de los puentes de concreto, será utilizado en los proyectos de SENARA, ya que dentro de la institución no se cuenta con el personal que este específicamente dedicado al diseño de este tipo de estructuras por lo cual la idea es brindar una herramienta que facilite este proceso y lo agilice.

En la Ley de creación de esta institución en el artículo 16 se dice "... podrá construir las obras necesarias para el establecimiento y funcionamiento de sistemas de riego, avenamiento y control de inundaciones, así como las obras complementarias...", por ende, los puentes son elementos que son fundamentales e indispensables en estos sistemas, donde se debe de permitir el paso de vehículos y peatones por ejemplo sobre los canales de riego.

Ante algún evento inesperado, el contar con una herramienta que permita tener el diseño del puente de manera rápida, contando con todos los requisitos dispuestos en normas nacionales e internacionales, va a permitir un rápido proceso de contratación y así la rehabilitación del paso para continuar con las actividades productivas que traen progreso y desarrollo en toda la región.

Objetivos

Objetivo General

• Estandarizar el diseño de puentes de concreto para los proyectos de SENARA, que contenga los requisitos técnicos mínimos que se deben de aplicar para el diseño.

Objetivos Específicos

- Indagar y recopilar información pertinente para el diseño de puentes basado en normas nacionales e internacionales.
- Desarrollar el contenido de la guía de diseño apegándose a las normas nacionales e internacionales y a las necesidades de SENARA.
- Desarrollar una herramienta que estandarice el diseño de puentes de concreto en el departamento de ingeniería de SENARA.
- Elaborar planos y memoria de cálculo de los puentes de concreto reforzado que usa regularmente SENARA.

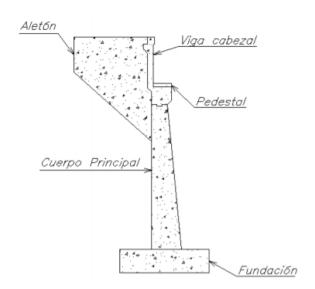
Marco Teórico

En esta sección se incluirá información relevante que se utilizo en la elaboración de este documento.

Según (MOPT. Dirección de Puentes, 2007) en el Manual de Inspección de Puentes define ciertos conceptos importantes entre ellos está:

Puente: estructura construida para salvar un cauce o extensión de agua como una quebrada, río, canal, lago, bahía, etc.

Accesorios: elementos sin función estructural pero vitales para garantizar el buen funcionamiento del puente tales como superficie de rodamiento, barandas y juntas de expansión.


- Superficie de rodamiento: capa de desgaste que se coloca sobre la plataforma del sistema de piso para protegerlo de la abrasión producida por el tráfico.
- Baranda:sistema de contención longitudinal fijada al sistema de piso para evitar la caída al vacío de los usuarios, vehículos, ciclistas y peatones, pueden ser de concreto o de acero.
- Juntas de expansión: Elementos divisorios de la losa instalados en los extremos de cada tipo de superestructura que permite la traslación y/o rotación, para garantizar la expansión y contracción de la superestructura por temperatura y sismo.
 - Juntas abiertas: es una abertura libre inferior a 12.7 mm (1/2" pulgada) entre losas de concreto de tramos adyacentes, pueden ser entre losa-losa, losa-bastión, losa-losa de aproximación, típicamente cuenta con angulares o perfiles de acero para prevenir el desprendimiento del concreto en los bordes externos.
 - Juntas selladas: se divide en:
 - o Juntas rellenas: se aplican en puentes cortos con desplazamientos inferiores a 38.1 mm (1 " pulgada).
 - o Juntas con sellos comprimidos de neopreno: se aplican en puentes con desplazamientos de 12.7 mm a 63,5 mm (de a 2 pulgada).
 - Juntas de placas de acero deslizante: se aplican para puentes con desplazamientos mayores a 101 mm (4" pulgadas).
 - Juntas de placas dentadas: se aplican para puentes con desplazamientos de hasta 610 mm (24" pulgadas).

Apoyos: Los apoyos son sistemas mecánicos que transmiten las cargas verticales de la superestructura a la subestructura. Las funciones principales de los apoyos aparte de transmitir todas las cargas de la superestructura a la subestructura son garantizar los grados de libertad del diseño de la estructura como traslación por expansión o contracción térmica o sismo y la rotación causada por la deflexión de la carga muerta y la carga viva.

- Apoyo de Expansión: Permite que la estructura rote y se traslade en el sentido longitudinal, puede ser de placa, de neopreno, de nódulo o balancín.
- Fijo: Restringe la traslación y permite únicamente la rotación de la estructura.
- Rígido o empotrado: Los apoyos rígidos restringen todos los movimientos de traslación y rotación.

Bastiones: Elemento de la subestructura que sirve de apoyo en los extremos de la superestructura, puede ser construida de concreto, acero, madera o mampostería. Dado que los bastiones están en contacto con los rellenos de aproximación del puente, una de sus funciones principales es de absorber el empuje del terreno. Puede estar compuesto por los siguientes elementos:

- Aletones: Paredes laterales cuya función es confinar la tierra o material de relleno detrás del bastión, se diseñan como muros de retención.
- Viga cabezal: Parte superior de un bastión sobre la cual se apoya el extremo de un tramo de la superestructura. La viga cabezal posee pedestales, que son columnas cortas sobre las que se apoyan directamente las vigas principales de la superestructura.
- Cuerpo principal: Como su nombre lo dice es el componente principal del bastión. Puede ser tipo pared (muro de retención con o sin contrafuertes) o marco rígido (dos o más columnas unidas en su parte superior a la viga cabezal).
- Cimiento: Es el conjunto formado por el cimiento o base del cuerpo principal y el suelo o
 roca soportante. En función del mecanismo de transmisión de las cargas se clasifican en
 superficiales y profundas.

Figura 1. Partes Bastión. Fuente: (MOPT. Dirección de Puentes, 2007).

Según el MOPT. Dirección de Puentes, 2007, existen varios tipos de bastiones según las funciones requeridas, estos dependen de la capacidad permisible del suelo, de la superestructura, de la topografía del sitio y las preferencias del diseñador. Algunos tipos de bastiones mas comunes se mencionan a continuación:

- Gravedad: Debe de ser capaz de resistir la presión lateral o el empuje del suelo con su propio peso. Estos bastiones suelen ser construidos en concreto ciclópeo o en mampostería.
- Voladizo: Es un muro de contención tipo pared que se halla unido rígidamente a la fundación, por lo que actúa como una viga en voladizo que transfiere la presión lateral del suelo y conserva su estabilidad a través de su peso propio y el peso del suelo sobre la fundación. Cuando su altura está entre cuatro y diez metros son económicos.
- Marco: Este consta con dos o más columnas unidas por la viga cabezal tipo rectangular o T cuando cuenta con pantalla.
- Muro con contrafuerte: Este tipo de bastión se utiliza generalmente cuando se requiere que el muro sea de gran altura. El bastión tipo contrafuerte se compone por un muro y una fundación unidas a través de losas verticales perpendiculares al plano de muro conocidas como contrafuerte, estas se encuentra espaciadas a lo largo de la fundación.
- Cabezal sobre pilotes: Este tipo de bastión se basa en una viga cabezal apoyada en una o más filas de pilotes. Estos pilotes inclinados se emplean para evitar el volcamiento, además no tiene cuerpo principal.
- Tierra armada: Este tipo de bastión se compone por de un muro construido por capar de bloques modulares, comúnmente de concreto sin acero. Este sistema estabiliza mecánicamente el suelo.

Pilas: Estructuras que sirven de apoyos intermedios a la superestructura. Por lo general, las pilas son construidas en concreto reforzado, ocasionalmente concreto preesforzado, acero o madera.

Accesos de aproximación: están compuestos por los rellenos con sus respectivas protecciones y la losa de aproximación cuando exista.

En la siguiente imagen se muestra de forma gráfica las partes anteriormente mencionadas.

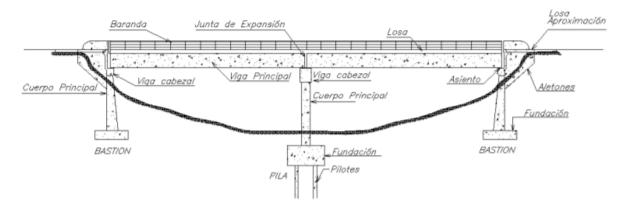


Figura 2. Estructura Puente. Fuente: (MOPT. Dirección de Puentes, 2007).

Determinación de cargas

Entre las diversas cargas que se deben considerar en el diseño de los puentes, se tiene las siguientes, y todas estas cargas están definidas por la AASHTO; a continuación se explicara cada una de ellas.(AASHTO, 2020)

Carga permanente: Debe ser definida previo predimensionamiento de la estructura y en ningún caso debe ser menospreciada y tampoco exagerada ya que la limitación de la longitud de los vanos fundamentalmente se debe al peso muerto de las estructuras.

Se define la carga muerta de elementos estructurales y no estructurales unidos (parapetos, barreras, señales) como DC; y para la carga muerta de la superficie de rodamiento y accesorios como DW.

Carga viva: está constituida por el peso de los vehículos más los efectos derivados por su naturaleza dinámica y móvil. Además, en el caso de los puentes urbanos, se debe considerar la carga viva peatonal en las aceras.

La carga vehicular viva en las calzadas de puentes o las estructuras accesorias, designadas como HL-93, consistirán en un combinación de camión de diseño, tándem de diseño y carril de diseño.

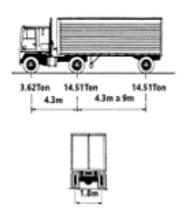


Figura 3. Características camión de diseño. Fuente: (AASHTO, 2020).

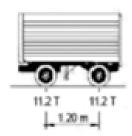


Figura 4. Características tándem de diseño. Fuente: (AASHTO, 2020).

Fuerzas por el impacto (IM): Como la superficie de rodadura no es uniforme, la suspensión de los vehículos reacciona a comprensión y tensión. Esta oscilación crea fuerzas que exceden el peso estático cuando el vehículo esta en movimiento. (Ernesto Seminario Manrique, 2004)

Fuerzas por el frenado (BR): Según Bridge Design Specification (AASHTO, 2020), la fuerza de frenado se tomará como el mayor de:

- 25 por ciento de los pesos de los ejes del camión de diseño o diseño en tándem, o
- Cinco por ciento del camión de diseño más carga de carril o cinco por ciento de la carga de diseño tándem más carril

Esta fuerza de frenado se colocará en todos los carriles de diseño, que se consideran cargados de acuerdo con Artículo 3.6.1.1.1 y que lleven tráfico con destino en la misma dirección. Se supondrá que estas fuerzas actúan horizontalmente a una distancia de 1.8 metros por encima de la calzada superficie en cualquier dirección longitudinal para causar extremos efectos de fuerza. Todos los carriles de diseño serán simultáneamente cargados para puentes que probablemente

se vuelvan unidireccionales en el futuro.

Fuerzas por el viento (WL-WS): Se supondrá que la presión del viento es uniforme distribuida sobre la zona expuesta al viento, el área expuesta será la suma de las áreas de todos componentes, incluido el sistema de piso, barandillas. La carga de viento será el producto de la presión del viento y el área expuesta. El viento sera asumido horizontal, excepto que se especifique lo contrario. (AASHTO, 2020)

La presión ejercida por el viento incide tanto en la superestructura como en la carga viva (WL) y la infraestructura (WS).

Fuerzas por la corriente de agua (WA): Se supondrá que la presión estática del agua actúa perpendicular a la superficie que retiene el agua. La presión se calculará como el producto de la altura de agua por encima del punto de consideración y el específico peso del agua.

Carga por sismo (EQ): Los puentes se diseñarán para tener una probabilidad baja colapso, pero puede sufrir daños importantes y interrupción del servicio cuando está sujeto a movimientos sísmicos que tienen un siete por ciento de probabilidad de suceder en 75 años, con reemplazo parcial o completo requerido. (AASHTO, 2020)

Los principios utilizados para el desarrollo de las especificaciones según AASHTO son:

- Se deben resistir terremotos pequeños a moderados dentro del rango elástico de los componentes estructurales sin daño significativo.
- Se usarán movimientos del suelo y fuerzas reales en el proceso de diseño.
- La exposición a temblores grandes no debe provocar el colapso de todo o parte del puente, donde los posibles daños que ocurra deberán ser detectables y accesibles para inspección y reparación.

Filosofía de diseño.

Para el diseño de puentes se debe de realizar con los estados límite, para cumplir con los objetivos de constructibilidad, seguridad y serviciabilidad, así como con la debida consideración en lo que se refiere a inspección, economía y estética. (Bolivar Ignacio Tapia González, 2009)

Estados Limite.

Según Bridge Design Specifications, (AASHTO, 2020), se tienen los estados limite donde todos los componentes y conexiones deberán satisfacer la siguiente ecuación para cada estado límite a menos que se especifique otra cosa, y debe de cumplir con la siguiente ecuación:

$$\sum \eta_i \gamma_i q_i \le \Phi R_n = R_r \tag{1}$$

Donde se requiere un valor máximo de γ_i , se tiene que:

$$\eta = \eta_D \eta_R \eta_I > 0.95 \tag{2}$$

Y donde se requiere un valor mínimo de γ_i , se tiene que:

$$\eta = \frac{1}{\eta_D \eta_R \eta_I} \le 1 \tag{3}$$

Donde:

 q_i = Efectos de fuerza.

 γ_i = Factor de carga.

 Φ = Factor de resistencia.

 $\eta =$ Factor de resistencia que relaciona ductilidad, redundancia e importancia operativa.

 η_D = Factor de ductilidad.

 η_R = Factor de Redundancia.

 η_I = Factor de importancia operativa.

 R_n = Resistencia nominal.

 R_r = Resistencia factorizada.

El factor de resistencia $\Phi=1$ se asigna a todos los estados límites menos al estado límite de resistencia.

Estado Limite de Servicio: El estado límite de servicio se tomará como restricciones sobre tensión, deformación y ancho de la grieta en El estado límite de servicio se tomará como restricciones sobre tensión, deformación y ancho de la grieta en condiciones regulares de servicio.

Estado Limite de Fatiga y Fractura: El estado límite de fatiga será tomado en cuenta como un juego de restricciones en el rango de esfuerzos causados por un solo camión de diseño que ocurre en el número especificado de ciclos correspondiente a ese rango de esfuerzos.

El estado límite de fractura será tomado en cuenta como un juego de requerimientos de tenacidad del material según las especificaciones AASHTO.

El estado límite de fatiga está destinado a limitar el crecimiento de la fisuración, bajo cargas repetitivas para evitar fracturas durante el periodo de vida de diseño del puente.

Estado Limite de Resistencia: El estado límite de resistencia será tomado en cuenta para asegurar la resistencia y estabilidad. Ambas, local y global son dadas para resistir las combinaciones especificadas de carga que se espera que un puente experimente durante su vida de diseño.

Bajo el estado límite de resistencia podría ocurrir daño estructural y frecuente sufrimiento,

pero la integridad completa de la estructura se espera que se mantenga.

Estado Límite de Evento Extremo: Será tomado en cuenta para asegurar la supervivencia estructural de un puente durante un sismo importante o durante inundaciones o cuando es chocado por una embarcación, vehículos o flujos y hielo, posiblemente ocurridos bajo condiciones especiales.

Se considera que el Estado Limite de Evento Extremo ocurrirá una sola vez con un período de retorno que puede ser significativamente más grande que el de la vida de diseño del puente.

Ductilidad: El sistema estructural del puente será proporcionado de tal forma que asegure en los estados límites de resistencia y evento extremo el desarrollo de significantes deformaciones inelásticas visibles antes de la falla.

Para el Estado Limite de Resistencia:

 $\eta_D \ge 1.05$ para conexiones y secciones no dúctiles.

 $\eta_D \ge 0.95$ para componentes dúctiles.

Para los otros Estados Limite:

 $\eta_D = 1.00$

Redundancia: Aquellos elementos cuya falla causaría el colapso del puente serán diseñados en falla crítica y el sistema estructural asociado será no redundante. Alternativamente, los miembros con falla crítica en tensión pueden ser diseñados en fractura crítica. Los elementos cuya falla no se espera que produzcan el colapso del puente no se diseñarán en falla crítica y el sistema estructural asociado será redundante.

Para el Estado Limite de Resistencia:

 $\eta_R \ge 1.05$ para conexiones y secciones no redundates.

 $\eta_R \ge 0.95$ para componentes redundantes.

Para los otros Estados Limite:

 $\eta_R = 1,00$

Importancia operativa: El propietario puede declarar si un puente o un componente tiene importancia operativa.

Para el Estado Limite de Resistencia:

 $\eta_I \ge 1.05$ para puentes criticos o esenciales.

 $\eta_R = 1.00$ para puentes tipicos.

 $\eta_I \ge 0.95$ para puentes con una importancia menor.

Para los otros Estados Limite:

 $\eta_R = 1.00$

Combinaciones de carga.

La AASHTO, define ciertas cargas que pueden afectar la estructura y se denotan asi:

Cargas permanentes:

DD = Fuerza de arrastre hacia abajo.

DC = Carga muerta de componentes estructurales y no estructurales.

DW = Carga muerta de superficie de rodadura y dispositivos auxiliares.

EH = Presión de tierra horizontal.

ES = Carga superficial en el terreno.

EV = Presión vertical del relleno.

Cargas transitorias:

BR = Fuerza de frenado.

CE = Fuerza centrífuga vehicular.

CR = "Creep" del concreto.

CT = Fuerza de choque vehicular.

CV = Fuerza de choque de barcos.

EQ = Sismo.

FR = Fricción.

IC = Carga del hielo.

IM = Impacto.

LL = Carga viva vehicular.

LS = Carga viva superficial.

PL = Carga viva peatonal.

SE = Asentamiento.

SH = Contracción.

TG = Gradiente de temperatura.

TU = Temperatura uniforme.

WA = Carga de agua y presión del flujo.

WL = Carga de viento sobre la carga viva.

WS = Carga de viento sobre la estructura.

El efecto total de la fuerza factorizada se tomará de la siguiente forma:

$$Q = \eta \sum \gamma_i \cdot q_i \tag{4}$$

Donde:

 η = Factor de resistencia que relaciona ductilidad, redundancia e importancia operativa.

 γ_i = Factores de carga.

 $_i$ = Carga.

Tanto las conexiones y componentes del puente deben de satisfacer la ecuación anterior, y los siguientes estados limite también debe de cumplir con la ecuación:

- Resistencia I: Combinación básica de carga relacionada con el uso vehicular normal, sin considerar el viento.
- Resistencia II: Combinación de carga relacionada al uso del puente mediante vehículos de diseños especiales especificados por el propietario y/o vehículos que permiten la evaluación, sin considerar el viento.
- Resistencia III: Combinación de carga relacionada al puente expuesto al viento con una velocidad mayor a 90 Km/h.
- Resistencia IV: Combinación de carga relacionada a relaciones muy altas de la carga muerta a la carga viva.
- Resistencia V: Combinación de carga relacionada al uso vehicular normal del puente considerando el viento a una velocidad de 90 Km/h.
- Evento Extremo I: Combinación de carga incluyendo sismo.
- Evento Extremo II: Combinación de carga relacionada a la carga de viento, choque de vehículos y barcos, y ciertos eventos hidráulicos con carga viva reducida, distinta de la carga de choque vehicular.
- Servicio I: Combinación de carga relacionada al uso operativo normal del puente con viento a 90 km/h y con todas las cargas a su valor nominal (sin factorizar). También está relacionada con el control del deflexiones.
- Servicio II: Combinación de carga considerado para controlar la fluencia de estructuras de acero y el deslizamiento delas secciones críticas, debidas a la carga viva vehicular.
- Servicio III: Combinación de carga longitudinal para el análisis relativo a la tracción en concreto pretensado en superestructuras con el objetivo del control de fisuras y tensión principal en las vigas.

- Servicio IV: Combinación de carga relacionada únicamente con tensión en columnas de concreto pretensado con el objetivo del control de fisuras.
- Fatiga I: Combinación de fatiga y carga de fractura relacionado con la fatiga inducida por cargas infinitas.
- Fatiga I: Combinación de fatiga y carga de fractura relacionado con la fatiga inducida por cargas finitas.

Cuadro 1. Factores y combinaciones de carga.

Combinación	DC DD DW	LL IM CE	WA	WS	WL	FR	TU CR SH	TG	SE	Usar solamente uno de los indicados a continuación				
de cargas	EH	BR	V V/\	003	VVL	' ' '		10	5					
	EV	PL								EQ	BL	IC	СТ	CV
Estado limite	ES	LS												
Resistencia I	γ_p	1.75	1			1	0.5/1.2	γ_{TG}	γ_{SE}					
Resistencia II	γ_p	1.35	1			1	0.5/1.2	γ_{TG}	γ_{SE}					
Resistencia III	γ_p		1	1		1	0.5/1.2	γ_{TG}	γ_{SE}					
Resistencia IV	γ_p		1			1	0.5/1.2							
Resistencia V	γ_p	1.35	1	1	1	1	0.5/1.2	γ_{TG}	γ_{SE}					
Evento extremo I	1	γ_{EQ}	1			1				1				
Evento extremo II	1	0.5	1			1					1	1	1	1
Servicio I	1	1	1	1	1	1	1/1.2	γ_{TG}	γ_{SE}					
Servicio II	1	1.3	1			1	1/1.2							
Servicio III	1	γ_{LL}	1			1.0	1/1.2	γ_{TG}	γ_{SE}					
Servicio IV	1		1	1		1	1/1.2		1					
Fatiga I		1.75												
Fatiga II		0.8												

Fuente: (AASHTO, 2020)

Cuadro 2. Factores de carga para cargas permanentes, γ_P

	Factor de carga			
	Máximo	Mínimo		
DC	Componentes y auxiliares		1.25	0.9
DC	Solo estado limite Resistencia IV		1.5	0.9
DD	Fuerza de arrastre hacia abajo	Pilas, α método Tomlinson	1.4	0.25
		Pilas, Método λ	1.05	0.3
		Pozos perforados,	1.25	0.35
		método de O'Neill y Reese (2010)		
DW	Superficies de Rodadura y Accesorios		1.5	0.65
EH	Presión horizontal de tierra	Activo	1.5	0.9
		En reposo	1.35	0.9
		Para muros anclados	1.35	N/A
EL	Esfuerzos confinados		1	1
EV	Presión vertical de tierra	Estabilidad general y compuesta	1	N/A
		Muros de contención y pilotes	1.35	1
		Ruptura del refuerzo y conexión	1.35	N/A
		Fallo del suelo - geosintéticos	1.2	N/A
		(Servicio I)		
		Método de gravedad coherente	1.35	N/A
		Estructura rígida enterrada	1.3	0.9
		Marcos rígidos	1.35	0.9
		Alcantarillas de caja de metal	1.5	0.9
		Alcantarillas de placas estructurales		
		con corrugaciones profundas		
		Alcantarillas de fibra de vidrio		
		Alcantarillas termoplásticas	1.3	0.9
		Todos los demás	1.95	0.9
		Estabilidad interna y compuesta	1	N/A
		para fallas del suelo en		
		paredes ancladas del suelo		
ES	Carga superficial en el terreno		1.5	0.75

Fuente: (AASHTO, 2020)

Diseño de la superestructura puente tipo losa.

Revisión por resistencia.

El recubrimiento según la Especificación de la AASHTO, novena edición se especifica en el apartado 5.10.1.

A partir de las combinaciones de carga seleccionadas para el proyecto en análisis, se obtiene un momento para la franja interior y para la franja de borde, y se debe de revisar por resistencia y por servicio, cumpliendo con los requerimientos de la especificación AASHTO.

Para iniciar con el diseño, se debe de definir ciertas características de los materiales a utilizar como lo son la resistencia del concreto (f'c), fluencia del acero (fy); también retomar ciertas características como lo son el espesor de la losa, los recubrimientos que tendrá el acero.

El diseño a flexión de la losa debe de cumplir con una cuantía mínima de acero, que se debe de seleccionar entre el menor de los siguientes dos datos:

$$\rho = \frac{14}{fy} \tag{5}$$

$$\rho = \frac{0.8 \cdot \sqrt{f'c}}{fy} \tag{6}$$

A partir del valor obtenido anteriormente se obtiene el área de acero mínimo, como se muestra a continuación:

$$As = \rho \cdot b \cdot d \tag{7}$$

Se determina la altura del bloque de compresión:

$$a = \frac{As \cdot fy}{0.85 \cdot f'c \cdot b} \tag{8}$$

$$c = \frac{a}{\beta} \tag{9}$$

Para determinar β , depende de la resistencia de concreto que se este utilizando y se hace de la siguiente forma:

- Si $f'c \le 280$, se utiliza 0.85.
- Si $f'c \ge 560$, se utiliza 0.65.
- Si 280 < f'c > 560, se utiliza $0.85 \left(\frac{0.05 \cdot (fc 280)}{70}\right)$.

Se realiza siguiente verificación:

$$\frac{c}{d} \le 0.42 \tag{10}$$

Luego se realiza la verificación de los parámetros balanceados de diseño en donde se tiene lo siguiente:

$$\rho_b = 0.85 \cdot \frac{f'c}{fy} \cdot \beta \cdot \frac{6300}{6300 + fy} \tag{11}$$

El área de acero balanceada:

$$As_b = \rho_b \cdot b \cdot d \tag{12}$$

Esta sección de la armadura mínima de diseño, se realiza según la Especificación de la AASHTO, novena edición en los apartados 5.10.3.1.1, 5.10.3.2, 5.4.2.6, 5.6.3.3.

Ahora se tienen los parámetros máximos de diseño:

$$\rho_{m\acute{a}x} = 0.75 \cdot \rho_b \tag{13}$$

$$As_{m\acute{a}x} = \rho_{m\acute{a}x} \cdot b \cdot d \tag{14}$$

$$a_{m\acute{a}x} = \frac{As_{m\acute{a}x} \cdot fy}{0.85 \cdot f'c \cdot b} \tag{15}$$

$$c_{m\acute{a}x} = \frac{a_{m\acute{a}x}}{\beta} \tag{16}$$

Con estos parámetros se obtiene el momento resistente máximo:

$$Mu = \Phi \cdot As_{m\acute{a}x} \cdot fy \cdot \left(d - \frac{a_{m\acute{a}x}}{2}\right) \tag{17}$$

Una vez obtenido lo anterior se procede a determinar el área de acero para resistir el momento para el que se esta diseñando, y verificar que el acero que se coloque satisfaga esa condición.

Se realiza con las formulas dadas anteriormente planteando un a que es la altura del bloque de compresión, e iterar hasta que el error sea de menos del 10 por ciento y utilizar ese valor para determinar el área de acero de diseño.

Se debe de colocar el acero transversal a la dirección del trafico, que en este caso se debe cumplir con la siguiente condición:

$$\frac{1750}{\sqrt{L}} \le 50 \tag{18}$$

Donde:

L= Longitud del puente.

Si la condición anterior se cumple entonces el acero transversal se determina de la siguiente manera:

Esta verificación es según la Especificación de la AASHTO, novena edición en el apartado 5.12.2.1.

$$As_{rep} = \frac{1750}{\sqrt{L}} \cdot As_d \tag{19}$$

El acero por contracción y temperatura se determina de la siguiente forma:

$$As_t = \frac{\rho \cdot b \cdot h}{2} \tag{20}$$

El ρ en este caso es de 0.002, y el acero esta dividido entre 2 debido a que lleva 2 camas de acero; la separación máxima en este caso es el mínimo entre 0.45 metros y $3 \cdot d$.

Para la revisión por cortante de la losa, el concreto deberá de tener la capacidad de soportar el cortante de diseño, cumpliendo con la siguiente formula:

$$Vu \le \phi Vc. \tag{21}$$

Donde:

Vu: Cortante mayorizado.

Vc: Cortante soportado por el concreto.

 $\phi: 0.75$

Para obtener el cortante soportado por el concreto, según ACI, 2015, se obtiene con la siguiente formula:

$$\phi Vc = \phi(0.53 \cdot \sqrt{f'c} \cdot b \cdot d). \tag{22}$$

Se debe de cumplir la desigualdad dada anteriormente, si no es así se debe de aumentar espesor, o cambiar la resistencia del concreto.

Revisión por servicio.

Para la revisión por servicio de la estructura, se debe de obtener parámetros como el modulo de elasticidad del concreto, que se hace de la siguiente forma:

$$E_c = 15100 \cdot \sqrt{fc} \tag{23}$$

El análisis por servicio se realiza mediante el método de la sección transformada, que según Mc Cormac, J y Brown, R, 2011, básicamente consiste en transformar toda la sección en un solo material homogéneo, es decir si es concreto reforzado se transforma el acero en concreto.

En este caso se esta tomando en cuenta el acero de refuerzo, con lo cual se esta transformando este a un área de concreto equivalente.

A partir de los módulos tanto del concreto con la formula anterior como del acero que es de 2100000 kg/cm^2 , se obtiene la relación entre módulos de elasticidad.

$$n = \frac{E_s}{E_c} \tag{24}$$

La razón modular representa cuantas veces se esfuerza el acero a partir del esfuerzo del concreto.

Esta sección de la módulos del concreto y relación entre módulos, se realiza según la Especificación de la AASHTO, novena edición en los apartados 5.4.3.2, 5.4.2.4, 5.6.7; según la norma anterior, la relación de módulos debe de dar mayor que 6.

Con esto se puede determinar el área de acero transformada que se determina de la siguiente forma:

$$As_{st} = n \cdot A \tag{25}$$

Donde:

A=Area de la varilla de acero principal utilizada.

Es necesario obtener el momento por servicio que corresponde al área tributaria del acero principal que se obtiene de la siguiente forma:

$$Ms = S \cdot M_s \tag{26}$$

Donde:

S=Separación acero principal.

 M_s = Momento de Servicio.

Se obtiene el centroide de la sección transformada, se elige el menor de los siguientes dos valores:

$$y = \frac{-A_{st} \pm \sqrt{A_{st}^2 - (2 \cdot D_{varilla} \cdot d \cdot (-A_{st}))}}{D_{varilla}}$$
(27)

Donde:

D_{varilla}= Diámetro de varilla de diseño.y=Centroide de la sección transformada.

El esfuerzo a tensión bajo las cargas de servicio se calcula de la siguiente forma y debe de ser mayor a $0.60 \cdot fy$.

$$\frac{Ms}{y \cdot A} \tag{28}$$

Donde:

A=Área varilla diseño.

y=Centroide de la sección transformada.

Se debe de revisar la deflexión del elemento, y se realiza con la siguiente formula:

$$\Delta_{m\acute{a}x} = \frac{5 \cdot w \cdot L^4}{384 \cdot E_c \cdot I_e} \tag{29}$$

Donde:

 I_e = Inercia efectiva de la sección.

Según la sección 2.5.2.6.2 de la Especificación de la AASHTO, para determinar las deflexiones se debe de realizar con la carga viva mayor entre las siguientes condiciones:

- La carga de camión de diseño, ya sea camión o tándem.
- La carga de carril de diseño.
- La sumatoria del 25 por ciento de la carga camión, más la carga de carril.

Según la Especificación de la AASHTO(AASHTO, 2020) en el apartado 2.5.2.6.2, se tienen los siguientes limites para las deflexiones:

- Carga vehicular en general: $\frac{L}{800}$.
- ullet Carga vehicular y/o peatones: $\frac{L}{1000}$.

- Carga vehicular sobre voladizos: $\frac{L}{300}$.
- Carga vehicular y/o peatones sobre voladizos: $\frac{L}{375}$

Diseño de la superestructura puente tipo Viga-Losa

Revisión por resistencia.

El recubrimiento según Bridge Design Specification AASHTO, 2020, novena edición se especifica en el apartado 5.10.1.

A partir de las combinaciones de carga seleccionadas para el proyecto en análisis, se obtiene un momento positivo y negativo para la franja interior y un momento y cortante para el diseño de la viga, y se debe de revisar por resistencia y por servicio, cumpliendo con los requerimientos de la especificación AASHTO.

Este diseño esta compuesta por la losa, las vigas principales y las vigas diafragma.

Losa.

La siguiente sección aplica tanto para el momento negativo como el positivo.

Para iniciar con el diseño, se debe de definir ciertas características de los materiales a utilizar como lo son la resistencia del concreto (f'c), fluencia del acero (fy); también retomar ciertas características como lo son el espesor de la losa, los recubrimientos que tendrá el acero.

El diseño a flexión de la losa debe de cumplir con una cuantía mínima de acero, que se debe de seleccionar entre el menor de los siguientes dos datos:

$$\rho = \frac{14}{fy} \tag{30}$$

$$\rho = \frac{0.8 \cdot \sqrt{f'c}}{fu} \tag{31}$$

A partir del valor obtenido anteriormente se obtiene el área de acero mínimo, como se muestra a continuación:

$$As = \rho \cdot b \cdot d \tag{32}$$

Se determina la altura del bloque de compresión:

$$a = \frac{As \cdot fy}{0.85 \cdot f'c \cdot b} \tag{33}$$

$$c = \frac{a}{\beta} \tag{34}$$

Para determinar β , depende de la resistencia de concreto que se este utilizando y se hace de la siguiente forma:

- Si $f'c \le 280$, se utiliza 0.85.
- Si $f'c \geq 560$, se utiliza 0.65.
- Si 280 < f'c > 560, se utiliza $0.85 (\frac{0.05*(fc-280)}{70})$.

Se realiza siguiente verificación:

$$\frac{c}{d} \le 0.42 \tag{35}$$

Luego se realiza la verificación de los parámetros balanceados de diseño en donde se tiene lo siguiente:

$$\rho_b = 0.85 \cdot \frac{f'c}{fy} \cdot \beta \cdot \frac{6300}{6300 + fy} \tag{36}$$

El área de acero balanceada:

$$As_b = \rho_b \cdot b \cdot d \tag{37}$$

Esta sección de la armadura mínima de diseño, se realiza según la Especificación de la AASHTO, novena edición en los apartados 5.10.3.1.1, 5.10.3.2, 5.4.2.6, 5.6.3.3.

Ahora se tienen los parámetros máximos de diseño:

$$\rho_{m\acute{a}x} = 0.75 \cdot \rho_b \tag{38}$$

$$As_{m\acute{a}x} = \rho_{m\acute{a}x} \cdot b \cdot d \tag{39}$$

$$a_{m\acute{a}x} = \frac{As_{m\acute{a}x} \cdot fy}{0.85 \cdot f'c \cdot b} \tag{40}$$

$$c_{m\acute{a}x} = \frac{a_{m\acute{a}x}}{\beta} \tag{41}$$

Con estos parámetros se obtiene el momento resistente máximo:

$$Mu = \Phi \cdot As_{m\acute{a}x} \cdot fy \cdot \left(d - \frac{a_{m\acute{a}x}}{2}\right) \tag{42}$$

Una vez obtenido lo anterior se procede a determinar el área de acero para resistir el momento para el que se esta diseñando, y verificar que el acero que se coloque satisfaga esa condición.

Se realiza con las formulas dadas anteriormente planteando un a que es la altura del bloque de compresión, e iterar hasta que el error sea de menos del 10 por ciento y utilizar ese valor para determinar el área de acero de diseño.

Se debe de colocar el acero transversal a la dirección del trafico, que en este caso se debe cumplir con la siguiente condición:

$$\frac{3840}{\sqrt{L}} \le 67\tag{43}$$

Donde:

L= Longitud del puente.

Si la condición anterior se cumple entonces el acero transversal se determina de la siguiente manera, y aplica para la zona de Momento positivo, o el acero colocado en la parte inferior:

Esta verificación es según la Especificación de la AASHTO, novena edición en el apartado 5.12.2.1.

$$As_{rep} = \frac{3840}{\sqrt{L}} \cdot As_d \tag{44}$$

El acero por contracción y temperatura se determina de la siguiente forma, y aplica para la zona de Momento negativo o el acero superior:

$$As_t = \frac{\rho \cdot b \cdot h}{2} \tag{45}$$

El ρ en este caso es de 0.002, y el acero esta dividido entre 2 debido a que lleva 2 camas de acero; la separación máxima en este caso es el mínimo entre 0.45 metros y $3 \cdot d$.

Para la revisión por cortante de la losa, el concreto deberá de tener la capacidad de soportar

el cortante de diseño, cumpliendo con la siguiente formula:

$$Vu \le \phi Vc \tag{46}$$

Donde:

Vu: Cortante mayorizado.

Vc: Cortante soportado por el concreto.

 $\phi: 0.75$

Para obtener el cortante soportado por el concreto, según ACI, 2015, se obtiene con la siguiente formula:

$$\phi Vc = \phi(0.53 \cdot \sqrt{f'c} \cdot b \cdot d) \tag{47}$$

Se debe de cumplir la desigualdad dada anteriormente, si no es así se debe de aumentar espesor, o cambiar la resistencia del concreto.

Viga Principal.

Para obtener el acero a flexión se utilizaron las siguientes fórmulas:

$$As = \frac{0.85 \cdot f'c \cdot b \cdot a}{f_y} \tag{48}$$

Donde:

 A_s : Área de acero requerida de la viga.

a: Distancia del bloque de compresión.

b: Brazo de palanca en tensión.

f'c: Resistencia a la compresión de concreto a los 28 días.

d: Distancia del centroide de acero de tensión a la fibra extrema a compresión.

 f_y :Limite de fluencia del acero.

$$\frac{c}{d} = \frac{a}{\beta \cdot d} \tag{49}$$

Donde:

c: Distancia de la fibra extrema en compresión al eje neutro.

 β : Relación entre la altura del bloque de compresiones y la del eje neutro.

$$\rho = \frac{As}{b \cdot d} \tag{50}$$

Donde:

ρ: cuantía del acero determinado para la viga.

Cuando el $\frac{c}{d}$ es menor a 0.42 se considera una viga simplemente reforzada.

Para obtener el acero a cortante se deben de considerar el cortante, se procede a calcular el V_c que es la capacidad que tiene el concreto para soportar el cortante y se obtiene mediante la siguiente fórmula:

$$\phi V_c = 0.53 \cdot \sqrt{f'c} \cdot b_w \cdot d \tag{51}$$

La cuantía para cortante es la siguiente:

$$\rho = \frac{As}{b_w \cdot d} \tag{52}$$

Se calcula el área de acero para cortante:

$$A_v = A_{prop} \cdot \#ramas \tag{53}$$

El área de acero mínimo para cortante es el siguiente:

$$A = \frac{0.2 \cdot \sqrt{f'c} \cdot b \cdot Sep}{fy} \tag{54}$$

El cortante que debe de soportar el acero es el siguiente:

$$V_{acero} = V_u - V_c \tag{55}$$

La revisión para saber si el acero colocado cumple con el requerido, se realiza lo siguiente:

$$V_{resiste} = \frac{A_{colocado} \cdot fy \cdot d}{Sep_{rromesta}} \tag{56}$$

Y se debe de cumplir lo siguiente:

$$V_{acero} \le V_{resiste}$$
 (57)

Revisión por servicio.

Para la revisión por servicio de la estructura, se debe de obtener parámetros como el modulo de elasticidad del concreto, que se hace de la siguiente forma:

$$E_c = 15100 \cdot \sqrt{f'c} \tag{58}$$

El análisis por servicio se realiza mediante el método de la sección transformada, que según Mc Cormac, J y Brown, R, 2011, básicamente consiste en transformar toda la sección en un solo material homogéneo, es decir si es concreto reforzado se transforma el acero en concreto.

En este caso se esta tomando en cuenta el acero de refuerzo, con lo cual se esta transformando este a un área de concreto equivalente.

A partir de los módulos tanto del concreto con la formula anterior como del acero que es de 2100000 $\frac{kg}{cm^2}$, se obtiene la relación entre módulos de elasticidad.

$$n = \frac{E_s}{E_c} \tag{59}$$

La razón modular representa cuantas veces se esfuerza el acero a partir del esfuerzo del concreto.

Esta sección de la módulos del concreto y relación entre módulos, se realiza según la Especificación de la AASHTO, novena edición en los apartados 5.4.3.2, 5.4.2.4, 5.6.7; según la norma anterior, la relación de módulos debe de dar mayor que 6.

Con esto se puede determinar el área de acero transformada que se determina de la siguiente forma:

$$As_{st} = n \cdot A \tag{60}$$

Donde:

A=Área de la varilla de acero principal utilizada.

Es necesario obtener el momento por servicio que corresponde al área tributaria del acero principal que se obtiene de la siguiente forma:

$$Ms = S \cdot M_s \tag{61}$$

Donde:

S=Separación acero principal.

 M_s = Momento de Servicio.

Se obtiene el centroide de la sección transformada, se elige el menor de los siguientes dos valores:

$$y = \frac{-A_{st} \pm \sqrt{A_{st}^2 - (2 \cdot D_{varilla} \cdot d \cdot (-A_{st}))}}{D_{varilla}}$$
(62)

Donde:

 $D_{varilla}$ = Diámetro de varilla de diseño. y=Centroide de la sección transformada.

El esfuerzo a tensión bajo las cargas de servicio se calcula de la siguiente forma y debe de ser mayor a $0.60 \cdot fy$.

$$\frac{Ms}{y \cdot A} \tag{63}$$

Donde:

A=Área varilla diseño.

y=Centroide de la sección transformada.

Se debe de revisar la deflexión del elemento, y se realiza con la siguiente formula:

$$\Delta_{m\acute{a}x} = \frac{5 \cdot w \cdot L^4}{384 \cdot E_c \cdot I_e} \tag{64}$$

Donde:

 I_e = Inercia efectiva de la sección.

Según la sección 2.5.2.6.2 de la Especificación de la AASHTO, para determinar las deflexiones se debe de realizar con la carga viva mayor entre las siguientes condiciones:

- La carga de camión de diseño, ya sea camión o tándem.
- La carga de carril de diseño.
- La sumatorio del 25 por ciento de la carga camión, más la carga de carril.

Según la Especificación de la AASHTO, 2020, en el apartado 2.5.2.6.2, se tienen los siguientes limites para las deflexiones:

- Carga vehicular en general: $\frac{L}{800}$.
- Carga vehicular y/o peatones: $\frac{L}{1000}$.
- Carga vehicular sobre voladizos: $\frac{L}{300}$.
- Carga vehicular y/o peatones sobre voladizos: $\frac{L}{375}$

Diseño de la Subestructura

Diseño de Apoyos.

Los dispositivos de apoyo según AASHTO, 2020, es un dispositivo que transfiere y reduce las fuerzas entre los elementos de la superestructura y/o la superestructura y elementos de la subestructura, permitiendo al mismo tiempo los movimientos térmicos. El dispositivo proporciona amortiguación disipando energía bajo cargas sísmicas, de frenado u otras cargas dinámicas.

En el caso especifico de los apoyos elastoméricos según ELASTEC, s.f.-a, provee una conexión que permite controlar la interacción de las cargas y movimientos entre las vigas y los bastiones, permiten el desplazamiento normal y absorbe parcialmente la energía.

La AASHTO, 2020, en la Especificación de Diseño de Puentes, especifica el método A, que es para el diseño de apoyos elastoméricos y elastoméricos reforzados con acero, en este caso el estado limite de Servicio el esfuerzo generado por la compresión debe de cumplir con las siguientes condiciones:

$$\sigma_s \le 1,25GS_i \tag{65}$$

$$\sigma_s \le 1,25ksi \tag{66}$$

Donde:

 S_i = Factor de forma de una capa inferior.

El factor de forma para apoyos que tengan sección rectangular, se determina de la siguiente forma:

$$S_i = \frac{L \cdot W}{2 \cdot h \cdot (L + W)} \tag{67}$$

Donde:

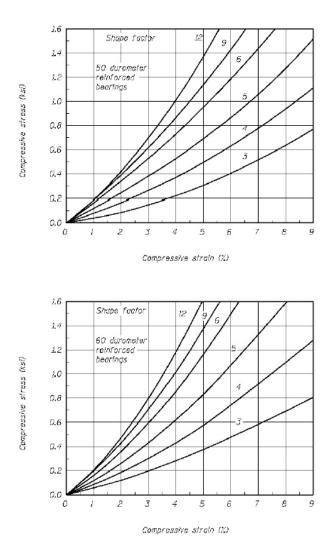
L= Dimensión paralela al eje longitudinal del puente.

W= Dimensión paralela al eje transversal del puente.

h= Grosor de la capa.

Se debe de realizar un análisis por compresión del apoyo, según AASHTO, 2020, se considera la máxima como 0.09h.

La deflexión para el caso de la carga viva se considera como:


$$\delta_L = \sum \epsilon_L \cdot h \tag{68}$$

La deflexión para el caso de la carga muerta se considera como:

$$\delta_d = \sum \epsilon_d \cdot h \tag{69}$$

Donde:

 ϵ = Deformación por compresión debido a la carga en cada caso en especifico y para determinarla se cuenta con las siguientes curvas.

Figura 5. Curvas Esfuerzo-Deformación, dependiendo del grado de dureza y factor de forma. Fuente: AASHTO, 2020.

Para el análisis de los apoyos se utiliza la combinación Servicio, pero aplicando los factores iguales a 1.

El análisis por cortante se tomara la deformación máxima como el desplazamiento horizontal

máximo de la superestructura, esto según AASHTO, 2020.

$$h \ge 2 \cdot \Delta \tag{70}$$

Donde:

h= Mínimo grosor del dispositivo.

 Δ = Deformación máxima por cortante.

Respecto a la estabilidad del apoyo, el grosor del apoyo deberá de ser menor que el menor de las siguientes condiciones:

$$\frac{L}{3} \frac{W}{3} \frac{D}{4}$$

Donde:

L= Dimensión paralela al eje longitudinal del puente.

W= Dimensión paralela al eje transversal del puente.

D= Diámetro del dispositivo.

Para el reforzamiento según el articulo 14.7.5.3.5 de AASHTO, 2020, se debe de tener un espesor mínimo de refuerzo de $\frac{1}{16}$ in, y también debe de cumplir para la combinación de servicio con lo siguiente:

$$h_s \ge \frac{3 \cdot h \cdot \sigma}{fy} \tag{71}$$

Donde:

h= Grosor de una de las capas.

 σ = Esfuerzo de compresión total.

Para la estimación del área de apoyo requerida, se puede hacer de la siguiente forma:

$$A = \frac{P}{\sigma} \tag{72}$$

Donde:

P= Cargas verticales.

 $\sigma=$ Se puede tomar como el valor máximo que es según la norma es de 1.25 ksi, convertidos SI, es aproximadamente 87.88 $\frac{kg}{cm^2}$.

Para obtener L, que es la dimensión paralela al eje longitudinal del puente, se puede realizar de la siguiente forma:

$$L = \frac{A}{W} \tag{73}$$

A= Área requerida.

L= Dimensión paralela al eje longitudinal del puente.

W= Dimensión paralela al eje transversal del puente.

Y a partir de los valor de W y L, se obtiene el área, y esta debe de ser mayor que el área requerida.

Dependiendo del grado de dureza del elastómero, se obtiene el G, que es el módulo de cortante del apoyo, a partir de este valor se obtiene el valor para el factor de forma.

$$S \ge \frac{\sigma}{1.25 \cdot G} \tag{74}$$

Luego se obtiene el grosor de las capas internas de la siguiente forma:

$$h_i \le \frac{L \cdot W}{2 \cdot S \cdot (L + W)} \tag{75}$$

Y con este valor se verifica que cumpla el factor de forma, y el mismo debe de dar mayor que el valor S obtenido anteriormente.

Para el espesor de las capas externas deben de ser menor a un 70 por ciento el valor de las capas internas, se adopta un valor que cumpla con esta condición y se verifica que satisfaga el factor de forma pero en este caso para la capa externa.

El espesor total del apoyo depende de la deformación por cortante máxima en el apoyo, y estas deformaciones según AASHTO, 2020, debe de contemplar la deformación generada por los cambios de temperatura, y por el fraguado del concreto, que producen un encogimiento de la superestructura, por lo tanto este desplazamiento horizontal se determina de la siguiente manera.

$$\Delta = \gamma_{TU} \cdot \Delta_{Temp} \cdot \Delta_{Frag} \tag{76}$$

Donde:

 Δ_{Temp} = Desplazamiento por cambios temperatura.

 Δ_{Frag} = Desplazamiento por fraguado.

Para determinar el desplazamiento por cambios de temperatura se realiza de la siguiente forma:

$$\Delta_{Temp} = L \cdot c \cdot \Delta_t \tag{77}$$

 Δ_t = Diferencial de temperatura.

c= Coeficiente de expansión térmica del acero.

L= Dimensión paralela al eje longitudinal del puente.

Para determinar el desplazamiento por fraguado según Gabriel Andrés Bernal Granados, 2006 se realiza de la siguiente forma:

$$\Delta_{Frag} = 0.51x10^{-3} \cdot L \tag{78}$$

Donde:

L= Dimensión paralela al eje longitudinal del puente.

Y se debe de cumplir que 2 veces esta deformación debe de ser menor que el ancho del apoyo, y con este valor se obtiene la cantidad de capas interiores que debe de llevar el apoyo de la siguiente manera:

$$h = n \cdot h_i + 2 \cdot h_e \tag{79}$$

Donde:

 h_i = Espesor capas interiores.

 h_e = Espesor capas exteriores.

Además debe de cumplir que las capas internas son más de 3 capas y es un dispositivo rectangular, entonces:

$$\frac{S^2}{n} < 20 \tag{80}$$

Luego de esto se debe de realizar la verificación de que cumpla con el espesor.

Como se menciono anteriormente para el caso del refuerzo se debe de cumplir con un espesor mínimo por lo cual debe de realizarse esa verificación, utilizando como valor para h, el máximo valor de capa dentro del apoyo; este refuerzo de acero va entre cada capa de elastómero.

Una vez que se tiene el espesor del acero de refuerzo, se obtiene el espesor total del elemento que seria con la siguiente formula.

$$H = h + (n+1) \cdot h_s \tag{81}$$

H= Espesor total.

h= Espesor sin el acero.

 h_s = Espesor acero.

Se debe de realizar las verificaciones de estabilidad y deformación explicadas anteriormente, donde se debe de obtener el esfuerzo de compresión en ksi, para poder entrar en las curvas mostradas anteriormente y así obtener el porcentaje de deformación.

Se debe de obtener el valor para las cargas verticales DC y DW sumadas, y dividirlo entre el área de apoyo, y se obtiene un valor, y también se debe de obtener para toda la carga vertical e igualmente dividirlo entre el área de apoyo, y se debe de escoger el máximo de los dos valores, y con ese valor se ingresa al eje izquierdo de las curvas, se busca el factor de forma interior obtenido anteriormente y se obtiene el porcentaje de deformación.

Se debe de cumplir que este valor de deformación debe de ser menor que 0.09 para que cumpla.

Anclajes

En el diseño de los anclajes de los dispositivos de apoyo se debe de realizar una verificación por cortante del perno, se debe de obtener la fuerza tanto vertical como horizontal que afectará al elemento, se debe de considerar dos escenarios, uno que es el apoyo fijo donde se verá afectado tanto por la carga vertical como horizontal, y el apoyo móvil que esta solo se verá afectado por la fuerza vertical.

En el caso de la fuerza horizontal afectará solamente los pernos de los apoyos fijos por ende se puede obtener la fuerza que afecta a un perno dividiendo la fuerza horizontal entre el número de pernos que existen en el bastión que llevará el apoyo fijo, en el caso de la fuerza vertical afectará todos los pernos tanto de los fijos como de los móviles.

Según AASHTO, 2020, en la Especificación de diseño de Puentes, se establece que se debe de utilizar en simultaneo las dos fuerzas se debe utilizar el 100 por ciento de una direcciones perpendiculares y el 30 por ciento de la otra dirección perpendicular.

Luego de determinar la combinación anterior se procede a determinar la resistencia al corte de un perno y se realiza utilizando la siguiente ecuación y debe de ser mayor que el valor obtenido anteriormente para que cumpla.

$$V_u = 0.75 \cdot 0.38 \cdot A \cdot F_u \cdot pernos \tag{82}$$

A= Diámetro del perno.

 F_u = Limite fluencia perno

Se realiza la verificación por aplastamiento en la placa que se encuentra en medio del apoyo el elemento de la superestructura.

Se parte de un espesor mínimo de placa de 0.38 milímetros, y se verifica que el aplastamiento satisfaga el valor de la combinación obtenido anteriormente.

$$R = 0.8 \cdot 2.4 \cdot d \cdot t \cdot F_y \cdot pernos \tag{83}$$

Donde:

R= Resistencia al aplastamiento.

d= Diámetro perno.

t= Espesor placa.

Debido a que la altura del elastómero genera un momento se debe de verificar que el perno tenga capacidad flexionante por lo cual se debe de la distancia que el perno es capaz de soportar sin ceder.

Se debe de obtener la inercia del perno, para luego obtener el momento resistente del perno con la siguiente ecuación:

$$M = 0.9 \cdot \frac{F_y \cdot I}{r} \tag{84}$$

Donde:

l= Inercia del perno.

r= Radio del perno.

Se obtiene el cortante que soporta cada perno y este viene a dividir el valor de momento obtenido anteriormente para así poder conseguir el brazo de palanca máximo; y la altura del elastómero debe de ser menor que este valor de brazo máximo, si no es así se debe de cambiar el espesor del apoyo.

También se debe de verificar la resistencia a la rotura del concreto por lo cual se define una longitud de anclaje del perno y una distancia del perno al borde del bastión, y se obtienen los siguientes parámetros:

$$A_v = 4.5 \cdot C_a^2 \tag{85}$$

 C_a = Distancia del perno al borde del bastión.

$$A_{nc} = 1.5 \cdot C_a \cdot (3 \cdot C_a + b) \tag{86}$$

Donde:

 C_a = Distancia del perno al borde del bastión.

b= Distancia entre pernos en el perpendicularmente al eje longitudinal del puente.

$$V = 1.86 \cdot \frac{h_{ef}}{d}^{0}, 2 \cdot \sqrt{d} \cdot \sqrt{f'c} \cdot C_a \tag{87}$$

Donde:

 h_{ef} = Anclaje perno.

d= Diámetro del perno.

Y finalmente la resistencia al a rotura se obtiene de la siguiente manera:

$$V_r = 0.75 \cdot \frac{A_{vc}}{A_v} \cdot V \tag{88}$$

La revisión por la resistencia al arranque de los pernos sometidos a cortante se realiza de la siguiente manera:

$$A_n = 9 \cdot h_{ef}^2 \tag{89}$$

$$A_n c = (C_a + 1.5 \cdot h_{ef}) \cdot (3 \cdot h_{ef} + b) \tag{90}$$

$$N_b = 10.2 \cdot \sqrt{f'c} \cdot h_{ef}^1, 5 \tag{91}$$

$$N = \frac{A_n c}{A_n} \cdot N_b \tag{92}$$

Donde:

 A_n = Área proyectada real del cono falla.

 A_c = Área proyectada del cono falla.

$$V_c = 0.75 \cdot k \cdot N \tag{93}$$

Donde:

 $k= Si h_{ef} i 6.5$ entonces k=1, si no es 2.

De los valores anteriores el mínimo debe de ser mayor que la fuerza que afecta el anclaje para que cumpla.

Diseño de Bastiones.

Son estructuras que brindan un soporte extremo al puente, además de soportar la carga de la superestructura, también se encargan de resistir las cargas laterales generadas por el empuje de suelo. Así como evitar el volcamiento y deslizamiento de este. Los cuales deben diseñarse de acuerdo a la sección 11.6 AASHTO LRFD.

Según los Lineamientos de Puentes del CFIA, 2013, se debe asegurar que el bastión pueda resistir fuerzas sísmicas y empujes de suelo (activos y pasivos). Para garantizar los efectos anteriores, no solo es necesario diseñar por resistencia del elemento, sino también garantizar un factor de seguridad aceptable al vuelco y al deslizamiento, así como la presión de contacto de la estructura y el suelo no causen su falla, ni provoquen desplazamientos excesivos.

Diseño de pantalla

1. Acero por flexión.

Se calcula el momento de diseño en la cara vertical de la pantalla del estribo, para los estados límites de Resistencia I y Evento Extremo I, de acuerdo con la siguiente ecuación:

$$M_U = n[\gamma_{LS} \cdot M_{LS} + \gamma_{EH} \cdot M_{EH} + \gamma_{BR} \cdot M_{BR}] \tag{94}$$

Donde:

n= Factor de modificación de las cargas.

 γ_{LS} = Factor de carga para sobrecarga viva del terreno.

 M_{LS} = Momento último para sobrecarga viva del terreno.

 γ_{EH} = Factor de carga para empuje lateral del terreno.

 M_{EH} = Momento último para empuje lateral del terreno.

 γ_{BR} = Factor de carga para fuerza de frenado.

 M_{BR} = Momento último para fuerza de frenado.

El acero por flexión se calcula de la siguiente forma:

$$A_s = \frac{M_U}{\phi_f \cdot f_y \cdot \frac{d-a}{2}} \tag{95}$$

 M_U = Momento ultimo actuante.

 A_s = Area del acero longitudinal.

 ϕ_f = Factor de resistencia.

 f_y = Esfuerzo de fluencia del acero.

 f_c' = Resistencia del concreto.

a= Profundidad del bloque equivalente de esfuerzos.

d= Peralte efectivo a flexión.

Para obtener el peralte efectivo se realiza los siguientes cálculos:

$$d = h - z \tag{96}$$

Con:

$$z = rec + \frac{\phi}{2} \tag{97}$$

Donde:

h= espesor promedio de pantalla.

rec= recubrimiento.

 ϕ = diámetro de varilla.

La separación máxima del acero se obtiene de la siguiente forma:

$$S = \frac{A_{svar}}{A_s} \tag{98}$$

Donde:

 A_{svar} = Área de acero de la varilla.

2. Acero Mínimo.

Según el Artículo 5.6.3.3 (AASHTO, 2020) se determina que el acero mínimo debe ser adecuado para desarrollar una resistencia factorizada a la flexión, Mr, como mínimo igual al menor valor entre:

$$1.33 \cdot M_u$$
 (99)

$$M_{cr} = y_3 \cdot [(y_1 \cdot f_r + y_2 \cdot f_{cpe}) \cdot S_c - M_{dnc} \cdot (\frac{S_c}{S_{nc}} - 1)]$$
 (100)

 f_r = módulo de rotura del concreto especificado en el Articulo 5.4.2.6 (AASHTO, 2020) f_{cpe} = esfuerzo de compresión en el concreto debida exclusivamente a las fuerzas de pretensado efectivas.

 S_c = módulo de sección para la fibra extrema de la sección compuesta donde se produce esfuerzo de tracción por cargas aplicadas externamente.

 M_{dnc} = momento de carga muerta no modificada actuando en la sección monolítica o no compuesta.

 S_{nc} = modulo Seccional para la fibra extrema de la sección monolítica o no compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción.

 y_1 = Factor de variación de fisuración por flexión, 1.2 para estructuras prefabricadas y 1.6 para todas las otras estructuras de concreto.

 y_2 = Factor de variación de pretensado, 1.1 para tendones adheridos y 1.0 para tendones no adheridos.

 y_3 = Relación de la resistencia a la fluencia mínima especificada a la resistencia de tracción ultima del refuerzo: 0.67 para A615, refuerzo grado 60, 0.75 para A706, refuerzo grado 60 y 1.00 para estructuras de concreto pretensado.

Se debe de utilizar valores apropiados de M_{dnc} y S_{nc} para cualquier sección compuesta intermedia. Además, se debe sustituir S_{nc} por S_c para calcular M_{cr} , si las vigas se diseñan de manera que la sección monolítica o no compuesta resista todas las cargas.

3. Acero por temperatura.

El acero por temperatura se calcula con la ecuación:

$$A_{stemp} = \frac{0.18 \cdot b \cdot h}{2 \cdot (b+h)} \tag{101}$$

Donde:

b= espesor de pantalla.

h= altura de pantalla.

Este debe cumplir con la siguiente expresión:

$$2.33 \frac{cm^2}{m} \le A_{stemp} \le 12.70 \frac{cm^2}{m} \tag{102}$$

La separación máxima del acero por temperatura debe ser menor que:

$$S_{m\acute{a}x} = 3 \cdot t \tag{103}$$

$$S_{m\acute{a}x} = 45cm \tag{104}$$

t= altura de la viga o espesor de losa.

4. Revisión de fisuración por distribución de armadura.

Esta revisión se realiza con la combinación de carga del estado limite de servicio I.

Para calcular la ubicación del eje neutro, se realiza las siguientes ecuaciones:

$$n = \frac{Es}{Ec} \tag{105}$$

$$A_{st} = n \cdot A_s \tag{106}$$

Donde:

Es= Módulo de elasticidad del acero.

Ec= Módulo de elasticidad del concreto.

 A_s = Área de acero a tracción.

El esfuerzo de tracción del acero (f_{ss}) en el estado de servicio debe ser $\leq 0.60 \cdot fy$, y se calcula de la siguiente forma:

$$f_{ss} = \frac{M_s}{jd \cdot A_s} \tag{107}$$

Con:

 $jd=d-\frac{y}{3}$.

Donde:

 M_s = Momento actuante servicio.

y= se calcula mediante un equilibrio de momento respecto al eje neutro

Según el Artículo 5.6.7 (AASHTO, 2020), para calcular la separación máxima de la armadura se utiliza las siguientes expresiones:

$$s_{max} = \frac{125000 \cdot y_e}{B_s \cdot f_{ss}} - 2d_c \tag{108}$$

Con:

$$B_s = 1 + \frac{z}{0,7 \cdot (h - d_c)}.$$
 $d_c = \text{rec} + \frac{\phi_{varilla}}{2}.$

Donde:

 y_e = Factor exposición, 1,00 para la condición de exposición de la clase 1 y 0,75 para la condición de exposición de la clase 2.

Clase 1:= Puede tolerarse agrietamiento puesto que no es de relevante la apariencia del elemento.

Clase 2= Existe mayor preocupación por la apariencia del elemento.

 B_s = Relación entre la tensión de flexión en la cara de tensión extrema y la tensión en el centroide de la capa de refuerzo más cercana a la cara de tensión.

 d_c = Espesor del recubrimiento de concreto medido desde la fibra de tensión extrema hasta el centro de la armadura de flexión situada más cerca de ella.

h: espesor o profundidad total del elemento.

5. Revisión por cortante.

Para la revisión por cortante de la pantalla, se toma la sección más critica en la base de la pantalla. Primeramente, se debe obtener el cortante actuante en la base de la pantalla, utilizando las combinaciones de cargas para los estados de Resistencia I y Evento Extremo I utilizando la siguiente ecuación:

$$V_U = n \cdot [y_{LS} \cdot V_{LS} + y_{EH} \cdot V_{EH} + y_{BR} \cdot V_{BR}]$$
 (109)

Donde:

n= Factor de modificación de las cargas.

 y_{LS} = Factor de carga para sobrecarga viva del terreno.

 V_{LS} = Carga vertical para sobrecarga viva del terreno.

 y_{EH} = Factor de carga para empuje lateral del terreno.

 V_{EH} = Carga vertical para empuje lateral del terreno.

 y_{BR} = Factor de carga para fuerza de frenado.

 V_{BR} = Carga vertical para fuerza de frenado.

El cortante resistente total del concreto se calcula con la expresión:

$$V_r = \phi \cdot V_n \tag{110}$$

 V_r : Cortante factorado.

 ϕ : Factor de resistencia para corte.

 V_n : Cortante nominal.

Según el Artículo 5.7.3.3 (AASHTO, 2020), el valor del cortante nominal resistente se obtiene del menor valor entre:

$$V_n = V_c + V_s + V_p \tag{111}$$

$$V_n = 0.25 \cdot f_c' \cdot bv \cdot dv + V_p \tag{112}$$

Donde:

 V_c = Resistencia nominal al cortante proporcionada por el concreto.

 V_s = Resistencia nominal al cortante proporcionada por el acero de refuerzo.

 V_p = Componente vertical de la fuerza de preesfuerzo.

La resistencia nominal al cortante por el concreto se obtiene de las siguientes expresiones:

$$V_c = 0.53 \cdot \sqrt{f_c'} \cdot bv \cdot dv \tag{113}$$

Con:

 $d_v = d_{e^-\frac{a}{2}}$

Donde:

 $d_e = \mathsf{d}$

Este valor no debe ser menor que le mayor valor de:

- $0.9 \cdot d_e$
- $0.72 \cdot h$

Donde:

by: Base de la sección by=b.

Resistencia nominal al cortante proporcionada por el acero de refuerzo, se calcula de la siguiente manera:

$$V_s = \frac{(A_v \cdot f_y \cdot d_v \cdot (\cot(\theta + \cot(\alpha)) \cdot \sin(\alpha))}{S}$$
 (114)

Con:

$$A_v \ge \frac{0.265\sqrt{f_c' \cdot (bv \cdot S)}}{f_y}$$

Donde:

 A_v = Área del acero transversal.

S= Espaciamiento del acero transversal.

 β = Angulo de inclinación de los esfuerzos de compresión diagonal.

 α = Ángulo de inclinación entre el acero transversal y el eje longitudinal.

Diseño de Cimentación

1. Acero Superior.

Se calcula el momento de diseño en la cara vertical de la pantalla del estribo, para los estado límite de Resistencia I de acuerdo con la siguiente ecuación:

$$M_U = n[\gamma_{DC} \cdot M_{DC} + \gamma_{EV} \cdot M_{EV} + \gamma_{LS} \cdot M_{LS}] \tag{115}$$

Donde:

n:= Factor de modificación de las cargas.

 γ_{DC} = Factor de carga por peso propio.

 M_{DC} = Momento último por peso propio.

 γ_{EV} = Factor de carga por peso propio del suelo.

 M_{EV} = Momento último por peso propio del suelo.

 γ_{LS} = Factor de carga por sobrecarga viva del suelo.

 M_{LS} = Momento último por sobrecarga viva del suelo.

Para el calculo del acero por flexión A_s se utiliza la Ecuación 95, mostrada anteriormente.

Para obtener el peralte efectivo se realiza los siguientes cálculos:

$$d = h - z \tag{116}$$

Con:

$$z = rec + \frac{\phi}{2} \tag{117}$$

h= espesor promedio de pantalla.

rec= recubrimiento.

 ϕ = diámetro de varilla.

La separación máxima del acero se obtiene de la siguiente forma:

$$S = \frac{A_{svar}}{A_s} \tag{118}$$

Donde:

 A_{svar} : Área de acero de la varilla.

Acero Mínimo:

En las Ecuaciones 87 y 88 se determinan que el acero mínimo adecuado para desarrollar una resistencia factorizada a la flexión, Mr, como mínimo igual al menor valor entre estas ecuaciones.

2. Acero por temperatura.

El acero por temperatura se calcula con la ecuación:

$$A_{stemp} = \frac{0.18 \cdot b \cdot h}{2 \cdot (b+h)} \tag{119}$$

Donde:

b= espesor.

h= altura.

Este debe cumplir con la siguiente expresión:

$$2.33 \frac{cm^2}{m} \le A_{stemp} \le 12.70 \frac{cm^2}{m} \tag{120}$$

La separación máxima del acero por temperatura debe ser menor que:

$$S_{m\acute{a}x} = 3 \cdot t \tag{121}$$

$$S_{m\acute{a}x} = 45cm \tag{122}$$

t: altura de la viga o espesor de losa.

3. Revisión del talón por cortante.

Para la revisión por cortante del talón, se utiliza la combinación de carga para el estado de Resistencia I y se omite el estado de Evento Extremo I pues no rige el diseño. Y se utiliza la siguiente ecuación:

$$V_U = n \cdot [y_{DC} \cdot V_{DC} + y_{EV} \cdot V_{EV} + y_{LS} \cdot V_{LS}]$$
 (123)

Donde:

n: Factor de modificación de las cargas.

 y_{DC} = Factor de carga por peso propio.

 $V_{DC}=$ Carga vertical por peso propio.

 y_{EV} = Factor de carga por peso propio del suelo.

 V_{EV} = Carga vertical por peso propio del suelo.

 y_{LS} = Factor de carga por sobrecarga viva del suelo.

 V_{LS} = Carga vertical por sobrecarga viva del suelo.

El cortante resistente total del concreto se calcula con la expresión:

$$V_r = \phi \cdot V_n \tag{124}$$

Donde:

 V_r = Cortante factorado.

 ϕ = Factor de resistencia para corte.

 V_n = Cortante nominal.

Según el Artículo 5.7.3.3 (AASHTO, 2020), el valor del cortante nominal resistente se obtiene del menor valor entre:

$$V_n = V_c + V_s + V_p \tag{125}$$

$$V_n = 0.25 \cdot f_c' \cdot bv \cdot dv + V_p \tag{126}$$

Donde:

 V_c = Resistencia nominal al cortante proporcionada por el concreto.

 V_s = Resistencia nominal al cortante proporcionada por el acero de refuerzo.

 V_p = Componente vertical de la fuerza de preesfuerzo.

La resistencia nominal al cortante por el concreto se obtiene de las siguientes expresiones:

$$V_c = 0.53 \cdot \sqrt{f_c'} \cdot bv \cdot dv \tag{127}$$

Con:

 $d_v = d_{e^{-\frac{a}{2}}}$

Donde:

 $d_e = \mathsf{d}$

Este valor no debe ser menor que le mayor valor de:

- $0.9 \cdot d_e$
- $0.72 \cdot h$

Donde:

bv= Base de la sección bv=b.

Resistencia nominal al cortante proporcionada por el acero de refuerzo, se calcula de la siguiente manera:

$$V_s = \frac{(A_v \cdot f_y \cdot d_v \cdot (\cot(\theta + \cot(\alpha)) \cdot \sin(\alpha))}{S}$$
 (128)

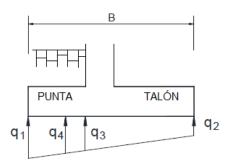
Con:
$$A_v \geq \frac{0.265\sqrt{f_c'\cdot(bv\cdot S)}}{f_y}$$

 A_v = Área del acero transversal.

S= Espaciamiento del acero transversal.

 β = Ángulo de inclinación de los esfuerzos de compresión diagonal.

 α = Ángulo de inclinación entre el acero transversal y el eje longitudinal.


4. Acero inferior.

Se calcula las presiones sobre el cimiento del estribo, para luego obtener el momento generado por estas presiones de acuerdo con las siguientes expresiones:

$$q_u = \frac{V_u}{B} (1 \pm \frac{6e}{B}) \tag{129}$$

$$M_U = \frac{L^2}{6}(q_3 + q_1) \tag{130}$$

En la figura 6, se muestran las presiones actuantes en la base del bastión.

Figura 6. Distribución de presiones en sobre el cimiento del bastión. Fuente: Propio.

Una ve obtenido el momento actuante se calcula el acero por flexión de la siguiente forma:

$$A_s = \frac{M_U}{\phi_f \cdot f_y \cdot \frac{d-a}{2}} \tag{131}$$

Donde:

 M_U = Momento ultimo actuante.

 A_s = Area del acero longitudinal.

 ϕ_f = Factor de resistencia.

 f_y = Esfuerzo de fluencia del acero.

 f_c' = Resistencia del concreto.

a= Profundidad del bloque equivalente de esfuerzos.

d= Peralte efectivo a flexión.

Para obtener el peralte efectivo se realiza los siguientes cálculos:

$$d = h - z \tag{132}$$

Con:

$$z = rec + \frac{\phi}{2} \tag{133}$$

Donde:

h: espesor promedio de la losa.

rec= recubrimiento.

 ϕ = diámetro de varilla.

La separación máxima del acero se obtiene de la siguiente forma:

$$S = \frac{A_{svar}}{A_s} \tag{134}$$

Donde:

 A_{svar} = Área de acero de la varilla.

Acero Mínimo:

Según el Artículo 5.6.3.3 (AASHTO, 2020) se determina que el acero mínimo debe ser adecuado para desarrollar una resistencia factorizada a la flexión, Mr, como mínimo igual al menor valor entre:

$$1.33 \cdot M_{\nu}$$
 (135)

$$M_{cr} = y_3 \cdot [(y_1 \cdot f_r + y_2 \cdot f_{cpe}) \cdot S_c - M_{dnc} \cdot (\frac{S_c}{S_{nc}} - 1)]$$
 (136)

Donde:

 f_r = módulo de rotura del concreto especificado en el Articulo 5.4.2.6 (AASHTO, 2020) f_{cpe} esfuerzo de compresión en el concreto debida exclusivamente a las fuerzas de pretensado efectivas.

 $S_c =$ módulo de sección para la fibra extrema de la sección compuesta donde se produce esfuerzo de tracción por cargas aplicadas externamente.

 $M_{dnc} =$ momento de carga muerta no modificada actuando en la sección monolítica o no compuesta.

 S_{nc} modulo Seccional para la fibra extrema de la sección monolítica o no compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción.

 y_1 = Factor de variación de fisuración por flexión, 1.2 para estructuras prefabricadas y 1.6 para todas las otras estructuras de concreto.

 y_2 = Factor de variación de pretensado, 1.1 para tendones adheridos y 1.0 para tendones no adheridos.

 y_3 = Relación de la resistencia a la fluencia mínima especificada a la resistencia de tracción ultima del refuerzo: 0.67 para A615, refuerzo grado 60, 0.75 para A706, refuerzo grado 60 y 1.00 para estructuras de concreto pretensado.

Se debe de utilizar valores apropiados de M_{dnc} y S_{nc} para cualquier sección compuesta

intermedia. Además, se debe sustituir S_{nc} por S_c para calcular M_{cr} , si las vigas se diseñan de manera que la sección monolítica o no compuesta resista todas las cargas.

5. Revisión de la punta por cortante

Para la revisión de la punta por cortante , se debe obtener el cortante actuante a una distancia d_v de la cara de la pantalla. este se calcula con la expresión:

$$V_r = \phi \cdot V_n \tag{137}$$

Donde:

 V_r = Cortante factorado.

 ϕ = Factor de resistencia para corte.

 V_n = Cortante nominal.

Según el Artículo 5.7.3.3 (AASHTO, 2020), el valor del cortante nominal resistente se obtiene del menor valor entre:

$$V_n = V_c + V_s + V_p \tag{138}$$

$$V_n = 0.25 \cdot f_c' \cdot bv \cdot dv + V_p \tag{139}$$

Donde:

 V_c = Resistencia nominal al cortante proporcionada por el concreto.

 V_s = Resistencia nominal al cortante proporcionada por el acero de refuerzo.

 V_p = Componente vertical de la fuerza de preesfuerzo.

La resistencia nominal al cortante por el concreto se obtiene de las siguientes expresiones:

$$V_c = 0.53 \cdot \sqrt{f_c'} \cdot bv \cdot dv \tag{140}$$

Con:

 $d_v = d_e - \frac{a}{2}$

Donde:

 $d_e = d$

Este valor no debe ser menor que le mayor valor de:

• $0.9 \cdot d_e$

bv= Base de la sección bv=b.

Resistencia nominal al cortante proporcionada por el acero de refuerzo, se calcula de la siguiente manera:

$$V_s = \frac{(A_v \cdot f_y \cdot d_v \cdot (\cot(\theta + \cot(\alpha)) \cdot \sin(\alpha))}{S}$$
(141)

$$A_v \ge \frac{0.265\sqrt{f_c' \cdot (bv \cdot S)}}{f_y}$$

Donde:

 A_v = Area del acero transversal.

S= Espaciamiento del acero transversal.

 β = Ángulo de inclinación de los esfuerzos de compresión diagonal.

 α = Angulo de inclinación entre el acero transversal y el eje longitudinal.

6. Revisión de la rigidez de la cimentación.

Según el Articulo 4.1.3 (Asociación Costarricense de Geotecnia, 2009) para el diseño de una placa de cimentación, se considera que puede efectuarse un comportamiento rígido del cimiento, en el cual la base de la placa se conserve siempre plana o que sea un elemento flexible. Para que un cimiento sea rígido se debe verificar que se cumpla con la siguiente relación:

$$L < \frac{1}{4} \frac{\pi}{\sqrt[4]{\frac{K_{s1} \cdot B}{4E_c \cdot I}}} \tag{142}$$

Donde:

L= Dimensión máxima del cimiento.

B= Ancho del cimiento.

 E_c = Módulo de elasticidad del concreto.

I= Momento de inercia de la sección transversal del cimiento.

 K_{s1} = Módulo de reacción vertical del suelo (Figura 7) dentro de la zona de influencia de la cimentación.

	TIPO DE SUELO	Módulo de Deformación	Módulo de reacción vertical
		$E_o (\mathrm{kg/cm^2})$	K_{s1} (kg/cm ³)
**	Suelo fangoso	11.00 a 33.00	0.50 a 1.50
*	Arena seca o húmeda, suelta (N _{SPT} 3 a 9)	0.16H a 0.48H	1.20 a 3.60
*	Arena seca o húmeda, media (N _{SPT} 9 a 30)	0.48H a 1.60H	3.60 a 12.00
*	Arena seca o húmeda, densa (N _{SPT} 30 a 50)	1.60H a 3.20H	12.00 a 24.00
*	Grava fina con arena fina	1.07H a 1.33H	8.00 a 10.00
*	Grava media con arena fina	1.33H a 1.60H	10.00 a 12.00
*	Grava media con arena gruesa	1.60H a 2.00H	12.00 a 15.00
*	Grava gruesa con arena gruesa	2.00H a 2.66H	15.00 a 20.00
韓	Grava gruesa firmemente estratificada	2.66H a 5.32H	20.00 a 40.00
**	Arcilla blanda (qu 0.25 a $0.50\ kg/cm^2)$	15 a 30	0.65 a 1.30
**	Arcilla media $(q_u 0.50 \text{ a } 2.00 \text{ kg/cm}^2)$	30 a 90	1.30 a 4.00
**	Arcilla compacta (q _u 2.00 a 4.00 kg/cm ²)	90 a 180	4.00 a 8.00
	Arcilla dura (q _u 4.00 a 10.00 kg/cm ²)	180 a 480	8.00 a 21.00

H: Profundidad del pozo de cimentación en cm

Figura 7. Módulo de deformación y módulo de reacción vertical del suelo. Fuente: Asociación Costarricense de Geotecnia, 2009.

Diseño de Ménsula

La ménsula de concreto se utiliza para apoyar en ella normalmente estructuras de gran tamaño, por lo que es de gran importancia su correcto dimensionamiento. Esta se diseña tomando en cuenta los siguientes esfuerzos: aplastamiento, tensión, flexión y cortante. El diseño de la ménsula se realiza según los estipulado en el ACI, 2015.

a) Según el Capítulo 16.5 del ACI, 2015, se debe verificar las siguientes restricciones.

$$i \le 0,5d' \tag{143}$$

Donde:

i: altura total ménsula (cm).

d': altura efectiva ménsula (cm).

$$\frac{g}{d'} \le 1 \tag{144}$$

Donde:

g: distancia del centro de una carga concentrada a la cara del apoyo. (cm)

$$N_{uc} \le V_u \tag{145}$$

Donde:

 N_{uc} : fuerza de restricción mayorada (kg).

^{*:} Los terrenos granulares si están sumergidos se tomarán con E₀ o K₅1 igual a los del cuadro multiplicados por

^{**:} Los valores considerados corresponden a cargas de corta duración. Si se consideran cargas permanentes que produzcan V y M y ha de tener lugar la consolidación, se multiplican los valores de Eo y Ks1 por 0.25

 V_u : fuerza cortante (kg).

b) Cálculo de la fuerza vertical nominal.

$$V_u \le \phi V_n \tag{146}$$

$$V_n = \frac{V_u}{\phi} \tag{147}$$

Utilizando $\phi = 0.75$

Según el capítulo 16.5.2.4 para el concreto de densidad normal, las dimensiones de la ménsula deben seleccionarse manera que $\frac{V_u}{\phi}$ no exceda el menor de:

$$0.2 \cdot f_c' \cdot bw \cdot d' \tag{148}$$

$$(34 + 0.08 \cdot f_c')bw \cdot d' \tag{149}$$

$$110 \cdot bw \cdot d' \tag{150}$$

Donde:

 f_c' : Resistencia a la compresión del concreto (kg/cm^2) .

bw: ancho del alma (cm).

d': distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción (cm).

c) Cálculo de la fuerza horizonta.l

Según el capitulo 16.2.2.3, para conexiones sobre almohadillas de apoyo se calcula de acuerdo con la siguiente ecuación.

$$N_{uc} = 0.2V_u \tag{151}$$

d) Cálculo del diseño de la placa de apoyo.

$$A_{PL} = \frac{V_u}{\phi \cdot 0.85 \cdot f_c'} \tag{152}$$

Con: $\phi = 0.65$

Donde:

 A_{PL} : área de la placa (cm^2) .

e) Cálculo de acero por tensión.

$$A_n = \frac{N_{uc}}{\phi \cdot F_y} \tag{153}$$

Con: $\phi = 0.90$

 A_n : área por tensión (cm^2) .

f) Cálculo de acero por flexión.

$$Mu = V_u \cdot g + N_{uc} \cdot (h' - d') \tag{154}$$

$$A_f = \frac{Mu}{\phi \cdot 0.9 \cdot F_y \cdot d'} \tag{155}$$

Con: $\phi = 0.90$

Donde:

 A_f : área por flexión (cm^2) .

g) Cálculo de acero por cortante directo.

Se utiliza concreto colado monolíticamente y de peso normal por que el coeficiente de fricción se calcula de acuerdo con la siguiente ecuación.

$$\mu = 1.4 \cdot \lambda \tag{156}$$

Donde $\lambda = 1$

$$A_{vf} = \frac{V_u}{\phi \cdot \mu \cdot F_y} \tag{157}$$

Con: $\phi = 0.90$

Donde:

 μ : coeficiente de fricción.

 A_{vf} : área por cortante directo (cm^2) .

h) Cálculo de acero principal.

El acero de refuerzo principal debe ser el mayor de las siguientes ecuaciones:

$$A_{sc} = A_f + An \tag{158}$$

$$A_{sc} = \frac{2}{3} \cdot A_{vf} + An \tag{159}$$

$$A_{sc} = 0.04 \cdot \frac{f_c'}{F_y} \cdot bw \cdot d' \tag{160}$$

Donde:

 A_{sc} : área de acero principal (cm^2) .

i) Cálculo de los estribos paralelos.

El área total de estribos paralelos al acero principal debe ser:

$$A_h \le 0.5 \cdot (A_{sc} - A_n) \tag{161}$$

Donde:

 A_h : área de estribos (cm^2) .

Barandas peatonales.

Para el diseño de las barandas peatonales se realizó según la Especificación de diseño de puentes de la AASHTO, 2020, y también con la tesis de Victor Manuel Acevedo Laos, 2015, que explica muy claramente el procedimiento que se debe de seguir.

En la AASHTO, 2020, se menciona ciertas condiciones mínimas que debe de tener la baranda, entre ellas esta que debe de ser como minimo de 1.06 metros de altura, además que la abertura superior no debe de ser menor a 20 centímetros, y el resto de elementos horizontales debe de estar colocados a cada 15 centímetros, además respecto a las cargas se menciona que para los elementos horizontales se va a diseñar para una sobrecarga de 75 kg/m y una carga concentrada de 90 kg, y estas actuarán de manera simultanea, y respecto a los elementos verticales se tiene que la carga para la que estará diseñada debe de seguir la siguiente ecuación:

$$P_{LL} = 90.7 + 74.4 \cdot L \tag{162}$$

Donde:

L= Separación entre los elementos verticales.

Para el diseño de los elementos horizontales una vez que se obtuvieron las cargas tanto por el peso propio como por la sobrecarga según norma, se deberá de obtener el momentos y cortantes últimos, luego de esto se debe de seleccionar una sección, se puede utilizar el catalogo del Instituto Chileno del Acero, s.f.

Una vez que se selecciona la sección se realiza el diseño a flexión, se debe de obtener el momento plástico de sección:

$$M_p = F_y \cdot Z \tag{163}$$

Donde:

Z= Módulo plástico de la sección.

Y se realiza la verificación de que el M_p sea mayor que el momento de diseño.

Para la resistencia al cortante:

$$V = 0.75 \cdot A \cdot e \cdot 60 \tag{164}$$

Donde:

A= Área de la sección.

e= Espesor del tubo.

Para el diseño de los elementos verticales se realiza el mismo procedimiento que en los elementos horizontales.

Respecto al diseño de los anclajes, se diseñara un anclaje con pernos, se obtiene primero la tracción en los pernos que se obtiene de la siguiente manera:

$$T = \frac{M_u}{d+s} \tag{165}$$

Donde:

d= Diámetro de la sección.

s= Separación del tubo al perno.

Se debe de revisar distintas fallas entre ellas están la falla del perno, rotura del concreto, arranque del perno y rotura lateral del concreto, esto seria en revisión por tracción y en la revisión por cortante se revisa por falla del perno y arranque del perno.

Anclajes

Resistencia a la tracción

Revisión de la resistencia a la tracción de los pernos, se calcula con la siguiente formula:

$$T = 0.76 \cdot A \cdot F_u \tag{166}$$

Donde:

A= Diámetro del perno.

 F_u = Limite fluencia perno

Revisión de la resistencia a la rotura del concreto, se calcula con la siguiente formula:

$$N = 0.75 \cdot \frac{A_n}{A_c} \cdot N_b \tag{167}$$

Donde:

 A_n = Área proyectada real del cono falla.

 A_c = Área proyectada del cono falla.

$$A_c = 9 \cdot h_{ef}^2 \tag{168}$$

Donde:

 h_{ef} = Anclaje perno.

$$N_b = 10.2 \cdot \sqrt{f'c} \cdot h_{ef}^1, 5 \tag{169}$$

Revisión de la resistencia al arranque del perno, se calcula con la siguiente formula:

$$N_a = 0.75 \cdot N_p \tag{170}$$

Donde:

$$N_p = 8 \cdot f'c \cdot A \tag{171}$$

Donde:

A= Área de aplastamiento del concreto

Para el cálculo del área de aplastamiento se debe de considerar el área de la tuerca o de la cabeza del perno según sea el caso.

Revisión de la resistencia a la rotura lateral del concreto, se debe de calcular para pernos cercanos al borde, donde el anclaje del pernos sea mayor a 2.5 veces la distancia del perno al borde.

Resistencia al corte

Revisión de la resistencia al corte de los pernos, se calcula con la siguiente formula:

$$V_u = 0.75 \cdot 0.38 \cdot A \cdot F_u \cdot pernos \tag{172}$$

Donde:

A= Diámetro del perno.

 F_u = Limite fluencia perno

Revisión de la resistencia al arranque de los pernos sometidos a corte, se calcula con la siguiente formula:

$$V_c = 0.75 \cdot k \cdot N \tag{173}$$

Donde:

k= Si $h_{ef} < 6.5$ entonces k=1, si no es 2.

N= Resistencia a la rotura del concreto debido a los pernos.

Para la placa de la base de los elementos verticales, primero se debe de obtener la resistencia al aplastamiento del concreto y sigue la siguiente ecuación:

$$P = 0.7 \cdot 0.85 \cdot f'c \cdot A \cdot m \tag{174}$$

Donde:

P= Resistencia al aplastamiento.

A= Area bajo aplastamiento.

m= Factor de modificación 1.5.

 ϕ = Factor de carga, igual a 0.7 para aplastamiento en el concreto.

Para obtener la longitud mínima de la placa se debe de obtener primero la distancia mínima del tubo al borde de la placa:

$$x = \frac{T \cdot 2}{3 \cdot P \cdot a} \tag{175}$$

Donde:

a= Ancho propuesto de la base.

Por lo tanto para obtener la mínima longitud se debe de sumar el diámetro del tubo más 2 veces la dimensión mínima obtenida anteriormente; y se debe de verificar que la longitud propuesta cumpla con la longitud mínima.

Para obtener el espesor se debe de obtener el momento que va a soportar la placa y se obtiene multiplicando la tracción del perno por la distancia del perno al borde del elemento vertical.

Para obtener el espesor minimo se debe de seguir la siguiente ecuación:

$$t = \sqrt{\frac{M \cdot 12}{2 \cdot f_y \cdot b}} \tag{176}$$

M= Momento que soporta la placa.

b= Ancho de la base.

Se debe de revisar la resistencia al aplastamiento, se debe de seguir la siguiente formula:

$$R = 0.8 \cdot 2.4 \cdot d \cdot t \cdot F_y \cdot pernos \tag{177}$$

Donde:

R= Resistencia al aplastamiento.

d= Diámetro perno.

t= Espesor placa.

Alcances y limitaciones

El alcance del trabajo desarrollado, básicamente se enfocó en generar una herramienta con la que fuera posible el diseñar puentes tanto tipo losa, como tipo losa-viga, para distintas longitudes, y condiciones de sitio especificas donde será construido, considerando tanto un carril o dos carriles con o sin aceras.

Para generar el proyecto, se delito solamente a dos tipos de puentes como se menciono anteriormente, además se delimito a puentes simples de un solo tramo según las características especificadas tanto en Lineamientos de Puentes del CFIA y la Especificación de diseño de Puentes de la AASHTO, en su ultima versión, y se detallan a continuación.

- La importancia operacional del puente es esencial, convencional u otra.
- El puente es regular.
- El puente clasifica como zona de desempeño 2 y 3 según la especificación AASHTO LRFD.
- El puente es recto y de ancho constante.
- La longitud del puente no debe exceder 40 m.
- La superestructura está compuesta por una losa de concreto únicamente o por un tablero sobre vigas de acero o concreto.
- El ángulo de sesgo máximo es 20 en los dos extremos, con diferencia menor que 3 entre los valores del sesgo en los extremos.
- El tablero debe trabajar como un diafragma rígido en su propio plano. La razón entre el claro y el ancho del tablero debe ser menor o igual a tres.
- La superestructura se diseña como un elemento simplemente apoyado sobre bastiones.
- Existen diafragmas transversales en los extremos del puente en línea con los apoyos.
- La unión entre las vigas y el tablero permite que se desempeñen como sección compuesta.
- Los suelos en que se apoya no son susceptibles a licuación.

Y quedan excluidos los siguientes:

- Puentes clasificados en la zona de desempeño sísmico 4, según la especificación AASHTO LRFD.
- Puentes clasificados como de importancia operacional crítica.
- Puentes con tableros de madera, de láminas dentadas de acero o de paneles prefabricados de concreto sin uniones continuas en las dos direcciones que permitan trasmitir las fuerzas de cortante y de flexión.
- Puentes tipo armadura.
- Puentes con bastiones integrados o semi-integrados a la superestructura.

Además, el diseño de puentes tipo losa se limita a 15 metros de longitud, esto debido a que a mayores longitudes el costo aumenta debido a que aumenta el espesor y por ende el peso de la propia estructura, para puentes tipo viga-losa, se tiene un limite de 40 metros, pero también se debe de considerar que a mayores longitudes el peralte de las vigas aumentara considerablemente debido a que son vigas simplemente reforzadas.

Se debe de considerar que el camión de diseño utilizado es el HL-93 y el tándem de diseño según lo especifica AASHTO, 2020.

Con la herramienta generada, se tiene el diseño tanto de la superestructura como de la subestructura.

Respecto a las limitaciones para el desarrollo de los objetivos, aunque se cuenta con los Lineamientos de Puentes por parte del CFIA, y la Normativa de la AASHTO, no se cuenta con una normativa totalmente "tropicalizada" donde se adapte a las condiciones del país, por ende la recolección de información y la investigación fue un factor importante en la generación del proyecto.

Metodología

La metodología seguida en este proyecto, responde a los objetivos propuestos, y nace con la necesidad de generar una herramienta que facilite el diseño de puentes para SENARA, a continuación se detalla por objetivo la metodología utilizada para satisfacerlo.

 Indagar y recopilar información pertinente para el diseño de puentes basado en normas nacionales e internacionales.

En este primer objetivo, lo primordial es recopilar información necesaria para el adecuado diseño de la estructura, que cumpla con todos los parámetros técnicos y geométricos mínimos.

Dentro de las normas que se van a analizar son Lineamientos para el Diseño Sismorresistente de Puentes del Colegio Federado de Ingenieros y Arquitectos (CFIA), las normas AASHTO LRFD Bridge Design Specifications 9na edition, AASHTO Guide Specifications for LRFD Seismic Bridge Design 2nd edition, Decreto 40139-MOPT Oficialización de la Norma Técnica para el Desarrollo y Conservación de la Red Vial Cantonal.

Los lineamientos para el diseño sismorresistente de puentes, establece los requisitos mínimos para el análisis, diseño y rehabilitación sismorresistente de puentes que se construyan en el territorio nacional. CFIA, 2013; estos lineamientos lo que buscan proteger la vida humana y la integridad física de las personas al igual que reducir los daños materiales y las pérdidas económicas, y todo esto cumpliendo con los requisitos que se especifican en estos lineamientos.

Estos lineamientos referencia a normas y códigos tanto nacionales como internacionales, como a las normas AASHTO, en específico Bridge Design Specifications, en donde se brindan ciertas especificaciones acerca del diseño, evaluación y rehabilitación de puentes, todas las disposiciones de diseño están cubierta por la metodología LRFD. AASHTO, 2020.

En el territorio nacional rige el Decreto 40139-MOPT (2017), que se denomina Oficialización de la Norma Técnica para el Desarrollo y Conservación de la Red Vial Cantonal, que es un instrumento técnico de aplicación y observancia en el desarrollo y ejecución de obras de infraestructura vial de la red vial cantonal.

 Desarrollar el contenido de la guía de diseño apegándose a las normas nacionales e internacionales y a las necesidades de SENARA.

De acuerdo con la búsqueda y el análisis de la información obtenida en el objetivo anterior relacionada con el diseño de puentes, se establece la estructura y secuencia de temas que se deben considerar en el diseño de puentes. Se utilizará como base, manuales de diseño que sean claros, ordenados y completos.

Una vez establecida la estructura y la secuencia de la guía, se definirá el contenido de cada una de las secciones verificando que satisfaga los requisitos establecidos en las especificaciones de diseño de normas nacionales e internacionales.

Para el planteamiento del diseño estandarizado de los puentes, se deben de definir las combinaciones de carga y el tipo de vehículo de diseño, además de realizar el calculo de cargas, se debe de realizar un análisis dependiendo de la condición de apoyo que se tenga, el diseño estructural de las distintas secciones de la estructura.

A partir de los planos proporcionados se podrá obtener dimensiones de los elementos que conformarán el puente, para así adaptarlo y actualizarlos a la normativa vigente.

• Desarrollar una herramienta que estandarice el diseño de puentes de concreto en el departamento de ingeniería de SENARA.

Se plantea el desarrollo de una herramienta que funcione de manera estándar para facilitar el diseño de los puentes con simplemente ingresar ciertos valores por parte del usuario y se obtenga el diseño que se requerirá de acuerdo con las condiciones específicas de cada proyecto; mediante la utilización del programa Microsoft, en donde se programará la herramienta.

 Elaborar planos y memoria de cálculo de los puentes de concreto reforzado que usa regularmente SENARA.

A partir de los puentes tipo proporcionados y del diseño que se plantea en el objetivo 2, se realizaron los planos y la memoria de cálculo que valida el diseño de estos; además se brindará como un producto que la organización podrá seguir aplicando en sus proyectos de una manera ágil y sin incurrir en grandes costos, además de estos planos contarán con la herramienta para generar cualquier otro diseño que no esté contemplado dentro de los planos que se van a proporcionar.

A continuación se muestran los diagramas de flujo con base en el desarrollo de la herramienta para la estandarización, en la figura 8 se muestra el diseño de la losa del puente tipo

losa, en las figuras 9 y 10 se muestra el diagrama del diseño para la losa y vigas del puente tipo viga-losa, en la figura 11 se muestra el diseño de los apoyos de neopreno, y en la figura 12 se muestra el diseño de los bastiones.

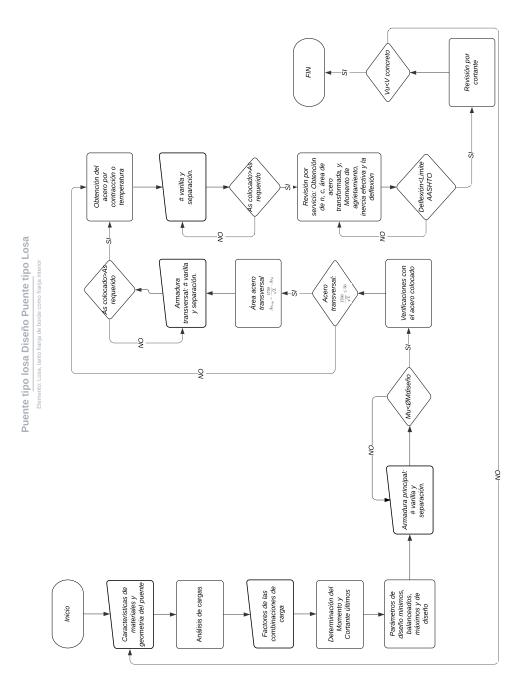
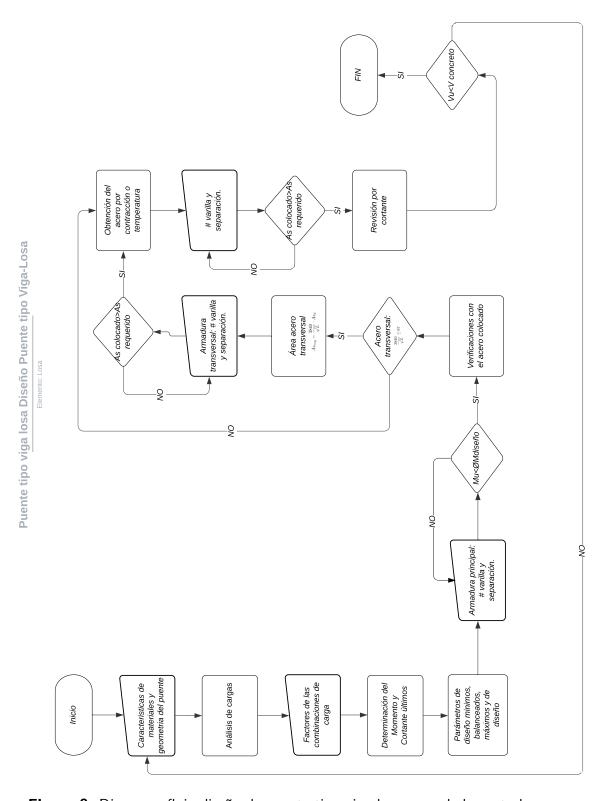



Figura 8. Diagrama flujo diseño de puente tipo losa. Fuente: Propia

Figura 9. Diagrama flujo diseño de puente tipo viga-losa para el elemento losa. Fuente: Propia

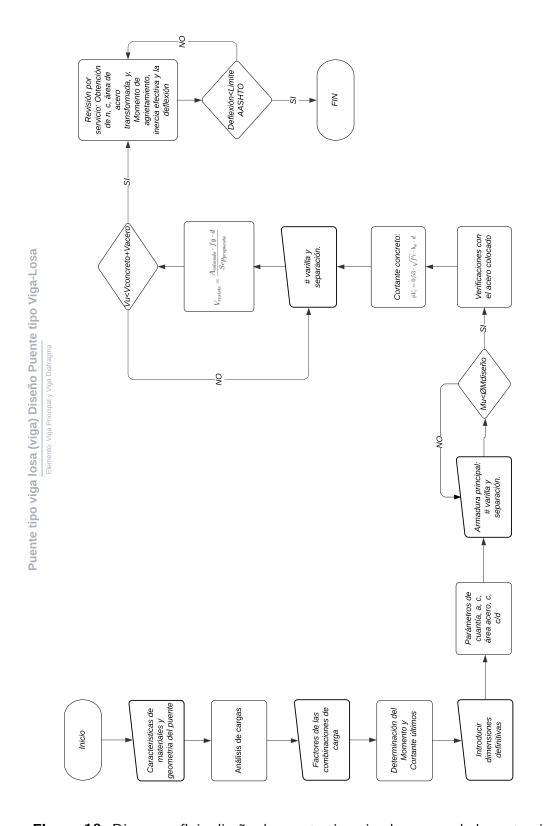


Figura 10. Diagrama flujo diseño de puente tipo viga-losa para el elemento viga. Fuente: Propia

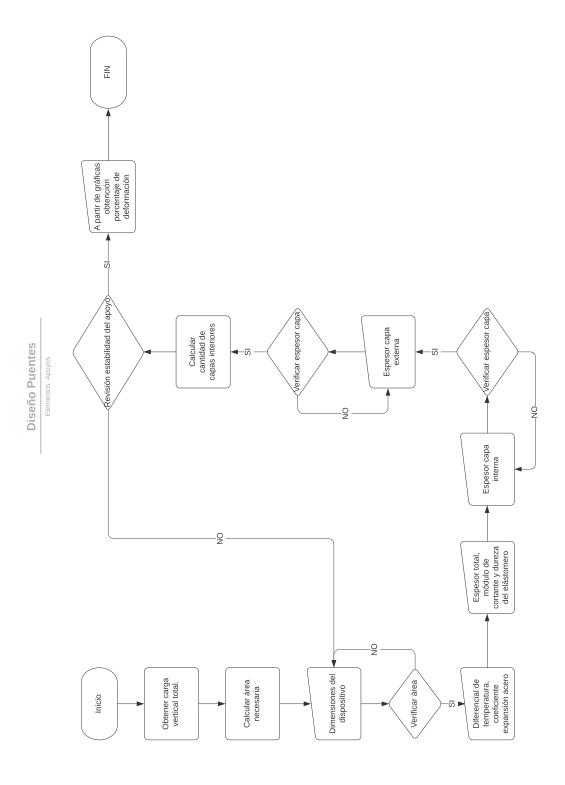
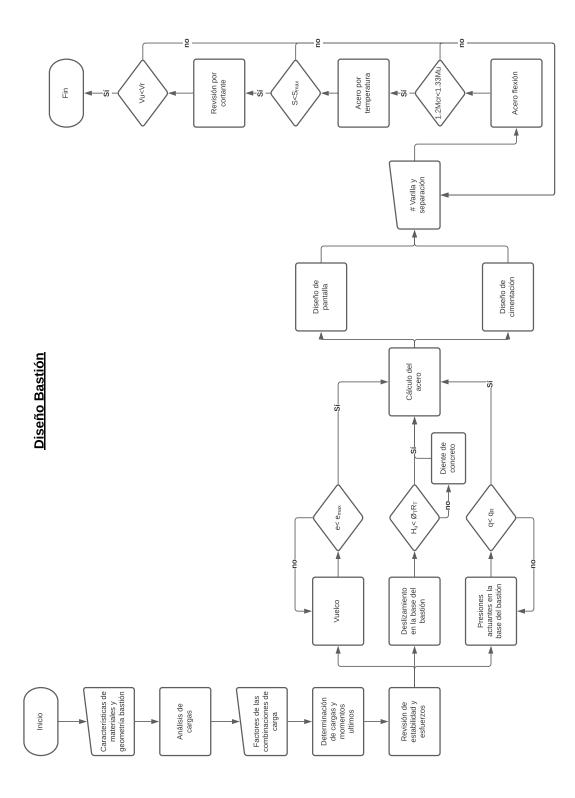



Figura 11. Diagrama flujo diseño de los apoyos. Fuente: Propia

Figura 12. Diagrama flujo diseño de bastión. Fuente: Propia

Resultados

A continuación se muestran los resultados obtenidos utilizando la herramienta, para puentes de 1 carril, con distintas longitudes y considerando el puente tipo losa y el puente tipo viga-losa, actualizando los planos proporcionados por SENARA.

Diseño de Superestructura

Diseño de Puente tipo Losa

Puente Anexo 2. Puente Red de Distribución Subdistrito Abangares.

A continuación se muestra los resultados del diseño de la superestructura para el puente especificado en el anexo 2, y también se muestran los reportes estructurales en la sección de apéndices.

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 2 metros, con un carril y aceras a ambos lados, tanto para la franja de borde como para la franja interior.

Franja Interior			
	Área de acero	Número	Separación (cm)
	(cm2)	varilla	Separación (cm)
Acero longitudinal	67.56	8.00	7.50
Acero transversal	24.04	8.00	20.00
Acero por temperatura	13.69	6.00	10.00
Espesor losa (m)	0.25		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		

Franja Borde			
	Área de acero (cm2)	Número varilla	Separación (cm)
Acero longitudinal	33.78	8.00	15.00
Acero transversal	12.39	8.00	30.00
Acero por temperatura	2.50	6.00	30.00
Espesor losa (m)	0.25		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		

Figura 13. Estructura Puente Red de Distribución Subdistrito Abangares 2m. Fuente: (Propia).

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 3 metros, con un carril y aceras a ambos lados, tanto para la franja de borde como para la franja interior.

Franja Interior				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	67.56	8.00	7.50	
Acero transversal	19.45	8.00	25.00	
Acero por temperatura	9.71	6.00	12.50	
Espesor losa (m)		0.28		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Franja Borde				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	40.54	8.00	12.50	
Acero transversal	11.80	8.00	35.00	
Acero por temperatura	2.75	6.00	35.00	
Espesor losa (m)	0.28			
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Figura 14. Estructura Puente Red de Distribución Subdistrito Abangares 3m. Fuente: (Propia).

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 4 metros, con un carril y aceras a ambos lados, tanto para la franja de borde como para la franja interior.

Franja Interior			
	Área de acero (cm2)	Número varilla	Separación (cm)
Acero longitudinal	67.56	8.00	7.50
Acero transversal	16.93	8.00	27.50
Acero por temperatura	6.17	6.00	17.50
Espesor losa (m)	0.30		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		

Franja Borde				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	42.23	8.00	12.00	
Acero transversal	11.67	8.00	37.50	
Acero por temperatura	3.00	6.00	37.50	
Espesor losa (m)		0.30		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)		2.50		

Figura 15. Estructura Puente Red de Distribución Subdistrito Abangares 4m. Fuente: (Propia).

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 5 metros, con un carril y aceras a ambos lados, tanto para la franja de borde como para la

franja interior.

Franja Interior				
	Área de acero	Número	Separación (cm)	
	(cm2)	varilla	Separación (cm)	
Acero longitudinal	63.34	8.00	8.00	
Acero transversal	15.34	8.00	32.50	
Acero por temperatura	2.95	6.00	35.00	
Espesor losa (m)		0.33		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Franja Borde			
Área de acero	Número	Separación (cm)	
(cm2)	varilla	Separación (cm)	
50.67	8.00	10.00	
11.74	8.00	42.50	
3.25	6.00	42.50	
0.33			
5.00			
2.50			
	Área de acero (cm2) 50.67 11.74	Area de acero (cm2) varilla 50.67 8.00 11.74 8.00 3.25 6.00 0.33 5.00	

Figura 16. Estructura Puente Red de Distribución Subdistrito Abangares 5m. Fuente: (Propia).

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 6 metros, con un carril y aceras a ambos lados, tanto para la franja de borde como para la franja interior.

Franja Interior				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	63.34	8.00	8.00	
Acero transversal	13.50	8.00	37.50	
Acero por temperatura	3.65	6.00	45.00	
Espesor losa (m)		0.37		
Recubrimiento superior (cm)		5.00		
Recubrimiento inferior (cm)		2.50		

Franja Borde				
	Área de acero	Número	Separación (cm)	
	(cm2)	varilla	Separación (cm)	
Acero longitudinal	53.34	8.00	9.50	
Acero transversal	11.48	8.00	42.50	
Acero por temperatura	3.65	6.00	45.00	
Espesor losa (m)		0.37		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Figura 17. Estructura Puente Red de Distribución Subdistrito Abangares 6.20m. Fuente: (Propia).

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 8 metros, con un carril y aceras a ambos lados, tanto para la franja de borde como para la franja interior.

Franja Interior				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	53.34	8.00	9.50	
Acero transversal	10.24	8.00	45.00	
Acero por temperatura	4.80	6.00	45.00	
Espesor losa (m)		0.48		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Franja Borde				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	50.67	8.00	10.00	
Acero transversal	9.84	8.00	45.00	
Acero por temperatura	4.80	6.00	45.00	
Espesor losa (m)		0.48		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Figura 18. Estructura Puente Red de Distribución Subdistrito Abangares 8m. Fuente: (Propia).

Diseño de Puente tipo Viga-Losa

Puente Anexo 3. Canal Oeste Tramo II y III.

A continuación se muestra los resultados del diseño de la superestructura para el puente especificado en el anexo 3, y también se muestran los reportes estructurales en la sección de apéndices.

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 8 metros, con un carril y aceras a ambos lados.

Franja Interior Acero Inferior					
	Área de acero (cm2) Número varilla Separac (cm2)				
Acero Perpendicular al transito	21.11	21.11 8.00 24.00			
Acero paralelo al transito	5.28	5.28 6.00 24.00			
Espesor losa (m)		0.23			
Recubrimiento superior (cm)		5.00			
Recubrimiento inferior (cm)		5.00			

Franja Interior Acero Superior				
	Área de acero (cm2) Número varilla Separa (cm			
Acero Perpendicular al transito	28.15 8.00 18.00			
Acero paralelo al transito	11.88 6.00 24.00			
Espesor losa (m)		0.23		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	5.00			

Viga Principal				
	Área de acero (cm2)	Separación (cm)		
Capa acero 1	27.16	7#7	1.00	
Capa acero 2	27.16	7#7	1.00	
Capa acero 3	0.00	#	0.00	
Acero cortante 2 ramas	2.53	4.00	20.00	
Peralte viga (cm)		80.00		
Espesor viga (cm)		40.00		
Recubrimiento superior (cm)		5.00		

Viga Diafragma				
	Área de acero Separac			
	(cm2)	Número varilla	(cm)	
Capa acero 1	5.70	2#6	8.00	
Capa acero 2	5.70	2#6	8.00	
Capa acero 3	0.00	#	0.00	
Acero cortante 2 ramas	2.53	4.00	22.50	
Peralte viga (cm)		50.00		
Espesor viga (cm)	25.00			
Recubrimiento superior (cm)		5.00		

Figura 19. Estructura Puente Canal Oeste 8m. Fuente: (Propia).

En la siguiente figura se muestra el resultado del diseño de la superestructura para el caso de 18.20 metros, con un carril y aceras a ambos lados.

Franja Interior Acero Inferior				
	Área de acero (cm2) Número varilla Separ			
Acero Perpendicular al transito	21.11 8.00 24.00			
Acero paralelo al transito	11.88 6.00 24.00			
Espesor losa (m)		0.23		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	5.00			

Franja Interior Acero Superior				
	Área de acero (cm2) Número varilla Separa (cm			
Acero Perpendicular al transito	25.98 8.00 19.50			
Acero paralelo al transito	11.88 6.00 24.00			
Espesor losa (m)		0.23		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	5.00			

Viga Principal				
	Área de acero (cm2)	Separación (cm)		
Capa acero 1	40.54	8#8	1.00	
Capa acero 2	40.54	8#8	1.00	
Capa acero 3	20.27	4#8	7.00	
Acero cortante 2 ramas	2.53	4.00	25.00	
Peralte viga (cm)		140.00		
Espesor viga (cm)		45.00		
Recubrimiento superior (cm)		5.00		

Viga Diafragma				
	Área de acero Separao			
	(cm2)	Número varilla	(cm)	
Capa acero 1	5.70	2#6	8.00	
Capa acero 2	5.70	2#6	8.00	
Capa acero 3	0.00	#	0.00	
Acero cortante 2 ramas	2.53	4.00	20.00	
Peralte viga (cm)		65.00		
Espesor viga (cm)		25.00		
Recubrimiento superior (cm)		5.00		

Figura 20. Estructura Puente Canal Oeste 18.20m. Fuente: (Propia).

Diseño de Subestructura

Para el diseño de la subestructura, SENARA proporcionó un Informe de Investigación Geotécnica que funciona como insumo para el diseño de estos elementos, y se utilizará como parámetro de entrada para el diseño de los bastiones.

_	Capacidad admisible, q _{adm} (kPa)		
Material	Rango	Valor diseño	
Suelo	65 – 90	80	
Relleno	60 – 140	100	
Limo Café	150	150	
Arcilla densa (CH)	120 – 200	150 50 Condición saturada	
Limo Elástico (MH)	100 – 240	160	
Limo con Arena (ML)	100 – 150	120 50 Condición saturada	
Arena Limpia (SM-SW)	100 – 230	150 60 Condición saturada	
Toba Densa Amarilla	280	280	

Figura 21. Capacidad soportante por tipo de material. Fuente: SENARA.

En la sección de anexos, el estudio SPT, para el tipo de suelo seleccionado que en este caso es Toba densa Amarilla, que a partir de correlaciones se obtuvo que tiene una capacidad de 280 kPa, y una profundidad de 5.95 metros.

Dentro del Informe de Investigación Geotécnica se indica que la zona se encuentra en un tipo de suelo S3 y zona III, por lo cual esto también esta siendo considerado en el diseño.

Se esta utilizando una peso especifico para el suelo de 1556 $\frac{kg}{m^3}$, esto según Aguero, J y Alvarado, A, s.f., en un estudio realizado a los suelos de la zona de Guanacaste.

A partir de lo anterior se generan los siguientes resultados para los distintos tipos de puentes con los que se cuenta.

A continuación se muestran los resultados obtenidos para los puentes con sus distintas luces, en la sección de apéndices se muestra el reporte completo.

DISEÑO ESTRUCTURAL			
Pantalla del muro			
Acero	principal		
Varilla	6.000		
Recubrimiento	5.000	cm	
As	40.124	cm2/m	
Separación propuesta	7.000	cm	
Verificación Acero minimo	CUM	IPLE	
Acero por	temperatura		
Varilla	4.000		
As temp	1.267	cm2/m	
Separación a usar 45 m			
Revisión por cortante CUMPLE			

Cimentación			
Acero	superior		
Varilla	6.000	-	
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CU	MPLE	
Acero por temperatura			
Varilla	4.000		
As temp	4.655	cm2/m	
Separación a usar	27.000	cm	
Revisión del talón por	CUMPLE		
cortante			
Acero	Inferior		
Varilla	6.000	-	
As	13.217	cm2	
Separación a usar	20.000	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por	CUMPLE		
cortante	CO.	MILLE	

Revisión Rigidez de la Cimentación			
L	3.750	m	
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	2.637	m4	
Ks	2.650	0	
Revisión	89.364	CUMPLE	

Apoyo elastomerico con refuerzo			
Ancho Propuesto	15	cm	a
Largo Propuesto	20	cm	Ъ
Cantidad de capas interiores	2.000	cm	
Espesor capa interior	0.150	cm	
Espesor capa exterior	0.100	cm	
Espesor capa refuerzo	0.014	cm	
Espesor total	0.541	cm	
Espesor placa	3.810	3.810	
Pernos	2 de 3.175cm		
Anclaje perno	50.000	cm	

Figura 22. Estructura bastión Puente Red de Distribución Subdistrito Abangares 2m. Fuente: (Propia).

DISEÑO ESTRUCTURAL		
Pantalla del muro		
Acero	principal	
Varilla	6.000	
Recubrimiento	5.000	cm
As	32.148	cm2/m
Separación propuesta	7.500	cm
Verificación Acero minimo	CUMPLE	
Acero por	temperatura	
Varilla	4.000	
As temp	1.267	cm2/m
Separación a usar	45	m
Revisión por cortante	CUMPLE	

Cimentación				
Acero	Acero superior			
Varilla	6.000	-		
As	20.646	cm2		
Separación a usar	13.500	cm		
Verificación Acero minimo	CUM	CUMPLE		
Acero por temperatura				
Varilla	4.000			
As temp	4.664	cm2/m		
Separación a usar	27.000	cm		
Revisión del talón por	CUMPLE			
cortante				
Acero	Inferior			
Varilla	6.000	-		
As	13.272	cm2		
Separación a usar	20.000	cm		
Verificación Acero minimo	CUMPLE			
Revisión de la punta por	CUMPLE			
cortante	Con	MILLE		

Revisión Rigidez de la Cimentación		
L	3.800	m
В	0.600	m
Ec	25267132.801	kg/cm2
I	2.744	m4
Ks	2.650	0
Revisión	90.256	CUMPLE

Figura 23. Estructura bastión Puente Red de Distribución Subdistrito Abangares 3m. Fuente: (Propia).

DISEÑO ESTRUCTURAL		
Pantalla del muro		
Acero	principal	
Varilla	6.000	
Recubrimiento	5.000	cm
As	32.292	cm2/m
Separación propuesta	7.500	cm
Verificación Acero minimo	CUMPLE	
Acero por	temperatura	
Varilla	4.000	
As temp	1.267	cm2/m
Separación a usar	45	m
Revisión por cortante	CUMPLE	

Cimentación				
Acero superior				
Varilla	6.000	-		
As	20.646	cm2		
Separación a usar	13.500	cm		
Verificación Acero minimo	CUM	MPLE		
Acero por	Acero por temperatura			
Varilla	4.000			
As temp	4.664	cm2/m		
Separación a usar	27.000	cm		
Revisión del talón por	CUMPLE			
cortante				
Acero	Inferior			
Varilla	6.000	-		
As	13.290	cm2		
Separación a usar	20.000	cm		
Verificación Acero minimo	CUMPLE			
Revisión de la punta por cortante	CUMPLE			

Revisión Rigidez de la Cimentación		
L	3.800	m
В	0.600	m
Ec	25267132.801	kg/cm2
I	2.744	m4
Ks	2.650	0
Revisión	90.256	CUMPLE

Figura 24. Estructura Puente Red de Distribución Subdistrito Abangares 4m. Fuente: (Propia).

DISEÑO ESTRUCTURAL			
Pantalla	Pantalla del muro		
Acero	principal		
Varilla	6.000		
Recubrimiento	5.000	cm	
As	32.398	cm2/m	
Separación propuesta	8.500	cm	
Verificación Acero minimo	CUMPLE		
Acero por	temperatura		
Varilla	4.000		
As temp	1.267	cm2/m	
Separación a usar	42.5	m	
Revisión por cortante	CUMPLE		

Cimentación			
Acero superior			
Varilla	6.000	-	
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CUM	MPLE	
Acero por	temperatura		
Varilla	4.000		
As temp	4.672	cm2/m	
Separación a usar	27.000	cm	
Revisión del talón por	CUMPLE		
cortante			
Acero Inferior			
Varilla	6.000	-	
As	14.463	cm2	
Separación a usar	19.500	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por	CID	MPLE	
cortante	CON	HLE	

Revisión Rigidez de la Cimentación		
L	3.850	m
В	0.600	m
Ec	25267132.801	kg/cm2
I	2.853	m4
Ks	2.650	0
Revisión	91.145	CUMPLE

Figura 25. Estructura Puente Red de Distribución Subdistrito Abangares 5m. Fuente: (Propia).

DISEÑO ESTRUCTURAL			
Pantalla	Pantalla del muro		
Acero	principal		
Varilla	6.000		
Recubrimiento	5.000	cm	
As	27.177	cm2/m	
Separación propuesta	9.000	cm	
Verificación Acero minimo	CUMPLE		
Acero por	temperatura		
Varilla	4.000		
As temp	1.267	cm2/m	
Separación a usar	40	m	
Revisión por cortante	CUMPLE		

Cimentación			
Acero superior			
Varilla	6.000	-	
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CUI	MPLE	
Acero por temperatura			
Varilla	4.000		
As temp	4.680	cm2/m	
Separación a usar	27.000	cm	
Revisión del talón por	CUMPLE		
cortante			
Acero	Inferior		
Varilla	6.000	-	
As	15.714	cm2	
Separación a usar	18.000	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por	CUMPLE		
cortante	003	MILE	

Revisión Rigidez de la Cimentación			
L	L 3.900 m		
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	2.966	m4	
Ks	2.650 0		
Revisión 92.031 CUMPLE			

Figura 26. Estructura Puente Red de Distribución Subdistrito Abangares 6.20m. Fuente: (Propia).

DISEÑO ESTRUCTURAL				
Pantalla del muro				
Acero	Acero principal			
Varilla	6.000			
Recubrimiento	5.000	cm		
As	27.762	cm2/m		
Separación propuesta	9.000	cm		
Verificación Acero minimo	CUMPLE			
Acero por	Acero por temperatura			
Varilla	4.000			
As temp	1.267	cm2/m		
Separación a usar	40	m		
Revisión por cortante	CUMPLE			

Cimentación			
Acero superior			
Varilla	6.000	-	
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CUM	MPLE	
Acero por	temperatura		
Varilla	4.000		
As temp	4.696	cm2/m	
Separación a usar	27.000	cm	
Revisión del talón por	CUMPLE		
cortante	COMPLE		
Acero Inferior			
Varilla	6.000	-	
As	17.134	cm2	
Separación a usar	16.000	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por	CUMPLE		
cortante	CON	ILLE	

Revisión Rigidez de la Cimentación			
L 4.000 m			
В	0.600	m	
Ec	25267132.801 kg/cm2		
I	3.200 m4		
Ks 2.650 0			
Revisión 93.796 CUMPLE			

Figura 27. Estructura Puente Red de Distribución Subdistrito Abangares 8m. Fuente: (Propia).

DISEÑO ESTRUCTURAL			
Pantalla del muro			
Acero p	Acero principal		
Varilla	6.000		
Recubrimiento	5.000	cm	
As	30.640	cm2/m	
Separación propuesta	8.500	cm	
Verificación Acero minimo	CUMPLE		
Acero por	Acero por temperatura		
Varilla	4.000		
As temp	1.267	cm2/m	
Separación a usar	40 m		
Revisión por cortante	CUMPLE		

Cimentación			
Acero superior			
Varilla	6.000 -		
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CUI	MPLE	
Acero por	temperatura		
Varilla	4.000		
As temp	4.696	cm2/m	
Separación a usar	27.000	cm	
Revisión del talón por	CUMPLE		
cortante			
Acero	Inferior		
Varilla	6.000	-	
As	17.032	cm2	
Separación a usar	16.000	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por	CUMPLE		
cortante			

Revisión Rigidez de la Cimentación			
L	4.000 m		
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	3.200	m4	
Ks	2.650	0	
Revisión	93.796	CUMPLE	

Apoyo elastomerico con refuerzo			
Ancho Propuesto	40	cm	a
Largo Propuesto	12.5	cm	Ъ
Cantidad de capas interiores	2.000	cm	
Espesor capa interior	0.500	cm	
Espesor capa exterior	0.250	cm	
Espesor capa refuerzo	0.038	cm	
Espesor total	1.614	cm	
Espesor placa	3.810	3.810	
Pernos	2 de 3.81cm		
Anclaje pemo	52.500	cm	

Figura 28. Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 8m. Fuente: (Propia).

Espaciamiento del perno al borde corto	5.000	cm	
Espaciamiento del perno al elemento	5.000	cm	h
Recubrimiento del perno a la cara externa del bastión	30.000	cm	g
Largo de la placa	22.500	cm	f
Ancho de la placa	67.620	cm	i

Figura 29. Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 8m. Fuente: (Propia).

DISEÑO ESTRUCTURAL			
Pantalla del muro			
Acero	principal		
Varilla	6.000		
Recubrimiento	5.000	cm	
As	31.376	cm2/m	
Separación propuesta	9.000 cm		
Verificación Acero minimo	CUMPLE		
Acero por	Acero por temperatura		
Varilla	4.000		
As temp	1.267	cm2/m	
Separación a usar	37.5 m		
Revisión por cortante CUMPLE			

Cimentación			
Acero superior			
Varilla	6.000 -		
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CUI	MPLE	
Acero por	temperatura		
Varilla	4.000		
As temp	4.725	cm2/m	
Separación a usar	26.500	cm	
Revisión del talón por	CUMPLE		
cortante			
Acero	Inferior		
Varilla	6.000	-	
As	24.061	cm2	
Separación a usar	10.000	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por cortante	CUMPLE		

Revisión Rigidez de la Cimentación			
L 4.200 m			
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	3.704	m4	
Ks	2.650	0	
Revisión	97.291	CUMPLE	

Apoyo elastom			
Ancho Propuesto	a		
Largo Propuesto	15	cm	Ъ
Cantidad de capas interiores	3.000	cm	
Espesor capa interior	0.800	cm	
Espesor capa exterior	0.400	cm	
Espesor capa refuerzo	0.064	cm	
Espesor total	3.457	cm	
Espesor placa	3.810	3.810	
Pernos	2 de 3.81cm		
Anclaje perno	50.000	cm	

Figura 30. Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 18.20m. Fuente: (Propia).

Espaciamiento del perno al borde corto	5.000	cm	
Espaciamiento del perno al elemento	5.000	cm	h
Recubrimiento del perno a la cara externa del bastión	30.000	cm	g
Largo de la placa	25.000	cm	f
Ancho de la placa	72.620	cm	i

Figura 31. Estructura bastión Puente tipo viga-losa, Puente Canal Oeste 18.20m. Fuente: (Propia).

Análisis de los resultados

Los resultados presentados no se derivan directamente del objetivo general, pero se obtienen a través de la herramienta de diseño que lo que busca es generar la estandarización del proceso de diseño de los puentes de concreto reforzado, y esto junto con la guía también facilitada como insumo.

Es importante recalcar que todo este proyecto se fundamenta con la normativa nacional e internacional vigente para el diseño de puentes de concreto reforzado, por lo cual los insumos generados son un complemente de gran utilidad para el profesional que este a cargo del diseño de la estructura.

La herramienta desarrollada básicamente esta estructurada para que el usuario introduzca la menor cantidad de datos y que la herramienta realice automáticamente todos los cálculos, desde el cálculo de fuerzas, obtener momentos, distribuir y localizar la posición donde la carga vehicular genera el máximo momento mediante el teorema de Barré, y finalmente obtener las combinaciones de carga que afectarán la estructura.

La mayor interacción por parte del usuario será en la sección del diseño estructural de los elementos, ya que la selección y colocación del acero queda a criterio del profesional a cargo, realizando iteraciones para probar que se adapta mejor al proyecto en especifico, y también para verificar que se cumpla que el acero colocado será capaz de soportar las cargas.

Diseño de Puente tipo Losa

Para el diseño de estos puentes se consideraron las siguientes características:

Cuadro 3. Condiciones de diseño Puente tipo Losa

Condiciones de diseño									
Puente Tipo Viga-Losa									
Resistencia concreto	280	kg/cm^2							
Fluencia del acero	4200	kg/cm^2							
Espesor superficie ruedo	5	cm							
Carriles	1								
Ancho carril	3.6	m							
Ancho Base Baranda New Jersey	44	cm							
Acera	2	ambos lados							
Ancho acera	1.2	m							
Peso especifico concreto	2400	kg/m^3							

A partir de las características anteriores, mediante el uso de la herramienta generada, se obtuvieron los resultados mostrados en la sección anterior.

En los siguientes cuadros se muestra un resumen del acero para distintas longitudes, tanto para la franja de borde como para la franja interior, siempre adaptándose a los planos brindados por SENARA.

Cuadro 4. Puente tipo Losa, Franja Interior, Acero para distintas longitudes.

	Puente tipo Losa											
	Franja interior											
Longitud (m)	tud (m) Espesor Iosa (cm) Acero Iongitudinal Acero transversal Acero por temper											
2.0	25.0	#8 @ 7.5cm	#8@20.0cm	#6@10.0cm								
3.0	27.5	27.5 #8@7.5cm #8@25.0cm										
4.0	30.0	#8 @ 7.5cm	#8 @ 27.5cm	#6@17.5cm								
5.0	32.5	#8 @ 8.0cm	#8 @ 32.5cm	#6@35.0cm								
6.2	36.5	#8 @ 8.0cm	#6@37.5cm	#6@45.0cm								
8.0	48.0	#8 @ 9.5cm	#8 @ 45.0cm	#6@45.0cm								

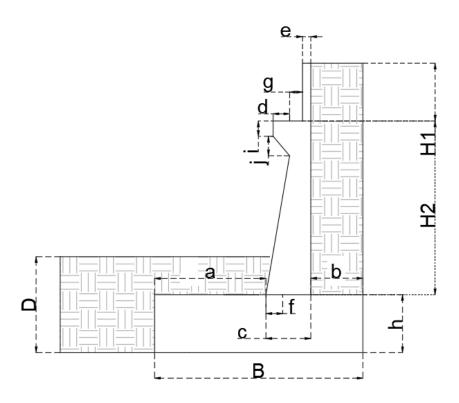
Cuadro 5. Puente tipo Losa, Franja Borde, Acero para distintas longitudes.

Puente tipo Losa											
	Franja borde										
Longitud (m)	Espesor losa (cm)	Acero longitudinal	Acero transversal	Acero por temperatura							
2.0	25.0	#8 @ 15.0cm	#8@30.0cm	#6@30.0cm							
3.0	27.5	#8 @ 12.5cm	#8@35.0cm	#6@35.0cm							
4.0	30.0	#8 @ 12.0cm	#8 @ 37.5cm	#6@37.5cm							
5.0	32.5	#8 @ 10.0cm	#8 @ 42.5cm	#6@42.5cm							
6.2	36.5	#8 @ 9.5cm	#8 @ 42.5cm	#6@45.0cm							
8.0	48.0	#8@10.0cm	#8 @ 45.0cm	#6@45.0cm							

Si se analiza la losa, se muestra como a mayor luz del puente aumenta el espesor de la misma, y este aumento es considerable por eso la razón de limitar la longitud del diseño del puente tipo losa a 15 metros; el acero principal que en este caso es el acero longitudinal debido al análisis por el método de las franjas.

Según el anexo 2, donde se muestran los planos suministrados por SENARA, hay diferencias respecto al diseño de las estructuras, en el caso del puente de 2 y 3 metros tienen un espesor de losa de 20 centímetros, en cambio con la actualización realizada se tiene un espesor de losa de 25 y 27.5 centímetros respectivamente, en el caso del acero longitudinal, en este caso no se diferencia en acero en la franja de borde o en la franja interior, se tiene varilla #8@30 centímetros, para 2 metros de luz y para 3 metros de luz se tiene #8@20 centímetros, en el

caso del acero transversal en la parte inferior se tiene en los planos proporcionados #4@18 centímetros para ambos casos, en el caso del acero por temperatura colocado se tiene que es #3@20 centímetros en ambas direcciones y para ambas luces, si se compara todo lo anterior con los cuadros 5 y 4, se puede ver la diferencia en el acero presentado en esta actualización del diseño, se debe de tener en cuenta que la actualización agrega barreras, además de aceras a ambos lados, también debido a las dos condiciones anteriores y respetando el ancho de carril de 3.6 metros, se da un aumento considerable del ancho del puente.


Para el caso de 4, 5 y 6.2 metros se tiene un espesor de losa de 25 centímetros, en este caso para 4 metros se tiene un espesor de 30 centímetros, para 5 metros se tiene un espesor de 32.5 centímetros, y para 6.2 metros se tiene un espesor de 36.5 centímetros, con respecto al acero longitudinal según planos se tiene para 4 metros #8@40 centímetros, para 5 y 6 metros de luz se tiene #8@36 centímetros, para el acero transversal se tiene #4@18 centímetros y para el acero por temperatura se tiene para 4 metros de luz #3@20 centímetros, para 5 y 6 metros se tiene #3@18 centímetros, igualmente se presentan diferencias con el diseño actualizado.

En el caso del puente de 8 metros de luz se tiene un espesor de losa de 27 centímetros en los planos suministrados por SENARA y en la actualización se tiene 48 centímetros, el acero longitudinal de #8@30 centímetros, para el acero transversal se tiene #4@18 centímetros y para el acero por temperatura se tiene #3@18 centímetros, igualmente existen diferencias respecto a la actualización generada.

Existen diferencias en la separación entre varillas, número de varilla, además en el caso del espesor de losa, los presentados son los espesores mínimos que pueden ser utilizados, ya que si se disminuye más el espesor, la revisión por servicio en el caso de las deflexiones sobrepasa el limite permitido, por lo cual no se puede disminuir más estos espesores.

Todos los resultados obtenidos cumplen con la normativa vigente satisfaciendo condiciones actualizadas y vigentes al momento de generar este documento, es importante mencionar que en este caso se esta realizando un análisis por franjas considerando tanto la franja interior como la franja de borde, esto según las Especificaciones de Diseño de Puentes de AASHTO, 2020, también como se menciona anteriormente se agregaron aceras a ambos lados del puente, y barandas tipo New Jersey, donde la sección presentada en planos se trato de adaptar lo más posible a la encontrada en distintos planos y carteles del MOPT, por lo tanto el ancho del puente aumento, lo que también justifica las diferencias generadas, ya que se paso de un puente de 4.40 metros a un puente de 6.88 metros de ancho; las aceras son consideradas ya que en el Ley 7600, s.f., en los artículos 103 y 125 se habla acerca de las características que deben de tener las aceras y da la potestad a las entidades competentes de verificar que estos elementos estén en las obras que se vayan a construir.

Respecto a los bastiones para el puente tipo losa se tiene los siguientes cuadros donde se resumen los resultados, en la figura 32, se muestra el esquema de dimensionamiento del bastión y en el cuadro 6, se muestran las dimensiones para cada bastión dependiendo de la luz del puente.

Figura 32. Esquema dimensionamiento bastión. Fuente: (Propia).

Cuadro 6. Dimensiones de los bastiones, puente tipo losa.

	Dimensión (m)													
Longitud	а	b	С	d	е	f	g	h	i	ј	В	Н	H1	H2
(m)														
2.00	1.15	2.30	0.30	0.60	0.05	0.15	0.10	0.60	0.40	0.20	3.75	5.95	0.30	5.05
3.00	1.15	2.30	0.35	0.60	0.05	0.20	0.10	0.60	0.40	0.20	3.80	5.95	0.35	5.00
4.00	1.15	2.30	0.35	0.60	0.05	0.20	0.10	0.60	0.40	0.20	3.80	5.95	0.35	5.00
5.00	1.20	2.30	0.35	0.60	0.05	0.20	0.10	0.60	0.40	0.20	3.85	5.95	0.40	4.95
6.20	1.25	2.30	0.40	0.60	0.05	0.25	0.10	0.60	0.40	0.20	3.90	5.95	0.40	4.95
8.00	1.30	2.30	0.40	0.60	0.05	0.25	0.10	0.60	0.40	0.20	4.00	5.95	0.55	4.80

Cuadro 7. Acero Pantalla Bastión Puente Tipo Losa

Bastión Puente Tipo Losa										
Pantalla										
Longitud (m)	Longitud (m) Acero principal Acero temperatu									
2.0	#6@7.0cm	#4@45.0cm								
3.0	#6@7.5cm	#4@45.0cm								
4.0	#6@7.5cm	#4@45.0cm								
5.0	#6 @ 8.5cm	#4@42.5cm								
6.2	#6@9.0cm	#4@40.0cm								
8.0	#6@9.0cm	#4@40.0cm								

Cuadro 8. Acero Cimentación Bastión Puente Tipo Losa

Bastión Puente Tipo Losa											
Cimentación											
Longitud (m) Acero Superior Acero Inferior Acero temperat											
2.0	#6@13.5cm	#6@20.0cm	#4@27.0cm								
3.0	#6@13.5cm	#6@20.0cm	#4@27.0cm								
4.0	#6@13.5cm	#6@20.0cm	#4@27.0cm								
5.0	#6@13.5cm	#6@19.5cm	#4@27.0cm								
6.2	#6@13.5cm	#6@18.0cm	#4@27.0cm								
8.0	#6@13.5cm	#6@16.0cm	#4@27.0cm								

Para los bastiones el estrato con mayor capacidad se encuentra a un nivel de desplante de 5.95 metros, aunque se encuentra a una profundidad considerable, se esta previendo que no se requiera de equipos sofisticados para el hincado de pilotes o la pre-excavación de los mismos para su posterior colado, se cuenta con un muro de concreto en voladizo con placa corrida, se tiene una zona III, con un tipo de suelo S3, con una capacidad de 2.80 kPa con un factor de seguridad de 3, desde la figura 22 hasta la figura 31 en la sección de resultados se muestra el diseño estructural de los bastiones, en los cuadros 7 y 8, se muestra el resumen del acero colocado tanto en la pantalla como en la cimentación del mismo.

Diseño de Puente tipo Viga-Losa

Para el diseño de estos puentes se consideraron las siguientes características:

Cuadro 9. Condiciones de diseño Puente tipo Viga-Losa

Condiciones de diseño									
Puente Tipo Viga-Losa									
Resistencia concreto	280	kg/cm^2							
Fluencia del acero	4200	kg/cm^2							
Espesor superficie ruedo	5	cm							
Carriles	1								
Ancho carril	3.6	m							
Ancho Base Baranda New Jersey	44	cm							
Acera	2	ambos lados							
Ancho acera	1.2	m							
Peso especifico concreto	2400	${\sf kg/m^3}$							

A partir de las características anteriores, mediante el uso de la herramienta generada, se obtuvieron los resultados mostrados en la sección de resultados.

En los siguientes cuadros se muestra un resumen del acero para distintas longitudes, tanto para la losa como para las vigas, siempre adaptándose a los planos brindados por SENARA.

Cuadro 10. Puente tipo Viga-Losa, Losa, Acero para distintas longitudes.

Puente tipo Viga-Losa										
	Losa Acero Inferior									
Longitud (m)	Espesor (cm)	Acero perpendicular al tránsito	Acero paralelo al tránsito							
8.0	23.0	#8 @ 24.0cm	#6@24.0cm							
18.2	23.0	#8@24.0cm	#6@24.0cm							
		Losa Acero Superior								
Longitud (m)	Espesor (cm)	Acero perpendicular al tránsito	Acero paralelo al tránsito							
8.0 23.0		#8 @ 18.0cm	#6@24.0cm							
18.2	23.0	#8 @ 19.5cm	#6@24.0cm							

Cuadro 11. Puente tipo Viga-Losa, Vigas, Acero para distintas longitudes.

	Puente tipo Viga-Losa											
	Viga Principal											
Longitud (m)	m) Peralte viga (cm) Espesor viga (cm) Capa acero 1 Capa acero 2 Capa acero 3 Acero cortai											
8.0	80.0	40.0	7#7	7#7	-	#4@20.0cm						
18.2	140.0	45.0	8#8	8#8	4#8	#4@25.0cm						
		Viga	Diafragma									
Longitud (m)	Peralte viga (cm)	Espesor viga (cm)	Capa acero 1	Capa acero 2	Capa acero 3	Acero cortante						
8.0	50.0	25.0	2#6	2#6	-	#4@22.5cm						
18.2	65.0	25.0	2#6	2#6	-	#4@20.0cm						

En este tipo de estructura se nota la reducción considerable del espesor de la losa, por ejemplo en el caso del puente de 8 metros de luz, se paso de un puente tipo losa de espesor de 48 centímetros, a un espesor de 23 centímetros, pero se agregan 4 vigas principales con un peralte compuesto de 80 centímetros y un espesor de 40 centímetros, además que se agregan 3 vigas diafragma, una en cada extremo y una en el centro de la luz del puente, cuentan con un peralte de 50 centímetros y un espesor de 25 centímetros, en el cuadro 11, se muestran las cantidades y dimensiones tanto para el caso de 8 metros como de 18.20 metros de luz, en el anexo 3, se muestra el plano proporcionado por SENARA, para el caso del puente de luz de 18.20 metros, donde se puede ver que en el plano se cuenta con vigas de peralte compuesto de 1.40 metros, la cual es igual que la propuesta de diseño brindada ya que se propone una dimensión de peralte de 1.40 metros y un ancho de 45 centímetros, respecto a las cantidades de acero se presentan diferencias ya que en el diseño presentado tiene 3 capas de acero, con 2 capas de 8 varillas #8 y 1 capa de 4 varillas #8, en cambio en los planos de SENARA se tiene 6 varillas #9 y 4 varillas #7, por lo cual se da una disminución de la sección pero se da un aumento en el acero colocado, respecto al acero para cortante se tiene en planos varilla #4025 centímetros, y en el diseño propuesto se tiene varilla #4025 centímetros.

Respecto a la viga diafragma en el caso del puente de 18.20 metros, en planos se tiene una viga diafragma del apoyo de 1.40 metros de peralte compuesto y 20 centímetros de ancho, y en el diseño propuesto se tiene una sección de 65 centímetros de peralte compuesto y 25 centímetros de ancho, para el acero por cortante en el diseño propuesto se tiene #4@20cm y en el diseño proporcionado por SENARA se tiene #3@19 centímetros, además se tiene 2 varillas #6, en una sola capa, en el diseño propuesto se tienen 2 capas de 2 varillas #6 cada una, por lo cual igualmente hay una disminución en la sección de la viga y un aumento en la cantidad de acero colocado.

Respecto a los bastiones para el puente tipo viga-losa se tiene los siguientes cuadros donde se resumen los resultados, en la figura 32, se muestra el esquema de dimensionamiento del bastión y en el cuadro 12, se muestran las dimensiones para cada bastión dependiendo de la luz del puente.

Cuadro 12. Dimensiones de los bastiones, puente tipo viga-losa.

		Dimensión (m)												
Longitud	а	b	С	d	е	f	g	h	i	j	В	Н	H1	H2
(m)														
8.00	1.30	2.30	0.40	0.60	0.05	0.25	0.10	0.60	0.40	0.25	4.00	5.95	1.10	4.25
18.20	1.50	2.30	0.40	0.60	0.05	0.25	0.10	0.60	0.40	0.20	4.20	5.95	1.70	3.65

Cuadro 13. Acero Pantalla Bastión Puente Tipo Viga-Losa

Bastión Puente Tipo Viga-Losa		
Pantalla		
Longitud (m)	Acero principal	Acero temperatura
8.0	#6 @ 8.5cm	#4@40.0cm
18.2	#6@9.0cm	#4@37.5cm

Cuadro 14. Acero Cimentación Bastión Puente Tipo Viga-Losa

Bastión Puente Tipo Viga-Losa			
Cimentación			
Longitud (m)	Acero Superior	Acero Inferior	Acero temperatura
8.0	#6@13.5cm	#6@16.0cm	#4@27.0cm
18.2	#6@13.5cm	#6@10.0cm	#4@26.5cm

En los cuadros 13 y 14, se muestran los resultados de los aceros que van a ser colocados tanto en la pantalla como en la cimentación del bastión, en el anexo 3 se muestra el plano del bastión proporcionado por SENARA, la geometría cambio respecto al diseño presentado, en la pantalla del muro en el caso del diseño de SENARA, se tiene para el acero principal varilla #5@30 centímetros, para el acero por temperatura se tiene #5@30 centímetros, en el caso del diseño propuesto para una luz de 8 metros, se tiene varilla #608.5 centímetros para el acero principal y para el acero por temperatura se tiene acero #4@40 centímetros; para una luz de 18.2 metros, se tiene varilla #6@9 centímetros para el acero principal y para el acero por temperatura se tiene acero #4@37.5 centímetros; en el caso de la cimentación para el caso del puente de 18.20 metros de luz se tiene en el diseño de SENARA, solamente se cuenta con acero inferior, y es varilla #6@20 centímetros y por temperatura se tiene varilla #3@30 centímetros, en el diseño propuesto se cuenta con acero tanto superior como inferior colocando varilla #6@13.5 centímetros en la parte superior, varilla #6@10 centímetros en la parte inferior y varilla #4@26.5 centímetros para el acero por temperatura, en el diseño propuesto para 8 metros de luz se cuenta con acero tanto superior como inferior colocando varilla #6@13.5 centímetros en la parte superior, varilla #6@16 centímetros en la parte inferior y varilla #4@27 centímetros para el acero por temperatura, además de presentar estas diferencias en el acero también se muestra una diferencia en la sección del bastión presentado ya que el nivel de desplante varia, al igual que las dimensiones de la cimentación y pantalla del muro.

Conclusiones

- 1. La normativa respecto a puentes en el país, es insuficiente, ya que lo único que existe son los Lineamientos para el Diseño Sismorresistente de Puentes, y esto es apenas una guía más que todo respecto al diseño sísmico, y se hace referencia a otras normativas, respecto a todo lo demás se debe buscar en normas como lo es la AASHTO.
- 2. La herramienta generada, se enfoca en puentes simples de un tramo, ya sea tipo viga-losa de hasta 40 metros o tipo losa de hasta 15 metros.
- 3. Las dimensiones propuestas para la superestructura de los puentes, son las dimensiones mínimas posibles, ya que si se disminuyen más, no se satisfacen los requerimientos de la norma.
- 4. La herramienta generada como mecanismo de estandarización, junto con la guía de diseño, disminuye el tiempo que se invierte en el diseño de los puentes, ya que se incluyen todos los conceptos necesarios, y se aplican de manera automática, para evitar errores por parte de los cálculos realizados.
- 5. Se consideraron apoyos elastómericos de neopreno con capas de acero intermedias, ya que permiten desplazamientos en todas sus direcciones, esto beneficia porque la estructura esta sometida a desplazamientos y estos apoyos lo permiten sin que se dañe la estructura.
- 6. Con base en la sección de resultados y análisis de resultados, se concluye que existen diferencias en los diseños brindados por SENARA, y la actualización realizada, se optimizó el diseño y se ajustó a la normativa vigente al momento de la realización del presente documento.
- 7. El dimensionamiento y selección del tipo de estructura que se va a diseñar y posteriormente a construir, depende siempre de las condiciones del sitio donde será ubicado, se deben de considerar estudios de suelos de la zona en especifico, al igual que cualquier otro tipo de estudio ya sea hidrológico, hidráulico, topográfico, geológico y hasta del nivel de transito que será usuario de la estructura.
- 8. Respecto a los planos constructivos, deben de contar con toda la información necesario para que en el proceso constructivo no se cometan errores relacionados a falta de información.

Recomendaciones

- 1. Realizar un análisis del costo-beneficio de incluir pilotes en la cimentación, para disminuir el nivel de desplante, y dimensiones de cimentación del bastión.
- 2. Realizar el estudios de suelos para la zona en especifico donde se situará el puente.
- Investigar el diseño simplificado que tiene la Especificación de Diseño de Puentes de la AASHTO, ya que en el proyecto no se analizó, y seria una alternativa rápida para puentes de dimensiones pequeñas.
- 4. Utilizar la guía de diseño como insumo para entender la herramienta y darle un correcto uso.
- 5. La herramienta se elaboró como un medio que facilite el diseño de puentes de concreto, pero no sustituye el criterio del diseñador.
- El espesor del bastión se puede considerar variable para optimizar el diseño, siempre y cuando se respeten las restricciones que tiene el programa como por ejemplo longitud de asiento.
- 7. Considerar solamente en el diseño una acera y no dos como se esta haciendo actualmente, esto podría disminuir costos y optimizar el diseño.
- 8. Se puede considerar disminuir el ancho del carril dependiendo de la importancia en donde se situará el puente, esto para tratar de disminuir costos.

Agradecimientos

Victor Gutiérrez Aguilar.

Quiero agradecer al profesor guía Ángel Navarro, por todo el apoyo brindado durante el desarrollo de este proyecto.

También deseo agradecer a esta gran universidad, por ser una excelente casa de enseñanza y por brindarme muchas herramientas para poder alcanzar los objetivos de este proyecto.

Agradezco a mis padres por todo su apoyo incondicional durante todo este proceso y su empuje para seguir adelante, también a mis abuelos, mi novia, mis amigos y a toda mi familia por siempre apoyarme.

María Fernanda Guillén Romero.

Agradezco a mis padres, por su apoyo incondicional, sus consejos y siempre estar para mi durante este periodo de estudio, también quiero agradecer a mi novio y a toda mi familia que me ha apoyado a seguir adelante.

Agradezco al profesor guía Ángel Navarro, por su dedicación y seguimiento durante el desarrollo de este proyecto.

También agradezco a esta universidad por haberme abierto las puertas para poder estudiar en ella, así como a los diferentes profesores que brindaron sus conocimientos y su apoyo para seguir adelante día a día.

Referencias

Referencias

- AASHTO (2020). L.R.F.D., Bridge Design Specifications. 9.^a ed.
- ACI (2015). Requisitos de Reglamento para Concreto Estructural (ACI 318SUS-14) y Comentario (ACI 318SUSR-14).
- Aguero, J y Alvarado, A (s.f.). COMPACTACION Y COMPACTABILIDAD DE SUE LOS AGRI-COLAS Y GANADEROS DE GUANACASTE, COSTA RICA. URL: https://www.mag. go.cr/rev_agr/v07n1-2_027.pdf.
- Asociación Costarricense de Geotecnia (2009). Código de Cimentaciones de Costa Rica.
- Bolivar Ignacio Tapia González (2009). DISEÑO ESTRUCTURAL DEL PUENTE SOBRE EL CANAL INTERNACIONAL ECUADOR - PERÚ".
- CFIA (2013). Lineamientos para el Diseño Sismorresistente de Puentes.
- Composan (s.f.). Juntas para puentes. URL: http://www.cauchosloscomuneros.com/web/ wp-content/uploads/2016/02/catalogo-juntas-JNA.pdf.
- ELASTEC (s.f.-a). Apoyos de Neopreno. URL: http://www.karaysa.com/products/pdf/ apoyos-de-neopreno.pdf.
- (s.f.-b). Apoyos Elastomericos. URL: https://www.elastechc.com/contenido/wpcontent/uploads/2016/10/Catalogo-de-Apoyos-Elastomericos.pdf.
- Ernesto Seminario Manrique (2004). GUÍA PARA EL DISEÑO DE PUENTES CON VIGAS Y LOSAS.
- Gabriel Andrés Bernal Granados (2006). Comportamiento dinámico de neopreno empleado en compuestos para apoyos en puentes. URL: https://repositorio.uniandes.edu.co/ bitstream/handle/1992/25781/u277177.pdf?sequence=1.
- Instituto Chileno del Acero (s.f.). Tablas perfiles. URL: https://metalicas-uv.weebly. com/uploads/8/7/8/7/8787102/perfiles_icha_selectos.pdf.
- Ley 7600 (s.f.). Reglamento Ley de Igualdad de Oportunidades para Personas con Discapacidad N 26831. URL: http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_ texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=53160&nValor3=110485& strTipM=TC.
- Mc Cormac, J y Brown, R (2011). Diseño de Concreto Reforzado. 8.ª ed.
- MOPT. Dirección de Puentes (2007). Manual de Inspección de Puentes.
- Victor Manuel Acevedo Laos (2015). Diseño de un puente con estructura de acero.

Apéndices

1.	Guía para el diseño de puentes de concreto reforzado para el Servicio Nacional	
	de Aguas Subterráneas, Riego y Avenamiento (SENARA)	100
2.	Reporte Estructural para Puente Red de Distribución Subdistrito Abangares	
	longitud de 2 metros.	210
3.	Reporte Estructural para Puente Red de Distribución Subdistrito Abangares	
	longitud de 3 metros.	217
4.	Memoria de Cálculo para Puente Red de Distribución Subdistrito Abangares	
	longitud de 4 metros.	223
5.	Reporte Estructural para Puente Red de Distribución Subdistrito Abangares	
	longitud de 5 metros.	229
6.	Reporte Estructural para Puente Red de Distribución Subdistrito Abangares	
	longitud de 6.20 metros	235
7.	Reporte Estructural para Puente Red de Distribución Subdistrito Abangares	
	longitud de 8 metros.	
8.	Reporte Estructural para Puente Canal Oeste Tramo II y III longitud de 8 metros	.247
9.	Reporte Estructural para Puente Canal Oeste Tramo II y III longitud de 18.20	
	metros	
10.	Propuesta de planos para puente tipo losa	
11.	Propuesta de planos para puente tipo viga-losa.	267

Apéndice 1. Guía para el diseño de puentes de concreto reforzado para el Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).			
A continuación se muestra la guía de diseño de puentes, que fue desarrollada para SENA la que se puede usar de insumo para el diseño puentes de concreto reforzado.			

GUÍA PARA EL DISEÑO DE PUENTES DE CONCRETO REFORZADO PARA EL SERVICIO NACIONAL DE AGUAS SUBTERRÁNEAS, RIEGO Y AVENAMIENTO (SENARA)

Elaborado por: Víctor Gutiérrez Aguilar Maria Fernanda Guillén Romero

Supervisado por: Ing. Ángel Navarro Mora ÍNDICE ÍNDICE

Índice

ĺno	ndice de cuadros		3
ĺno	dice o	de figuras	4
1.	Info	rmación General	6
	1.1.	Propósito de la guía de diseño	6
	1.2.	Alcance de la guía de diseño	6
	1.3.	Normativa en la que se basa la guía de diseño	7
2.	Con	sideraciones Generales	9
	2.1.	Definiciones	9
	2.2.	Abreviaturas	10
	2.3.	Filosofía de diseño	11
	2.4.	Suposiciones generales	11
	2.5.	Componentes del puente	12
3.	Con	sideraciones Preliminares	16
	3.1.	Estudios Preliminares	16
	3.2.	Diseño Preliminar	16
	3.3.	Demanda Sísmica	17
	3.4.	Análisis Estructural	17
	3.5.	Diseño Estructural	17
4.	Carg	gas y combinaciones de diseño.	18
	4.1.	Cargas	18
	4.2.	Estados limite	20
	4.3.	Combinaciones de carga	22
5.	Pue	nte tipo losa.	26
	5.1.	Geometría	26
	5.2.	Predimensionamiento	26
	5.3.	Método de análisis.	26
	5.4.	Cargas	28
	5.5.	Diseño de la superestructura	36
		5.5.1. Revisión por resistencia	36
		5.5.2. Revisión por servicio	39

ÍNDICE ÍNDICE

6.	Pue	nte tipo viga-losa.	42			
	6.1.	Geometría	42			
	6.2.	Predimensionamiento	42			
	6.3.	Método de análisis.	43			
	6.4.	Cargas	44			
	6.5.	Diseño de la superestructura	49			
		6.5.1. Revisión por resistencia	49			
		6.5.2. Revisión por servicio	53			
7.	Dise	ño de la subestructura	56			
	7.1.	Apoyos	56			
		7.1.1. Anclajes	62			
	7.2.	Bastiones	65			
		7.2.1. Geometría	65			
		7.2.2. Predimensionamiento	66			
		7.2.3. Cargas	67			
		7.2.4. Estados límites, factores de carga y combinaciones de cargas para bastiones	77			
		7.2.5. Revisión de la estabilidad del bastión				
		7.2.6. Diseño estructural del bastión	85			
		7.2.7. Diseño de Ménsula				
8.	Bara	ndas peatonales.	103			
9.	Anc	ajes	104			
10	. Con	enido mínimo de los planos estructurales.	107			
11	1. Referencias					

ÍNDICE DE CUADROS ÍNDICE DE CUADROS

Índice de cuadros

1.	Factores y combinaciones de carga	24
2.	Factores de carga para cargas permanentes, γ_P	25
3.	Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico	69
4.	Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico	69
5.	Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico	70
6.	Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico	70

ÍNDICE DE FIGURAS ÍNDICE DE FIGURAS

Índice de figuras

1.	Juntas abiertas.	13
2.	Juntas rellenas.	13
3.	Juntas rellenas.	14
4.	Juntas de placas de acero deslizante	14
5.	Juntas de placas dentadas.	15
6.	Características camión de diseño	18
7.	Características tándem de diseño	19
8.	Franjas equivalentes.	27
9.	Incremento carga dinámica	29
10.	Valores de V_0 y Z_0 para distintas condiciones	30
11.	Presión básica correspondiente a V_B =160km/h	30
12.	Factor de presencia múltiple.	31
13.	Zona de amenaza sísmica	32
14.	Clasificación del sitio geotécnico de cimentación con base en la velocidad de onda cortante	32
15.	Clasificación del sitio geotécnico de cimentación con base en la resistencia del medio	33
16.	Espectro de respuesta elástico	33
17.	Fallas activas en territorio Costarricense	
18.	Zonas de desempeño sísmico	35
19.	Factores de modificación de la respuesta para subestructuras	35
20.	Vista transversal de estructura de la losa.	42
21.	Franjas equivalentes	44
22.	Incremento carga dinámica	46
23.	Valores de V_0 y Z_0 para distintas condiciones	47
24.	Presión básica correspondiente a V_B =160km/h	47
25.	Factor de presencia múltiple.	48
26.	Vista transversal de estructura del tipo viga-losa.	56
27.	Curvas Esfuerzo-Deformación, dependiendo del grado de dureza y factor de forma.	58
28.	Partes del Bastión.	65
29.	Dimensiones del Bastión	66
30.	Cargas consideradas en el diseño del bastión	67
31.	Notación utilizada para el cálculo del empuje lateral activo	72
32.	Procedimiento para el cálculo del empuje lateral pasivo del suelo en muros verticales e inclinados con	
	relleno de superficie horizontal	73
33.	Procedimiento para el cálculo del empuje lateral pasivo del suelo para muros verticales con relleno de	
	superficie inclinada	74
34.	Factores de resistencias para muros de contención, estado límite de resistencia	78
35.	Bastión sometido a vuelco	78
36	Bastión sometido a fuerzas de deslizamiento	80

ÍNDICE DE FIGURAS ÍNDICE DE FIGURAS

37.	Procedimiento para estimar la resistencia nominal al deslizamiento de muros en arcilla	82
38.	Factores de resistencia en estado límite de resistencia	82
39.	Presiones en la base del bastión	84
40.	Distribución de presiones en sobre el cimiento del bastión.	96
41.	Módulo de deformación y módulo de reacción vertical del suelo.	100
42.	Dimensiones de la Ménsula	100

1. Información General

1.1. Propósito de la guía de diseño.

La presente guía tiene el propósito de guiar al usuario en el diseño de puentes, tanto tipo losa, como tipo losa-viga, contemplando todos los requisitos técnicos mínimos que se deben de cumplir en el diseño de puentes vehiculares en Costa Rica.

También se busca que la guía de diseño sea un complemento a la herramienta electrónica que se esta proporcionando como insumo junto con este documento, que permita entender y si es posible llegar a actualizar la herramienta a la normativa vigente una vez entregada, y que los ingenieros responsables del diseño de puentes puedan realizar modificaciones y comprender bien el diseño de los mismos.

El adecuado uso de esta guía y de la herramienta electrónica, permitirá que se desarrollen puentes con un diseño seguro para todos aquellos posibles usuarios del mismo.

1.2. Alcance de la guía de diseño.

El alcance de esta guía esta enfocado en puente simples de un solo tramo que cumpla con las condiciones estipuladas en los Lineamientos de Puentes, que son los siguientes: (CFIA, 2013)

- La importancia operacional del puente es esencial, convencional u otra.
- El puente es regular.
- El puente clasifica como zona de desempeño 2 y 3 según la especificación AASHTO LRFD.
- El puente es recto y de ancho constante.
- La longitud del puente no debe exceder 40 m.
- La superestructura está compuesta por una losa de concreto únicamente o por un tablero sobre vigas de acero o concreto.
- El ángulo de sesgo máximo es 20° en los dos extremos, con diferencia menor que 3° entre los valores del sesgo en los extremos.
- El tablero debe trabajar como un diafragma rígido en su propio plano. La razón entre el claro y el ancho del tablero debe ser menor o igual a tres.
- La superestructura se diseña como un elemento simplemente apoyado sobre bastiones.
- Existen diafragmas transversales en los extremos del puente en línea con los apoyos.

- La unión entre las vigas y el tablero permite que se desempeñen como sección compuesta.
- Los suelos en que se apoya no son susceptibles a licuación.

Y quedan excluidos los siguientes:

- Puentes clasificados en la zona de desempeño sísmico 4, según la especificación AASHTO LRFD .
- Puentes clasificados como de importancia operacional crítica.
- Puentes con tableros de madera, de láminas dentadas de acero o de paneles prefabricados de concreto sin uniones continuas en las dos direcciones que permitan trasmitir las fuerzas de cortante y de flexión.
- Puentes tipo armadura.
- Puentes con bastiones integrados o semi-integrados a la superestructura.

Además se limita a puentes tipo losa de hasta 15 metros de longitud, y puentes tipos viga-losa hasta los 40 metros, para uno o dos carriles con o sin acera.

Se utilizarán las combinaciones de carga de Resistencia I y Servicio I.

Todo lo especificado en esta guía se basan en la filosofía de diseño LRFD es decir por factores de carga y resistencia, y siguiendo la normativa del inciso 1.3 de esta guía.

1.3. Normativa en la que se basa la guía de diseño.

El lista de documentos que se muestra a continuación, son sobre los cuales se elaboro la guía de diseño, se debe de verificar que al momento en que se vaya a utilizar el presente documento, se cuente con la ultima versión disponible, y verificar los cambios.

Los documentos son los siguientes:

- American Association of State Highway and Transportation Officials L.R.F.D., Bridge Design Specifications. 7ma edición. 2014.
- American Association of State Highway and Transportation Officials L.R.F.D., Bridge Design Specifications. 9na edición. 2020.
- Colegio Federado de Ingenieros y Arquitectos, Lineamientos para el Diseño Sismorresistente de Puentes, Costa Rica. 2013.

- SIECA. Manual Centroamericano de Normas para el Diseño Geométrico de Carreteras con enfoque de Gestión de riesgos y Seguridad vial. Secretaria de Integración Económica Centroamericana. 2004.
- American Concrete Institute. CODE REQUIREMENTS FOR ENVIRONMENTAL ENGINEERING CONCRETE STRUCTURES (ACI 350-01) AND COMMENTARY (ACI 350R-01).2015.
- American Concrete Institute. Requisitos de Reglamento para Concreto Estructural (ACI 318SUS-14) y Comentario (ACI 318SUSR-14).2015.
- Asociación Costarricense de Geotecnia, Código de Cimentaciones de Costa Rica, Costa Rica. 2009.

2. Consideraciones Generales

2.1. Definiciones

La AASHTO en su norma Bridge Design Specifications (AASHTO, 2020), define los siguientes términos de importancia:

- Puente: cualquier estructura que tenga una abertura no menor de 6 metros que forme parte de una carretera o que esté ubicada encima o debajo una autopista.
- Colapso: un cambio importante en la geometría del puente que lo hace inadecuado para su uso.
- Componente: un elemento discreto del puente o una combinación de elementos que requieren un diseño individual consideración.
- Diseño: Proporcionar y detallar los componentes y conexiones de un puente.
- Vida de diseño: período de tiempo en el que se basa la derivación estadística de cargas transitorias, que es de 75 años para estas especificaciones.
- Ductilidad: propiedad de un componente o conexión que permite una respuesta inelástica.
- Ingeniero: persona responsable del diseño del puente y/o revisión en campo relacionadas con el diseño y con la construcción.
- Evaluación: determinación de la capacidad de carga de un puente existente.
- Estados límite de eventos extremos: estados límite relacionados con eventos como sismos y colisión de vehículos y embarcaciones, con períodos de retorno superiores a la vida útil de diseño del puente.
- Carga factorizada: las cargas nominales multiplicadas por los factores de carga apropiados especificados para la combinación de carga en consideración.
- Resistencia factorizada: la resistencia nominal multiplicada por un factor de resistencia.
- Puente fijo: un puente con una autorización de transito vehicular fijo.
- Efecto de fuerza: una deformación, tensión o tensión resultante (es decir, fuerza axial, fuerza cortante o momento de torsión o flexión) causada por cargas aplicadas, deformaciones impuestas o cambios volumétricos.
- Estado límite: una condición más allá de la cual el puente o componente deja de satisfacer las disposiciones para las que fue diseñado.
- Diseño de factor de carga y resistencia (LRFD): una metodología de diseño basada en la confiabilidad en la que los
 efectos de fuerza causados por las cargas factorizadas no excedan la resistencia factorizada de los componentes.

- Factor de carga: un multiplicador basado en estadísticas que se aplica a los efectos de fuerza que tienen en cuenta principalmente la variabilidad de las cargas, la falta de precisión en el análisis, y la probabilidad de ocurrencia simultánea de diferentes cargas, pero también relacionada con las estadísticas de la resistencia a través del proceso de calibración.
- Modificador de carga: factor que tiene en cuenta la ductilidad, la redundancia y la clasificación operativa del puente.
- Modelo: idealización de una estructura con fines de análisis.
- Estructura de ruta de carga múltiple: una estructura capaz de soportar las cargas especificadas después de la pérdida de un elemento principal, componente o conexión.
- Resistencia nominal: resistencia de un componente o conexión a los efectos de la fuerza, según lo indicado por las dimensiones especificadas en los documentos del contrato y por tensiones permisibles, deformaciones o resistencia especificada de los materiales.
- Propietario: persona o entidad que tiene jurisdicción sobre el puente.
- Rehabilitación: proceso en el que la resistencia del puente se restaura o aumenta.
- Vida útil: el período de tiempo que se espera que el puente esté en funcionamiento.
- Estados límite de servicio: estados límite relacionados con la tensión, la deformación y el agrietamiento en condiciones normales de funcionamiento.
- Estados límite de resistencia: estados límite relacionados con la resistencia y la estabilidad durante la vida útil del diseño.

2.2. Abreviaturas

Algunas abreviaturas importantes y que serán utilizadas en el desarrollo de esta guía son las siguientes, son específicamente para los distintos tipos de cargas a la que estará sometido el puente.

 $\mathsf{DD} = \mathsf{Fuerza}$ de arrastre hacia abajo.

DC = Carga muerta de componentes estructurales y no estructurales.

DW = Carga muerta de superficie de rodadura y dispositivos auxiliares.

EH = Presión de tierra horizontal.

ES = Carga superficial en el terreno.

EV = Presión vertical del relleno.

BR = Fuerza de frenado.

CE = Fuerza centrífuga vehicular.

CT = Fuerza de choque vehicular.

CV = Fuerza de choque de barcos.

 $\mathsf{EQ} = \mathsf{Sismo}$.

 $\mathsf{FR} = \mathsf{Fricci\'on}.$

IC = Carga del hielo.

IM = Impacto.

LL = Carga viva vehicular.

LS = Carga viva superficial.

PL = Carga viva peatonal.

SE = Asentamiento.

SH = Contracción.

TG = Gradiente de temperatura.

TU = Temperatura uniforme.

WA = Carga de agua y presión del flujo.

WL = Carga de viento sobre la carga viva.

 $\mathsf{WS} = \mathsf{Carga}$ de viento sobre la estructura.

2.3. Filosofía de diseño

La filosofía de diseño es la de factores de carga y resistencia la LRFD, por sus siglas en inglés, básicamente esta metodología tiene un conocimiento estadístico actual de las cargas y el comportamiento de las estructuras. CFIA, 2013

Según AASHTO, 2020, los estados límite están destinados a proporcionar un puente edificable y útil, capaz de llevar cargas de diseño de forma segura durante una vida útil determinada.

Independientemente del tipo de análisis utilizado, se cumplirá para todos los efectos de fuerza especificados y combinaciones de los mismos.

La resistencia de componentes y conexiones es determinado, en muchos casos, sobre la base del comportamiento inelástico, aunque los efectos de la fuerza están determinados utilizando un análisis elástico. Esta inconsistencia es común a especificaciones de puentes actuales como resultado de conocimiento de la acción estructural inelástica.

2.4. Suposiciones generales

La normativa vigente en el país para el tema de puentes que son Lineamientos para el Diseño Sismorresistente de Puentes (CFIA, 2013), toma en cuenta ciertas suposiciones que se deben de tener presente al momento de utilizar esta guía, y son las siguientes:

- La estructura es diseñada por profesionales responsables, poseedores de criterios y conceptos adecuados de estructuración y diseño sismorresistente, con conocimientos y experiencia acordes con la importancia del puente.
- Durante el proceso constructivo existe una inspección eficaz que garantiza un adecuado control de la calidad y el seguimiento de las disposiciones contempladas en el diseño original, así como las adecuadas modificaciones que se requieran.
- La construcción es ejecutada por personal debidamente calificado y experimentado.
- Los materiales estructurales cumplen con todos los requisitos especificados previamente, tanto en los planos como en las especificaciones técnicas del proyecto.
- La estructura recibe un mantenimiento adecuado durante toda su vida útil.

■ En caso de daños durante un sismo, la estructura es debidamente reparada para restituir y, de ser necesario, incrementar su capacidad resistente a sismos y adecuarla sísmicamente para que satisfaga los objetivos de desempeño.

2.5. Componentes del puente

Los elementos que componen un puente según Héctor Kelinton Ramos García, 2010, son los siguientes:

- Superestructura: compuesta por el piso, los elementos principales (vigas, cerchas y arco) y los elementos secundarios (diafragmas, sistemas de arriostramiento, portales, aceras, etc).
- Subestructura: Está compuesta por los elementos que soportan el puente, como lo son los apoyos, bastiones, las pilas y la cimentación.
 - Apoyos: Son sistemas ya sean mecánicos o con almohadillas elastoméricas cuya función principal es la de transferir cargas de la superestructura a los bastiones, pilas y de ahí a la cimentación. Rodrigo de Jesus Anchia Delgado, 2018
 - Bastiones: Su función primordial es la de transferir las cargas procedentes de la superestructura a la cimentación, y también contener el relleno de acceso al puente.
 - Pilas: Sirven para transmitir las cargas de la superestructura a la cimentación en los apoyos intermedios, están sometidos a cargas verticales y horizontales, longitudinales y transversales.
 - Cimentación: Puede ser tanto una zapata como pilotes según el caso especifico con el que se este trabajando, pero independientemente estos elementos transfieren las cargas al suelo.
 - Accesorios: elementos sin función estructural pero vitales para garantizar el buen funcionamiento del puente tales como superficie de rodamiento, barandas y juntas de expansión.
 - Superficie de rodamiento: capa de desgaste que se coloca sobre la plataforma del sistema de piso para protegerlo de la abrasión producida por el tráfico.
 - o Baranda:sistema de contención longitudinal fijada al sistema de piso para evitar la caída al vacío de los usuarios, vehículos, ciclistas y peatones, pueden ser de concreto o de acero.
 - o Juntas de expansión: Elementos divisorios de la losa instalados en los extremos de cada tipo de superestructura que permite la traslación y/o rotación, para garantizar la expansión y contracción de la superestructura por temperatura y sismo.
 - ♦ Juntas abiertas: es una abertura libre inferior a 12.7 mm (1/2" pulgada) entre losas de concreto de tramos adyacentes, pueden ser entre losa-losa, losa-bastión, losa-losa de aproximación, típicamente cuenta con angulares o perfiles de acero para prevenir el desprendimiento del concreto en los bordes externos.

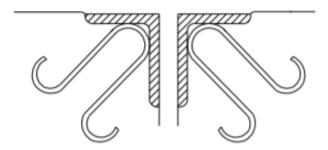


Figura 1: Juntas abiertas. Fuente: MOPT. Dirección de Puentes, 2007.

- ♦ Juntas selladas: Se divide en:
- \diamond Juntas rellenas: se aplican en puentes cortos con desplazamientos inferiores a 38.1 mm (1 $\frac{1}{2}$ " pulgada).

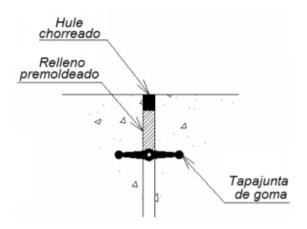


Figura 2: Juntas rellenas.

Fuente: MOPT. Dirección de Puentes, 2007.

 \diamond Juntas con sellos comprimidos de neopreno: se aplican en puentes con desplazamientos de 12.7 mm a 63,5 mm (de $\frac{1}{2}$ a 2 $\frac{1}{2}$ pulgada).

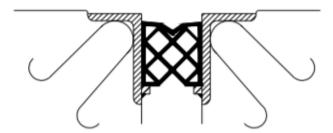


Figura 3: Juntas rellenas. Fuente: MOPT. Dirección de Puentes, 2007.

♦ Juntas de placas de acero deslizante: se aplican para puentes con desplazamientos mayores a 101 mm (4" pulgadas).

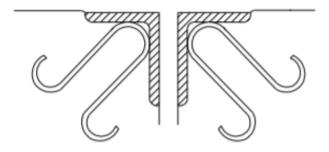


Figura 4: Juntas de placas de acero deslizante. Fuente: (MOPT. Dirección de Puentes, 2007).

♦ Juntas de placas dentadas: se aplican para puentes con desplazamientos de hasta 610 mm (24" pulgadas).

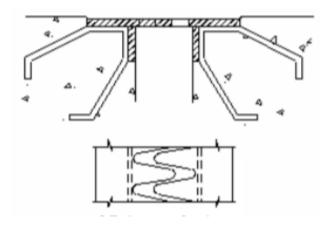


Figura 5: Juntas de placas dentadas. Fuente: (MOPT. Dirección de Puentes, 2007).

3. Consideraciones Preliminares

3.1. Estudios Preliminares

Según Héctor Kelinton Ramos García, 2010, los estudios preliminares se refieren básicamente a los datos que se han recabado respecto a la ubicación final del elemento, entre ellos están: topográfico, hidrológico e hidráulico, de suelos y geológico del cauce.

- Estudio topográfico: Un estudio topográfico, realizado de forma adecuada, permite con éxito la ubicación de un puente; es indispensable hacer observaciones de la zona por diferentes medios: con fotografías aéreas, mapas de la zona y recorridos del terreno.
- Estudio hidrológico e hidráulico: El objetivo principal de un estudio hidrológico e hidráulico es la determinación del caudal máximo esperado para un período de retorno establecido y evaluar la capacidad de descarga de la sección topográfica en donde se construirá.
 - La determinación de las crecidas de diseño es un factor de mucha importancia para determinar la geometría de una estructura, al igual para saber la capacidad hidráulica del área en estudio.
- Estudio de suelos: El tipo de subestructura y cimentación que se va a utilizar en el proyecto, depende de los resultados del estudio de suelos.
 - Generalmente, se plantea el eje del puente y se realizan las exploraciones correspondientes para determinar las características de los estratos en los apoyos del puente.
- Estudio geológico del cauce: Para obtener un estudio eficiente, se debe investigar que afluentes se suman al cauce del río o riachuelo, siguiendo la corriente del mismo, hasta llegar a la desembocadura final.
 - Se debe de describir la ubicación de la cuenca y cuales son los principales materiales circundantes, se debe proporcionar a que altura sobre el nivel del mar se encuentra, afloramientos principales y principalmente como contribuye al desarrollo del lugar.

3.2. Diseño Preliminar

El diseño preliminar establece la base para el diseño definitivo de la estructura, se debe de hacer con base a los resultados que arrojaron los estudios preliminares, se establece la configuración base que será verificada en el diseño final.

Esta documento se enfocará únicamente en los puentes especificados en el alcance de la guía.

3.3. Demanda Sísmica

Según los Lineamientos para el Diseño Sismorresistente de Puentes (CFIA, 2013), la demanda sísmica en un sitio se debe de caracterizar mediante un espectro de respuesta de aceleraciones.

Este espectro depende de la amenaza sísmica y de las características geotécnicas donde se encuentre el sitio de emplazamiento.

El procedimiento para la determinación de las cargas sísmicas y el diseño sísmico se debe de realizar según lo estipulado en los capítulos 2,3 y 4 de los Lineamientos para el diseño sismorresistente de puentes.

Para los puentes de un solo tramo no se requiere análisis sísmico, independientemente de la zona sísmica en la cual este ubicada la estructura.

Las conexiones y los bastiones se deberán de diseñar respecto al sismo tomando en consideración el peso tributario permanente de la superestructura.

3.4. Análisis Estructural

Este análisis permite determinar los efectos de las fuerzas que actúan sobre la estructura, revisando combinaciones de carga, para determinar la condición critica a la que estará sometida la estructura.

3.5. Diseño Estructural

Se debe de satisfacer todas las funciones para las que quiere construir la estructura, proporcionando un alto grado de seguridad y un adecuado comportamiento durante su vida útil.

Se debe de tener una geometría adecuada, que sea capaz de soportar las cargas a las que estará sometido, y todos los efectos que estas provocan sobre la estructura, si por alguna razón los elementos no soportan las cargas, se debe de cambiar de geometría o el material con el que se tenia establecido el diseño.

4. Cargas y combinaciones de diseño.

4.1. Cargas

Para el diseño de puentes se debe de considerar las cargas que actúan sobre la estructura durante todo el periodo de diseño, a partir de lo cual se determina la condición de carga critica de diseño para todos los elementos del puente. Según la AASHTO, 2020, son las siguientes:

Carga permanente: Debe ser definida previo predimensionamiento de la estructura y en ningún caso debe ser menospreciada y tampoco exagerada ya que la limitación de la longitud de los vanos fundamentalmente se debe al peso muerto de las estructuras.

Se define la carga muerta de elementos estructurales y no estructurales unidos (parapetos, barreras, señales) como **DC**; y para la carga muerta de la superficie de rodamiento y accesorios como **DW**.

Carga viva: está constituida por el peso de los vehículos más los efectos derivados por su naturaleza dinámica y móvil. Además, en el caso de los puentes urbanos, se debe considerar la carga viva peatonal en las aceras.

La carga vehicular viva en las calzadas de puentes o las estructuras accesorias, designadas como HL-93, consistirán en un combinación de camión de diseño, Tándem de diseño y carril de diseño.

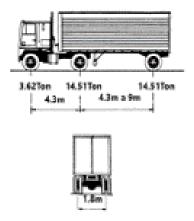


Figura 6: Características camión de diseño. Fuente: (AASHTO, 2020).

Figura 7: Características tándem de diseño. Fuente: (AASHTO, 2020).

Fuerzas por el impacto (IM): Como la superficie de rodadura no es uniforme, la suspensión de los vehículos reacciona a comprensión y tensión. Esta oscilación crea fuerzas que exceden el peso estático cuando el vehículo esta en movimiento. (Ernesto Seminario Manrique, 2004)

Fuerzas por el frenado (BR): Según Bridge Design Specification (AASHTO, 2020), la fuerza de frenado se tomará como el mayor de:

- 25 por ciento de los pesos de los ejes del camión de diseño o diseño en tándem, o
- Cinco por ciento del camión de diseño más carga de carril o cinco por ciento de la carga de diseño tándem más carril

Esta fuerza de frenado se colocará en todos los carriles de diseño, que se consideran cargados de acuerdo con Artículo 3.6.1.1.1 y que lleven tráfico con destino en la misma dirección. Se supondrá que estas fuerzas actúan horizontalmente a una distancia de 1.8 metros por encima de la calzada superficie en cualquier dirección longitudinal para causar extremos efectos de fuerza. Todos los carriles de diseño serán simultáneamente cargados para puentes que probablemente se vuelvan unidireccionales en el futuro.

Fuerzas por el viento (WL-WS): Se supondrá que la presión del viento es uniforme distribuida sobre la zona expuesta al viento, el área expuesta será la suma de las áreas de todos componentes, incluido el sistema de piso, barandillas. La carga de viento será el producto de la presión del viento y el área expuesta. El viento sera asumido horizontal, excepto que se especifique lo contrario. (AASHTO, 2020)

La presión ejercida por el viento incide tanto en la superestructura como en la carga viva (WL) y la infraestructura (WS).

Carga por sismo (EQ): Los puentes se diseñarán para tener una probabilidad baja colapso, pero puede sufrir daños importantes y interrupción del servicio cuando está sujeto a movimientos sísmicos que tienen un siete por ciento de probabilidad de suceder en 75 años, con reemplazo parcial o completo requerido. (AASHTO, 2020)

Los principios utilizados para el desarrollo de las especificaciones según AASHTO son:

- Se deben resistir terremotos pequeños a moderados dentro del rango elástico de los componentes estructurales sin daño significativo.
- Se usarán movimientos del suelo y fuerzas reales en el proceso de diseño.
- La exposición a temblores grandes no debe provocar el colapso de todo o parte del puente, donde los posibles daños que ocurra deberán ser detectables y accesibles para inspección y reparación.

Empuje del suelo (EH,ES,LS): Estas cargas afectan al bastión y a otras partes de la estructura que soportan el suelo. Según AASHTO, el empuje del suelo debe considerarse en función de los siguientes factores:

- Tipo y densidad del suelo.
- Contenido de agua.
- Características de fluencia lenta del suelo.
- Grado de compactación
- Ubicación del nivel freático
- Interacción suelo-estructura
- Cantidad de sobrecarga
- Efectos sísmicos
- Pendientes del relleno
- Inclinación del muro

4.2. Estados limite

Según Bridge Design Specifications, (AASHTO, 2020), se tienen los estados limite donde todos los componentes y conexiones deberán satisfacer la siguiente ecuación para cada estado límite a menos que se especifique otra cosa, y debe de cumplir con la siguiente ecuación (1):

$$\sum \eta_i \gamma_i q_i \le \Phi R_n = R_r \tag{1}$$

Donde se requiere un valor máximo de γ_i , se tiene que:

$$\eta = \eta_D, \eta_R, \eta_I > 0.95 \tag{2}$$

Y donde se requiere un valor mínimo de γ_i , se tiene que:

$$\eta = \frac{1}{\eta_D \eta_B \eta_I} \le 1 \tag{3}$$

Donde:

 q_i = Efectos de fuerza.

 γ_i = Factor de carga.

 Φ = Factor de resistencia.

 $\eta=$ Factor de resistencia que relaciona ductilidad, redundancia e importancia operativa.

 η_D = Factor de ductilidad.

 η_R = Factor de Redundancia.

 η_I = Factor de importancia operativa.

 R_n = Resistencia nominal.

 R_r = Resistencia factorizada.

El factor de resistencia $\Phi=1$ se asigna a todos los estados límites menos al estado límite de resistencia.

- Estado Limite de Servicio: El estado límite de servicio se tomará como restricciones sobre tensión, deformación
 y ancho de la grieta en condiciones regulares de servicio.
- Estado Limite de Fatiga y Fractura: El estado límite de fatiga será tomado en cuenta como un juego de restricciones en el rango de esfuerzos causados por un solo camión de diseño que ocurre en el número especificado de ciclos.

El estado límite de fractura será tomado en cuenta como un juego de requerimientos de tenacidad del material según las especificaciones AASHTO.

- Estado Limite de Resistencia: Asegura la resistencia y estabilidad tanto local como global.
- Estado Límite de Evento Extremo: Asegura la supervivencia estructural de un puente durante un evento importante.
- Ductilidad: El sistema estructural del puente será proporcionado de tal forma que asegure en los estados límites de resistencia y evento extremo el desarrollo de significantes deformaciones inelásticas visibles antes de la falla.

Para el Estado Limite de Resistencia:

 $\eta_D \geq 1.05$ para conexiones y secciones no dúctiles.

 $\eta_D \geq 0.95$ para componentes dúctiles.

Para los otros Estados Limite:

$$\eta_D = 1,00$$

■ Redundancia: Aquellos elementos cuya falla causaría el colapso del puente serán diseñados en falla crítica y el sistema estructural asociado será no redundante. Alternativamente, los miembros con falla crítica en tensión pueden ser diseñados en fractura crítica. Los elementos cuya falla no se espera que produzcan el colapso del puente no se diseñarán en falla crítica y el sistema estructural asociado será redundante.

Para el Estado Limite de Resistencia:

 $\eta_R \geq 1{,}05$ para conexiones y secciones no redundantes.

 $\eta_R \ge 0.95$ para componentes redundantes.

Para los otros Estados Limite:

$$\eta_R = 1.00$$

Importancia operativa: El propietario puede declarar si un puente o un componente tiene importancia operativa.

Para el Estado Limite de Resistencia:

 $\eta_R \ge 1.05$ para puentes críticos o esenciales.

 $\eta_R=1{,}00$ para puentes típicos.

 $\eta_R \geq 0.95$ para puentes con una importancia menor.

Para los otros Estados Limite:

$$\eta_R = 1,00$$

4.3. Combinaciones de carga

El efecto total de la fuerza factorizada se tomará de la siguiente forma:

$$Q = \eta \sum \gamma_i q_i \tag{4}$$

Donde:

 η = Factor de resistencia que relaciona ductilidad, redundancia e importancia operativa.

```
\gamma_i = Factores de carga.
```

 $_i$ = Carga.

Los siguientes estados limite también debe de cumplir con la ecuación anterior:

- Resistencia I: Combinación básica de carga relacionada con el uso vehicular normal, sin considerar el viento.
- Resistencia II: Combinación de carga relacionada al uso del puente mediante vehículos de diseños especiales especificados por el propietario y/o vehículos que permiten la evaluación, sin considerar el viento.
- Resistencia III: Combinación de carga relacionada al puente expuesto al viento con una velocidad mayor a 90 Km/h.
- Resistencia IV: Combinación de carga relacionada a relaciones muy altas de la carga muerta a la carga viva.
- Resistencia V: Combinación de carga relacionada al uso vehicular normal del puente considerando el viento a una velocidad de 90 Km/h.
- Evento Extremo I: Combinación de carga incluyendo sismo.
- Evento Extremo II: Combinación de carga relacionada a la carga de viento, choque de vehículos y barcos, y ciertos eventos hidráulicos con carga viva reducida, distinta de la carga de choque vehicular.
- Servicio I: Combinación de carga relacionada al uso operativo normal del puente con viento a 90 km/h y con todas las cargas a su valor nominal (sin factorizar). También está relacionada con el control del deflexiones.
- Servicio II: Combinación de carga considerado para controlar la fluencia de estructuras de acero y el deslizamiento delas secciones críticas, debidas a la carga viva vehicular.
- Servicio III: Combinación de carga longitudinal para el análisis relativo a la tracción en concreto pretensado en superestructuras con el objetivo del control de fisuras y tensión principal en las vigas.
- Servicio IV: Combinación de carga relacionada únicamente con tensión en columnas de concreto pretensado con el objetivo del control de fisuras.
- Fatiga I: Combinación de fatiga y carga de fractura relacionado con la fatiga inducida por cargas infinitas.
- Fatiga II: Combinación de fatiga y carga de fractura relacionado con la fatiga inducida por cargas finitas.

Cuadro 1: Factores y combinaciones de carga.

	DC DD	LL IM					TU CR				solan s indi			
Combinación	DW	CE		\.\.(c)	\ A //		SH	тс	65		ntinua		,	
de cargas	EH	BR	WA	WS	WL	FR		TG	SE					
	EV	PL								EQ	BL	IC	СТ	CV
Estado limite	ES	LS												
Resistencia I	γ_p	1.75	1			1	0.5/1.2	γ_{TG}	γ_{SE}					
Resistencia II	γ_p	1.35	1			1	0.5/1.2	γ_{TG}	γ_{SE}					
Resistencia III	γ_p		1	1		1	0.5/1.2	γ_{TG}	γ_{SE}					
Resistencia IV	γ_p		1			1	0.5/1.2							
Resistencia V	γ_p	1.35	1	1	1	1	0.5/1.2	γ_{TG}	γ_{SE}					
Evento extremo I	1	γ_{EQ}	1			1				1				
Evento extremo II	1	0.5	1			1					1	1	1	1
Servicio I	1	1	1	1	1	1	1/1.2	γ_{TG}	γ_{SE}					
Servicio II	1	1.3	1			1	1/1.2							
Servicio III	1	γ_{LL}	1			1.0	1/1.2	γ_{TG}	γ_{SE}					
Servicio IV	1		1	1		1	1/1.2		1					
Fatiga I		1.75												
Fatiga II		0.8												

Fuente: AASHTO, 2020

Cuadro 2: Factores de carga para cargas permanentes, γ_P

	Tipo de carga			le carga
	Tipo de Cai	rga	Máximo	Mínimo
DC	Componentes y auxiliares		1.25	0.9
DC	Solo estado limite Resistencia IV		1.5	0.9
DD	Fuerza de arrastre hacia abajo	Pilas, α método Tomlinson	1.4	0.25
		Pilas, Método λ	1.05	0.3
		Pozos perforados,	1.25	0.35
		método de O'Neill y Reese (2010)		
DW	Superficies de Rodadura y Accesorios		1.5	0.65
EH	Presión horizontal de tierra	Activo	1.5	0.9
		En reposo	1.35	0.9
		Para muros anclados	1.35	N/A
EL	Esfuerzos confinados		1	1
EV	Presión vertical de tierra	Estabilidad general y compuesta	1	N/A
		Muros de contención y pilotes	1.35	1
		Ruptura del refuerzo y conexión	1.35	N/A
		Fallo del suelo - geosintéticos	1.2	N/A
		(Servicio I)		
		Método de gravedad coherente	1.35	N/A
		Estructura rígida enterrada	1.3	0.9
		Marcos rígidos	1.35	0.9
		Alcantarillas de caja de metal	1.5	0.9
		Alcantarillas de placas estructurales		
		con corrugaciones profundas		
		Alcantarillas de fibra de vidrio		
		Alcantarillas termoplásticas	1.3	0.9
		Todos los demás	1.95	0.9
		Estabilidad interna y compuesta	1	N/A
		para fallas del suelo en		
		paredes ancladas del suelo		
ES	Carga superficial en el terreno		1.5	0.75

Fuente: AASHTO, 2020

5. Puente tipo losa.

5.1. Geometría.

Para iniciar con el proceso de diseño de este tipo de puente se debe de determinar ciertas características geométricas como las siguientes:

- Luz del puente (L): Es la distancia de apoyo a apoyo, para este tipo de puentes se recomienda que se considere entre 7 y 12 metros, ya que después de estas luces el costo se incrementa, debido a que se deben de aumentar espesores, y con ello cantidad de acero, cantidad de concreto y el encofrado.
- Ancho del puente: Este depende de varios parámetros entre ellos cantidad de carriles, si cuenta o no con acera. Según SIECA, 2004, se especifica un ancho de carril de 3.6 metros, hasta un mínimo de 2.7 metros en caminos rurales; si se tiene 2 carriles, el ancho de calzada será de 7.2 metros, esto más el ancho de la acera, que puede variar entre 1 y 2 metros.

5.2. Predimensionamiento.

Para el predimensionamiento del espesor de la losa, se recomienda que se realice con lo siguiente:

$$E = \frac{1,2 \cdot (L + 3000)}{30} \tag{5}$$

Donde:

L: Longitud del puente en milímetros.

E: Espesor de losa

Este predimensionamiento se realiza mediante las Especificaciones de la AASHTO, novena edición en el apartado 2.5.2.6.3-1, pero convirtiéndolo al sistema internacional de medidas.

5.3. Método de análisis.

Según AASHTO, 2020, se expone el método de franjas equivalentes para el diseño de las losas, que básicamente divide el tablero en franjas ya sea perpendicular o paralelas al trafico, se menciona dos métodos uno aproximado, en donde se deben de cumplir con ciertas condiciones y el método tradicional, para los puentes que no cumplen con esas condiciones.

Método aproximado: Este método aplica para puentes de losa y losas de concreto de menos de 4600 mm de longitud y que se extienden fundamentalmente en la dirección perpendicular al tráfico.

5.3 Método de análisis. 5 PUENTE TIPO LOSA.

TIPO DE TABLERO	DIRECCIÓN DE LA FAJA PRIMARIA EN RELACIÓN CON EL TRÁFICO	ANCHO DE LA FAJA PRIMARIA (mm)
Hormigón:		
Colado in situ	Vuelo	1140 + 0,833X
	Paralela o perpendicular	+M: 660 + 0,55S -M: 1220 + 0,25S
Colado in situ con encofrados perdidos	Paralela o perpendicular	+M: 660 + 0,55S -M: 1220 + 0,25S
Prefabricado, postesado	Paralela o perpendicular	+M: 660 + 0,55S -M: 1220 + 0,25S
Acero: • Emparrillado abierto	Barras principales	0,007P+4,0S _b
Emparrillado con vanos total o parcialmente llenos	Barras principales	Se aplica el articulo 4.6.2.1.8
Emparrillados compuestos sin relleno en los vanos	Barras principales	Se aplica el articulo 4.6.2.1.8
Madera:		
Madera laminada y encolada prefabricada		
 No interconectada 	Paralela	2,0h + 760
	Perpendicular	2.0h + 1020
o Interconectada	Paralela	2280h + 0,07L
	Perpendicular	4,0h + 760
	Paralela	0.066S + 2740
Laminada y tesada	Perpendicular	0,84S + 610
A. Taminada ordenida	1	,
Laminada y clavada Tableros continuos o paneles	Paralela	2.0h + 760
interconectados	Perpendicular	4,0h + 1020
	_	
 Paneles no interconectados 	Paralela	2.0h + 760
	Perpendicular	2,0h + 1020

Figura 8: Franjas equivalentes. Fuente: (AASHTO, 2020).

Aplica también para losas cargadas paralelamente al trafico, pero la franja no deberá ser mayor a 3600 mm. Para las franjas de borde longitudinales, que es cuando la losa se carga en la dirección paralela al trafico, es la distancia entre el borde del tablero y la cara interior de la barrera más 30 centímetros, y más la mitad del ancho de franja total, y esto no puede exceder el ancho de franja total o 1.80 metros.

Método tradicional:

Aplica tanto para los puentes que satisfagan el método aproximado como para los que no, es decir para puentes de mas de 4600 mm de largo.

El ancho equivalente para las franjas longitudinales para un carril cargado es la siguiente:

$$E = 250 + 0.42 \cdot \sqrt{L' \cdot W'} \tag{6}$$

Donde:

 $L^{'}_{\cdot}$ = Longitud de tramo modificada, debe de tomar el valor menor entre la longitud real y 18000mm.

 $W^{'}$ =Ancho modificado, se toma igual al menor valor entre el ancho real y 9000mm.

El ancho equivalente para las franjas longitudinales para dos o más carriles cargados es la siguiente:

$$E = 2100 + 0.12 \cdot \sqrt{L' \cdot W'} \le \frac{W}{N_L} \tag{7}$$

Donde:

 $L^{'}$ = Longitud de tramo modificada, debe de tomar el valor menor entre la longitud real y 18000mm.

 $W^{'}$ = Ancho modificado, se toma igual al menor valor entre el ancho real y 18000mm.

 $N_L =$ Número de carriles de diseño.

Para la determinación de los anchos de franja se realiza mediante las Especificaciones de la AASHTO, novena edición en el apartado 4.6.2.3 y 4.6.2.1.4, pero convirtiéndolo al sistema internacional de medidas.

5.4. Cargas

Para el metrado de las cargas se debe de analizar tanto en superestructura como la subestructura, y se deben de considerar todas las cargas que se mencionaron en la sección 4.

Carga muerta DC: Esta es la carga producto del peso de los elementos estructurales que conforman la estructura.

Para la obtención de esta carga se considera el peso de los elementos, como lo es la losa, para el caso especifico del puente tipo losa, y se debe de analizar para el borde y para el interior de la losa, una vez obtenido la carga distribuida de manera lineal, se procede a obtener el momento generado, que en este caso se considera como el caso más simple que es simplemente apoyado, y se obtiene de la siguiente manera:

$$M = \frac{W \cdot L^2}{8} \tag{8}$$

Donde:

W= Carga distribuida de manera lineal.

L= Longitud del puente.

Carga muerta DW: Esta es la carga producto del peso de los elementos no estructurales que conforman la estructura, entre ellos barandas, superficies de ruedo; en este caso se obtiene el momento al igual que la carga anterior.

Carga viva LL: Para este estado de carga se contempla el camión de diseño, que según AASHTO, 2020, es el HL-93, a partir del análisis se debe colocar las cargas en las posiciones más desfavorables, donde se genera la mayor carga posible, donde se puede hacer uso de las lineas de influencia y evitar así someter la estructura a la infinidad de posiciones de carga.

El teorema de Barré, ayuda a determinar la posición más desfavorable que produce el máximo momento para losas cargadas en dirección paralela al tráfico, es aquella en la cual la carga más pesada y la resultante de todas las cargas aplicadas equidistan del centro de luz.

La carga de carril de diseño, es una carga uniforme de $0.95 \frac{ton}{m}$, distribuido en su eje longitudinal, no se debe de incrementar por el IM.

Para la determinación de estas cargas se realiza mediante las Especificaciones de la AASHTO, novena edición en el apartado 3.6.1.2.2, 3.6.1.2.3, 3.6.1.2.4, pero convirtiéndolo al sistema internacional de medidas.

Incremento por carga dinámica IM: Este incremento se debe de dar en los efectos estáticos que estén sobre la estructura, no se verán afectadas ni la carga peatonal, ni la carga de carril de diseño.

Componente	IΜ
Juntas del tablero - Todos los Estados Límites	75%
Todos los demás componentes	
 Estado Límite de fatiga y fractura 	15%
 Todos los demás Estados Límites 	33%

Figura 9: Incremento carga dinámica. Fuente: (AASHTO, 2020).

Para realizar este incremento utiliza las Especificaciones de la AASHTO, novena edición en el apartado 3.6.2, 3.6.2.1-1, pero convirtiéndolo al sistema internacional de medidas.

Carga peatonal PL: La carga peatonal tiene un valor de $0.37 \frac{ton}{m^2}$, y se debe de aplicar en todas aquellas aceras que excedan los 60 centímetros.

Esta carga es un parámetro constante según la Especificación de la AASHTO, novena edición en el apartado 3.6.1.6, pero convirtiéndolo al sistema internacional de medidas.

Carga de viento WS: Es la carga aplicada a la superestructura, se debe de considerar la velocidad de diseño, y se realiza con la siguiente formula, para estructuras que estén por encima de los 10 metros:

$$V_{DZ} = 2.5 \cdot V_0 \cdot \frac{V_{10m}}{V_B} \cdot Ln \frac{Z}{Z_0} \tag{9}$$

Donde:

 V_{DZ} =Velocidad del viento a la altura de diseño (km/h)

 V_0 =Velocidad friccional (km/h)

 V_{10m} =Velocidad del viento a 10 metros sobre el espejo de agua (km/h), está velocidad esta definida para país y zona donde se vaya a construir el puente.

 $V_B=$ Velocidad básica del viento, igual a 160 km/h a 10m Z=Altura a la cual se esta calculando las cargas de viento (m)

En la siguiente figura se muestran los valores para V_0 y Z_0 .

CONDICIÓN	TERRENO ABIERTO	ÁREA SUBURBANA	ÁREA URBANA
$V_o({\rm km/h})$	13,2	17,6	19,3
Z_o (mm)	70	1000	2500

Figura 10: Valores de V_0 y Z_0 para distintas condiciones. Fuente: (AASHTO, 2020).

Si se cuenta con la información de la zona de emplazamiento de la estructura, se debe de utilizar la V_{DZ} que se presenta en la zona, y a la altura que estará la estructura.

A partir de la obtención de la V_{DZ} , se puede obtener la presión de viento sobre la estructura, tanto a barlovento como a sotavento.

COMPONENTE DE LA SUPERESTRUCTURA	CARGA A BARLOVENTO, MPa	CARGA A SOTAVENTO, MPa
Reticulados, columnas y arcos	0,0024	0,0012
Vigas	0,0024	NA
Grandes superficies planas	0,0019	NA

Figura 11: Presión básica correspondiente a V_B =160km/h. Fuente: (AASHTO, 2020).

Una vez determinada la presión básica, se obtiene la presión de diseño con la siguiente formula:

$$P_D = P_B \cdot \frac{(V_{DZ})^2}{25.6} \tag{10}$$

Esta carga de viento horizontal no deberá ser menor a $0.45 \ \frac{ton}{m}$ en barlovento y a $0.45 \ \frac{ton}{m}$ en sotavento para elementos tipo viga.

La carga de viento vertical deberá de considerarse ascendente y se deberá de aplicar a un cuarto del ancho del puente a barlovento, y es un valor de $0.096 \ \frac{ton}{m^2}$, para el estado limite de Resistencia III, y de $0.048 \ \frac{ton}{m^2}$, para el estado limite de Servicio IV, solo a estos estados se les debe de aplicar esta carga.

Carga de viento WL: Es la carga de viento sobre los vehículos, se debe de representar como una carga distribuida

de 0.045 $\frac{ton}{m}$, a una altura de 1.8 metros sobre la estructura.

Inestabilidad aeroelástica: La inestabilidad aeroelástica, se deberá de considerar en el diseño de puentes y componentes estructurales que puedan ser sensibles al viento, y se verifica con la siguiente relación longitud de tramo/Ancho, si esta relación es mayor a 30, se deberá de considerar como una estructura sensible al viento.

Fuerza de frenado BR: Para la obtención de la fuerza de frenado se debe de considerar el mayor de los siguientes valores:

• 25 por ciento del peso del camión de diseño.

25 por ciento del peso del tándem de diseño.

• 5 por ciento del peso del camión de diseño más la carga de carril.

■ 5 por ciento del peso del tándem de diseño más la carga de carril.

Además se deberá de afectar por el factor de presencia múltiple dependiendo de la cantidad de carriles con los que contará la estructura.

Número de carriles cargados	Factor de presencia múltiple, m
1	1,20
2	1,00
3	0,85
> 3	0,65

Figura 12: Factor de presencia múltiple.

Fuente: AASHTO, 2020.

Esta carga es un parámetro constante según la Especificación de la AASHTO, novena edición en el apartado 3.64.

Fuerza Sísmica EQ: Estas se deberán de tomar como solicitaciones horizontales, donde básicamente según el Lineamiento de Puentes (CFIA, 2013), se utiliza el coeficiente de aceleración, que en este caso es el coeficiente espectral para periodos cortos C_a , multiplicado por el peso tributario permanente y el factor de importancia.

Para la determinación de está carga sísmica, se debe de determinar la zona de amenaza sísmica que básicamente es la zona de emplazamiento de la estructura, en la siguiente se figura se muestra de una manera gráfica la zonificación

con la que cuenta Costa Rica.

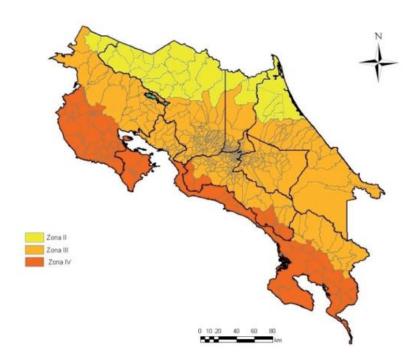


Figura 13: Zona de amenaza sísmica. Fuente: (CFIA, 2013).

Luego se debe de analizar el sitio de cimentación, que se basa en la rigidez del medio soportante, viene determinado por estudios geotécnicos, los lineamientos brindan una serie de especificaciones que son las siguientes:

Sitio geotécnico de cimentación	Perfil estratigráfico	Velocidad de onda cortante promedio ponderada en los 30 m superficiales (\overline{v}_z)				
S ₁	Roca	760 m/s < (v̄ _z)				
S ₂	Suelo muy denso y roca suave	360 m/s < (\overline{v}_s) ≤ 760 m/s				
S _a	Suelo rígido	180 m/s < (\overline{v}_s) ≤ 360 m/s				
S ₄	Suelo suave	(v̄ _s) < 180 m/s				
Sitios que requieren de una evaluación específica de la respuesta sísmica según la investigación preliminar						
v _s = velocidad de onda cortante promedio ponderada para los 30 m superiores del perfil de suelo como está						
definida en el inciso 2.3.2						

Figura 14: Clasificación del sitio geotécnico de cimentación con base en la velocidad de onda cortante. Fuente: CFIA, 2013.

Sitio geotécnico de cimentación	Número de golpes de la prueba SPT, promedio ponderado de los 30 m super- ficiales (N)	Resistencia al corte no drenada, promedio ponderado de los 30 m superficiales (s̄ _u)			
S ₂	50 ≤ (N)	100 kPa < (s̄₀)			
S₃	15 ≤ (N) < 50	50 kPa < (s̄ _u) ≤ 100 kPa			
S ₄	(N) < 15	(s̄ _u) ≤ 50 kPa			
	Cualquier perfil con estratos de turba o suelo altamente orgánico con espesor mayor de				
S ₅	3.0 m, arcilla de plasticidad muy alta (IP>75) con espesor mayor de 7.5 m o arcilla suave				
	o de mediana rigidez	con espesor mayor de 30 m			

Figura 15: Clasificación del sitio geotécnico de cimentación con base en la resistencia del medio. Fuente: CFIA, 2013.

Una vez se tienen estos parámetros se puede realizar el espectro de respuesta que va a tener la estructura, donde además se debe de obtener el C_v , que es el coeficiente espectral para periodos largos, y ya con esto se construye la curva de espectro, en los lineamientos se muestra paso a paso como hacerla, a continuación se muestra un ejemplo.

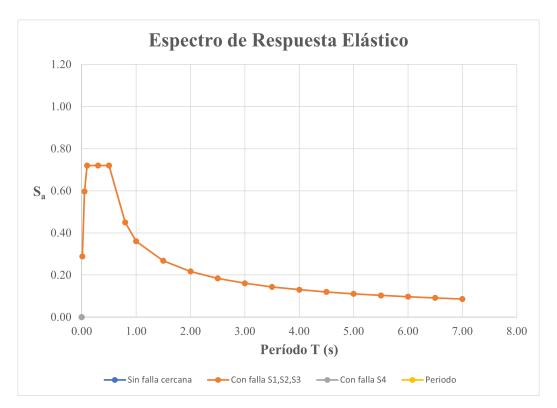


Figura 16: Espectro de respuesta elástico. Fuente: Propia.

Es importante también aclarar que los lineamientos de puentes, aplica un factor de amplificación del espectro cuando se cuenta con fallas activas cercanas del sitio, a menos de 5 kilómetros, en la siguiente figura se muestran las fallas activas que existen en este momento en Costa Rica.

Código de color	Número	Nombre	Provincia		
	1	Aguacaliente Orosi	Cartago		
	2	Alajuela	Alajuela		
	3	Bagaces (*)	Guanacaste		
	4	Barranca	Puntarenas / San José		
	5	Canoas	Puntarenas		
	6	Caño Negro	Alajuela / Guanacaste		
	7	Chiripa	Guanacaste		
	8	Delicias	Puntarenas		
	9	Falla Longitudinal	Puntarenas		
	10	Golfito	Puntarenas		
	11	Navarro	Cartago		
	12	Paquita	Puntarenas		
	13	Parrita (♣)	Puntarenas		
	14	Quepos	Puntarenas		
	15	San Vito	Puntarenas		
	16	Siquirres - Matina	Limón		
	17	Tárcoles	Puntarenas / San José		
	18	Zona de Falla Media	Puntarenas		

Figura 17: Fallas activas en territorio Costarricense. Fuente: CFIA, 2013.

A parte de todo lo anterior, se debe de realizar una clasificación de la estructura, según su grado de importancia, donde hay cuatro clasificaciones que son las siguientes:

- Puentes Críticos: Son aquellos que requieren estar en funcionamiento después de un sismo, o están a lo largo de rutas estratégicas, cantonales, en zonas urbanas, son requeridos para mantener los servicios públicos, con costo menor a 10 millones de dolares y que estén a lo largo de rutas primarias sin rutas alternas.
- Puentes Esenciales: Están diseñados para soportar volúmenes importantes de trafico, sobre rutas secundarias sin rutas alternas y que no cumplen con los requisitos de puentes críticos.
- Puentes Convencionales: En rutas primarias, secundarias y terciarias y caminos cantonales que no se pueden clasificar como esenciales o críticos.
- Otros Puentes: Puentes temporales con menos de 3 años de vida útil, puentes que brindan acceso a propiedades privadas, no son críticos para mantener las comunicaciones.

También se debe de clasificar según las zonas sísmicas y categorías de diseño sísmico, y lineamientos de puentes

muestra la siguiente clasificación, que en este caso se sigue la Especificación AASHTO LRFD.

Zona de amenaza	CLASIFICACIÓN DE IMPORTA	Riesgo de que exista corri-	
sísmica	Convencionales / otros	Crítico / esencial	miento lateral por licuación
II	2	3	4
III	3	3 0 4 (2)	4
IV	3 0 4 (1)	4	4

Figura 18: Zonas de desempeño sísmico.

Fuente: CFIA, 2013.

Se debe de aplicar factores de modificación de respuesta para conexiones y subestructuras, según la importancia operacional del puente, y se muestra en la siguiente figura.

TIPO DE SUBESTRUCUTRA		Categoría operacional		
		Esencial	Convencional y Otros	
Pilas de muro - dimensión larga	1.5	1.5	2.0	
Pilas de columna-pilote de concreto reforzado				
Columna-Pilote vertical	1.5	2.0	3.0	
Columna-Pilote inclinado	1.5	1.5	2.0	
Pilas de columna sencilla	1.5	2.0	3.0	
Pilas de columna-pilote de acero o compuestas (acero y				
concreto)				
Columna-Pilote vertical		3.5	5.0	
Columna-Pilote inclinado	1.5	2.0	3.0	
Pilas de columnas múltiples	1.5	3.5	5.0	

Figura 19: Factores de modificación de la respuesta para subestructuras.

Fuente: CFIA, 2013.

Para aplicar lo anterior se debe de trabajar con puentes simples de un solo tramo que deben de cumplir con las siguientes características. (CFIA, 2013)

- La importancia operacional del puente es esencial, convencional u otra.
- El puente es regular.
- El puente clasifica como zona de desempeño 2 y 3.
- El puente es recto y de ancho constante.
- La longitud del puente no debe exceder 40 m.
- La superestructura está compuesta por una losa de concreto únicamente o por un tablero sobre vigas de acero o concreto.
- El ángulo de sesgo máximo es 20° en los dos extremos, con diferencia menor que 3° entre los valores del sesgo en los extremos.

- El tablero debe trabajar como un diafragma rígido en su propio plano. La razón entre el claro y el ancho del tablero debe ser menor o igual a tres.
- La superestructura se diseña como un elemento simplemente apoyado sobre bastiones.
- Existen diafragmas transversales en los extremos del puente en línea con los apoyos.
- La unión entre las vigas y el tablero permite que se desempeñen como sección compuesta.
- Los suelos en que se apoya no son susceptibles a licuación.

Y quedan excluidos los que tengan las siguientes condiciones:

- Puentes clasificados en la zona de desempeño sísmico 4.
- Puentes clasificados como de importancia operacional crítica.
- Puentes con tableros de madera, de láminas dentadas de acero o de paneles prefabricados de concreto sin uniones continuas en las dos direcciones que permitan trasmitir las fuerzas de cortante y de flexión.
- Puentes tipo armadura.
- Puentes con bastiones integrados o semi-integrados a la superestructura.

Todo lo referente con la carga sísmica se realiza con base en Lineamientos para el diseño sismorresistente de puentes del CFIA, en las tablas 2.4-1, 3.1, 3.2, los apartados 2.6, 4.2 y también según la Especificación de la AASHTO, novena edición en el apartado 4.7.4.2, 3.4.1-1, 3.4.1-2.

5.5. Diseño de la superestructura.

5.5.1. Revisión por resistencia.

El recubrimiento según la Especificación de la AASHTO, novena edición se especifica en el apartado 5.10.1.

A partir de las combinaciones de carga seleccionadas para el proyecto en análisis, se obtiene un momento para la franja interior y para la franja de borde, y se debe de revisar por resistencia y por servicio, cumpliendo con los requerimientos de la especificación AASHTO.

Para iniciar con el diseño, se debe de definir ciertas características de los materiales a utilizar como lo son la resistencia del concreto (f'c), fluencia del acero (fy); también retomar ciertas características como lo son el espesor de la losa, los recubrimientos que tendrá el acero.

El diseño a flexión de la losa debe de cumplir con una cuantía mínima de acero, que se debe de seleccionar entre el menor de los siguientes dos datos:

$$\rho = \frac{14}{fy} \tag{11}$$

$$\rho = \frac{0.8 \cdot \sqrt{f'c}}{fy} \tag{12}$$

A partir del valor obtenido anteriormente se obtiene el área de acero mínimo, como se muestra a continuación:

$$As = \rho \cdot b \cdot d \tag{13}$$

Se determina la altura del bloque de compresión:

$$a = \frac{As \cdot fy}{0.85 \cdot f'c \cdot b} \tag{14}$$

$$c = \frac{a}{\beta} \tag{15}$$

Para determinar β , depende de la resistencia de concreto que se este utilizando y se hace de la siguiente forma:

- Si $f'c \le 280$, se utiliza 0.85.
- Si $f'c \geq 560$, se utiliza 0.65.
- \blacksquare Si 280 < f'c > 560, se utiliza 0.85-($\frac{0.05 \cdot (fc 280)}{70}$).

Se realiza siguiente verificación:

$$\frac{c}{d} \le 0.42 \tag{16}$$

Luego se realiza la verificación de los parámetros balanceados de diseño en donde se tiene lo siguiente:

$$\rho_b = 0.85 \cdot \frac{f'c}{fy} \cdot \beta \cdot \frac{6300}{6300 + fy} \tag{17}$$

El área de acero balanceada:

$$As_b = \rho_b \cdot b \cdot d \tag{18}$$

Esta sección de la armadura mínima de diseño, se realiza según la Especificación de la AASHTO, novena edición en los apartados 5.10.3.1.1, 5.10.3.2, 5.4.2.6, 5.6.3.3.

Ahora se tienen los parámetros máximos de diseño:

$$\rho_{m\acute{a}x} = 0.75 \cdot \rho_b \tag{19}$$

$$As_{m\acute{a}x} = \rho_{m\acute{a}x} \cdot b \cdot d \tag{20}$$

$$a_{m\acute{a}x} = \frac{As_{m\acute{a}x} \cdot fy}{0.85 \cdot f'c \cdot b} \tag{21}$$

$$c_{m\acute{a}x} = \frac{a_{m\acute{a}x}}{\beta} \tag{22}$$

Con estos parámetros se obtiene el momento resistente máximo:

$$Mu = \Phi \cdot As_{m\acute{a}x} \cdot fy \cdot \left(d - \frac{a_{m\acute{a}x}}{2}\right) \tag{23}$$

Una vez obtenido lo anterior se procede a determinar el área de acero para resistir el momento para el que se esta diseñando, y verificar que el acero que se coloque satisfaga esa condición.

Se realiza con las formulas dadas anteriormente planteando un a que es la altura del bloque de compresión, e iterar hasta que el error sea de menos del 10 por ciento y utilizar ese valor para determinar el área de acero de diseño.

Se debe de colocar el acero transversal a la dirección del trafico, que en este caso se debe cumplir con la siguiente condición:

$$\frac{1750}{\sqrt{L}} \le 50 \tag{24}$$

Donde:

L= Longitud del puente.

Si la condición anterior se cumple entonces el acero transversal se determina de la siguiente manera:

Esta verificación es según la Especificación de la AASHTO, novena edición en el apartado 5.12.2.1.

$$As_{rep} = \frac{1750}{\sqrt{L}} \cdot As_d \tag{25}$$

El acero por contracción y temperatura se determina de la siguiente forma:

$$As_t = \frac{\rho \cdot b \cdot h}{2} \tag{26}$$

El ρ en este caso es de 0.002, y el acero esta dividido entre 2 debido a que lleva 2 camas de acero; la separación

máxima en este caso es el mínimo entre 0.45 metros y $3 \cdot d$.

Para la revisión por cortante de la losa, el concreto deberá de tener la capacidad de soportar el cortante de diseño, cumpliendo con la siguiente formula:

$$Vu \le \phi Vc. \tag{27}$$

Donde:

Vu: Cortante mayorizado.

Vc: Cortante soportado por el concreto.

 $\phi: 0.75$

Para obtener el cortante soportado por el concreto, según ACI, 2015, se obtiene con la siguiente formula:

$$\phi Vc = \phi(0.53 \cdot \sqrt{f'c} \cdot b \cdot d). \tag{28}$$

Se debe de cumplir la desigualdad dada anteriormente, si no es así se debe de aumentar espesor, o cambiar la resistencia del concreto.

5.5.2. Revisión por servicio.

Para la revisión por servicio de la estructura, se debe de obtener parámetros como el modulo de elasticidad del concreto, que se hace de la siguiente forma:

$$E_c = 15100 \cdot \sqrt{fc} \tag{29}$$

El análisis por servicio se realiza mediante el método de la sección transformada, que según Mc Cormac, J y Brown, R, 2011, básicamente consiste en transformar toda la sección en un solo material homogéneo, es decir si es concreto reforzado se transforma el acero en concreto.

En este caso se esta tomando en cuenta el acero de refuerzo, con lo cual se esta transformando este a un área de concreto equivalente.

A partir de los módulos tanto del concreto con la formula anterior como del acero que es de 2100000 $\frac{kg}{cm^2}$, se obtiene la relación entre módulos de elasticidad.

$$n = \frac{E_s}{E_c} \tag{30}$$

La razón modular representa cuantas veces se esfuerza el acero a partir del esfuerzo del concreto.

Esta sección de la módulos del concreto y relación entre módulos, se realiza según la Especificación de la AASHTO, novena edición en el apartado 5.4.3.2, 5.4.2.4, 5.6.7; según la norma anterior, la relación de módulos debe de dar mayor que 6.

Con esto se puede determinar el área de acero transformada que se determina de la siguiente forma:

$$As_{st} = n \cdot A \tag{31}$$

Donde:

A=Área de la varilla de acero principal utilizada.

Es necesario obtener el momento por servicio que se obtiene de la siguiente forma:

$$M_s = S \cdot MS \tag{32}$$

Donde:

S=Separación acero principal.

MS= Momento de Servicio.

Es necesario obtener el momento por servicio que corresponde al área tributaria del acero principal que se obtiene de la siguiente forma:

$$Ms = S \cdot M_s \tag{33}$$

Donde:

S=Separación acero principal.

 M_s = Momento de Servicio.

Se obtiene el centroide de la sección transformada, se elige el menor de los siguientes dos valores:

$$y = \frac{-A_{st} \pm \sqrt{A_{st}^2 - (2 \cdot D_{varilla} \cdot d \cdot (-A_{st}))}}{D_{varilla}}$$
(34)

Donde:

 $D_{varilla}$ = Diámetro de varilla de diseño.

y=Centroide de la sección transformada.

El esfuerzo a tensión bajo las cargas de servicio se calcula de la siguiente forma y debe de ser mayor a $0.60 \cdot fy$.

$$\frac{Ms}{y \cdot A} \tag{35}$$

Donde:

A=Área varilla diseño.

y=Centroide de la sección transformada.

Se debe de revisar la deflexión del elemento, y se realiza con la siguiente formula:

$$\Delta_{m\acute{a}x} = \frac{5 \cdot w \cdot L^4}{384 \cdot E_c \cdot I_e} \tag{36}$$

Donde:

 $I_e =$ Inercia efectiva de la sección.

Según la sección 2.5.2.6.2 de la Especificación de la AASHTO, para determinar las deflexiones se debe de realizar con la carga viva mayor entre las siguientes condiciones:

- La carga de camión de diseño, ya sea camión o tándem.
- La carga de carril de diseño.
- La sumatoria del 25 por ciento de la carga camión, más la carga de carril.

Según la Especificación de la AASHTO(AASHTO, 2020) en el apartado 2.5.2.6.2, se tienen los siguientes limites para las deflexiones:

- Carga vehicular en general: $\frac{L}{800}$.
- Carga vehicular y/o peatones: $\frac{L}{1000}$.
- Carga vehicular sobre voladizos: $\frac{L}{300}$.
- \blacksquare Carga vehicular y/o peatones sobre voladizos: $\frac{L}{375}$

Luego de finalizar y realizar todas las verificaciones del diseño, la distribución del acero queda de la siguiente forma.

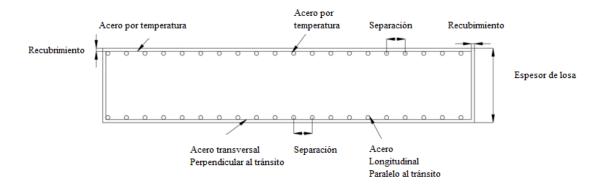


Figura 20: Vista transversal de estructura de la losa. Fuente: Propia.

6. Puente tipo viga-losa.

6.1. Geometría.

Para iniciar con el proceso de diseño de este tipo de puente se debe de determinar ciertas características geométricas como las siguientes:

- Luz del puente (L): Es la distancia de apoyo a apoyo, para este tipo de puentes se recomienda que se considere entre 7 y 12 metros, ya que después de estas luces el costo se incrementa, debido a que se deben de aumentar espesores, y con ello cantidad de acero, cantidad de concreto y el encofrado.
- Ancho del puente: Este depende de varios parámetros entre ellos cantidad de carriles, si cuenta o no con acera. Según SIECA, 2004, se especifica un ancho de carril de 3.6 metros, hasta un mínimo de 2.7 metros en caminos rurales; si se tiene 2 carriles, el ancho de calzada será de 7.2 metros, esto más el ancho de la acera, que puede variar entre 1 y 2 metros.

6.2. Predimensionamiento.

Para el predimensionamiento del espesor de la losa, se recomienda que sea mayor a 16.5 centímetros, para el peralte compuesto es decir peralte de viga y espesor de losa sumados, se recomienda que se realice con lo siguiente:

$$Peralte = 0.070 \cdot L \tag{37}$$

Donde:

L= Longitud del puente en milímetros.

Este predimensionamiento se realiza mediante las Especificaciones de la AASHTO, novena edición en el apartado 2.5.2.6.3-1, pero convirtiéndolo al sistema internacional de medidas.

6.3. Método de análisis.

Según AASHTO, 2020, se expone el método de franjas equivalentes para el diseño de las losas, que básicamente divide el tablero en franjas ya sea perpendicular o paralelas al trafico, se menciona dos métodos uno aproximado, en donde se deben de cumplir con ciertas condiciones y el método tradicional, para los puentes que no cumplen con esas condiciones.

Método aproximado: Este método aplica para puentes de losa y losas de concreto de menos de 4600 mm de longitud y que se extienden fundamentalmente en la dirección perpendicular al tráfico.

TIPO DE TABLERO	DIRECCIÓN DE LA FAJA PRIMARIA EN RELACIÓN CON EL TRÁFICO	ANCHO DE LA FAJA PRIMARIA (mm)
Hormigón:		
Colado in situ	Vuelo	1140 + 0,833X
	Paralela o perpendicular	+M: 660 + 0,55S -M: 1220 + 0,25S
Colado in situ con encofrados perdidos	Paralela o perpendicular	+M: 660 + 0,55S -M: 1220 + 0,25S
Prefabricado, postesado	Paralela o perpendicular	+M: 660 + 0,55S -M: 1220 + 0,25S
Acero: • Emparrillado abierto	Barras principales	0,007P+4,0S _b
Emparrillado con vanos total o parcialmente llenos	Barras principales	Se aplica el articulo 4.6.2.1.8
Emparrillados compuestos sin relleno en los vanos	Barras principales	Se aplica el articulo 4.6.2.1.8
Madera: • Madera laminada y encolada prefabricada • No interconectada	Paralela Perpendicular	2,0h + 760 2,0h + 1020
o Interconectada	Paralela Perpendicular	2280 <i>h</i> + 0,07 <i>L</i> 4,0 <i>h</i> + 760
Laminada y tesada	Paralela Perpendicular	0,066S + 2740 0,84S + 610
Laminada y clavada Tableros continuos o paneles interconectados	Paralela Perpendicular	2,0h + 760 4,0h + 1020
Paneles no interconectados	Paralela Perpendicular	2,0h + 760 2,0h + 1020

Figura 21: Franjas equivalentes.

Fuente: AASHTO, 2020.

Aplica también para losas cargadas paralelamente al trafico, pero la franja no deberá ser mayor a 3600 mm.

Donde:

S = Separación entre elementos de apoyo.

Para la determinación de los anchos de franja se realiza mediante las Especificaciones de la AASHTO, novena edición en el apartado 4.6.2.1.3-1, pero convirtiéndolo al sistema internacional de medidas.

Para este tipo de puentes se realizará un análisis con franja interior perpendicular al trafico, por ende se puede utilizar la tabla anterior.

6.4. Cargas

Para el metrado de las cargas se debe de analizar tanto en superestructura como la subestructura, y se deben de considerar todas las cargas que se mencionaron en la sección 4.

Carga muerta DC: Esta es la carga producto del peso de los elementos estructurales que conforman la estructura.

Para la obtención de esta carga se considera el peso de los elementos, como lo es la losa, las vigas para el caso especifico del puente tipo viga-losa, y se debe de analizar para el interior de la losa, y para la viga interior que es la más critica, una vez obtenido la carga distribuida de manera lineal; para la obtención de los momentos en la losa, se debe de considerar para un ancho tributario que corresponde a la separación entre las vigas, y como la losa esta apoyada en varios puntos entonces el momento se obtiene con la siguiente forma, según Maribel Tejerizo Fernández, 2015:

Momento negativo:

$$M = -0.125 \cdot W \cdot L^2 \tag{38}$$

Momento positivo:

$$M = 0.07 \cdot W \cdot L^2 \tag{39}$$

Donde:

W= Carga distribuida de manera lineal.

L= Separación entre apoyos.

Para la obtención de los momentos en la viga se realiza de la manera tradicional del sistema simplemente apoyado:

$$M = \frac{W \cdot L^2}{8} \tag{40}$$

Donde:

W= Carga distribuida de manera lineal.

L= Longitud del puente.

Carga muerta DW: Esta es la carga producto del peso de los elementos no estructurales que conforman la estructura, entre ellos barandas, superficies de ruedo; en este caso se obtiene el momento al igual que la carga anterior.

Carga viva LL: Para este estado de carga se contempla el camión de diseño, que según AASHTO, 2020, es el HL-93, a partir del análisis se debe colocar las cargas en las posiciones más desfavorables, donde se genera la mayor carga posible, donde se puede hacer uso de las lineas de influencia y evitar así someter la estructura a la infinidad de posiciones de carga.

El teorema de Barré, ayuda a determinar la posición más desfavorable que produce el máximo momento para losas cargadas en dirección paralela al tráfico, es aquella en la cual la carga más pesada y la resultante de todas las cargas aplicadas equidistan del centro de luz.

En este caso se debe de realizar esto solamente para el diseño de la viga, para el caso de la losa se realiza mediante unas tablas que se muestran en la sección de la Especificación de la AASHTO Apéndice A4 Tabla A4-1, pero convirtiéndolo al sistema internacional de medidas.

La carga obtenida mediante el teorema de Barré debe de distribuirse por la viga, y se hace de acuerdo a la Especificaciones de la AASHTO, novena edición en el apartado 4.6.2.2.2b-1 para el momento y para el cortante se debe de realizar con 4.6.2.2.3a-1.

La carga de carril de diseño, es una carga uniforme de $0.95 \frac{ton}{m}$, distribuido en su eje longitudinal, no se debe de incrementar por el IM.

Incremento por carga dinámica IM: Este incremento se debe de dar en los efectos estáticos que estén sobre la estructura, no se verán afectadas ni la carga peatonal, ni la carga de carril de diseño.

Componente	IΜ
Juntas del tablero - Todos los Estados Límites	75%
Todos los demás componentes	
 Estado Límite de fatiga y fractura 	15%
 Todos los demás Estados Límites 	33%

Figura 22: Incremento carga dinámica.

Fuente: AASHTO, 2020.

Para realizar este incremento utiliza las Especificaciones de la AASHTO, novena edición en el apartado 3.6.2, 3.6.2.1-1, pero convirtiéndolo al sistema internacional de medidas.

Carga peatonal PL: La carga peatonal tiene un valor de $0.37 \frac{ton}{m^2}$, y se debe de aplicar en todas aquellas aceras que excedan los 60 centímetros.

Esta carga es un parámetro constante según la Especificación de la AASHTO, novena edición en el apartado 3.6.1.6, pero convirtiéndolo al sistema internacional de medidas.

Carga de viento WS: Es la carga aplicada a la superestructura, se debe de considerar la velocidad de diseño, y se realiza con la siguiente formula, para estructuras que estén por encima de los 10 metros:

$$V_{DZ} = 2.5 \cdot V_0 \cdot \frac{V_{10m}}{V_B} \cdot Ln \frac{Z}{Z_0} \tag{41}$$

Donde:

 V_{DZ} =Velocidad del viento a la altura de diseño (km/h)

 V_0 =Velocidad friccional (km/h)

 V_{10m} =Velocidad del viento a 10 metros sobre el espejo de agua (km/h), está velocidad esta definida para país y zona donde se vaya a construir el puente.

 V_B =Velocidad básica del viento, igual a 160 km/h a 10m Z=Altura a la cual se esta calculando las cargas de viento (m)

En la siguiente figura se muestran los valores para V_0 y Z_0 .

CONDICIÓN	TERRENO ABIERTO	ÁREA SUBURBANA	ÁREA URBANA
Vo (km/h)	13,2	17,6	19,3
Z_o (mm)	70	1000	2500

Figura 23: Valores de V_0 y Z_0 para distintas condiciones.

Fuente: AASHTO, 2020.

Si se cuenta con la información de la zona de emplazamiento de la estructura, se debe de utilizar la V_{DZ} que se presenta en la zona, y a la altura que estará la estructura.

A partir de la obtención de la V_{DZ} , se puede obtener la presión de viento sobre la estructura, tanto a barlovento como a sotavento.

COMPONENTE DE LA SUPERESTRUCTURA	CARGA A BARLOVENTO, MPa	CARGA A SOTAVENTO, MPa
Reticulados, columnas y arcos	0,0024	0,0012
Vigas	0,0024	NA
Grandes superfícies planas	0,0019	NA

Figura 24: Presión básica correspondiente a V_B =160km/h.

Fuente: AASHTO, 2020.

Una vez determinada la presión básica, se obtiene la presión de diseño con la siguiente formula:

$$P_D = P_B \cdot \frac{(V_{DZ})^2}{25.6} \tag{42}$$

Esta carga de viento horizontal no deberá ser menor a $0.45 \frac{ton}{m}$ en barlovento y a $0.45 \frac{ton}{m}$ en sotavento para elementos tipo viga.

La carga de viento vertical deberá de considerarse ascendente y se deberá de aplicar a un cuarto del ancho del puente a barlovento, y es un valor de $0.096 \ \frac{ton}{m^2}$, para el estado limite de Resistencia III, y de $0.048 \ \frac{ton}{m^2}$, para el estado limite de Servicio IV, solo a estos estados se les debe de aplicar esta carga.

Carga de viento WL: Es la carga de viento sobre los vehículos, se debe de representar como una carga distribuida

de 0.045 $\frac{ton}{m}$, a una altura de 1.8 metros sobre la estructura.

Inestabilidad aeroelástica: La inestabilidad aeroelástica, se deberá de considerar en el diseño de puentes y componentes estructurales que puedan ser sensibles al viento, y se verifica con la siguiente relación longitud de tramo/Ancho, si esta relación es mayor a 30, se deberá de considerar como una estructura sensible al viento.

Fuerza de frenado BR: Para la obtención de la fuerza de frenado se debe de considerar el mayor de los siguientes valores:

- 25 por ciento del peso del camión de diseño.
- 25 por ciento del peso del tándem de diseño.
- 5 por ciento del peso del camión de diseño más la carga de carril.
- 5 por ciento del peso del tándem de diseño más la carga de carril.

Además se deberá de afectar por el factor de presencia múltiple dependiendo de la cantidad de carriles con los que contará la estructura.

Número de carriles cargados	Factor de presencia múltiple, m
1	1,20
2	1,00
3	0,85
> 3	0,65

Figura 25: Factor de presencia múltiple.

Fuente: AASHTO, 2020.

Esta carga es un parámetro constante según la Especificación de la AASHTO, novena edición en el apartado 3.64.

Fuerza Sísmica EQ: Estas se deberán de tomar como solicitaciones horizontales, donde básicamente según el Lineamiento de Puentes (CFIA, 2013), se utiliza el coeficiente de aceleración, que en este caso es el coeficiente espectral para periodos cortos C_a , multiplicado por el peso tributario permanente y el factor de importancia.

Todo respecto a la fuerza sísmica se realiza bajo los mismos parámetros de la sección 5.4 del presente documento y todas las siguiente normas, Lineamientos para el diseño sismorresistente de puentes del CFIA, en las tablas 2.4-1, 3.1, 3.2, los apartados 2.6, 4.2 y también según la Especificación de la AASHTO, novena edición en el apartado 4.7.4.2,

3.4.1-1, 3.4.1-2.

6.5. Diseño de la superestructura.

6.5.1. Revisión por resistencia.

El recubrimiento según la Especificación de la AASHTO, novena edición se especifica en el apartado 5.10.1.

A partir de las combinaciones de carga seleccionadas para el proyecto en análisis, se obtiene un momento positivo y negativo para la franja interior y un momento y cortante para el diseño de la viga, y se debe de revisar por resistencia y por servicio, cumpliendo con los requerimientos de la especificación AASHTO.

Este diseño esta compuesta por la losa, las vigas principales y las vigas diafragma.

Losa.

La siguiente sección aplica tanto para el momento negativo como el positivo.

Para iniciar con el diseño, se debe de definir ciertas características de los materiales a utilizar como lo son la resistencia del concreto (f'c), fluencia del acero (fy); también retomar ciertas características como lo son el espesor de la losa, los recubrimientos que tendrá el acero.

El diseño a flexión de la losa debe de cumplir con una cuantía mínima de acero, que se debe de seleccionar entre el menor de los siguientes dos datos:

$$\rho = \frac{14}{fy} \tag{43}$$

$$\rho = \frac{0.8 \cdot \sqrt{f'c}}{fy} \tag{44}$$

A partir del valor obtenido anteriormente se obtiene el área de acero mínimo, como se muestra a continuación:

$$As = \rho \cdot b \cdot d \tag{45}$$

Se determina la altura del bloque de compresión:

$$a = \frac{As \cdot fy}{0.85 \cdot f'c \cdot b} \tag{46}$$

$$c = \frac{a}{\beta} \tag{47}$$

Para determinar β , depende de la resistencia de concreto que se este utilizando y se hace de la siguiente forma:

- Si $f'c \le 280$, se utiliza 0.85.
- Si $f'c \ge 560$, se utiliza 0.65.
- Si 280 < f'c > 560, se utiliza $0.85 \left(\frac{0.05*(fc-280)}{70}\right)$.

Se realiza siguiente verificación:

$$\frac{c}{d} \le 0.42 \tag{48}$$

Luego se realiza la verificación de los parámetros balanceados de diseño en donde se tiene lo siguiente:

$$\rho_b = 0.85 \cdot \frac{f'c}{fy} \cdot \beta \cdot \frac{6300}{6300 + fy} \tag{49}$$

El área de acero balanceada:

$$As_b = \rho_b \cdot b \cdot d \tag{50}$$

Esta sección de la armadura mínima de diseño, se realiza según la Especificación de la AASHTO, novena edición en los apartados 5.10.3.1.1, 5.10.3.2, 5.4.2.6, 5.6.3.3.

Ahora se tienen los parámetros máximos de diseño:

$$\rho_{m\acute{a}x} = 0.75 \cdot \rho_b \tag{51}$$

$$As_{m\acute{a}x} = \rho_{m\acute{a}x} \cdot b \cdot d \tag{52}$$

$$a_{m\acute{a}x} = \frac{As_{m\acute{a}x} \cdot fy}{0.85 \cdot f'c \cdot b} \tag{53}$$

$$c_{m\acute{a}x} = \frac{a_{m\acute{a}x}}{\beta} \tag{54}$$

Con estos parámetros se obtiene el momento resistente máximo:

$$Mu = \Phi \cdot As_{m\acute{a}x} \cdot fy \cdot \left(d - \frac{a_{m\acute{a}x}}{2}\right) \tag{55}$$

Una vez obtenido lo anterior se procede a determinar el área de acero para resistir el momento para el que se esta diseñando, y verificar que el acero que se coloque satisfaga esa condición.

Se realiza con las formulas dadas anteriormente planteando un a que es la altura del bloque de compresión, e iterar hasta que el error sea de menos del 10 por ciento y utilizar ese valor para determinar el área de acero de diseño.

Se debe de colocar el acero transversal a la dirección del trafico, que en este caso se debe cumplir con la siguiente condición:

$$\frac{3840}{\sqrt{L}} \le 67\tag{56}$$

Donde:

L= Longitud del puente.

Si la condición anterior se cumple entonces el acero transversal se determina de la siguiente manera, y aplica para la zona de Momento positivo, o el acero colocado en la parte inferior:

Esta verificación es según la Especificación de la AASHTO, novena edición en el apartado 5.12.2.1.

$$As_{rep} = \frac{3840}{\sqrt{L}} \cdot As_d \tag{57}$$

El acero por contracción y temperatura se determina de la siguiente forma, y aplica para la zona de Momento negativo o el acero superior:

$$As_t = \frac{\rho \cdot b \cdot h}{2} \tag{58}$$

El ρ en este caso es de 0.002, y el acero esta dividido entre 2 debido a que lleva 2 camas de acero; la separación máxima en este caso es el mínimo entre 0.45 metros y $3 \cdot d$.

Para la revisión por cortante de la losa, el concreto deberá de tener la capacidad de soportar el cortante de diseño, cumpliendo con la siguiente formula:

$$Vu \le \phi Vc \tag{59}$$

Donde:

Vu: Cortante mayorizado.

Vc: Cortante soportado por el concreto.

 $\phi: 0.75$

Para obtener el cortante soportado por el concreto, según ACI, 2015, se obtiene con la siguiente formula:

$$\phi V c = \phi(0.53 \cdot \sqrt{f'c} \cdot b \cdot d) \tag{60}$$

Se debe de cumplir la desigualdad dada anteriormente, si no es así se debe de aumentar espesor, o cambiar la resistencia del concreto.

Viga Principal.

Para obtener el acero a flexión se utilizaron las siguientes fórmulas:

$$As = \frac{0.85 \cdot f'c \cdot b \cdot a}{f_y} \tag{61}$$

Donde:

 A_s : Área de acero requerida de la viga.

a: Distancia del bloque de compresión.

b: Brazo de palanca en tensión.

f'c: Resistencia a la compresión de concreto a los 28 días.

d: Distancia del centroide de acero de tensión a la fibra extrema a compresión. f_y :Limite de fluencia del acero.

$$\frac{c}{d} = \frac{a}{\beta \cdot d} \tag{62}$$

Donde:

c: Distancia de la fibra extrema en compresión al eje neutro.

β: Relación entre la altura del bloque de compresiones y la del eje neutro.

$$\rho = \frac{As}{b \cdot d} \tag{63}$$

Donde:

 ρ : cuantía del acero determinado para la viga.

Cuando el $\frac{c}{d}$ es menor a 0.42 se considera una viga simplemente reforzada.

Para obtener el acero a cortante se deben de considerar el cortante, se procede a calcular el V_c que es la capacidad que tiene el concreto para soportar el cortante y se obtiene mediante la siguiente fórmula:

$$\phi V_c = 0.53 \cdot \sqrt{f'c} \cdot b_w \cdot d \tag{64}$$

La cuantía para cortante es la siguiente:

$$\rho = \frac{As}{b_w \cdot d} \tag{65}$$

Se calcula el área de acero para cortante:

$$A_v = A_{prop} \cdot \#ramas \tag{66}$$

El área de acero mínimo para cortante es el siguiente:

$$A_{vmin} = \frac{0.2 \cdot \sqrt{f'c} \cdot b \cdot Sep}{fy}$$
(67)

El cortante que debe de soportar el acero es el siguiente:

$$V_{acero} = V_u - V_c \tag{68}$$

La revisión para saber si el acero colocado cumple con el requerido, se realiza lo siguiente:

$$V_{resiste} = \frac{A_{colocado} \cdot fy \cdot d}{Sep_{propuesta}} \tag{69}$$

Y se debe de cumplir lo siguiente:

$$V_{acero} \le V_{resiste}$$
 (70)

6.5.2. Revisión por servicio.

Para la revisión por servicio de la estructura, se debe de obtener parámetros como el modulo de elasticidad del concreto, que se hace de la siguiente forma:

$$E_c = 15100 \cdot \sqrt{f'c} \tag{71}$$

El análisis por servicio se realiza mediante el método de la sección transformada, que según Mc Cormac, J y Brown, R, 2011, básicamente consiste en transformar toda la sección en un solo material homogéneo, es decir si es concreto reforzado se transforma el acero en concreto.

En este caso se esta tomando en cuenta el acero de refuerzo, con lo cual se esta transformando este a un área de concreto equivalente.

A partir de los módulos tanto del concreto con la formula anterior como del acero que es de 2100000 kg/cm^2 , se obtiene la relación entre módulos de elasticidad.

$$n = \frac{E_s}{E_c} \tag{72}$$

La razón modular representa cuantas veces se esfuerza el acero a partir del esfuerzo del concreto.

Esta sección de la módulos del concreto y relación entre módulos, se realiza según la Especificación de la AASHTO, novena edición en los apartados 5.4.3.2, 5.4.2.4, 5.6.7; según la norma anterior, la relación de módulos debe de dar mayor que 6.

Con esto se puede determinar el área de acero transformada que se determina de la siguiente forma:

$$As_{st} = n \cdot A \tag{73}$$

Donde:

A=Área de la varilla de acero principal utilizada.

Es necesario obtener el momento por servicio que corresponde al área tributaria del acero principal que se obtiene de la siguiente forma:

$$Ms = S \cdot M_s \tag{74}$$

Donde:

S=Separación acero principal.

 M_s = Momento de Servicio.

Se obtiene el centroide de la sección transformada, se elige el menor de los siguientes dos valores:

$$y = \frac{-A_{st} \pm \sqrt{A_{st}^2 - (2 \cdot D_{varilla} \cdot d \cdot (-A_{st}))}}{D_{varilla}}$$

$$(75)$$

Donde:

 $D_{varilla}$ = Diámetro de varilla de diseño.

y=Centroide de la sección transformada.

El esfuerzo a tensión bajo las cargas de servicio se calcula de la siguiente forma y debe de ser mayor a $0.60 \cdot fy$.

$$\frac{Ms}{y \cdot A} \tag{76}$$

Donde:

A=Área varilla diseño.

y=Centroide de la sección transformada.

Se debe de revisar la deflexión del elemento, y se realiza con la siguiente formula:

$$\Delta_{m\acute{a}x} = \frac{5 \cdot w \cdot L^4}{384 \cdot E_c \cdot I_e} \tag{77}$$

Donde:

 $I_e =$ Inercia efectiva de la sección.

Según la sección 2.5.2.6.2 de la Especificación de la AASHTO, para determinar las deflexiones se debe de realizar con la carga viva mayor entre las siguientes condiciones:

- La carga de camión de diseño, ya sea camión o tándem.
- La carga de carril de diseño.
- La sumatorio del 25 por ciento de la carga camión, más la carga de carril.

Según la Especificación de la AASHTO, 2020, en el apartado 2.5.2.6.2, se tienen los siguientes limites para las deflexiones:

- Carga vehicular en general: $\frac{L}{800}$.
- Carga vehicular y/o peatones: $\frac{L}{1000}$.
- Carga vehicular sobre voladizos: $\frac{L}{300}$.
- \blacksquare Carga vehicular y/o peatones sobre voladizos: $\frac{L}{375}$

Luego de finalizar y realizar todas las verificaciones del diseño, la distribución del acero queda de la siguiente forma.

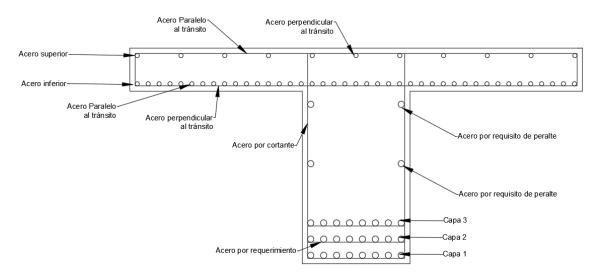


Figura 26: Vista transversal de estructura del tipo viga-losa. Fuente: Propia.

7. Diseño de la subestructura

7.1. Apoyos

Los dispositivos de apoyo según AASHTO, 2020, es un dispositivo que transfiere y reduce las fuerzas entre los elementos de la superestructura y/o la superestructura y elementos de la subestructura, permitiendo al mismo tiempo los movimientos térmicos. El dispositivo proporciona amortiguación disipando energía bajo cargas sísmicas, de frenado u otras cargas dinámicas.

En el caso especifico de los apoyos elastoméricos según ELASTEC, provee una conexión que permite controlar la interacción de las cargas y movimientos entre las vigas y los bastiones, permiten el desplazamiento normal y absorbe parcialmente la energía.

La AASHTO, 2020, en la Especificación de Diseño de Puentes, especifica el método A, que es para el diseño de apoyos elastoméricos y elastoméricos reforzados con acero, en este caso el estado limite de Servicio el esfuerzo generado por la compresión debe de cumplir con las siguientes condiciones:

$$\sigma_s \le 1,25GS_i \tag{78}$$

$$\sigma_s \le 1{,}25ksi \tag{79}$$

Donde:

 S_i = Factor de forma de una capa inferior.

El factor de forma para apoyos que tengan sección rectangular, se determina de la siguiente forma:

$$S_i = \frac{L \cdot W}{2 \cdot h \cdot (L + W)} \tag{80}$$

Donde:

L= Dimensión paralela al eje longitudinal del puente.

W= Dimensión paralela al eje transversal del puente.

h= Grosor de la capa.

Se debe de realizar un análisis por compresión del apoyo, según AASHTO, 2020, se considera la máxima como 0.09h.

La deflexión para el caso de la carga viva se considera como:

$$\delta_L = \sum \epsilon_L \cdot h \tag{81}$$

La deflexión para el caso de la carga muerta se considera como:

$$\delta_d = \sum \epsilon_d \cdot h \tag{82}$$

Donde:

 ϵ = Deformación por compresión debido a la carga en cada caso en específico y para determinarla se cuenta con las siguientes curvas.

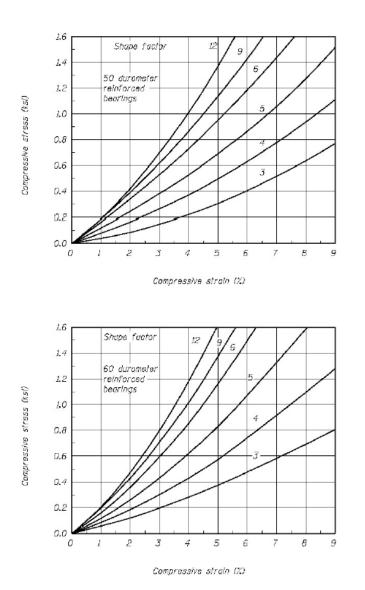


Figura 27: Curvas Esfuerzo-Deformación, dependiendo del grado de dureza y factor de forma. Fuente: AASHTO, 2020.

Para el análisis de los apoyos se utiliza la combinación Servicio, pero aplicando los factores iguales a 1.

El análisis por cortante se tomara la deformación máxima como el desplazamiento horizontal máximo de la superestructura, esto según AASHTO, 2020.

$$h \ge 2 \cdot \Delta \tag{83}$$

Donde:

h= Mínimo grosor del dispositivo.

 Δ = Deformación máxima por cortante.

Respecto a la estabilidad del apoyo, el grosor del apoyo deberá de ser menor que el menor de las siguientes condiciones:

$$\frac{L}{3} \frac{W}{3} \frac{D}{4}$$

Donde:

L= Dimensión paralela al eje longitudinal del puente.

W= Dimensión paralela al eje transversal del puente.

D= Diámetro del dispositivo.

Para el reforzamiento según el articulo 14.7.5.3.5 de AASHTO, 2020, se debe de tener un espesor mínimo de refuerzo de $\frac{1}{16}$ in, y también debe de cumplir para la combinación de servicio con lo siguiente:

$$h_s \ge \frac{3 \cdot h \cdot \sigma}{fy} \tag{84}$$

Donde:

h= Grosor de una de las capas.

 σ = Esfuerzo de compresión total.

Para la estimación del área de apoyo requerida, se puede hacer de la siguiente forma:

$$A = \frac{P}{\sigma} \tag{85}$$

Donde:

P= Cargas verticales.

 σ = Se puede tomar como el valor máximo que es según la norma es de 1.25 ksi, convertidos SI, es aproximadamente 87.88 $\frac{kg}{cm^2}$.

Para obtener L, que es la dimensión paralela al eje longitudinal del puente, se puede realizar de la siguiente forma:

$$L = \frac{A}{W} \tag{86}$$

Donde:

A= Área requerida.

L= Dimensión paralela al eje longitudinal del puente.

W= Dimensión paralela al eje transversal del puente.

Y a partir de los valor de W y L, se obtiene el área, y esta debe de ser mayor que el área requerida.

Dependiendo del grado de dureza del elastómero, se obtiene el G, que es el módulo de cortante del apoyo, a partir de este valor se obtiene el valor para el factor de forma.

$$S \ge \frac{\sigma}{1.25 \cdot G} \tag{87}$$

Luego se obtiene el grosor de las capas internas de la siguiente forma:

$$h_i \le \frac{L \cdot W}{2 \cdot S \cdot (L + W)} \tag{88}$$

Y con este valor se verifica que cumpla el factor de forma, y el mismo debe de dar mayor que el valor S obtenido anteriormente.

Para el espesor de las capas externas deben de ser menor a un 70 por ciento el valor de las capas internas, se adopta un valor que cumpla con esta condición y se verifica que satisfaga el factor de forma pero en este caso para la capa externa.

El espesor total del apoyo depende de la deformación por cortante máxima en el apoyo, y estas deformaciones según AASHTO, 2020, debe de contemplar la deformación generada por los cambios de temperatura, y por el fraguado del concreto, que producen un encogimiento de la superestructura, por lo tanto este desplazamiento horizontal se determina de la siguiente manera.

$$\Delta = \gamma_{TU} \cdot \Delta_{Temp} \cdot \Delta_{Frag} \tag{89}$$

Donde:

 Δ_{Temp} = Desplazamiento por cambios temperatura.

 Δ_{Frag} = Desplazamiento por fraguado.

Para determinar el desplazamiento por cambios de temperatura se realiza de la siguiente forma:

$$\Delta_{Temp} = L \cdot c \cdot \Delta_t \tag{90}$$

Donde:

 Δ_t = Diferencial de temperatura.

c= Coeficiente de expansión térmica del acero.

L= Dimensión paralela al eje longitudinal del puente.

Para determinar el desplazamiento por fraguado según Gabriel Andrés Bernal Granados, 2006 se realiza de la siguiente forma:

$$\Delta_{Frag} = 0.51x10^{-3} \cdot L \tag{91}$$

Donde:

L= Dimensión paralela al eje longitudinal del puente.

Y se debe de cumplir que 2 veces esta deformación debe de ser menor que el ancho del apoyo, y con este valor se obtiene la cantidad de capas interiores que debe de llevar el apoyo de la siguiente manera:

$$h = n \cdot h_i + 2 \cdot h_e \tag{92}$$

Donde:

 h_i = Espesor capas interiores.

 h_e = Espesor capas exteriores.

Además debe de cumplir que las capas internas son más de 3 capas y es un dispositivo rectangular, entonces:

$$\frac{S^2}{n} < 20 \tag{93}$$

Luego de esto se debe de realizar la verificación de que cumpla con el espesor.

Como se menciono anteriormente para el caso del refuerzo se debe de cumplir con un espesor mínimo por lo cual debe de realizarse esa verificación, utilizando como valor para h, el máximo valor de capa dentro del apoyo; este refuerzo de acero va entre cada capa de elastómero.

Una vez que se tiene el espesor del acero de refuerzo, se obtiene el espesor total del elemento que seria con la siguiente formula.

$$H = h + (n+1) \cdot h_s \tag{94}$$

Donde:

H= Espesor total.

h= Espesor sin el acero.

 h_s = Espesor acero.

Se debe de realizar las verificaciones de estabilidad y deformación explicadas anteriormente, donde se debe de obtener el esfuerzo de compresión en ksi, para poder entrar en las curvas mostradas anteriormente y así obtener el porcentaje de deformación.

Se debe de obtener el valor para las cargas verticales DC y DW sumadas, y dividirlo entre el área de apoyo, y se

7.1 Apoyos

obtiene un valor, y también se debe de obtener para toda la carga vertical e igualmente dividirlo entre el área de apoyo, y se debe de escoger el máximo de los dos valores, y con ese valor se ingresa al eje izquierdo de las curvas, se busca el factor de forma interior obtenido anteriormente y se obtiene el porcentaje de deformación.

Se debe de cumplir que este valor de deformación debe de ser menor que 0.09 para que cumpla.

7.1.1. Anclajes

En el diseño de los anclajes de los dispositivos de apoyo se debe de realizar una verificación por cortante del perno, se debe de obtener la fuerza tanto vertical como horizontal que afectará al elemento, se debe de considerar dos escenarios, uno que es el apoyo fijo donde se verá afectado tanto por la carga vertical como horizontal, y el apoyo móvil que esta solo se verá afectado por la fuerza vertical.

En el caso de la fuerza horizontal afectará solamente los pernos de los apoyos fijos por ende se puede obtener la fuerza que afecta a un perno dividiendo la fuerza horizontal entre el número de pernos que existen en el bastión que llevará el apoyo fijo, en el caso de la fuerza vertical afectará todos los pernos tanto de los fijos como de los móviles.

Según AASHTO, 2020, en la Especificación de diseño de Puentes, se establece que se debe de utilizar en simultaneo las dos fuerzas se debe utilizar el 100 por ciento de una direcciones perpendiculares y el 30 por ciento de la otra dirección perpendicular.

Luego de determinar la combinación anterior se procede a determinar la resistencia al corte de un perno y se realiza utilizando la siguiente ecuación y debe de ser mayor que el valor obtenido anteriormente para que cumpla.

$$V_u = 0.75 \cdot 0.38 \cdot A \cdot F_u \cdot pernos \tag{95}$$

Donde:

A= Diámetro del perno.

 F_u = Limite fluencia perno

Se realiza la verificación por aplastamiento en la placa que se encuentra en medio del apoyo el elemento de la superestructura.

Se parte de un espesor mínimo de placa de 0.38 milímetros, y se verifica que el aplastamiento satisfaga el valor de la combinación obtenido anteriormente.

$$R = 0.8 \cdot 2.4 \cdot d \cdot t \cdot F_{y} \cdot pernos \tag{96}$$

Donde:

R= Resistencia al aplastamiento.

d= Diámetro perno.

t= Espesor placa.

Debido a que la altura del elastómero genera un momento se debe de verificar que el perno tenga capacidad flexionante por lo cual se debe de la distancia que el perno es capaz de soportar sin ceder.

Se debe de obtener la inercia del perno, para luego obtener el momento resistente del perno con la siguiente ecuación:

$$M = 0.9 \cdot \frac{F_y \cdot I}{r} \tag{97}$$

Donde:

I= Inercia del perno.

r= Radio del perno.

Se obtiene el cortante que soporta cada perno y este viene a dividir el valor de momento obtenido anteriormente para así poder conseguir el brazo de palanca máximo; y la altura del elastómero debe de ser menor que este valor de brazo máximo, si no es así se debe de cambiar el espesor del apoyo.

También se debe de verificar la resistencia a la rotura del concreto por lo cual se define una longitud de anclaje del perno y una distancia del perno al borde del bastión, y se obtienen los siguientes parámetros:

$$A_v = 4.5 \cdot C_a^2 \tag{98}$$

Donde:

 C_a = Distancia del perno al borde del bastión.

$$A_{vc} = 1.5 \cdot C_a \cdot (3 \cdot C_a + b) \tag{99}$$

Donde:

 C_a = Distancia del perno al borde del bastión.

b= Distancia entre pernos en el perpendicularmente al eje longitudinal del puente.

$$V = 1.86 \cdot \frac{h_{ef}}{d}^{0}, 2 \cdot \sqrt{d} \cdot \sqrt{f'c} \cdot C_a$$
 (100)

Donde:

 h_{ef} = Anclaje perno.

d= Diámetro del perno.

Y finalmente la resistencia al a rotura se obtiene de la siguiente manera:

$$V_r = 0.75 \cdot \frac{A_{vc}}{A_v} \cdot V \tag{101}$$

La revisión por la resistencia al arranque de los pernos sometidos a cortante se realiza de la siguiente manera:

$$A_n = 9 \cdot h_{ef}^2 \tag{102}$$

$$A_n c = (C_a + 1.5 \cdot h_{ef}) \cdot (3 \cdot h_{ef} + b) \tag{103}$$

$$N_b = 10.2 \cdot \sqrt{f'c} \cdot h_{ef}^1, 5 \tag{104}$$

$$N = \frac{A_n c}{A_n} \cdot N_b \tag{105}$$

Donde:

 $A_n =$ Área proyectada real del cono falla.

 A_c = Área proyectada del cono falla.

$$V_c = 0.75 \cdot k \cdot N \tag{106}$$

Donde:

k= Si h_{ef} i6.5 entonces k=1, si no es 2.

De los valores anteriores el mínimo debe de ser mayor que la fuerza que afecta el anclaje para que cumpla.

7.2. Bastiones

Son estructuras que brindan un soporte extremo al puente, además de soportar la carga de la superestructura, también se encargan de resistir las cargas laterales generadas por el empuje de suelo. Así como evitar el volcamiento y deslizamiento de este. Los cuales deben diseñarse de acuerdo a la sección 11.6 AASHTO LRFD.

Según los Lineamientos de Puentes del CFIA, 2013, se debe asegurar que el bastión pueda resistir fuerzas sísmicas y empujes de suelo (activos y pasivos). Para garantizar los efectos anteriores, no solo es necesario diseñar por resistencia del elemento, sino también garantizar un factor de seguridad aceptable al vuelco y al deslizamiento, así como la presión de contacto de la estructura y el suelo no causen su falla, ni provoquen desplazamientos excesivos.

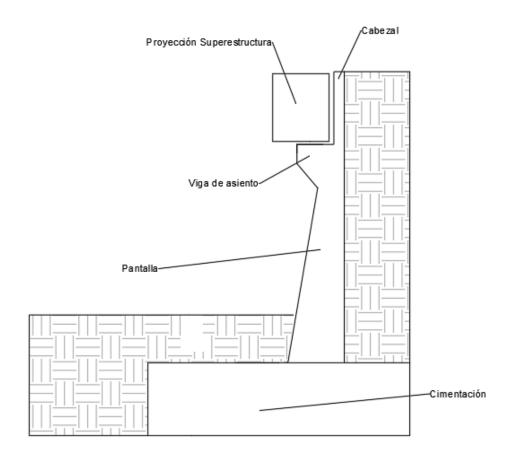


Figura 28: Partes del Bastión. Fuente: Propia.

7.2.1. Geometría

Para iniciar con proceso de diseño, se debe seleccionar el tipo de bastión que se utilizará de acuerdo con las condiciones del sitio, las consideraciones de costo y la geometría de la superestructura.

La estabilidad del bastión depende de la altura, ya que a medida que el bastión aumenta su altura, aumenta su volumen. En la Figura 29 se muestra un esquema con la dimensiones del bastión.

Donde:

D= Altura del relleno.

H= Altura del relleno.

B= Ancho del cimiento.

h= Altura del cimiento.

d= Asiento del puente.

c= Grosor mayor de pantalla.

a= Longitud de punta.

e= Base del parapeto.

H1= Altura del parapeto.

H2= Altura de pantalla.

b= Longitud de talón.

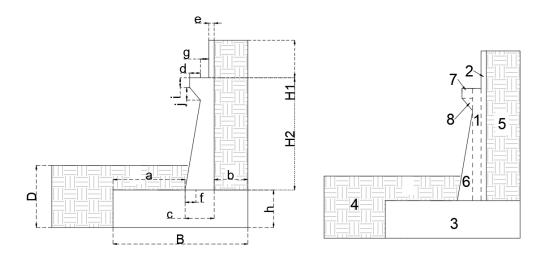


Figura 29: Dimensiones del Bastión Fuente: Propia.

7.2.2. Predimensionamiento

Para el predimensionamiento del bastión, se recomiendan dimensiones iniciales para comenzar el cálculo del diseño del bastión, estas dimensiones se definen en función de la altura del bastión y en el ancho del cimiento:

■ Ancho del cimiento: $B = 0.7 \cdot H$

■ Altura del cimiento: $h = \frac{H}{10}$

■ Longitud de punta: $a = \frac{B}{3}$

■ Altura del parapeto: H1= Peralte de superestructura más el dispositivo de apoyo.

■ Altura de pantalla: H2= H-h-H1

■ Longitud del talón: b=B-a-c

Para la Longitud de Asiento Mínima, se calcula según lo establecido en el articulo 4.5 de los Lineamientos para el Diseño Sismoresistente de Puentes, CFIA, 2013.

$$N = I \cdot (305 + 2.5 \cdot L) \cdot (1 + 0.000125 \cdot S^2) \tag{107}$$

Donde:

N= Longitud de asiento mínimo (m).

I= Factor de importancia (Tabla 3.1).

L= Longitud de la superestructura (m).

S= Ángulo de sesgo del apoyo medio a partir de una línea normal al claro (grados).

7.2.3. Cargas

Con respecto al metrado de las cargas del bastión, se analizan las cargas verticales y las cargas horizontales que afectan al bastión. En la siguiente figura se muestran las cargas consideradas en el diseño del bastión.

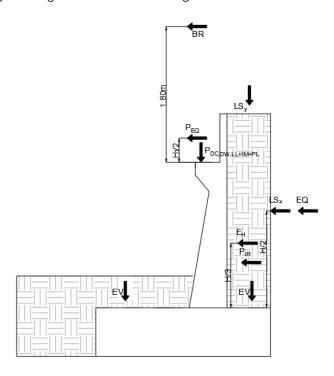


Figura 30: Cargas consideradas en el diseño del bastión Fuente: Propia.

Cargas Verticales

A continuación se enumeran las cargas verticales que están presentes en el diseño de bastiones de concreto.

Peso propio del bastión DC: Esta carga es producto del peso propio de las partes que conforman el bastión. Se calcula de la siguiente forma:

$$DC = V \cdot \gamma_c \tag{108}$$

Donde:

V= Volumen del elemento del bastión (m^2) .

 γ_c = Peso especifico del concreto $(\frac{kg}{m^3})$.

Peso del suelo EV: Esta carga es la suma del peso de todas las del terreno que afectan al bastión. De acuerdo con el siguiente calculo:

$$EV = V \cdot \gamma_s \tag{109}$$

Donde:

V= Volumen del suelo que afecta al bastión (m^2) .

 γ_s = Peso especifico del suelo (kg/m^3) .

- Peso propio de la superestructura DC: Este valor se obtiene del cálculo realizado previamente en las Secciones
 5.4 y 6.4.
- Peso propio del asfalto DW: Calculado previamente realizado en las Secciones 5.4 y 6.4.
- Carga viva en la superestructura LL+IM: Cálculo realizado previamente en las Secciones 5.4 y 6.4.
- Sobrecarga por carga viva del suelo LS: Su propósito es integrar el efecto que producen los vehículos que circulan sobre la superficie de relleno. Donde se genera una carga que al mismo tiempo ocasiona un empuje o volcamiento, cuando el vehículo se desplaza a una distancia menor o igual a la mitad de la altura del muro se debe de considerar la carga. Por lo tanto, la formula busca definir que la carga aplicada por el vehículo es equivalente a la carga aplicada por la capa del suelo. La presión uniforme por carga viva se calcula de la siguiente manera:

$$P = L \cdot \gamma_s \cdot h_{eq} \tag{110}$$

El empuje total por carga viva se calcula con la siguiente expresión:

$$LS = P \cdot H \tag{111}$$

Donde:

L= Longitud del terreno equivalente (m).

 γ_s = Peso especifico del suelo (kg/m^3) .

 h_{eq} = Altura equivalente debido a carga vehicular (m).

H= Altura total del muro (m).

Las alturas del suelo equivalente h_{eq} para cargas sobre bastiones y muros se toma de los Cuadros 3 y 4 respectivamente. En caso de que la altura a utilizar no se encuentre directamente en la tabla, se debe interpolar.

Cuadro 3: Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico

Altura del Bastión (m)	h_{eq} (m)
1.5	1.2
3.0	0.9
>6.0	0.6

Fuente: AASHTO, 2020

Cuadro 4: Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico

	h_{eq} (m)	
Altura del muro (m)	Distancia desde el respaldo del muro al borde del tráfico	
	0.0 (m)	>0.3 (m)
1.5	1.5	0.6
3.0	1.0	0.6
>6.0	0.6	0.6

Fuente: AASHTO, 2020

Cargas Horizontales

A continuación se enumeran las cargas horizontales que están presentes en el diseño de bastiones de concreto.

Sobrecarga por carga viva del suelo LS: Al igual que en la carga vertical, esta formula busca definir que la carga viva aplicada por el vehículo es equivalente a la carga aplicada por la capa del suelo, esta carga se aplica a una distancia menor o igual a la mitad de la altura del muro. La presión uniforme por carga viva se calcula de la siguiente manera:

$$P = k \cdot \gamma_s \cdot h_{eq} \tag{112}$$

El empuje total por carga viva se calcula con la siguiente expresión:

$$LS = P \cdot H \tag{113}$$

Donde:

k= Coeficiente de presión del suelo.

 γ_s = Peso especifico del suelo (kg/m^3) .

 h_{eq} = Altura equivalente debido a carga vehicular (m).

H= Altura total del muro (m).

Las alturas del suelo equivalente h_{eq} para cargas sobre bastiones y muros se toma de los Cuadros 3 y 4 respectivamente. En caso de que la altura a utilizar no se encuentre directamente en la tabla, se debe interpolar.

Cuadro 5: Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico

Altura del Bastión (m)	h_{eq} (m)
1.5	1.2
3.0	0.9
>6.0	0.6

Fuente: AASHTO, 2020

Cuadro 6: Altura de suelo equivalente para carga vehicular sobre bastiones perpendiculares al tráfico

	h_{eq} (m)	
Altura del muro (m)	Distancia desde el respaldo del muro al borde del tráfico	
	0.0 (m)	>0.3 (m)
1.5	1.5	0.6
3.0	1.0	0.6
>6.0	0.6	0.6

Fuente: AASHTO, 2020

■ Empuje lateral del suelo EH: Para un diseño óptimo del bastión se debe calcular las presiones del suelo, de acuerdo a la mecánica de suelos. Se supone que el empuje lateral del suelo es proporcional a la altura de suelo, y se calcula de la siguiente forma:

$$EH = k \cdot \gamma_s \cdot H \tag{114}$$

Donde:

EH= Empuje lateral del suelo (kg/ m^2).

k= Coeficiente de empuje lateral, k_o para muros que no se deforman, k_a para muros que se deforman lo suficiente para alcanzar la condición mínima activa y k_p para muros que se deforman lo suficiente para alcanzar una condición pasiva. γ_s = Peso especifico del suelo (kg/m^3) .

H = Altura del muro (m).

Se asume que la carga del suelo lateral resultante debido al peso del relleno actúa a una altura igual a H/3 desde la parte inferior del muro, donde H la altura total del muro.

Empuje lateral en reposo, k_o

Este es aplicado cuando el muro esta en reposo y no se permite que se mueva en lo absoluto, ya se separándose del suelo, es decir no hay deformación lateral.

Para suelo normalmente consolidados, el coeficiente de empuje lateral en reposo se puede tomar como:

$$k_o = 1 - \sin \phi_f' \tag{115}$$

Para suelos sobreconsolidados, el coeficiente de empuje lateral del suelo se puede expresar como:

$$k_o = (1 - \sin \phi_f') OCR^{\sin \phi_f'} \tag{116}$$

Donde:

 $k_o =$ Coeficiente de empuje lateral del suelo en reposo.

 $\sin \phi'_f = \text{Ángulo efectivo de fricción del suelo.}$

OCR= Relación de sobreconsolidación.

Empuje lateral activo, k_a

EL coeficiente de empuje lateral activo se utiliza en casos en los cuales el muro se puede inclinar por el suelo retenido, por lo cual existe un desplazamiento del muro en la parte superior.

El coeficiente de empuje lateral activo utilizando el método de Coulomb,se obtiene con la siguiente expresión:

$$k_a = \frac{sen^2(\phi + \phi'^f)}{\Gamma[(sen^2(\theta)sen(\theta - \delta)]}$$
(117)

Con:

$$\Gamma = \left[1 + \sqrt{\frac{sen(\phi'^{f} + \theta)sen(\phi'^{f} - \beta)}{sen(\theta - \delta)sen(\theta + \beta)}}\right]^{2}$$
(118)

Donde:

 δ = Ángulo de fricción entre el relleno y la pared tomado como se especifica en la Tabla 3.11.5.3-1 AASHTO, 2020 (grados).

 β = Ángulo del relleno con la horizontal como se muestra en la figura (grados).

 θ = Ángulo de la cara posterior de la pared del muro con la horizontal como se presenta en la figura (grados).

 $\phi'_f = \text{Ángulo efectivo de fricción interna (grados)}.$

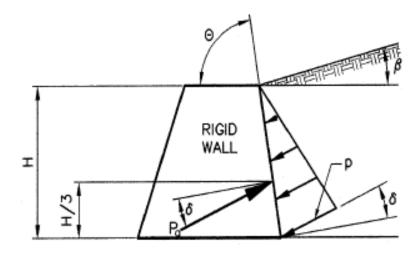


Figura 31: Notación utilizada para el cálculo del empuje lateral activo Fuente: AASHTO, 2020

El empuje lateral activo del suelo se calcula con la siguiente expresión:

$$EH = \frac{1}{2} \cdot k_a \cdot \gamma_s \cdot H^2 \tag{119}$$

Donde:

EH= Empuje lateral activo del suelo (kg/m^2) .

 k_a = Coeficiente de empuje lateral activo.

 γ_s = Peso especifico del suelo (kg/m^3) .

H= Altura del muro (m).

Empuje lateral pasivo k_p

Este valor se emplea cuando el muro ejerce una presión sobre el suelo, se calcula con la siguiente expresión:

$$k_p = R \cdot k_p' \tag{120}$$

Donde:

 k_p = Coeficiente de empuje lateral pasivo.

R= Factor de reducción del coeficiente de empuje lateral pasivo.

 k'_n = Coeficiente intermedio de empuje lateral pasivo del suelo, este se obtiene de las siguientes figuras.

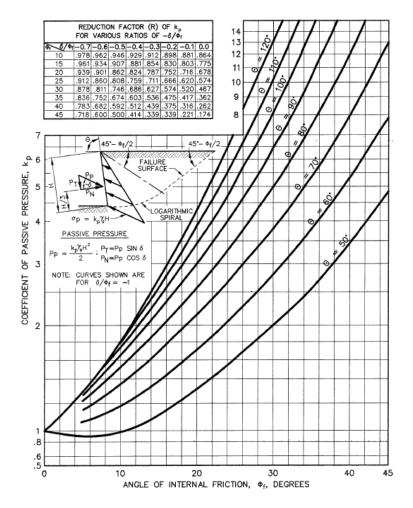


Figura 32: Procedimiento para el cálculo del empuje lateral pasivo del suelo en muros verticales e inclinados con relleno de superficie horizontal

Fuente: AASHTO, 2020



Figura 33: Procedimiento para el cálculo del empuje lateral pasivo del suelo para muros verticales con relleno de superficie inclinada

Fuente: AASHTO, 2020

Para suelos no cohesivos, el empuje lateral pasivo del suelo se calcula con la mediante la siguiente ecuación:

$$EH = \frac{1}{2} \cdot k_p \cdot \gamma_s \cdot H^2 \tag{121}$$

Para suelos cohesivos, el calculo del empuje lateral pasivo del suelo se realiza mediante la ecuación:

$$EH = k_p \cdot \gamma_s \cdot H + 2c\sqrt{k_p} \tag{122}$$

Donde:

EH= Empuje lateral pasivo del suelo (kg/ m^2).

 k_p = Coeficiente de empuje lateral pasivo.

 γ_s v Peso especifico del suelo (kg/m^3) .

H= Altura del muro (m).

c= Cohesión del suelo (kg/m^2) .

■ Fuerzas de sismo EQ:

Presión del terreno incluyendo la acción sísmica Para obtener las fuerzas generadas por el sismo se emplea el procedimiento brindado por el método Mononobe Okabe, este desarrolla una presión de fluido estática equivalente para simular las presión sísmica del suelo en el muro.

Según AASHTO, 2020 método Mononobe Okabe se considerará aceptable para determinar la presión sísmica activa del suelo solo bajo las siguientes condiciones:

- El material detrás del muro sea razonablemente aproximado a un material uniforme, formado por suelos no cohesionados dentro de la zona de la cuña, definida por 3H: 1V, en el talón del muro.
- El relleno no está saturado y está lo suficientemente suelto como para que pueda licuarse durante la agitación.
- La combinación de la aceleración máxima del suelo y el ángulo interno no excede el ángulo de fricción del suelo detrás del muro, como se especifica en la siguiente ecuación:

$$\phi \ge i + \theta_{MO} = i + \arctan(\frac{k_h}{1 - k_v}) \tag{123}$$

Donde:

 ϕ = Ángulo de fricción del relleno del muro.(grados)

i= Ángulo de la pendiente del relleno (grados).

 k_h = Coeficiente de aceleración horizontal.

 k_v = Coeficiente de la aceleración vertical.

Para el cálculo de presión del terreno considerando el efecto sísmico, k_h se calcula en función de la aceleración máxima del suelo. Por el contrario k_v , según AASHTO, 2020, tiene un valor igual a cero.

El valor de k_h depende del k_ho , que se obtiene de la siguiente expresión:

$$k_h = 0.5 \cdot k_h o \tag{124}$$

Con:

$$k_h o = Ca \cdot F_{pqa} \tag{125}$$

Donde:

Ca= Coeficiente sísmico de aceleración.

 F_{pga} = Coeficiente de sitio.

El coeficiente sísmico de presión del suelo, se obtiene de acuerdo a la siguiente expresión:

$$k_{AE} = \frac{\cos^2(\phi - \theta_{MO} - \beta)}{\cos(\theta_{MO})\cos^2(\beta)\cos(\delta + \beta + \theta_{MO})} \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta_{MO} - i)}{\cos(\delta + \beta + \theta_{MO})\cos(i - \beta)}}\right]^{-2}$$
(126)

Donde:

i= Ángulo del suelo de relleno con la horizontal (grados).

 β = Ángulo de inclinación del muro con la vertical (grados).

Una vez obtenido el coeficiente sísmico de presión del suelo, se utiliza la siguiente ecuación para el calculo de la presión incluyendo el efecto sísmico:

$$P_{AE} = 0.5 \cdot \gamma_s \cdot H^2 \cdot k_{AE} \tag{127}$$

Donde:

 $k_A E =$ Coeficiente de presión activa sísmica del suelo.

 γ_s = Peso especifico del suelo (kg/m^3) .

H= Altura del muro (m).

Fuerza inercial del estribo P_{IR}

$$P_{IR} = k_h \cdot (W_W + W_S) \tag{128}$$

Donde:

 k_h = Coeficiente aceleración horizontal.

 W_W = Peso del muro (Ton).

 W_S = Peso del suelo sobre el muro (Ton).

Efecto combinado de P_{IR} y P_{AE}

La fuerza total a aplicarse en el bastión considerando la presión sísmica y el suelo, debe ser un efecto combinado de P_{IR} y P_{AE} . Tomando el mayor resultado de:

$$100\% \cdot P_{AE} + 50\% \cdot P_{IR} \tag{129}$$

$$50\% \cdot P_{AE} \ge EH + 100\% \cdot P_{IR} \tag{130}$$

$$EQ_{terr} = P_{AE} - EH \tag{131}$$

Carga sísmica por superestructura P_{EQ}

$$P_{EO} = P_{DC+DW} \cdot I \cdot Ca \tag{132}$$

Donde:

 P_{EQ} = Carga sísmica por superestructura.

 $P_{DC+DW}=$ Carga muerta de superestructura más la carga de asfalto de la superestructura.

I= Factor de importancia.

Ca= Coeficiente sísmico de aceleración.

■ Fuerzas de frenado BR: Este valor se obtiene del cálculo realizado previamente en las Secciones 5.4 y 6.4.

7.2.4. Estados límites, factores de carga y combinaciones de cargas para bastiones

Estados límites aplicables y combinaciones de cargas

- Estado límite de Resistencia: Se debe de investigar el estado límite de resistencia, para dimensionar el bastión de manera que se garantice su estabilidad contra las fallas de volcamiento, deslizamiento y presiones en la base. En este caso utilizara la combinación de carga de resistencia I especificada en la Tabla 3.4.1-1 AASHTO, 2020.
- Estado límite de Servicio: Se debe estudiar el estado limite de servicio para observar si ocurren desplazamientos verticales y laterales excesivos, verificando su estabilidad. Se utiliza la combinación de carga de Servicio I especificada en la Tabla 3.4.1-1 AASHTO, 2020.
- Estado límite de Evento Extremo: Se debe investigar el estado límite de evento extremo, en donde se aplica la combinación de carga Extremo I, que se obtiene de la Tabla 3.4.1-1 AASHTO, 2020.

Factores de resistencia

Los factores de resistencia para muros y bastiones se obtienen de la sección 11.5.7 AASHTO, 2020. Para el estado límite de servicio y evento extremo el factor de resistencia es igual a 1.0.

En el caso de muros, el valor de factor de resistencia para el estado limite de resistencia se obtiene de la siguiente figura.

Wall-	Type and Condition	Resistance Factor	
Nongravity Cantilevered and Anchored Walls			
Axial compressive resistance of vertical elements Article 10.5 applies			
Passive resistance of vertical elements		0.75	
Pullout resistance of anchors (1)	 Cohesionless (gramılar) soils 	0.65 (I)	
	 Cohesive soils 	0.70 (1)	
	Rock	0.50 (1)	
Pullout resistance of anchors (2)	 Where proof tests are conducted 	1.0 @	
Tensile resistance of anchor	 Mild steel (e.g., ASTM A615 bars) 	0.90 @	
tendon	 High-strength steel (e.g., ASTM A722 	0.80 (0)	
Overall stability, soil failure	bars)	Article 11.6.3.7 applies	
Flexural capacity of vertical elemen	ats.	0.90	
	Sabilized Earth Walls, Gravity Walls, and Semigrav		
Bearing resistance	Gravity and semigravity walls	0.55	
Dearing remaining	Gravity and semigravity walls MSE walls	0.55	
Sliding	- MANE WALLS	1.0	
Tensile resistance of metallic	Strip reinforcements (6)	0.75	
reinforcement and connectors	Grid reinforcements (f)(5)	0.65	
Tensile resistance of geosynthetic	Geotestile and geogrid reinforcements	0.80	
reinforcement and connectors	Geostrip reinforcements	0.55	
Pullout resistance of metallic	 Steel strip reinforcements 	0.90	
reinforcement	 Steel grid reinforcements 	0.90	
	_	0.70	
Pullout resistance of geosynthetic reinforcement	 Geotextiles and geogrids 	0.70 0.70	
Service Limit, for soil failure	Geostrip reinforcements	V./V	
using stiffness method		1.0	
Overall and compound stability,		Article 11.6.3.7 applies	
soil failure		Paracie 11.0.3.7 appues	
Prefabricated Modular Walls			
Bearing		Article 10.5 applies	
Sliding		Article 10.5 applies	
Passive resistance		Article 10.5 applies	
Overall stability, soil failure		Article 11.6.3.7 applies	
	Soil Nail Walls (6)		
Lateral sliding			
Overall and Compound stability,		Article 11.6.3.7 applies	
soil failure	<u> </u>	7,000	
Tensile resistance of nail tendon	Mild steel bars (Grade 75)	0.75	
	High resistance bars (Grades 95 and 150)	0.65	
Pullout resistance of nail		0.65	
Facing flexure	Initial and final facing	0.90	
Facing punching shear	Initial and final facing	0.90	
Tensile resistance of headed stud	A307 steel bolt (7)	0.70	
	A325 steel bolt	0.80	

Figura 34: Factores de resistencias para muros de contención, estado límite de resistencia Fuente: AASHTO, 2020

7.2.5. Revisión de la estabilidad del bastión

Volcamiento

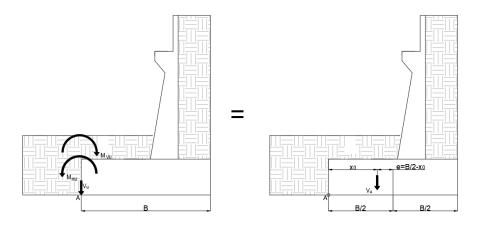


Figura 35: Bastión sometido a vuelco Fuente: Propio.

■ Estado límite de resistencia: En la sección 11.6.3.3 AASHTO, 2020, indica que para el estado límite de resistencia

la resultante de la fuerza debe tener una excentricidad permitida con referencia al punto de donde se realiza el chequeo al vuelco. Esta debe estar ubicada dentro de los dos tercios de la mitad de la base $(e \le \frac{B}{3})$, en suelos rocosos debe de estar dentro de nueve decimos de la mitad de la base $(e \le \frac{9}{20}B)$.

Estado límite de evento extremo: En la sección 11.6.5.1 AASTHO, indica que para el estado límite de evento extremo la ubicación de la resultante de la fuerza estará dentro de los dos tercios de la mitad de la base $(e \le \frac{B}{3})$ para $\gamma_{EQ} = 0$ y dentro de ocho décimas de la mitad de la base $(e \le \frac{2}{5}B)$ para $\gamma_{EQ} = 1$. Para los valores de $0 \le \gamma_{EQ} \le 1$ la ubicación de la resultante se obtendrá por interpolación lineal entre los valores dados. Donde:

 γ_{EQ} : factor de carga aplicada a la carga viva simultáneamente con las cargas sísmicas.

Para el cálculo del volcamiento se utilizan las siguientes ecuaciones:

$$x_o = \frac{M_{Vu} - M_{Hu}}{V_u} {133}$$

Con:

$$e = \frac{B}{2} - x_o \tag{134}$$

Donde:

 x_o = Distancia entre la linea de centro del bastión y el punto de vuelco.

 M_{Vu} = Momento estabilizado por cargas verticales.

 M_{Hu} = Momento estabilizado por cargas horizontales.

 V_u = Cargas verticales.

e= Excentricidad.

B= Ancho del cimiento.

Deslizamiento

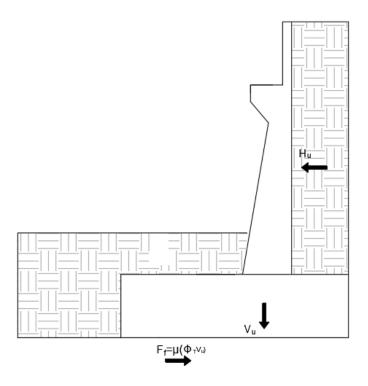


Figura 36: Bastión sometido a fuerzas de deslizamiento Fuente: Propio.

Si los cimientos soportan cargas horizontales o inclinada y/o esta fundadas sobre una pendiente, se deberá investigar la falla por deslizamiento según el Articulo 10.6.3.4 (AASHTO, 2020). La estabilidad ante el deslizamiento se realizara en la base del bastión y se aplicaran los requisitos que se mencionan a continuación, se usará los Estados Límites de Resistencia I y Evento Extremo I.

La resistencia factorizada contra la falla por deslizamiento se puede tomar como:

$$R_R = \varphi R_n = \varphi_T R_T + \varphi_e p R_e p \tag{135}$$

Donde:

 R_n = Resistencia nominal al deslizamiento contra falla por deslizamiento.

 φ_T = Factor de resistencia para resistencia al corte entre el suelo y la fundación.

 R_T = Resistencia nominal al deslizamiento entre el suelo y la fundación.

 $\varphi_{ep}=$ Factor de resistencia para resistencia pasiva.

 $R_{ep}=$ Resistencia nominal pasiva del suelo disponible durante la totalidad de la vida de diseño de la estructura.

Para el estado límite de resistencia, los valores φ_T y φ_{ep} , se obtienen de la Figura 38 , mientras que para el estado límite de evento extremo el valor de estos dos factores sera igual a 1.

Si el suelo debajo de cimiento no es cohesivo, la resistencia nominal al deslizamiento entre el suelo y la fundación se tomará como:

$$R_T = CV \cdot tan(\phi_f) \tag{136}$$

C= 0.8 para zapatas de concreto prefabricado y 1.0 para concreto colado contra el suelo.

V= Fuerza Vertical total.

 ϕ_f = Ángulo de fricción interna de suelo drenado (grados).

Según AASHTO, 2020, para los cimientos apoyados sobre arcillas, la resistencia al deslizamiento puede tomarse como el menor valor entre:

- La cohesión de la arcilla.
- La mitad de la tensión normal en la interfaz entre la zapata y el suelo, como se muestra en la Figura 37, para los muros de contención.

A continuación se muestra la nomenclatura se aplica en la Figura 37.

 q_s = Resistencia al corte unitario, igual a S_u o 0.5 σ_V' , cualquiera que sea el valor mas pequeño.

 R_T = Resistencia nominal al deslizamiento entre el suelo y la fundación, expresada como el área sombreada en el diagrama q_s .

 S_u = Resistencia al corte en el material no drenado.

 $\sigma_V'=$ Esfuerzo vertical efectivo.

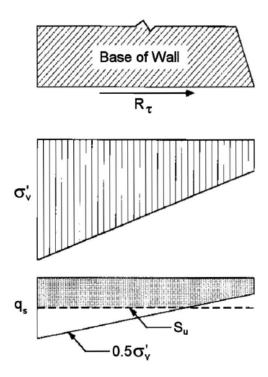


Figura 37: Procedimiento para estimar la resistencia nominal al deslizamiento de muros en arcilla Fuente: AASHTO, 2020

Method/Soil/Condition		Resistance Factor	
		Theoretical method (Munfakh et al., 2001), in clay	0.50
		Theoretical method (Munfakh et al., 2001), in sand, using CPT	0.50
Bearing Resistance		Theoretical method (Munfakh et al., 2001), in sand, using SPT	0.45
Dearing Resistance	Фъ	Semi-empirical methods (Meyerhof, 1957), all soils	0.45
		Footings on rock	0.45
		Plate Load Test	0.55
		Precast concrete placed on sand	0.90
Sliding ϕ^{τ}		Cast-in-Place Concrete on sand	0.80
	φτ	Cast-in-Place or precast Concrete on Clay	0.85
		Soil on soil	0.90
	Фер	Passive earth pressure component of sliding resistance	0.50

Figura 38: Factores de resistencia en estado límite de resistencia Fuente: AASHTO, 2020

Cálculo del diente de concreto

Cuando el estado limite de resistencia o el estado limite de evento extremo no es satisfactorio, se procede a proporcionar un diente de concreto haciendo uso de la resistencia pasiva.

Se debe obtener de las figuras 32 y 33, el coeficiente de empuje pasivo k_p , dependiendo de los valores ϕ_f y θ , y el factor de reducción.

Seguidamente se realiza el siguiente cálculo:

$$k_p = R \cdot k_{p(\delta + \phi)} \tag{137}$$

R= Factor de reducción.

 $kp(\delta + \phi)$ = coeficiente de empuje pasivo.

La resistencia pasiva se obtiene mediante la siguiente expresión:

$$R_{ep} = \frac{1}{2} (k_p \cdot \gamma_s \cdot D + k_p \cdot \gamma_s \cdot (D+h)) \cdot h$$
(138)

Donde:

 k_p = Coeficiente de empuje lateral.

 $\gamma_s =$ Peso especifico del suelo.

D= Altura de relleno.

h= altura del diente de concreto.

Una vez obtenida la resistencia pasiva, se procede a calcular la resistencia factorizada contra la falla por deslizamiento, de acuerdo con la siguiente expresión:

$$R_R = \varphi_T R_T + \varphi_e p R_e p \tag{139}$$

Donde:

 φ_T = Factor de resistencia para resistencia al corte entre el suelo y la fundación.

 R_T = Resistencia nominal al deslizamiento entre el suelo y la fundación.

 $\varphi_{ep}=$ Factor de resistencia para resistencia pasiva.

 $R_{ep}=$ Resistencia nominal pasiva del suelo disponible durante la totalidad de la vida de diseño de la estructura.

Presiones actuantes en la base del estribo

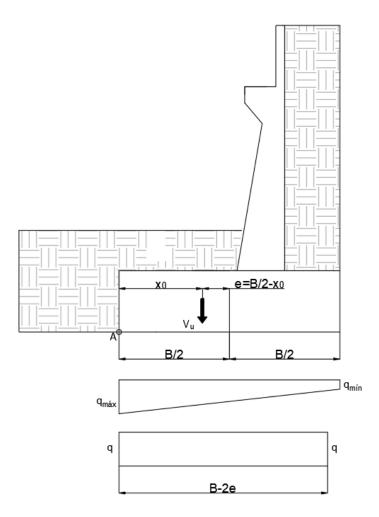


Figura 39: Presiones en la base del bastión Fuente: Propio.

Para obtener las presiones actuantes en la base del bastión, se utiliza los siguientes estados limites: Resistencia, Evento Extremo y Servicio. Y para cada una de ellas se debe calcular la capacidad de carga factorada del terreno q_R según el Articulo 10.6.3.1.1 (AASHTO, 2020), mediante la siguiente expresión:

$$q_R = \varphi_b \cdot q_n \tag{140}$$

Con:

$$q_n = FS \cdot q_{adm} \tag{141}$$

Donde:

 φ_b = Factor de resistencia.

 q_n = Capacidad de carga nominal.

FS= Factor de seguridad.

 $q_{adm} =$ Capacidad admisible.

Para el cálculo de estas mismas presiones, se debe hallar la excentricidad (e) sobre el punto central de la base del cimiento, por medio de la siguiente ecuación:

$$e = \frac{B}{2} - x_o \tag{142}$$

Con:

$$x_o = \frac{M_{Vu} - M_{Hu}}{V_u} \tag{143}$$

Por último se calculan las presiones (q) mediante la siguiente ecuación:

$$q = \frac{V_u}{B - 2e} \tag{144}$$

Donde:

 x_o = Distancia entre la linea de centro del bastión y el punto de vuelco.

 M_{Vu} = Momento estabilizado por cargas verticales.

 M_{Hu} = Momento estabilizado por cargas horizontales.

 V_u = Cargas verticales.

e= Excentricidad, cuando la excentricidad es negativa se usa el ancho real B para el calculo de las presiones.

B= Ancho del cimiento.

7.2.6. Diseño estructural del bastión

Diseño de pantalla

1. Acero por flexión.

Se calcula el momento de diseño en la cara vertical de la pantalla del estribo, para los estados límites de Resistencia I y Evento Extremo I, de acuerdo con la siguiente ecuación:

$$M_U = n[\gamma_{LS} \cdot M_{LS} + \gamma_{EH} \cdot M_{EH} + \gamma_{BR} \cdot M_{BR}] \tag{145}$$

Donde: n= Factor de modificación de las cargas.

 $\gamma_{LS}=$ Factor de carga para sobrecarga viva del terreno.

 M_{LS} = Momento último para sobrecarga viva del terreno.

 γ_{EH} = Factor de carga para empuje lateral del terreno.

 M_{EH} = Momento último para empuje lateral del terreno.

 γ_{BR} = Factor de carga para fuerza de frenado.

 $M_{BR} =$ Momento último para fuerza de frenado.

El acero por flexión se calcula de la siguiente forma:

$$A_s = \frac{M_U}{\phi_f \cdot f_y \cdot \frac{d-a}{2}} \tag{146}$$

Donde:

 M_U = Momento ultimo actuante.

 A_s = Área del acero longitudinal.

 ϕ_f = Factor de resistencia.

 f_y = Esfuerzo de fluencia del acero.

 f_c' = Resistencia del concreto.

a= Profundidad del bloque equivalente de esfuerzos.

d= Peralte efectivo a flexión.

Para obtener el peralte efectivo se realiza los siguientes cálculos:

$$d = h - z \tag{147}$$

Con:

$$z = rec + \frac{\phi}{2} \tag{148}$$

Donde:

h= espesor promedio de pantalla.

rec= recubrimiento.

 ϕ = diámetro de varilla.

La separación máxima del acero se obtiene de la siguiente forma:

$$S = \frac{A_{svar}}{A_s} \tag{149}$$

Donde:

 A_{svar} = Área de acero de la varilla.

2. Acero Mínimo.

Según el Artículo 5.6.3.3 (AASHTO, 2020) se determina que el acero mínimo debe ser adecuado para desarrollar una resistencia factorizada a la flexión, Mr, como mínimo igual al menor valor entre:

$$1.33 \cdot M_u$$
 (150)

$$M_{cr} = y_3 \cdot [(y_1 \cdot f_r + y_2 \cdot f_{cpe}) \cdot S_c - M_{dnc} \cdot (\frac{S_c}{S_{nc}} - 1)]$$
(151)

 f_r = módulo de rotura del concreto especificado en el Articulo 5.4.2.6 (AASHTO, 2020)

 $f_{cpe}=$ esfuerzo de compresión en el concreto debida exclusivamente a las fuerzas de pretensado efectivas.

 S_c = módulo de sección para la fibra extrema de la sección compuesta donde se produce esfuerzo de tracción por cargas aplicadas externamente.

 $M_{dnc} \! = \!$ momento de carga muerta no modificada actuando en la sección monolítica o no compuesta.

 S_{nc} = modulo Seccional para la fibra extrema de la sección monolítica o no compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción.

 y_1 = Factor de variación de fisuración por flexión, 1.2 para estructuras prefabricadas y 1.6 para todas las otras estructuras de concreto.

 y_2 = Factor de variación de pretensado, 1.1 para tendones adheridos y 1.0 para tendones no adheridos.

 y_3 = Relación de la resistencia a la fluencia mínima especificada a la resistencia de tracción ultima del refuerzo: 0.67 para A615, refuerzo grado 60, 0.75 para A706, refuerzo grado 60 y 1.00 para estructuras de concreto pretensado.

Se debe de utilizar valores apropiados de M_{dnc} y S_{nc} para cualquier sección compuesta intermedia. Además, se debe sustituir S_{nc} por S_c para calcular M_{cr} , si las vigas se diseñan de manera que la sección monolítica o no compuesta resista todas las cargas.

3. Acero por temperatura.

El acero por temperatura se calcula con la ecuación:

$$A_{stemp} = \frac{0.18 \cdot b \cdot h}{2 \cdot (b+h)} \tag{152}$$

Donde:

b= espesor de pantalla.

h= altura de pantalla.

Este debe cumplir con la siguiente expresión:

$$2.33 \frac{cm^2}{m} \le A_{stemp} \le 12.70 \frac{cm^2}{m} \tag{153}$$

La separación máxima del acero por temperatura debe ser menor que:

$$S_{m\acute{a}x} = 3 \cdot t \tag{154}$$

$$S_{m\acute{a}x} = 45cm \tag{155}$$

t= altura de la viga o espesor de losa.

4. Revisión de fisuración por distribución de armadura.

Esta revisión se realiza con la combinación de carga del estado limite de servicio I.

Para calcular la ubicación del eje neutro, se realiza las siguientes ecuaciones:

$$n = \frac{Es}{Ec} \tag{156}$$

$$A_{st} = n \cdot A_s \tag{157}$$

Donde:

Es= Módulo de elasticidad del acero.

Ec= Módulo de elasticidad del concreto.

 A_s = Área de acero a tracción.

El esfuerzo de tracción del acero (f_{ss}) en el estado de servicio debe ser $\leq 0.60 \cdot fy$, y se calcula de la siguiente forma:

$$f_{ss} = \frac{M_s}{jd \cdot A_s} \tag{158}$$

Con:

 $jd=d-\frac{y}{3}$.

Donde:

 M_s = Momento actuante servicio.

y= se calcula mediante un equilibrio de momento respecto al eje neutro

Según el Artículo 5.6.7 (AASHTO, 2020), para calcular la separación máxima de la armadura se utiliza las siguientes expresiones:

$$s_{max} = \frac{125000 \cdot y_e}{B_s \cdot f_{ss}} - 2d_c \tag{159}$$

Con:

$$\begin{array}{l} B_s{=}1{+}\frac{z}{0.7{\cdot}(h-d_c)} \\ d_c{=}\mathrm{rec}{+}\frac{\phi_{varilla}}{2}. \end{array}$$

Donde:

 y_e = Factor exposición, 1,00 para la condición de exposición de la clase 1 y 0,75 para la condición de exposición de la clase 2.

Clase 1:= Puede tolerarse agrietamiento puesto que no es de relevante la apariencia del elemento.

Clase 2= Existe mayor preocupación por la apariencia del elemento.

 B_s = Relación entre la tensión de flexión en la cara de tensión extrema y la tensión en el centroide de la capa de refuerzo más cercana a la cara de tensión.

 d_c = Espesor del recubrimiento de concreto medido desde la fibra de tensión extrema hasta el centro de la armadura de flexión situada más cerca de ella.

h: espesor o profundidad total del elemento.

5. Revisión por cortante.

Para la revisión por cortante de la pantalla, se toma la sección más critica en la base de la pantalla. Primeramente, se debe obtener el cortante actuante en la base de la pantalla, utilizando las combinaciones de cargas para los estados de Resistencia I y Evento Extremo I utilizando la siguiente ecuación:

$$V_U = n \cdot [y_{LS} \cdot V_{LS} + y_{EH} \cdot V_{EH} + y_{BR} \cdot V_{BR}]$$

$$\tag{160}$$

Donde:

n= Factor de modificación de las cargas.

 y_{LS} = Factor de carga para sobrecarga viva del terreno.

 V_{LS} = Carga vertical para sobrecarga viva del terreno.

 y_{EH} = Factor de carga para empuje lateral del terreno.

 V_{EH} = Carga vertical para empuje lateral del terreno.

 y_{BR} = Factor de carga para fuerza de frenado.

 V_{BR} = Carga vertical para fuerza de frenado.

El cortante resistente total del concreto se calcula con la expresión:

$$V_r = \phi \cdot V_n \tag{161}$$

 V_r : Cortante factorado.

 ϕ : Factor de resistencia para corte.

 V_n : Cortante nominal.

Según el Artículo 5.7.3.3 (AASHTO, 2020), el valor del cortante nominal resistente se obtiene del menor valor entre:

$$V_n = V_c + V_s + V_p \tag{162}$$

$$V_n = 0.25 \cdot f_c^{'} * bv \cdot dv + V_p \tag{163}$$

Donde:

 V_c = Resistencia nominal al cortante proporcionada por el concreto.

 V_s = Resistencia nominal al cortante proporcionada por el acero de refuerzo.

 V_p = Componente vertical de la fuerza de preesfuerzo.

La resistencia nominal al cortante por el concreto se obtiene de las siguientes expresiones:

$$V_c = 0.53 \cdot \sqrt{f_c' \cdot bv \cdot dv} \tag{164}$$

Con:

 $d_v=d_{e^{-\frac{a}{2}}}$

Donde:

 $d_e = d$

Este valor no debe ser menor que le mayor valor de:

- $0.9 \cdot d_e$
- 0,72 · h

Donde:

bv: Base de la sección bv=b.

Resistencia nominal al cortante proporcionada por el acero de refuerzo, se calcula de la siguiente manera:

$$V_s = \frac{(A_v \cdot f_y \cdot d_v \cdot (\cot(\theta + \cot(\alpha)) \cdot \sin(\alpha))}{S} \tag{165}$$

Con:

$$A_v \geq \frac{0.265\sqrt{f_c'\cdot(bv\cdot S)}}{f_y}$$

Donde:

 $A_v =$ Área del acero transversal.

S= Espaciamiento del acero transversal.

 β = Ángulo de inclinación de los esfuerzos de compresión diagonal.

 α = Ángulo de inclinación entre el acero transversal y el eje longitudinal.

Diseño de Cimentación

1. Acero Superior.

Se calcula el momento de diseño en la cara vertical de la pantalla del estribo, para los estado límite de Resistencia I de acuerdo con la siguiente ecuación:

$$M_U = n[\gamma_{DC} \cdot M_{DC} + \gamma_{EV} \cdot M_{EV} + \gamma_{LS} \cdot M_{LS}] \tag{166}$$

Donde:

n:= Factor de modificación de las cargas.

 γ_{DC} = Factor de carga por peso propio.

 M_{DC} = Momento último por peso propio.

 γ_{EV} = Factor de carga por peso propio del suelo.

 $M_{EV}=$ Momento último por peso propio del suelo.

 $\gamma_{LS}=$ Factor de carga por sobrecarga viva del suelo.

 M_{LS} = Momento último por sobrecarga viva del suelo.

El acero por flexión se calcula de la siguiente forma:

$$A_s = \frac{M_U}{\phi_f \cdot f_y \cdot \frac{d-a}{2}} \tag{167}$$

Donde:

 M_U = Momento ultimo actuante.

 A_s = Área del acero longitudinal.

 ϕ_f = Factor de resistencia.

 f_y = Esfuerzo de fluencia del acero.

 f_c' = Resistencia del concreto.

a= Profundidad del bloque equivalente de esfuerzos.

d= Peralte efectivo a flexión.

Para obtener el peralte efectivo se realiza los siguientes cálculos:

$$d = h - z \tag{168}$$

Con:

$$z = rec + \frac{\phi}{2} \tag{169}$$

Donde:

h= espesor promedio de pantalla.

rec= recubrimiento.

 ϕ = diámetro de varilla.

La separación máxima del acero se obtiene de la siguiente forma:

$$S = \frac{A_{svar}}{A_s} \tag{170}$$

Donde:

 A_{svar} : Área de acero de la varilla.

Acero Mínimo:

Según el Artículo 5.6.3.3 (AASHTO, 2020) se determina que el acero mínimo debe ser adecuado para desarrollar una resistencia factorizada a la flexión, Mr, como mínimo igual al menor valor entre:

$$1,33 \cdot M_u \tag{171}$$

$$M_{cr} = y_3 \cdot [(y_1 \cdot f_r + y_2 \cdot f_{cpe}) \cdot S_c - M_{dnc} \cdot (\frac{S_c}{S_{nc}} - 1)]$$
(172)

Donde:

 f_r = módulo de rotura del concreto especificado en el Articulo 5.4.2.6 (AASHTO, 2020)

 $f_{cpe} =$ esfuerzo de compresión en el concreto debida exclusivamente a las fuerzas de pretensado efectivas.

 S_c = módulo de sección para la fibra extrema de la sección compuesta donde se produce esfuerzo de tracción por cargas aplicadas externamente.

 $M_{dnc} =$ momento de carga muerta no modificada actuando en la sección monolítica o no compuesta.

 S_{nc} = modulo Seccional para la fibra extrema de la sección monolítica o no compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción.

 y_1 = Factor de variación de fisuración por flexión, 1.2 para estructuras prefabricadas y 1.6 para todas las otras estructuras de concreto.

 y_2 = Factor de variación de pretensado, 1.1 para tendones adheridos y 1.0 para tendones no adheridos.

 y_3 = Relación de la resistencia a la fluencia mínima especificada a la resistencia de tracción ultima del refuerzo: 0.67 para A615, refuerzo grado 60, 0.75 para A706, refuerzo grado 60 y 1.00 para estructuras de concreto pretensado.

Se debe de utilizar valores apropiados de M_{dnc} y S_{nc} para cualquier sección compuesta intermedia. Además, se debe sustituir S_{nc} por S_c para calcular M_{cr} , si las vigas se diseñan de manera que la sección monolítica o no compuesta resista todas las cargas.

2. Acero por temperatura.

El acero por temperatura se calcula con la ecuación:

$$A_{stemp} = \frac{0.18 \cdot b \cdot h}{2 \cdot (b+h)} \tag{173}$$

Donde:

b= espesor.

h= altura.

Este debe cumplir con la siguiente expresión:

$$2.33 \frac{cm^2}{m} \le A_{stemp} \le 12.70 \frac{cm^2}{m} \tag{174}$$

La separación máxima del acero por temperatura debe ser menor que:

$$S_{m\acute{a}x} = 3 \cdot t \tag{175}$$

$$S_{m\acute{a}x} = 45cm \tag{176}$$

Donde:

t: altura de la viga o espesor de losa.

3. Revisión del talón por cortante.

Para la revisión por cortante del talón, se utiliza la combinación de carga para el estado de Resistencia I y se omite el estado de Evento Extremo I pues no rige el diseño. Y se utiliza la siguiente ecuación:

$$V_U = n \cdot [y_{DC} \cdot V_{DC} + y_{EV} \cdot V_{EV} + y_{LS} \cdot V_{LS}] \tag{177}$$

Donde:

n: Factor de modificación de las cargas.

 y_{DC} = Factor de carga por peso propio.

 V_{DC} = Carga vertical por peso propio.

 y_{EV} = Factor de carga por peso propio del suelo.

 V_{EV} = Carga vertical por peso propio del suelo.

 y_{LS} = Factor de carga por sobrecarga viva del suelo.

 V_{LS} = Carga vertical por sobrecarga viva del suelo.

El cortante resistente total del concreto se calcula con la expresión:

$$V_r = \phi \cdot V_n \tag{178}$$

Donde:

 V_r = Cortante factorado.

 ϕ = Factor de resistencia para corte.

 V_n = Cortante nominal.

Según el Artículo 5.7.3.3 (AASHTO, 2020), el valor del cortante nominal resistente se obtiene del menor valor entre:

$$V_n = V_c + V_s + V_p \tag{179}$$

$$V_n = 0.25 \cdot f_c' \cdot bv \cdot dv + V_p \tag{180}$$

Donde:

 V_c = Resistencia nominal al cortante proporcionada por el concreto.

 V_s = Resistencia nominal al cortante proporcionada por el acero de refuerzo.

 V_p = Componente vertical de la fuerza de preesfuerzo.

La resistencia nominal al cortante por el concreto se obtiene de las siguientes expresiones:

$$V_c = 0.53 \cdot \sqrt{f_c' \cdot bv \cdot dv} \tag{181}$$

Con:

$$d_v = d_e - \frac{a}{2}$$

Donde:

 $d_e = d$

Este valor no debe ser menor que le mayor valor de:

- $\mathbf{0},9\cdot d_e$
- 0,72 · h

Donde:

bv= Base de la sección bv=b.

Resistencia nominal al cortante proporcionada por el acero de refuerzo, se calcula de la siguiente manera:

$$V_s = \frac{(A_v \cdot f_y \cdot d_v \cdot (\cot(\theta + \cot(\alpha)) \cdot \sin(\alpha))}{S}$$
(182)

Con

$$A_v \ge \frac{0.265\sqrt{f_c'} \cdot (bv \cdot S)}{f_y}$$

Donde:

 A_v = Área del acero transversal.

S= Espaciamiento del acero transversal.

 β = Ángulo de inclinación de los esfuerzos de compresión diagonal.

 α = Ángulo de inclinación entre el acero transversal y el eje longitudinal.

4. Acero inferior.

Se calcula las presiones sobre el cimiento del estribo, para luego obtener el momento generado por estas presiones de acuerdo con las siguientes expresiones:

$$q_u = \frac{V_u}{B} (1 \pm \frac{6e}{B}) \tag{183}$$

$$M_U = \frac{L^2}{6}(q_3 + q_1) \tag{184}$$

En la figura 40, se muestran las presiones actuantes en la base del bastión.

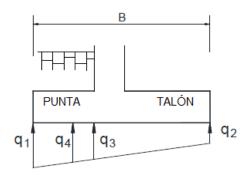


Figura 40: Distribución de presiones en sobre el cimiento del bastión.

Fuente: Propio.

Una ve obtenido el momento actuante se calcula el acero por flexión de la siguiente forma:

$$A_s = \frac{M_U}{\phi_f \cdot f_y \cdot \frac{d-a}{2}} \tag{185}$$

Donde:

 $M_U =$ Momento ultimo actuante.

 A_s = Área del acero longitudinal.

 ϕ_f = Factor de resistencia.

 f_y = Esfuerzo de fluencia del acero.

 f_c' = Resistencia del concreto.

a= Profundidad del bloque equivalente de esfuerzos.

d= Peralte efectivo a flexión.

Para obtener el peralte efectivo se realiza los siguientes cálculos:

$$d = h - z \tag{186}$$

Con:

$$z = rec + \frac{\phi}{2} \tag{187}$$

Donde:

h: espesor promedio de la losa.

rec= recubrimiento.

 ϕ = diámetro de varilla.

La separación máxima del acero se obtiene de la siguiente forma:

$$S = \frac{A_{svar}}{A_s} \tag{188}$$

 A_{svar} = Área de acero de la varilla.

Acero Mínimo:

Según el Artículo 5.6.3.3 (AASHTO, 2020) se determina que el acero mínimo debe ser adecuado para desarrollar una resistencia factorizada a la flexión, Mr, como mínimo igual al menor valor entre:

$$1,33 \cdot M_u \tag{189}$$

$$M_{cr} = y_3 \cdot [(y_1 \cdot f_r + y_2 \cdot f_{cpe}) \cdot S_c - M_{dnc} \cdot (\frac{S_c}{S_{nc}} - 1)]$$
(190)

Donde:

 f_r = módulo de rotura del concreto especificado en el Articulo 5.4.2.6 (AASHTO, 2020)

 f_{cpe} esfuerzo de compresión en el concreto debida exclusivamente a las fuerzas de pretensado efectivas.

 S_c = módulo de sección para la fibra extrema de la sección compuesta donde se produce esfuerzo de tracción por cargas aplicadas externamente.

 $M_{dnc} =$ momento de carga muerta no modificada actuando en la sección monolítica o no compuesta.

 S_{nc} = modulo Seccional para la fibra extrema de la sección monolítica o no compuesta en la cual las cargas aplicadas externamente provocan tensión de tracción.

 y_1 = Factor de variación de fisuración por flexión, 1.2 para estructuras prefabricadas y 1.6 para todas las otras estructuras de concreto.

 y_2 = Factor de variación de pretensado, 1.1 para tendones adheridos y 1.0 para tendones no adheridos.

 y_3 = Relación de la resistencia a la fluencia mínima especificada a la resistencia de tracción ultima del refuerzo: 0.67 para A615, refuerzo grado 60, 0.75 para A706, refuerzo grado 60 y 1.00 para estructuras de concreto pretensado.

Se debe de utilizar valores apropiados de M_{dnc} y S_{nc} para cualquier sección compuesta intermedia. Además, se debe sustituir S_{nc} por S_c para calcular M_{cr} , si las vigas se diseñan de manera que la sección monolítica o no compuesta resista todas las cargas.

5. Revisión de la punta por cortante

Para la revisión de la punta por cortante , se debe obtener el cortante actuante a una distancia d_v de la cara de la pantalla. este se calcula con la expresión:

$$V_r = \phi \cdot V_n \tag{191}$$

 V_r = Cortante factorado.

 ϕ = Factor de resistencia para corte.

 V_n = Cortante nominal.

Según el Artículo 5.7.3.3 (AASHTO, 2020), el valor del cortante nominal resistente se obtiene del menor valor entre:

$$V_n = V_c + V_s + V_p \tag{192}$$

$$V_n = 0.25 \cdot f_c' \cdot bv \cdot dv + V_p \tag{193}$$

Donde:

 V_c = Resistencia nominal al cortante proporcionada por el concreto.

 $\mathit{V_s}{=}$ Resistencia nominal al cortante proporcionada por el acero de refuerzo.

 V_p = Componente vertical de la fuerza de preesfuerzo.

La resistencia nominal al cortante por el concreto se obtiene de las siguientes expresiones:

$$V_c = 0.53 \cdot \sqrt{f_c' \cdot bv \cdot dv} \tag{194}$$

Con:

 $d_v=d_{e^{-\frac{a}{2}}}$

Donde:

 $d_e = d$

Este valor no debe ser menor que le mayor valor de:

- $0.9 \cdot d_e$
- 0,72 · h

Donde:

bv= Base de la sección bv=b.

Resistencia nominal al cortante proporcionada por el acero de refuerzo, se calcula de la siguiente manera:

$$V_s = \frac{(A_v \cdot f_y \cdot d_v \cdot (\cot(\theta + \cot(\alpha)) \cdot \sin(\alpha))}{S}$$
(195)

Con.

$$A_v \geq \frac{0.265\sqrt{f_c'}\cdot(bv\cdot S)}{f_y}$$

Donde:

 A_v = Área del acero transversal.

S= Espaciamiento del acero transversal.

 β = Ángulo de inclinación de los esfuerzos de compresión diagonal.

 α = Ángulo de inclinación entre el acero transversal y el eje longitudinal.

6. Revisión de la rigidez de la cimentación.

Según el Articulo 4.1.3 (Asociación Costarricense de Geotecnia, 2009) para el diseño de una placa de cimentación, se considera que puede efectuarse un comportamiento rígido del cimiento, en el cual la base de la placa se conserve siempre plana o que sea un elemento flexible. Para que un cimiento sea rígido se debe verificar que se cumpla con la siguiente relación:

$$L < \frac{1}{4} \frac{\pi}{\sqrt[4]{\frac{K_{s1} \cdot B}{4E_c \cdot I}}} \tag{196}$$

Donde:

L= Dimensión máxima del cimiento.

B= Ancho del cimiento.

 E_c = Módulo de elasticidad del concreto.

l= Momento de inercia de la sección transversal del cimiento.

 K_{s1} = Módulo de reacción vertical del suelo (Figura 41) dentro de la zona de influencia de la cimentación.

	TIPO DE SUELO	Módulo de Deformación	Módulo de reacción vertical
		E_o (kg/cm ²)	K _{s1} (kg/cm ³)
非特	Suelo fangoso	11.00 a 33.00	0.50 a 1.50
排	Arena seca o húmeda, suelta (NSPT 3 a 9)	0.16H a 0.48H	1.20 a 3.60
*	Arena seca o húmeda, media (NSPT 9 a 30)	0.48H a 1.60H	3.60 a 12.00
*	Arena seca o húmeda, densa (N _{SPT} 30 a 50)	1.60H a 3.20H	12.00 a 24.00
*	Grava fina con arena fina	1.07H a 1.33H	8.00 a 10.00
*	Grava media con arena fina	1.33H a 1.60H	10.00 a 12.00
排	Grava media con arena gruesa	1.60H a 2.00H	12.00 a 15.00
排	Grava gruesa con arena gruesa	2.00H a 2.66H	15.00 a 20.00
1/4	Grava gruesa firmemente estratificada	2.66H a 5.32H	20.00 a 40.00
**	Arcilla blanda $(q_u0.25\;a\;0.50\;kg/cm^2)$	15 a 30	0.65 a 1.30
**	Arcilla media (q_u 0.50 a 2.00 kg/cm ²)	30 a 90	1.30 a 4.00
**	Arcilla compacta (q _u 2.00 a 4.00 kg/cm ²)	90 a 180	4.00 a 8.00
	Arcilla dura (qu 4.00 a 10.00 kg/cm ²)	180 a 480	8.00 a 21.00

H: Profundidad del pozo de cimentación en cm

Figura 41: Módulo de deformación y módulo de reacción vertical del suelo.

Fuente: Asociación Costarricense de Geotecnia, 2009.

7.2.7. Diseño de Ménsula

La ménsula de concreto se utiliza para apoyar en ella normalmente estructuras de gran tamaño, por lo que es de gran importancia su correcto dimensionamiento. Esta se diseña tomando en cuenta los siguientes esfuerzos: aplastamiento, tensión, flexión y cortante. El diseño de la ménsula se realiza según los estipulado en el ACI, 2015.



Figura 42: Dimensiones de la Ménsula Fuente: Propia

1. Según el Capítulo 16.5 del ACI, 2015, se debe verificar las siguientes restricciones.

$$i \le 0,5d' \tag{197}$$

Donde:

i: altura total ménsula (cm).

d': altura efectiva ménsula (cm).

^{*:} Los terrenos granulares si están sumergidos se tomarán con E_o o K_{s1} igual a los del cuadro multiplicados por 0.6

^{**:} Los valores considerados corresponden a cargas de corta duración. Si se consideran cargas permanentes que produzcan V y M y ha de tener lugar la consolidación, se multiplican los valores de E_o y K_{s1} por 0.25

$$\frac{g}{d'} \le 1 \tag{198}$$

g: distancia del centro de una carga concentrada a la cara del apoyo. (cm)

$$N_{uc} \le V_u \tag{199}$$

Donde:

 N_{uc} : fuerza de restricción mayorada (kg).

 V_u : fuerza cortante (kg).

2. Cálculo de la fuerza vertical nominal.

$$V_u \le \phi V_n \tag{200}$$

$$V_n = \frac{V_u}{\phi} \tag{201}$$

Utilizando $\phi = 0.75$

Según el capítulo 16.5.2.4 para el concreto de densidad normal, las dimensiones de la ménsula deben seleccionarse manera que $\frac{V_u}{\phi}$ no exceda el menor de:

$$0.2 \cdot f_c' \cdot bw \cdot d' \tag{202}$$

$$(34 + 0.08 \cdot f_c')bw \cdot d' \tag{203}$$

$$110 \cdot bw \cdot d' \tag{204}$$

Donde:

 f_c' : Resistencia a la compresión del concreto (kg/cm^2) .

bw: ancho del alma (cm).

d': distancia desde la fibra extrema en compresión hasta el centroide del refuerzo longitudinal en tracción (cm).

3. Cálculo de la fuerza horizonta.l

Según el capitulo 16.2.2.3, para conexiones sobre almohadillas de apoyo se calcula de acuerdo con la siguiente ecuación.

$$N_{uc} = 0.2V_u \tag{205}$$

4. Cálculo del diseño de la placa de apoyo.

$$A_{PL} = \frac{V_u}{\phi \cdot 0.85 \cdot f_c'} \tag{206}$$

Con: $\phi = 0.65$

Donde:

 A_{PL} : área de la placa (cm^2) .

5. Cálculo de acero por tensión.

$$A_n = \frac{N_{uc}}{\phi \cdot F_y} \tag{207}$$

Con: $\phi = 0.90$

 A_n : área por tensión (cm^2) .

6. Cálculo de acero por flexión.

$$Mu = V_u \cdot g + N_{uc} \cdot (h' - d') \tag{208}$$

$$A_f = \frac{Mu}{\phi \cdot 0.9 \cdot F_y \cdot d'} \tag{209}$$

Con: $\phi = 0.90$

Donde:

 A_f : área por flexión (cm^2) .

7. Cálculo de acero por cortante directo.

Se utiliza concreto colado monolíticamente y de peso normal por que el coeficiente de fricción se calcula de acuerdo con la siguiente ecuación.

$$\mu = 1.4 \cdot \lambda \tag{210}$$

Donde $\lambda=1$

$$A_{vf} = \frac{V_u}{\phi \cdot \mu \cdot F_y} \tag{211}$$

Con: $\phi = 0.90$

Donde:

 μ : coeficiente de fricción.

 A_{vf} : área por cortante directo (cm^2) .

8. Cálculo de acero principal.

El acero de refuerzo principal debe ser el mayor de las siguientes ecuaciones:

$$A_{sc} = A_f + An (212)$$

$$A_{sc} = \frac{2}{3} \cdot A_{vf} + An \tag{213}$$

$$A_{sc} = 0.04 \cdot \frac{f_c'}{F_y} \cdot bw \cdot d' \tag{214}$$

 A_{sc} : área de acero principal (cm^2) .

9. Cálculo de los estribos paralelos.

El área total de estribos paralelos al acero principal debe ser:

$$A_h \le 0.5 \cdot (A_{sc} - A_n) \tag{215}$$

Donde:

 A_h : área de estribos (cm^2) .

8. Barandas peatonales.

Para el diseño de las barandas peatonales se realizó según la Especificación de diseño de puentes de la AASHTO, 2020, y también con la tesis de Victor Manuel Acevedo Laos, 2015, que explica muy claramente el procedimiento que se debe de seguir.

En la AASHTO, 2020, se menciona ciertas condiciones mínimas que debe de tener la baranda, entre ellas esta que debe de ser como minimo de 1.06 metros de altura, además que la abertura superior no debe de ser menor a 20 centímetros, y el resto de elementos horizontales debe de estar colocados a cada 15 centímetros, además respecto a las cargas se menciona que para los elementos horizontales se va a diseñar para una sobrecarga de 75 kg/m y una carga concentrada de 90 kg, y estas actuarán de manera simultanea, y respecto a los elementos verticales se tiene que la carga para la que estará diseñada debe de seguir la siguiente ecuación:

$$P_{LL} = 90.7 + 74.4 \cdot L \tag{216}$$

Donde:

L= Separación entre los elementos verticales.

Para el diseño de los elementos horizontales una vez que se obtuvieron las cargas tanto por el peso propio como por la sobrecarga según norma, se deberá de obtener el momentos y cortantes últimos, luego de esto se debe de seleccionar una sección, se puede utilizar el catalogo del Instituto Chileno del Acero.

Una vez que se selecciona la sección se realiza el diseño a flexión, se debe de obtener el momento plástico de sección:

$$M_p = F_v \cdot Z \tag{217}$$

Donde:

Z= Módulo plástico de la sección.

Y se realiza la verificación de que el ${\cal M}_p$ sea mayor que el momento de diseño.

Para la resistencia al cortante:

$$V = 0.75 \cdot A \cdot e \cdot 60 \tag{218}$$

Donde:

A= Área de la sección.

e= Espesor del tubo.

Para el diseño de los elementos verticales se realiza el mismo procedimiento que en los elementos horizontales.

Respecto al diseño de los anclajes, se diseñara un anclaje con pernos, se obtiene primero la tracción en los pernos que se obtiene de la siguiente manera:

$$T = \frac{M_u}{d+s} \tag{219}$$

Donde:

d= Diámetro de la sección.

s= Separación del tubo al perno.

Se debe de revisar distintas fallas entre ellas están la falla del perno, rotura del concreto, arranque del perno y rotura lateral del concreto, esto seria en revisión por tracción y en la revisión por cortante se revisa por falla del perno y arranque del perno.

9. Anclajes

Resistencia a la tracción

Revisión de la resistencia a la tracción de los pernos, se calcula con la siguiente formula:

$$T = 0.76 \cdot A \cdot F_u \tag{220}$$

Donde:

A= Diámetro del perno.

 F_u = Limite fluencia perno

Revisión de la resistencia a la rotura del concreto, se calcula con la siguiente formula:

$$N = 0.75 \cdot \frac{A_n}{A_c} \cdot N_b \tag{221}$$

Donde:

 A_n = Área proyectada real del cono falla.

 A_c = Área proyectada del cono falla.

$$A_c = 9 \cdot h_{ef}^2 \tag{222}$$

Donde:

 h_{ef} = Anclaje perno.

$$N_b = 10.2 \cdot \sqrt{f'c} \cdot h_{ef}^1, 5 \tag{223}$$

Revisión de la resistencia al arranque del perno, se calcula con la siguiente formula:

$$N_a = 0.75 \cdot N_p \tag{224}$$

$$N_p = 8 \cdot f'c \cdot A \tag{225}$$

Donde:

A= Área de aplastamiento del concreto

Para el cálculo del área de aplastamiento se debe de considerar el área de la tuerca o de la cabeza del perno según sea el caso.

Revisión de la resistencia a la rotura lateral del concreto, se debe de calcular para pernos cercanos al borde, donde el anclaje del pernos sea mayor a 2.5 veces la distancia del perno al borde.

Resistencia al corte

Revisión de la resistencia al corte de los pernos, se calcula con la siguiente formula:

$$V_u = 0.75 \cdot 0.38 \cdot A \cdot F_u \cdot pernos \tag{226}$$

Donde:

A= Diámetro del perno.

 F_u = Limite fluencia perno

Revisión de la resistencia al arranque de los pernos sometidos a corte, se calcula con la siguiente formula:

$$V_c = 0.75 \cdot k \cdot N \tag{227}$$

Donde:

k= Si h_{ef} j6.5 entonces k=1, si no es 2.

N= Resistencia a la rotura del concreto debido a los pernos.

Para la placa de la base de los elementos verticales, primero se debe de obtener la resistencia al aplastamiento del concreto y sigue la siguiente ecuación:

$$P = 0.7 \cdot 0.85 \cdot f'c \cdot A \cdot m \tag{228}$$

Donde:

P= Resistencia al aplastamiento.

A= Área bajo aplastamiento.

m= Factor de modificación 1.5.

 ϕ = Factor de carga, igual a 0.7 para aplastamiento en el concreto.

Para obtener la longitud mínima de la placa se debe de obtener primero la distancia mínima del tubo al borde de la placa:

$$x = \frac{T \cdot 2}{3 \cdot P \cdot a} \tag{229}$$

Donde:

a= Ancho propuesto de la base.

Por lo tanto para obtener la mínima longitud se debe de sumar el diámetro del tubo más 2 veces la dimensión mínima obtenida anteriormente; y se debe de verificar que la longitud propuesta cumpla con la longitud mínima.

Para obtener el espesor se debe de obtener el momento que va a soportar la placa y se obtiene multiplicando la tracción del perno por la distancia del perno al borde del elemento vertical.

Para obtener el espesor minimo se debe de seguir la siguiente ecuación:

$$t = \sqrt{\frac{M \cdot 12}{2 \cdot f_y \cdot b}} \tag{230}$$

M= Momento que soporta la placa.

b= Ancho de la base.

Se debe de revisar la resistencia al aplastamiento, se debe de seguir la siguiente formula:

$$R = 0.8 \cdot 2.4 \cdot d \cdot t \cdot F_y \cdot pernos \tag{231}$$

Donde:

R= Resistencia al aplastamiento.

d= Diámetro perno.

t= Espesor placa.

10. Contenido mínimo de los planos estructurales.

Los planos estructurales son una representación gráfica de los resultados obtenidos en el proceso de diseño. En Costa Rica no se cuenta con una normativa donde se establezca la información minina que se debe incluir en los planos estructurales. Además se puede utilizar como referencia los planos del puente estándar del MOPT, donde incluyen los estimados de materiales donde se muestra: el material, la unidad de medida y la cantidad de unidades estimadas.

Los planos deben contar con la siguiente información mínima:

- Detalle de los componentes del puente con sus dimensiones, la distribución, calibre y recubrimiento del acero de refuerzo y las características de resistencia de los materiales.
- Detalles constructivos claros.
- Especificaciones técnicas.
- Conjunto de notas.
- Número del proyecto, nombre de la empresa y además alguna otra identificación que sea necesaria.

11. Referencias

Referencias

AASHTO (2020). L.R.F.D., Bridge Design Specifications. 9.ª ed.

ACI (2015). Requisitos de Reglamento para Concreto Estructural (ACI 318SUS-14) y Comentario (ACI 318SUSR-14). Asociación Costarricense de Geotecnia (2009). Código de Cimentaciones de Costa Rica.

CFIA (2013). Lineamientos para el Diseño Sismorresistente de Puentes.

ELASTEC. Apoyos de Neopreno. URL: http://www.karaysa.com/products/pdf/apoyos-de-neopreno.pdf.

Ernesto Seminario Manrique (2004). GUÍA PARA EL DISEÑO DE PUENTES CON VIGAS Y LOSAS.

Gabriel Andrés Bernal Granados (2006). Comportamiento dinámico de neopreno empleado en compuestos para apoyos en puentes. URL: https://repositorio.uniandes.edu.co/bitstream/handle/1992/25781/u277177.pdf? sequence=1.

Héctor Kelinton Ramos García (2010). Manual práctico para el pre-dimensionamiento de puentes en acero y concreto, para una luz menor a 15 metros.

Instituto Chileno del Acero. *Tablas perfiles*. URL: https://metalicas-uv.weebly.com/uploads/8/7/8/7/877102/perfiles_icha_selectos.pdf.

Maribel Tejerizo Fernández (2015). Elaboración de fórmulas analíticas y tablas de cálculo para las estructuras metálicas de acero según normativa Eurocódigo 3.

Mc Cormac, J y Brown, R (2011). Diseño de Concreto Reforzado. 8.ª ed.

MOPT. Dirección de Puentes (2007). Manual de Inspección de Puentes.

Rodrigo de Jesus Anchia Delgado (2018). Guía para el diseño de puentes vehiculares en Costa Rica.

SIECA (2004). Manual Centroamericano de normas para el diseño geometrico de las carreteras regionales.

Victor Manuel Acevedo Laos (2015). Diseño de un puente con estructura de acero.

Apéndice 2. Reporte Estructural para Puente Red de Distribución Subdistrito Abangares longitud de 2 metros.			
A continuación se muestra la memoria de cálculo para el puente Red de Distribución Sub- distrito Abangares con una longitud de 2 metros con un carril y acera a ambos lados.			

Diseño de Puente Tipo Losa			
Diseñado por VMF			
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras		

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	2.00	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de	2250.00	1, 0/1002
rodamiento	2250.00	kg/m3
Peso concreto	2400.00	kg/m3

Asumiendo un espesor de losa de	0.250	m
---------------------------------	-------	---

	Franja interior	Franja borde	
Momento elementos estructurales	0.30	0.30	ton-m
Momento elementos no estructurales	0.06	0.57	ton-m
Ancho de franja	2.55	1.27	m
M_{LL} + M_{IM}	3.09	3.09	ton-m/mfranja
Momento de Carga Peatonal	-	0.17	ton-m/mfranja

Momento Fuerza Frenado	17.63	ton-m
INIOITICITO FUCIZA FICITADO	17.03	1011-111

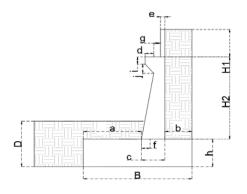
Ubicación			
Provincia Cantón Distrito			
Guanacaste Cañas Todos			

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

	Franja interior	Franja borde	
Momento de diseño mayorado Resistencia	36.71	22.07	ton-m
Momento de diseño mayorado Servicio	21.07	12.78	ton-m

the same and the s	Franja Interior			
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	67.56	8.00	7.50	
Acero transversal	24.04	8.00	20.00	
Acero por temperatura	13.69	6.00	10.00	
Espesor losa (m)	0.25			
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Franja Borde					
	Área de acero (cm2)	Número varilla	Separación (cm)		
Acero longitudinal	33.78	8.00	15.00		
Acero transversal	12.39	8.00	30.00		
Acero por temperatura	2.50	6.00	30.00		
Espesor losa (m)	0.25				
Recubrimiento superior (cm)	5.00				
Recubrimiento inferior (cm)	2.50				



de Costa Rica					
Diseño de Bastión para Puente Tipo Losa					
Diseñado por	VMF				
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras				

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	0.60	ton/m
PDW Distribuida	1.26	ton/m
PLL+IM+PL Distribuida	22.00	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0
Angulo de fricción entre el	0.00	0
suelo y el muro		
Angulo del material del suelo	0.00	0
con la horizontal	0.00	
Angulo de inclinación del	90.00	0
muro del lado del terreno	90.00	
Angulo de inclinacion del	0.00	0
material con la horizontal	0.00	
Peso unitario del suelo	1556.00	kg/m3
Capacidad admisible con	28552.00	kg/m2
factor de seguridad	28332.00	Kg/IIIZ
FS	3.00	
Coeficiente sísmico de	0.41	
aceleración	0.41	
Coeficiente de sitio	1.00	

Dimensionamiento					
D	1.00	m			
Н	5.95	m			
В	3.75	m			
h	0.60	m			
d	0.60	m			
С	0.30	m			
a	1.15	m			
e	0.05	m			
H1	0.30	m			
H2	5.05	m			
f	0.15	m			
g	0.10	m			
i i	0.40	m			
j	0.20	m			
b	2.30	m			
Longitud de asiento minima	0.31	m			
Base del diente	N/A	m			
Altura del diente	N/A	m			

Revisión por vuelco							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) emax (m) Revisión						Revisión	
Resistencia	82.689	164.121	56.257	1.304	0.571	1.250	CUMPLE
Evento Extremo	42.574	73.984	50.544	0.551	1.324	1.500	CUMPLE

Revisión por deslizamiento						
Revisión sin diente						
Estados	VU (ton/m)	ØTRT(ton/m)	Actuante Hu	Revisión		
Resistencia	82.689	42.966	19.503	CUMPLE		
Evento Extremo	42.574	22.122	18.489	CUMPLE		

Revisión con diente						
Estados ØTRT(ton/m) Actuante Hu Revisión						
Resistencia	N/A	N/A	NO REQUIERE DIENTE			
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE			

Revisión por capacidad							
Estado	VU (ton/m)	MVU (ton- m/m)	MHU (ton- m/m)	xo (m)	e (m)	q (kg/cm2)	Revisión
Resistencia	82.689	164.121	56.257	1.304	0.571	3.169	CUMPLE
Evento Extremo	42.574	73.984	50.544	0.551	1.324	3.866	CUMPLE
Servicio	54.649	104.374	34.748	1.274	0.601	2.145	CUMPLE

DISEÑO ESTRUCTURAL						
Pantalla del muro						
Acero	principal					
Varilla	6.000					
Recubrimiento	5.000	cm				
As	40.124	cm2/m				
Separación propuesta	7.000	cm				
Verificación Acero minimo	CUMPLE					
Acero por	temperatura					
Varilla	4.000					
As temp	1.267	cm2/m				
Separación a usar	45	m				
Revisión por cortante	CUMPLE					

Cimentación					
Acero superior					
Varilla	6.000	-			
As	20.646	cm2			
Separación a usar	13.500	cm			
Verificación Acero minimo	CUI	MPLE			
Acero por temperatura					
Varilla	4.000				
As temp	4.655	cm2/m			
Separación a usar	27.000	cm			
Revisión del talón por	CUMPLE				
cortante					
Acero	Inferior				
Varilla	6.000	-			
As	13.217	cm2			
Separación a usar	20.000	cm			
Verificación Acero minimo	CUMPLE				
Revisión de la punta por	CHMPLE				
cortante	CUMPLE				

Revisión Rigidez de la Cimentación			
L	3.750	m	
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	2.637	m4	
Ks	2.650	0	
Revisión	89.364	CUMPLE	

Apoyo elastom	erico con refuerz	zo oz	
Ancho Propuesto	15	cm	a
Largo Propuesto	20	cm	b
Cantidad de capas interiores	2.000	cm	
Espesor capa interior	0.150	cm	
Espesor capa exterior	0.100	cm	
Espesor capa refuerzo	0.014	cm	
Espesor total	0.541	cm	
Espesor placa	3.810	3.810	
Pernos	2 de 3.175cm		
Anclaje perno	50.000	cm	

Espaciamiento del perno al borde corto	5.000	cm	
Espaciamiento del perno al elemento	5.000	cm	h
Recubrimiento del perno a la cara externa del bastión	30.000	cm	g
Largo de la placa	30.000	cm	f
Ancho de la placa	N/A	cm	i

Apéndice 3. Reporte Estructural para Puente Red de Distribución Subdistrito Abangares longitud de 3 metros.
A continuación se muestra la memoria de cálculo para el puente Red de Distribución Sub- distrito Abangares con una longitud de 3 metros con un carril y acera a ambos lados.

Diseño de Puente Tipo Losa			
Diseñado por	VMF		
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras		

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	3.00	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de rodamiento	2250.00	kg/m3
Peso concreto	2400.00	kg/m3

Asumiendo un espesor de losa de	0.275	m
---------------------------------	-------	---

	Franja interior	Franja borde	
Momento elementos estructurales	0.74	0.74	ton-m
Momento elementos no estructurales	0.13	1.30	ton-m
Ancho de franja	2.65	1.32	m
$M_{LL}+M_{IM}$	5.88	5.88	ton-m/mfranja
Momento de Carga Peatonal	-	0.38	ton-m/mfranja

Momento Fuerza Frenado	17.63	ton-m

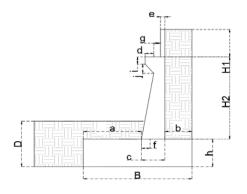
Ubicación				
Provincia Cantón Distrito				
Guanacaste Cañas Todos				

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

	Franja interior	Franja borde	
Momento de diseño mayorado Resistencia	42.25	28.58	ton-m
Momento de diseño mayorado Servicio	24.37	16.73	ton-m

Franja Interior						
	Área de acero (cm2)	Número varilla	Separación (cm)			
Acero longitudinal	67.56	8.00	7.50			
Acero transversal	19.45	8.00	25.00			
Acero por temperatura	9.71	6.00	12.50			
Espesor losa (m)	0.28					
Recubrimiento superior (cm)	5.00					
Recubrimiento inferior (cm)	2.50					

Franja Borde					
	Área de acero (cm2)	Número varilla	Separación (cm)		
Acero longitudinal	40.54	8.00	12.50		
Acero transversal	11.80	8.00	35.00		
Acero por temperatura	2.75	6.00	35.00		
Espesor losa (m)	0.28				
Recubrimiento superior (cm)	5.00				
Recubrimiento inferior (cm)	2.50				



de Costa Rica						
Diseño de Bastión para Puente Tipo Losa						
Diseñado por	VMF					
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras					

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	0.66	ton/m
PDW Distribuida	1.27	ton/m
PLL+IM+PL Distribuida	25.29	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0
Angulo de fricción entre el	0.00	0
suelo y el muro	0.00	
Angulo del material del suelo	0.00	0
con la horizontal	0.00	
Angulo de inclinación del	90.00	0
muro del lado del terreno	90.00	
Angulo de inclinacion del	0.00	0
material con la horizontal	0.00	
Peso unitario del suelo	1556.00	kg/m3
Capacidad admisible con	28552.00	1ra/m2
factor de seguridad	26332.00	kg/m2
FS	3.00	
Coeficiente sísmico de	0.41	
aceleración	0.41	
Coeficiente de sitio	1.00	

Dimensionamiento						
D	1.00	m				
Н	5.95	m				
В	3.80	m				
h	0.60	m				
d	0.60	m				
c	0.35	m				
a	1.15	m				
e	0.05	m				
H1	0.35	m				
H2	5.00	m				
f	0.20	m				
g	0.10	m				
i	0.40	m				
j	0.20	m				
b	2.30	m				
Longitud de asiento minima	0.31	m				
Base del diente	N/A	m				
Altura del diente	N/A	m				

Revisión por vuelco							
Estado VU (ton/m) MVU (ton- m/m) MHU (ton- xo (m) e (m) emax (m) Revisión							Revisión
Resistencia	88.923	180.531	56.257	1.398	0.502	1.267	CUMPLE
Evento Extremo	44.599	79.259	50.724	0.640	1.260	1.520	CUMPLE

Revisión por deslizamiento						
Revisión sin diente						
Estados	VU (ton/m)	ØTRT(ton/m)	Actuante Hu	Revisión		
Resistencia	88.923	46.206	19.503	CUMPLE		
Evento Extremo	44.599	23.174	18.548	CUMPLE		

Revisión con diente						
Estados ØTRT(ton/m) Actuante Hu Revisión						
Resistencia	N/A	N/A	NO REQUIERE DIENTE			
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE			

Revisión por capacidad							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) q (kg/cm2) Revisi							Revisión
Resistencia	88.923	180.531	56.257	1.398	0.502	3.181	CUMPLE
Evento Extremo	44.599	79.259	50.724	0.640	1.260	3.485	CUMPLE
Servicio	58.320	114.008	34.748	1.359	0.541	2.146	CUMPLE

DISEÑO ES	TRUCTURAL		
Pantalla	a del muro		
Acero	principal		
Varilla	6.000		
Recubrimiento	5.000	cm	
As	32.148	cm2/m	
Separación propuesta	7.500	cm	
Verificación Acero minimo	CUMPLE		
Acero por	temperatura		
Varilla	4.000		
As temp	1.267	cm2/m	
Separación a usar	45	m	
Revisión por cortante	CUMPLE		

Cimentación						
Acero	Acero superior					
Varilla	6.000	-				
As	20.646	cm2				
Separación a usar	13.500	cm				
Verificación Acero minimo	CUN	MPLE				
Acero por temperatura						
Varilla	4.000					
As temp	4.664	cm2/m				
Separación a usar	27.000	cm				
Revisión del talón por	CUMPLE					
cortante						
Acero	Inferior					
Varilla	6.000	-				
As	13.272	cm2				
Separación a usar	20.000	cm				
Verificación Acero minimo	CUMPLE					
Revisión de la punta por	CHMDLE					
cortante	CUMPLE					

Revisión Rigidez de la Cimentación			
L 3.800 m			
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	2.744	m4	
Ks	2.650	0	
Revisión	90.256	CUMPLE	

Apéndice 4. Memoria de Cálculo para Puente Red de Distribución Subdistrito Abangares longitud de 4 metros.
A continuación se muestra la memoria de cálculo para el puente sobre Red de Distribución Subdistrito Abangares con una longitud de 4 metros con un carril y acera a ambos lados.

Diseño de Puente Tipo Losa			
Diseñado por	VMF		
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras		

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	4.00	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de rodamiento	2250.00	kg/m3
Peso concreto	2400.00	kg/m3

Asumiendo un espesor de losa de	0.300	m
---------------------------------	-------	---

	Franja interior	Franja borde	
Momento elementos estructurales	1.44	1.44	ton-m
Momento elementos no estructurales	0.23	2.32	ton-m
Ancho de franja	2.73	1.36	m
$M_{LL}+M_{IM}$	8.68	8.68	ton-m/mfranja
Momento de Carga Peatonal	-	0.65	ton-m/mfranja

Momento Fuerza Frenado	17.63	ton-m

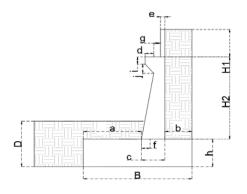
Ubicación			
Provincia Cantón Distrito			
Guanacaste Cañas Todos			

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

	Franja interior	Franja borde	
Momento de diseño mayorado Resistencia	48.17	35.89	ton-m
Momento de diseño mayorado Servicio	27.97	21.25	ton-m

Franja Interior				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	67.56	8.00	7.50	
Acero transversal	16.93	8.00	27.50	
Acero por temperatura	6.17	6.00	17.50	
Espesor losa (m)		0.30		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Franja Borde			
	Área de acero (cm2)	Número varilla	Separación (cm)
Acero longitudinal	42.23	8.00	12.00
Acero transversal	11.67	8.00	37.50
Acero por temperatura	3.00	6.00	37.50
Espesor losa (m)	0.30		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		



de Costa Rica	
	Diseño de Bastión para Puente Tipo Losa
Diseñado por	VMF
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	0.72	ton/m
PDW Distribuida	1.27	ton/m
PLL+IM+PL Distribuida	27.26	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0
Angulo de fricción entre el	0.00	0
suelo y el muro	0.00	
Angulo del material del suelo	0.00	0
con la horizontal	0.00	
Angulo de inclinación del	90.00	0
muro del lado del terreno	90.00	
Angulo de inclinacion del	0.00	0
material con la horizontal	0.00	
Peso unitario del suelo	1556.00	kg/m3
Capacidad admisible con	28552.00	kg/m2
factor de seguridad	20332.00	Kg/IIIZ
FS	3.00	
Coeficiente sísmico de	0.41	
aceleración	0.41	
Coeficiente de sitio	1.00	

Dimensi	onamiento	
D	1.00	m
Н	5.95	m
В	3.80	m
h	0.60	m
d	0.60	m
С	0.35	m
a	1.15	m
e	0.05	m
H1	0.35	m
H2	5.00	m
f	0.20	m
g i	0.10	m
i	0.40	m
j	0.20	m
b	2.30	m
Longitud de asiento minima	0.32	m
Base del diente	N/A	m
Altura del diente	N/A	m

		Revisión po	or vuelco				
Estado	VU (ton/m)	MVU (ton- m/m)	MHU (ton- m/m)	xo (m)	e (m)	emax (m)	Revisión
Resistencia	92.450	189.878	56.257	1.445	0.455	1.267	CUMPLE
Evento Extremo	45.648	82.039	50.878	0.683	1.217	1.520	CUMPLE

Revisión por deslizamiento					
Revisión sin diente					
Estados	VU (ton/m)	ØTRT(ton/m)	Actuante Hu	Revisión	
Resistencia	92.450	48.038	19.503	CUMPLE	
Evento Extremo	45.648	23.720	18.574	CUMPLE	

Revisión con diente				
Estados	ØTRT(ton/m)	Actuante Hu	Revisión	
Resistencia	N/A	N/A	NO REQUIERE DIENTE	
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE	

		Revisión por	capacidad				
Estado	VU (ton/m)	MVU (ton- m/m)	MHU (ton- m/m)	xo (m)	e (m)	q (kg/cm2)	Revisión
Resistencia	92.450	189.878	56.257	1.445	0.455	3.198	CUMPLE
Evento Extremo	45.648	82.039	50.878	0.683	1.217	3.343	CUMPLE
Servicio	60.353	119.397	34.748	1.403	0.497	2.152	CUMPLE

DISEÑO ES	TRUCTURAL	
Pantalla	ı del muro	
Acero	principal	
Varilla	6.000	
Recubrimiento	5.000	cm
As	32.292	cm2/m
Separación propuesta	7.500	cm
Verificación Acero minimo	CUMPLE	
Acero por	temperatura	
Varilla	4.000	
As temp	1.267	cm2/m
Separación a usar	45	m
Revisión por cortante	CUMPLE	

Cime	ntación		
Acero	superior		
Varilla	6.000 -		
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CUN	MPLE	
Acero por	temperatura		
Varilla	4.000		
As temp	4.664	cm2/m	
Separación a usar	27.000	cm	
Revisión del talón por	CIII	MDI E	
cortante	CUMPLE		
Acero	Inferior		
Varilla	6.000	-	
As	13.290	cm2	
Separación a usar	20.000	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por	CUMPLE		
cortante			

Revisión Rigidez de la Cimentación			
L	3.800	m	
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	2.744	m4	
Ks	2.650	0	
Revisión	90.256	CUMPLE	

Apéndice 5. Reporte Estructural para Puente Red de Distribución Subdistrito Abangares longitud de 5 metros.
A continuación se muestra la memoria de cálculo para el puente sobre Red de Distribución Subdistrito Abangares con una longitud de 5 metros con un carril y acera a ambos lados.

Diseño de Puente Tipo Losa			
Diseñado por	VMF		
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras		

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	5.00	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de rodamiento	2250.00	kg/m3
Peso concreto	2400.00	kg/m3

Asumiendo un espesor de losa de	0.325	m
---------------------------------	-------	---

	Franja interior	Franja borde	
Momento elementos estructurales	2.44	2.44	ton-m
Momento elementos no estructurales	0.35	3.63	ton-m
Ancho de franja	2.80	1.40	m
$M_{LL}+M_{IM}$	11.47	11.47	ton-m/mfranja
Momento de Carga Peatonal	-	0.99	ton-m/mfranja

Momento Fuerza Frenado	17.63	ton-m

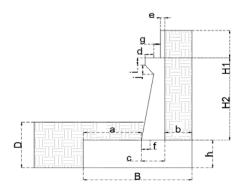
Ubicación			
Provincia Cantón Distrito			
Guanacaste Cañas Todos			

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

	Franja interior	Franja borde	
Momento de diseño mayorado Resistencia	54.50	44.00	ton-m
Momento de diseño mayorado Servicio	31.89	26.36	ton-m

the same and the s	Franja Interior		
	Área de acero (cm2)	Número varilla	Separación (cm)
Acero longitudinal	63.34	8.00	8.00
Acero transversal	15.34	8.00	32.50
Acero por temperatura	2.95	6.00	35.00
Espesor losa (m)	0.33		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		

Franja Borde			
	Área de acero (cm2)	Número varilla	Separación (cm)
Acero longitudinal	50.67	8.00	10.00
Acero transversal	11.74	8.00	42.50
Acero por temperatura	3.25	6.00	42.50
Espesor losa (m)	0.33		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		



de Costa Ric	a		
Diseño de Bastión para Puente Tipo Losa			
Diseñado por	VMF		
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras		

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	0.78	ton/m
PDW Distribuida	1.28	ton/m
PLL+IM+PL Distribuida	28.70	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0
Angulo de fricción entre el	0.00	0
suelo y el muro	0.00	
Angulo del material del suelo	0.00	0
con la horizontal	0.00	
Angulo de inclinación del	90.00	0
muro del lado del terreno	90.00	
Angulo de inclinacion del	0.00	0
material con la horizontal	0.00	
Peso unitario del suelo	1556.00	kg/m3
Capacidad admisible con	28552.00	kg/m2
factor de seguridad	26332.00	Kg/IIIZ
FS	3.00	
Coeficiente sísmico de	0.41	
aceleración	0.41	
Coeficiente de sitio	1.00	

Dimensionamiento				
D	1.00	m		
Н	5.95	m		
В	3.85	m		
h	0.60	m		
d	0.60	m		
С	0.35	m		
a	1.20	m		
e	0.05	m		
H1	0.40	m		
H2	4.95	m		
f	0.20	m		
g	0.10	m		
i i	0.40	m		
j	0.20	m		
b	2.30	m		
Longitud de asiento minima	0.32	m		
Base del diente	N/A	m		
Altura del diente	N/A	m		

Revisión por vuelco							
Estado VU (ton/m) MVU (ton- MHU (ton- xo (m) e (m) emax (m) Revisión						Revisión	
Resistencia	95.154	197.462	56.257	1.484	0.441	1.283	CUMPLE
Evento Extremo	46.512	84.660	50.999	0.724	1.201	1.540	CUMPLE

Revisión por deslizamiento					
Revisión sin diente					
Estados	VU (ton/m)	ØTRT(ton/m)	Actuante Hu	Revisión	
Resistencia	95.154	49.443	19.503	CUMPLE	
Evento Extremo	46.512	24.168	18.609	CUMPLE	

Revisión con diente				
Estados ØTRT(ton/m) Actuante Hu Revisión				
Resistencia	N/A	N/A	NO REQUIERE DIENTE	
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE	

Revisión por capacidad							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) q (kg/cm2) Revisio						Revisión	
Resistencia	95.154	197.462	56.257	1.484	0.441	3.206	CUMPLE
Evento Extremo	46.512	84.660	50.999	0.724	1.201	3.213	CUMPLE
Servicio	61.936	123.926	34.748	1.440	0.485	2.151	CUMPLE

DISEÑO ESTRUCTURAL						
Pantalla	a del muro					
Acero	Acero principal					
Varilla	6.000					
Recubrimiento	5.000	cm				
As	32.398	cm2/m				
Separación propuesta	8.500	cm				
Verificación Acero minimo	CUMPLE					
Acero por	temperatura					
Varilla	4.000					
As temp	1.267	cm2/m				
Separación a usar	42.5	m				
Revisión por cortante	CUMPLE					

C.	, .,			
Cimentación				
Acero superior				
Varilla	6.000 -			
As	20.646	cm2		
Separación a usar	13.500	cm		
Verificación Acero minimo	CUN	MPLE		
Acero por	temperatura			
Varilla	4.000			
As temp	4.672	cm2/m		
Separación a usar	27.000	cm		
Revisión del talón por	CUMPLE			
cortante	Cor	WIPLE		
Acero	Inferior			
Varilla	6.000	-		
As	14.463	cm2		
Separación a usar	19.500	cm		
Verificación Acero minimo	CUMPLE			
Revisión de la punta por	CUMPLE			
cortante				

Revisión Rigidez de la Cimentación				
L 3.850 m				
В	0.600	m		
Ec	25267132.801	kg/cm2		
I	2.853	m4		
Ks	2.650	0		
Revisión	91.145	CUMPLE		

Apéndice 6. Reporte Estructural para Puente Red de Distribución Subdistrito Abangares longitud de 6.20 metros.
A continuación se muestra la memoria de cálculo para el puente sobre Red de Distribución Subdistrito Abangares con una longitud de 6.20 metros con un carril y acera a ambos lados.

TEC de Costa Rica				
Diseño de Puente Tipo Losa				
Diseñado por	VMF			
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras			

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	6.20	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de	2250.00	kg/m3
rodamiento	2230.00	Ng ms
Peso concreto	2400.00	kg/m3

Asumiendo un espesor de losa de	0.365	m
---------------------------------	-------	---

	Franja interior	Franja borde	
Momento elementos estructurales	4.21	4.21	ton-m
Momento elementos no estructurales	0.54	5.61	ton-m
Ancho de franja	2.88	1.44	m
$M_{LL}+M_{IM}$	14.81	14.81	ton-m/mfranja
Momento de Carga Peatonal	-	1.48	ton-m/mfranja

Momento Fuerza Frenado	17.63	ton-m
MICHIGING I UCIZA I ICHAGO	17.05	1011-111

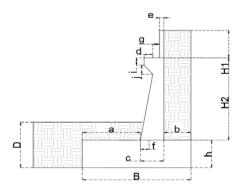
Ubicación			
Provincia Cantón Distrito			
Guanacaste	Cañas	Todos	

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

	Franja interior	Franja borde	
Momento de diseño mayorado Resistencia	62.83	55.01	ton-m
Momento de diseño mayorado Servicio	37.19	33.44	ton-m

Franja Interior				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero longitudinal	63.34	8.00	8.00	
Acero transversal	13.50	8.00	37.50	
Acero por temperatura	3.65	6.00	45.00	
Espesor losa (m)		0.37		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	2.50			

Franja Borde			
	Área de acero (cm2)	Número varilla	Separación (cm)
Acero longitudinal	53.34	8.00	9.50
Acero transversal	11.48	8.00	42.50
Acero por temperatura	3.65	6.00	45.00
Espesor losa (m)	0.37		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		



de Costa Rica		
Diseño de Bastión para Puente Tipo Losa		
Diseñado por	VMF	
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras	

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	0.78	ton/m
PDW Distribuida	1.28	ton/m
PLL+IM+PL Distribuida	28.70	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0	
Angulo de fricción entre el	0.00	0	
suelo y el muro			
Angulo del material del suelo	0.00	0	
con la horizontal	0.00		
Angulo de inclinación del	90.00	0	
muro del lado del terreno	90.00		
Angulo de inclinacion del	0.00	0	
material con la horizontal	0.00		
Peso unitario del suelo	1556.00	kg/m3	
Capacidad admisible con	28552.00	kg/m2	
factor de seguridad	28332.00	Kg/IIIZ	
FS	3.00		
Coeficiente sísmico de	0.41		
aceleración	0.41		
Coeficiente de sitio	1.00		

Dimensionamiento			
D	1.00	m	
Н	5.95	m	
В	3.90	m	
h	0.60	m	
d	0.60	m	
С	0.40	m	
a	1.25	m	
e	0.05	m	
H1	0.40	m	
H2	4.95	m	
f	0.25	m	
g	0.10	m	
i i	0.40	m	
j	0.20	m	
b	2.30	m	
Longitud de asiento minima	0.32	m	
Base del diente	N/A	m	
Altura del diente	N/A	m	

Revisión por vuelco							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) emax (m) Revisión							
Resistencia	95.612	198.782	56.257	1.491	0.459	1.300	CUMPLE
Evento Extremo	46.876	85.703	51.058	0.739	1.211	1.560	CUMPLE

Revisión por deslizamiento					
Revisión sin diente					
Estados VU (ton/m) ØTRT(ton/m) Actuante Hu Revisión					
Resistencia	95.612	49.681	19.503	CUMPLE	
Evento Extremo	46.876	24.357	18.646	CUMPLE	

Revisión con diente				
Estados ØTRT(ton/m) Actuante Hu Revisión				
Resistencia	N/A	N/A	NO REQUIERE DIENTE	
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE	

Revisión por capacidad							
Estado	VU (ton/m)	MVU (ton- m/m)	MHU (ton- m/m)	xo (m)	e (m)	q (kg/cm2)	Revisión
Resistencia	95.612	198.782	56.257	1.491	0.459	3.207	CUMPLE
Evento Extremo	46.876	85.703	51.058	0.739	1.211	3.171	CUMPLE
Servicio	62.301	124.969	34.748	1.448	0.502	2.151	CUMPLE

DISEÑO ESTRUCTURAL				
Pantalla del muro				
Acero principal				
Varilla	6.000			
Recubrimiento	5.000	cm		
As	27.177	cm2/m		
Separación propuesta	9.000	cm		
Verificación Acero minimo	CUMPLE			
Acero por	temperatura			
Varilla	4.000			
As temp	1.267	cm2/m		
Separación a usar	40	m		
Revisión por cortante	CUN	MPLE		

G:	, .,				
Cimentación					
Acero superior					
Varilla	6.000 -				
As	20.646	cm2			
Separación a usar	13.500	cm			
Verificación Acero minimo	CUN	MPLE			
Acero por	Acero por temperatura				
Varilla	4.000				
As temp	4.680	cm2/m			
Separación a usar	27.000	cm			
Revisión del talón por	CUMPLE				
cortante	CUMPLE				
Acero	Inferior				
Varilla	6.000	-			
As	15.714	cm2			
Separación a usar	18.000	cm			
Verificación Acero minimo	CUMPLE				
Revisión de la punta por	CUMPLE				
cortante					

Revisión Rigidez de la Cimentación			
L	3.900	m	
В	0.600	m	
Ec	25267132.801	kg/cm2	
I	2.966	m4	
Ks	2.650	0	
Revisión	92.031	CUMPLE	

Apéndice 7. Reporte Estructural para Puente Red de Distribución Subdistrito Abangares longitud de 8 metros.				
A continuación se muestra la memoria de cálculo para el puente Red de Distribución Sub- distrito Abangares con una longitud de 8 metros con un carril y acera a ambos lados.				

Diseño de Puente Tipo Losa				
Diseñado por	VMF			
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras			

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	8.00	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de rodamiento	2250.00	kg/m3
Peso concreto	2400.00	kg/m3

Asumiendo un espesor de losa de	0.480	m
---------------------------------	-------	---

	Franja interior	Franja borde	
Momento elementos estructurales	9.22	9.22	ton-m
Momento elementos no estructurales	0.90	9.39	ton-m
Ancho de franja	2.99	1.50	m
$M_{LL}+M_{IM}$	19.80	19.80	ton-m/mfranja
Momento de Carga Peatonal	-	2.38	ton-m/mfranja

Momento Fuerza Frenado	17.63	ton-m

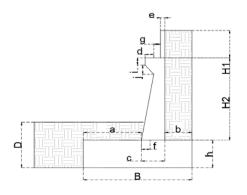
Ubicación				
Provincia Cantón Distrito				
Guanacaste Cañas Todos				

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

	Franja interior	Franja borde	
Momento de diseño mayorado Resistencia	78.37	75.68	ton-m
Momento de diseño mayorado Servicio	47.55	47.22	ton-m

	Franja Interior		
	Área de acero (cm2)	Número varilla	Separación (cm)
Acero longitudinal	53.34	8.00	9.50
Acero transversal	10.24	8.00	45.00
Acero por temperatura	4.80	6.00	45.00
Espesor losa (m)	0.48		
Recubrimiento superior (cm)	5.00		
Recubrimiento inferior (cm)	2.50		

Franja Borde					
	Área de acero (cm2)	Número varilla	Separación (cm)		
Acero longitudinal	50.67	8.00	10.00		
Acero transversal	9.84	8.00	45.00		
Acero por temperatura	4.80	6.00	45.00		
Espesor losa (m)	0.48				
Recubrimiento superior (cm)	5.00				
Recubrimiento inferior (cm)	2.50				



de Costa Rica					
Diseño de Bastión para Puente Tipo Losa					
Diseñado por	VMF				
Nombre proyecto	Puente Red de Distribución Subdistrito de Abangares, 1 carril con aceras				

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	1.15	ton/m
PDW Distribuida	1.29	ton/m
PLL+IM+PL Distribuida	31.83	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0
Angulo de fricción entre el	0.00	0
suelo y el muro		
Angulo del material del suelo	0.00	0
con la horizontal	0.00	
Angulo de inclinación del	90.00	0
muro del lado del terreno	90.00	
Angulo de inclinacion del	0.00	0
material con la horizontal	0.00	
Peso unitario del suelo	1556.00	kg/m3
Capacidad admisible con	28552.00	kg/m2
factor de seguridad	28332.00	Kg/IIIZ
FS	3.00	
Coeficiente sísmico de	0.41	
aceleración	0.41	
Coeficiente de sitio	1.00	

Dimensionamiento					
D	1.00	m			
Н	5.95	m			
В	4.00	m			
h	0.60	m			
d	0.60	m			
С	0.40	m			
a	1.30	m			
e	0.05	m			
H1	0.55	m			
H2	4.80	m			
f	0.25	m			
g	0.10	m			
i i	0.40	m			
j	0.20	m			
b	2.30	m			
Longitud de asiento minima	0.33	m			
Base del diente	N/A	m			
Altura del diente	N/A	m			

Revisión por vuelco							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) emax (m) Revisi							Revisión
Resistencia	101.694	215.633	56.257	1.567	0.433	1.333	CUMPLE
Evento Extremo	48.918	91.700	51.845	0.815	1.185	1.600	CUMPLE

Revisión por deslizamiento						
Revisión sin diente						
Estados VU (ton/m) ØTRT(ton/m) Actuante Hu Revisión						
Resistencia	101.694	52.842	19.503	CUMPLE		
Evento Extremo	48.918	25.419	18.813	CUMPLE		

Revisión con diente				
Estados	ØTRT(ton/m)	Actuante Hu	Revisión	
Resistencia	N/A	N/A	NO REQUIERE DIENTE	
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE	

		Revisión por	capacidad				
Estado	VU (ton/m)	MVU (ton- m/m)	MHU (ton- m/m)	xo (m)	e (m)	q (kg/cm2)	Revisión
Resistencia	101.694	215.633	56.257	1.567	0.433	3.244	CUMPLE
Evento Extremo	48.918	91.700	51.845	0.815	1.185	3.002	CUMPLE
Servicio	65.909	135.115	34.748	1.523	0.477	2.164	CUMPLE

DISEÑO ES	TRUCTURAL	
Pantalla	a del muro	
Acero	principal	
Varilla	6.000	
Recubrimiento	5.000	cm
As	27.762	cm2/m
Separación propuesta	9.000	cm
Verificación Acero minimo	CUMPLE	
Acero por	temperatura	
Varilla	4.000	
As temp	1.267	cm2/m
Separación a usar	40	m
Revisión por cortante	CUMPLE	

G:	, .,		
Cimentación			
Acero	superior		
Varilla	6.000 -		
As	20.646	cm2	
Separación a usar	13.500	cm	
Verificación Acero minimo	CUMPLE		
Acero por	temperatura		
Varilla	4.000		
As temp	4.696	cm2/m	
Separación a usar	27.000	cm	
Revisión del talón por	CUMPLE		
cortante			
Acero	Inferior		
Varilla	6.000	-	
As	17.134	cm2	
Separación a usar	16.000	cm	
Verificación Acero minimo	CUMPLE		
Revisión de la punta por	CUMPLE		
cortante			

Revisión	Rigidez de la Cimentac	ión
L	4.000	m
В	0.600	m
Ec	25267132.801	kg/cm2
Ι	3.200	m4
Ks	2.650	0
Revisión	93.796	CUMPLE

Apéndice 8. Reporte Estructural para Puente Canal Oeste Tramo II y III longitud de 8 metros.			
A continuación se muestra la memoria de cálculo para el puente Canal Oeste Tramo II y III con una longitud de 8 metros con un carril y acera a ambos lados.			

Diseño de Puente Tipo Viga-Losa			
	-		
Diseñado por	VMF		
Nombre proyecto	Canal Oeste Tramo II y III		

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	8.00	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de	2250.00	1ra/m2
rodamiento	2230.00	kg/m3
Peso concreto	2400.00	kg/m3

Cantidad de vigas principales	4.000	
Espesor de losa	0.225	m
Peralte compuesto a usar	0.800	m
Ancho a usar	0.400	m

	Franja	interior	Viga Principal	
Momento elementos estructurales	-1.07	0.76	20.18	ton-m
Momento elementos no estructurales	-0.22	0.16	8.78	ton-m
Ancho de franja	1.79	1.92	1.50	m
$M_{LL}+M_{IM}$	-3.93	1.311140498	21.24	ton-m/mfranja
Momento de Carga Peatonal	-	0.08	3.55	ton-m/mfranja
	•			
Momento Fuerza Frenado	-3.37	3.93	17.63	ton-m

Ubicaci	ón	
Provincia	Cantón	Distrito
Guanacaste	Cañas	Todos

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

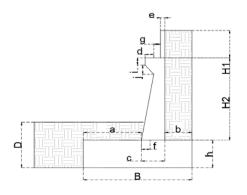
	Franja	interior	Viga Principal	
Momento de diseño mayorado Resistencia	-14.44	3.48	112.63	ton-m
Momento de diseño mayorado Servicio	-8.59	2.23	71.38	ton-m
Cortante mayorado	9.	.46	49.60	ton

Franja Interior Acero Inferior				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero Perpendicular al transito	21.11	8.00	24.00	
Acero paralelo al transito	5.28 6.00 24.00			
Espesor losa (m)	0.23			
Recubrimiento superior (cm)		5.00		
Recubrimiento inferior (cm)	5.00			

Franja Interior Acero Superior				
	Área de acero (cm2)	Número varilla	Separación (cm)	
Acero Perpendicular al transito	28.15	8.00	18.00	
Acero paralelo al transito	11.88 6.00 24.00			
Espesor losa (m)		0.23		
Recubrimiento superior (cm)	5.00			
Recubrimiento inferior (cm)	5.00			

Viga Principal			
	Área de acero (cm2)	Número varilla	Separación (cm)
Capa acero 1	27.16	7#7	1.00
Capa acero 2	27.16	7#7	1.00
Capa acero 3	0.00	#	0.00
Acero cortante 2 ramas	2.53	4.00	20.00
Peralte viga (cm)	80.00		
Espesor viga (cm)	40.00		
Recubrimiento superior (cm)	5.00		

Viga Diafragma			
	Área de acero		Separación
	(cm2)	Número varilla	(cm)
Capa acero 1	5.70	2#6	8.00
Capa acero 2	5.70	2#6	8.00
Capa acero 3	0.00	#	0.00
Acero cortante 2 ramas	2.53	4.00	22.50
Peralte viga (cm)	50.00		
Espesor viga (cm)	25.00		
Recubrimiento superior (cm)	5.00		



de Costa Rica		
Diseño de Bastión para Puente Tipo Viga-Losa		
Diseñado por	VMF	
Nombre proyecto	Canal Oeste Tramo II y III	

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	2.85	ton/m
PDW Distribuida	1.51	ton/m
PLL+IM+PL Distribuida	29.61	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0
Angulo de fricción entre el	0.00	0
suelo y el muro	0.00	
Angulo del material del suelo	0.00	0
con la horizontal	0.00	
Angulo de inclinación del	90.00	0
muro del lado del terreno	90.00	
Angulo de inclinacion del	0.00	0
material con la horizontal	0.00	
Peso unitario del suelo	1556.00	kg/m3
Capacidad admisible con	28552.00	kg/m2
factor de seguridad	26332.00	Kg/IIIZ
FS	3.00	
Coeficiente sísmico de	0.41	
aceleración	0.41	
Coeficiente de sitio	1.00	

Dimensionamiento					
D	1.00	m			
Н	5.95	m			
В	4.00	m			
h	0.60	m			
d	0.60	m			
С	0.40	m			
a	1.30	m			
e	0.05	m			
H1	1.10	m			
H2	4.25	m			
f	0.25	m			
g i	0.10	m			
i	0.40	m			
j	0.25	m			
b	2.30	m			
Longitud de asiento minima	0.33	m			
Base del diente	N/A	m			
Altura del diente	N/A	m			

Revisión por vuelco							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) emax (m) Revisión							
Resistencia	99.919	211.329	56.257	1.552	0.448	1.333	CUMPLE
Evento Extremo	49.451	93.433	55.665	0.764	1.236	1.600	CUMPLE

Revisión por deslizamiento						
Revisión sin diente						
Estados VU (ton/m) ØTRT(ton/m) Actuante Hu Revisión						
Resistencia	99.919	51.919	19.503	CUMPLE		
Evento Extremo	49.451	25.696	19.571	CUMPLE		

Revisión con diente					
Estados ØTRT(ton/m) Actuante Hu Revisión					
Resistencia	N/A	N/A	NO REQUIERE DIENTE		
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE		

Revisión por capacidad							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) q (kg/cm2) Revisió							Revisión
Resistencia	99.919	211.329	56.257	1.552	0.448	3.219	CUMPLE
Evento Extremo	49.451	93.433	55.665	0.764	1.236	3.238	CUMPLE
Servicio	65.332	133.906	34.748	1.518	0.482	2.152	CUMPLE

DISEÑO ESTRUCTURAL					
Pantalla del muro					
Acero principal					
Varilla	6.000				
Recubrimiento	5.000	cm			
As	30.640	cm2/m			
Separación propuesta	8.500	cm			
Verificación Acero minimo	CUMPLE				
Acero por t	temperatura				
Varilla	4.000				
As temp	1.267	cm2/m			
Separación a usar	40	m			
Revisión por cortante	CUMPLE				

Cima					
Cimentación					
Acero superior					
Varilla	6.000 -				
As	20.646	cm2			
Separación a usar	13.500	cm			
Verificación Acero minimo	CUN	MPLE			
Acero por temperatura					
Varilla	4.000				
As temp	4.696	cm2/m			
Separación a usar	27.000	cm			
Revisión del talón por	CUMPLE				
cortante					
Acero	Inferior				
Varilla	6.000	-			
As	17.032	cm2			
Separación a usar	16.000	cm			
Verificación Acero minimo	CUMPLE				
Revisión de la punta por	CUMPLE				
cortante	CUMPLE				

Revisión Rigidez de la Cimentación				
L	4.000	m		
В	0.600	m		
Ec	25267132.801	kg/cm2		
I	3.200	m4		
Ks	2.650	0		
Revisión	93.796	CUMPLE		

Apoyo elastomo	erico con refuerz	0	
Ancho Propuesto	40	cm	a
Largo Propuesto	12.5	cm	b
Cantidad de capas interiores	2.000	cm	
Espesor capa interior	0.500	cm	
Espesor capa exterior	0.250	cm	
Espesor capa refuerzo	0.038	cm	
Espesor total	1.614	cm	
Espesor placa	3.810	3.810	
Pernos	2 de 3.81cm		
Anclaje perno	52.500	cm	

Espaciamiento del perno al borde corto	5.000	cm	
Espaciamiento del perno al elemento	5.000	cm	h
Recubrimiento del perno a la cara externa del bastión	30.000	cm	gg
Largo de la placa	22.500	cm	f
Ancho de la placa	67.620	cm	i

Apéndice 9. Reporte Estructural para Puente Canal Oeste Tramo II y III longitud de 18.20 metros.
A continuación se muestra la memoria de cálculo para el puente Canal Oeste Tramo II y III con una longitud de 18.20 metros con un carril y acera a ambos lados.

de Costa Rica				
Diseño de Puente Tipo Viga-Losa				
Diseñado por	VMF			
Nombre proyecto	Canal Oeste Tramo II y III			

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
Superficie de rodadura	0.05	m
Luz del puente	18.20	m
Carriles (LC)	3.60	m / carril
Carril más barrera	4.48	m / carril
Ancho base baranda New Jersey	0.44	m
Acera	1.20	m/ acera
Espesor acera	0.25	m
Peso especifico superficie de rodamiento	2250.00	kg/m3
Peso concreto	2400.00	kg/m3

Cantidad de vigas principales	4.000	
Espesor de losa	0.225	m
Peralte compuesto a usar	1.400	m
Ancho a usar	0.450	m

	Franja	interior	Viga Principal	
Momento elementos estructurales	-1.07	0.76	126.09	ton-m
Momento elementos no estructurales	-0.22	0.16	45.46	ton-m
Ancho de franja	1.79	1.92	1.50	m
$M_{LL}+M_{IM}$	-3.44	1.311140498	64.69	ton-m/mfranja
Momento de Carga Peatonal	-	0.08	18.38	ton-m/mfranja
Momento Fuerza Frenado	-3.37	3.93	17.63	ton-m

Ubicación				
Provincia Cantón Distrito				
Guanacaste	Cañas	Todos		

Sitio Cimentación	s3
Zona Amenza Sismica	III
Clasificación del Puente	Convencionales

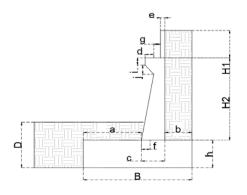
	Franja	interior	Viga Principal	
Momento de diseño mayorado Resistencia	-13.59	3.48	402.03	ton-m
Momento de diseño mayorado Servicio	-8.10	2.23	272.25	ton-m
Cortante mayorado	9.	.08	89.23	ton

Franja Interior Acero Inferior					
	Área de acero (cm2)	Número varilla	Separación (cm)		
Acero Perpendicular al transito	21.11	8.00	24.00		
Acero paralelo al transito	11.88	6.00	24.00		
Espesor losa (m)		0.23			
Recubrimiento superior (cm)		5.00			
Recubrimiento inferior (cm)		5.00			

Franja Interior Acero Superior						
	Área de acero (cm2) Número varilla Separació (cm)					
Acero Perpendicular al transito	25.98	8.00	19.50			
Acero paralelo al transito	11.88	11.88 6.00 24.00				
Espesor losa (m)		0.23				
Recubrimiento superior (cm)	5.00					
Recubrimiento inferior (cm)	5.00					

Viga Principal					
	Área de acero (cm2)	Número varilla	Separación (cm)		
Capa acero 1	40.54	8#8	1.00		
Capa acero 2	40.54	8#8	1.00		
Capa acero 3	20.27	4#8	7.00		
Acero cortante 2 ramas	2.53	4.00	25.00		
Peralte viga (cm)		140.00			
Espesor viga (cm)		45.00			
Recubrimiento superior (cm)	5.00				

Viga Diafragma				
	Área de acero	Separación		
	(cm2)	Número varilla	(cm)	
Capa acero 1	5.70	2#6	8.00	
Capa acero 2	5.70	2#6	8.00	
Capa acero 3	0.00	#	0.00	
Acero cortante 2 ramas	2.53	4.00	20.00	
Peralte viga (cm)	65.00			
Espesor viga (cm)	25.00			
Recubrimiento superior (cm)	5.00			



de Costa Rica				
Diseño de Bastión para Puente Tipo Viga-Losa				
Diseñado por	VMF			
Nombre proyecto	Canal Oeste Tramo II y III			

Resistencia del concreto	280.00	kg/cm2
Fluencia del acero	4200.00	kg/cm2
PDC Distribuida	3.68	ton/m
PDW Distribuida	1.51	ton/m
PLL+IM+PL Distribuida	43.98	ton/m
BR Distribuida	1.42	ton/m
hBR	1.80	m
γс	2400.00	kg/m3

Angulo de fricción interna	30.00	0
Angulo de fricción entre el	0.00	0
suelo y el muro	0.00	
Angulo del material del suelo	0.00	0
con la horizontal	0.00	
Angulo de inclinación del	90.00	0
muro del lado del terreno	90.00	
Angulo de inclinacion del	0.00	0
material con la horizontal	0.00	
Peso unitario del suelo	1556.00	kg/m3
Capacidad admisible con	28552.00	kg/m2
factor de seguridad	26332.00	Kg/IIIZ
FS	3.00	
Coeficiente sísmico de	0.41	
aceleración	0.41	
Coeficiente de sitio	1.00	

Dimensionamiento				
D	1.00	m		
Н	5.95	m		
В	4.20	m		
h	0.60	m		
d	0.60	m		
С	0.40	m		
a	1.50	m		
e	0.05	m		
H1	1.70	m		
H2	3.65	m		
f	0.25	m		
g	0.10	m		
i i	0.40	m		
j	0.20	m		
b	2.30	m		
Longitud de asiento minima	0.35	m		
Base del diente	N/A	m		
Altura del diente	N/A	m		

Revisión por vuelco							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) emax (m) Revisión							Revisión
Resistencia	126.191	283.013	56.257	1.797	0.303	1.400	CUMPLE
Evento Extremo	57.534	116.486	56.718	1.039	1.061	1.680	CUMPLE

Revisión por deslizamiento						
Revisión sin diente						
Estados VU (ton/m) ØTRT(ton/m) Actuante Hu Revisión						
Resistencia	126.191	65.571	19.503	CUMPLE		
Evento Extremo	57.534	29.895	19.920	CUMPLE		

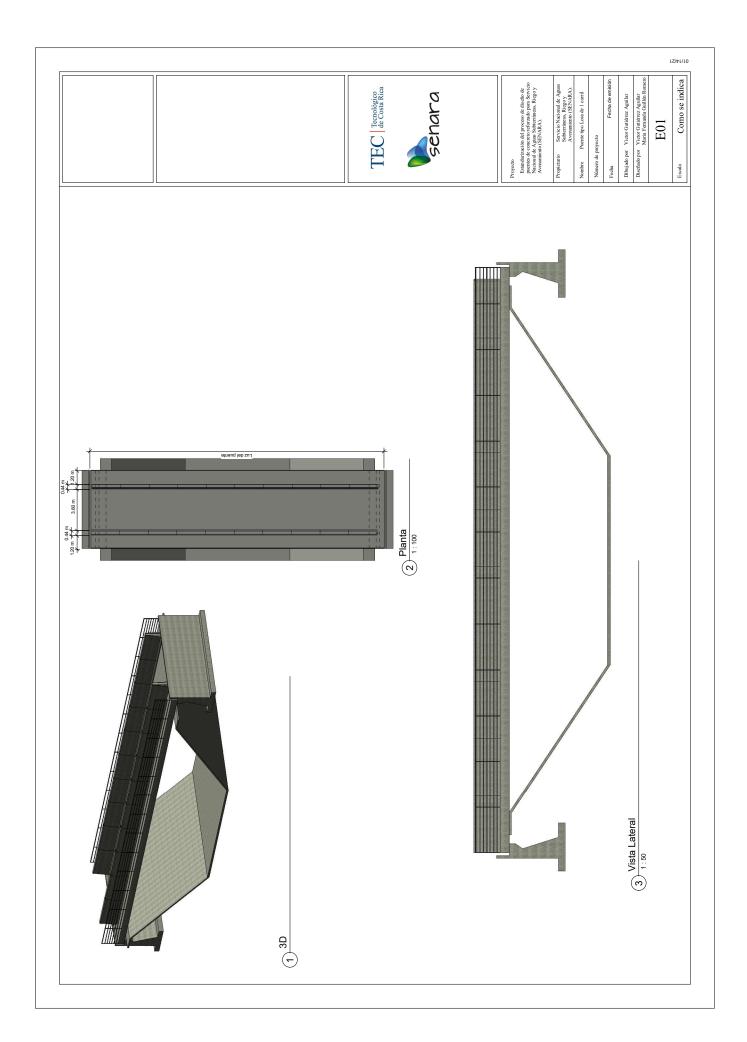
Revisión con diente					
Estados ØTRT(ton/m) Actuante Hu Revisión					
Resistencia	N/A	N/A	NO REQUIERE DIENTE		
Evento Extremo	N/A	N/A	NO REQUIERE DIENTE		

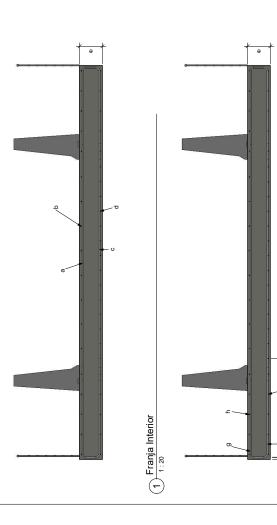
Revisión por capacidad							
Estado VU (ton/m) MVU (ton-m/m) MHU (ton-m/m) xo (m) e (m) q (kg/cm2) Revi							Revisión
Resistencia	126.191	283.013	56.257	1.797	0.303	3.511	CUMPLE
Evento Extremo	57.534	116.486	56.718	1.039	1.061	2.769	CUMPLE
Servicio	80.595	175.989	34.748	1.752	0.348	2.299	CUMPLE

DISEÑO ESTRUCTURAL					
Pantalla del muro					
Acero principal					
Varilla 6.000					
Recubrimiento	cm				
As	31.376	cm2/m			
Separación propuesta	9.000	cm			
Verificación Acero minimo	CUMPLE				
Acero por	temperatura				
Varilla	4.000				
As temp	1.267	cm2/m			
Separación a usar 37.5 m					
Revisión por cortante CUMPLE					

~:	.,				
Cimentación					
Acero superior					
Varilla	6.000 -				
As	20.646	cm2			
Separación a usar	13.500	cm			
Verificación Acero minimo	CUN	MPLE			
Acero por temperatura					
Varilla	4.000				
As temp	4.725	cm2/m			
Separación a usar	26.500	cm			
Revisión del talón por	CUMPLE				
cortante	Cur	VIPLE			
Acero	Inferior				
Varilla	6.000	-			
As	24.061	cm2			
Separación a usar	10.000	cm			
Verificación Acero minimo	CUMPLE				
Revisión de la punta por	CHMPLE				
cortante	CUMPLE				

Revisión Rigidez de la Cimentación						
L 4.200 m						
В	0.600	m				
Ec	25267132.801	kg/cm2				
I	3.704	m4				
Ks	2.650	0				
Revisión	97.291	CUMPLE				


Apoyo elastomo	erico con refuerz	0	
Ancho Propuesto	45	cm	a
Largo Propuesto	15	cm	b
Cantidad de capas interiores	3.000	cm	
Espesor capa interior	0.800	cm	
Espesor capa exterior	0.400	cm	
Espesor capa refuerzo	0.064	cm	
Espesor total	3.457	cm	
Espesor placa	3.810	3.810	
Pernos	2 de 3.81cm		
Anclaje perno	50.000	cm]



Espaciamiento del perno al borde corto	5.000	cm	
Espaciamiento del perno al elemento	5.000	cm	h
Recubrimiento del perno a la cara externa del bastión	30.000	cm	g
Largo de la placa	25.000	cm	f
Ancho de la placa	72.620	cm	i

Apéndice 10. Propuesta de planos para puente tipo losa. A continuación se muestra el conjunto de planos que fue desarrollado para SENARA, para el caso de puentes tipo losa.

01/14/21

Exterior 1:20

Acero	Descripción			Luz del puente (m)	ente (m)		
		2	3	4	5	6.20	8
	Perpendicular Superior Interior	#6@10.0cm	#6@12.5cm	#6@17.5cm	#6@35.0cm	#6@45.0cm	#6@45.0cm
	Paralelo Superior Interior	#6@10.0cm	#6@12.5cm	#6@17.5cm	#6@35.0cm	#6@45.0cm	#6@45.0cm
	Perpendicular Inferior Interior	#8@20.0cm	#8@25.0cm	#8@27.5cm	#8@32.5cm	#8@37.5cm	#8@45.0cm
	Paralelo Inferior Interior	#8@7.5cm	#8@7.5cm	#8@7.5cm	#8@8.0cm	#8@8.0cm	#8@9.5cm
	Espesor de losa	25.0cm	27.5cm	30.0cm	32.5cm	36.5cm	48.0cm
	Ancho Franja de Borde	1.30m	1.30m	1.40m	1.40m	1.40m	1.50m
	Perpendicular Superior Borde	#6@30.0cm	#6@35.0cm	#6@37.5cm	#6@42.5cm	#6@45.0cm	#6@45.0cm
	Paralelo Superior Borde	#6@30.0cm	#6@35.0cm	#6@37.5cm	#6@42.5cm	#6@45.0cm	#6@45.0cm
	Perpendicular Inferior Borde	#8@30.0cm	#8@35.0cm	#8@37.5cm	#8@42.5cm	#8@42.5cm	#8@45.0cm
	Paralelo Inferior Borde	#8@15.0cm	#8@12.5cm	#8@12.0cm	#8@10.0cm	#8@9.5cm	#8@10.0cm

	TEC Tecnológico de Costa Rica
	senara
Proy	Proyecto
й <u>к</u> .2 <	Estandarización del proceso de diseño de pentenes de conceto reforzado para Servicio bacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).
Proj	Propietario Servicio Nacional de Aguas Subterrâncas, Riego y Avenamiento (SENARA).
Nombre	abre Puente tipo Losa de 1 carril
Nún	Número de proyecto
Fecha	na Fecha de emisión
Dib	Dibujado por Victor Gutiérrez Aguilar
Disc	Diseñado por Victor Gutiérrez Aguilar Maria Fernanda Guillén Romero
	E02
Escala	nla 1:20

#4@40.0cm

#4@40.0cm

#4@42.5cm

#4@45.0cm 4.00

#4@45.0cm

#4@45.0cm

Acero temperatura pantalla Acero principal pantalla Acero superior cimiento

3.00

2.00

#6@9.0cm

#6@9.0cm

#6@8.5cm

#6@7.5cm

#6@7.5cm

#6@7.0cm

8.00

6.20

Luz del puente (m)

Vista Lateral Bastión Acero

Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).
Propietario Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).
Nombre Puente tipo Losa de 1 carril
Número de proyecto
Fecha de emisión
Dibujado por Victor Gutiérrez Aguilar
Diseñado por Victor Gutiérrez Aguilar Maria Femanda Guillén Romero

#4@27.0cm

#4@27.0cm

#4@27.0cm #4@27.0cm #6@20.0cm

#4@27.0cm #6@16.0cm #8@5.0cm

#4@27.0cm

#4@27.0cm #6@19.5cm

#6@18.0cm

#8@5.0cm #4@5.0cm

#8@5.0cm

#8@5.0cm #4@5.0cm

#8@5.0cm

Acero principal ménsula Acero inferior cimiento

#4@5.0cm

#6@20.0cm

#6@20.0cm #8@5.0cm #4@5.0cm

#4@27.0cm

#4@27.0cm #4@27.0cm

#4@5.0cm

#6@13.5cm

#6@13.5cm

#6@13.5cm #4@27.0cm

#6@13.5cm

#6@13.5cm #4@27.0cm

#6@13.5cm

Fecha	Fecha de emisión
Dibuj ado por	Dibujado por Victor Gutiérrez Aguilar
Diseñado por	Diseñado por Victor Gutiérrez Aguilar Maria Fernanda Guillén Romero
	E03
Escala	1:10

Fecha	Fecha de emisio
Dibujado por	Victor Gutiérrez Aguilar
Diseñado por	Victor Gutiérrez Aguilar Maria Fernanda Guillén Roms
	E03

#4@5.0cm

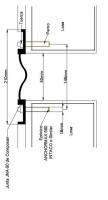
	Vista La)		Descripción		Acero temperatura pant	Acero principal pantalla	A chaiming round of the chain	Acero temperatura	cimiento	Acero temperatura cimiento	Acero inferior cimiento	Acero principal ménsula		Estribos ménsula		
				Acero		æ	۵	C	٥	ס	Φ	-		ກ	ح		
† н <u>*</u> ‡			8.00	2.30	0.40	09:0	0.05	0.25	0.10	09:0	0.40	0.20	4.00	1.00	5.95	0.55	4.80
· · · · · · · · · · · · · · · · · · ·	†		6.20	2.30	0.40	09:0	0.05	0.25	0.10	09:0	0.40	0.20	3.90	1.00	5.95	0.40	4.95
TH TH			5.00	2.30	0.35	09:0	0.05	0.20	0.10	09:0	0.40	0.20	3.85	1.00	5.95	0.40	4.95
		Luz del puente (m)	4.00	2.30	0.35	09:0	0.05	0.20	0.10	09:0	0.40	0.20	3.80	1.00	5.95	0.35	9:00
* * *	Bastión		3.00	2.30	0.35	09:0	0.05	0.20	0.10	09:0	0.40	0.20	3.80	1.00	5.95	0.35	5.00
	√ Vista Lateral Bastión		2.00	2.30	0:30	09:0	0.05	0.15	0.10	09:0	0.40	0.20	3.75	1.00	5.95	0:30	5.05
a a	<u>-</u>			۵ م	0	P	9	ı	6	ء		j	В	O	I	Ξ	오

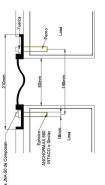
NOTAS GENERALES

EL DISEÑO ESTA CON BASE A LAS SIGUIENTES NORMAS Y CÓDIGOS:

ESPECIFICACIONES PARA EL DISEÑO DE PUENTES AASHTO LRFD 2020 REGLAMENTO CONCRETO ESTRUCTURAL ACI 318-19 LINEAMIENTOS PARA EL DISEÑO SISMORRESISTENTE DE PUENTES, CFIA.

COMO CARGAS DE DISEÑO SE TIENEN LAS SIGUIENTES:


CARGA SÍSMICA ZONA SÍSMICA III SUELO TIPO S3 PUENTE DE IMPORTANCIA CONVENCIONAL Ca 0.41 Cv 0.60


CARGA VIVA HL-93

ESPECIFICACIONES DE MATERIALES:

CONCRETO: PARA TODOS LOS ELEMENTOS SE UTILIZA CONCRETO REFORZADO CON $fc=280~kg/cm^2$

ACERO DE REFUERZO: TODAS LAS VARILLAS DEBEN DE SER GRADO 60. CON UN ESFUERZO MÍNIMO DE FLUENCIA DE 1⁄7= 4200 kg/cm² TODAS LAS VARILLAS DEBERÁN DE SER CORRUGADAS ASTM A-706.

	Loss	
Similar	18mm 148mm Losa	Detalle Junta
INTACO o Similar		II.

Detalle acero Losa

0.292	0		0	
	0		0	
0.292	0		0	
92 0.292	-0	50 de Composan	0	
0.292		90 de		

0

0

0

0.292

0

0

0

0

90'0 0.146

Detalle Junta Vista Superior

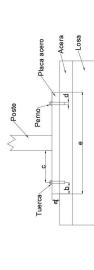
		Traslape (mm)	009	750	1000	1150	1350	1550	1750	2000
TRASLAPOS	5	Ld (mm)	400	550	200	800	1000	1400	1750	2200
F	fy=4200kg/cm ²	Diametro (mm)	9.52	12.70	15.87	19.05	22.22	25.40	28.65	32.15
		Varilla	3	4	5	9	7	8	6	10

		LAG (mm)	145	188	238	288	332	376	465	520
LONGITUD DE ANCLAJE	-2	LAR (mm)	250	350	400	200	550	650	750	800
LONGITI	fy=4200kg/cm ²	Diametro (mm)	9.52	12.70	15.87	19.05	22.22	25.40	28.65	32.15
		Varilla	ဧ	4	5	9	7	8	6	10

RECUBRIMIENTOS	
Elemento	Recubrimiento (mm)
Fondo de losa	25
Parte superior losa	50
Vigas	50
Bastión contra relleno	70
Bastión frente	50
Cimiento y diente en el fondo	75
Cimiento y diente en la parte superior	20

Tecnológico de Costa Rica	
TEC	2

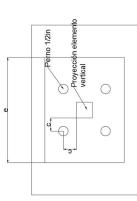
usaminarhaton est proceso or esceno de pramina de conserior reforzado para Servicio Procesamina de Aguas Subserminasas. Riego y Accumination (SERNRA). Propietario Servicio Nacional de Aguas Substrañasas. Riego y Substrañasas. Riego y	Avenamien to (SENARA). Nombre Puente tipo Losa de 1 carril	Número de proyecto	Fecha de emisión
---	---	--------------------	------------------


Diseñado nor	Diseñado nor Victor Gutiérrez Aguilar
	Maria Femanda Guillén Romer
	E04

	1:10
E04	
	scala

Como se indica

E05



atonal Detalle

Placa 200x100mmx16mm

m ðl.ľ

Tubo redondo 2" (51x1.2mm)

Barandal Peatonal Corte

1 Detalle baranda New Jersey

0.44 m

eatonal Detalle

TEC Tecnológico de Costa Rica

senara

ida Peatonal	Dimensión	1.58mm	12.50cm	4cm	4 pernos de 1/2in	20x20cm
Anclaje Baranda Peatonal	Detalle	a	q	၁	р	ө

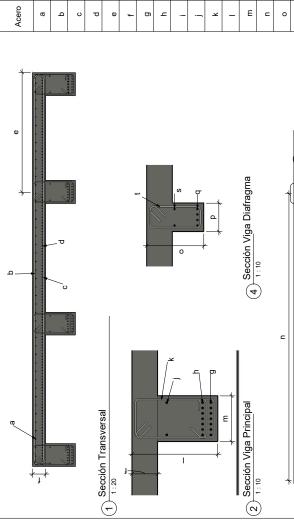
Estandarización del proceso de diseño de puentes de concreto reforzado para Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).

ropietario Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).

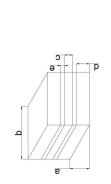
Nombre Puente tipo Losa de 1 carril

Fecha de emisión

Dibujado por Victor Gutiérrez Aguilar


Acera and Acera	Pemo 1/2in Proyección elemento vertical	randa Pe
Anclaje Baranda	Proyect vertical	Anclaje Baranda Anclaje Baranda Peatonal

Barandal Peatonal Lateral


	†	w 0	l'1	1	
2.00 m					Tubo redondo 2" (51x1.2mm)
Tubo redondo 2" (51x1.2mm)					

Apéndice 11. Propuesta de planos para puente tipo viga-losa. A continuación se muestra el conjunto de planos que fue desarrollado para SENARA, para el caso de puentes tipo viga-losa.

(1) 3D

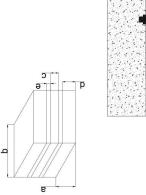
		Luz del p	Luz del puente (m)
Acero	Descripcion Acero	8.0	19.2
а	Paralelo Superior Losa	#6@24.0cm	#6@24.0cm
q	Perpendicular Superior Losa	#8@18.0cm	#8@19.5cm
O	Perpendicular Inferior Losa	#8@24.0cm	#8@24.0cm
þ	Paralelo Inferior Losa	#6@24.0cm	#6@24.0cm
ө	Separación entre vigas	2.29m	2.29m
f	Espesor losa	23.0cm	23.0cm
б	Capa acero 1 viga principal	L#L	8#8
ч	Capa acero 2 viga principal	2#2	8#8
-	Capa acero 3 viga principal	N/A	4#8
į	Acero por requerimiento peralte	7 #	#4
×	Acero cortante	#4@20.0cm	#4@25.0cm
-	Peralte viga principal	80.0cm	140.0cm
Е	Ancho viga principal	40.0cm	45.0cm
ч	Separación vigas diafragma	4.0m	9.1m
0	Peralte viga diafragma	50.0cm	65.0cm
р	Ancho viga diafragma	25.0cm	25.0cm
ф	Capa acero 1	5#6	5#6
_	Capa acero 2	5#6	5#6
s	Acero por requerimiento	#4	#4
ţ	Acero por cortante	#4@22.5cm	#4@20.0cm

18.20 45.00cm 15.00cm 3 capas 0.80cm 0.40cm

8.00

40.00cm 12.50cm 2 capas

a Ω


Dimensión paralela al eje del puente Dimensión perpendicular al eje del puente

Luz del puente (m)

Apoyo elastomerico con refuerzo

3) Viga Diafragma

Hueco Ojo Chino en apoyo expansión

0.064cm

0.038cm

Espesor capa refuerzo

Φ

0.50cm 0.25cm

Espesor capa interna Espesor capa externa

ပ Р

Capas interiores

25.00cm 30.00cm

22.50cm

30.00cm

Separación del perno al borde de placa Separación del perno al borde de apoyo

б ے

Dimensión paralela al eje del puente para la placa

5.00cm

Detalle Anclaje Apoyos

Placa de acero	Perno de anclaje
	Apoyo elastomérico

2 de 1 1/2in

2 de 1 1/2in

3.81cm

3.81cm

Espesor placa Anclaje perno

72.62cm 5.00cm

67.62cm

Dimensión perpendicular al eje del puente para la placa

50.00cm

52.50cm

Proyección Apoyo Neopreno

Apoyo Fijo

Apoyo Móvil

	Avenamiento (SENARA).
	Propietario Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).
	Nombre Puente tipo Viga-Losa de 1 carril
	Número de proyecto
	Fecha de emisión
	Dibujado por Victor Gutiérrez Aguilar
-	

Maria Fernanda Guille	E02
-----------------------	-----

	se indica
E02	Como se i

Detalle Anclaje Apoyos

Proyecto
Estandarización del proceso de diseño de puentes de concreto reforzado para Servicio Nacional de Aguas Subierráneas, Riego y

#4@37.5cm

#4@40.0cm

Acero temperatura pantalla

ø Q o Ф Φ

Descripción

Acero

18.2

8.0

Luz del puente (m)

#6@9.0cm

#6@8.5cm

Avenante	Avenamento (SENAKA).
Propietario	Servicio Nacional de Agua Subterráneas, Riego y Avenamiento (SENARA).
Nombre	Puente tipo Viga-Losa de 1 carril

#6@13.5cm #4@27.0cm #4@27.0cm

#6@13.5cm

#4@27.0cm

Acero temperatura cimiento Acero temperatura cimiento

Acero superior cimiento

Acero principal pantalla

Avenamiento (SENA	Nombre Puente tipo Viga-Losa de carril	Número de proyecto	op opposit
-------------------	--	--------------------	------------

	_
yecto	
Número de proyecto	
Númer	Fecha

Fecha	Fecha de emisión
Dibujado por	Victor Gutiérrez Aguilar
Diseñado por	Victor Gutiérrez Aguilar Maria Femanda Guillén Romero

#8@5.0cm #4@5.0cm

#8@4.0cm #4@4.0cm

Acero principal ménsula

б ے

Estribos ménsula

Acero inferior cimiento

#6@10.0

#4@27.0cm #6@16.0cm

remanda	03
Mana	E

E03	1:1
I	cala

2) Vista		P		Vista Lateral Bastión Acero
----------	--	---	--	-----------------------------

_			
2			

*		н		ų l	_	-															
0	IH	ZH																			
*	0			•	В		(m)	1.50	2.30	0.40	09:0	0.25	0.10	0.60	0.40	0.20	4.20	1.00	5.95	1.70	3.65
	Ver detalle apoyo	, , ,				tión	Luz del puente (m)	1.30	2.30	0.40	0.60	0.25	0.10	0.60	0.40	0.25	4.00	1.00	5.95	1.10	4.25
	>			a		eral Bas		a	۵	υ	p 4	-	6	٩	-	_	ш	O	I	Ξ	¥
			,	a	<u>_</u>	Vista Lateral Bastión)														

NOTAS GENERALES

EL DISEÑO ESTA CON BASE A LAS SIGUIENTES NORMAS Y CÓDIGOS:

ESPECIFICACIONES PARA EL DISEÑO DE PUENTES AASHTO LRFD 2020 REGLAMENTO CONCRETO ESTRUCTURAL ACI 318-19 LINEAMIENTOS PARA EL DISEÑO SISMORRESISTENTE DE PUENTES, CFIA.

Traslape (mm)

Ld (mm)

TRASLAPOS

fy=4200kg/cm² Diametro (mm) 400

9.52

က 4 2 9

Varilla

900 750 1750

1750

2000

2200

32.15

10

1550

1350

1000 1400

22.22

25.40 28.65

ω 6

19.05

1000 1150

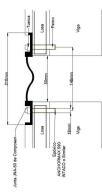
200 800

15.87

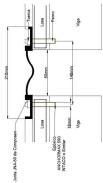
550

12.70

COMO CARGAS DE DISEÑO SE TIENEN LAS SIGUIENTES:


CARGA SÍSMICA ZONA SÍSMICA III SUELO TIPO S3 PUENTE DE IMPORTANCIA CONVENCIONAL Ca 0.41 Cv 0.60

CARGA VIVA HL-93


ESPECIFICACIONES DE MATERIALES:

CONCRETO: PARA TODOS LOS ELEMENTOS SE UTILIZA CONCRETO REFORZADO CON fc = 280 kg/cm²

ACERO DE REFUERZO: TODAS LAS VARILLAS DEBEN DE SER GRADO 60. CON UN ESFUERZO MÍNIMO DE FLUENCIA DE 1⁄5= 4200 kg/cm² TODAS LAS VARILLAS DEBERÁN DE SER CORRUGADAS ASTM A-706.

1) Detalle Acero Losa

		L	971.0]	
	0.146	0		0	
	0.292	0		0	
	0.292	0	Junta J	0	
	0.292	•	-Juπta JNA-50 de Composan		
	0.292	-0	san	0	
Detal	0.292	0		0	
Detalle Junta	0.292	-0		0	
		4)		O	

12.0

LONGITUD DE ANCLAJE

	LAG (mm)	145	188	238	288	332	376	465	520
2	LAR (mm)	250	350	400	200	550	650	750	800
fy=4200kg/cm ²	Diametro (mm)	9.52	12.70	15.87	19.05	22.22	25.40	28.65	32.15
	Varilla	3	4	5	9	7	80	6	10

RECUBRIMIENTOS	
Elemento	Recubrimiento (mm)
Fondo de losa	25
Parte superior losa	90
Vigas	90
Bastión contra relleno	70
Bastión frente	20
Cimiento y diente en el fondo	75
Cimiento y diente en la parte superior	50

0

0.292

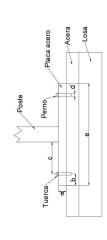
0

Detalle Junta Vista Superior

TEC Tecnológico de Costa Rica

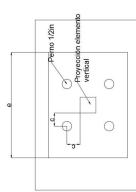
Estandarización del proceso de diseño de puentes de concreto reforzado para Servicio

Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).
Propietario Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).
Nombre Puente tipo Viga-Losa de 1 carril
Número de proyecto
Fecha de emisión
Dibujado por Victor Gutiérrez Aguilar
Diseñado por Victor Gutiérrez Aguilar Maria Fernanda Guillén Romero


Jibujado por Victor Guiterrez Aguitar	Diseñado por Victor Gutiérrez Aguilar Maria Fernanda Guillén Re	E04
Jibujado por	Diseñado por	

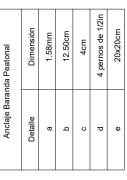
	1:20
E04	

Como se indica


E05

Peatonal Detall

Placa 200x100mmx16mm


m Gt.f

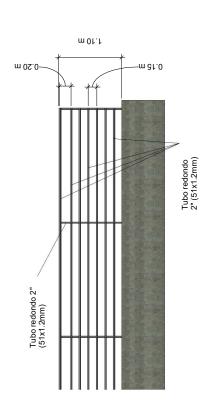
Baranda peatonal corte

Detalle baranda New Jersey

Peatonal Detall

Prepicturio Servicio Nacional de Aguas
Subterráneas, Riego y
Averandan b (SENARA).

Nombre Puente tipo Viga-Losa de I
carril

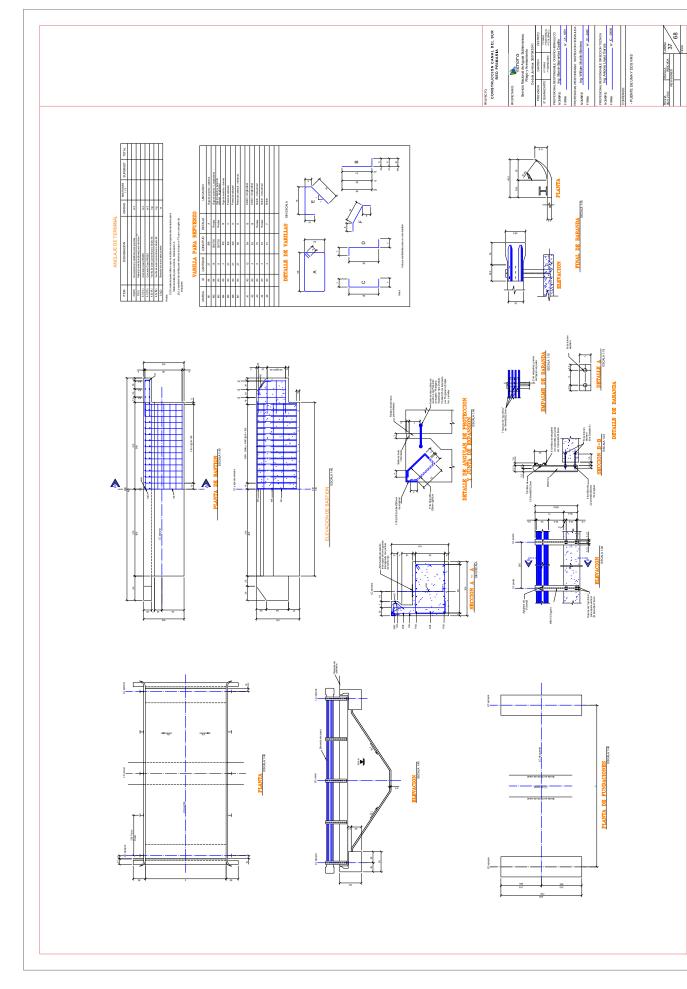

Dibujado por Victor Gutiérrez Aguilar

Estandarización del proceso de diseño de puentes de concreto reforzado para Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).

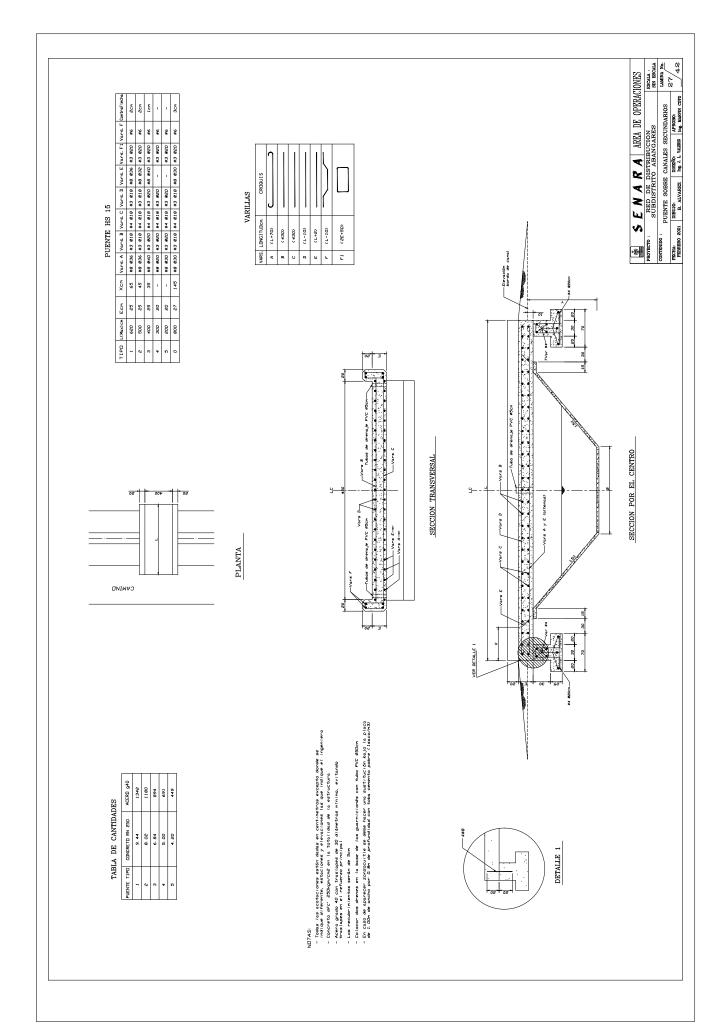
-H.d -Acera	e Baranda F		Perno 1/2in Proyección elemento vertical	nclaje Baranda	nda Peatonal	Dimensión	1.58mm	12.50cm	4cm	4 pernos de 1/2in	20x20cm
e ,	lle Anclaje	o.		le Anclaj	Anclaje Baranda Peatonal	Detalle	В	q	υ	р	Φ

TEC | Tecnológico de Costa Rica

senara

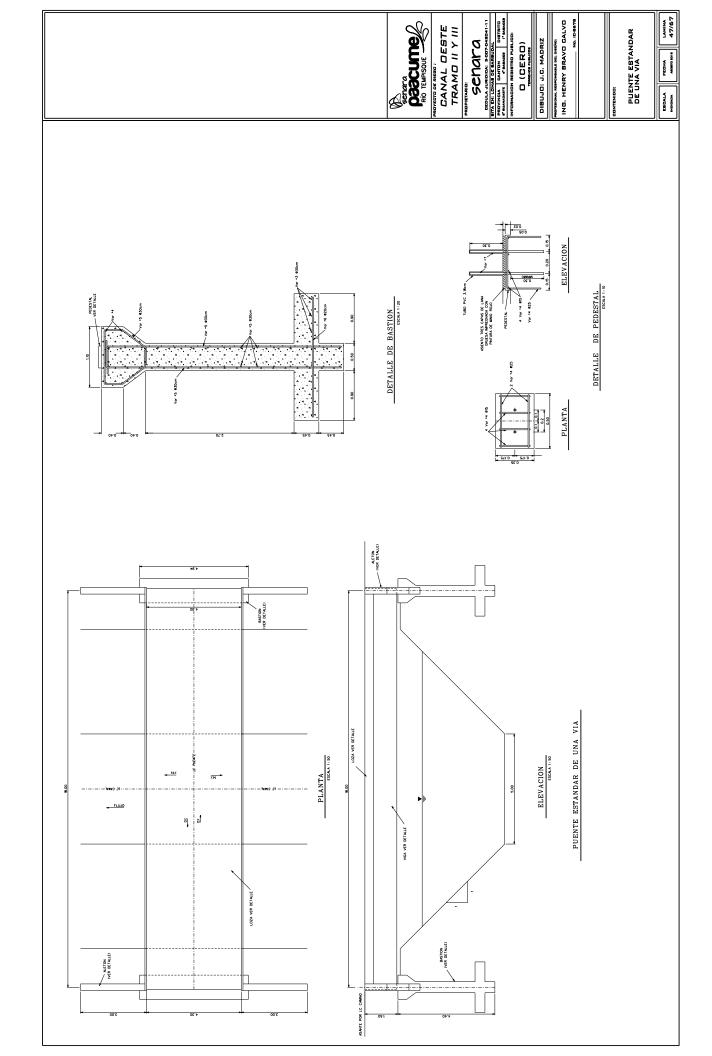


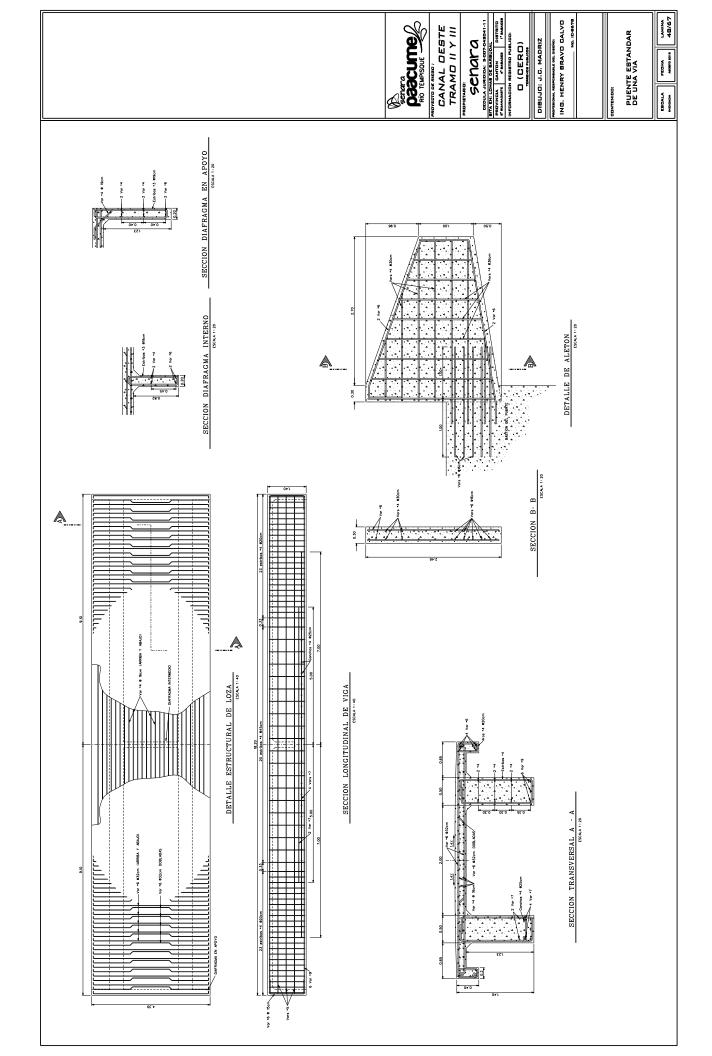
Barandal Peatonal


Anexos

1.	Planos construcción canal del sur red primaria	274
2.	Red de distribución subdistrito Abangares.	276
3.	Canal Oeste tramo II y III	278
4.	Estudio de suelos (SPT).	281
5.	Ficha Técnica de Apoyos Elastoméricos, de Hulera Costarricense, LTDA	282
6.	Propiedades acero para barandas peatonales	283
7.	Catálogo Juntas para Puentes.	290

Anexo 1. Planos construcción canal del sur red primaria. A continuación se muestra planos suministrados para la actualización con la herramienta generada en el presente proyecto.




Anexo 2. Red de distribución subdistrito Abangares. A continuación se muestra planos suministrados para la actualización con la herramienta generada en el presente proyecto.

Anexo 3. Canal Oeste tramo II y III.

A continuación se muestra plan generada en el presente proyecto.	nos suministrados	para la actu	ualización con l	a herramienta

Anexo 4. Estudio de suelos (SPT).

A continuación se muestran los estudios de laboratorio suministrados por SENARA.

Anexo 5. Ficha Técnica de Apoyos Elastoméricos, de Hulera Costarricense, LTDA.

A continuación se muestra la ficha técnica para el diseño de los apoyos del proyecto. Fuente: ELASTEC, s.f.-b.

Ficha Técnica

CÓDIGO HC 314 Apoyos para Puentes -Neopreno 60 Shore A Versión: 2 Vigente desde: 01/04/2014

del material

Ambas normas técnicas, tanto la AASHTO M-251, como la ASTM D-4014, especifican las propiedades del material para los apoyos elastoméricos. Las dos indican también que puede usarse a criterio, el Neopreno o el Hule Natural como elastómero base para el desarrollo del material de los apoyos. Elastec HC, tiene formulaciones que satisfacen los requerimientos técnicos de cualquiera de estos elastómeros, en las 3 durezas de diseño: 50, 60 o 70 Shore A.

A continuación presentamos la Ficha Técnica de nuestro material de uso más común: Neopreno 60 Shore A, formulación HC 314:

I. Normas que cumple la formulación

1 1	
NORMA	TITULO
ASTM D 4014-03 (2012)	Standard Specification for Plain ande Steel-Laminated Elastomeric Bearings for Bridges
AASHTO M-251-06	Standard Specification for Plain and Laminated Elastomeric Bridge Bearings

II. Características del material

Característica	Resultado	Unidad de medidad
Tipo de material	NEOPRENO	
Peso especifico	1,20	g/cm ³

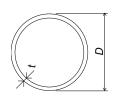
III. Propiedades mecánicas del material según la norma AAHSTO M-251

PROPIEDAD	MÉTODO DE PRUEBA	RESULTADO REQUERIDO	RESULTADO HULERA COSTARRICENSE	UNIDAD DE MEDIDA	
Dureza	ASTM D-2240	55 a 65	60	Shore A	
Esfuerzo de tensión a rotura (mínimo)	ASTM D-412	15,5	17,6	Мра	
Elongación a Rotura (minimo)	ASTM D-412	400	450	%	

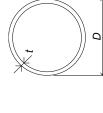
RESITENCIA A ALTA TEMPERATURÁ	ASTM D-573			
Cambio en dureza (máximo)	ASTM D-2240	+15	8	%
Cambio en esfuerzo de tensión a rotura (máximo)	ASTM D-412	-15	-10	%
Cambio en última elongación (máximo)	ASTM D-412	-40	-20	%
Compression Set (máximo) ₂	ASTM D-395 Método B	35	25	%

RESISTENCIA AL OZONO (Requerido únicamente por ASTM D-4014)				
Resistencia al ozono (100 horas, 40 C a 50 pphm)	ASTM D-1149	No grietas	No grietas	
Módulo de cortante @23°C	AASHTO M-251 (Anexo 1 o 2)	0.90-1.38	0,145	MPa

¹ Para Neopreno: 70 horas, 100º C. Para Hule Natural: 168 horas, 70º


info@ElastecHC.com

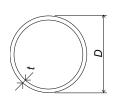
² Para Neopreno: 22 horas, 100°C. Para Hule Natural: 22 horas, 70°C


Anexo 6. Propiedades acero para barandas peatonales.

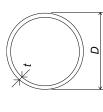
A continuación se muestra catálogo de aceros que podrían ser utilizados para las barandas peatonales.

Fuente: Instituto Chileno del Acero, s.f.

PERFILES CIRCULARES DE DIÁMETRO MENOR **TABLA** 2.1.10



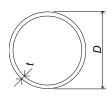
GEOMETRÍA DE LA SECCIÓN Y PROPIEDADES PARA EL DISEÑO


SOLDADOS POR RESISTENCIA ELÉCTRICA

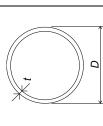
	DIMENSIONES	IONES		PESO	ÁREA					ESBELTEZ	
Q		D _{INT}	t		Ą	1/106	S/10 ³		Z/10 ³	D/t	J/10 ⁴
blnd	E	E	E	kaf/m	mm ²	mm ⁴	mm ₃	E E	mm ₃	,	mm ⁴
1/2	12.70	10.90	0.9	0.26	33.4	0.000584	0.0920	4.18	0.126	14.1	0.117
	12.70	10.30 9.70	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.34	43.4	0.000724	0.133	4.09	0.189	10.6	0.168
2/8	15.88 15.88 15.88	14.08 13.88 13.48	0.9 1.0	0.33 0.37 0.43	42.3 46.7 55.3	0.00119 0.00130 0.00150	0.150 0.164 0.189	5.30 5.27 5.21	0.202 0.222 0.259	17.6 15.9 13.2	0.238 0.260 0.300
	15.88 15.88	12.88	1.5	0.53	67.7 87.2	0.00177	0.223	5.11 4.96	0.311	10.6	0.354
3/4	19.05 19.05 19.05 19.05	17.25 17.05 16.65 16.05 15.05	0.9 1.2 2.0 0.0	0.40 0.45 0.53 0.65 0.84	51.3 56.7 67.3 82.7	0.00212 0.00232 0.00269 0.00321 0.00395	0.222 0.243 0.283 0.337 0.414	6.42 6.39 6.33 6.23 6.07	0.297 0.326 0.383 0.463 0.584	21.2 19.1 15.9 12.7	0.424 0.463 0.538 0.641 0.789
7/8	22.23 22.23 22.23 22.23 22.23	20.43 20.23 19.83 19.23 18.23	0.9 1.2 2.1 2.0	0.47 0.52 0.62 0.77 1.00	60.3 66.7 79.3 97.7	0.00343 0.00376 0.00439 0.00527 0.00656	0.309 0.339 0.395 0.474 0.590	7.55 7.51 7.45 7.35 7.19	0.410 0.451 0.531 0.645 0.821	24.7 22.2 18.5 14.8	0.687 0.753 0.879 1.054 1.312
-	25.40 25.40 25.40 25.40 25.40	23.60 23.40 23.00 22.40 21.40	0.0 1.0 1.2 2.0	0.54 0.60 0.72 0.88 1.15	69.3 76.7 91.2 113	0.00520 0.00571 0.00670 0.00807 0.0101	0.410 0.450 0.527 0.636 0.798	8.67 8.63 8.57 8.47 8.30	0.540 0.596 0.703 0.858 1.098	28.2 25.4 21.2 16.9	1.041 1.143 1.339 1.615 2.027
1 1/8	28.58 28.58 28.58 28.58 28.58	26.78 26.58 26.18 25.58 24.58	0.0 1.2 2.5 0.0	0.61 0.68 0.81 1.00	78.2 86.6 103 128 167	0.00750 0.00824 0.00969 0.0117	0.525 0.577 0.678 0.821 1.038	9.79 9.76 9.69 9.59 9.42	0.690 0.761 0.900 1.101	31.8 28.6 23.8 19.1 14.3	1.500 1.649 1.937 2.345 2.965
1 1/4	31.75 31.75 31.75 31.75	29.95 29.75 29.35 28.75 27.75	0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0.68 0.76 0.90 1.12	87.2 96.6 115 143	0.0104 0.0114 0.0135 0.0163 0.0208	0.654 0.720 0.848 1.030	0.01 0.00 7.01 7.01	0.857 0.946 1.121 1.374	35.3 31.8 26.5 15.9	2.077 2.286 2.691 3.269 4.155
PANDEO LOCAL		· Compresión : ni · Flexión : esbelte	ingún perfil de l ez sombreada i	- Compresión : ningún perfil de la tabla clasifica como esbelto. - Flexión : esbeltez sombreada indica que el perfil puede clasi	como esbelto. fil puede clasificar	- Compresión : ningún perfil de la tabla clasifica como esbelto. - Flexión : esbeltez sombreada indica que el perfil puede clasificar como no compacto,					

dependiendo del valor de F_γ usado. Los límites de esbeltez compacta son: 60,4 si F_γ =235 MPa ; 57,3 si F_γ =248 MPa 53,6 si F_γ =265 MPa ; 41,2 si F_γ =345 MPa

PERFILES CIRCULARES DE DIÁMETRO MENOR SOLDADOS POR RESISTENCIA ELÉCTRICA **TABLA 2.1.10**



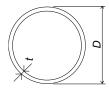
GEOMETRÍA DE LA SECCIÓN Y PROPIEDADES PARA EL DISEÑO


	DIMENSIONES	IONES		PESO	ÁREA					ESBELTEZ	
ť.		ı			•	9077	0,40%		1 203	i	407
Q		D _{INT}	t		Þ	1/10-	5/10		2/10-	DV	. 01/0
ßInd	mm	mm	mm	kgf/m	mm ²	mm ⁴	mm ₃	mm	mm ³	•	mm ⁴
1 1/2	38.10	36.30	6.0	0.83	105	0.0182	0.956	13.2	1.246	42.3	3.641
	38.10	36.10	1.0	0.91	117	0.0201	1.053	13.1	1.377	38.1	4.014
	38.10	35.70	1.2	1.09	139	0.0237	1.244	13.1	1.635	31.8	4.740
	38.10	35.10	1.5	1.35	172	0.0289	1.519	13.0	2.010	25.4	5.786
	38.10	34.10	2.0	1.78	227	0.0371	1.946	12.8	2.609	19.1	7.413
1 3/4	44.45	42.45	1.0	1.07	137	0.0322	1.450	15.4	1.888	44.5	6.446
	44.45	42.05	1.2	1.28	163	0.0382	1.717	15.3	2.245	37.0	7.631
	44.45	41.45	1.5	1.59	202	0.0467	2.102	15.2	2.768	29.6	9.345
	44.45	40.45	2.0	2.09	267	0.0602	2.709	15.0	3.607	22.2	12.04
1 7/8	47.63	45.63	1.0	1.15	146	0.0398	1.672	16.5	2.174	47.6	7.964
	47.63	45.23	2.	1.37	175	0.0472	1.981	16.4	2.587	39.7	9.437
	47.63	44.63	1.5	1.71	217	0.0579	2.430	16.3	3.192	31.8	11.57
	47.63	43.63	2.0	2.25	287	0.0747	3.139	16.1	4.166	23.8	14.95
0	50.80	48.80	10	123	156	0.0485	1 910	17.6	2 480	508	9 704
ı	50.80	48.40	1.2	1.47	187	0.0575	2.265	17.5	2.953	42.3	11.51
	50.80	47.80	1.5	1.82	232	0.0706	2.781	17.4	3.647	33.9	14.13
	50.80	46.80	2.0	2.41	307	0.0914	3.600	17.3	4.766	25.4	18.29
	50.80	44.80	3.0	3.54	451	0.129	5.086	16.9	6.864	16.9	25.83
2 3/8	60.33	58.33	1.0	1.46	186	0.0820	2.719	21.0	3.520	60.3	16.40
	60.33	57.33	1.5	2.18	277	0.120	3.978	20.8	5.192	40.2	24.00
	60.33	56.33	2.0	2.88	366	0.156	5.172	20.6	908.9	30.2	31.20
	60.33	54.33	3.0	4.24	540	0.223	7.378	20.3	9.867	20.1	44.51
	60.33	52.33	4.0	5.56	708	0.282	9.353	20.0	12.71	15.1	56.42
	60.33	50.33	5.0	6.82	869	0.335	11.11	19.6	15.35	12.1	67.04
2 1/2	63.50	61.50	1.0	1.54	196	0.0959	3.020	22.1	3.907	63.5	19.18
	63.50	61.10	1.2	1.84	235	0.114	3.590	22.0	4.658	52.9	22.80
	63.50	60.50	1.5	2.29	292	0.140	4.424	21.9	2.767	42.3	28.09
	63.50	29.50	2.0	3.03	386	0.183	5.760	21.8	7.567	31.8	36.58
	63.50	57.50	3.0	4.48	220	0.262	8.237	21.4	10.99	21.2	52.31
	63.50	55.50	4.0	5.87	748	0.332	10.47	21.1	14.18	15.9	66.48
	63.50	53.50	5.0	7.21	919	0.396	12.47	20.8	17.15	12.7	79.19
PANDEO LOCAL	•	 Compresión : ni 	ingún perfil de la	 Compresión : ningún perfil de la tabla clasifica como esbelto. 	como esbelto.						

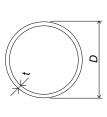
PANDEO LOCAL

- Compresión : ningún perfil de la tabla clasifica como esbelto.
- Flexión : esbeltez sombreada indica que el perfil puede clasificar como no compado, dependiendo del valor de Fy usado. Los límites de esbeltez compacta son : 60,4 si Fy=258 MPa 57,3 si Fy=248 MPa 53,6 si Fy=265 MPa ; 41,2 si Fy=345 MPa

PERFILES CIRCULARES DE DIÁMETRO MENOR SOLDADOS POR RESISTENCIA ELÉCTRICA **TABLA 2.1.10**

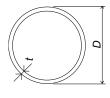


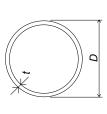
GEOMETRÍA DE LA SECCIÓN Y PROPIEDADES PARA EL DISEÑO


																																_
	J/10 ⁴	mm ⁴		49.13	64.22	78.69	92.57	118.6	142.4	1001	102.1	126.7	149.5	192.7	232.7	155.3	5 6	7.161	226.1	292.6	354.9	222.5	274.5	325.1	422.1	513.8	440 K	585.0	714.3			
ESBELTEZ	D/t			50.8	38.1	30.5	25.4	19.1	15.2	77 6	44.0	35.6	29.6	22.2	17.8	508	0.00	40.0	33.9	25.4	20.3	57.2	45.7	38.1	28.6	22.9	703	31.8	25.4			
	Z/10 ³	mm³		8.371	11.01	13.58	16.08	20.87	25.39	4		18.67	22.15	28.85	35.24	19.84	5 5	24.30	29.17	38.12	46.70	25.23	31.25	37.17	48.69	29.77	16 11	60.54	74.46			
		mm		26.4	26.2	26.1	25.9	25.6	25.2	7 06	20.7	30.6	30.4	30.0	29.7	35.2	1.00	33.0	34.9	34.5	34.2	39.7	39.5	39.4	39.0	38.7	73.0	73.5	43.2			
	S/10 ³	mm³		6.447	8.427	10.33	12.15	15.56	18.69	71 60	00.1	14.26	16.82	21.67	26.18	15.28	2.0	18.82	22.25	28.80	34.93	19.47	24.02	28.44	36.93	44.96	35 30	46.08	56.24			
	1/106	mm ⁴		0.246	0.321	0.393	0.463	0.593	0.712	240	0.516	0.634	0.748	0.963	1.164	9220	5 6	0.820	1.130	1.463	1.775	1.113	1.373	1.625	2.111	2.569	2 2 4 8	2 926	3.571			
ÁREA	٧	mm ²	_	352	466	629	069	206	1118	979	040	629	810	1067	1318	626	1 020	8//	929	1226	1517	902	878	1049	1386	1717	1160	1546	1916			
PESO		kgf/m	0	2.76	3.66	4.54	5.42	7.12	8.78	000	4.23	5.33	6.36	8.38	10.35	4 91	5 5	9	7.29	9.63	11.91	5.54	68.9	8.23	10.88	13.48	0.17	12.13	15.04			
	t t	mm		1.5	2.0	2.5	3.0	4.0	5.0	c	7.0	2.5	3.0	4.0	2.0	0 0) i	2.5	3.0	4.0	5.0	2.0	2.5	3.0	4.0	2.0	0 %	0. 4	5.0			
SIONES	D _{INT}	mm		73.20	72.20	71.20	70.20	68.20	66.20	00.00	04.30	83.90	82.90	80.90	78.90	97.60	9.00	90.00	95.60	93.60	91.60	110.30	109.30	108.30	106.30	104.30	121 00	119.00	117.00			
DIMENSIONES	D	mm		76.20	76.20	76.20	76.20	76.20	76.20	00	06.90	88.90	88.90	88.90	88.90	101 60	5.00	00.101	101.60	101.60	101.60	114.30	114.30	114.30	114.30	114.30	127 00	127.00	127.00			
	7	blnd	-	က						6	2/1 6					7	r					4 1/2					Ľ	,				

PANDEO LOCAL

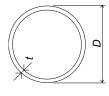
- Compresión: ningún perfil de la tabla clasifica como esbelto.
- Flexión: esbeltez sombreada indica que el perfil puede clasificar como no compacto, dependiendo del valor de F_{γ} usado. Los límites de esbeltez compacta son: 60,4 si F_{γ} =235 MPa ; 57,3 si F_{γ} =248 MPa 53,6 si F_{γ} =265 MPa ; 41,2 si F_{γ} =345 MPa

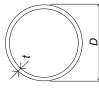

TABLA 2.1.11 PERFILES CIRCULARES DE DIÁMETRO MAYOR


GEOMETRÍA DE LA SECCIÓN Y PROPIEDADES PARA EL DISEÑO

SOLDADOS AL ARCO SUMERGIDO

			1																														κ. C	
		246	0.45 C.45	0.829	0.776	0.749	0.840	0.812	0.783	0.754	0.852	0.822	0.791	0.760	0.866	0.834	0.801	0.767	0.883	0.847	0.812	0.776	0.902	0.863	0.825	0.786	0.925	0.883	0.840	0.906	0.859	0.812	ño por MFC	
EO LOCAL* Q"		F, , MPa	607	0.879	0.809	0.773	0.892	0.855	0.818	0.780	0.908	0.869	0.829	0.789	0.927	0.884	0.841	0.798	0.948	0.902	0.855	0.809	0.973	0.923	0.872	0.821		0.948	0.892	0.978	0.917	0.855	las en el diserminar $Q_{\mathfrak{g}}$.	
PANDEO LOCAL* Q		μ, ,	740	0.893	0.818	0.781	0.908	0.868	0.828	0.788	0.925	0.882	0.840	0.797	0.944	0.899	0.853	0.807	0.967	0.918	0.868	0.818	0.994	0.940	0.886	0.832		0.967	0.908		0.934	0.868	ciones indicac F _y para deter	
		, 1000	233	0.906	0.827	0.787	0.921	0.879	0.837	0.795	0.939	0.894	0.849	0.804	0.960	0.912	0.863	0.815	0.984	0.932	0.879	0.827		0.955	0.898	0.841	•	0.984	0.921		0.949	0.879	ADMISIBLES : con las excep esión : usar f=	
	J/10 ⁴	4		3948120 3277814	2612455	1952018	3258021	2704206	2154746	1609618	2653424	2201755	1753888	1309800	2128673	1765749	1406110	1049735	1678114	1391476	1107643	826597	1296093	1074222	854716	637557	976953	809276	643560	591925	470404	350465	DISEÑO POR TENSIONES ADMISIBLES : Flexión simple : usar Q_s =1, con las excepciones indicadas en el diseño por MFCR Flexión compuesta o compresión : usar f = F_y para determinar Q_s .	
ESBELTEZ	D/t			135.3 162.0	202.0	268.7	127.0	152.0	189.5	252.0	118.7	142.0	177.0	235.3	110.3	132.0	164.5	218.7	102.0	122.0	152.0	202.0	93.7	112.0	139.5	185.3	85.3	102.0	127.0	92.0	114.5	152.0	DISEÑO POR - Flexión simpl - Flexión comp	
	Z/10 ³	3		31183 25921	20685	15475	27434	22801	18193	13608	23926	19881	15860	11861	20657	17161	13687	10234	17628	14641	11674	8727	14839	12321	9821	7339	12290	10201	8129	8281	9629	4925	sión. s.	excepto sí clasifica
	,	8	ШШ	570 569	269	268	535	534	533	532	499	499	498	497	464	463	462	462	429	428	427	426	393	392	392	391	358	357	356	322	321	320	en compre de tensione ario.	mo esbelto, ue el perfil (MPa.
	S/10 ³	3		24311 20233	16166	12109	21378	17791	14213	10646	18634	15505	12386	9276	16078	13377	10685	8001	13710	11406	9109	6820	11531	9591	7659	5733	9541	7934	6334	6434	5135	3843	rfil trabajando para cálculo c fica valor unita	la clasifica col o que indica q con F _y =345 l
	1/106	4		19741	13062	0926	16290	13521	10774	8048	13267	11009	8769	6549	10643	8829	7031	5249	8391	6957	5538	4133	6480	5371	4274	3188	4885	4046	3218	2960	2352	1752	* PANDEO LOCAL - Q_a tabulado corresponde a perfil trabajando en compresión A_a tabulado corresponde a perfil trabajando en compresión Valor de Q_a está deferminado para cálculo de tensiones Valor de Q_a no indicado, significa valor unitario. DISEÑO POR MFCR:	: ningún perfil de la tabla dasifica como esbelto, excepto valor de Z sombreado que indica que el perfil si dasifica esbelto al usar acero con F _Y =345 MPa.
ÁREA	A	2		60771 50580	40413	30272	57001	47438	37900	28387	53231	44296	35387	26502	49461	41155	32874	24618	45691	38013	30360	22733	41921	34872	27847	20848	38152	31730	25334	28588	22821	17078	* PANDEO LOCAL - Q _a tabulado corresp - Valor de Q _a está del - Valor de Q _a no indic DISEÑO POR MFCR	- Flexión : ningú valor esbe
PESO		ارسوالس	Kgi/III	477.05 397.05	317.25	237.64	447.46	372.39	297.52	222.84	417.86	347.73	277.79	208.04	388.27	323.07	258.06	193.25	358.68	298.40	238.33	1/8.45	329.08	273.74	218.60	163.65	299.49	249.08	198.87	224.42	179.14	134.06		
	t		E	1 1 2	80	9	12	10	80	9	12	10	ω (9	12	10	∞ (9	12	10	∞ (9	12	10	80	9	12	10	∞	10	80	9	= 150 mm	
DIMENSIONES	D INT	8		1600	1600	1600	1500	1500	1500	1500	1400	1400	1400	1400	1300	1300	1300	1300	1200	1200	1200	1200	1100	1100	1100	1100	1000	1000	1000	006	006	006	NOTAS : 1 Soldadura espiral desde D = 150 mm 2 Soldadura recta desde D = 400 mm	
J	D		E	1624 1620	1616	1612	1524	1520	1516	1512	1424	1420	1416	1412	1324	1320	1316	1312	1224	1220	1216	1212	1124	1120	1116	1112	1024	1020	1016	920	916	912	NOTAS : 1 Soldadura (2 Soldadura r	


TABLA 2.1.11 PERFILES CIRCULARES DE DIÁMETRO MAYOR


GEOMETRÍA DE LA SECCIÓN Y PROPIEDADES PARA EL DISEÑO

SOLDADOS AL ARCO SUMERGIDO

													1
		345	0.935 0.883 0.829	0.973 0.913 0.852	0.953	0.978 0.902	- 0.925	- 0.953	- 0.987	0.973			o por MFCR.
O LOCAL*	MPa	265	0.948 0.879	- 0.987 0.908	- - 0.948	- - 0.973		1 1 1				1 1	as en el diseñ minar Q a.
PANDEO LOCAL	F _v , MPa	248	- 0.967 0.893	- - 0.925	- 0.967	- - 0.994	1 1 1	1 1 1		1 1	1 1		ciones indicad $F_{ m y}$ para deter
		235	- 0.984 0.906	- 0.939	- 0.984	1 1 1	1 1 1	1 1 1		1 1	1 1		ADMISIBLES: con las excep esión: usar f=
	J/10 ⁴	mm ⁴	417456 331479 246757	281158 223016 165839	178318 141243 104882	137972 109187 81006	104224 82391 61060	76484 60382 44690	54163 42690 31544	21267 17572	13507 11145	7910 6514	TENSIONES / e : usar Q = 1, uesta o compr
ESBELTEZ	D/t		82.0 102.0 135.3	72.0 89.5 118.7	62.0 77.0 102.0	57.0 70.8 93.7	52.0 64.5 85.3	47.0 58.3 77.0	42.0 52.0 68.7	60.3 72.0	52.0 62.0	43.7 52.0	DISEÑO POR TENSIONES ADMISIBLES : - Flexión simple : usar $Q_s=1$, con las excepciones indicadas en el diseño por MFCR Flexión compuesta o compresión : usar $f=F_{\gamma}$ para determinar Q_s .
	Z/10³	mm³	6561 5223 3898	5041 4010 2991	3721 2957 2203	3136 2491 1855	2601 2065 1536	2116 1678 1248	1681 1332 989	760	562 465	393 325	sión. s. excepto si clasifica
	_	mm	286 286 285	251 250 250	216 215 214	198 197 197	180 180 179	163 162 161	145 441 444	126 126	108	90	en compre: le tensiones rio. no esbelto, ue el perfil s MPa.
	S/10 ³	mm ₃	5091 4062 3039	3905 3115 2329	2876 2293 1714	2421 1929 1441	2004 1597 1193	1627 1296 967	1290 1026 766	587 488	433 360	302 251	il trabajando bara cálculo d ca valor unita a clasifica con que indica qu que indica qu
	1/106	mm ⁴	2087 1657 1234	1406 1115 829	892 706 524	690 546 405	521 412 305	382 302 223	271 213 158	106	68 56	33	* PANDEO LOCAL. • Q₂ tabulado corresponde a perfil trabajando en compresión. • Q₃ tabulado corresponde a perfil trabajando en compresión. • Valor de Q₃ no indicado, significa valor unitario. DISEÑO POR MFCR: • Flexión : ningún perfil de la tabla dasifica como esbelto, excepto valor de Z sombreado que indica que el perfil si clasifica esbelto al usar acero con f √=345 MPa.
ÁREA	۷	mm ²	25447 20307 15193	22305 17794 13308	19164 15281 11423	17593 14024 10480	16022 12767 9538	14451 11511 8595	12881 10254 7653	6710 5576	5768 4791	4825 4006	* PANDEO LOCAL - Q _a tabulado corresp - Valor de Q _a está det - Valor de Q _a no indic DISEÑO POR MFCR: - Flexión: ningún perfi esbelto al u
PESO		kgf/m	199.76 159.41 119.26	175.10 139.68 104.47	150.44 119.95 89.67	138.10 110.09 82.27	125.77 100.22 74.87	113.44 90.36 67.47	101.11 80.50 60.08	52.68 43.77	45.28 37.61	37.88 31.44	
	t	mm	0 8 9	0 8 9	10 8 6	10 8 6	0 8 9	0 8 9	0 8 9	ဝဌ	5 6	လ လ	1 = 150 mm = 400 mm
DIMENSIONES	D INT	mm	800 800 800	700 700 700	009	550 550 550	500 500 500	450 450 450	400 400 400	350 350	300	250 250	NOTAS: 1 Soldadura espiral desde D = 150 mm 2 Soldadura recta desde D = 400 mm
	Q	шш	820 816 812	720 716 712	620 616 612	570 566 562	520 516 512	470 466 462	420 416 412	362 360	312 310	262 260	NOTAS: 1 Soldadura (2 Soldadura I

PERFILES CIRCULARES DE DIÁMETRO MAYOR **TABLA 2.1.11**

GEOMETRÍA DE LA SECCIÓN Y PROPIEDADES PARA EL DISEÑO

SOLDADOS AL ARCO SUMERGIDO

			345	,			1	
	LOCAL*	ЛРа	265	,			1	
	PANDEO LOCAL* Q _a	F_{y} , MPa	248	,			1	
			235	,		,	1	
		J/10 ⁴	₄ mm	4123	3385	1792	1464	
	ESBELTEZ	DΛ	,	35.3	42.0	27.0	32.0	
		Z/10³	mm ₃	255	210	146	120	
			mm	73	73	55	22	
		S/10 ³	mm³	194	161	111	91	
		1/10 6	₄ mm	21	17	6	7	
	ÁREA	۷	mm ²	3883	3220	2941	2435	
	PESO		kgf/m	30.48	25.28	23.08	19.11	
		t	m m	9	2	9	2	
	DIMENSIONES	D INT	шш	200	200	150	150	
	O.	D	шш	212	210	162	160	
_	·							

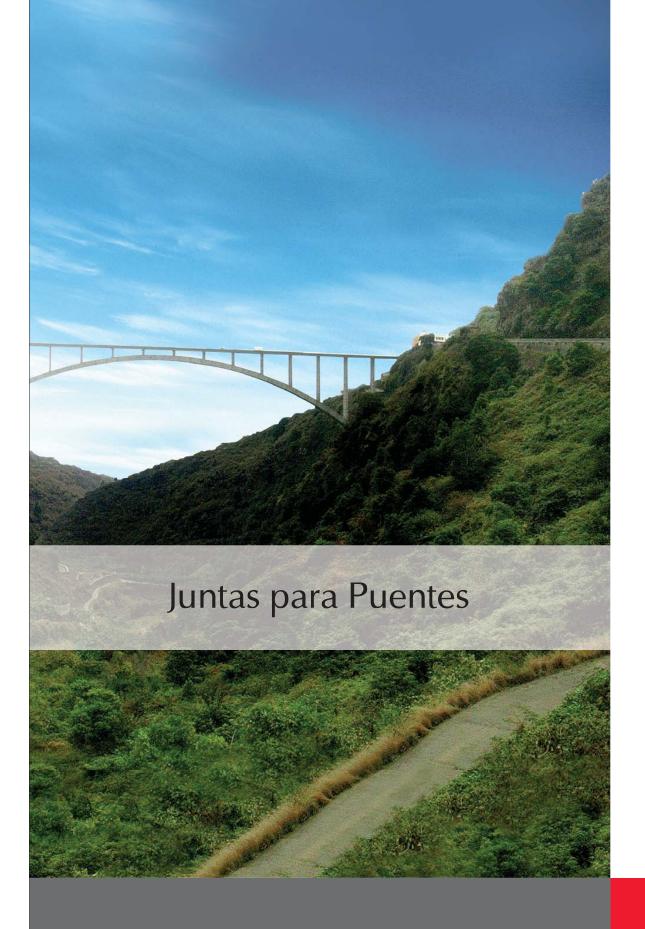
DISEÑO POR TENSIONES ADMISIBLES : - Flexión simple : usar Q_s =1, con las excepciones indicadas en el diseño por MFCR. - Flexión compuesta o compresión : usar f= f_y para determinar Q_s .

NOTAS : 1.- Soldadura espiral desde D = 150 mm 2.- Soldadura recta desde D = 400 mm

* PANDEO LOCAL

- Q a tabulado corresponde a perfil trabajando en compresión.

- Valor de Q a está determinado para cálculo de tensiones.


- Valor de Q a no indicado, significa valor unitario.

DISEÑO POR MFCR:

- Flexión : iningún perfil de la tabla clasifica como esbelto, excepto valor de Z sombreado que indica que el perfil sí clasifica esbelto al usar acero con F y=345 MPa.

Anexo 7. Catálogo Juntas para Puentes.

A continuación se muestra catálogo de juntas para puentes que podrían ser utilizados. Fuente: Composan, s.f.

Presentación

Composan es una de las compañías líderes en la fabricación de materiales para la construcción, con una experiencia de más de 70 años en el sector. Además de las actividades tradicionales de fabricación de membranas asfálticas, pavimentos continuos, deportivos, slurrys, emulsiones, betunes modificados, emulgentes, impermeabilización de balsas y vertederos, las cuales han obtenido un reconocido prestigio a nivel mundial, Composan ha extendido su objeto a la fabricación de juntas para puentes, aplicando la tecnología y la experiencia en todas sus obras.

Tras más de veinte años como Instaladores especialistas en dispositivos de juntas de puentes, **Composan** en el año 2001, comenzó la fabricación de sus propias juntas y apoyos de puentes. Este hecho nos ha conducido a situarnos como la empresa líder en esta actividad en el mercado español, y como una referencia en el internacional. No en vano, nuestra tecnología y experiencia están a la altura de las mejores del mercado, con más de 250.000 m.l. de juntas instalados en España.

Índice ____

Juntas de dilatación (introducción)	6
Juntas de elastómero armado. Definición	6
Características generales	7
Especificaciones técnicas	8
Movimientos de los puentes	9
Movimientos irreversibles	9
Movimientos reversibles	9
Movimientos totales	9
Tipos de juntas Composan para puentes	10
JNA-42-52-70-80	10
JNA-100-130-160-230-330	11
JNA-50-75	12
JME (junta elástica)	13
Criterios de elección del modelo de junta Movimientos admitidos por cada modelo	14
Puentes sin esviaje	14
Puentes con esviaje	14
Proceso de instalación	15
Materiales auxiliares	17
Realizaciones	18
Presencia de Composan en el mundo	19

Certificación

Concedida a

COMPOSAN CONSTRUCCIÓN, S.A.

AVDA. DE LOS PIRINEOS, 7 - 2ª P, POL. IND. SUR, 28700, SAN SEBASTIÁN DE LOS REYES

BVQI España certifica que el Sistema de Gestión de dicha Organización ha sido auditado y encontrado conforme con las exigencias de la norma:

NORMA

ISO 9001:2000

El Sistema de Gestión se aplica a:

COMERCIALIZACIÓN E INSTALACIÓN DE JUNTAS DE DILATACIÓN EN PUENTES Y OTRAS ESTRUCTURAS DE HORMIGÓN.

Fecha de certificación inicial

15 Septiembre 1998

Siempre que se mantengan las condiciones de aplicación del Sistema de Gestión, este certificado es válido basta el:

22 Enero 2007

Para comprobar la validez del certificado puede llamar al teléfono: (91 2702200)

Para cualquier aclaración sobre el alcance del certificado y la aplicación de los requisitos del Sistema de Gestión pueden ponerse en contacto con la organización.

Número del Certificado ESPMDD004198-A Fecha

06 Mayo 2004

Certification

Awarded to

COMPOSAN CONSTRUCCIÓN, S.A.

MADRID

AVDA. DE LOS PIRINEOS, 7 - 2ª P, POL. IND. SUR, 28700, SAN SEBASTIÁN DE LOS REYES

BVQI España certify that the Management System of the above organisation has been audited and found to be in accordance with the requirements of the management system standards detailed below

STANDARD

ISO 9001:2000

SCOPE OF SUPPLY

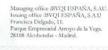
COMMERCIAL DISTRIBUTION AND INSTALLATION OF EXPANSION JOINTS IN BRIDGES AND ANY OTHER CONCRETE STRUCTURES.

Original Approval Date:

15 September 1998

Subject to the continued satisfactory operation of the organisation's Management System, this certificate is valid until:

22 January 2007


To check the validity of this certificate please call (91 2702200)

Further clarification regarding the scope of this certificate and the applicability of the management system requirements may be obtained by consulting the organisation

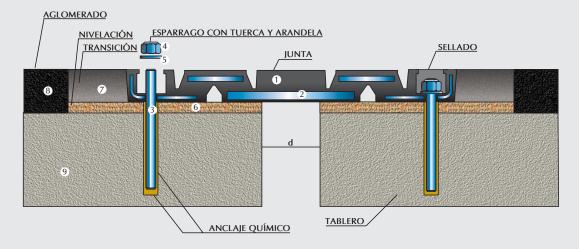
Certificate Number

ESPMDD004198-A Date:

06 May 2004

Juntas de dilatación

La junta de dilatación es un dispositivo que permite los movimientos relativos entre dos partes de una estructura.


Para que una junta cumpla su misión correctamente debe satisfacer las siguientes funciones:

- Asegurar la libertad de movimiento del tablero.
- Dar continuidad a la capa de rodadura, siendo capaz de soportar las cargas del tráfico.
- No ser fuente de ruidos, impactos y/o vibraciones.
- Tener una buena estanqueidad y/o permitir una correcta evacuación de las aguas superficiales.

Juntas de Elastómero Armado. Definición

Están constituidas por una banda de material elastómero, normalmente una mezcla de cauchos con base cloropreno, formuladas adecuadamente para dar elasticidad, resistencia y durabilidad a la misma. Dentro de esta se encuentran unos refuerzos metálicos de acero, que le confieren la rigidez y resistencia necesarias para transmitir las cargas de tráfico e impiden su incurvación al absorber los movimientos. El conjunto se ancla mediante pernos a los bordes de la estructura.

Los pernos de anclaje de acero, se fijan a la estructura mediante resinas epoxi, y se aprietan mediante arandelas zincadas y tuercas autoblocantes. Las cabezas de los anclajes van alojadas en unos huecos previstos en los bordes y que una vez apretadas se sellan para dar continuidad a la rodadura.

- 1. MATERIAL ELASTOMÉRICO A BASE DE CLOROPRENO
- 2. CHAPAS DE ACERO
- 3. PERNOS DE ANCLAJE AL ACERO
- 4. TUERCA AUTOBLOCANTE

- 5. ARANDELA ZINCADA
- 6. MORTERO DE ASIENTO
- 7. TRANSICIÓN
- 8. PAVIMENTO ASFÁLTICO
- 9. HORMIGÓN ESTRUCTURAL

Características generales

El diseño de cada uno de los modelos ha sido cuidadosamente realizado para soportar extremas condiciones de trabajo.

Cada tipo de junta ha sido sometida a largos ciclos de compresiones y extensiones, midiéndose el esfuerzo necesario para comprimir o extender los valores nominales para los que ha sido diseñada cada junta.

Por los ensayos realizados, podemos afirmar que movimientos sensiblemente superiores a los valores teóricos de diseño, no han afectado al trabajo de la junta, y no se han observado problemas de grietas, roturas o despegues de caucho metal.

En cada módulo, los trapecios de goma de la formulación especial de caucho comprendidos entre los perfiles metálicos, absorben los esfuerzos en la extensión o compresión, transmitiendo un menor esfuerzo a los anclajes que en otros modelos de juntas.

Los procesos de fabricación comienzan en el mezclado de los diferentes materiales que componen el elemento elástico de las juntas y se realiza en un mezclador con dosificación automática.

Las partes metálicas se limpian mediante chorreado de granalla, hasta un grado SA 2,5, realizándose en instalación automática, con una velocidad controlada.

Por último, al finalizar el proceso de vulcanización en la prensa, las piezas son extraídas, rebarbadas y comprobadas en cuando a sus durezas, medidas dimensionales y situación de las partes metálicas, especialmente en cuanto a su paralelismo o distancias a la parte exterior de las piezas.

Juntas ancladas (JNA)

MATERIALES PRINCIPALES

Caracteristicas	Lspecificaciones
Ensayos dimensionales	Internas
Variación sobre medidas en plano	
Longitud	<1%
Altura	<0,5%
Ancho	<1%
Machihembrado	Sin deformaciones

Caucho vulcanizado	Internas
Dureza Shore A (UNE 53.549)	>55
Densidad (g./cc.)	>1.10
Resistencia a tracción (Mpa) (UNE 53.510)	>15
Alargamiento hasta rotura (%) (UNE 53.510)	>450
Resistencia a desgarro (kN/m.) (UNE 53.516)	>60
Envejecimiento térmico (UNE 53.548), 100oC, 70 horas:	
Variación de peso (%)	<5
Dureza Shore A	>55
Variación de la resistencia a tracción (%)	<35
Variación del alargamiento a rotura (%)	<40
Resistencia al Ozono (UNE 53.558/ parte 1)	Sin grietas en la zona expuesta

Aceros	Internas
Resistencia a tracción hasta fluencia (Mpa) (UNE 36.080)	>250
Resistencia a tracción hasta rotura (Mpa) (UNE 36.080)	>450
Alargamiento (%) (UNE 36.080)	>23

Movimientos de los puentes

Movimientos irreversibles

■ Retracción del hormigón: Independientemente de los factores que deberían tenerse en cuenta, como grado de humedad ambiente, espesor de la pieza, composición del hormigón, resistencia característica, cantidad de armaduras y diámetros, etc. se toma un valor aproximado de 0,25 mm por metro, con la corrección correspondiente al tiempo transcurrido desde el hormigonado de la pieza y la instalación de la junta (100% en 2,5 años).

$$\Delta I_R^- = 0.25 \text{ x L x K}_{TR}$$
 , $K_{TR} = (1 - T/30)$ T=meses transcurridos

■ Fluencia del hormigón: (Con las mismas consideraciones anteriores) Se toma un valor medio aproximado de 0,20 mm por metro con la corrección correspondiente (100% en 10 años).

$$\Delta l_{\scriptscriptstyle F}^{\,-} = 0,20~x~L~x~K_{\scriptscriptstyle TF}$$
 , $K_{\scriptscriptstyle TF} = (1$ - T/120) T=meses transcurridos

Movimientos reversibles

■ Dilatación / contracción térmica: Se deben tener en cuenta las temperaturas máxima y mínima de la zona de localización de la estructura, la temperatura de montaje y el tipo de estructura y espesor de la misma. Se toma como valor medio aproximado 0,01 mm por metro y grado de temperatura centesimal.

$$\Delta I_T^+ = (Tm\acute{a}x - Tinst) \times L \times 0.01 \times K_H$$

 $\Delta I_T^- = (Tmin - Tinst) \times L \times 0.01 \times K_H$

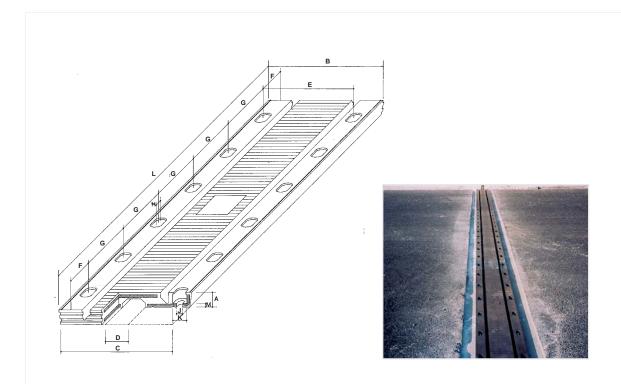
	Fact	or Corrector	del Espesor	: K _H	
Losas N	Macizas	Losas Al	igeradas	Losas e	n Cajón
Espesor	K _H	Espesor	K _H	Espesor	K _H
0,30 m	1,15	0,60 m	1,09	1,67 m	1,06
0,60 m	1,00	0,90 m	1,05	2,22 m	1,00
0,90 m	0,97	1,20 m	1,02	2,78 m	0,97
1,20 m	0,95	1,50 m	1,00	3,33 m	0,95

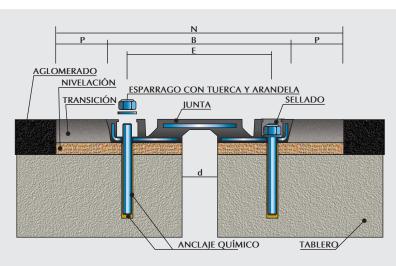
• Frenado / Arranque: Consideramos una fuerza horizontal máxima de 18.000 Kg, que deforma la totalidad de los apoyos de neopreno sobre los que descansa la estructura y un coeficiente de deformación instantáneo G = 14 Kg/cm².

$$\Delta I_N^{+/-} = \frac{ F \ x \ t}{G_{inst} \ x \ a \ x \ b \ x \ n} \\ = \frac{F \ x \ t}{G_{inst} \ x \ a \ x \ b \ x \ n} \\ = \frac{F \ = 18.000 \ Kg.}{G_{inst} \ = 0,14 \ Kg/mm^2} \\ = a \ x \ b \ = d_{imensiones} medias \ en \ mm. \\ = n_{imero} \ total \ de \ apoyos$$

Movimientos totales

Movimiento TOTAL MÁXIMO de apertura de la junta

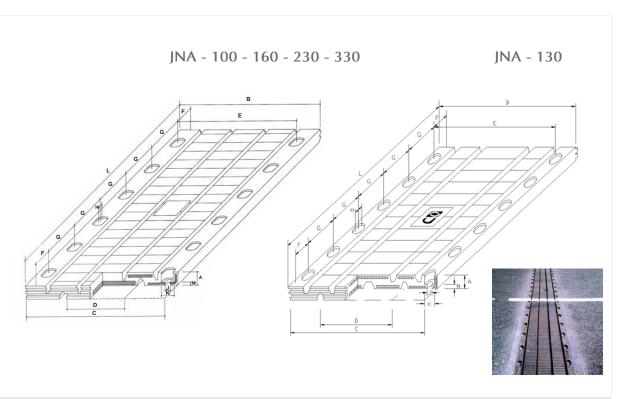

$$\Sigma \Delta I^- = \Delta I_R^- + \Delta I_F^- + \Delta I_T^- + \Delta I_N^-$$

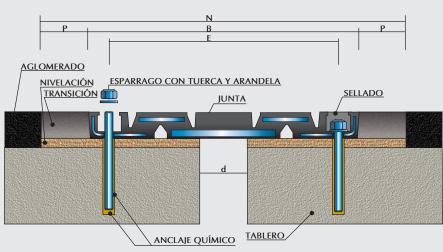

Movimiento TOTAL MÁXIMO de cierre de la junta

$$\Sigma \Delta I^{+} = \Delta I_{T}^{+} + \Delta I_{N}^{+}$$

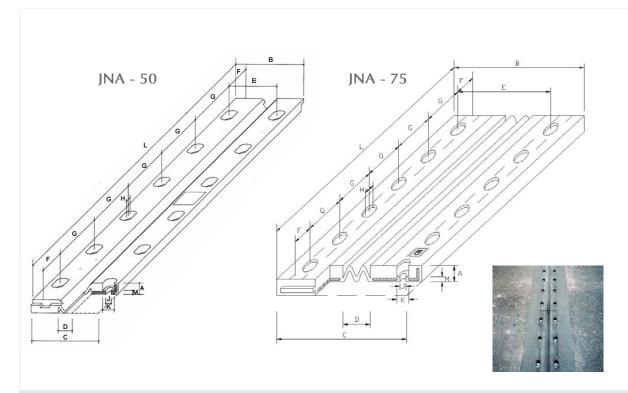
Tipos de juntas COMPOSAN para puentes

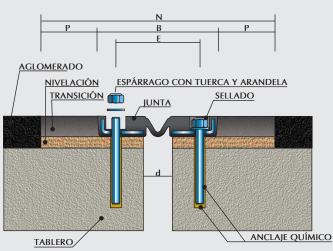
JNA - 42 - 52 - 70 - 80




Modelo Movimiento Cotas (mm)																	
de Junta	Admitido	Α	В	С	D	d a temperatura media	E	F	G	Н	J	К	L	М	N	Р	Q
JNA-42	42 mm	35	240	237	35	35	190	125	250	54	12	28	2000	6	380	70	Variable
JNA-52	52 mm	40	275	264	48	48	220	152	305	50	12	28	1829	8	435	80	Variable
JNA-70	70 mm	45	356	343	69	52	280	152	305	57	19	38	1829	10	516	80	Variable
JNA-80	80 mm	52	433	428	100	74	342	152	305	60	22	54	1829	8	633	70	Variable

Nota: estas dimensiones son únicamente a modo orientativo, reservándose Composan la libertad de modificar alguna de ellas en función de las condiciones de la obra.





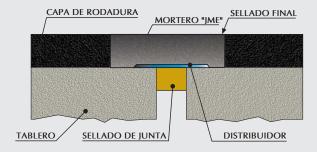
Modelo	Movimiento		Cotas (mm)														
de Junta	Admitido	A	В	С	D	d a temperatura media	E	F	G	н	J	K	L	м	N	Р	Q
JNA-100	100 mm	54	590	578	232	94	498	152	305	62	22	54	1829	11	790	100	Variable
JNA-130	130 mm	59	580	578	280	102	497	152	305	47	21	47	1829	23	780	100	Variable
JNA-160	160 mm	75	724	711	285	110	618	152	305	66	25	61	1829	14	924	100	Variable
JNA-230	230 mm	93	890	880	380	145	787	152	305	75	25	57	1829	13	1140	125	Variable
JNA-330	330 mm	127	1195	1186	510	200	1080	152	305	83	32	70	1220	15,5	1495	150	Variable

Nota: estas dimensiones son únicamente a modo orientativo, reservándose Composan la libertad de modificar alguna de ellas en función de las condiciones de la obra.

Modelo	Movimiento		COTAS (mm)														
de Junta	Admitido	Α	В	С	D	d a temperatura media	E	F	G	н	J	K	L	м	N	Р	Q
JNA-50	50 mm	35	210	204	42	35	146	146	292	44	18	36	1752	11	350	70	Variable
JNA-75	75 mm	34	215	215	50	40	145	152	305	45	8	31	1829	14	375	80	Variable

Nota: estas dimensiones son únicamente a modo orientativo, reservándose Composan la libertad de modificar alguna de ellas en función de las condiciones de la obra.

Las llamadas genéricamente juntas elásticas, y en el caso concreto de **Composan** la junta elástica JME, han experimentado durante los últimos años un desarrollo espectacular, especialmente en obras de conservación, es decir, en la reposición de los dispositivos originales que se fueron deteriorando con el paso del tiempo.

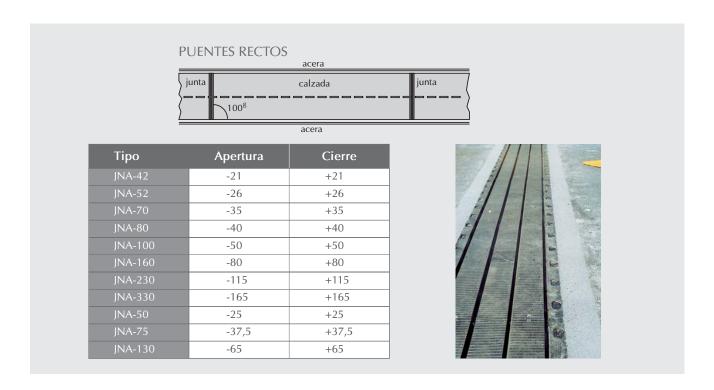

Sin desestimar la obra nueva, es la conservación y/o reposición el campo natural de aplicación de la junta elástica JME, más que por su comportamiento, que es excelente, por su rapidez de instalación y por su escasa incidencia en el tráfico.

Cualquier sistema convencional de juntas de dilatación precisa un mínimo de 48 horas desde que se inicia su instalación hasta que se da al tráfico. Con la junta elástica este tiempo se puede reducir sensiblemente. Por esto, por sus características de alta impermeabilidad, por su confort y comodidad para el usuario y por su sencilla y rápida reparación en caso de ser preciso, hacen de esta junta una excelente solución para los organismos gestores de carreteras.

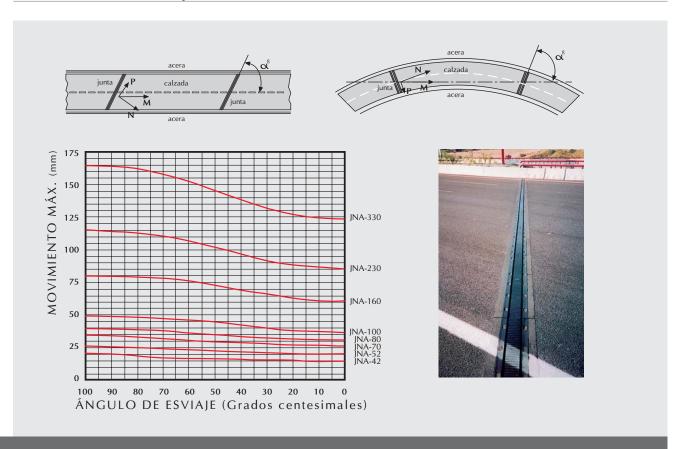
La junta elástica JME se puede instalar en puentes en obra nueva, puentes medios, y en obra de conservación y/o reposición, por haberse dado ya los movimientos irreversibles de retracción y fluencia. Se recomienda que la capa de aglomerado existente sobre el tablero, a la hora de instalar la junta, no tenga un espesor inferior a 7 cm.

Las características destacables de la junta elástica JME son:

- Rapidez de instalación
- Adaptabilidad a la más complicada geometría
- Seguridad
- Comodidad, silenciosa
- Facilidad de reparación o recrecido
- Economía


Características del Ligante	Internas				
Densidad	1,35 g/cm ³ ± 0,1				
Temperatura de vertido	180°C				
Temperatura de seguridad	210°C				
Penetración a 25°C / 150 g / 5 seg (0,1 mm)	50-70				
Fluencia a 60°C / 5h (cm)	Inapreciable				
Resiliencia a 25°C (% de recuperación)	>60				
Retorno elástico (%)	>70				

Los áridos serán de naturaleza porfídica, con un desgaste de los Angeles entre 10 y 30, y tamaños máximos de árido de 12 y 30.


Nota: estos sistemas de instalación sos susceptibles de modificación dependiendo de las condiciones de cada obra, reservándose Composan la libertad de modificarlos según su criterio.

Criterios de elección del modelo de junta (movimientos admitidos por cada modelo)

Puentes sin esviaje

Puentes con esviaje

Proceso de instalación de las juntas ancladas

A continuación se retirará el aglomerado entre cortes y se procederá a preparar adecuadamente la superficie del fondo de la caja, mediante repicado mecánico.

Una vez en obra, se localizarán las estructuras y se comprobará la junta a instalar, replanteando la misma y marcando a ambos lados del eje el ancho de corte, procediendo a cortar con máquina de disco de diamante a la profundidad adecuada.

Con mortero especial de alta resistencia y previo tratamiento de la superficie del fondo de la caja con resinas de unión, se colocará una capa de recrecido o nivelación hasta alcanzar la cota adecuada, en función del modelo de junta a instalar.

Una vez fraguado el mortero, se presentarán los módulos centrados sobre la junta estructural y se realizarán los taladros.

A continuación, se elaborará el mortero de resina de anclaje fluido y se verterá por colada, introduciendo los espárragos con su tuerca y arandela. Una vez curado el anclaje, se procederá a dar el par de apriete correspondiente.

Anclada la junta se procederá al relleno de las zonas de transición mediante un mortero especial de naturaleza elástica.

Como remate final se procederá al sellado de las cavidades de los anclajes con ligante en caliente tipo Compofix.

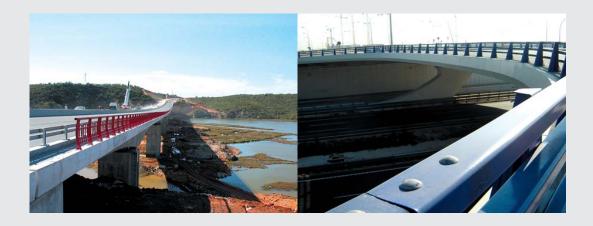
Materiales auxiliares

Para asegurar el correcto funcionamiento de las juntas se considera también necesario que los materiales que se emplean en su montaje cumplan unas determinadas características, ya que de ellos depende la resistencia de la base en la que se apoya la junta, el anclaje de la misma al tablero, y la defensa de los golpes del tráfico sobre la misma función que lleva a cabo la transición.

Productos	Especificaciones				
Mortero de nivelación	Internas				
Cemento	I-45-A/SR.MR				
Áridos	Silíceos				
Resistencia a flexotracción (Kg/cm²)	>90				
Resistencia a compresión (Kg/cm²)	>600				
Resina de anclajes de pernos	Internas				
Ensayo de tracción	Rompe hormigón				
Resina de adherencia entre hormigones	Internas				
Adherencia al hormigón	Rompe hormigón				
Transiciones elásticas	Internas				
Mástico bituminoso:					
Penetración a 25°C (NLT-124/84) (dmm)	50 a 70				
Punto de reblandecimiento (NLT-125/84)	>95				
Fluencia a 60°C (NLT-342/88)	Inapreciable				
Aridos:					
Basalto	Limpio y seco				
Pernos de anclaje	Internas				
Acero suave F-112, Resistencia 8.8 DIN 267	Cumple				
Tuercas autoblocantes Clase 8 DIN 934-8	Cumple				
Arandelas	Zincadas				

Nota: estos datos son únicamente a modo orientativo, reservándose Composan la libertad de modificar alguna de ellas en función de cada obra.

Realizaciones


Composan es uno de lo mayores grupos empresariales a nivel nacional, líder en soluciones constructivas.

Contamos con un equipo humano altamente cualificado que nos permite mantener una posición y vocación de liderazgo en el mercado.

Pocas empresas a nivel mundial tienen la satisfación de poseer la tecnología y experiencia con la que cuenta **Composan**. Ejecutamos obra en España y en donde nuestros clientes nos lo pidan. Hemos instalado más de 250.000 m.l. de juntas, lo que nos permite ser una referencia en el mercado.

En el año 2001 **Composan** empezó a fabricar sus propias juntas y apoyos de puentes, a través de la sociedad Tecaplas.

Esto nos convierte en líderes de esta actividad en el mercado español y una referencia en todo el mundo.

Presencia de COMPOSAN en el mundo

Red de Delegaciones en España y Portugal

Andalucía / Extremadura

Polígono Tecnológico de Los Ogíjares 2ª fase calle A, nave 143 18151 Los Ogíjares (Granada) Telf: 958 509 117

Fax: 958 509 119

Sevilla

P. I. Carretera Amarilla C/ Ahorro, 11 41007 Sevilla Telf: 954 518 599 Fax: 954 518 675

Asturias

C/ Arquímedes, nave 541 Polígono Industrial Roces, 3 33211 Gijón (Asturias) Telf: 985 168 130 Fax: 985 167 442

Canarias

C/ Barbería, 2 - 2º D 35200 Telde (Las Palmas de Gran Canaria) Telf: 928 680 120 Fax: 928 682 476

Cantabria

Polígono Raos, parcela 11-F 36 39600 Maliaño (Cantabria) Telf: 942 369 189 Fax: 942 369 366

■ Castilla y León

Pº de Zorrilla 22, 2º 47006 Valladolid Telf: 983 376 951 Fax: 983 376 987

■ Cataluña / Aragón

Barcelona

C/ Boccaccio 69 08205 Sabadell Telf: 937 232 412 Fax: 937 104 774

Zaragoza

Centro de Negocios de Zaragoza C/ Coso, 98-100, planta 3^a, puerta 4^a oficina 7 50001 Zaragoza Telf: 619 743 981 Fax: 976 236 172

Galicia

C/ Juan Florez 129, 5º Dcha 15005 La Coruña Telf: 981 168 182 Fax: 981 242 832

Levante

Alicante

Avda. Mare Nostrum, 15 B 03007 Alicante Telf: 965 285 121 Fax: 965 283 100

Valencia

Camí del Fus s/n 46470 Massanassa (Valencia) Telf: 961 250 423 Fax: 961 250 185

Madrid / Castilla la Mancha

Avda. de los Pirineos, 7 - 2ª planta P. I. Sur 28700 San Sebastián de los Reyes (Madrid) Telf: 913 604 900 Fax: 915 766 013

País Vasco / Navarra / La Rioja

C/ Pintor Adrián Aldecoa, 2 bajo 01008 Vitoria Telf: 945 251 015 Fax: 945 251 422

Exportación

Avda. de los Pirineos, 7 - 2ª planta P. I. Sur 28700 San Sebastián de los Reyes (Madrid) Telf: 913 604 900 Fax: 915 766 013

Portugal

Parque Empresarial Progresso Armazém 14 Est. Polima a Conceiçao da Aboboda 2785-126 S. Domingos de Rana Telf: 00351-21-445 51 53/4 Fax: 00351-21-445 51 55

Ctra. de Andalucía Km. 28,6 28340 Valdemoro (Madrid) Telf: 918 950 968 Fax: 918 954 825

Composan, cuenta con una amplia red de delegaciones distribuídas por todo el territorio nacional con el objetivo prioritario de acercarnos a nuestros clientes para ofrecerles un mejor y más completo servicio.

Atención al cliente:

En Composan, todo un equipo de profesionales estamos a su disposición para ofrecerle en todo momento soluciones a sus dudas. Hemos implantado una línea directa para que cada día nuestra relación sea más cordial, fluída, dinámica y eficaz. Si usted necesita recibir información sobre un producto concreto o asesoría técnica, sólo tiene que marcar:

902 430 431

Avenida de los Pirineos, 7 - 2ª planta · P. I. Sur 28700 San Sebastián de los Reyes (Madrid) T: 913 604 900 · F: 915 222 909 W. composan.com E. composan@composan.com