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Resumen

Esta investigación explora el beneficio de diseñar una política de calendarizacion per-
sonalizada que reduzca el tiempo de de ejecución de cargas computacionalmente inten-
sivas. Cargas computacionalmente intensivas tales como ray tracing, son sensibles al
cambio de contexto producido por el calendarizador. La política de calendarización prop-
uesta asigna afinidad de cache fuerte para reducir el cambio de contexto al permitir que
cada hilo tenga asignado un único núcleo para su ejecución. Utilizando un sistema opera-
tivo de propósito especifico, hipotéticamente, el sistema tendrá un mayor rendimiento al
combinarlo con la política de calendarización personalizada. El algoritmo de ray tracing
fue seleccionado como carga computacionalmente intensiva para comparar su rendimiento
en un sistema operativo de propósito especifico contra un sistema operativo de propósito
general con su configuración por defecto. Comparado a la referencia, ANOVA factorial
confirmo un 19% de reducción en el tiempo de sintetizado promedio al usar la política de
calendarización personalizada en un sistema operativo de propósito especifico.

Palabras clave: ray tracing, sistema operativo de propósito especifico, SOPS, sistema
operativo de propósito general, SOPG, afinidad de cache, afinidad de cache fuerte, afinidad
de cache débil, ANOVA, cambio de contexto, cache miss.





Abstract

The present research explores the benefit of designing a custom scheduling policy to
reduce the execution time for computationally intensive workloads. Computationally in-
tensive workloads, such as, ray tracing, are sensible to the context switching produced by
the scheduler. The proposed custom scheduling policy assigns hard cache affinity to re-
duce the context switching by allowing each thread to use only one core during the process
execution. Utilizing a special-purpose operating system will hypothetically boost the re-
duced execution time by integrating the custom scheduling policy. Ray tracing algorithm
was selected as the computationally intensive workload to compare its performance in the
special-purpose operating system with the custom scheduling policy against a general-
purpose operating system with the default configuration. Compared to the baseline, the
factorial ANOVA test confirmed an average 19% reduction of the rendering time using
the custom scheduling policy in a special-purpose operating system.

Author Key-words: Ray Tracing, Special-Purpose Operating System, SPOS, General
-Purpose Operating System, GPOS, Cache Affinity, Hard Cache Affinity, Soft Cache
affinity, ANOVA, context switching, cache miss.
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Chapter 1

Introduction

Time is money! This phrase reflects the reality of a globalized world where the de-

mand for high-quality audiovisual content increases day by day [7]. In this context, the

advancement of computer technologies plays an essential role in meeting the necessity of

audiovisual content in a tight market calendar [8].

Rendering is converting scenes in 3-dimensions (3D) to build images in 2-dimensions

(2D). This process takes so long because of the combination of textures, objects, and

effects that the system must process to convert to a image that we can interpretate. The

average duration of a movie or animation is 106 minutes at 24 frames-per-second (FPS),

for a total of 24 × 106 × 60 = 152640 images [9]. Two examples are world-renowned

companies such as DreamWorks and Pixar, specializing in the creation of audiovisual

content. The artists of those companies use rendering to create the scenes that we will

watch in a movie, a short film, or a video game [10]. Rendering is a process that demands

large amounts of computational resources, tangible when analyzing the rendering time

of a single frame. For example, the rendering of each frame for the movie Toy Story 4

took around 60 to 160 hours [11]. Another example is knowing the size of Pixar’s ‘Render

Farm’, which consists of a supercomputer with 2000 machines and 24000 cores; even so,

it took 2-years to render the entire Monsters University movie [12].

As mentioned in [13, 14], there are many rendering algorithms. However, one of the

1
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most elegant and versatile algorithms is ray tracing, one of the most used audiovisual in-

dustries for offline rendering. Ray tracing offers superior photo-realism due to its intrinsic

characteristics of reflection, refraction, and shadowing complexity [15]. When we use ray

tracing as a rendering algorithm, the resulting image will be closer to how the human eye

perceives the objects.

The ray tracing algorithm (explained in detail in the theoretical framework section)

recreates the behavior of light through a relatively simple algorithm based on the emission

of rays from the observer’s camera to the object in question. With this, it is possible to

recreate the interaction of light with the object [15]. However, it is a computationally

intensive algorithm. Therefore, ray tracing has not been extended to real-time rendering

(e.g., video game industry), where each frame must refresh the screen in a manner of

milliseconds [16].

In recent years, companies such as NVIDIA have introduced the concept of real-time

ray tracing. However, they offer a hybrid rendering process, combining rasterization (re-

construction of the image from geometric figures) and ray tracing (mainly for shadowing).

[17, 18, 19].

There are many ways to execute a ray tracer. However, there is a drawback from a

computational point of view. There must be coherence between the rays. Therefore, the

GPU (Graphics Processing Unit) is not suitable for this task since the execution of the

ray tracing algorithm does not obey a known and predictive data structure [18]. Besides,

there is an unavoidable bottleneck in the computer architecture due to the data transfer

among the CPU (Central Processing Unit) and the GPU, meaning that ray tracing in a

GPU would be slower [17]. So, that is why many of the ray-tracing rendering engines use

the CPU [15].

The rapid progress made in recent years in the semiconductor industry has allowed

CPUs to evolve to be capable of processing algorithms that represent a very high workload

for the system, such as ray tracing [20]. Companies such as Intel or AMD offer new CPUs

with more cores, peripherals, cache memory, and sizes every year. That makes them ideal



1 Introduction 3

for executing computationally intensive workloads [21].

A significant advance in memory architecture has evolved into a cache architecture

known as Non-Uniform Memory Access (NUMA). In modern architectures, NUMA pro-

vides an architecture where each core has its local memory (cache L1 and cache L2) and

a global memory (cache L3) for communication among cores. Thus, the cache memory

will populate the data of a thread to exploit the cache affinity [22, 23, 24, 25]. Cache

affinity, defined deeply in the theoretical framework, is the potential of having a lower

cache miss rate and context switching. Cache affinity can be set as hard cache affinity

when the system restricts the cores that a process can access during its CPU time.

However, all these advances at the hardware level could be insignificant without the

software infrastructure capable of correctly and efficiently managing all the available re-

sources. This software infrastructure is the Operating System (OS). According to [26],

the OS has two main functions: 1) to serve as an extension of the architecture or virtual

machine and 2) to serve as a resource manager. The second function is critical for the cor-

rect and optimal functioning of a computer system. Moreover, the resource management

function is essential when the target OS executes computationally intensive workloads

like ray tracing [27].

The OS manages the available hardware resources through process control algorithms.

It is in charge of managing the processing of the tasks that the CPU must execute [1].

One of the most significant algorithms is the scheduler. Schedulers are generally classified

depending on how critical it is to meet each process’s deadline. For applications such as

offline rendering, a soft time scheduler may be sufficient because a delay in the deadline

would not imply catastrophic damage to the system [1, 26].

Linux’s scheduler, known as Completely Fair Scheduler (CFS), is one of the widely used

schedulers, released with version 2.6.23 of Linux kernel. Its philosophy is to “simulate an

ideal CPU in the real world”, that is, to offer a fair distribution of the CPU to each task

in the execution queue [28]. In a multi-core architecture, CFS could have issues balancing

workloads among the processors of the architecture [29] [30]. Furthermore, according to
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[23], a scheduler should exploit cache affinity. However, to the best of our knowledge,

hard cache affinity has not been extensively used to accelerate computationally intensive

workloads. That is why we ran some small experiments and collected evidence that shows

no hard cache affinity when ray tracing is executed (i.e., the execution threads of the ray

tracing algorithm “jumps” within the cores of the architecture during profiler test when

core assigned for execution changed more than 300 times). Moreover, when hard cache

affinity is applied, the rendering time is lower as the core assigned for execution is the

same during all the rendering time. The maximum rendering time reduction observed

was up to 23%. As a result, we assume that assigning hard cache affinity for ray tracing

execution can reduce rendering time.

A Linux-based general-purpose operating system (GPOS) should handle all the pro-

cesses that the user demands, such as document creation, web browsing, and multimedia

playback [1]. Likely on many occasions, due to the nature of the GPOS, the execution

of tasks such as ray tracing can be temporarily suspended to attend other processes with

higher priority, resulting in a potential increment in the execution time [31]. Further-

more, when the task most likely receives processor time, it will continue its execution in

a different processor because CFS assigns soft cache affinity by default.

A special-purpose operating system (SPOS) potentially decreases the overhead caused

by unnecessary tasks available in a GPOS (i.e., the SPOS will have only the essential

tasks that ensure its stability) [32, 33, 34]. In addition, the cache misses can be reduced if

a custom scheduling policy assigns hard cache affinity to the task. Thus, in a SPOS with

a scheduling policy that assigns hard cache affinity, the execution time of ray tracing jobs

may be reduced because the OS, potentially, has less overhead.

Therefore, the research reported in this document will focus on evaluating the poten-

tial increase of performance obtained by optimizing the execution of a highly demanding

algorithm such as ray tracing through the design of a custom scheduling policy that ex-

plodes the benefits of assigning hard cache affinity. Moreover, to boost the rendering time

reduction, a SPOS is build to integrate the custom scheduling policy. This implementa-
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tion will be compared against the baseline operating system with the default scheduling

policy.



6 1.1 Problem

1.1 Problem

As far as we know, there is no information on the potential use of a custom scheduling

policy that assigns hard cache affinity in a special-purpose operating system to improve

the performance of ray tracing algorithm. The evaluation will focus on three edges:

1. Comparing the execution time of ray tracing on a general-purpose OS with CFS

and with a custom scheduling policy.

2. Comparing the ray tracing execution on a special-purpose OS with CFS and a

custom scheduling policy.

3. Quantifying the performance gain between a general-purpose OS with CFS and a

special-purpose OS with the custom scheduling policy.

Also, traditionally the execution of ray tracing for audiovisual development happens in

high-end equipment [35, 36, 37]. However, there is a lack of information on optimizations

in “budget-segment” systems to execute ray tracing which is the best-selling segment.

Indeed, this research proves the potential to process ray tracing for real-time rendering,

as is acclaimed in the video game industry.

The rendering time will be longer in a “budget-segment” system [21]. However, the

experiment will use real-life scenes since one of the goals is to verify the potential im-

provement of ray tracing in the audiovisual industry. These scenes could be present in

next-generation video games, movies, or short films.
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1.2 Document Organization

This document presents the statistic evaluation of the feasibility of using hard cache

affinity as a potential improvement point in executing computationally intensive tasks such

as ray tracing. Also, the implementation of a special-purpose OS as possible performance

improvement is analyzed.

This chapter presents a brief Introduction to the use of the ray tracing algorithm in

the industry. Also, it describes the hardware/software elements that could influence the

execution of the ray tracing algorithm.

Chapter 2 sets out the Theoretical Framework necessary to understand the devel-

opment of this research. Besides, at the end of this chapter, a brief description of the

related work on this topic is presented.

Chapter 3 exposes the Hypothesis and Objectives of this investigation. Along with

this, the objectives and deliverables are raised and described. The scope and limitations

of this investigation are also detailed.

Chapter 4 presents the Methodology proposed for this research. We describe the

software and hardware infrastructure used for the evaluation of this research. Also, the

design of the experiment and the statistical method followed for the data analysis.

Chapter 5 presents theDesign and the strategy to accelerate computationally intensive

workloads like ray tracing through the cache affinity in a SPOS.

Chapter 6 displays the Results obtained through the experiment.

Chapter 7 presents the Discussion of the results obtained after results analysis.

Finally, chapter 8 shows the Conclusions and Future Work resulted from this

research effort.



8 1.2 Document Organization



Chapter 2

Theoretical Framework

In this chapter, we present the main theoretical concepts to have a better understanding

of this research. Specifically, we describe the Central Processing Unit, Operating Systems,

and ray tracing algorithm. Also, at the end of this chapter, we explain some related work

to the scope of this research.

2.1 CPU

Nowadays, almost every electronic device uses a CPU as an electronic brain. This

electronic brain, in addition to processing data, controls all the other components in the

system [38]. Rather than early design, modern CPUs follow a decentralized approach,

meaning that we may see more than one processor dedicated to controlling subsystems

in the entire system. However, the main CPU is the most critical hardware component

as it always controls and coordinates the overall system by telling the other processors

when to start and stop [38, 39]. The CPU performance can be measured by analyzing

four main parameters: core-count, cache size, processor type, and clock speed.

9
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2.1.1 Processor type

According to [39], the CPU can be divided into two broader categories: CISC (complex

instruction set computer) and RISC (reduced instruction set computer). This classifica-

tion depends on the instruction set of the architecture. When we refer to CISC, it means

an instruction set that usually includes many instructions (typically hundreds). Each

instruction can perform any arbitrarily complex computation (e.g., one instruction ma-

nipulates graphics in memory and others compute the sine and cosine functions) [39]. In

this research, we will focus on CISC because the architecture x86 uses this instruction

set, and it is the most famous architecture by general-purpose computing [40].

2.1.2 Core count

In this context, core means a processor into the CPU die. Each core has its execution

unit, control unit, and local memory. Modern CPU chips follow a multi-core architecture.

There is an open ‘battle’ between CPU manufacturers to add more cores into their chips

[41]. Multi-core architecture allows parallel execution, ideal for high-performance tasks

because a single core cannot be clocked at arbitrarily high speeds. Multi-core architecture

does not mean that doubling the core count will double the speed, as Amdahl’s Law

explains [1]. Amdahl’s Law says that the performance will not rise in the same proportion

as the increase in CPU cores because it is limited by the ratio of software processing that

must be executed sequentially [42]. Communication among the cores is a factor that may

reduce performance in this kind of architecture [17, 39].

2.1.3 Clock Speed

The clock speed indicates how fast the CPU can run [43]. This parameter is one of the

most meaningful to understand the performance because, at higher clock frequency/speed,

the CPU can execute more instructions in less time. Modern architectures bring two clock

frequencies/speeds: the baseline (i.e., base frequency) and turbo frequency (i.e., the CPU
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uses turbo frequency when increases the workload) [44]. However, the CPU cannot per-

form at turbo frequency for a long time due to thermal implications. This phenomenon

is explained by Equation 2.1, where the average power calculation is performed by mul-

tiplying the switching factor (α), the capacitance (C), operation voltage (Vdd), and clock

speed (Fclock) [39]..

Pavg = αCV 2
ddFclock (2.1)

Equation 2.1 demonstrates the influence of the clock speed in power consumption and

heat increase. That is why the overclockers (people who try to increase the clock speed

out-of-base values) need an advanced thermal solution to mitigate the thermal risks [45].

Another important fact is that multi-core architecture was born because of the increase

in thermal issues derived from clock speed [1]. In the early 2000s, power consumption

became a problem because, in single-core architecture, the clock speed increased from

generation to generation. The designers realized that having a multi-core architecture at

lower clock speeds may have the same computationally capability as a single-core with

higher clock speed [1].

2.1.4 Cache Memory

Memory access is one of the main bottlenecks in modern architecture because of the

latency introduced by retrieving data from the main memory [39]. The cache is a high-

speed memory located between the processor and main memory, allowing the processor

to have 95% of the data required by a program thanks to the principle of locality and its

low latency [17].

Lower the cache level, faster and smaller (capacity). The majority of modern compu-

tational systems have at least three cache levels. Cache L1 and Cache L2 are assigned

per core in a NUMA architecture, and Cache L3 is shared among the architecture’s cores
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[39].

Physically located at the same die as the cores, the cache has become one of the most

significant components in a computational system, as shown in Figure 2.1. Access time

determines the performance of the cache memory [39]. If data required by a core is not

in the cache memory, every step down in the memory hierarchy will introduce latency

to the system. This phenomenon is called cache miss in contrast to a cache hit that

happens when the data is found in the cache. Design elements like replacement policy

and associative will impact the performance by reducing (or increasing) the cache misses

[25].

Figure 2.1: Memory hierarchy in a computational system [1]

Cache Affinity

As exposed above, a cache hit is a crucial element to ensure cache performance [1].

Consider what happens when a thread has been running in a specific processor (P1). The

thread would populate the data most recently used in the cache. Likely because of a

locality principle next time the thread asks for data, the data will be in the cache in a
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mechanism known as “warm cache” (i.e., numerous cache hits). However, what happens if

the scheduler, because of load-balancing, decides to move the thread from P1 to another

processor (P2)? The cache in P1 will be invalidated (i.e., context switching 1), and the

cache in P2 must populate the data to run the thread, implying a massive cost for P2.

The scenario described is what cache affinity wants to prevent by restricting the core(s)

where a process/thread can run to have a warm cache [1, 22].

Linux Scheduler (Completely Fair Scheduler) allows two main cache affinity types:

soft cache affinity and hard cache affinity [1]. On the one hand, soft cache affinity is

the default condition because the scheduler has the policy to keep running a thread in

the same processor, but not guaranteed because it can change depending on workload

conditions. Furthermore, on the other hand, we have hard cache affinity when the user,

through a system call, defines the core(s) where a thread is allowed to run. The Linux

OS has a system call to assign hard cache affinity, sched_setaffinity(), but it can be

inefficient and may create race conditions and memory allocation problems during the

task’s execution [46].

2.2 Operating System

The operating system (OS) transforms the computer from a useless lump of metal into

a sophisticated electronic device [26] An OS allows us to do basic tasks like checking our

social networks or playing music and videos and doing complex processes like controlling

a rocket’s launch or discovering treatments for disease. The OS performs fundamentally

two functions: 1) extending the machine and 2) resource manager [1, 26].

1Context switching happens when a new task gets CPU time, and all the data in the cache must be
renewed by retrieving data from the main memory, implying an enormous latency for the system [26].
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Extending the machine

The OS provides the programmer a high-level abstraction of the hardware functionality

(i.e., in most cases, the hardware is transparent to the programmer) [26].

Resource Manager

An easy example to understand the resource manager function of the OS is to imagine

a system where three programs are ready to be executed. Each program wants to use

the same resources. It may imply potential chaos in the system, but the OS will bring

order to the system by knowing the availability of the computational resources. Also, the

OS will prioritize each program to recognize when the computational resources should be

assigned. Besides, it will protect the data of each program [26].

As a result of Moore’s Law, computers are present everywhere; within our watch,

refrigerator, cell phone, and TV [47]. As explained early, those electronic devices need

an OS to have a correct operation. That is why the OS should adapt to the necessity

of the system (e.g., the OS used by our personal computer is different from the one

used by a toaster). For that reason, exists an OS classification: general-purpose OS and

special-purpose OS [48].

2.2.1 General-purpose Operating System

The main reason for a general-purpose OS is to make a single OS that offers various

services that work for a range of computers. Computer manufacturers follow this approach

because it makes cheaper and scalable systems [26].

The objectives for such systems are to accommodate an environment of diverse appli-

cations and operating modes, leaving in second place objectives like increased throughput,

lower response time, and adaptability [48].

Examples of a general-purpose OS are:
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– Windows

– Mac OS

– Some Linux distributions like Ubuntu and CentOS.

2.2.2 Special-purpose Operating System

In contrast to a general-purpose OS, a special-purpose OS focuses on an optimized

system to execute a task or a group of functions as efficiently as possible, that is, de-

signed according to performance specifications [48]. There are special-purpose OSs such

as µkernel or Exokernel implemented to fit the hardware. For that reason, a special-

purpose OS could be more expensive than a general-purpose and lost some flexibility

because it could be hardware-dependent [33, 34].

A classic example of a special-purpose OS is an RTOS (Real-time OS). In these systems,

losing the deadline will have catastrophic consequences. As a result, an RTOS has precise

resource management to meet the deadline and be predictable [49, 50].

2.2.3 Scheduler

Modern Operating Systems can get the most out of the hardware where they are

running [1]. The OS does this by making each process “believe” that only it is being

executed in the processor by giving the process the feeling that it is alone. The scheduler

is an algorithm that assigns the processor time to each task in a run queue [51].

The scheduling idea is relatively simple [1]. The scheduler should send a process to

run, wait until it finishes its execution, spend its processor time, and then send another

task for execution. The main objective is to avoid having the CPU idle by having a queue

with programs ready to run. When a program should wait, another process can take over

the use of the CPU.

As scheduling criteria, numerous scheduling algorithms follow CPU utilization,
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throughput, turnaround time, waiting time, and response time [26]. In general, we would

like to maximize CPU utilization and throughput and to minimize turnaround time, wait-

ing time, and response time. However, the balance desired would depend on the target

processes.

Many scheduling algorithms fulfill different necessities [1]. Some of the scheduling

policies are listed below:

– Completely Fair Scheduler (CFS): Default scheduling policy for Linux-based OS

(more details in next section).

– First-Come, First-Served (FCFS) Scheduling: This scheduling policy executes its

run queued requests and processes in order of their arrival. It is considered the

most straightforward CPU scheduling policy.

– Shortest-Job-First Scheduling: This scheduling algorithm choose the next task to be

executed in the function of its execution time. The task with the shortest execution

time is executed next. It has the advantage of reducing the average waiting time

for process awaiting processor time.

– Round-Robin Scheduling: This algorithm is a preemptive scheduling policy. Each

task will receive a fixed time to execute, which is called quantum. Once a task is

processed for a given quantum, it is preempted, and another task executes for a

given time.

– Priority Scheduling: It is a non-preemptive algorithm where each process receives a

priority. A process with the highest priority is executed first, and so on. When two

processes have the same priority, FCFS is applied.

– Multilevel Queue Scheduling: It uses other scheduling policies to group tasks with

similar characteristics and the best scheduling policy for a given group of tasks.

– Multilevel Feedback Queue Scheduling: Similar to Multilevel Queue Scheduling.

The main difference is that it allows a process to move between queues. The inten-
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tion of moving tasks is that a task that uses too much CPU time can be moved to a

lower priority queue, or a task that waits too long can be moved to a higher priority

queue.

– Earliest deadline first scheduling (EDF): EDF is an optimal dynamic priority

scheduling algorithm used in real-time systems. It assigns priorities to the task

according to the absolute deadline. So, the task whose deadline is closest gets the

highest priority.

– Rate Monotonic: It is a preemptive algorithm that belongs to the static priority

scheduling category. As the EDF, it is mainly used in real-time systems. The

priority of each task is decided according to the cycle time of the process that is

involved. For example, if a process has a small job duration, it has the highest

priority.

Completely Fair Schedule (CFS)

Scheduling is a fundamental operating-system function [1]. Talking about Linux OS,

CFS is part of the Linux kernel since version 2.6.23 [52]. CFS is a scheduler that models

an ideal, accurate, multi-tasking CPU on real-wrold hardware [28]. It means that CFS

tries to model a CPU that can run several tasks in parallel, offering each of them the

same processing power. An example of a simple process processor would receive 100% of

the processor’s power. Assuming a single-thread processor, if we have 2-processes, each

one would have 50% of the processor’s power. However, this fairness does not exist in

a real processor because only one task can run on a processor and receive 100% of the

processing power as long as it is assigned [52].

The central part of the CFS implementation is the run queue [51]. Rather than the

traditional approach of a FIFO (first-in, first-out), CFS uses a red-black tree (RBTREE).

The main characteristic of this implementation is the easier insertions and removals within

the tree than other data structures [28]. Another advantage of the RBTREE, it is con-
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sidered as an O(log(N)) problem (where N is the number of nodes in the tree), reducing

the computational workload when going through the tree. Another feature is that this

type of data structure is excellent for a hierarchical organization, as the virtual runtime

requires (vruntime) [28].

Figure 2.2 shows the implementation of an RBTREE, where tasks are sched_entity

objects in the RBTREE. On the left side of the tree, tasks with the highest CPU need

(lowest vruntime) are stored, and on the right side of the tree, tasks with the lower CPU

requirements (higher vruntimes) are stored. The scheduler, to be fair, chooses the leftmost

node of the RBTREE as the next task to be executed (to maintain fairness) [52]. The

tree’s content migrates from the right to the left to keep it fair when a task is removed

from the tree. Therefore, each executable task chases the other to maintain a balance

of execution in the set of tasks. An expropriated task is sent back to the tree to the

rightmost side to execute the new leftmost task [46].

Figure 2.2: Example of a Read-Black Tree [2]

CFS must care about workload balancing and cache-affinity. By default, CFS has a soft

cache affinity because it should follow workload balancing and cache-affinity principles.

However, according to [46], there are mechanisms to force CFS to have a hard cache

affinity, which is the primary purpose of this research effort. Nevertheless, [46] says that
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forcing CFS to set hard cache affinity through a system call can be inefficient and may

create race conditions and memory allocation problems during the task’s execution.

2.3 Ray Tracing

Rendering is the method to transform 3D scenes into 2D scenes that we can watch

on television, computer, and cinema. The traditional rendering technique, named raster-

ization, uses geometry figures to approximate the objects’ shape, light, and shadow in a

3D scene [53]. This approximation is very computationally efficient, allowing real-time

rendering in some popular applications like video games. On the other hand, almost all

photorealistic rendering systems use the ray tracing algorithm because they are the most

elegant and versatile [15].

In 1968, Arthur Appel was the first person who documented ray tracing for image

synthesis [54]. Figure 2.3 shows that a mathematical ray originates from the origin point

or ‘eye point’ crossing the image plane at the center of a pixel. For each ray, the system

calculates which object in the scene intersects the ray. It also calculates which object is

closest to the ray origin, which will be the visible object for the pixel. The Eye Point and

the Image plane exist in the three-dimensional space [17]. When a ray does not intersect

any object in the scene, the default color is assigned. However, if the ray intersects an

object, the pixel will receive the color generated by the ray [3].

As [17] explains, the ray tracing algorithm can be described as a nested for in which

the external for iterates through the y-axis and internal for iterates through the x-axis,

resulting in intense use of the CPU. That is a simple abstraction of the ray tracing

algorithm, but it helps to have a high-level understanding of the algorithm. There are

formal and powerful rendering engines using ray tracing [55]. Some of these rendering

engines are:

– Mitsuba
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Figure 2.3: Ray tracing algorithm [3]

– PBRT-v3

– LuxRender

– Hyperion

– RenderMan

Figure 2.4 shows three relevant effects in a scene: color, illumination, and shadowing.

The color and illumination depend on the intensity and position of the light source [55].

It is required to have at least one light source. Lambert’s Law is the mechanism that

generates the color shown in a rendered image by scaling on a range from zero to one of

each one of the color components [17]. The shadowing happens when there is an obstacle

between the source light and the object [15]. The easiest way to determine if a shadow

exists is by creating a new ray called shadow rays. Their origin will be the object’s surface,

and its direction will be towards the light source. If there is no obstacle between the object

and the light’s source, the light’s source contribution is included in the final image [15].
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Figure 2.4: Ray tracing image creation [4]

Figure 2.5 shows the power of the ray tracing algorithm. The scene to the left uses

rasterization, the traditional approach that follows in the video-game industry [18]. The

enormous difference in the final scene is clear when ray tracing is used (image to the

right). The reflection, illumination, and shadowing of the fire on the car are close to what

we observe in real-life events.

2.4 Related work

This section presents different implementations found in the literature to accelerate

tasks computationally intensive. The related work section has three areas: General-

Purpose Kernel Optimization, Completely Fair Scheduler Improvements, and Hardware

Architecture Improvements.
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Figure 2.5: A scene rendered using Rasterization (left) versus a scene rendered using ray
tracing (right) [5]

2.4.1 General-Purpose Kernel Optimization

An implementation of a reduced kernel can be called a µ-kernel. A µ-kernel is a reduced

kernel that contains the essential components following two principles: independence and

integrity. Besides, the µ-kernel is intended to allow flexibility and high performance.

As [33] analyzes, there are scenarios where a µ-kernel can be a perfect solution to

improve system performance. It is mandatory for an excellent reduced kernel implemen-

tation that must include only the components needed to work correctly. The way to reach

this is:

– Optimize Address Spaces: By optimizing how the operating system associates

the physical page to the virtual page. This must be done so that the address space

keeps hidden from the hardware to ensure security.

– Threads and Process Scheduling: Threads are executed within the address

space, with characteristics of register allocation, instruction pointer, stack pointer,

and status information. How it is associated directly with the address space should

be implemented within the µ-kernel.
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– Unique Identifiers: The unique identification of processes, threads, and tasks is

required to establish efficient and reliable communication channels, so the µ-kernel

must ensure this service. Other methods as cryptography can be used, but for local

communication, it is a costly process.

The flexibility in a µ-kernel is met by having good memory management, correct

multimedia resource allocation, and device driver. The main disadvantage of a µ-kernel

is that the design entirely depends on the hardware (i.e., unique solution for each piece

of hardware) [56].

2.4.2 Completely Fair Scheduler Improvements

As [51] and [46], the approach followed during Linux Scheduler design makes it “easy”

for the developers to develop their scheduler and add it as a new scheduling policy, co-

existing with the Completely Fair Scheduler (CFS). This section will be divided into

scheduling strategies intended to boost the system’s performance by optimizing Cache

and Memory access.

One of the main problems of modern architectures is a large number of tasks/threads

that are running in parallel [57]. They must share hardware resources such as cache, mem-

ory, CPU, and I/Os. It can cause resource contention, which will affect the performance

of the threads. If the system knows that this containment will occur, the effect can be

mitigated and compliance with performance, power consumption, and justice. Therefore,

an algorithm that meets this criterion must have the following objectives [58, 59]:

1. To detect shared memory contention.

2. To depend solely on the information gathered by the monitoring mechanism in

modern processors.

3. Not to require additional hardware.



24 2.4 Related work

Memory Link and Cache-Aware co-calendaring for architectures Chip-Level Multipro-

cessing (CMP). It is based on a classification scheme that monitors the use of resources

throughout the entire memory hierarchy: from main memory to CPU cores. With this, it

is possible to predict the interference that may occur between applications. Also, support

a co-scheduling algorithm that exceeds the policies of standard scheduling in terms of

performance and fairness of CPU usage [58].

As [29] demonstrates, CFS is not ideal for multi-core implementations because it fails

to distribute the core workload efficiently. It happens because CFS is not scalable and

fails in two functions: load balancer and per-core fair-share scheduler. The workload is

distributed more efficiently between the more heavily loaded cores and the more lightly

loaded ones by modifying those components [30].

CFS is intended to be a scheduler for general-purpose operating systems [51]. It can

be modified and optimized to incorporate a more robust implementation by adjusting

parameters like scheduler_latency and others; the execution time can be reduced [60].

Modifying the parameters of baseline CFS according to the necessity of the applications,

there are performance improvements up to 10% [31].

Ray tracing relies on how well designed the scheduling at the cache level is [1, 15].

The threads being executed by a rendering algorithm ‘jump’ from one core to another to

optimize CPU usage. Still, it may increase the cache misses by reducing the cache affinity

[53]. There are some techniques like CFS+ that obtained up to 4.56% improvement in

system throughput for the applications studied by detecting the cached content to avoid

it or even correct it [61].

2.4.3 Hardware Architecture Improvements

Computationally intense tasks, like ray tracing, can be accelerated by modifying the

hardware architecture, resulting in execution time reduction of algorithms like ray tracing.

Examples of these architectures are Symmetric Multi-Processing (SMP), Non-Uniform
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Memory Access (NUMA), and Simultaneous Multi-Threading (SMT) [57]. A similar idea

is presented by [5], where it shows how NVIDIA created a specific GPU to run algorithms

like ray tracing.

By having a hybrid optimization between software and hardware, the execution time of

a computationally intense task can be reduced [62]. If optimization is done only consider-

ing the software side, the result is poor performance. On the other hand, if optimization

is done only at the hardware level, it may reduce the execution time, but the complexity

of the hardware grows. By having a hybrid implementation where both software and

hardware are optimized, the improvement can be rounded to 42%.

[17] and [16] present a evaluation of the ray-tracing acceleration in low-cost hardware.

An APU (Accelerated Processing Unit) is hardware with a CPU and a GPU integrated

into the same die. Ray tracing was the computationally intensive workload chosen to

compare its performance in an APU against the CPU and GPU. The main advantage of

the approach followed is that it takes advantage of the ability of the APU to share and

coordinate data within its internal processor. The author demonstrates a performance

improvement of around 65% for a general case. For the most complex scenario, the author

proves an increase in the performance of 79% against GPU and 51% against CPU.

2.4.4 Alternative methods to improve memory affinity

Modern systems have deep and complex memory hierarchies with multiple cache lev-

els and memory controllers within a NUMA architecture. For such systems, mapping

threads that share data cores with shared cache, cache usage, and mapping pages to

memory controllers to reduce the access overload is required from [24, 63] perspective.

kMAF is a mechanism that performs integrated thread and data mapping in the kernel

by using the page faults of parallel applications to characterize their memory access and

cache performance. The results demonstrate a maximum improvement in execution time

reduction up to 35.7% and 34.6% in the energy efficiency. The authors point out that the
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improvement observed in their implementation is mainly because of the memory affinity

of parallel applications through the optimized thread and data mapping.

Another author, such as [64], uses cache affinity optimization to obtain up to 21% av-

erage speedup over the baseline execution. This improvement was achieved by developing

a new dynamic concurrency controller for TinySTM (Software transnational memory).

It also features an affinity-aware thread migration technique that fine-tunes thread place-

ment.

The implementation exposed by [61] and [64] are essential papers that work as a base-

line for this research effort. They show that the optimization in the cache affinity can

improve the system’s performance. The custom scheduling policy can also be considered

an affinity-aware implementation. It pursues the hard cache affinity to improve compu-

tationally intensive workloads like the ray tracing algorithm.
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Hypothesis and Objectives

This chapter exposes the Hypothesis and Objectives of this investigation. Along with

this, the objectives and deliverables are raised and described. The scope and limitations

of this investigation are also detailed.

3.1 Hypothesis

In combination with a special-purpose OS, exploiting the cache affinity shows the

potential to improve the performance of computationally intensive workloads like ray

tracing. As a result, the hypothesis for this thesis reads as follows:

“Cache misses due to context switching is an issue that increases the execution time

in processes computationally intensive such as ray tracing. Suppose the number of cache

misses decreases through a custom scheduling policy that assigns hard cache affinity in

a special-purpose OS. In that case, the execution time can be reduced by at least 10%1

when compared against to a general-purpose OS using default CFS scheduling policy."

16.3%, 6.8%, and 3.58% was the average performance improvement between 2012 and 2019 in CPU
processors (for multi-thread workloads) for laptop, desktop, and server; respectively [65].

27
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3.2 Objectives

3.2.1 Main Objective

Evaluate the Ray Tracing acceleration through a custom scheduling policy that assigns

hard cache affinity optimization in a special-purpose operating system against a general-

purpose operating system using default.

3.2.2 Specific Objectives

1. Identify the state-of-art design of special-purpose operating systems and optimize

through cache affinity for computationally intensive workloads algorithms like ray

tracing.

2. Design a solution that integrates a custom scheduling policy that assigns hard cache

affinity in a special-purpose operating system.

3. Validate the solution designed through a design of experiments.

3.2.3 Deliverable

This section summarized the deliverables proposed for each of the specific objectives

defined in the previous section.

Specific Object 1: It documents the state-of-art and related work on designing

special-purpose operating systems and optimizing cache affinity for computationally

intensive workloads algorithms like ray tracing.

Specific Object 2: Present the system designed that includes a custom scheduling

policy that assigns hard cache affinity in a special-purpose operating system.

Specific Object 3: Provide a summary of the statistical data obtained from the

experiments.
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3.3 Scope and Limitations

The technology field is an ever-changing environment. That is why this research has

taken numerous assumptions to clarify and delimit thesis scope and results. Any consid-

eration outside of what is being defined in the objectives, deliverables, and this section is

considered outreach of this thesis.

Hardware used: By the time of this research, a high-end gaming laptop can cost

up to $6499, but the average cost for a high-end gaming laptop range between $2000

and $3000 [66]. Because of hardware availability and to limit the scope of the results

obtained, the “budget segment” for gaming laptops has been selected. The range of

this segment is around $1000 [67]. The actual hardware used to benchmark the ray

tracing algorithm is describing in the methodology section.

Selected library to render ray-tracing on the Linux environment: PBRT-

v3 was chosen. The reasons for using PBRT-v3 are discussed in chapter 4. Any

other state-of-the-art library for ray tracing execution is regarded as future work.

Selected method to assign a hard cache affinity in the ray-tracing execu-

tion: Adding a new scheduling policy into the Linux kernel scheduler was chosen to

set hard cache affinity. The reasons for using this approach are discussed in chapter

4. The use of any other procedure to assign hard cache affinity is regarded as future

work.

Selected environment to build the special-purpose operating system: The

Yocto Project was chosen. The reasons for using the Yocto Project are discussed

in chapter 4. Using any other methodology/platform to build a special-purpose

operating system is regarded as future work.

Scenes for rendering: The scenes used for the experiments are the examples

provided by the designers of the PBRT-v3 library [6]. The experiments will consist

in three resolutions: 640x360 (nHD), 960x540 (qHD), and 1280x720 (HD). Seven



30 3.3 Scope and Limitations

real-life scenes will be part of the experimentation (more details of the scenes in

chapter 4). Any other arrangement not contemplated in this research is regarded

as future work.

Better performing hardware: The hardware selected for the experimentation

was considered adequate to fits the necessities of this research effort. The use of

newer or powerful hardware is regarded as future work.
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Methodology

This chapter presents the methodology followed in this research effort. First, a brief

introduction to ANOVA and the details of the assumptions taken in this thesis.

4.1 Experiment Design

This thesis will evaluate several scenarios to understand the factors that affect the ren-

dering time of ray tracing using the PBRT framework. A factorial ANOVA is an Analysis

of Variance test with more than one independent variable (IV). Factorial ANOVA is an

efficient way of conducting a test because instead of doing a series of experiments testing

only one IV, ANOVA permits an assessment of all IVs simultaneously [68]. Therefore,

this methodology will reduce the number of tests and provide a statistically significant

conclusion.

4.2 Factors and Levels

Factorial ANOVA is a methodology that involves independent variables and dependent

variables (DV). IVs, also known as a factor, is an element that may have several levels.

The researcher manipulates the factors to observe the effects on the DVs (output) [69].

31
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The detail of the selected factors and levels are explained as follows:

Scenes: The complexity of a scene is determined directly by the number of objects,

textures, and effects [15]. For that reason, in this research, the impact of the scene

complexity in the rendering time is an essential factor. So, we are going to analyze

seven complex scenes:

– Barcelona Pavilion

– Bathroom

– Breakfast

– Contemporary Bathroom

– Landscape

– Crown

– Volume Caustic

Image Size: Image resolution is one of the main elements that determine the

quality of an image [70]. Pixel, the smallest possible detail presented in a digital

picture, is the unit to measure image resolution [17]. So, the more pixels we have

in an image, the better quality it has. The advantage of the following resolutions is

that the resulted images will have an aspect ratio of 16:1.

– 640x360 (nHD)

– 960x540 (qHD)

– 1280x720 (HD)

These three image resolutions will give enough quality and resolution to measure

their impact on rendering time in our criteria.

Operating System: Part of the hypothesis for this research effort is the use of a

special-purpose operating system to accelerate ray tracing. Also, a general-purpose

OS based on Ubuntu OS will be the baseline. So, we will have the following OS:
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– Special-purpose OS (based on the Yocto Project Dunfell 3.1)

– General-purpose OS (Ubuntu 18.04 LTS)

The kernel version for both OS is Linux kernel v5.4.

Scheduling Policy: This is another crucial factor for hypothesis testing. The

factors are the following:

– Custom Scheduling Policy

– CFS Scheduling Policy

4.3 Measures and Combinations of the Experiment

Table 4.1 summarizes the factors and levels for the factorial ANOVA analysis. There

are 84 combinations.

According to [17], a factorial ANOVA requires at least two measurements for each

combination. For this research effort, six measures will be performed, granted a total of

504 cases for the ANOVA test.

The nomenclature for the table is:

Operating System: General-purpose operating system (GPOS) and special-purpose

operating system (SPOS).

Scheduling Policy: CFS Scheduling Policy (CFSSP) and Custom Scheduling Policy

(CSP).

4.4 Response Variable

According to [17] and [40], the performance can be measured as the CPU’s time to

execute a process. As mentioned at the beginning of this document, rendering time is
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Table 4.1: Factors and levels of the experiment.

Factor
Scene Resolution Operating system Scheduling Policy

Levels

Barcelona Pavilion 640x360 GPOS CSP
Bathroom 960x540 SPOS CFSSP
Breakfast 1280x720
Contemporary Bathroom
Crown
Landscape
Volume Caustic

one of the most costly elements for the content creation industry. For that reason, the

rendering time will be the response variable.

4.5 Hardware Used for the Experiments

One computer will be used for the experiments. The characteristics of the systems are

shown in Table 4.2.

Table 4.2: Hardware characteristics for the experiments.

Characteristic Description
CPU Intel Core i7-6700HQ
Price $3781

CPU clock frequency range 2.6 - 3.5 GHz
Cores/Threads 4/8
Cache L1/L2/L3 256 kB/1 MB/6 MB
Memory technology DDR4 @ 2133 MT/s
Memory Size 12 GB (SODIMM dual-channel)
Storage (GPOS) 512 GB SSD
Storage (SPOS) 128 GB SSD
Power Consumption 45 W
Thermal solution stock cooling

1This CPU was released in Q3’2015 [71]
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4.6 Scenes Used for the Experiments

One of the main reasons for this research effort is to prove the potential performance

improvement in rendering time for ray tracing that the industry could exploit. The

complexity of a ray-traced comes from the number of objects distributed across the scenes

[17]. Therefore, we will use part of the examples PBRT-v3 offers because they meet the

quality and complexity that fits this research effort. The scenes are going to be modified

to meet the resolution factor exposed previously. The scenes selected are:

1. Barcelona Pavilion (Figure 4.1)

2. Bathroom (Figure 4.2)

3. Breakfast (Figure 4.3)

4. Contemporary Bathroom (Figure 4.4)

5. Crown (Figure 4.5)

6. Landscape (Figure 4.6)

7. Volume Caustic (Figure 4.7)

Figure 4.1: Scene for rendering: Barcelona Pavilion [6]
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Figure 4.2: Scene for rendering: Bathroom [6]

Figure 4.3: Scene for rendering: Breakfast [6]
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Figure 4.4: Scene for rendering: Contemporary Bathroom [6]

Figure 4.5: Scene for rendering: Crown [6]
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Figure 4.6: Scene for rendering: Landscape [6]

Figure 4.7: Scene for rendering: Volume Caustic [6]
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4.7 Hard Cache Affinity used for the Experiments

There is an easy way to assign hard cache affinity during program execution from

user-space in Linux-based OS by executing the command taskset() [72]. There are a few

inconveniences of this approach:

1. The hard cache affinity is set when the task is already being executed.

2. The user should set the hard cache affinity manually.

3. The process would have soft cache affinity assigned for some time during its execu-

tion.

4. The reproducibility of the experiment. Using taskset() command, we are introducing

a new variable to the experiment: the user. It implies that the experiment might

not be completely reproduced because it depends on the user’s response time.

5. Potentially, the task can suffer race conditions because artificially, the user executes

another task with higher priority that preempts the ray-tracing execution [46].

6. Context switch increment due to execution of another high-priority task during the

experiment. It is the opposite of what this research effort is looking to reduce [51].

The Linux-based kernel allows the addition of scheduling policies. For that reason, the

outcome of this research effort will be a scheduling policy added to Linux’s kernel to

assign a hard cache affinity to ray tracing-related tasks. Thus, the proposed solution will

be automated, sophisticated, and elegant to accelerate ray tracing through hard cache

affinity. The benefits of this approach are:

1. Hard cache affinity is set before the task is added to the execution queue. The

scheduling policy will fix the cpumask to set hard cache affinity.

2. Cache misses and context switch reduction.
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3. Experiment reproducibility. As the custom scheduling policy is added to the kernel,

the experiment can be easily reproduced.

4. Ray tracing execution is not stopped/preempt to assign hard cache affinity.

4.8 Rendering Library used for the Experiments

The rendering library chosen for the experiments is PBRT-V3. PBRT-V3 is a state-of-

the-art library released in 2016 and a Physically Based Rendering book: From Theory to

Implementation. The library is the implementation of the concepts presented in the book

[55]. This book has won an Academy Award and has been the base for multiple research

work, courses, and audiovisual production [15]. PBRT-v3 offers several advantages that

are important for this research effort:

– It is an open-source library.

– It is supported in Linux-based environments.

– It accurately simulates materials and lights.

4.9 Special-Purpose Operating System used for Exper-

imentation

The platform used to build the SPOS was Yocto Project. Yocto Project is an open-

source community that provides templates, tools, and methods to help to create custom

Linux-based systems [73]. Although Yocto Project trends to embedded systems rather

than high-performance systems like desktops, it offers several advantages that fit this

research effort. The advantages are:

– It is an Open Source collaboration project.
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– It is supported and governed by high-tech industry leaders.

– It offers support to x86 architecture.

– Because its architecture is based on layers, making it relatively easy to integrate a

new library like PBRT-v3.

– It allows kernel customization.

– There is a support platform.

The release is 3.1.1. LTS “Dunfell" is selected as the baseline to the SPOS. Linux kernel

version 5.4 based on “meta-intel”. meta-intel is selected because it offers well-documented

support for x86 architecture, and it is recommended in important community forums. For

this research, a minimal image was generated.

4.10 Data Collection

A python script was developed to automate the execution and data recollection from

the experiments.

4.11 Factorial Analysis of Variance (ANOVA)

Factorial ANOVA is often used to understand the combined effect of at least two dif-

ferent factors on a dependent variable [74]. It allows the researchers to test for group

differences and their interactions [17]. The testing performed by ANOVA allows deter-

mining whether results are significant to reject the null hypothesis or accept the alternate

hypothesis. In other words, ANOVA predicts if there is a difference between groups.

ANOVA assumes independence of observations and the homogeneity of variance, as

per other assumptions on the general linear model [68, 74]. As a result, factorial ANOVA

can have multiple groups (independent variables) and multiple levels.
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The ANOVA consists of calculating the mean of each group to compare the variance

of these means (inter-variability) versus the average variance within the groups (intra-

variability). The null hypothesis shows that the observations come from the same pop-

ulation (i.e., the groups have the same mean and variance). However, as the means of

the groups are further away from each other, their variance will increase. Therefore,

the average variance will cease to be the same (proving that the groups are statistically

different).

Fratio is used to make an inference from ANOVA [68]. Fratio is the ratio between

the variation of the means of the groups and the average of the variation within the

groups. When Fratio equals ‘1’, the null hypothesis is satisfied since the inter-variability

will be the same as the intra-variability. Otherwise, the alternative hypothesis will be

accepted because Fratio is going to be greater than one. It means that the variance

between the means of the groups will be broader compared to the average of the variance

within the groups. Besides, it gives a lower probability that the population will acquire

extreme values. The smaller the p-value, the more certainty there will be in accepting the

alternative hypothesis [69].

4.11.1 Assumptions of the Factorial ANOVA

According to [75], these are the assumptions that must meet a factorial ANOVA:

– Normality: The dependent variable is normally distributed.

– Independence: Observations and groups are independent of each other.

– Equality of Variance: the variance is equal across groups.

4.11.2 Hypothesis for ANOVA

Null Hypothesis: The means of the dependent variable for each group are equal.
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Alternate hypothesis: The means of the dependent variable for each group are

not equal.
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Chapter 5

Design

This chapter presents the design of a custom scheduling policy that assigns hard cache

affinity to accelerate computationally intensive workloads such as ray tracing algorithms.

It also provides the proposed changes in Linux’s Kernel to implement the custom schedul-

ing policy in a SPOS, with implementation details and limitations to the present method.

In addition, the methodology to integrate this scheduling policy to the GPOS and the

Yocto implementation is also shared.

5.1 Yocto Implementation

As explained above, Yocto offers developers the possibility to customize Linux distri-

butions depending on their necessities. Following is listed the most relevant changes in

Yocto:

– PBRT implementation: PBRT targets robust systems such as desktops, servers.

A completely new recipe was developed as part of this research to implement PBRT-

v3 in the SPOS. Appendix D describes the implementation of the Yocto recipe for

PBRT-v3.

– Linux Kernel: As explained in section 4.5, the machine target has x86 architecture.

45
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meta-intel is used as kernel baseline because it offers higher stability to the system

as it controls several critical tasks such as memory access, thermal management,

I/O management. Another important detail is that the kernel version used in this

implementation is the release 5.4.100.

– Unnecessary driver removed: it pretends to improve kernel and overall system

efficiency by eliminating unnecessary I/O drivers such as:

• Bluetooth

• WiFi

• Graphics/display

• Touch-pad

• Camera

– Additional recipes: PBRT and the script develop to control the testing require

adjacent software support to work correctly. Additional programs are:

• Python3

• Doxygen

• Recipes-extended

5.2 Strategy Selected for scheduling policy implemen-

tation

As defined in the Methodology, the outcome of this research effort is a custom schedul-

ing policy that assigns hard cache affinity. This approach was selected because it offers

certain advantages over default scheduling policy such as:

1. Hard cache affinity is set before the task is added to the execution queue. The

scheduling policy will fix the cpumask to set hard cache affinity.
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2. Cache misses and context switch reduction.

3. Experiment reproducibility. As the custom scheduling policy is added to the kernel,

the experiment can be easily reproduced.

4. Ray tracing execution is not stopped/preempt to assign hard cache affinity.

The main objective is to design a custom scheduling policy that assigns hard cache affin-

ity from an implementation perspective. The scheduling policy must be flexible enough

to be part of both special-purpose and general-purpose operating systems. The custom

scheduling policy gives the system the power to assign hard cache affinity since the task

is created by modifying the cpumask in the function of the number of threads created by

the primary process and the number of cores available in the architecture. It will assign

one thread to each core in the architecture.

During the design stage, one of the main problems was insufficient documentation

about the scheduler’s source code description and scheduler-to-kernel communication.

So, several months were invested in understanding the kernel’s source code that manages,

calls, and implements the scheduler. Once the target sections of the source code were

identified and taking CFS as the baseline; there were determined two main strategies to

implement the custom scheduling policy.

1. Maintaining current CFS implementation. As it is known, the CFS is the

current scheduler algorithm in Linux’s Kernel. The idea here was to use the same

source code provided in the kernel’s distribution, but only changing the assignment

of the cpumask for the cache affinity in the task descriptor would be enough to

assign always the cache affinity. This strategy has the extraordinary advantage of

requiring relatively minor changes (compared to strategy 2) to set hard cache affinity.

Sounds promising, but it has the disadvantage that it will reduce the flexibility of

the scheduler to assign soft cache affinity to a program that is not ray tracing.

2. Writing a new source code for the scheduling policy. This strategy looks for

a completely new scheduling policy that assigns hard cache affinity. Having CFS as
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a baseline, the idea behind this strategy is to write a new scheduling policy from

scratch that has to be integrated with the rest of the kernel. This strategy offers the

advantage to keep CFS intact and, it also allows the system to have a scheduling

policy to assign hard cache affinity and another scheduling policy to assign soft

cache affinity (CFS). The disadvantage of this strategy is that the implementation

time takes longer than strategy 1, and it also needs more testing and debugging.

By following this strategy, the integration in the GPOS for the experiment would

be lesser disruptive.

The method selected is the second option because of the advantages that it offers. It

also prevents the risk of modifying CFS and produces instability in the OS.

5.2.1 Writing a new source code for the scheduling policy

To write a new scheduling policy, the developer must have a deep understanding of the

critical elements of the kernel that should be modified and added to ensure correct and

stable implementation.

Custom scheduling policy (CSP) will have the maximum priority (even higher than

real-time tasks). The intention of assigning higher priority is to run PBRT tasks with

more stability. Figure 5.1 shows a high-level flowchart for the CSP. When the user sends

to execute the ray tracing task, the Linux kernel will assign and create the data structures

required to execute and manage the task. The kernel will save all the parameters of the

task in a data struct named task_struct. In the task_struct, we added a parameter to

identify if the task is a PBRT job.

As CSA has the maximum priority, there is a potential risk of mixing non-

PBRT jobs with PBRT jobs. A security check was implemented to prevent ker-

nel instability by accidentally assigning CSA to a non-target task. If the task has

SCHED_CUSTOM_POLICY as sched_class, when the task is ready to enter in the

sched_class run queue, the CSP checks whether the task is a PBRT task. If yes, the
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parameter is_pbrt (a bool type variable in the custom_task data structure) changes to

‘1’ (true). Then, the CSP assigns hard cache affinity to each thread in the task. Finally,

the task is added in the run queue (double-linked list and RBTREE).

If the task is not a PBRT task, the task will not be added to the CSP run queue. Then,

CSP will modify the scheduling policy assigned to the task depending on its priority. If

the priority is zero, the new scheduling policy will be SCHED_NORMAL. Otherwise,

the new scheduling policy is SCHED_FIFO because the task is an RT job. Finally, the

scheduler will continue the normal execution.
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User Execute PBRT task

Kernel assigns task 

parameters into the 

struct task_struct

Is a PBRT task?

“is_pbrt” param set as “true” 

in the task_struct

Task is not added to the 

custom shceduling policy’s 

run-queue

Scheduler continues 
with its normal 

execution

NoYes

Adding task to the 

sched_class run-queue 

Hard cache affinity assigned 

to each parent thread

Priority check (to assign a 

new scheduling policy to 

the task)

New Scheduling policy set

Task added to the custom 

scheduling policy’s run-

queue

Figure 5.1: Flowchart for the custom scheduling policy
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5.2.2 Source Code

Many changes, design and source-code addition to tje Linux’s kernel was required to

implement the custom scheduling policy. Appendix A presents the most relevant files

modified and added as part of this research to design the new scheduling policy named

as custom_scheduler.

5.3 Adding the custom scheduling policy in the GPOS

Appendix C shows the methodology followed to recompile Ubuntu’s kernel to add the

custom scheduling policy. It was required to ensure a fair comparison in the experiment

when a special-purpose operating system with a custom scheduling policy is compared

against the general-purpose operating system with a custom scheduling policy.

5.4 Limitations and Requirements

As previously mentioned, the proposed design aims to support PBRT tasks, which

means that any other workload may need additional modifications. The changes listed

above in Linux’s Kernel source code are valid for Kernel release 5.4.100 and Yocto Project

3.1.1 Dunfell. Another critical assumption is that the custom scheduling policy must have

the maximum priority to ensure PBRT tasks uses the correct scheduling policy. Any

additional experiment out of the scope of this research may require more changes in the

Kernel’s source code.
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Chapter 6

Results

This chapter presents the results obtained from the evaluation performed to compare

the performance gain due to custom scheduling policy in a GPOS against CFS scheduling

policy, SPOS with custom scheduling policy against SPOS with CFS scheduling policy,

and a comparison of a SPOS against GPOS. Besides, at the end of this chapter, the

factorial ANOVA experiment is presented. All the statistical results in this chapter were

obtained using the JMP tool.

6.1 Cache optimization observed due to the custom

scheduling policy

As defined in the hypothesis of this research effort, the cache misses due to the context

switching will increase the execution time of computationally intense workloads such as

ray tracing. Using Linux based perf profiler tool, the statistics of cache-misses, context-

switches, and processor migration were obtained [76]. The profiling were applied in the

GPOS with custom scheduling policy and CFS scheduling policy for a relatively simpler

scene at resolution of 1280x720. Fifteen iterations were performed.

As defined in the hypothesis of this research effort, the cache misses due to the context

53
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combinations

switching will increase the execution time of computationally intense workloads such as

ray tracing. Using Linux based perf profiler tool, the statistics of cache-misses, context-

switches, and processor migration were obtained [76]. The profiling was applied in the

GPOS with a custom scheduling policy and CFS scheduling policy for a ‘simpler’ scene

at a resolution of 1280x720.

Table 6.1 shows the average data obtained after profiling. Cache-misses decreased

when custom scheduling policy from 13.26 billion to 12.13 billion of cache misses which

is a 16% of improvement. Context-switch is another important statistic that decreased

from 32 619 to 21 957 when custom scheduling policy is applied to ray tracing execution.

Finally, migration means the number of times the parent thread moves its execution

to another CPU. As observed in the table, the parent’s migration for custom scheduling

policy is zero, which confirms that the custom scheduling policy applies hard cache affinity

as expected. Furthermore, the reduction of cache-misses and context-switch can also be

explained by the reduction in migration because the thread does not change the CPU to

improve the cache performance. As expected in this experiment, the rendering time was

also reduced by approximately 9%.

Table 6.1: Profiling results

Scheduling Policy Profiling Statistics
Cache-misses (billions) Context-switches Rendering Time (s) Migrations

CFS Scheduling Policy 13.26 32619 167.73 353
Custom Scheduling Policy 11.13 21957 152.24 0

Improvement 16.06% 32.69% 9.24% NA

6.2 Performance comparison of custom scheduling pol-

icy against other ANOVA factor combinations

As defined in the specific objectives, a performance comparison is performed to eval-

uate the impact of assigning the custom scheduling policy in a SPOS against the CFS

scheduling policy in a SPOS, the custom scheduling policy in a GPOS, and the CFS
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scheduling policy in a GPOS. The average means were obtained with six repetitions for

each case. These results are provided as preliminary results before the ANOVA analysis

that will provide the evidence to decide whether or not the results are statistically valid.

Appendix B.1 shows the data gathered after the experiments.

Mean plots can be an initial visual method to estimate the difference between factors

[77, 78]. Figure 6.1 shows the mean plot for rendering time in function of the scheduling

policy with a combination of all other factors (OS, resolution, and scenes). The trend

indicates that we have a rendering time reduction by applying the custom scheduling

policy.

Figure 6.1: Mean plot for rendering time in function of the scheduling policy

Figure 6.2 displays the mean plot for rendering time in function of the OS with a

combination of all other factors (scheduling policy, resolution, and scenes). The trend

indicates a reduction of rendering time due to the SPOS.

Figure 6.3 present the mean plot for rendering time in function of all the factors
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combinations

Figure 6.2: Mean plot for rendering time in function of the OS

Figure 6.3: Mean plot for rendering time in function of the ANOVA’s factors

(OS, scenes, resolution, and scheduling policy). As can be seen, the combination of

SPOS-custom scheduling policy presents a lower rendering time compared with the other

combinations. Something important to point is that the y-axis scale is logarithmic due

to the big mean difference introduced mainly by the ‘Contemporary Bathroom’ scene.

Figure 6.4 presents a subset of data from Figure 6.3. This subset intends to show the

reduction of the execution time in detail due to the combination of SPOS and custom
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Figure 6.4: Mean plot for rendering time in function of the OS, scheduling policy, and
scenes with maximum resolution

scheduling policy. This figure has rendering time in function of OS, scheduling policy, and

scenes with a resolution of 1280x720. Like Figure 6.3, the y-axis CFSSPle is logarithmic

due to the big mean difference introduced by the ‘Contemporary Bathroom’ scene.

Figure 6.4 presents a subset of data of Figure 6.3. This subset intends to show the

execution time reduction in detail due to the combination of SPOS and custom scheduling

policy. The conditions in this figure are: rendering time in function of the OS, scheduling

policy, and scenes with a resolution of 1280x720. Like Figure 6.3, the y-axis scale is

logarithmic due to the big mean difference introduced by the ‘Contemporary Bathroom’

scene.



58 6.3 ANOVA Assumptions Tests

6.3 ANOVA Assumptions Tests

As mentioned by [77] and [79], data quality must be checked before running any

ANOVA analysis. Data quality is met by fulfilling the assumptions for ANOVA explained

in the Methodology Chapter.

• Independence

Observations and groups are independent each other. The independence can be

tested by running a probability test between each factor to probe that. However,

as [78] explains, the independence can be assessed by analyzing the experiment’s

design, which is met in the experiment conducted in this research.

• Normality and homogeneity of variance

The dependent variable is normally distributed. The easiest way to check the nor-

mality of the data is to do a visual analysis by plotting the residual against the

normal quantile [80, 81]. Figure 6.5 shows that the data is not following a normal

distribution because, in a normal distribution, the points should follow the best fit

line (red line). A formal test to confirm the normality of the data is presented in

Figure 6.6. Shapiro-Wilk W Test indicates how normally distributed is a set of

data. A p-value < 0.05 indicates a violation of the assumption of normality [82].

The results show a p-value below 0.05, which confirms that the data is not normally

distributed.

The next step is to check the homogeneity of variance. The residual plot works to do

a visual review of the homogeneity. According to [16], the residual in Figure 6.7 should

have the same spread across all the fitted values to confirm the homogeneity of variance,

which is rejected as the residuals are not uniformly distributed. Besides the visual review,

Levene’s test is the formal method chosen to test the homogeneity of variance. Figure 6.8

shows two critical results:

1. Standard Deviation plot in the function of each factor (OS, resolution, scheduling
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Figure 6.5: Residual in function of the Normal Quantile

Figure 6.6: Residual normality test for rendering time data.

policy, and scene). There are a few outliers introduced by the scene Contemporary

Bathroom that affects the homogeneity of variance assumption.

2. Levene’s test result. As shown in the figure, there are results for other tests like
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O’Brien[.5], Brown-Forsythe, and Bartlett. For the present results, we rely on Lev-

ene’s test due to its robustness [80, 81]. Levene’s test indicates that the data has

homogeneity of variance for values p>0.05 (i.e., rejecting the Null Hypothesis). It

means that the data for rendering time is the heterogeneity of variance.

Figure 6.7: Residual by predicted plot

Figure 6.8: Homogeneity of variance

For scenarios where both assumptions are violated, [16], [82], and [83] recommend gen-

erating a transformation to the output variable. The transformation is a simple method

to present the data, so it should not affect the conclusion.
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Box-Cox transformations are applied to the data. Box-Cox transformation is recom-

mended to normalize the behavior of the data. Figure 6.9 shows the results of the Box-Cox

transformation, which is a constant (λ) to scale the data to obtain the best normal fit.

With the new data, the ANOVA assumptions are rechecked:

Figure 6.9: Box-Cox transformation result.

• Normality

Doing a visual review of Figure 6.10 seems that the residual follows the red line (fit

line), closely than Figure 6.5. Hence, the transformation improved the normality of

the data. It is confirmed by analyzing the result of the Shapiro-Wilk test in Figure

6.11, where a result of p− value = 0.2573 (> 0.05) confirms that the assumption of

normality is not violated.

• Homogeneity of variance

Figure 6.12 shows that the residual behavior keeps a uniform spread around the

zero value for the residual axis after the transformation. Figure 6.13 confirms the

improvement in the homogeneity of variance, firstly observing a more uniform be-

havior of the standard deviation, which is confirmed by Levene’s test that had a

result of the p− value = 0.3795 (> 0.05).
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Figure 6.10: Residual in function of the Normal Quantile with rendering time transformed

Figure 6.11: Residual normality test for transformed rendering time data.

6.4 ANOVA Results

ANOVA was performed with the Box-Cox transformed data to meet with ANOVA

assumptions requirements. An important disclaimer is that the following data was gener-

ated and processed with a Box-Cox (λ = 0.021) transformation for the response variable.

Besides, all the presented mean in the charts are the back-transformed data results ob-
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Figure 6.12: Residual by predicted plot with data transformed

Figure 6.13: Homogeneity of variance with data transformed

tained from the analysis. Figure 6.14 present the results of the ANOVA effect test. The

first column (Source) indicates the factors and their combinations. The penultimate col-

umn indicates the F-ratio, and the last column indicates the p-value for each factor and

combination. The F-ratio column helps to understand how good (or bad) our model is.

As can be seen, all the F-ratio column values are pretty big numbers, which is a good

indication that we have a good model.

As the figure shows, all the factor and their combinations have a significance level
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(p− value << 0.05), so undoubtedly, there is evidence that group means differ from each

other.

Figure 6.14: ANOVA effect test result

Tukey’s HSD (honestly significant difference) test is selected as post hoc analysis.

Tukey’s test calculates a new critical value that can be used to evaluate whether or not

differences between any two pairs of means are significant while controlling the probability

of making one or more Type I errors [80, 84, 85]. The most critical experiment factor

to test the hypothesis of this research is the scheduling policy. Specifically, if the group

means of the combination SPOS-custom scheduling policy against SPOS-CFS scheduling

policy, GPOS-custom scheduling policy, and GPOS-CFS scheduling policy is statistically

different. Tukey’s HSD test was used to test the mean differences in the rendering time

between groups through pairwise comparisons. As standard, the significance value of this

test is 0.05 (α), so any p-value less than this value indicates a statistical difference between

the rendering time of the groups.

Table 6.3 to Table 6.6 presents the connecting letters report where shared letters indi-

cate no difference between groups, while different letters indicate a statistical difference.
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Besides, the p-value is also presented where green represents that the group’s means are

statistically different and red represents that they are not statistically different.

Table 6.6 only presents the data for the resolution of 1280x720 because presenting

Tukey’s HSD result for all the combinations imply a big table. The nomenclature for the

effects is presented in Table 6.2.

Table 6.2: Nomenclature for Tukey’s HSD tables

Factor Nomenclature Meaning

Operating System SPOS Special-purpose Operating System
GPOS General-purpose Operating System

Scheduling Policy CSP Custom Scheduling Policy
CFSSP CFS Scheduling Policy

Scene’s Name

S1 Barcelona Pavilion
S1 Bathroom
S3 Breakfast
S4 Contemporary Bathroom
S5 Crown
S6 LandCFSSPpe
S7 Volume Caustic

Resolution
R1 1280x720
R2 960x540
R3 640x360

Table 6.3: Tukey’s HSD test of the SPOS-CSP against SPOS-CFSSP, GPOS-CSP, and
GPOS-CFSSP

(a) P-value table

SPOS-CSP
SPOS-CFSSP 0
GPOS-CFSSP 0
GPOS-CSP 0

(b) Connecting letters report

Level Least Sq Mean
GPOS,CFSSP A 4.0539047
GPOS,CSP B 3.7793828
SPOS,CFSSP C 3.5363241
SPOS,CSP D 3.1963716

Example: SPOS:CSP:R1:S1 is a case that runs in the special-purpose operating sys-

tem with the custom scheduling policy, resolution of 1280x720, and the scene is Barcelona

Pavilion.

Tukey’s HSD test allows us to know if the average rendering time of the combination

SPOS/CSP against the other factors/levels is statistically different. However, it does not
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Figure 6.15: Mean plot for Rendering Time (h) in function of the OS/scheduling policy

Figure 6.16: Mean plot for Rendering Time (h) in function of the OS/scheduling policy
with sweep of image resolution
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Table 6.4: Tukey’s HSD test of the SPOS-CSP against SPOS-CFSSP, GPOS-CSP, and
GPOS-CFSSP with three resolution scenes

(a) P-value table
SPOS-CSP:1280x720 SPOS-CSP:960x540 SPOS-CSP:640x360

SPOS-CFSSP:1280x720 0
SPOS-CFSSP:960x540 0
SPOS-CFSSP:640x360 0
GPOS-CFSSP:1280x720 0
GPOS-CFSSP:960x540 0
GPOS-CFSSP:640x360 0
GPOS-CSP:1280x720 0
GPOS-CSP:960x540 0
GPOS-CSP:640x360 0

(b) Connecting letters report

Level Least Sq Mean
GPOS,CFSSP,1280x720 A 7.1904764801
GPOS,CSP,1280x720 B 6.7474553697
SPOS,CFSSP,1280x720 C 6.3254437338
SPOS,CSP,1280x720 D 5.5694225786
GPOS,CFSSP,960x540 E 4.1979438279
GPOS,CSP,960x540 F 3.9055952395
SPOS,CFSSP,960x540 G 3.6635653426
SPOS,CSP,960x540 H 3.3979007546
GPOS,CFSSP,640x360 I 2.1970350321
GPOS,CSP,640x360 J 2.0389634328
SPOS,CFSSP,640x360 K 1.8993855466
SPOS,CSP,640x360 L 1.7178386008

let us know if the SPOS/CSP presents the minimum rendering time. The Least Squares

Means Plot presented from Figure 6.15 to Figure 6.18 in conjunction with Tables 6.3 to

6.6 lets us infer this information.

All these figures suggest that no matter the factor and level analyzed, the combination

of SPOS with CSP gives the maximum performance. This statement ceases to be anecdo-

tal and becomes statistically valid when analyzed with Tukey’s HSD results. As observed,

for example, Figure 6.18 demonstrates that it does not matter the combination of scene

and resolution, the SPOS:CSP produces lower rendering time. It can be confirmed by

observing Table 6.6, where the p-value for each combination is zero, which allows us to

conclude with statistical validity that SPOS:CSP performs better when compared against

the other combinations of OS/scheduling policy.
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Table 6.5: Tukey’s HSD test of the SPOS-CSP against SPOS-CFSSP, GPOS-CSP, and
GPOS-CFSSP with seven scenes

(a) P-value table
SPOS:CSP:S1 SPOS:CSP:S2 SPOS:CSP:S3 SPOS:CSP:S3 SPOS:CSP:S5 SPOS:CSP:S6 SPOS:CSP:S7

SPOS:CFSSP:S1 0
SPOS:CFSSP:S2 0
SPOS:CFSSP:S3 0
SPOS:CFSSP:S3 0
SPOS:CFSSP:S5 0
SPOS:CFSSP:S6 0
SPOS:CFSSP:S7 0
GPOS:CFSSP:S1 0
GPOS:CFSSP:S2 0
GPOS:CFSSP:S3 0
GPOS:CFSSP:S3 0
GPOS:CFSSP:S5 0
GPOS:CFSSP:S6 0
GPOS:CFSSP:S7 0
GPOS:CSP:S1 0
GPOS:CSP:S2 0
GPOS:CSP:S3 0
GPOS:CSP:S3 0
GPOS:CSP:S5 0
GPOS:CSP:S6 0
GPOS:CSP:S7 0

(b) Connecting letters report
Level Least Sq Mean

Contemporary_Bathroom,GPOS,CFSSP A 22.786544119
Contemporary_Bathroom,GPOS,CSP B 22.350991817
Contemporary_Bathroom,SPOS,CFSSP C 20.124381015
Contemporary_Bathroom,SPOS,CSP D 18.890187967

Bathroom,GPOS,CFSSP E 5.0493913034
Bathroom,GPOS,CSP F 4.4755340099
Bathroom,SPOS,CFSSP G 4.2320622154
Bathroom,SPOS,CSP H 3.7560660261

LandCFSSPpe,GPOS,CFSSP I 3.1985109378
Crown,GPOS,CFSSP J 2.9776158901

LandCFSSPpe,GPOS,CSP K 2.8219836471
Volume_Caustic,GPOS,CFSSP L 2.7740206985

Crown,GPOS,CSP M 2.7634468237
Breakfast,GPOS,CFSSP N 2.6593559715
Crown,SPOS,CFSSP O 2.5664923031

Breakfast,SPOS,CFSSP P 2.5510817249
LandCFSSPpe,SPOS,CFSSP Q 2.5351953338
Volume_Caustic,GPOS,CSP Q 2.533902939

Breakfast,GPOS,CSP Q 2.5275988422
Crown,SPOS,CSP R 2.307896479

LandCFSSPpe,SPOS,CSP S 2.279323114
Volume_Caustic,SPOS,CFSSP T 2.2296862142

Breakfast,SPOS,CSP U 2.1523924142
Volume_Caustic,SPOS,CSP V 2.0883511058

Barcelona_Pavilion,GPOS,CFSSP V 2.0838513815
Barcelona_Pavilion,GPOS,CSP W 2.0621698492
Barcelona_Pavilion,SPOS,CFSSP X 2.0549483074
Barcelona_Pavilion,SPOS,CSP Y 1.9007179334
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Figure 6.17: Mean plot for Rendering Time (h) in function of the OS/scheduling policy
with different scenes
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Table 6.6: Tukey’s HSD test of the SPOS-CSP against SPOS-CFSSP, GPOS-CSP, and
GPOS-CFSSP with seven scenes at resolutions 1280x720

(a) P-value table
SPOS:CSP:R1:S1 SPOS:CSP:R1:S2 SPOS:CSP:R1:S3 SPOS:CSP:R1:S3 SPOS:CSP:R1:S5 SPOS:CSP:R1:S6 SPOS:CSP:R1:S7

SPOS:CFSSP:R1:S1 0
SPOS:CFSSP:R1:S2 0
SPOS:CFSSP:R1:S3 0
SPOS:CFSSP:R1:S3 0
SPOS:CFSSP:R1:S5 0
SPOS:CFSSP:R1:S6 0
SPOS:CFSSP:R1:S7 0
GPOS:CFSSP:R1:S1 0
GPOS:CFSSP:R1:S2 0
GPOS:CFSSP:R1:S3 0
GPOS:CFSSP:R1:S3 0
GPOS:CFSSP:R1:S5 0
GPOS:CFSSP:R1:S6 0
GPOS:CFSSP:R1:S7 0
GPOS:CSP:R1:S1 0
GPOS:CSP:R1:S2 0
GPOS:CSP:R1:S3 0
GPOS:CSP:R1:S3 0
GPOS:CSP:R1:S5 0
GPOS:CSP:R1:S6 0
GPOS:CSP:R1:S7 0

(b) Connecting letters report
Level Least Sq Mean

Contemporary_Bathroom,GPOS,CFSSP,1280x720 A 43.675943333
Contemporary_Bathroom,GPOS,CSP,1280x720 B 42.829187638
Contemporary_Bathroom,SPOS,CFSSP,1280x720 C 39.751080784
Contemporary_Bathroom,SPOS,CSP,1280x720 D 36.619350291

Bathroom,GPOS,CFSSP,1280x720 L 9.1864229004
Bathroom,GPOS,CSP,1280x720 N 8.3037636212
Bathroom,SPOS,CFSSP,1280x720 O 7.706879771

LandCFSSPpe,GPOS,CFSSP,1280x720 P 7.2505394906
Bathroom,SPOS,CSP,1280x720 Q 6.9788087488

LandCFSSPpe,GPOS,CSP,1280x720 R 6.4927615944
LandCFSSPpe,SPOS,CFSSP,1280x720 S 5.7206818178

Crown,GPOS,CFSSP,1280x720 S 5.6995217753
Crown,GPOS,CSP,1280x720 T 5.2770799458

Volume_Caustic,GPOS,CFSSP,1280x720 U 5.1798192943
Breakfast,GPOS,CFSSP,1280x720 V 4.9538307755
Breakfast,SPOS,CFSSP,1280x720 V 4.9354473003
Crown,SPOS,CFSSP,1280x720 W 4.8742355919
Breakfast,GPOS,CSP,1280x720 X 4.810350462

Volume_Caustic,GPOS,CSP,1280x720 Y 4.6945312166
LandCFSSPpe,SPOS,CSP,1280x720 A1 4.4249967219

Crown,SPOS,CSP,1280x720 B1 4.3840576811
Breakfast,SPOS,CSP,1280x720 D1 4.0980887282

Volume_Caustic,SPOS,CFSSP,1280x720 E1 4.0603156288
Barcelona_Pavilion,SPOS,CFSSP,1280x720 F1 4.0149508329
Barcelona_Pavilion,GPOS,CFSSP,1280x720 G1 3.9655458412
Barcelona_Pavilion,GPOS,CSP,1280x720 H1 3.9251368139
Volume_Caustic,SPOS,CSP,1280x720 I1 3.8580129474

Barcelona_Pavilion,SPOS,CSP,1280x720 J1 3.5951271276
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Figure 6.18: Mean plot for Rendering Time (h) in function of the OS/scheduling policy
with a combination of different scenes and image resolution
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6.5 Obtained Metrics

Table 6.7 shows the performance metrics obtained for SPOS:CSP, SPOS:CFSSP,

GPOS:CSP, and GPOS:CFSSP for all the combinations of all scenes and resolutions.

For the three metrics, the combination of OS/scheduling policy with the lower value is

the one that has better performance.

Table 6.7: Obtained metrics for the SPOS:CSP, SPOS:CFSSP, GPOS:CSP, and
GPOS:CFSSP (lower is better)

Metric SPOS:CSP SPOS:CFSSP GPOS:CSP GPOS:CFSSP
Average Rendering Time (h) 5.512 6.029 6.541 6.861
Cost/animation (Thousands of dollars) 4.032 4.410 4.785 5.019
Performance/Pixel (ms) 11.880 12.993 14.098 14.787

The average duration of a movie or animation is 106 minutes at 24 fps, for a total of

24× 106× 60 = 152640 images [9]. The animation cost is calculated using the rendering

time, hardware power consumption, and according to [86], the U.S. cost per kilowatt-hour

is 10.65 cents. Equation 6.1 shows the formula used.

Cost/animation =
Watts × Hours− Used

1000
× Cost per kilowatt− hour × 152640

(6.1)

Performance/Pixel was calculated by averaging the number of pixels in the three res-

olutions used for the experiment. The average time to render an image was divided by

the average number of pixels in an image.

6.5.1 Specific scenario

As [16] express, a real-world rendering scenario involves high resolutions and a com-

bination of images’ effects. These are the combinations where rendering took the most

time in all the OS/scheduling policy combinations. The scenarios are:

1. Table 6.8 shows the metrics obtained for the case where all the scenes were at
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higher resolution (i.e., 1280x720). A combination with a lower value indicates a

better performance.

2. Table 6.9 shows the metrics obtained for the case where ‘Contemporary Bathroom’

was selected at higher resolution (i.e., 1280x720). This scenario was selected because

it was the one that took the most rendering time. As in the previous, combination

with lower value has better performance.

Table 6.8: Obtained metrics for the SPOS:CSP, SPOS:CFSSP, GPOS:CSP, and
GPOS:CFSSP at higher resolution (lower is better).

Metric SPOS:CSP SPOS:CFSSP GPOS:CSP GPOS:CFSSP
Average Rendering Time (h) 9.137 10.152 10.905 11.416
Cost/animation (Thousands of dollars) 6.684 7.426 7.977 8.351
Performance/Pixel (ms) 19.692 21.879 23.502 24.603

Table 6.9: Obtained metrics for the SPOS:CSP, SPOS:CFSSP, GPOS:CSP, and
GPOS:CFSSP at higher resolution and most complex scene (lower is bet-
ter).

Metric SPOS:CSP SPOS:CFSSP GPOS:CSP GPOS:CFSSP
Average Rendering Time (h) 36.619 39.751 42.829 43.676
Cost/animation (Thousands of dollars) 26.788 29.079 31.331 31.950
Performance/Pixel (ms) 78.921 85.671 92.305 94.129

6.5.2 SPOS with scheduling policy comparison

Table 6.10 shows the overall performance improvement obtained using SPOS with the

custom scheduling policy against the other combinations for the general case and the two

specific cases. A higher number is better for the SPOS with the custom scheduling policy.

Table 6.10: Performance improvement of the SPOS:CSP against SPOS:CFSSP,
GPOS:CSP, and GPOS:CFSSP.

Scenario SPOS:CFSSP GPOS:CSP GPOS:CFSSP
General case (%) 8.568 15.732 19.659
Specific scenario 1 (%) 9.998 16.211 19.963
Specific scenario 2 (%) 7.878 14.499 16.157
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6.5.3 Actual rendering time reduction

Table 6.11 shows the actual rendering time obtained in the experiment. It shows that

the experiment was performed for almost one hundred and thirty-one days. Using SPOS

with the custom scheduling policy shows a clear reduction in the rendering time greater

than seven days.

Table 6.11: Actual rendering time reduction

OS Scheduling Policy Rendering Time (h) Rendering Time (days)
GPOS CFS Scheduling Policy 864.50099722 36.020874884
GPOS Custom Scheduling Policy 824.21819722 34.342424884
SPOS CFS Scheduling Policy 759.63733611 31.651555671
SPOS Custom Scheduling Policy 694.54930556 28.939554398

Total 3142.906 130.954

6.6 Correctness

The correctness of the proposed implementation was tested to verify that all the four

implementations (i.e., SPOS:CSP, SPOS:CFSSP, GPOS:CSP, and GPOS:CFSSP) render

the same image under the same conditions. The output images were visually validated,

but a formal test was performed using the diff command of the GPOS. It compares two

files, and if there is no difference between them, the option -s will display a message saying

that ‘the files are identical’.

The test was performed for scenes rendered under the same conditions (scene name

and resolution) but with different OS/scheduling policy conditions. Figure 6.19 shows an

example of the analysis, and as expected, the command’s output says that the images are

identical.

Figure 6.19: Correctness check using output images.
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(a) GPOS with custom scheduling policy (b) GPOS with CFS scheduling policy

(c) SPOS with custom scheduling policy (d) SPOS with CFS scheduling policy

Figure 6.20: Barcelona Pavilion scene at resolution of 1280x720

6.7 Output images

Figure 6.20 to Figure 6.26 show scenes at 1280x720 resolution for the four OS/schedul-

ing policy (i.e., SPOS:CSP, SPOS:CFSSP, GPOS:CSP, and GPOS:CFSSP). They are the

actual output from the experiments.
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(a) GPOS with custom scheduling policy (b) GPOS with CFS scheduling policy

(c) SPOS with custom scheduling policy (d) SPOS with CFS scheduling policy

Figure 6.21: Bathroom scene at resolution of 1280x720

(a) GPOS with custom scheduling policy (b) GPOS with CFS scheduling policy

(c) SPOS with custom scheduling policy (d) SPOS with CFS scheduling policy

Figure 6.22: Breakfast scene at resolution of 1280x720
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(a) GPOS with custom scheduling policy (b) GPOS with CFS scheduling policy

(c) SPOS with custom scheduling policy (d) SPOS with CFS scheduling policy

Figure 6.23: Contemporary Bathroom scene at resolution of 1280x720



78 6.7 Output images

(a) GPOS with custom scheduling
policy

(b) GPOS with CFS scheduling
policy

(c) SPOS with custom scheduling
policy

(d) SPOS with CFS scheduling
policy

Figure 6.24: Crown scene at resolution of 1280x720
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(a) GPOS with custom scheduling policy (b) GPOS with CFS scheduling policy

(c) SPOS with custom scheduling policy (d) SPOS with CFS scheduling policy

Figure 6.25: Landscape scene at resolution of 1280x720

(a) GPOS with custom scheduling policy (b) GPOS with CFS scheduling policy

(c) SPOS with custom scheduling policy (d) SPOS with CFS scheduling policy

Figure 6.26: Volume Caustic scene at resolution of 1280x720
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6.8 Other results

There are some results also significant to mention as part of the outputs of this research.

• A functional recipe for implementing PBRT-v3 as a layer of the Yocto

Project

As mentioned, PBRT-v3 works as the library to execute the image rendering using

the ray tracing algorithm. No documentation related to PBRT-v3 implemented as

part of the Yocto Project was found during the development of the SPOS. A new

functional recipe was designed as part of the implementation of the SPOS. This

recipe will be delivered to the community. Appendix D shows the details of this

recipe. Figure 6.27 shows a screenshot of PBRT-v3 up and running in the SPOS.

Figure 6.27: System running SPOS with PBRT-v3 in a x86 architecture

• A guide with the most relevant steps to implement a scheduling policy

in a Linux based system

The Design Chapter described the main files and code segments that must be mod-

ified and added to implement a custom scheduling policy. This research’s devel-

opment and implementation time was long due to the lack of information on im-

plementing a new scheduling policy in a modern Linux’s kernel. It may work as

a baseline for future research efforts to avoid spend several months digging in the
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Linux’s kernel source code to understand the kernel’s scheduling code and intercon-

nection.
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Chapter 7

Discussion

This chapter presents the analysis and discussion of the results presented in chapter

Results.

Analyzing the results from Table 6.1 is clear that the use of the custom scheduling

policy has a positive impact on the reduction of cache misses, context switches, and

thread migration. Firstly, we can see that the hypothesis was true by confirming that

setting hard cache affinity reduces the number of cache misses. The reduction of cache

misses compared against baseline was 16% which is a significant improvement. Secondly,

the context switch is a painful process for the system because it must refresh the cache,

implying the loss of the ‘warm cache’ condition. The reduction of context switches was

up to 32%. The migration statistic can explain the performance gain. As we can see, in

the case of the custom scheduling policy, there is no migration between cores because the

thread is only allowed to run in a specific CPU. It implies that the custom scheduling

policy the rendering time by having a warmer cache (numerous cache hits) through the

hard cache affinity.

A preliminary observation of the ray tracing algorithm response was performed. An-

alyzing the behavior of the scheduling policy in Figure 6.1 seems that when custom

scheduling policy is assigned to a PBRT task, it produces an apparent reduction of the

rendering time. Another preliminary result is shown in Figure 6.2, where using a SPOS

83



84

seems another factor that improves the system’s performance when executing the ray

tracing algorithm. More in-depth analysis done, including other factors, is presented in

Figure 6.3 and Figure 6.4. It shows how the combination of SPOS and custom scheduling

policy is a combination that reduces the rendering time when multiple changes in the

environment, such as image resolutions and scene complicity, are added to the system.

Again, these results are preliminary and considered anecdotes until the formal ANOVA

analysis was conducted with the data gathered from the different factors and levels defined

in the Methodology.

Because the original data did not satisfy the ANOVA assumptions, the ANOVA anal-

ysis was performed with the transformed response variable to comply with normality and

equality of variance (homoscedasticity) assumptions. Figure 6.14 presents the results of

the ANOVA test. Analyzing the F-Ratio column demonstrates that all the factors and

their combinations influence the response variable (rendering time). Resolution impacts

the rendering time on how many pixels the engine must process in the image, and this im-

plies a ray for that pixel, intersection detection, and effects calculation. All of this directly

impacts rendering time as the image resolution is present in the complexity of the ray

tracing algorithm as the I factor in the O(I log n) rendering time [16]. The scene’s name

is the name of the factor that sweeps the real-world scenes. It impacts the performance

directly because in the ray-tracing algorithms, for each ray, its intersection against each

object in the scene must be calculated. The more objects and complexity in the scene, the

more intersections must be detected, generating more memory access and mathematical

operations. Here is where the addition of hard cache affinity (using the custom scheduling

policy) impacts the gain in performance because the number of cache misses is reduced

due to reducing context switches in the processor.

The most critical factors to test the proposed research hypothesis are the OS and

custom scheduling policy. Table 6.3 demonstrates that the mean rendering time for

the combination SPOS:CSP against the combinations SPOS:CFSSP, GPOS:CSP, and

GPOS:CFSSP are statistically different. Figure 6.15 shows the mean rendering time for
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each combination and confirms that SPOS:CSP produces the maximum performance.

A more in-depth analysis was performed to investigate the rendering time in the res-

olution and OS/custom scheduling policy combination. Mean rendering time for each

resolution must contain all the possible combinations of scenes. Table 6.4 shows that

the mean time of the combination SPOS:CSP against SPOS:CFSSP, GPOS:CSP, and

GPOS:CFSSP is statistically different when comparing the exact image resolution. Fig-

ure 6.16 helps to demonstrate that SPOS:CSP has the best performance when a different

resolution is applied to the image. Another critical point is that the resolution impacts

workload directly because each increment in the resolution implies other rays and an ad-

ditional intersection calculation. The figure shows that SPOS:CSP is potent at higher

resolutions because the gaps between the other combinations are more significant at max-

imum resolution.

Table 6.5 displays the data when a scene is changed. The SPOS:CSP’s render-

ing time (again) is statistically different compared to SPOS:CFSSP, GPOS:CSP, and

GPOS:CFSSP when a scene changes in the experiment. Figure 6.17 is the mean plot that

confirms that SPOS:CSP has a better performance than SPOS:CFSSP, GPOS:CSP, and

GPOS:CFSSP when a scene changes in the experiment. It is clear that SPOS:CSP, no

matter the scene in the experiment, has a lower rendering time. Another relevant detail

is that for all the scenes where SPOS is used, the rendering time is lower than GPOS.

It can be explained by reminding the critical element of a SPOS, a specialized operating

system designed to execute one or just a few tasks compared to GPOS. In this case, the

change in the scene implies a modification in the image complexity, which is translated to

an increment in the mathematical operation that requires more memory access. Setting

hard cache affinity through the custom scheduling policy prevents the cache misses that

implies that when the ray tracing algorithm is being executed, the data required will be

in the cache most of the time (warm cache).

Table 6.6 display the data when all the factors are interacting with each other. As

expected, the rendering time for the ray tracing algorithm for the SPOS:CSP is sta-
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tistically different to SPOS:CFSSP, GPOS:CSP, and GPOS:CFSSP when all the fac-

tors interact. Figure 6.18 shows the mean plot for this interaction. It is evident that

SPOS:CSP produces the best performance across all factors’ interaction when compared

against SPOS:CFSSP, GPOS:CSP, and GPOS:CFSSP. Another point to mention from

this figure is that it is easy to observe the rendering time increment due to the image

resolution. In addition, from this table we can observed that the proposed solution has a

maximum rendering time reduction of 23% approximately.

Several metrics were obtained for the proposed mechanism to compare the performance

of the SPOS:CSP against the SPOS:CFSSP, GPOS:CSP, and GPOS:CFSSP, as shown in

Table 6.7. From this table it can be inferred three aspects:

1. The SPOS:CSP is the software infrastructure with the lowest average rendering time

for all the combinations of scenarios defined in the experiment, which means it has

the best performance.

2. The SPOS:CSP has the lowest cost based on rendering time and power consumption.

3. The SPOS:CSP is the combination with a lower rendering time per pixel than the

other combinations.

These results undoubtedly confirm that SPOS:CSP is the best software infrastructure for

rendering animations as it delivers the best performance at a lower cost.

Table 6.8 and Table 6.9 show the metrics for two specific cases: 1) Scenes with the

higher resolution and 2) Scene Contemporary Bathroom with higher resolution. Again,

the combination of SPOS:CSP is better in average rendering time, cost per animation, and

performance per pixel for combining factors that closely approach a real-world rendering

scenario. Another aspect confirms that SPOS:CSP holds the performance advantage

even in cases that require the most computation power, which provides an insight that

this software implementation has the potential for accelerating computationally intensive

workloads.
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Table 6.10 allows assessing whether the proposed hypothesis for this research effort is

correct. The combination of SPOS:CSP demonstrates a gain of more than 10% perfor-

mance in the three scenarios against the baseline combination (GPOS:CFSSP), confirming

that the hypothesis was correct. When SPOS:CSP is compared against GPOS:CSP, it

also has more than 10% performance gain. Finally, when SPOS:CSP is compared against

SPOS:CFSSP, it has an average performance gain of 8.8% in the three scenarios analyzed,

which is a clear indication of the power of the proposed custom scheduling policy.

Table 6.11 shows that the total rendering time of the experiment performed in this

research work lasted approximately 3143 hours for the 504 tests. It is equivalent to al-

most 131 days of continuous rendering. The baseline took 36 days, while the experiment

with the proposed configuration took approximately 29 days, that is, seven days less. It

represents a solution with great potential to reduce the time-to-market of audiovisual pro-

ductions such as those mentioned at the beginning of this presentation. It demonstrates

the success of our solution and highlights the complexity and demand for computational

resources by the rendering process.

A correctness test was performed, checking that the output images are the same for

each OS/scheduling policy combination. Figure 6.19 shows that output images are the

same through the command diff. This test is essential to validate that the ANOVA test

was an “apples-to-apples” comparison.

Several examples of rendered images using the ray-tracing algorithm are shown from

Figure 6.20 to Figure 6.26. The images are at maximum resolution for each OS/scheduling

policy combination (i.e., SPOS:CSP, SPOS:CFSSP, GPOS:CSP, and GPOS:CFSSP).

The recipe for implementing PBRT-v3 for the SPOS meets the software requirements

to execute the ray tracing algorithm in the SPOS. PBRT-v3 was successfully implemented

for the first time in an OS based on Yocto Project. The steps followed to implement the

new scheduling policy were also successfully proved. This scheduling policy was used by

PBRT tasks to assign the hard cache affinity.
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Chapter 8

Conclusions and Future Work

This chapter presents the conclusions obtained through this research effort and the

future work that can be achieved to improve the results and/or try another approach.

8.1 Conclusions

This research aimed to reduce the rendering time through the design and the imple-

mentation of a custom scheduling policy in a SPOS. Based on a statistical analysis of

different rendering scenarios, it can be concluded that the combination of SPOS with the

custom scheduling policy reduces the rendering time by 19% and showing a maximum

reduction of 23% compared to the baseline GPOS with the CFS scheduling policy. The

results indicate the potential to reduce the time-to-market because the proposal showed

to be the most cost-effective software platform for rendering ray-traced images through

a lower rendering time and performance per pixel. Furthermore, the hard cache affinity

demonstrates to reduce the cache misses by 16% and context switching by 32%. Indeed,

this solution accelerates computationally intensive workload, such as ray tracing without

any alteration to the output image and regardless of image resolution and scene complex-

ity. Finally, this research demonstrates that creating a new scheduling policy for Linux’s

kernel can be an excellent method to accelerate computationally intensive workloads.
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8.2 Future Work

Future work concerns deeper analysis of particular mechanisms, new proposals to try

different methods, or simply curiosity. This research was mainly focused on the assignation

of hard cache affinity as a method to reduce the rendering time of ray tracing through

the design and implementation of a custom scheduling policy in a SPOS, leaving a few

studies outside the scope of the thesis. An in-deep profiling effort to explore any other

method to accelerate ray tracing in the operating system. Other libraries to execute

ray tracing or implement the proposed solution in an optimized OS, such as RTOS, can

be future research efforts. In addition, using powerful and modern hardware can boost

up the results of this research. Along with other methods to implement hard cache

affinity in a Linux-based operating system, a deeper analysis of all the non-analyzed

ANOVA factor interactions can provide more insights into the behavior of ray tracing in

the environment proposed. Furthermore, the use of other scenes and image resolutions

can explore the behavior of the proposed solution in more complex scenarios. Finally, an

in-deep analysis helps to understand the main contributors that produce such a difference

in the performance between a SPOS and a GPOS.
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Appendix A

Implemented source code

Many changes and source-code addition was required to implement the custom schedul-

ing policy. Here is the ordered list of the most relevant files modified in this research to

add the new scheduling policy named custom_scheduler.

• $Kernel_source-code/arch/x86/kconfig

Since x86 is the host system’s architecture, the first step is to add a new configu-

ration entry in kconfig. Listing A.1 shows the new configuration entry. This entry

will be referend to as CONFIG_SCHED_CUSTOM_POLICY, but here the prefix

CONFIG_ is omitted.

Listing A.1: kconfig configuration option entry

1 menu "Custom scheduler"

2 config SCHED_CUSTOM_POLICY

3 bool "Custom scheduling policy"

4 default y

5 endmemu

6� �
• $Kernel_source-code/include/uapi/linux/sched.h

The macro to identify the new scheduling policy must be added in this file. Listing

A.2 shows the implementation.
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Listing A.2: Scheduling policy macro definition

1 #define SCHED_NORMAL 0

2 #define SCHED_FIFO 1

3 .

4 .

5 .

6 #ifdef CONFIG_SCHED_CUSTOM_POLICY

7 #define SCHED_CUSTOM_POLICY 7

8 #endif

9� �
• $Kernel_source-code/include/linux/custom/custom.h

Listing A.3 shows the header file implemented. The definition of struct list_head

is required to organized the tasks in a doubled linked list. The field custom_root

in the custom_rq data struct is used to specify the root of the PBRT task on the

run queue. The spinlock_t variable is defined to protect list operation. Finally, the

init_custom_rq initializes the struct custom_rq.

Listing A.3: Code inside custom.h header.

1 #ifndef __CUSTOM_H_

2 #define __CUSTOM_H_

3

4 #include <linux/sched.h>

5 #include <linux/list.h>

6 #include <linux/spinlock.h>

7

8 struct custom_rq{

9 struct list_head custom_list;

10 struct rb_root custom_root;

11 spinlock_t lock;

12 };

13 void init_custom(struct custom_rq *rq);

14 #endif
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15 };

16� �
• $Kernel_source-code/kernel/sched/sched.h

struct rq is a data structure that holds a run-queue of all runnable processes assigned

to it. The scheduling policies use this run queue to select the best process to be

executed when the current process is done. Finally, the struct custom_rq is added

to the struct rq. Listing A.4 shows the implementation.

Listing A.4: Adding data struct to manage PBRT tasks

1 #ifdef CONFIG_SCHED_CUSTOM_POLICY

2 #include <linux/custom/custom.h>

3 #endif

4

5 struct rq {

6 ...

7 #ifdef CONFIG_SCHED_CUSTOM_POLICY

8 struct custom_rq custom_rq;

9 #endif

10 ...

11 };

12� �
• $Kernel_source-code/kernel/sched/custom/custom_rq.c

struct custom_rq must be initialized before the kernel scheduler starts operation.

init_custom_rq function was implemented to initialize all the fields in the data

structure, as shown in Listing A.5.

Listing A.5: Initializing custom_rq data structure

1 #include <linux/custom_rq.h>

2

3 void init_rbtree(rbtree **t) {

4 *t=malloc(sizeof(rbtree));
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5

6 if (*t==NULL) {

7 // handle error

8 }

9 else {

10 (*t)->root = NULL;

11

12 node *n = malloc(sizeof(node));

13 if(n != NULL){

14 n->color = BLACK;

15 (*t)->nil = n;

16 }

17 }

18 }

19

20 void init_custom_rq(struct custom_rq *rq)

21 {

22 INIT_LIST_HEAD (&rq->custom_list);

23 spin_lock_init (&rq->lock);

24 init_rbtree (&rq->custom_root);

25 }

26

27 };

28� �
• $Kernel_source-code/kernel/sched/core.c

The data structure described above must be initialized. Listing A.6 shows the

modifications in function sched_init to initialize the data structure. sched_init

function creates the CPU run queues.

Listing A.6: Adding data struct to manage PBRT tasks

1 void __init sched_init(void){

2 ...

3 for_each_possible_cpu(i){
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4 ...

5 #ifdef CONFIG_SCHED_CUSTOM_POLICY

6 init_custom_rq (&rq-->custom_rq);

7 #endif

8 ...

9 }

10 ...

11 }

12� �
• $Kernel_source-code/include/linux/custom/custom_task.h

“custom_task” is another data structure added. This structure will store the in-

formation for each task that uses the custom scheduling policy. As was mentioned

above, CFS is the baseline for this implementation. The data type struct rb_node

refers to the rbtree used by CFS to organize the tasks. Listing A.7 shows the

implementation.

Listing A.7: Creating custom_task.h header.

1 #ifndef __CUSTOM_TASK_H_

2 #define __CUSTOM_TASK_H_

3

4 #include <linux/types.h>

5

6 struct custom_task{

7 struct rb_node custom_node;

8 struct list_head custom_list_node;

9 bool is_pbrt;

10 ...

11 };

12 };

13� �
• $Kernel_source-code/include/linux/sched.h
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This file includes one critical data structure: struct task_struct. struct task_struct

is known as the process descriptor. The kernel uses this structure to maintain

information about each process. Some of the parameters stored here are run-state,

priority, scheduling class, address space, and affinity mask. task_struct is stored

in a circular doubly-linked list. Listing A.8 shows the changes at the structure

task_struct. struct custom_task was added to contain the data for the custom

task.

Listing A.8: Changes at struct task_struct

1 #ifdef CONFIG_SCHED_CUSTOM_POLICY

2 #include <linux/custom/custom_task.h>

3 #endif

4

5 ...

6

7 struct task_struct {

8 ...

9 #ifdef CONFIG_SCHED_CUSTOM_POLICY

10 struct custom_task custom_task;

11 #endif

12 }

13� �
• $Kernel_source-code/kernel/sched/custom/custom_sched_policy.c

Each native scheduling policy such as RT (real-time policy), CFS, or IDLE has its

file that describes its behavior. As mentioned above, the custom scheduling policy is

based on CFS but includes specific changes that differentiate from the native CFS.

Listing A.9 shows a set of functions that are mandatory for each policy. next is a

pointer to the following scheduling policy in the priority hierarchy. As defined, the

custom scheduling policy will have a higher priority than the original RT scheduling

policy. The change in the priority was necessary because, in a few experiments,
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PBRT tasks used other scheduling policies instead of the custom scheduling policy.

Other functions are showed. These auxiliary callback functions react to certain

events like adding or removing tasks from the linked list.

Listing A.9: Adding custom scheduling policy source code

1 const struct sched_class custom_sched_class = {

2 .next = &rt_sched_class ,

3 .enqueue_task = enqueue_task_custom ,

4 .dequeue_task = dequeue_task_custom ,

5 .yield_task = yield_task_custom ,

6

7 .check_preempt_curr = check_preempt_curr_custom ,

8

9 .pick_next_task = pick_next_task_custom ,

10 .put_prev_task = put_prev_task_custom ,

11 #ifdef CONFIG_SMP

12 .select_task_rq = select_task_rq_custom ,

13 #endif

14

15

16 .set_curr_task = set_next_task_custom ,

17 .task_tick = task_tick_custom ,

18

19 .get_rr_interval = get_rr_interval_custom ,

20

21 .prio_changed = prio_changed_custom ,

22 .switched_to = switched_to_custom ,

23

24 .update_curr = update_curr_custom ,

25 ...

26 };

27� �
• $Kernel_source-code/kernel/sched/custom/custom_sched_policy.c
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The custom scheduling policy is only applied to the PBRT tasks. When the task is

created, it receives a name stored into comm, a member of the task_struct. The

custom scheduling policy will know if the task is a PBRT task to continue with the

hard cache affinity. Listing A.10 shows the implementation of the function. If the

task is named ‘pbrt ’, it implies that the custom scheduling policy must change the

parameter is_pbrt to ‘1’ (true). If the task is not a PBRT process, it means that

the custom scheduling policy must modify the current scheduling policy based on

its priority.

Listing A.10: Function to identify if the task is a PBRT task

1 ...

2 #include <linux/types.h>

3 #include <linux/string.h>

4 #include <linux/sched.h>

5 ...

6

7 void is_pbrt_task(struct task_struct *p)

8 {

9 char custom_task [TASK_COMM_LEN ];

10 struct sched_param aux_param = { .sched_priority = 0 };

11

12 strcpy(custom_task , "pbrt");

13

14 if (strcmp(custom_task ,p->comm))

15 {

16 p->custom_task ->is_pbrt = 1;

17 p->prio = 0;

18 }

19 else

20 {

21 if (task_has_rt_policy(p))

22 {

23 aux_param.sched_priority = p->rt_priority;
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24 sched_setscheduler (&p, SCHED_FIFO , &aux_param);

25 }

26 else

27 {

28 sched_setscheduler (&p, SCHED_NORMAL , &aux_param);

29 }

30 }

31 }

32 ...

33� �
Listing A.11 shows another critical function implemented as part of the custom

scheduling policy. cpu_custom_mask_set is the function that provides the algo-

rithm to assign hard cache affinity to each PBRT task. An assumption made in this

implementation is that the processor has eight cores.

Listing A.11: Function to set cache affinity in the new custom scheduling policy

1 ...

2 #include <linux/pid.h>

3 #include <linux/sched/types.h>

4 #include <linux/cpumask.h>

5 #include <linux/sched.h>

6 ...

7

8 #define thread1_bitmap 0x01

9 #define thread2_bitmap 0x02

10 #define thread3_bitmap 0x04

11 #define thread4_bitmap 0x08

12 #define thread5_bitmap 0x010

13 #define thread6_bitmap 0x020

14 #define thread7_bitmap 0x040

15 #define thread8_bitmap 0x080

16 ...

17
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18 void cpu_custom_mask_set(struct task_struct *p)

19 {

20 struct cpumask_t *cpumask_thread;

21 unsigned int CPUS_AV;

22 int i = 1;

23 pid_t parent_task_pdi;

24 struct list_head task_threads , *aux_list_head , *threads;

25

26 cpumask_thread = to_cpumask(thread1_bitmap);

27 parent_task_pdi = p->pid;

28 sched_setaffinity(parent_task_pdi , *cpumask_thread1);

29

30 task_threads = p->children;

31

32 CPUS_AV = num_online_cpus ();

33

34 list_for_head(aux_list_head , task_threads);

35 {

36 if ((i <= CPUS_AV) && (i == 1)){

37 cpumask_thread = to_cpumask(thread1_bitmap);

38 }

39 else if ((i <= CPUS_AV) && (i == 2)){

40 cpumask_thread = to_cpumask(thread2_bitmap);

41 }

42 else if ((i <= CPUS_AV) && (i == 3)){

43 cpumask_thread = to_cpumask(thread3_bitmap);

44 }

45 else if ((i <= CPUS_AV) && (i == 4)){

46 cpumask_thread = to_cpumask(thread4_bitmap);

47 }

48 else if ((i <= CPUS_AV) && (i == 5)){

49 cpumask_thread = to_cpumask(thread5_bitmap);

50 }

51 else if ((i <= CPUS_AV) && (i == 6)){
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52 cpumask_thread = to_cpumask(thread6_bitmap);

53 }

54 else if ((i <= CPUS_AV) && (i == 7)){

55 cpumask_thread = to_cpumask(thread7_bitmap);

56 }

57 else if ((i <= CPUS_AV) && (i == 8)){

58 cpumask_thread = to_cpumask(thread8_bitmap);

59 }

60 threads = list_entry(aux_list_head , struct task_struct , p

);

61 sched_setaffinity(threads ->pid , *cpumask_thread);

62 }

63

64

65 }

66 ...

67� �
The function enqueue_task_custom described in Listing A.12 is called whenever a

PBRT task (custom_task) enters a runnable state.

Listing A.12: Function to add custom task (PBRT) to the run queue

1 ...

2 /* Walk up scheduling entities hierarchy */

3 #define for_each_sched_entity(se) \

4 for (; se; se = se->parent)

5 ...

6 static void __enqueue_entity(struct custom_rq *custom_rq , struct

sched_entity *se)

7 {

8 struct rb_node **link = &custom_rq ->rb_root.rb_node;

9 struct rb_node *parent = NULL;

10 struct sched_entity *entry;

11 bool leftmost = true;

12



110

13 /*

14 * Find the right place in the rbtree:

15 */

16 while (*link) {

17 parent = *link;

18 entry = rb_entry(parent , struct sched_entity , run_node);

19 /*

20 * We dont care about collisions. Nodes with

21 * the same key stay together.

22 */

23 if (entity_before(se , entry)) {

24 link = &parent ->rb_left;

25 } else {

26 link = &parent ->rb_right;

27 leftmost = false;

28 }

29 }

30

31 rb_link_node (&se->run_node , parent , link);

32 rb_insert_color_cached (&se->run_node ,&cfs_rq ->tasks_timeline ,

leftmost);

33 }

34

35 static void enqueue_task_custom(struct rq *rq, struct task_struct

*p, int flags)

36 {

37 is_pbrt_task (&p);

38 if (p->custom_task ->is_pbrt == 1)

39 break;

40 for_each_sched_entity(se){

41 if (p->se->on_rq)

42 break;

43 spin_lock (&rq->custom_rq.lock);

44 cpu_custom_mask_set (&p);
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45 list_add (&p->custom_task.custom_list_node ,&rq->custom_rq.

custom_list);

46 __enqueue_entity (&rq->custom_rq , &p->se)

47 spin_unlock (&rq->custom_rq.lock);

48 }

49 }

50� �
Similar to enqueue_task_custom described above, the function to dequeue a custom

task was declared. Listing A.13 shows this function required when a custom (PBRT)

task is no longer runnable. Even if the tasks were not executed, they might be

removed from the double-linked list.

Listing A.13: Function to remove custom task (PBRT) to the run queue

1 static void

2 static void __dequeue_entity(struct custom_rq *custom_rq , struct

sched_entity *se)

3 {

4 rb_erase_cached (&se->run_node , &custom_rq ->custom_root);

5 }

6

7 dequeue_entity(struct custom_rq *custom_rq , struct sched_entity *

se, int flags)

8 {

9

10 update_curr(custom_rq);

11

12 update_load_avg(custom_rq , se, UPDATE_TG);

13 dequeue_runnable_load_avg(custom_rq , se);

14

15 update_stats_dequeue(custom_rq , se, flags);

16

17 clear_buddies(custom_rq , se);

18
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19 if (se != custom_rq ->curr)

20 __dequeue_entity(custom_rq , se);

21 se->on_rq = 0;

22 account_entity_dequeue(custom_rq , se);

23

24 if (!( flags & DEQUEUE_SLEEP))

25 se->vruntime -= custom_rq ->min_vruntime;

26

27 /* return excess runtime on last dequeue */

28 return_cfs_rq_runtime(custom_rq);

29

30 update_customs_group(se);

31

32

33 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)

34 update_min_vruntime(custom_rq);

35 }

36

37 static void deenqueue_task_custom(struct rq *rq, struct

task_struct *p, int flags)

38 {

39 struct lf_custom *t = NULL;

40 spin_lock (&rq->custom_rq.lock);

41 list_del (&p->custom_task.custom_list_node);

42 if(list_empty (&rq->custom_rq.custom_list))

43 {

44 rq ->&rq->custom_rq.custom_list = NULL;

45 }

46 else

47 {

48 t = list_first_entry (&rq->custom_rq.custom_list ,struct

custom_task , custom_list_node);

49 for_each_sched_entity(p->se)

50 {
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51 dequeue_entity(cfs_rq , se, flags);

52 }

53

54 }

55 spin_unlock (&rq->lf.lock);

56 }

57� �
• $Kernel_source-code/kernel/sched/sched/sched.h

One important assumption made in this research project is that the custom schedul-

ing policy implemented has the highest priority. This assumption is essential to

ensure the PBRT tasks run using the developed custom scheduling policy. During

the testing process was detected some scenarios where PBRT tasks used another

scheduling policy. Listing A.14 shows the changes in some functions in the sched.h

header.

Listing A.14: Adding Custom Policy to the priority hierarchy

1 #ifdef CONFIG_SCHED_CUSTOM_POLICY

2 extern const struct sched_class custom_sched_class;

3 #endif

4 ...

5 #ifdef CONFIG_SCHED_CUSTOM_POLICY

6 static inline int custom_policy(int policy)

7 {

8 return policy = SCHED_CUSTOM_POLICY;

9 #endif

10 }

11 ...

12 static inline bool valid_policy(int policy)

13 {

14 #ifdef CONFIG_SCHED_CUSTOM_POLICY

15 return idle_policy(policy) || fair_policy(policy) ||

16 rt_policy(policy) || dl_policy(policy) || custom_policy(policy)
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;

17 #else

18 return idle_policy(policy) || fair_policy(policy) ||

19 rt_policy(policy) || dl_policy(policy);

20 #endif

21 }

22

23 static inline int task_has_custom_policy(struct task_struct *p)

24 {

25 return custom_policy(p->policy);

26 }

27 ...

28� �
• $Kernel_source-code/kernel/sched/sched/core.h

The changes described by Listing A.15 are required to assign the scheduling class

to the task_struct.

Listing A.15: Changing setscheduling() function

1 ...

2 static void __setscheduler(struct rq *rq, struct task_struct *p,

3 const struct sched_attr *attr , bool keep_boost)

4 {

5 ...

6 if (p->policy == SCHED_CUSTOM_POLICY)

7 p->sched_class = &custom_sched_class;

8 else if (dl_prio(p->prio))

9 p->sched_class = &dl_sched_class;

10 else if (rt_prio(p->prio))

11 p->sched_class = &rt_sched_class;

12 else

13 p->sched_class = &fair_sched_class;

14 }

15 ...
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16� �
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Appendix B

Gathered Data from Experiments

This section presents the data obtained from the experiments that were used to per-

form the ANOVA test. Each row represents a case and the respective rendering time for

the image that was generated. In Table B.1 the first column, “Scene’s Name”, specifies

the scene’s name. The second column, “OS”, indicates the operating system used in the

rendering. The third column, “Scheduling Policy”, indicates whether Custom Scheduling

Policy (CSP) or CFS Scheduling Policy (CFSSP) was set. The fourth column, “Resolu-

tion’, indicates the resolution of the output image. The fifth column, “Iteration”, indicates

the number of iteration for each case. The sixth column, “Rendering Time (s)”, contains

the rendering time in seconds. Finally, column “Rendering Time (h)” indicates the ren-

dering time in hours.

117
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Observation Scene’s Name OS Scheduling Policy Resolution Rendering Time (h)

1 Barcelona_Pavilion GPOS Custom Scheduling Policy 1280x720 3.9269444444

2 Barcelona_Pavilion GPOS Custom Scheduling Policy 1280x720 3.9177777778

3 Barcelona_Pavilion GPOS Custom Scheduling Policy 1280x720 3.9261111111

4 Barcelona_Pavilion GPOS Custom Scheduling Policy 1280x720 3.9236111111

5 Barcelona_Pavilion GPOS Custom Scheduling Policy 1280x720 3.9313888889

6 Barcelona_Pavilion GPOS Custom Scheduling Policy 1280x720 3.925

7 Barcelona_Pavilion GPOS Custom Scheduling Policy 640x360 1.0063888889

8 Barcelona_Pavilion GPOS Custom Scheduling Policy 640x360 0.9944444444

9 Barcelona_Pavilion GPOS Custom Scheduling Policy 640x360 1.0033333333

10 Barcelona_Pavilion GPOS Custom Scheduling Policy 640x360 0.9961111111

11 Barcelona_Pavilion GPOS Custom Scheduling Policy 640x360 1.0008333333

12 Barcelona_Pavilion GPOS Custom Scheduling Policy 640x360 0.9969444444

13 Barcelona_Pavilion GPOS Custom Scheduling Policy 960x540 2.2202777778

14 Barcelona_Pavilion GPOS Custom Scheduling Policy 960x540 2.2069444444

15 Barcelona_Pavilion GPOS Custom Scheduling Policy 960x540 2.22

16 Barcelona_Pavilion GPOS Custom Scheduling Policy 960x540 2.2111111111
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17 Barcelona_Pavilion GPOS Custom Scheduling Policy 960x540 2.21

18 Barcelona_Pavilion GPOS Custom Scheduling Policy 960x540 2.2091666667

19 Barcelona_Pavilion GPOS CFS Scheduling Policy 1280x720 3.9688888889

20 Barcelona_Pavilion GPOS CFS Scheduling Policy 1280x720 3.9730555556

21 Barcelona_Pavilion GPOS CFS Scheduling Policy 1280x720 3.9627777778

22 Barcelona_Pavilion GPOS CFS Scheduling Policy 1280x720 3.9563888889

23 Barcelona_Pavilion GPOS CFS Scheduling Policy 1280x720 3.9536111111

24 Barcelona_Pavilion GPOS CFS Scheduling Policy 1280x720 3.9786111111

25 Barcelona_Pavilion GPOS CFS Scheduling Policy 640x360 1.0077777778

26 Barcelona_Pavilion GPOS CFS Scheduling Policy 640x360 1.0036111111

27 Barcelona_Pavilion GPOS CFS Scheduling Policy 640x360 1.0066666667

28 Barcelona_Pavilion GPOS CFS Scheduling Policy 640x360 1.0011111111

29 Barcelona_Pavilion GPOS CFS Scheduling Policy 640x360 1.0038888889

30 Barcelona_Pavilion GPOS CFS Scheduling Policy 640x360 1.0041666667

31 Barcelona_Pavilion GPOS CFS Scheduling Policy 960x540 2.2452777778

32 Barcelona_Pavilion GPOS CFS Scheduling Policy 960x540 2.2497222222

33 Barcelona_Pavilion GPOS CFS Scheduling Policy 960x540 2.2563888889

34 Barcelona_Pavilion GPOS CFS Scheduling Policy 960x540 2.2544444444
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35 Barcelona_Pavilion GPOS CFS Scheduling Policy 960x540 2.2472222222

36 Barcelona_Pavilion GPOS CFS Scheduling Policy 960x540 2.2411111111

37 Barcelona_Pavilion SPOS Custom Scheduling Policy 1280x720 3.5972222222

38 Barcelona_Pavilion SPOS Custom Scheduling Policy 1280x720 3.6005555556

39 Barcelona_Pavilion SPOS Custom Scheduling Policy 1280x720 3.6022222222

40 Barcelona_Pavilion SPOS Custom Scheduling Policy 1280x720 3.5822222222

41 Barcelona_Pavilion SPOS Custom Scheduling Policy 1280x720 3.5827777778

42 Barcelona_Pavilion SPOS Custom Scheduling Policy 1280x720 3.6058333333

43 Barcelona_Pavilion SPOS Custom Scheduling Policy 640x360 0.9152777778

44 Barcelona_Pavilion SPOS Custom Scheduling Policy 640x360 0.9133333333

45 Barcelona_Pavilion SPOS Custom Scheduling Policy 640x360 0.9169444444

46 Barcelona_Pavilion SPOS Custom Scheduling Policy 640x360 0.9161111111

47 Barcelona_Pavilion SPOS Custom Scheduling Policy 640x360 0.9136111111

48 Barcelona_Pavilion SPOS Custom Scheduling Policy 640x360 0.915

49 Barcelona_Pavilion SPOS Custom Scheduling Policy 960x540 2.0663888889

50 Barcelona_Pavilion SPOS Custom Scheduling Policy 960x540 2.0641666667

51 Barcelona_Pavilion SPOS Custom Scheduling Policy 960x540 2.0691666667

52 Barcelona_Pavilion SPOS Custom Scheduling Policy 960x540 2.0725
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53 Barcelona_Pavilion SPOS Custom Scheduling Policy 960x540 2.07

54 Barcelona_Pavilion SPOS Custom Scheduling Policy 960x540 2.0580555556

55 Barcelona_Pavilion SPOS CFS Scheduling Policy 1280x720 4.0147222222

56 Barcelona_Pavilion SPOS CFS Scheduling Policy 1280x720 4.0105555556

57 Barcelona_Pavilion SPOS CFS Scheduling Policy 1280x720 4.0163888889

58 Barcelona_Pavilion SPOS CFS Scheduling Policy 1280x720 4.0222222222

59 Barcelona_Pavilion SPOS CFS Scheduling Policy 1280x720 4.0075

60 Barcelona_Pavilion SPOS CFS Scheduling Policy 1280x720 4.0183333333

61 Barcelona_Pavilion SPOS CFS Scheduling Policy 640x360 0.9802777778

62 Barcelona_Pavilion SPOS CFS Scheduling Policy 640x360 0.9841666667

63 Barcelona_Pavilion SPOS CFS Scheduling Policy 640x360 0.985

64 Barcelona_Pavilion SPOS CFS Scheduling Policy 640x360 0.9825

65 Barcelona_Pavilion SPOS CFS Scheduling Policy 640x360 0.9838888889

66 Barcelona_Pavilion SPOS CFS Scheduling Policy 640x360 0.9783333333

67 Barcelona_Pavilion SPOS CFS Scheduling Policy 960x540 2.1736111111

68 Barcelona_Pavilion SPOS CFS Scheduling Policy 960x540 2.18

69 Barcelona_Pavilion SPOS CFS Scheduling Policy 960x540 2.1744444444

70 Barcelona_Pavilion SPOS CFS Scheduling Policy 960x540 2.1794444444
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71 Barcelona_Pavilion SPOS CFS Scheduling Policy 960x540 2.1702777778

72 Barcelona_Pavilion SPOS CFS Scheduling Policy 960x540 2.1858333333

73 Bathroom GPOS Custom Scheduling Policy 1280x720 8.3277777778

74 Bathroom GPOS Custom Scheduling Policy 1280x720 8.3113888889

75 Bathroom GPOS Custom Scheduling Policy 1280x720 8.3361111111

76 Bathroom GPOS Custom Scheduling Policy 1280x720 8.2930555556

77 Bathroom GPOS Custom Scheduling Policy 1280x720 8.285

78 Bathroom GPOS Custom Scheduling Policy 1280x720 8.2694444444

79 Bathroom GPOS Custom Scheduling Policy 640x360 2.3041666667

80 Bathroom GPOS Custom Scheduling Policy 640x360 2.3013888889

81 Bathroom GPOS Custom Scheduling Policy 640x360 2.3094444444

82 Bathroom GPOS Custom Scheduling Policy 640x360 2.3044444444

83 Bathroom GPOS Custom Scheduling Policy 640x360 2.2930555556

84 Bathroom GPOS Custom Scheduling Policy 640x360 2.2963888889

85 Bathroom GPOS Custom Scheduling Policy 960x540 4.6738888889

86 Bathroom GPOS Custom Scheduling Policy 960x540 4.6694444444

87 Bathroom GPOS Custom Scheduling Policy 960x540 4.6480555556

88 Bathroom GPOS Custom Scheduling Policy 960x540 4.6430555556
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89 Bathroom GPOS Custom Scheduling Policy 960x540 4.64

90 Bathroom GPOS Custom Scheduling Policy 960x540 4.6280555556

91 Bathroom GPOS CFS Scheduling Policy 1280x720 9.1641666667

92 Bathroom GPOS CFS Scheduling Policy 1280x720 9.1905555556

93 Bathroom GPOS CFS Scheduling Policy 1280x720 9.2019444444

94 Bathroom GPOS CFS Scheduling Policy 1280x720 9.2063888889

95 Bathroom GPOS CFS Scheduling Policy 1280x720 9.1841666667

96 Bathroom GPOS CFS Scheduling Policy 1280x720 9.1713888889

97 Bathroom GPOS CFS Scheduling Policy 640x360 2.6933333333

98 Bathroom GPOS CFS Scheduling Policy 640x360 2.6958333333

99 Bathroom GPOS CFS Scheduling Policy 640x360 2.6891666667

100 Bathroom GPOS CFS Scheduling Policy 640x360 2.6875

101 Bathroom GPOS CFS Scheduling Policy 640x360 2.7019444444

102 Bathroom GPOS CFS Scheduling Policy 640x360 2.6961111111

103 Bathroom GPOS CFS Scheduling Policy 960x540 5.16

104 Bathroom GPOS CFS Scheduling Policy 960x540 5.1586111111

105 Bathroom GPOS CFS Scheduling Policy 960x540 5.1738888889

106 Bathroom GPOS CFS Scheduling Policy 960x540 5.1722222222
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107 Bathroom GPOS CFS Scheduling Policy 960x540 5.1555555556

108 Bathroom GPOS CFS Scheduling Policy 960x540 5.1463888889

109 Bathroom SPOS Custom Scheduling Policy 1280x720 6.9463888889

110 Bathroom SPOS Custom Scheduling Policy 1280x720 6.9908333333

111 Bathroom SPOS Custom Scheduling Policy 1280x720 6.9825

112 Bathroom SPOS Custom Scheduling Policy 1280x720 7.0125

113 Bathroom SPOS Custom Scheduling Policy 1280x720 6.9847222222

114 Bathroom SPOS Custom Scheduling Policy 1280x720 6.9561111111

115 Bathroom SPOS Custom Scheduling Policy 640x360 1.8913888889

116 Bathroom SPOS Custom Scheduling Policy 640x360 1.8988888889

117 Bathroom SPOS Custom Scheduling Policy 640x360 1.8911111111

118 Bathroom SPOS Custom Scheduling Policy 640x360 1.9019444444

119 Bathroom SPOS Custom Scheduling Policy 640x360 1.9011111111

120 Bathroom SPOS Custom Scheduling Policy 640x360 1.8977777778

121 Bathroom SPOS Custom Scheduling Policy 960x540 3.9566666667

122 Bathroom SPOS Custom Scheduling Policy 960x540 3.9777777778

123 Bathroom SPOS Custom Scheduling Policy 960x540 3.9788888889

124 Bathroom SPOS Custom Scheduling Policy 960x540 3.9744444444
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125 Bathroom SPOS Custom Scheduling Policy 960x540 3.9580555556

126 Bathroom SPOS Custom Scheduling Policy 960x540 3.9558333333

127 Bathroom SPOS CFS Scheduling Policy 1280x720 7.7044444444

128 Bathroom SPOS CFS Scheduling Policy 1280x720 7.7119444444

129 Bathroom SPOS CFS Scheduling Policy 1280x720 7.7080555556

130 Bathroom SPOS CFS Scheduling Policy 1280x720 7.7311111111

131 Bathroom SPOS CFS Scheduling Policy 1280x720 7.7119444444

132 Bathroom SPOS CFS Scheduling Policy 1280x720 7.6738888889

133 Bathroom SPOS CFS Scheduling Policy 640x360 2.3013888889

134 Bathroom SPOS CFS Scheduling Policy 640x360 2.3083333333

135 Bathroom SPOS CFS Scheduling Policy 640x360 2.3161111111

136 Bathroom SPOS CFS Scheduling Policy 640x360 2.2966666667

137 Bathroom SPOS CFS Scheduling Policy 640x360 2.3166666667

138 Bathroom SPOS CFS Scheduling Policy 640x360 2.2963888889

139 Bathroom SPOS CFS Scheduling Policy 960x540 4.2361111111

140 Bathroom SPOS CFS Scheduling Policy 960x540 4.2316666667

141 Bathroom SPOS CFS Scheduling Policy 960x540 4.2294444444

142 Bathroom SPOS CFS Scheduling Policy 960x540 4.2447222222
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143 Bathroom SPOS CFS Scheduling Policy 960x540 4.2219444444

144 Bathroom SPOS CFS Scheduling Policy 960x540 4.2322222222

145 Breakfast GPOS Custom Scheduling Policy 1280x720 4.8127777778

146 Breakfast GPOS Custom Scheduling Policy 1280x720 4.7847222222

147 Breakfast GPOS Custom Scheduling Policy 1280x720 4.8208333333

148 Breakfast GPOS Custom Scheduling Policy 1280x720 4.7997222222

149 Breakfast GPOS Custom Scheduling Policy 1280x720 4.8197222222

150 Breakfast GPOS Custom Scheduling Policy 1280x720 4.8244444444

151 Breakfast GPOS Custom Scheduling Policy 640x360 1.2375

152 Breakfast GPOS Custom Scheduling Policy 640x360 1.2413888889

153 Breakfast GPOS Custom Scheduling Policy 640x360 1.2358333333

154 Breakfast GPOS Custom Scheduling Policy 640x360 1.2377777778

155 Breakfast GPOS Custom Scheduling Policy 640x360 1.2352777778

156 Breakfast GPOS Custom Scheduling Policy 640x360 1.235

157 Breakfast GPOS Custom Scheduling Policy 960x540 2.6933333333

158 Breakfast GPOS Custom Scheduling Policy 960x540 2.6819444444

159 Breakfast GPOS Custom Scheduling Policy 960x540 2.69

160 Breakfast GPOS Custom Scheduling Policy 960x540 2.6891666667
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161 Breakfast GPOS Custom Scheduling Policy 960x540 2.6808333333

162 Breakfast GPOS Custom Scheduling Policy 960x540 2.6880555556

163 Breakfast GPOS CFS Scheduling Policy 1280x720 4.9444444444

164 Breakfast GPOS CFS Scheduling Policy 1280x720 4.9447222222

165 Breakfast GPOS CFS Scheduling Policy 1280x720 4.9591666667

166 Breakfast GPOS CFS Scheduling Policy 1280x720 4.9419444444

167 Breakfast GPOS CFS Scheduling Policy 1280x720 4.9608333333

168 Breakfast GPOS CFS Scheduling Policy 1280x720 4.9719444444

169 Breakfast GPOS CFS Scheduling Policy 640x360 1.3611111111

170 Breakfast GPOS CFS Scheduling Policy 640x360 1.3544444444

171 Breakfast GPOS CFS Scheduling Policy 640x360 1.3536111111

172 Breakfast GPOS CFS Scheduling Policy 640x360 1.3594444444

173 Breakfast GPOS CFS Scheduling Policy 640x360 1.3513888889

174 Breakfast GPOS CFS Scheduling Policy 640x360 1.3591666667

175 Breakfast GPOS CFS Scheduling Policy 960x540 2.7777777778

176 Breakfast GPOS CFS Scheduling Policy 960x540 2.7722222222

177 Breakfast GPOS CFS Scheduling Policy 960x540 2.7886111111

178 Breakfast GPOS CFS Scheduling Policy 960x540 2.7702777778
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179 Breakfast GPOS CFS Scheduling Policy 960x540 2.7677777778

180 Breakfast GPOS CFS Scheduling Policy 960x540 2.7680555556

181 Breakfast SPOS Custom Scheduling Policy 1280x720 4.1013888889

182 Breakfast SPOS Custom Scheduling Policy 1280x720 4.0933333333

183 Breakfast SPOS Custom Scheduling Policy 1280x720 4.0808333333

184 Breakfast SPOS Custom Scheduling Policy 1280x720 4.1130555556

185 Breakfast SPOS Custom Scheduling Policy 1280x720 4.0930555556

186 Breakfast SPOS Custom Scheduling Policy 1280x720 4.1069444444

187 Breakfast SPOS Custom Scheduling Policy 640x360 1.0266666667

188 Breakfast SPOS Custom Scheduling Policy 640x360 1.0377777778

189 Breakfast SPOS Custom Scheduling Policy 640x360 1.0386111111

190 Breakfast SPOS Custom Scheduling Policy 640x360 1.0316666667

191 Breakfast SPOS Custom Scheduling Policy 640x360 1.0372222222

192 Breakfast SPOS Custom Scheduling Policy 640x360 1.0366666667

193 Breakfast SPOS Custom Scheduling Policy 960x540 2.3416666667

194 Breakfast SPOS Custom Scheduling Policy 960x540 2.3338888889

195 Breakfast SPOS Custom Scheduling Policy 960x540 2.3283333333

196 Breakfast SPOS Custom Scheduling Policy 960x540 2.3225
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197 Breakfast SPOS Custom Scheduling Policy 960x540 2.3241666667

198 Breakfast SPOS Custom Scheduling Policy 960x540 2.3175

199 Breakfast SPOS CFS Scheduling Policy 1280x720 4.9305555556

200 Breakfast SPOS CFS Scheduling Policy 1280x720 4.9333333333

201 Breakfast SPOS CFS Scheduling Policy 1280x720 4.9405555556

202 Breakfast SPOS CFS Scheduling Policy 1280x720 4.9438888889

203 Breakfast SPOS CFS Scheduling Policy 1280x720 4.9122222222

204 Breakfast SPOS CFS Scheduling Policy 1280x720 4.9522222222

205 Breakfast SPOS CFS Scheduling Policy 640x360 1.2330555556

206 Breakfast SPOS CFS Scheduling Policy 640x360 1.2372222222

207 Breakfast SPOS CFS Scheduling Policy 640x360 1.2402777778

208 Breakfast SPOS CFS Scheduling Policy 640x360 1.2394444444

209 Breakfast SPOS CFS Scheduling Policy 640x360 1.2377777778

210 Breakfast SPOS CFS Scheduling Policy 640x360 1.2425

211 Breakfast SPOS CFS Scheduling Policy 960x540 2.6891666667

212 Breakfast SPOS CFS Scheduling Policy 960x540 2.6933333333

213 Breakfast SPOS CFS Scheduling Policy 960x540 2.7019444444

214 Breakfast SPOS CFS Scheduling Policy 960x540 2.6830555556
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215 Breakfast SPOS CFS Scheduling Policy 960x540 2.6833333333

216 Breakfast SPOS CFS Scheduling Policy 960x540 2.6841666667

217 Contemporary_Bathroom GPOS Custom Scheduling Policy 1280x720 42.763333333

218 Contemporary_Bathroom GPOS Custom Scheduling Policy 1280x720 42.814722222

219 Contemporary_Bathroom GPOS Custom Scheduling Policy 1280x720 42.917222222

220 Contemporary_Bathroom GPOS Custom Scheduling Policy 1280x720 43.037222222

221 Contemporary_Bathroom GPOS Custom Scheduling Policy 1280x720 42.66

222 Contemporary_Bathroom GPOS Custom Scheduling Policy 1280x720 42.783611111

223 Contemporary_Bathroom GPOS Custom Scheduling Policy 640x360 10.729444444

224 Contemporary_Bathroom GPOS Custom Scheduling Policy 640x360 10.685833333

225 Contemporary_Bathroom GPOS Custom Scheduling Policy 640x360 10.726388889

226 Contemporary_Bathroom GPOS Custom Scheduling Policy 640x360 10.741388889

227 Contemporary_Bathroom GPOS Custom Scheduling Policy 640x360 10.691944444

228 Contemporary_Bathroom GPOS Custom Scheduling Policy 640x360 10.752777778

229 Contemporary_Bathroom GPOS Custom Scheduling Policy 960x540 24.082222222

230 Contemporary_Bathroom GPOS Custom Scheduling Policy 960x540 24.075277778

231 Contemporary_Bathroom GPOS Custom Scheduling Policy 960x540 24.078611111

232 Contemporary_Bathroom GPOS Custom Scheduling Policy 960x540 24.078611111
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233 Contemporary_Bathroom GPOS Custom Scheduling Policy 960x540 24.1025

234 Contemporary_Bathroom GPOS Custom Scheduling Policy 960x540 24.008611111

235 Contemporary_Bathroom GPOS CFS Scheduling Policy 1280x720 43.606388889

236 Contemporary_Bathroom GPOS CFS Scheduling Policy 1280x720 43.643888889

237 Contemporary_Bathroom GPOS CFS Scheduling Policy 1280x720 43.702222222

238 Contemporary_Bathroom GPOS CFS Scheduling Policy 1280x720 43.568888889

239 Contemporary_Bathroom GPOS CFS Scheduling Policy 1280x720 43.714722222

240 Contemporary_Bathroom GPOS CFS Scheduling Policy 1280x720 43.82

241 Contemporary_Bathroom GPOS CFS Scheduling Policy 640x360 10.917222222

242 Contemporary_Bathroom GPOS CFS Scheduling Policy 640x360 10.904722222

243 Contemporary_Bathroom GPOS CFS Scheduling Policy 640x360 10.925833333

244 Contemporary_Bathroom GPOS CFS Scheduling Policy 640x360 10.916111111

245 Contemporary_Bathroom GPOS CFS Scheduling Policy 640x360 10.916111111

246 Contemporary_Bathroom GPOS CFS Scheduling Policy 640x360 10.970555556

247 Contemporary_Bathroom GPOS CFS Scheduling Policy 960x540 24.506666667

248 Contemporary_Bathroom GPOS CFS Scheduling Policy 960x540 24.535833333

249 Contemporary_Bathroom GPOS CFS Scheduling Policy 960x540 24.536111111

250 Contemporary_Bathroom GPOS CFS Scheduling Policy 960x540 24.560833333
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251 Contemporary_Bathroom GPOS CFS Scheduling Policy 960x540 24.608888889

252 Contemporary_Bathroom GPOS CFS Scheduling Policy 960x540 24.518333333

253 Contemporary_Bathroom SPOS Custom Scheduling Policy 1280x720 36.611944444

254 Contemporary_Bathroom SPOS Custom Scheduling Policy 1280x720 36.763333333

255 Contemporary_Bathroom SPOS Custom Scheduling Policy 1280x720 36.614166667

256 Contemporary_Bathroom SPOS Custom Scheduling Policy 1280x720 36.455277778

257 Contemporary_Bathroom SPOS Custom Scheduling Policy 1280x720 36.721944444

258 Contemporary_Bathroom SPOS Custom Scheduling Policy 1280x720 36.550277778

259 Contemporary_Bathroom SPOS Custom Scheduling Policy 640x360 9.0569444444

260 Contemporary_Bathroom SPOS Custom Scheduling Policy 640x360 9.0263888889

261 Contemporary_Bathroom SPOS Custom Scheduling Policy 640x360 9.0052777778

262 Contemporary_Bathroom SPOS Custom Scheduling Policy 640x360 9.0369444444

263 Contemporary_Bathroom SPOS Custom Scheduling Policy 640x360 9.0041666667

264 Contemporary_Bathroom SPOS Custom Scheduling Policy 640x360 9.0080555556

265 Contemporary_Bathroom SPOS Custom Scheduling Policy 960x540 20.224166667

266 Contemporary_Bathroom SPOS Custom Scheduling Policy 960x540 20.185

267 Contemporary_Bathroom SPOS Custom Scheduling Policy 960x540 20.143888889

268 Contemporary_Bathroom SPOS Custom Scheduling Policy 960x540 20.103888889
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269 Contemporary_Bathroom SPOS Custom Scheduling Policy 960x540 20.224722222

270 Contemporary_Bathroom SPOS Custom Scheduling Policy 960x540 20.261388889

271 Contemporary_Bathroom SPOS CFS Scheduling Policy 1280x720 39.666666667

272 Contemporary_Bathroom SPOS CFS Scheduling Policy 1280x720 39.825277778

273 Contemporary_Bathroom SPOS CFS Scheduling Policy 1280x720 39.666388889

274 Contemporary_Bathroom SPOS CFS Scheduling Policy 1280x720 39.811944444

275 Contemporary_Bathroom SPOS CFS Scheduling Policy 1280x720 39.939444444

276 Contemporary_Bathroom SPOS CFS Scheduling Policy 1280x720 39.597777778

277 Contemporary_Bathroom SPOS CFS Scheduling Policy 640x360 9.6077777778

278 Contemporary_Bathroom SPOS CFS Scheduling Policy 640x360 9.5102777778

279 Contemporary_Bathroom SPOS CFS Scheduling Policy 640x360 9.5780555556

280 Contemporary_Bathroom SPOS CFS Scheduling Policy 640x360 9.5811111111

281 Contemporary_Bathroom SPOS CFS Scheduling Policy 640x360 9.5455555556

282 Contemporary_Bathroom SPOS CFS Scheduling Policy 640x360 9.6188888889

283 Contemporary_Bathroom SPOS CFS Scheduling Policy 960x540 21.177222222

284 Contemporary_Bathroom SPOS CFS Scheduling Policy 960x540 21.1775

285 Contemporary_Bathroom SPOS CFS Scheduling Policy 960x540 21.283055556

286 Contemporary_Bathroom SPOS CFS Scheduling Policy 960x540 21.131388889
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287 Contemporary_Bathroom SPOS CFS Scheduling Policy 960x540 21.142222222

288 Contemporary_Bathroom SPOS CFS Scheduling Policy 960x540 21.221944444

289 Crown GPOS Custom Scheduling Policy 1280x720 5.2719444444

290 Crown GPOS Custom Scheduling Policy 1280x720 5.2769444444

291 Crown GPOS Custom Scheduling Policy 1280x720 5.2719444444

292 Crown GPOS Custom Scheduling Policy 1280x720 5.2883333333

293 Crown GPOS Custom Scheduling Policy 1280x720 5.2811111111

294 Crown GPOS Custom Scheduling Policy 1280x720 5.2722222222

295 Crown GPOS Custom Scheduling Policy 640x360 1.3283333333

296 Crown GPOS Custom Scheduling Policy 640x360 1.3283333333

297 Crown GPOS Custom Scheduling Policy 640x360 1.3255555556

298 Crown GPOS Custom Scheduling Policy 640x360 1.3236111111

299 Crown GPOS Custom Scheduling Policy 640x360 1.3277777778

300 Crown GPOS Custom Scheduling Policy 640x360 1.3244444444

301 Crown GPOS Custom Scheduling Policy 960x540 2.99

302 Crown GPOS Custom Scheduling Policy 960x540 2.99

303 Crown GPOS Custom Scheduling Policy 960x540 2.975

304 Crown GPOS Custom Scheduling Policy 960x540 2.9875
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305 Crown GPOS Custom Scheduling Policy 960x540 2.9722222222

306 Crown GPOS Custom Scheduling Policy 960x540 2.9941666667

307 Crown GPOS CFS Scheduling Policy 1280x720 5.7091666667

308 Crown GPOS CFS Scheduling Policy 1280x720 5.6897222222

309 Crown GPOS CFS Scheduling Policy 1280x720 5.7163888889

310 Crown GPOS CFS Scheduling Policy 1280x720 5.7013888889

311 Crown GPOS CFS Scheduling Policy 1280x720 5.7047222222

312 Crown GPOS CFS Scheduling Policy 1280x720 5.6758333333

313 Crown GPOS CFS Scheduling Policy 640x360 1.4380555556

314 Crown GPOS CFS Scheduling Policy 640x360 1.4383333333

315 Crown GPOS CFS Scheduling Policy 640x360 1.4258333333

316 Crown GPOS CFS Scheduling Policy 640x360 1.4283333333

317 Crown GPOS CFS Scheduling Policy 640x360 1.4352777778

318 Crown GPOS CFS Scheduling Policy 640x360 1.4330555556

319 Crown GPOS CFS Scheduling Policy 960x540 3.1841666667

320 Crown GPOS CFS Scheduling Policy 960x540 3.1966666667

321 Crown GPOS CFS Scheduling Policy 960x540 3.2116666667

322 Crown GPOS CFS Scheduling Policy 960x540 3.1994444444



136

323 Crown GPOS CFS Scheduling Policy 960x540 3.2063888889

324 Crown GPOS CFS Scheduling Policy 960x540 3.1994444444

325 Crown SPOS Custom Scheduling Policy 1280x720 4.39

326 Crown SPOS Custom Scheduling Policy 1280x720 4.39

327 Crown SPOS Custom Scheduling Policy 1280x720 4.3677777778

328 Crown SPOS Custom Scheduling Policy 1280x720 4.3775

329 Crown SPOS Custom Scheduling Policy 1280x720 4.4044444444

330 Crown SPOS Custom Scheduling Policy 1280x720 4.3747222222

331 Crown SPOS Custom Scheduling Policy 640x360 1.1188888889

332 Crown SPOS Custom Scheduling Policy 640x360 1.1261111111

333 Crown SPOS Custom Scheduling Policy 640x360 1.1266666667

334 Crown SPOS Custom Scheduling Policy 640x360 1.1202777778

335 Crown SPOS Custom Scheduling Policy 640x360 1.1252777778

336 Crown SPOS Custom Scheduling Policy 640x360 1.1230555556

337 Crown SPOS Custom Scheduling Policy 960x540 2.4744444444

338 Crown SPOS Custom Scheduling Policy 960x540 2.4766666667

339 Crown SPOS Custom Scheduling Policy 960x540 2.4827777778

340 Crown SPOS Custom Scheduling Policy 960x540 2.4647222222
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341 Crown SPOS Custom Scheduling Policy 960x540 2.4675

342 Crown SPOS Custom Scheduling Policy 960x540 2.4638888889

343 Crown SPOS CFS Scheduling Policy 1280x720 4.8769444444

344 Crown SPOS CFS Scheduling Policy 1280x720 4.8866666667

345 Crown SPOS CFS Scheduling Policy 1280x720 4.8622222222

346 Crown SPOS CFS Scheduling Policy 1280x720 4.9002777778

347 Crown SPOS CFS Scheduling Policy 1280x720 4.8619444444

348 Crown SPOS CFS Scheduling Policy 1280x720 4.8575

349 Crown SPOS CFS Scheduling Policy 640x360 1.2077777778

350 Crown SPOS CFS Scheduling Policy 640x360 1.2138888889

351 Crown SPOS CFS Scheduling Policy 640x360 1.2119444444

352 Crown SPOS CFS Scheduling Policy 640x360 1.2052777778

353 Crown SPOS CFS Scheduling Policy 640x360 1.2158333333

354 Crown SPOS CFS Scheduling Policy 640x360 1.2052777778

355 Crown SPOS CFS Scheduling Policy 960x540 2.8283333333

356 Crown SPOS CFS Scheduling Policy 960x540 2.8422222222

357 Crown SPOS CFS Scheduling Policy 960x540 2.8266666667

358 Crown SPOS CFS Scheduling Policy 960x540 2.8444444444
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359 Crown SPOS CFS Scheduling Policy 960x540 2.8408333333

360 Crown SPOS CFS Scheduling Policy 960x540 2.8386111111

361 Landscape GPOS Custom Scheduling Policy 1280x720 6.5013888889

362 Landscape GPOS Custom Scheduling Policy 1280x720 6.4947222222

363 Landscape GPOS Custom Scheduling Policy 1280x720 6.4913888889

364 Landscape GPOS Custom Scheduling Policy 1280x720 6.4755555556

365 Landscape GPOS Custom Scheduling Policy 1280x720 6.5177777778

366 Landscape GPOS Custom Scheduling Policy 1280x720 6.4758333333

367 Landscape GPOS Custom Scheduling Policy 640x360 1.3563888889

368 Landscape GPOS Custom Scheduling Policy 640x360 1.3630555556

369 Landscape GPOS Custom Scheduling Policy 640x360 1.3555555556

370 Landscape GPOS Custom Scheduling Policy 640x360 1.3516666667

371 Landscape GPOS Custom Scheduling Policy 640x360 1.3547222222

372 Landscape GPOS Custom Scheduling Policy 640x360 1.3544444444

373 Landscape GPOS Custom Scheduling Policy 960x540 2.5119444444

374 Landscape GPOS Custom Scheduling Policy 960x540 2.5216666667

375 Landscape GPOS Custom Scheduling Policy 960x540 2.5188888889

376 Landscape GPOS Custom Scheduling Policy 960x540 2.5216666667
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377 Landscape GPOS Custom Scheduling Policy 960x540 2.5230555556

378 Landscape GPOS Custom Scheduling Policy 960x540 2.5194444444

379 Landscape GPOS CFS Scheduling Policy 1280x720 7.2725

380 Landscape GPOS CFS Scheduling Policy 1280x720 7.2577777778

381 Landscape GPOS CFS Scheduling Policy 1280x720 7.2358333333

382 Landscape GPOS CFS Scheduling Policy 1280x720 7.2275

383 Landscape GPOS CFS Scheduling Policy 1280x720 7.2475

384 Landscape GPOS CFS Scheduling Policy 1280x720 7.2622222222

385 Landscape GPOS CFS Scheduling Policy 640x360 1.5530555556

386 Landscape GPOS CFS Scheduling Policy 640x360 1.5575

387 Landscape GPOS CFS Scheduling Policy 640x360 1.5552777778

388 Landscape GPOS CFS Scheduling Policy 640x360 1.5552777778

389 Landscape GPOS CFS Scheduling Policy 640x360 1.5552777778

390 Landscape GPOS CFS Scheduling Policy 640x360 1.5552777778

391 Landscape GPOS CFS Scheduling Policy 960x540 2.8761111111

392 Landscape GPOS CFS Scheduling Policy 960x540 2.8616666667

393 Landscape GPOS CFS Scheduling Policy 960x540 2.8688888889

394 Landscape GPOS CFS Scheduling Policy 960x540 2.8658333333
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395 Landscape GPOS CFS Scheduling Policy 960x540 2.8647222222

396 Landscape GPOS CFS Scheduling Policy 960x540 2.855

397 Landscape SPOS Custom Scheduling Policy 1280x720 4.4227777778

398 Landscape SPOS Custom Scheduling Policy 1280x720 4.43

399 Landscape SPOS Custom Scheduling Policy 1280x720 4.4286111111

400 Landscape SPOS Custom Scheduling Policy 1280x720 4.4272222222

401 Landscape SPOS Custom Scheduling Policy 1280x720 4.4275

402 Landscape SPOS Custom Scheduling Policy 1280x720 4.4138888889

403 Landscape SPOS Custom Scheduling Policy 640x360 1.1038888889

404 Landscape SPOS Custom Scheduling Policy 640x360 1.1016666667

405 Landscape SPOS Custom Scheduling Policy 640x360 1.1019444444

406 Landscape SPOS Custom Scheduling Policy 640x360 1.0977777778

407 Landscape SPOS Custom Scheduling Policy 640x360 1.1058333333

408 Landscape SPOS Custom Scheduling Policy 640x360 1.1041666667

409 Landscape SPOS Custom Scheduling Policy 960x540 2.4002777778

410 Landscape SPOS Custom Scheduling Policy 960x540 2.3975

411 Landscape SPOS Custom Scheduling Policy 960x540 2.4058333333

412 Landscape SPOS Custom Scheduling Policy 960x540 2.3933333333
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413 Landscape SPOS Custom Scheduling Policy 960x540 2.4086111111

414 Landscape SPOS Custom Scheduling Policy 960x540 2.4102777778

415 Landscape SPOS CFS Scheduling Policy 1280x720 5.7405555556

416 Landscape SPOS CFS Scheduling Policy 1280x720 5.7116666667

417 Landscape SPOS CFS Scheduling Policy 1280x720 5.7316666667

418 Landscape SPOS CFS Scheduling Policy 1280x720 5.7125

419 Landscape SPOS CFS Scheduling Policy 1280x720 5.7058333333

420 Landscape SPOS CFS Scheduling Policy 1280x720 5.7219444444

421 Landscape SPOS CFS Scheduling Policy 640x360 1.1438888889

422 Landscape SPOS CFS Scheduling Policy 640x360 1.1463888889

423 Landscape SPOS CFS Scheduling Policy 640x360 1.1466666667

424 Landscape SPOS CFS Scheduling Policy 640x360 1.1452777778

425 Landscape SPOS CFS Scheduling Policy 640x360 1.1436111111

426 Landscape SPOS CFS Scheduling Policy 640x360 1.145

427 Landscape SPOS CFS Scheduling Policy 960x540 2.4555555556

428 Landscape SPOS CFS Scheduling Policy 960x540 2.4530555556

429 Landscape SPOS CFS Scheduling Policy 960x540 2.4544444444

430 Landscape SPOS CFS Scheduling Policy 960x540 2.4494444444
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431 Landscape SPOS CFS Scheduling Policy 960x540 2.4558333333

432 Landscape SPOS CFS Scheduling Policy 960x540 2.4538888889

433 Volume_Caustic GPOS Custom Scheduling Policy 1280x720 4.7006944444

434 Volume_Caustic GPOS Custom Scheduling Policy 1280x720 4.6977777778

435 Volume_Caustic GPOS Custom Scheduling Policy 1280x720 4.7006944444

436 Volume_Caustic GPOS Custom Scheduling Policy 1280x720 4.6953472222

437 Volume_Caustic GPOS Custom Scheduling Policy 1280x720 4.6938888889

438 Volume_Caustic GPOS Custom Scheduling Policy 1280x720 4.6788194444

439 Volume_Caustic GPOS Custom Scheduling Policy 640x360 1.2745444444

440 Volume_Caustic GPOS Custom Scheduling Policy 640x360 1.2783555556

441 Volume_Caustic GPOS Custom Scheduling Policy 640x360 1.277675

442 Volume_Caustic GPOS Custom Scheduling Policy 640x360 1.2746805556

443 Volume_Caustic GPOS Custom Scheduling Policy 640x360 1.2749527778

444 Volume_Caustic GPOS Custom Scheduling Policy 640x360 1.2691

445 Volume_Caustic GPOS Custom Scheduling Policy 960x540 2.6802777778

446 Volume_Caustic GPOS Custom Scheduling Policy 960x540 2.6983333333

447 Volume_Caustic GPOS Custom Scheduling Policy 960x540 2.6944444444

448 Volume_Caustic GPOS Custom Scheduling Policy 960x540 2.6925
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449 Volume_Caustic GPOS Custom Scheduling Policy 960x540 2.695

450 Volume_Caustic GPOS Custom Scheduling Policy 960x540 2.7038888889

451 Volume_Caustic GPOS CFS Scheduling Policy 1280x720 5.18

452 Volume_Caustic GPOS CFS Scheduling Policy 1280x720 5.15375

453 Volume_Caustic GPOS CFS Scheduling Policy 1280x720 5.1717361111

454 Volume_Caustic GPOS CFS Scheduling Policy 1280x720 5.1853472222

455 Volume_Caustic GPOS CFS Scheduling Policy 1280x720 5.1945833333

456 Volume_Caustic GPOS CFS Scheduling Policy 1280x720 5.1936111111

457 Volume_Caustic GPOS CFS Scheduling Policy 640x360 1.3250416667

458 Volume_Caustic GPOS CFS Scheduling Policy 640x360 1.3194611111

459 Volume_Caustic GPOS CFS Scheduling Policy 640x360 1.3247694444

460 Volume_Caustic GPOS CFS Scheduling Policy 640x360 1.3172833333

461 Volume_Caustic GPOS CFS Scheduling Policy 640x360 1.3191888889

462 Volume_Caustic GPOS CFS Scheduling Policy 640x360 1.3215027778

463 Volume_Caustic GPOS CFS Scheduling Policy 960x540 3.0769444444

464 Volume_Caustic GPOS CFS Scheduling Policy 960x540 3.0861111111

465 Volume_Caustic GPOS CFS Scheduling Policy 960x540 3.0813888889

466 Volume_Caustic GPOS CFS Scheduling Policy 960x540 3.0936111111
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467 Volume_Caustic GPOS CFS Scheduling Policy 960x540 3.0902777778

468 Volume_Caustic GPOS CFS Scheduling Policy 960x540 3.1011111111

469 Volume_Caustic SPOS Custom Scheduling Policy 1280x720 3.8577777778

470 Volume_Caustic SPOS Custom Scheduling Policy 1280x720 3.8514583333

471 Volume_Caustic SPOS Custom Scheduling Policy 1280x720 3.8640972222

472 Volume_Caustic SPOS Custom Scheduling Policy 1280x720 3.8689583333

473 Volume_Caustic SPOS Custom Scheduling Policy 1280x720 3.8606944444

474 Volume_Caustic SPOS Custom Scheduling Policy 1280x720 3.8451388889

475 Volume_Caustic SPOS Custom Scheduling Policy 640x360 1.0465583333

476 Volume_Caustic SPOS Custom Scheduling Policy 640x360 1.0586722222

477 Volume_Caustic SPOS Custom Scheduling Policy 640x360 1.0514583333

478 Volume_Caustic SPOS Custom Scheduling Policy 640x360 1.0475111111

479 Volume_Caustic SPOS Custom Scheduling Policy 640x360 1.0471027778

480 Volume_Caustic SPOS Custom Scheduling Policy 640x360 1.0540444444

481 Volume_Caustic SPOS Custom Scheduling Policy 960x540 2.2233333333

482 Volume_Caustic SPOS Custom Scheduling Policy 960x540 2.2305555556

483 Volume_Caustic SPOS Custom Scheduling Policy 960x540 2.2205555556

484 Volume_Caustic SPOS Custom Scheduling Policy 960x540 2.2327777778
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485 Volume_Caustic SPOS Custom Scheduling Policy 960x540 2.2333333333

486 Volume_Caustic SPOS Custom Scheduling Policy 960x540 2.2180555556

487 Volume_Caustic SPOS CFS Scheduling Policy 1280x720 4.0497916667

488 Volume_Caustic SPOS CFS Scheduling Policy 1280x720 4.0609722222

489 Volume_Caustic SPOS CFS Scheduling Policy 1280x720 4.055625

490 Volume_Caustic SPOS CFS Scheduling Policy 1280x720 4.0716666667

491 Volume_Caustic SPOS CFS Scheduling Policy 1280x720 4.0706944444

492 Volume_Caustic SPOS CFS Scheduling Policy 1280x720 4.0531944444

493 Volume_Caustic SPOS CFS Scheduling Policy 640x360 1.1457833333

494 Volume_Caustic SPOS CFS Scheduling Policy 640x360 1.1425166667

495 Volume_Caustic SPOS CFS Scheduling Policy 640x360 1.1463277778

496 Volume_Caustic SPOS CFS Scheduling Policy 640x360 1.14415

497 Volume_Caustic SPOS CFS Scheduling Policy 640x360 1.1482333333

498 Volume_Caustic SPOS CFS Scheduling Policy 640x360 1.147825

499 Volume_Caustic SPOS CFS Scheduling Policy 960x540 2.3608333333

500 Volume_Caustic SPOS CFS Scheduling Policy 960x540 2.3661111111

501 Volume_Caustic SPOS CFS Scheduling Policy 960x540 2.3622222222

502 Volume_Caustic SPOS CFS Scheduling Policy 960x540 2.36
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503 Volume_Caustic SPOS CFS Scheduling Policy 960x540 2.3641666667

504 Volume_Caustic SPOS CFS Scheduling Policy 960x540 2.3622222222



Appendix C

Compiling a custom kernel for Ubuntu

OS

This section presents the step-by-step guide to compile a custom kernel for Ubuntu OS.

This guide was followed to create the general-purpose operating system with the custom

scheduling policy.

1. Install dependencies. The packages required to build the kernel image are listed

below.

1 sudo apt -get install git build -essential kernel -package fakeroot

libncurses5 -dev libssl -dev ccache bison flex libelf -dev dwarves

2� �
2. Create a folder to build the kernel. For example $HOME/KernelExample

3. Move to KernelExample:

cd KernelExample

4. Clone the kernel from Ubuntu’s git:

1 git clone -b linux -5.4.y git://git.kernel.org/pub/scm/linux/

kernel/git/stable/linux -stable.git

2� �
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5. Move to linux-stable:

cd linux-stable

6. Add the source code required to the kernel. For this research, the files added and

modified are described in the Design.

7. Copy the configuration from the existing kernel into it.

1 cp /boot/config -`uname -r` .config

2� �
8. In most cases, the configuration should be changed to generate a custom kernel for

the GPOS. The configuration was left as in the original kernel to generate the same

conditions as the original GPOS. In case the configuration must be changed, it can

be accessed through make menuconfig. Figure C.1 shows the kernel configuration

menu.

Figure C.1: Kernel configuration.

Once the configuration is done, save the configuration and exit.

9. Then, clean the directory.

1 make clean

2� �
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10. The next step is to build the kernel. It may take hours to compile the kernel.

1 make -j8 LOCALVERSION=-customGPOS

2� �
The option ‘-j8’ allows using the eight cores of the host’s architecture. The number

after the j would depend on the host’s cores. The option LOCALVERSION add

‘customGPOS’ to the kernel’s name.

11. Finally, the created kernel should be installed through the dpkg command.

1 cd ..

2 sudo dpkg -i linux -firmware -image_5 .4.139 - customGPOS -1 _amd64.deb

3 sudo dpkg -i linux -libc -dev_5 .4.139 - customGPOS -1 _amd64.deb

4 sudo dpkg -i linux -headers -_5.4.139 - customGPOS -1 _amd64.deb

5 sudo dpkg -i linux -image -dbg_5 .4.139 - customGPOS -1 _amd64.deb

6 sudo dpkg -i linux -image -_5.4.139 - customGPOS -1 _amd64.deb

7� �
When the installation finishes, restart the host. The default kernel should be the

one just built.
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Appendix D

Recipe to include PBRT-v3 in the

SPOS based on Yocto Project

D.1 Yocto Recipe to Implement

This section will explain the steps to include PBRT-v3 in custom OS based on Yocto

Project. This section does not guide the reader on the step-by-step procedure to set up

the whole environment to get the SPOS. This section only focuses on the recipe to compile

PBRT-v3. For further information to set up Yocto’s environment, the following links can

be accessed:

Yocto Project’s Reference Manual: https://www.yoctoproject.org/docs/2.

5/ref-manual/ref-manual.html

‘Hello World’ with Yocto Project:

1. https://variwiki.com/index.php?title=Yocto_Hello_World

2. https://wiki.yoctoproject.org/wiki/Building_your_own_recipes_from_

first_principles
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D.1.1 Prerequisites to build PBRT from source code

PBRT-v3 is the library adopted to render the scenes used in the experiments of this

thesis. PBRT-v3 is licensed under the BSD 2-Clause “Simplified” License. It means

that it can be used and modified without breaking any license right.

The source code can be downloaded from here: https://github.com/mmp/pbrt-v3.

PBRT’s website (https://www.pbrt.org) can be accessed for further information about

the library.

Two important disclaimers:

1. This procedure is applicable for x86 architecture. Likely, following the following

steps will work on other architectures like ARM.

2. Only PBRT-v3 was used in this work. It means that previous versions may not

work following the steps described in this appendix.

Prerequisites steps:

1. Download PBRT-v3 from https://github.com/mmp/pbrt-v3

2. Get the compiler for the cross-compilation. The current method implies

cross-compilation for some files that PBRT requires for its compilation. The files

are:

• toFloat.cpp: It will create the header toFloat.h.

cpp location: ./PBRT-v3/src/ext/openexr/IlmBase/Half/

Where to save toFloat.h? ./PBRT-v3/src/ext/openexr/IlmBase/Half/

• half.cpp: It will create the header half.h.

cpp location: ./PBRT-v3/src/ext/openexr/IlmBase/Half/

Where to save half.h? ./PBRT-v3/src/ext/openexr/IlmBase/Half/

• eLut.cpp: It will create the header eLut.h.

https://github.com/mmp/pbrt-v3
https://www.pbrt.org
https://github.com/mmp/pbrt-v3
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cpp location: ./PBRT-v3/src/ext/openexr/IlmBase/Half/

Where to save eLut.h? ./PBRT-v3/src/ext/openexr/IlmBase/Half/

• dwaLookups.cpp: It will create the header dwaLookups.h.

cpp location: ./PBRT-v3/src/ext/openexr/OpenEXR/Ilmlmf/

Where to save dwaLookups.h? ./PBRT-

v3/src/ext/openexr/OpenEXR/Ilmlmf/

The host uses x86 architecture. The compiler used to compile the above files was the

same compiler as the host. A ready-to-go version of PBRT-v3 for Yocto for x86 ar-

chitecture can be downloaded at: https://bitbucket.org/acm_0993/thesis/raw/

69168b320af528bf15389beedca7547d3f013e57/pbrt-v3_1.1.tar.gz

3. Set the Yocto environment. For this research effort, the release YP Core -

Dunfell 3.1.4 - 2020.12.02 was used. It can be cloned by copying/pasting in a

terminal the following command:

1 git clone -b dunfell git://git.yoctoproject.org/poky.git

2� �
4. Dependencies: The dependencies to compile PBRT-v3 are listed out below:

- Doxygen: It can be added to the compilation by following the recipe from

the official Yocto Project’s repository: http://git.yoctoproject.org/cgit/

cgit.cgi/meta-ti/tree/recipes-devtools/doxygen/doxygen_1.8.9.1.bb?

h=thud.

zlib: To meet the dependency would be enough to add DEPENDS = “zlib" in

PBRT-v3’s recipe, as explained in the next section.

D.1.2 Creating the Yocto’s Recipe for PBRT-v3

The Yocto Project’s layer model is an efficient way to build a custom Linux distribution

by including/removing proprietary modules. It allows the user to share, collaborate, reuse,

https://bitbucket.org/acm_0993/thesis/raw/69168b320af528bf15389beedca7547d3f013e57/pbrt-v3_1.1.tar.gz
https://bitbucket.org/acm_0993/thesis/raw/69168b320af528bf15389beedca7547d3f013e57/pbrt-v3_1.1.tar.gz
http://git.yoctoproject.org/cgit/cgit.cgi/meta-ti/tree/recipes-devtools/doxygen/doxygen_1.8.9.1.bb?h=thud
http://git.yoctoproject.org/cgit/cgit.cgi/meta-ti/tree/recipes-devtools/doxygen/doxygen_1.8.9.1.bb?h=thud
http://git.yoctoproject.org/cgit/cgit.cgi/meta-ti/tree/recipes-devtools/doxygen/doxygen_1.8.9.1.bb?h=thud
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change instructions and settings at any time, separate information in a custom build.

For this implementation, the meta layer that includes PBRT-v3’s recipe was called

meta-pbrt. Inside meta-pbrt, a folder named recipes-pbrt-v3 contains the recipe to compile

PBRT-v3 using the custom version created by following the prerequisites listed in the

above section.

The recipe for PBRT-v3 follows the standard Yocto Project’s recipe structure. The

recipe is shown in Listing D.1. An important detail is that the recipe uses the ready-to-go

implementation used in the thesis.

Listing D.1: PBRT-v3 Recipe for Yocto

1 SUMMARY = "PBRT v3 compilation"

2 SECTION = "PBRT"

3 LICENSE = "MIT"

4 LIC_FILES_CHKSUM = "file ://${COMMON_LICENSE_DIR }/MIT;md5 =0835

ade698e0bcf8506ecda2f7b4f302"

5

6 FILESEXTRAPATHS_prepend := "${THISDIR }/${BPN}_${PV}:"

7

8 SRC_URI = "https :// bitbucket.org/acm_0993/thesis/raw /69168

b320af528bf15389beedca7547d3f013e57/${BPN}_${PV}.tar.gz"

9 SRC_URI[sha256sum] = "

ccc0fba85c43123c50864e066a948d94a61d85231f0209e44fe550a14fd069a8"

10

11 S = "${WORKDIR }"

12

13 DEPENDS = "zlib"

14

15 inherit cmake� �
The recipe uses an MIT license. The checksum may change in a custom implemen-

tation. Another detail is that the recipe includes zlib as a PBRT-v3 dependency, as

mentioned above.
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Once the recipe and Yocto’s environment are ready, the next step would be building

the custom Linux image containing PBRT-v3. For testing purposes, a minimal-image

with QEMU support is recommended.
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