# INSTITUTO TECNOLÓGICO DE COSTA VICERRECTORÍA DE DOCENCIA ESCUELA DE INGENIERÍA AGRÍCOLA



Informe de Trabajo Final de Graduación presentado a la Escuela de Ingeniería Agrícola como requisito parcial para optar al grado de Licenciado en Ingeniería Agrícola

EVALUACIÓN DE OPERACIÓN Y MODELACIÓN, DE LA RED DE DISTRIBUCIÓN PARA RIEGO Y ABASTECIMIENTO DE AGUA PARA CONSUMO ANIMAL, EN LAS COMUNIDADES DE SAN RAFAEL LOS ÁNGELES DE GUACIMAL, SARDINAL, PUNTARENAS.

ISAAC QUIRÓS MADRIGAL

CARTAGO, 2021



#### ACTA DE CALIFICACION DE TRABAJOS DE GRADUACION

A las 9:00 horas del día 24 del mes de Noviembre del año 2021 el estudiante: Isaac Quirós Madrigal

presenta y defiende su trabajo de graduación titulado:

Evaluación de operación y modelación, de la red de distribución para riego y abastecimiento de agua para consumo animal, en las comunidades de San Rafael los Ángeles de Guacimal, Sardinal, Puntarenas.

ante el Tribunal de Evaluación compuesto por los siguientes miembros:

Presidente (a): Laura Segura

Asesor (a) de la Escuela: Adrián Chavarría

Lector (a): Iliana Monge

Se le confiere la nota de 93 y firman conforme lo dispone el Reglamento de Trabajos

Finales de Graduación:

LAURA PATRICIA Firmado digitalmente por LAURA PATRICIA SEGURA SERRANO (FIRMA) Fecha: 2021.11.24 1246:16 -06'00'

PRESIDENTE (A)

**ADRIAN ENRIQUE** CHAVARRIA VIDAL (FIRMA)

Firmado digitalmente por ADRIAN ENRIQUE CHAVARRIA VIDAL (FIRMA) Fecha: 2021.11.24 10:11:52 -06'00'

ASESOR(A) DE LA ESCUELA

Iliana Monge J.

Isaac

ESTUDIANTE



# Licencia seleccionada

**Reconocimiento 4.0 Internacional** 





¡Esta es una licencia de Cultura Libre!





Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

# Índice de contenidos

| 1. | RE     | ESUMEN                       | 7  |
|----|--------|------------------------------|----|
| 2. | AE     | BSTRACT                      | 9  |
| 3. | IN     | TRODUCCIÓN                   | 11 |
|    | 3.1.   | Objetivos                    | 13 |
|    | 3.1.1. | . Objetivo general           | 13 |
|    | 3.1    | 1.2. Objetivo específico     | 13 |
| 4. | RE     | EVISIÓN BIBLIOGRÁFICA        | 14 |
|    | 4.1.   | Red de distribución          | 15 |
|    | 4.1    | 1.1. Tipos de redes          | 16 |
|    | 4.2.   | Esquema de una red           | 16 |
|    | 4.2    | 2.1. Tubería                 | 17 |
|    | 4.2    | 2.2. Piezas especiales       | 17 |
|    | a.     | Válvulas                     | 17 |
|    | 4.2    | 2.3. Tanques de distribución | 20 |
|    | 4.2    | 2.4. Medidores               | 21 |
|    | 4.3.   | Obras de captación y toma    | 21 |
|    | 4.4.   | Bombas                       | 23 |
|    | 4.5.   | Tubería de aducción          | 24 |
|    | 4.6.   | Planta potabilizadora        | 24 |
|    | 4.7.   | Tanque de almacenamiento     | 25 |
|    | 4.8.   | Estaciones de bombeo         | 25 |
|    | 4.9.   | Golpe de ariete              | 26 |
|    | 4 10   | Velocidad                    | 27 |

|    | 4.11. | Modelación hidráulica                           | 28 |
|----|-------|-------------------------------------------------|----|
| 5. | ME    | ETODOLOGÍA                                      | 32 |
|    | 5.1.  | Fase I: Recopilación de datos                   | 34 |
|    | 5.1   | .1. Estudio de antecedentes                     | 34 |
|    | 5.1   | .2. Visita a campo                              | 34 |
|    | 5.1   | .3. Levantamiento topográfico                   | 34 |
|    | 5.1   | .4. Aforo                                       | 35 |
|    | 5.2.  | Fase II: Modelación                             | 35 |
|    | 5.3.  | Fase III: Generar plan de manejo:               | 36 |
| 6. | RE    | SULTADOS                                        | 38 |
|    | 6.1.  | Ubicación de la zona del proyecto               | 39 |
|    | 6.2.  | Descripción de la red                           | 40 |
|    | 6.3.  | Levantamiento topográfico                       | 42 |
|    | 6.4.  | Situación actual del proyecto                   | 44 |
|    | 6.5.  | Obras de concreto                               | 45 |
|    | 6.6.  | Obras civiles del proyecto                      | 45 |
|    | 6.7.  | Diámetros de la tubería                         | 46 |
|    | 6.8.  | Modelación inicial                              | 47 |
|    | 6.9.  | Patrones de riego                               | 48 |
|    | 6.10. | Modelación patrón uno                           | 50 |
|    | 6.11. | Modelación patrón dos                           | 51 |
|    | 6.12. | Modelación patrón tres                          | 52 |
|    | 6.13. | Análisis de la red por condiciones de presión   | 53 |
|    | 6.14. | Análisis de la red por condiciones de velocidad | 58 |

| 7.  | CON  | CLUSIONES                              | .61 |
|-----|------|----------------------------------------|-----|
| 8.  | REC  | OMENDACIONES                           | .63 |
| 9.  | BIBL | JOGRAFÍA                               | .65 |
| 10. | AN   | EXOS                                   | .69 |
| 1   | 0.1. | Anexo1, Topografía de la red principal | .70 |
| 1   | 0.2. | Anexo 2, Especificaciones de tubería   | .92 |

# Índice de figuras

| Figura 1. Golpe de ariete en distintos instantes.                          | 26 |
|----------------------------------------------------------------------------|----|
| Figura 1. Mapa de la zona de estudio.                                      | 39 |
| Figura 2. Tramo inicial proyecto sardinal                                  | 40 |
| Figura 3. Proyecto con la primera anexión                                  | 41 |
| Figura 4. Último tramo ampliado del proyecto original                      | 42 |
| Figura 5. Puntos del levantamiento topográfico                             | 43 |
| Figura 6. Diámetro de la tubería a lo largo de la red                      | 44 |
| Figura 7. Obras de concreto a lo largo de la red                           | 45 |
| Figura 8. Obras civiles del proyecto                                       | 46 |
| Figura 8. SDR de la tubería a lo largo de la red                           | 47 |
| Figura 9. Modelación inicial del proyecto                                  | 48 |
| Figura 10. Patrón 1 tiempo de riego                                        | 49 |
| Figura 11. Patrón 2 de tiempo de uso del agua                              | 49 |
| Figura 12. Patrón 3 de tiempo de aprovechamiento                           | 50 |
| Figura 13. Modelación para el primer patrón                                | 51 |
| Figura 14. Modelación para el segundo patrón                               | 52 |
| Figura 15. Modelación para el patrón3                                      | 53 |
| Figura 16. Puntos con presiones cercanos al límite                         | 55 |
| Figura 17. Tramo con velocidades mayores a las recomendadas para el diseño | 57 |
| Figura 18. Tramo de tubería que sobrepasa los límites de velocidad         | 59 |

# Índice de Cuadros

| Cuadro 1. Coeficientes Hazen-Williams para diferentes materiales   | 27 |
|--------------------------------------------------------------------|----|
| Cuadro 2. Ventajas y desventajas de los tipos de modelación        | 29 |
| Cuadro 3. Diferentes modelos de softwares                          | 31 |
| Cuadro 4. Fases de la metodología                                  | 33 |
| Cuadro 5. Reservorios con su respectivo volumen y área.            | 43 |
| Cuadro 6. Puntos de tuberías que sobrepasa las presiones de diseño | 54 |
| Cuadro 7. Puntos donde la velocidad es mayor a la recomendada      | 56 |
| Cuadro 8. Puntos que sobrepasan las velocidades de diseño          | 58 |

# 1. RESUMEN

Mediante la elaboración de este trabajo en la red de distribución, conducción y almacenamiento de agua en la comunidad de San Rafael los Ángeles de Guacimal, Sardinal, Puntarenas, se conocieron las características del sistema mediante una evaluación de las condiciones actuales del proyecto, tomando en cuenta aspectos hidráulicos como, velocidad, presión, diámetros, SDR, según lo establecido por la norma del AyA y las especificaciones de la institución gubernamental SENARA. El proyecto consiste en una red de aproximadamente 30km lineales de tubería y cuenta con 81 parcelarios para el año 2021.

Se logró determinar realizando la modelación que la red cuenta con un tramo que presenta presiones mayores a las recomendadas para el diseño dadas por la norma técnica del AyA, este tramo se encuentra entre los puntos 447 y 457 del levantamiento topográfico, de igual forma se encontraron 2 tramos de la red en que se encuentran velocidades mayores a los 2,5m/s (entre el punto T-928 y el punto T-923 y el segundo tramo del punto 199 hasta el punto 210) según la norma técnica del AyA a estas velocidades ya se pueden generar problemas en la conducción.

Por último, se logró determinar con la modelación y a las especificaciones de los parcelarios, que la red con las características actuales debe de funcionar correctamente. Los faltantes de caudal o bajas en la presión que algunos parcelarios mencionan es debido al consumo incorrecto o abusivo de algunos parcelarios o personas externas al proyecto que generan problemas al funcionamiento óptimo de la misma.

**Palabras claves:** Redes de abastecimiento, conducción, tanque de almacenamiento, parcelario, presión, velocidad.

# 2. ABSTRACT

Through the elaboration of this work in the water distribution, conduction, and storage network in the community of San Rafael los Ángeles de Guacimal, Sardinal, Puntarenas, the characteristics of the system were known through an evaluation of the current conditions of the project, taking in hydraulic aspects such as speed, pressure, diameters, SDR, as established by the AyA standard and the specifications of the government institution SENARA. The project consists of a network of approximately 30 linear kilometers of pipeline and has 81 parcels by 2021.

It was possible to determine by modeling that the network has a section that presents pressures greater than those recommended for the design given by the AyA technical standard, this section is located between points 447 and 457 of the topographic survey, in the same way they were found 2 sections of the network with speeds greater than 2.5m/s (between point T-928 and point T-923 and the second section from point 199 to point 210) according to the technical standard of AyA a these speeds can already cause problems in driving.

Finally, it was possible to determine with the modeling and the specifications of the parcels, that the network with the current characteristics must work correctly. The lack of flow or drops in pressure that some parcels mention is due to the incorrect or abusive consumption of some parcels or people outside the project that generate problems for the optimal functioning of the same.

**Keywords:** Supply networks, conduction, parcel, storage tank, pressure, speed.

3. INTRODUCCIÓN

Uno de los principales retos que enfrenta hoy la humanidad es la demanda de agua para riego y consumo animal que a la vez es necesaria para la producción de alimentos. La Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO) calcula que la superficie bajo riego ha crecido a un ritmo constante del 5 % cada diez años y Costa Rica no es la excepción (O´neal, 2017).

El país ya está experimentando los efectos del cambio climático que repercutirán enormemente en la disponibilidad del agua por lo que se crearon instituciones del estado para combatir esta problemática y necesidades de las personas una de estas es el SENARA, en la cual se va a llevar a cabo el proyecto Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA) la cual fue creada para la gestión del recurso hídrico y en la articulación estratégica, con otras instituciones del sector agropecuario y ambiente. Esta institución tiene como misión, gestionar el recurso hídrico mediante la investigación, innovación y gestión de aguas subterráneas y superficiales y la implementación de proyectos de riego, drenaje y prevención contra inundaciones para mejorar la productividad, el desarrollo y la calidad de vida de todos los habitantes (SENARA, 2021).

Este proyecto surge debido a la necesidad de realizar un evaluación para obtener la manera más óptima de manejar 2 proyectos inicialmente diferentes (San Rafael y Los Ángeles) los cuales fueron creados para que funcionaran de manera separada pero debido a complicaciones políticas, se canceló la concesión de toma de agua del río Aranjuez de una de estas redes de distribución (ubicada en Los Ángeles) por lo que se requirió tomar el agua destinada a un solo proyecto (San Rafael) y dar mediante concesión un caudal de 15 l/s al proyecto que no se logró concluir el cual ya estaba en su etapa final de construcción (Los Ángeles) (Solís, 2021).

Este proyecto debido a complicaciones naturales como la tormenta Nate, y deslizamientos no se encuentra en funcionamiento, pero está previsto para que beneficie a 72 agricultores con más de 55 ha en total y para consumo de ganado se mantiene 13 beneficiarios con terrenos de entre 5 y 600 ha. Pero se han estado presentando problemas de control y manejos del recurso hídrico ya que en algunas ocasiones el caudal suministrado y presión no es igual al que se solicitó. Por lo que se requiere realizar este proyecto con el fin dar un mejoramiento en el manejo y control

de apertura y cierre de válvulas, y modificar los turnos o tiempos actuales para mantener las mejores condiciones y para cumplir las necesidades, restricciones y compromisos legales de los 85 parcelarios que se encuentran actualmente en el proyecto (Solís, 2021).

Una vez evaluado y demostrado el plan de mejoramiento de operación mediante la modelación de la red de distribución en el programa de EPANET, se puede incorporar los cambios al proyecto de la comunidad y lograr que todos los usuarios mejoren sus condiciones actuales de producción y así obtener mayores beneficios ya que es indispensable para el desarrollo de la comunidad de Sardinal contar con disponibilidad de agua para poder llevar a cabo las diferentes actividades.

# 3.1. Objetivos

# 3.1.1. Objetivo general

Evaluar la operación de la red de distribución, conducción y almacenamiento, mediante la modelación y características actuales del proyecto, con el fin de recomendar la forma más adecuada para su operación, basado en el diseño actual y las necesidades de los parcelarios, ubicado en Sardinal, Puntarenas.

## 3.1.2. Objetivo específico

- a. Valorar las condiciones de la red de distribución del proyecto, mediante modelaciones hidráulicas, para conocer la situación actual de la misma.
- b. Predecir la operación real de la red y las mejoras que se le pueden hacer, por medio de modelaciones hidráulicas, para que se pueda hacer un uso óptimo de esta, cumpliendo las necesidades y restricciones de los parcelarios.
- c. Recomendar el funcionamiento óptimo para los 81 parcelarios, mediante aspectos hidráulicos y de operación para tener tiempos de apertura y cierre de válvulas (tiempos de riego) funcionales para los mismos.

4. REVISIÓN BIBLIOGRÁFICA

## 4.1. Red de distribución

La red de distribución o tubería principal se puede definir como una red de distribución (que en lo sucesivo se denominará red) es el conjunto de tubos, accesorios y estructuras que llevan el agua desde tanques de servicio o de distribución hasta la toma domiciliaria o hidrantes públicos, o finca donde se utilice. Su finalidad es proporcionar agua a los usuarios para consumo doméstico, público, comercial, industrial y para escenarios extraordinarias como extinguir incendios. La red debe proporcionar este servicio todo el tiempo, en cantidad suficiente, con la calidad requerida y a una presión adecuada. Los límites de calidad del agua van a estar en función a las necesidades que se la va a dar a la misma (CONAGUA, 2015).

De igual manera se puede definir como líneas de conducción, el conjunto de conductos destinado a llevar el agua desde la fuente de abastecimiento hasta el sitio de entrega. Puede ser cerrada (tubería) o abierta (canal) y debe ser fácil de inspeccionar para detectar y reparar cualquier fuga, por eso suele instalarse paralela a algún camino existente. La conducción puede ser por gravedad siguiendo el desnivel natural del terreno o por bombeo a presión. En el caso de conductos que operan por gravedad, el trazo de la línea de gradiente hidráulico debe seguir el perfil del terreno para reducir los costos de construcción y las presiones resultantes. Si la presión es muy alta, se recomienda usar cajas rompedoras de presión. En terrenos accidentados o cuando habrá frecuentes operaciones de llenado y vaciado del conducto, se deben instalar válvulas automáticas de admisión y expulsión de aire en los sitios más elevados. Además, en las líneas de conducción deben existir instalaciones auxiliares válvulas de secciona miento, de flotador y de altitud para poder aislar y drenar secciones de tubería con fines de prueba, inspección, limpieza, reparación y seguridad (Tormo & Blanca, 2014).

También CONAGUA menciona algunos aspectos a tomar en cuenta cuando se quiere diseñar o construir algún tramo de tubería.

Las tuberías deben de tratar de seguir el perfil del terreno, esto por disponibilidad de acceso
y para estar cerca del gradiente hidráulico para el cual se podrán mantener presiones no muy
altas que generen una ruptura del sistema. Si la línea de la conducción se aleja de la línea de

gradiente hidráulico las presiones altas que se generan, se pueden eliminar con elementos auxiliares.

- Las tuberías se deben de instalar paralelas a una vía pública que permita el acceso abierto para facilitar la inspección de la conducción, poder detectar y corregir daños que sufran las tuberías.
- En líneas de conducción donde la topografía es muy irregular, en los sitios más elevados se deben de colocar válvulas para el ingreso y salida de aire. Cuando el tramo por lo contrario es muy regular (plano), se deben de colocar válvulas según la norma que indique cada país.
- En los puntos más bajos del trayecto se deben de colocar válvulas de purga para vaciar la tubería si hay una falla en otro trayecto superior, también para realizar limpieza.

# 4.1.1. Tipos de redes

La distribución del agua a los puntos de consumo se hace mediante redes de tuberías, que pueden tener funciones distintas, aunque su misión sea llevar agua a los usuarios. Se distinguen tres tipos. Redes ramificadas (Abiertas): Cuando el agua se distribuye en un solo sentido partiendo de una tubería principal, que se ramifica en otras tuberías generalmente llamadas secundarias y de estas a la vez se inician nuevas ramificaciones a las que de forma habitual se les llaman terciarias, estas son redes abiertas. Redes malladas: En este caso la distribución se efectúa en mallas cerradas, de forma que un punto de consumo puede recibir agua de ramales, donde en ocasiones, la circulación no es en el mismo sentido, sino que por equilibrio de presiones el agua acude al punto de consumo desde puntos que disponen de una presión más elevada. Redes mixtas: En ocasiones puede ser conveniente combinar los dos sistemas descritos, estableciendo una red en malla en el centro de una población y distribuir el agua a los barrios o zonas periféricos o extremos con una red ramificada (Álvares et al, 2018).

De estos tres tipos de redes de abastecimiento de agua las que resultan de interés para el proyecto son las redes ramificadas.

# 4.2. Esquema de una red

También CONAGUA menciona en manual de agua potable, alcantarillado y saneamiento que una red se conforma de más partes las cuales se van a describir a continuación.

#### **4.2.1.** Tubería

Se le llama así al conjunto formado por los tubos (conductos de sección circular) y su técnica de unión o ensamble. Para fines de estudio se denomina tubería al conducto comprendido entre dos secciones transversales del mismo. La red de distribución está formada por un ligado de tubos que se unen en diversos puntos llamados nodos o uniones. De acuerdo con su función, la red de distribución puede dividirse en red primaria y red secundaria. A la tubería que lleva el agua desde el tanque de regulación hasta el punto donde inicia su distribución se le conoce como línea de alimentación y se considera parte de la red primaria La división de la red de distribución en red primaria o secundaria dependerá del tamaño de la red y de los diámetros de las tuberías (CONAGUA, 2015).

Las tuberías deben tener la capacidad de soportar la presión estática y las sobrepresiones provocadas por golpe de ariete, además de trasportar el caudal con diámetros interno adecuado, en el anexo 2 se muestran las características de presión y diámetros en tuberías de PVC.

### 4.2.2. Piezas especiales

Son todos aquellos accesorios que se utilizan para llevar a cabo ramificaciones, intersecciones, cambios de dirección, modificaciones de diámetro, uniones de tubería de otro material o diámetro y terminales de los conductos, entre otros Se les llama cruceros a las piezas o conjuntos de accesorios especiales que, conectados a la tubería, forman deflexiones pronunciadas, cambios de diámetro, derivaciones y ramificaciones. También permiten el control del flujo cuando se colocan válvulas (CONAGUA, 2015).

#### a. Válvulas

Son accesorios que se utilizan para disminuir o evitar el flujo en la tubería. Pueden ser clasificadas de acuerdo con su función en dos categorías.

Las válvulas de aislamiento o seccionamiento son utilizadas para separar o cortar el flujo del resto del sistema de abastecimiento en ciertos tramos de tubería, bombas y dispositivos de control con el fin de revisarlos o repararlos Control. Usadas para regular el gasto o la presión, facilitar la entrada de aire o la salida de sedimentos o aire atrapados en el sistema.

De igual forma las válvulas se pueden dividir en dos grandes grupos con respecto a su forma de ejecución o manejo de estas.

Las válvulas manuales son aquellas que no llevan el automatismo incorporado en la válvula. Estas válvulas es necesario que se accionen directamente por una persona o por un motor (válvulas motorizadas). Las válvulas motorizadas pueden ser accionadas de forma automática o por un operador de forma directa (Moratiel, 2015).

- Válvulas de esfera. El elemento de cierre es una esfera o bola perforada. Se abre o cierra mediante el giro del eje unido a la esfera o bola perforada. Permite el paso del fluido cuando la perforación está alineada con la entrada y la salida de la válvula. Se utilizan en conducciones de pequeño diámetro.
- Válvula de compuerta. Se abre por el levantamiento de una compuerta que es perpendicular al eje de la tubería. No es adecuada para regular y debe estar o abierta o cerrada completamente. Se utiliza para poner o aislar tramos por su baja pérdida de carga cuando está totalmente abierta.
- Válvulas mariposa. Se abre o cierra por un disco que gira alrededor del eje perpendicular a la tubería. Se utiliza como regulación para tuberías superiores a 400mm de diámetro.
- Válvula de asiento. Se abre o se cierra por un disco que se asienta sobre los tabiques interiores del cuerpo de la válvula. Normalmente se utiliza para regular el caudal. Se suele utilizar también como válvula automática.
- Válvulas de acople rápido. Es una válvula de "todo o nada" que se utiliza para poner en marcha o aislar un elemento emisor.

Las válvulas automáticas llevan incorporadas un automatismo de apertura y cierre que actúa tras unas consignas programadas. No necesitan ser accionadas manualmente o mediante motor, aunque es posible que en algunas se presente esta opción. Dentro de estas podemos diferenciar la válvula hidráulica, que hace que se abra o cierre la válvula (de pistón, de asiento, de diafragma, entre otras) por medio de la señal hidráulica (diferencias de presión agua arriba y abajo de la válvula). Las electroválvulas hacen que se abra o cierre la válvula mediante una bobina solenoide (apertura electromagnética). Imprescindible este tipo de válvula para cualquier

programación de riego por tiempos, las tensiones más usuales de estas electroválvulas son de 12 y 24 V, aunque puede existir de 100 y 220V (Moratiel, 2015).

- Válvula sostenedora de presión: válvula hidráulica que mantiene constante la presión aguas arriba del punto de instalación. Es capaz de cerrar la válvula para mantener la presión.
- Válvulas de alivio de presión: válvulas que evitan un exceso de presión en el sistema, se suelen colocar en una derivación y por encima de un valor consigna (presión de tarado) se abre a la atmósfera para provocar la caída de presión. A este tipo de válvulas también se las denomina válvulas de seguridad.
- Válvulas volumétricas: son válvulas hidráulicas que incorporan un contador (tipo Wolfmann) que cierra la válvula en el momento que se ha alcanzado un determinado volumen. Son el elemento principal del automatismo de riego por volúmenes.
- Válvulas reguladoras de caudal: válvulas con una serie de mecanismos que regulan el caudal que pasa a través de ella y manteniendo el valor de consigna. Si no se alcanza el valor consigna se mantiene abierta. También se denominan válvulas limitadoras de caudal. Se utilizan, por ejemplo, para que el funcionamiento de las bombas trabaje a un rendimiento adecuado.
- Válvula de retención o antirretorno: tienen por objetivo cerrar el paso de un fluido en un sentido y dejar un paso libre en el contrario. También se llaman válvulas check, uniflujo o unidireccionales. Se suelen utilizar a la salida de una bomba en la impulsión y siempre que se tengan bombas en paralelo. Se debe tener en consideración en este tipo de válvulas la pérdida de carga que se produce cuando la válvula está totalmente abierta.
- Válvulas de aireación o ventosas: son válvulas que se instalan en las conducciones de agua a presión para evacuar aire o introducirlo. Cuando una tubería se está cargando es necesario evacuar el aire (para evitar sobre presiones en los puntos altos) y al contrario ocurre cuando se vacían para evitar depresiones que pueden provocar roturas en tuberías por aplastamiento. Se distinguen tres tipos: purgadores o monofuncionales, con función de eliminar cantidades pequeñas de aire; bifuncionales, evacuar aire y admitir aire; y trifuncionales, cumplen las funciones de las dos anteriores: purga, admisión y expulsión. Este tipo de válvulas se colocarán en los puntos más elevados de la conducción en tramos con pendiente y tramos largos horizontales, salidas y entradas de sifones invertidos, en la salida de los pozos aguas

arriba de la válvula de retención para evacuar durante el arranque el aire acumulado (Moratiel, 2015).

#### 4.2.3. Tanques de distribución

Como su nombre indica, estos tanques se emplean en los sistemas de distribución para asegurar la cantidad de agua y la presión mínima exigida en la red de abastecimiento.

Atendiendo a su construcción, se distinguen dos tipos de tanques de distribución: superficiales y elevados. Los tanques de almacenamiento poseen una cantidad de agua que permite: regular el abastecimiento, suministrar agua para sofocar incendios y suministrar agua en caso de fallo en la red (Rebollo, 2017).

Es importante mencionar los tanques quiebra gradientes como lo menciona Tormo y Blanca en su informe estos en algunos casos se utilizan para sustituir los usos de los conjuntos de válvulas reguladoras disminuyendo los costos y funcionando de manera similar.

Los tanques de regularización sirven para transformar el régimen de entrada a la línea de conducción (que normalmente es constante) en el régimen de consumo de la red de distribución (que siempre es variable). Los tanques de regularización deben cumplir con normas de higiene y seguridad. El tanque regulador podrá omitirse sólo cuando la fuente de abastecimiento y la línea de conducción tengan capacidad para aportar el gasto máximo horario (Tormo & Blanca, 2014).

De igual forma Corchón en su documento menciona algunas funciones semejantes de los tanques reguladores o de almacenamiento en un sistema de abastamiento. Atender las variaciones del consumo de agua, almacenando ésta en los periodos en los cuales el suministro de agua al tanque es mayor que el consumo, y suministrar parte del caudal almacenado, en los períodos en los cuales el consumo es mayor que el suministro, para suplir así la deficiencia. También funciona para, mantener las presiones de servicio en la red de distribución y mantener almacenada cierta cantidad de agua para atender situaciones de emergencia como incendios, o interrupciones por daños en bocatoma, aducción, desarenador o conducción (Corchón, 2005).

En el diseño de tanques reguladores para un sistema de abastecimiento de agua es importante determinar los siguientes aspectos: Capacidad, localización de los tanques y tipo de tanque según el soporte (Corchón, 2005).

Es importante para todo proyecto que se va a realizar, calcular un periodo de diseño o un periodo de funcionamiento del proyecto, el AyA en su norma técnica para diseño y construcción de sistemas de abastecimiento de agua potable, de saneamiento y pluvial habla acerca de periodos de diseño.

#### 4.2.4. Medidores

Para la medición de flujo son empleados diversos tipos de dispositivo. Los hay de tipo turbina que son movidos por el mismo fluido, como algunos empleados en agua potable y los anemómetros o bien de desplazamiento positivo como algunos utilizados para gases. Existen muchos otros que funcionan con diversos principios físicos como magnetismo, efecto Doppler y ultrasonido, disipación de calor de alambres calentados, etcétera (Dondé, 2005).

Medidor de agua es un dispositivo que mide el volumen de agua usado por una casa o edificio o por parcela durante un tiempo determinado. Los medidores de agua son instalados y mantenidos por la municipalidad o dueño del proyecto y son usualmente ubicados dentro del sótano o pasillo de arrastre de un edificio o en la caja de medida afuera en la tierra (Dondé, 2005).

# 4.3. Obras de captación y toma

Para el cálculo del caudal a extraer de una toma de agua en río o quebrada, incluyendo el desarenador y para el del caudal de una captación de naciente: de 25 a Instituto Costarricense de Acueductos y Alcantarillados 14 50 años; el valor seleccionado dependerá del caudal del cuerpo de agua versus el caudal de diseño al plazo mayor posible según la capacidad del cuerpo de agua en la época de estiaje y las regulaciones que en esta materia estén determinadas en la legislación vigente (AyA, 2017).

Para justificar una obra de captación, la corriente debe ser de escurrimiento perenne. La obra debe estar compuesta de los elementos siguientes: Dispositivos de toma (orificios, tubos), dispositivos de control de excedencias (vertedores), dispositivos de limpia (rejillas, cámaras de

decantación), dispositivos de control (compuertas, válvulas de seccionamiento) y dispositivos de aforo o medición (tubo pitot, diferencial de presión con transmisión, parshall, etc.) (Tormo & Blanca, 2014).

También es importante mencionar que el sistema de captación y toma de agua de igual forma debe de llevar filtro esto para evitar que se taquee en los aspersores y demás, Martínez comenta alguno de los tipos de filtros que existen.

Los filtros de grava son muy utilizados cuando se dispone de aguas con altos niveles de partículas orgánicas e inorgánicas, ya que tienen la particularidad de atrapar y retener niveles importantes de contaminantes sin aumentar significativamente la perdida de carga, debido a que el cuerpo filtrante (masa de grava) trabaja en tres dimensiones: superficie y profundidad. Los filtros de grava deben ser acompañados de filtros de malla debido a que no es fácil determinar el número mesh de la grava (tamaño de partículas en suspensión a eliminar) (Martínez, 2001).

Filtro de anillas: El agua es filtrada al pasar por los pequeños conductos formados entre dos anillas consecutivas. Dependiendo del número de ranuras de cada disco es la calidad del filtrado. Hay filtros de anillas equivalentes a mallas de 40, 80, 120, 140, 200 y 600 mesh. La forma de las ranuras no es uniforme, por lo tanto, los pequeños ductos que se forman tienen diferentes secciones y tamaños. Estos filtros tienen un efecto de filtrado tanto en superficie como en profundidad al igual como sucede con los filtros de gravas (Martínez, 2001).

Filtro de mallas: Este tipo de unidades es utilizado principalmente para filtrar aguas con contaminantes inorgánicos como arenas de distintas clases y moderadas cantidades de contaminantes orgánicos. No es recomendable su uso en aguas con alto contenido de residuos orgánicos ya que estos obstruyen rápidamente las cribas (aperturas de la malla) aumentando rápidamente la perdida de carga más allá de los niveles aceptables.

Filtros autolimpiantes: En general existen tanto filtros de malla, como de anillas o de arena autolimpiantes, esto permite que cuando el filtro incrementa la suciedad retenida, se invierta el flujo de agua e ingrese de abajo hacia arriba separando la suciedad retenida en la malla.

Hidrociclón: Una forma de prolongar el período de limpieza es utilizar un Hidrociclón previo a los filtros de grava cuya finalidad es eliminar gran parte de los sólidos en suspensión. El hidrociclón trabaja muy bien reteniendo partículas de sólidos hasta el tamaño de arena fina (100 μm). Su principio de funcionamiento es hacer girar el agua en forma de un remolino. El punto de menor presión es el centro del remolino donde tienden a emigrar las partículas sólidas es suspensión. Estas se acumulan en un pequeño receptáculo ubicado en la parte inferior. El receptáculo debe ser limpiado en forma regular para evitar la colmatación de la unidad, el hidrociclón no sirve para eliminar partículas de naturaleza orgánica como bacterias, algas y materia orgánica dispersa ya que presentan una densidad específica menor a los sólidos en suspensión. Estas partículas logran pasar el dispositivo siendo necesario su eliminación en un filtro de grava, anillas o malla (Martínez, 2001).

#### 4.4. Bombas

Se puede definir a una bomba como un dispositivo mecánico, cuya finalidad es proporcionar a un líquido, en este caso el agua, la energía suficiente para poder ser transportado mediante un conducto a presión, desde un punto de menor cota a uno de mayor cota (Palacios et al, 2005).

Tal sistema generalmente se compone de tanques de succión y de descarga. una bomba, tubería, válvulas, codos y tes. La energía requerida para mover una libra de líquido, a la tasa de flujo deseada, desde el tanque de succión hasta el tanque de descarga. se denomina cabeza total del sistema o, más comúnmente, cabeza del sistema, la bomba tiene que suministrar esta energía. En otras palabras, la cabeza total desarrollada por la bomba debe ser igual a la cabeza total requerida por el sistema, normalmente, la cabeza del sistema se divide en dos partes. La cabeza que tiende a mover el fluido desde el nivel del líquido en el tanque de succión hasta la bomba, la cual se denomina cabeza total de succión. Y la cabeza que tiende a mantener el finjo desde la bomba hasta el tanque de descarga, la cual se llama cabeza total de descarga. Ambas pueden subdividirse aún más en tres factores contribuyentes: cabeza estática, presión de superficie y cabeza de fricción (Palacios et al, 2005).

En acueducto las bombas que generalmente se usan son las denominadas bombas centrifugas, siendo la configuración general de ellas la siguiente:

Las bombas centrífugas tienen un elemento llamado el impulsor, que gira a una cierta rata (revoluciones por minutos); por efecto de la rotación del impulsor, se produce en el lado de la aspiración una presión inferior a la atmosférica, la cual actúa sobre el nivel del agua en la tanquilla de succión (es el caso más común), produciéndose el flujo del agua desde la tanquilla hacia la cámara de la bomba; una vez que el agua entra en la cámara o cuerpo de la bomba, el impulsor, en virtud de su rotación, le comunica al agua una gran carga de velocidad, que luego al salir de la bomba se convierte en energía potencial. La presión en la succión de la bomba es de primordial importancia en el correcto diseño de una estación de bombeo y es justamente en la succión donde se pueden presentar problemas graves si el diseño no es correcto. La altura de aspiración está limitada por las leyes físicas, en el sentido de que si en un punto cualquiera de la succión de la bomba, la presión desciende hasta un valor equivalente a la presión de vapor del líquido (agua) para la temperatura del sitio, se producen vacíos o burbujas de vapor y de gases disueltos, que arrastradas por el líquido a una zona de mayor presión, se condensan bruscamente dando lugar al fenómeno llamado cavitación, el cual origina inconvenientes (Palacios et al, 2005).

## 4.5. Tubería de aducción

Para una tubería por donde fluya agua cruda o agua que únicamente requiere desinfección: de 25 a 50 años; el valor seleccionado debe ser igual al utilizado en la toma o captación (AyA, 2017).

# 4.6. Planta potabilizadora

De acuerdo con las tendencias de crecimiento de la población, se deben elegir períodos de diseño más largos para crecimientos lentos y viceversa. En función del crecimiento se debe aplicar lo siguiente:

Crecimiento bajo (menos del 3% anual): de 20 a 25 años, dependerá del caudal del cuerpo de agua versus el caudal de diseño al plazo mayor y de las facilidades para ampliar la capacidad de la planta.

Crecimiento alto (igual o mayor al 3%): de 15 a 20 años, dependerá del caudal del cuerpo de agua versus el caudal de diseño al plazo mayor y de las facilidades para ampliar la capacidad de la planta.

El nivel de crecimiento se debe obtener del promedio de los últimos dos censos poblaciones y el ajuste correspondiente a la última proyección según datos del INEC sobre crecimiento de población. Se debe tomar en cuenta, la zonificación y proyecciones de crecimiento establecidas en el Plan Regulador de cada cantón (AyA, 2017).

# 4.7. Tanque de almacenamiento

Para los tanques el período es de 25 años, cuando los proyectos no son de desarrollo urbanístico, se debe dejar previsto en el terreno el espacio para construir otro tanque de dimensiones similares (AyA, 2017).

Los tanques se pueden diseñar por etapas cuando el volumen es mayor a 2000 m3

Tubería de conducción

Para líneas de tubería de conducción de agua tratada, el período es de 25 años.

Tubería de distribución

Para líneas de distribución el período es de 20 años.

## 4.8. Estaciones de bombeo

De la misma forma el AyA en su norma menciona acerca de las estaciones de bombeo y el periodo de funcionamiento (AyA, 2017).

Para estaciones de bombeo el período es de 20 años.

Para bombas y motores el período es de 10 a 15 años.

Para equipos de desinfección el período es de 5 años.

# 4.9. Golpe de ariete

El golpe de ariete puede definirse como "el fenómeno hidráulico ocasionado por rápidas fluctuaciones en el flujo debido a la interrupción o inicio súbitos del flujo en una tubería, produciendo una variación de presión por encima o debajo de la presión de operación y cambios bruscos en la velocidad del flujo" (Ortiz, 2006), puede producir efectos tales como ruido, vibraciones, falla en bombas, válvulas y otros accesorios, y ruptura de tuberías, en la Figura 2 se puede apreciar el efecto del golpe de ariete en diferentes instantes.

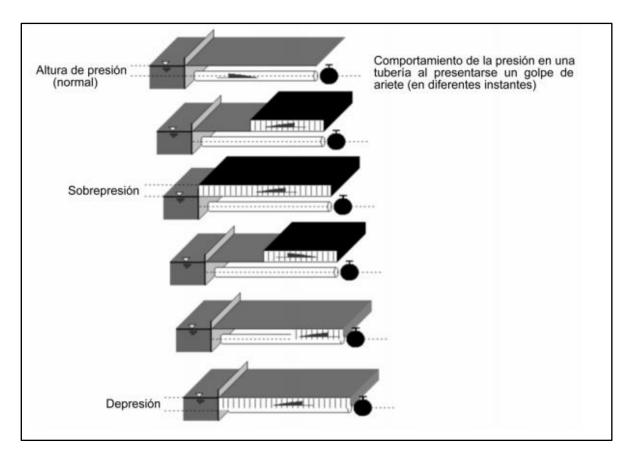



Figura 1. Golpe de ariete en distintos instantes.

Según (AyA, 2017), las tuberías se deben dimensionar aplicando la fórmula de Hazen-Williams. Los coeficientes de Hazen-Williams (C) se muestran en el siguiente cuadro, estos van a depender del material de la tubería y en algunos casos el tiempo o años de uso que presenta el sistema.

Cuadro 1. Coeficientes Hazen-Williams para diferentes materiales

| Material                            | Valor máximo de C<br>(Adimensional) |
|-------------------------------------|-------------------------------------|
| Polietileno de Alta Densidad (PEAD) | 130                                 |
| Cloruro de Polivinilo (PVC)         | 150                                 |
| Concreto                            | 120 - 140                           |
| Hierro galvanizado                  | 120                                 |
| Hierro dúctil                       | 120                                 |
| Hierro fundido a                    | 130                                 |
| Hierro fundido (10 años de edad)    | 107 - 113                           |
| Hierro fundido (20 años de edad)    | 89 - 100                            |
| Hierro fundido (30 años de edad)    | 75 - 90                             |
| Hierro fundido (40 años de edad)    | 64 - 83                             |
| Acero                               | 130                                 |
| Acero <sup>a</sup>                  | 140 - 150                           |
| Acero rolado                        | 110                                 |
| Cobre                               | 130 - 140                           |

Fuente: (AyA, 2017)

## 4.10. Velocidad

Otra variable para considerar en el cálculo hidráulico, como lo menciona Trapote, es la velocidad máxima admisible de circulación del agua. La determinación de esta velocidad debe ser el resultado de un ejercicio de optimización económica que minimice los costes totales de la tubería, considerando tanto los costes de la propia instalación como los asociados a las pérdidas de carga. A este respecto, y a modo de ejemplo, pueden citarse dos casos:

Una impulsión, en la que para bombear un caudal dado se aumenta la velocidad admisible para disminuir el diámetro (menores costes de instalación), pero se incrementan las pérdidas de carga (elevándose, en consecuencia, los costes energéticos), existiendo, por tanto, una velocidad que hace mínima la suma de ambos costes (Trapote, 2014).

Una red de distribución mallada, en la que las pérdidas de carga admisibles estén fijadas previamente. Existen numerosas combinaciones de diámetros en cada tramo (y, en consecuencia, diferentes velocidades de circulación) para lograr dicho objetivo, de manera que sólo una corresponderá al coste mínimo de la red (Trapote, 2014).

Un factor limitativo más para la fijación de la velocidad máxima de circulación del agua sería que el valor de las sobrepresiones derivadas de los posibles golpes de ariete no sea excesivo. O también, por ejemplo, el garantizar que no exista riesgo de ataque físico a la tubería, aspecto éste especialmente importante en las tuberías de hormigón o en las metálicas revestidas con mortero de cemento (fundición o acero). En estos tipos de tuberías se recomienda no exceder velocidades de 3 m/s, a fin de evitar erosiones en el material de la tubería o en el del revestimiento. Considerando todo lo anteriormente expuesto, los valores normales para las velocidades máximas del agua en tuberías en presión deben oscilar entre 1,5 m/s y, como máximo, 2,5 m/s (habitualmente, a mayor diámetro, mayor velocidad admisible). No obstante, en instalaciones singulares, como las tuberías forzadas de las centrales hidroeléctricas, pueden admitirse velocidades muy superiores a las anteriores (de hasta 6 y 7 m/s) (Trapote, 2014).

Según (AyA, 2017) la velocidad máxima en redes de distribución es de 3 m/s, en líneas de conducción o aducción es 5 m/s y la mínima de 0,6 m/s, sin embargo, la velocidad recomendada de diseño o tener dentro de la red es de 1,5 m/s.

# 4.11. Modelación hidráulica

Una modelación de un sistema de distribución de aguas implica utilizar un modelo matemático e informativo para predecir su funcionamiento, así como los valores de caudales y presiones en cada uno de los elementos que lo conforman (Benjarano, 2013).

Con una modelación es viable plantear diversos escenarios: evaluar la red en su estado actual (sin haberle realizado cambios al diseño original) o planteando perfeccionamientos al sistema para optimizar su funcionamiento (realizarle cambios al diseño original). Otro de los usos que se le confieren a una modelación de SDA es la detección de fallas o anomalías en el funcionamiento de la red de conducción o accesorios; así como para crear las maneras de administrar el agua cuando hay periodos de sequía (Morelos et al, 2016).

Después de haber definido los elementos básicos y la topología de la red a modelar, se puede realizar un mayor refinamiento del modelo dependiendo del propósito o finalidad de este. Existen varios tipos de modelaciones que se pueden desarrollar dependiendo de lo que el modelador quiera observar o predecir, sin embargo, los dos tipos básicos son se muestran el Cuadro 2.

Cuadro 2. Ventajas y desventajas de los tipos de modelación

| Tipo de<br>modelación | Aplicaciones                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ventajas                                                                                                                                                            | Desventajas                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estática              | La modelación estática calcula el estado del sistema (flujos, presiones, condiciones de funcionamiento de bombas, posiciones de válvulas, etc.) en un determinado momento. Este tipo de análisis muchas veces es comparado con el tomar una fotografía del funcionamiento del SDA. Por lo que estas capturas son tomadas en los escenarios de funcionamiento para los cuales se tiene interés de analizar, como instantes de caudal mínimo nocturno, de máxima demanda (horaria, diaria). | Permite al modelador predecir la respuesta ante los diferentes escenarios previamente mencionados La modelación estática es la base para otro tipo de modelaciones. | En la realidad, los sistemas de distribución de agua raramente pueden encontrase en un estado estático. Por lo que un modelo estático es más que todo una construcción matemática. Ya que las demandas y los niveles de los tanques de almacenamiento varían constantemente y las bombas rutinariamente cumplen ciclos de apagado y encendido |

|                      | Aplicaciones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ventajas                                                                                                                                                                                                                                                                                                                               | Desventajas                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Periodo<br>extendido | La modelación en período extendido es una técnica de modelación de SDA donde una serie de modelaciones estáticas son realizadas en intervalos específicos (una hora, varias horas). Se modela la forma en que el sistema cambia en respuesta al cambio de las demandas y las condiciones de operación. Además de presentar resultados de presiones y caudales en el sistema, también se obtienen resultados de variaciones de nivel de los tanques de almacenamiento, la respuesta de las bombas y válvulas ante los cambios del sistema y el comportamiento de variables de operación, ya que se puede modelar la calidad de agua del sistema (agentes contaminantes, bacterias, cloro residual, edad del agua, entre otros). | El período de modelación puede ser tan extenso como el modelador desee. Depende de lo que se quiera analizar Da gran cantidad de información sobre las características del sistema y cómo el sistema responde ante las variaciones de demanda y situaciones de emergenciaGran herramienta para la operación de un SDA y de detección d | Se requiere<br>de gran<br>cantidad de<br>informaciór<br>y datos para<br>la<br>construcción<br>del modelo<br>y posterior<br>calibración. |

Fuente: (Pérez, 2016)

La representación de los modelos en los softwares de evaluación, no necesariamente deben ser iguales, debido a esto la estructura de la red se puede evaluar de diferentes maneras, ya sea de forma esqueletizada (omitir las tuberías de menor tamaño) o reducida (omitir los nodos hidráulicamente insignificantes en el modelo). A continuación, en el cuadro 3, se detalla la información respectiva a cada tipo de modelación según la aplicación dada (Peñaranda, 2021).

Cuadro 3. Diferentes modelos de softwares

| Tipo de Estructura                              | Definición                                                                                                                                                                                                                     | Aplicaciones                                                                                                                                                  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Con todas las tuberías de la red                | La representación en el modelo es igual a la que se encuentra en los planos y archivos SIG, no hay reducción ni esqueletización.                                                                                               | Modelación de calidad de<br>agua y determinación de<br>puntos de muestreo para<br>determinación de calidad de<br>agua.                                        |
| Con todas las tuberías de la red, pero reducido | En este tipo de modelo el número de nodos es mucho menor, solo se pueden omitir los nodos de segmentos de tuberías con las mismas características (diámetro, material). La cantidad de nodos reducida es de alrededor del 50%. | Se aplica para grandes sistemas de abastecimiento, Modelación de calidad de agua y determinación de puntos de muestreo para determinación de calidad de agua. |
| Esqueletizado                                   | Incluye todos los diámetros de tuberías por encima de un valor predeterminado, así que se usa para representar tuberías grandes, por lo que solo contienen un 10 o 20% de las tuberías de la red                               | Modelación de extensas<br>líneas de conducción.<br>Análisis de zonas de interés<br>en específico.                                                             |

Fuente: (Peñaranda, 2021)

# 5. METODOLOGÍA

Para llevar a cabo el proyecto se dividió el trabajo realizado en III fases las cuales se mencionan en el siguiente cuadro.

Cuadro 4. Fases de la metodología

| Fases | Pasos de la metodología            | Acciones para conseguir las pasos                                                                                                  |
|-------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| I     | Recopilación de datos del proyecto | Estudio de antecedentes, visita al campo, levantamiento topográfico, aforo de la toma de agua, capacidad de tanques y reservorios. |
| II    | Situación actual de modelación     | Conocer los SDR, diámetros de tuberías, dotaciones con caudal y presión respectivo y ubicaciones críticas.                         |
| III   | Generar plan manejo de la red      | Tunos de riego para cada red,<br>cumplir con los<br>requerimientos de los<br>parcelarios, mejoras a la red                         |

# Recursos o programas utilizados

- Software especializado para análisis de agrimensura y obras civiles: AutoCAD Civil 3D.
- Software especializado para análisis de sistemas de distribución de agua y fluidos no compresibles con flujo a presión: EPANET 2.2
- Software especializado en Sistemas de Información Geográfica (SIG): QGIS 3.16.4
- Documentación del proyecto proporcionada por el SENARA.
- Visitas al área de estudio y reuniones con el cliente (SENARA).
- Google Earth.

# 5.1. Fase I: Recopilación de datos

#### 5.1.1. Estudio de antecedentes

Primeramente, se realizó una visita a las oficinas de SENARA donde se logró obtener los antecedentes del proyecto y todas las diferentes uniones o cambios que ha tenido el proyecto a lo largo de los años, después de esto se obtuvo información de los diferentes diámetros y SDR de la tubería que está construida y el tramo que se desea modelar para una futura construcción. También se comentó acerca de la necesidad de realizar el proyecto y los problema que actualmente están presentado los clientes y las necesidades de hacer un plan de mejoramiento de la operación de la red para cumplir con las necesidades de cada productor o parcelario.

Se obtuvo por parte del SENARA, un registro de los diferentes parcelarios a los que se le entregan el servicio de agua, con la respectiva dotación correspondiente para cada cliente. El SENARA cuenta con planos constructivos de los dos proyectos que actualmente operan en las comunidades.

#### 5.1.2. Visita a campo

Se realizó una visita al lugar para observar todos los elementos del sistema de abastecimiento, desde la captación, tubería de conducción, reservorios de almacenamiento, tanques de almacenamiento y tubería de distribución. La visita se realizó con el objetivo de conocer el estado de un tramo de la tubería y establecer las medidas a considerar para llevar a cabo el proyecto y algunos cambios necesario que se deben de realizar en el levantamiento topográfico.

## 5.1.3. Levantamiento topográfico

Como se mencionó anteriormente el proyecto ya está construido y la parte en la que se requiere diseñar el paso de la nueva tubería ya se tiene el levantamiento y los puntos por donde pasa la tubería, con respecto a algunos cambios que se presentaron, fue necesario realizar tomas de puntos con un dispositivo GPS Garmin, puntos de la tubería que fueron desplazados o transportado a diferentes ubicaciones debido a los derrumbes provocados por la tormenta Nate y que se tuvo que reubicar la tubería en diferentes ubicaciones diferentes al diseño original. Ya con los puntos obtenidos, se agregaron en el Qgis esto más adelante se menciona en la Fase III de la metodología.

#### **5.1.4.** Aforo

Con respecto a la medición del caudal disponible en la toma de agua, este en los informes de SENARA acerca de los aforos previamente realizados se pudo apreciar que el caudal que transportaba el río es mucho mayor al caudal necesario para el funcionamiento de la red, de igual forma el cliente expresó que dicho río tanto en verano como en invierno trasporta mayor cantidad de agua o caudal del que se necesita para el proyecto.

La medición de los tanques quiebra gradientes y reservorios para almacenar el agua y utilizarla en tiempo cuando cierran las válvulas de paso, se obtuvieron con la ayuda del SENARA ya que el diseño de construcción contaba con los datos del volumen de cada reservorio y tanque de almacenamiento.

#### 5.2. Fase II: Modelación

Para conocer la cantidad de parcelarios que se benefician con el proyecto fue necesario solicitar los informes realizados por el SENARA y además consultar acerca de los nuevos parcelarios que se agregaron después de la construcción de la red de distribución, después de esto se calculó el caudal necesario para suplir las necesidades de cada parcelario, la demanda o concesión de cada parcelario fue calculada utilizando el método propuesto por el Minaet donde la evapotranspiración se calcula de acuerdo con una altura, para nuestro caso se utilizó la altura de las fincas más bajas a la fuente 300 msnm y como kc de cultivo se utiliza el valor de 0.80 que es para el pasto.

Con respecto a la proyección de demanda hídrica, esta se tomó en cuenta la demanda actual sin ninguna proyección esto debido a que la red está funcionando actualmente con la máxima capacidad hidráulica, lo que lleva a no poder dar más dotaciones de las que tiene actualmente el proyecto. Si se desea aumentar el número de personas beneficiadas del proyecto se debería bajar la dotación actual del proyecto lo que llevaría una desconformidad de los clientes que están actualmente en el proyecto

Mediante la recopilación de información primordial del acueducto y el uso del software QGis, se desarrolló 6 capas con información relevante de todos los elementos de la red, se realizaron 6 capas con el fin de manejar con mayor facilidad la información del sector en estudio, las capas se

dividieron por diámetro de la tubería, SDR, ubicación de válvulas, tubería principal, tanques de almacenamiento y reservorios, toma de agua y tomas o parcelarios.

La modelación del sistema de abastecimiento se llevó a cabo mediante un software para dicha labor, el cual fue EPANET 2.2. y AutoCAD 2018.

Primeramente, se dibujó en AutoCAD la red de abastecimiento de ganado y riego, basado en la ubicación de parcelarios o usuarios, utilizando las coordenadas georreferenciadas y cotas de los puntos del levantamiento topográfico. Después de esto, se exportó el dibujo al software de modelación EPANET para ingresar los datos de entrada correspondientes al modelo, así como la información de los elementos básicos de la red como los tanques de almacenamiento, reservorios y algunas válvulas, atribuyendo los valores de cotas, coordenadas y dimensiones de estos. Además, se ingresó las especificaciones de las tuberías que conforman la red, basado en los informes suministrados por el SENARA.

Una vez ya dibujado la red con sus respectivas características se procedió a realizar turnos de riego ya que el proyecto funciona por 3 turnos de riego, el primer sector del proyecto funciona de 6:00am a 6:00pm el segundo sector funciona de 6:00pm a 6:am de lunes a viernes y por último el sector tres funciona los sábados y domingos para un total de 36horas dentro de los dos días, debido a esta situación se debía crear patrones dentro de la modelación de Epanet, para conocer las presiones y velocidades en cada uno de los turnos y tiempos de rego, de cada uno de los días de la semana.

## 5.3. Fase III: Generar plan de manejo:

Una vez realizada la modelación se obtuvo datos de velocidades y presiones, comparando dichos resultados con las normas que establece el SENARA se puede observar cuales puntos o líneas de tubería se deben de hacer las modificaciones requeridas para que el sistema trabaje dentro de los parámetros establecidos por el SENARA y la norma técnica de construcción de AyaA.

Una vez analizado estos puntos se procedió a analizar cada uno de las tomas y dotaciones de los parcelarios para ver si cumplen con los requerimientos necesarios para abastecer a los parcelarios. Cuando se identificó algún punto que no cumplía con las recomendaciones necesarias o normas de diseño se mencionó para considerarlo y poder implementar esas mejoras dentro de la red.

Después de esto se realizó el informe al SENARA especificando el tiempo y caudal de apertura para las diferentes válvulas, y si era necesario realizar alguna modificación en la red actual o si más bien los problemas de presiones y caudales que presenta la red era meramente por el uso indebido o ilegal de la red de distribución, conducción y almacenamiento.

# 6. RESULTADOS

## 6.1. Ubicación de la zona del proyecto

El área de interés o donde se localiza el proyecto es en el poblado de Guacimal, Los Ángeles, distrito de Guacimal, Sardinal en el cantón central en la provincia de Puntarenas como se puede ver en la siguiente figura.

Específicamente, la totalidad del sistema de riego se encuentra en el sector comprendido entre las coordenadas CRTM05, 406700 y 408500 de Latitud Norte y las coordenadas 1125500 y 1124000 de Longitud Oeste, coordenadas CRTM05.

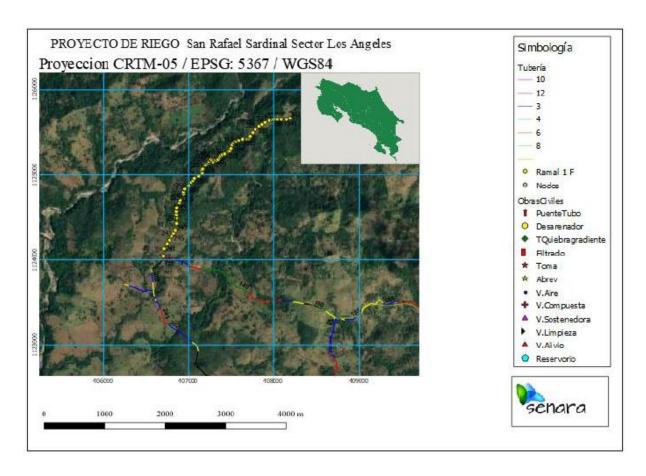



Figura 1. Mapa de la zona de estudio.

Fuente (SENARA, 2021).

## 6.2. Descripción de la red

Como se mencionó anteriormente el proyecto inicial primeramente se desarrolló para satisfacer las necesidades del poblado de sardinal como se muestra en la siguiente figura, la cual es solamente el tramo inicial o el primer tramo de la red con sus respectivos diámetro de tubería.

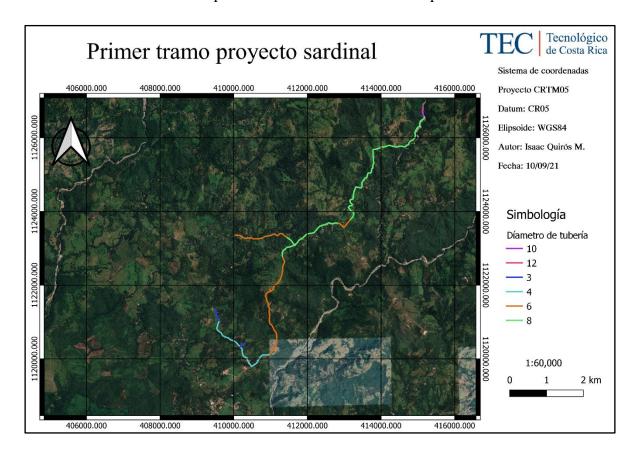



Figura 2. Tramo inicial proyecto sardinal

Después de esta construcción, paralelamente se llevó a cabo otro proyecto de la comunidad de Aranjuez la cual por problemas legales que se mencionaron anteriormente se dejó de construir debido a falta de permisos legales para tomar agua del río de Aranjuez, lo cual solicitaron al proyecto de Guacimal que les dotaran de un caudal para utilizar la tubería que ya se encontraba construida en algunos tramos del proyecto. Lo que originó que el proyecto inicial se hiciera más extenso como se puede ver en la siguiente figura.

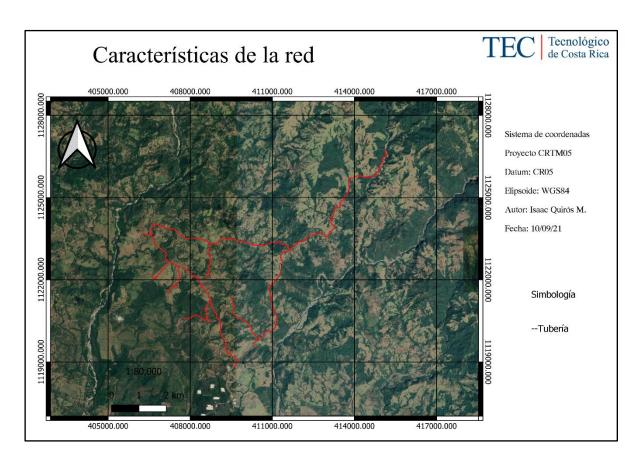



Figura 3. Proyecto con la primera anexión

Después de esta primera anexión algunas personas de la comunidad de Aranjuez solicitaron la petición de poder construir y dotar de agua algunas parcelas que se encontraban sin agua para su desarrollo lo que se llevó a cabo la construcción de un tercer tramo el cual se representa con los puntos amarillos en la siguiente figura.

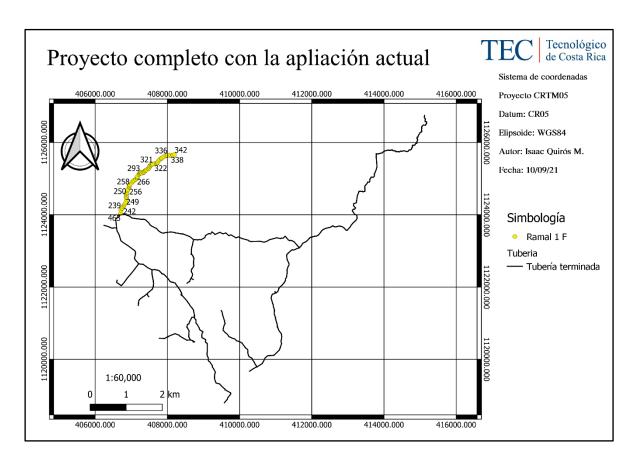



Figura 4. Último tramo ampliado del proyecto original

Una vez conociendo las características del trazo de la red o del proyecto y llevando a cabo visitas a campo para conocer más a fondo el proyecto se puede comenzar a mostrar los resultados o información inicial para la modelación de la red.

## 6.3. Levantamiento topográfico

El levantamiento topográfico se obtuvo mediante la ayuda se SENARA ya que facilitaron los puntos y coordenadas y elevaciones del total de puntos que se encuentra en la red ver Anexo 1, de igual manera se solicitó la información acerca de cuáles puntos son tomas, válvulas, quiebra gradientes o alguna otra estructura, después de esto se generó el resultado del mapa como se puede ver en la siguiente figura.

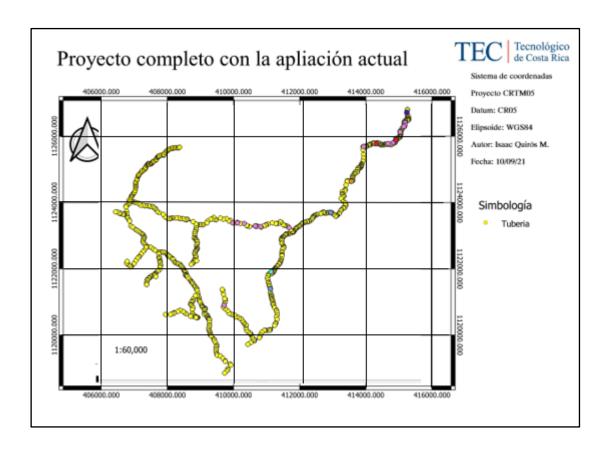



Figura 5. Puntos del levantamiento topográfico

Después del levantamiento topográfico también fue necesario conocer acerca de los reservorios que se encuentran en el proyecto con el fin de suministrar agua en los horarios de más demanda del proyecto, los 3 reservorios que se encuentran en el proyecto tienen la misma forma (tranco de pirámide de base cuadrada), pero con distintos volúmenes de agua, esta información se puede observar de mejor manera en el siguiente cuadro.

Cuadro 5. Reservorios con su respectivo volumen y área.

| Reservorio | Volumen (m3) | Área (m2) |
|------------|--------------|-----------|
| 1          | 2791.5       | 1594.1    |
| 2          | 2510.2       | 1235.3    |
| 3          | 1033.6       | 910.4     |

Una vez conociendo los puntos del levantamiento y los reservorios del proyecto fue necesario mediante los programas de Qgis y AutoCAD ir dibujando y agregando cada una de las obras civiles, tuberías y válvulas para más adelante poder realizar la modelación de la red y observar las consideraciones necesarias.

## 6.4. Situación actual del proyecto

Con respecto a los diámetros de tuberías fue necesario corroborar y modificar los diámetros para poder realizar una modelación exacta o que se asemeje de la mejor manera a la situación actual del proyecto, en la siguiente figura se puede apreciar los distintos diámetros de la tubería a lo largo del proyecto.

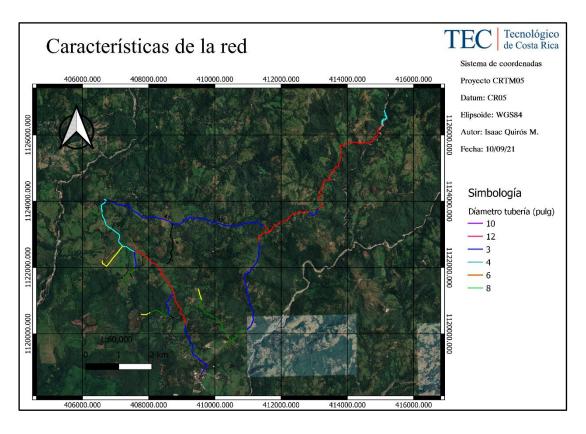



Figura 6. Diámetro de la tubería a lo largo de la red

#### 6.5. Obras de concreto

Otra información importante y que de igual forma es indispensable que se encuentre en la modelación para valorar la operación del sistema son las obras de concreto o estructuras hidráulicas que ayuda a la conducción y uso de la red, estas para que se puedan apreciar de una mejor manera se realizaron en Qgis, estas obras a lo largo de la tubería las podemos apreciar en la siguiente figura.

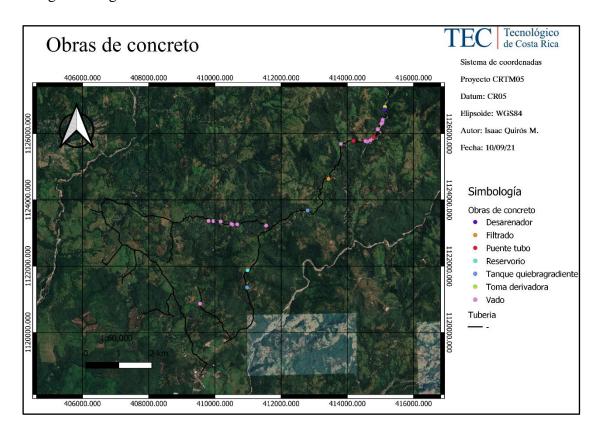



Figura 7. Obras de concreto a lo largo de la red

## 6.6. Obras civiles del proyecto

De igual forma las obras de concreto y las tuberías no se mantienen por si solas es necesario realizar obras civiles, ya sea para puentes tubos, toma de parcela, válvulas reservorios, etc. Estas sirven para el buen funcionamiento del proyecto a lo largo de la red y para poder localizar puntos en los que se podrían generar problema en algunos casos, de igual forma se representaron en un mapa de Qgis para que se pueda apreciar de una manera general las condiciones y obras civiles del proyecto, estas están representadas en la siguiente figura.

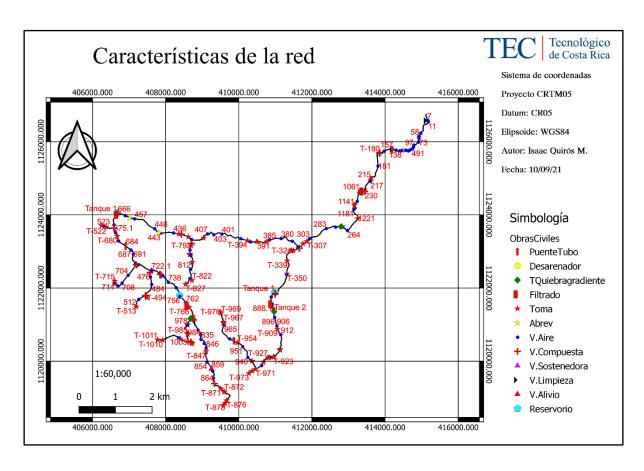



Figura 8. Obras civiles del proyecto

#### 6.7. Diámetros de la tubería

Una vez ya obtenido los datos de caudal necesario para cada parcelario y para el proyecto en general, el SENARA facilitó los datos de los distintos diámetros de tubería a lo largo de la red, de igual forma conociendo los puntos del levantamiento, diámetros de tubería y el único factor necesario o faltante para realizar la modelación es el SDR el cual representa la presión que soporta la tubería en el tramo correspondiente que se puede apreciar en la siguiente figura la cual simplifica los distintos SDR usados en el proyecto a lo largo de la red.

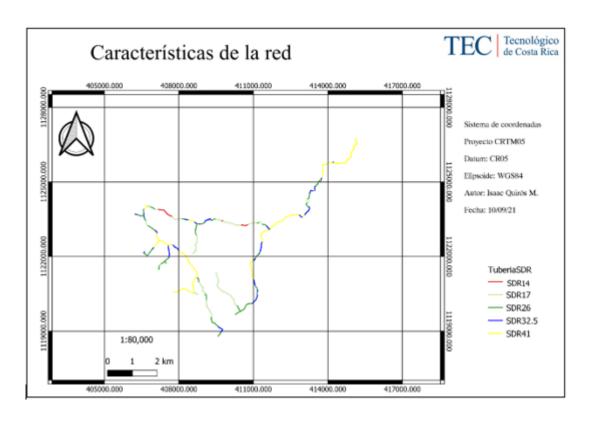



Figura 8. SDR de la tubería a lo largo de la red

#### 6.8. Modelación inicial

Después de conocer todos los datos necesarios, como estructuras, válvulas tuberías, topografía, SDR, volúmenes de tanques, ubicaciones de válvulas se procedió a realizar la modelación de la red, la cual consistió en ir modelando ramal por ramal hasta poder unificar toda la red y que funcione lo más parecido a la realidad que es por sectores y varios ramales al mismo tiempo. Esta primera modelación se realizó sin turnos de riego únicamente para cargar los datos principales de la red como altitud, coordenadas, demanda de los parcelarios, SDR de la tubería en los distintos tramos, reservorios, tanques quiebra gradientes, válvulas etc. El resultado de esta primera parte de la modelación se puede apreciar en la siguiente figura.

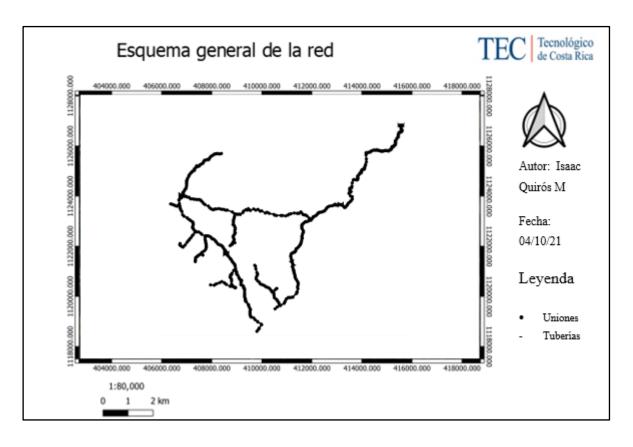



Figura 9. Modelación inicial del proyecto

## 6.9. Patrones de riego

Una vez realizada esta modelación se comenzó a agregar los turnos de riego actuales para cada uno de los ramales o sectores de riego, como se mencionó anteriormente el primer sector trabaja de 6:00am hasta las 6:00pm el segundo sector trabaja de 6:00pm a 6:00am y por último el sector que se agregó o anexo al final trabaja sábados y domingos, esto se agregó al Epanet.

Como se puede ver en la siguiente figura los resultados de cada uno de estos tiempos de riego se fue agregando como patrones y cada uno con su tiempo respectivo.

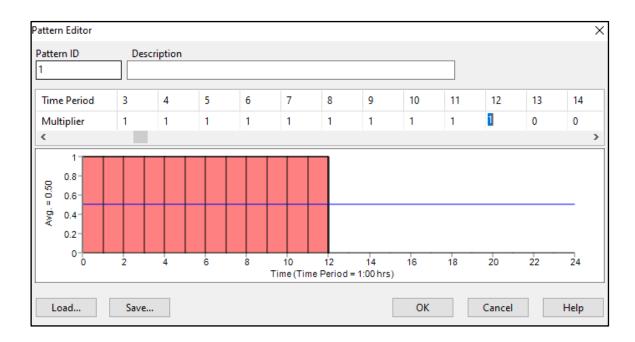



Figura 10. Patrón 1 tiempo de riego

De la misma manera se puede ver los resultados del patrón 2 como se puede observar en la siguiente figura, es necesario mencionar que conforme se iban agregando patrones de riego, a cada cliente o parcelario se le debía agregar su respectivo patrón dentro de la modelación para que utilizara en agua cuando le corresponda.

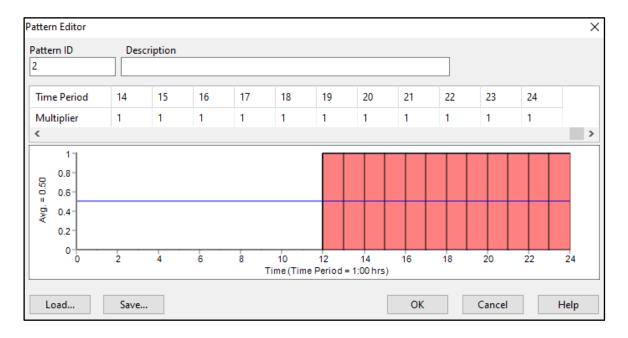



Figura 11. Patrón 2 de tiempo de uso del agua

Con respecto al patrón 3 cambia un poco porque el ciclo ya no es de 12 sino que pasa a ser de 48 ya que se usa 24 horas el sábado y 24 horas el domingo, en la imagen siguiente se puede ver los resultados de ese patrón representado en 24 horas.

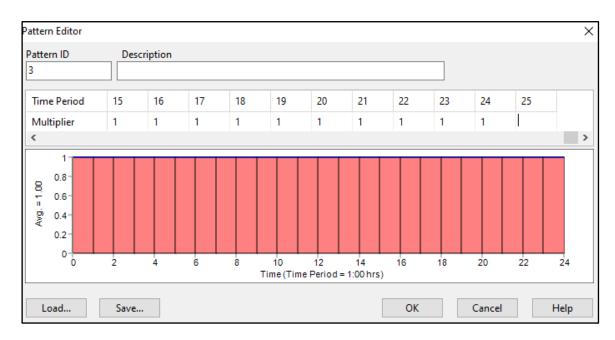



Figura 12. Patrón 3 de tiempo de aprovechamiento

## 6.10. Modelación patrón uno

Ya una vez con todos los datos dentro del programa de modelación Epanet se corre la misma y se obtiene como resultado en los nodos las presiones y en las líneas de tubería las velocidades correspondientes, esto va variando con respecto al paso del tiempo debido a que va cambiando los patrones y por ende cierre y apertura de las válvulas.

Como se puede observar en la siguiente figura representa al tiempo en que solamente está funcionando un tramo de la tubería, pero está en su totalidad llena ya que es un sistema presurizado.

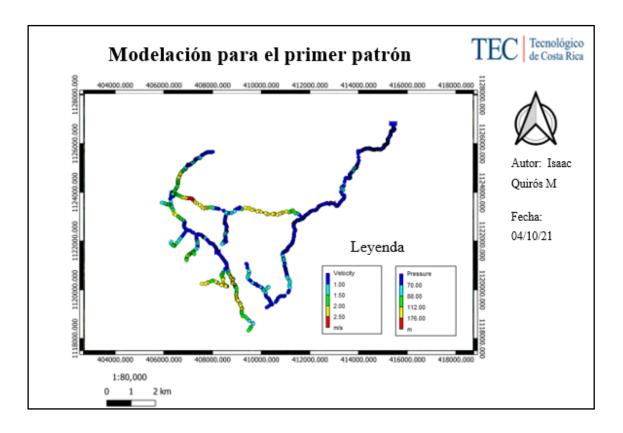



Figura 13. Modelación para el primer patrón

## 6.11. Modelación patrón dos

Con forme vaya avanzando el tiempo la modelación se comienza a realizar con el segundo patrón y los parcelarios que se encuentran en el primer patrón dejan de recibir agua y los del patrón 2 comienzan a recibir la dotación correspondiente, como se puede ver los resultados en la siguiente imagen, debido a esto se puede observar que la presión y velocidad cambia con respecto a algunos puntos de la figura anterior.

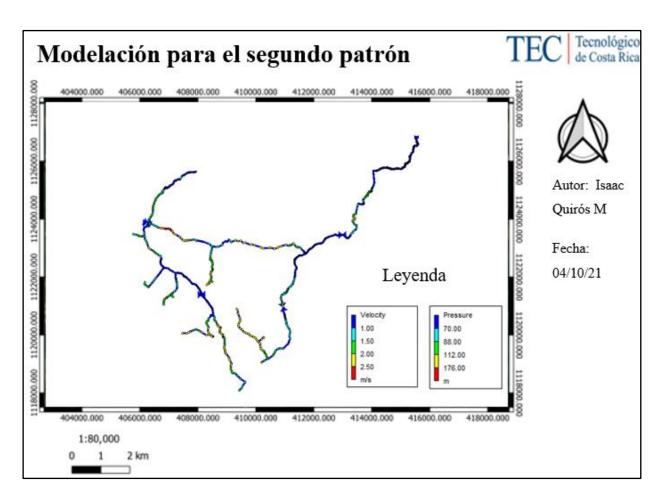



Figura 14. Modelación para el segundo patrón

## 6.12. Modelación patrón tres

De la misma manera cuando se cambia al patrón 3 las velocidades y presiones cambian, es importante reconocer que algunos puntos están con más velocidad o presión de lo recomendado lo cual es importante analizar estos puntos ya que pueden ser críticos. En la siguiente figura se muestra los resultados del patrón 3.

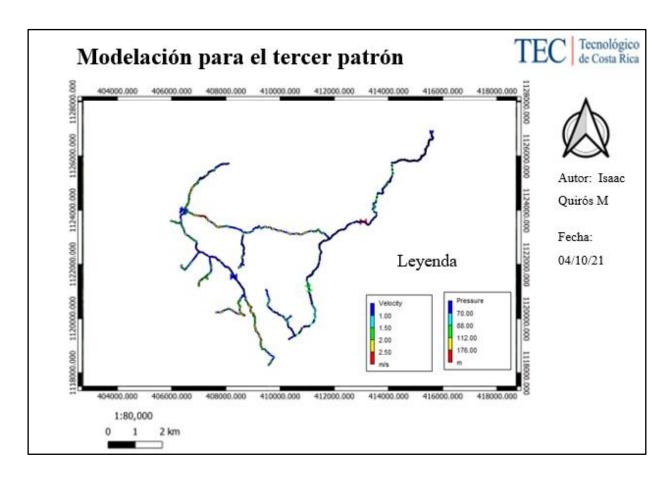



Figura 15. Modelación para el patrón3

## 6.13. Análisis de la red por condiciones de presión

Una vez tenido los resultados completos de las modelaciones punto por punto y tubería por tubería y basado en las especificaciones de tubería que se encuentran en el Anexo 2 se obtuvo que la mayor parte de la red se encuentra dentro del rango de operación exceptuando los puntos que se muestran en el siguiente cuadro.

Como se puede apreciar la modelación da como resultado que en el tramo desde el punto 447 hasta el punto 457 la presión supera los límites máximos de diseño por lo que podría generar daños en la tubería o inconsistencia en el flujo de agua, de igual forma debido a golpes de ariete esta presión se podría elevar más de lo deseado y superaría por mucho los límites de presión máxima en la tubería con respecto a los SDR utilizados, por lo que estas tuberías o líneas, son puntos para tomar en consideración para realizar cambios y disminuir la presión a los límites de diseño para evitar los inconvenientes citados anteriormente.

Cuadro 6. Puntos de tuberías que sobrepasa las presiones de diseño

| Punto  | Coordenada | Coordenada | Elevación    | Demanda | Longitud     | Diámetro | SDR |
|--------|------------|------------|--------------|---------|--------------|----------|-----|
| 1 unto | X          | y          | ( <b>m</b> ) | (l/s)   | ( <b>m</b> ) | (mm)     |     |
| 447    | 407570     | 1123684    | 264          | 0       | 148,4        | 140      | 14  |
| 448    | 407520     | 1123723    | 257          | 0       | 63,8         | 140      | 14  |
| 449    | 407479     | 1123784    | 245          | 0       | 74,5         | 140      | 14  |
| 450    | 407438     | 1123817    | 237          | 0       | 53,2         | 140      | 14  |
| 451    | 407405     | 1123852    | 231          | 0       | 48,5         | 140      | 14  |
| 452    | 407395     | 1123857    | 231          | 0       | 11,2         | 140      | 14  |
| 453    | 407355     | 1123875    | 224          | 0       | 44,4         | 140      | 14  |
| 454    | 407294     | 1123872    | 218          | 0       | 61,4         | 140      | 14  |
| 455    | 407249     | 1123877    | 226          | 0       | 46,0         | 140      | 14  |
| 456    | 407178     | 1123891    | 251          | 0       | 76,6         | 140      | 14  |
| 457    | 407150     | 1123890    | 263          | 0       | 30,5         | 149      | 14  |

De igual forma, en la imagen siguiente se puede apreciar de mejor manera los puntos o tramos que sobrepasa las presiones de diseño los cuales están en rojo debido a esta observación, a pesar de que las presiones están dentro del rango de operación están cerca del límite de operación por que podría generar problemas si se presenta un golpe de ariete o un cambio mínimo en algún tramo de la tubería.

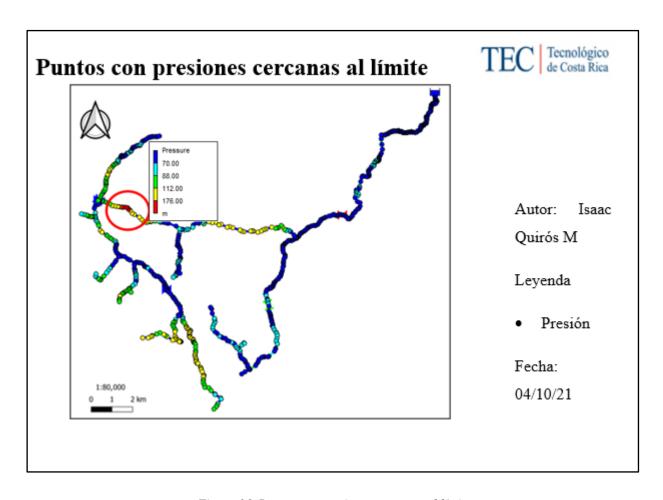



Figura 16. Puntos con presiones cercanos al límite

También es importante mencionar que al igual que hay puntos que sobrepasan los límites de presión en dos tramos de la tubería se encuentran velocidades mayores a las mencionadas anteriormente, que son velocidades de diseño estipuladas por el AyA, lo cual recomienda no sobrepasar los límites de velocidad de 2,5 m/s esto para evitar daños en la tubería e ineficiencia en la red.

En el cuadro siguiente se puede observar el primer tramo de tuberías que sobrepasa la velocidades máximas de operación.

Cuadro 7. Puntos donde la velocidad es mayor a la recomendada

| Punto  | Coordenada | Coordenada | Elevación    | Demanda | Longitud     | Diámetro | SDR  |
|--------|------------|------------|--------------|---------|--------------|----------|------|
| 1 unto | X          | y          | ( <b>m</b> ) | (l/s)   | ( <b>m</b> ) | (mm)     | SDK  |
| 199    | 413755     | 1125175    | 441.615      | 0       | 67,6         | 208      | 41   |
| 200    | 413744     | 1125148    | 437.641      | 0       | 29,4         | 208      | 41   |
| 201    | 413732     | 1125129    | 433.572      | 0       | 22,8         | 208      | 32.5 |
| 202    | 413732     | 1125107    | 428.776      | 0       | 22,5         | 208      | 32.5 |
| 203    | 413734     | 1125087    | 425.063      | 0       | 20,4         | 208      | 32.5 |
| 204    | 413732     | 1125067    | 421.455      | 0       | 20,4         | 208      | 32.5 |
| 205    | 413714     | 1125046    | 416.117      | 0       | 28,2         | 208      | 26   |
| 206    | 413701     | 1125039    | 411.948      | 0       | 15,3         | 202      | 26   |
| 207    | 413691     | 1125037    | 410.315      | 0       | 10,3         | 202      | 26   |
| 208    | 413677     | 1125040    | 406.55       | 0       | 14,8         | 202      | 26   |
| 209    | 413659     | 1125042    | 401.451      | 0       | 18,8         | 202      | 26   |
| 210    | 413643     | 1125036    | 396.95       | 0       | 17,7         | 202      | 26   |

También es importante recalcar que estos puntos además de que las velocidades de encuentra cerca del límite y por arriba de las condiciones de diseño solicitadas por el Aya estos puntos

podrían generar inconsistencias del flujo dentro de la tubería y podría ocasionar problemas como cavitación o golpes de ariete debido a su velocidad.

Para que se pueda apreciar de una mejor manera en la siguiente figura se presenta uno de los tramos de la tubería que la velocidad sobrepasa los límites de diseño.

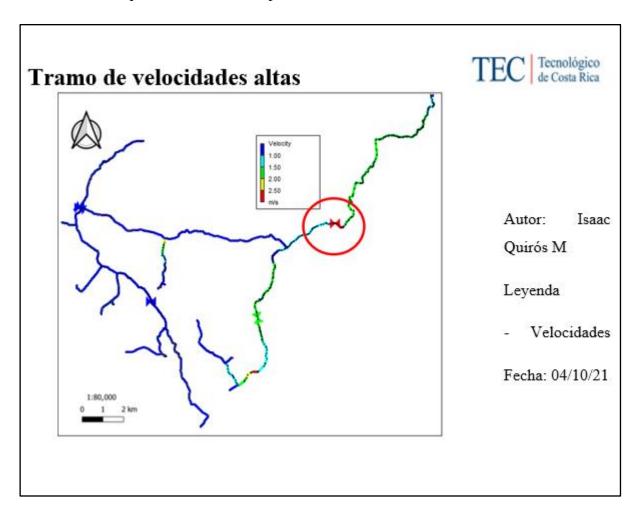



Figura 17. Tramo con velocidades mayores a las recomendadas para el diseño

## 6.14. Análisis de la red por condiciones de velocidad

De igual forma existe otro tramo, pero aún más pequeño en comparación a este, que, a pesar de estar entre los límites de velocidades dado por el fabricante, se encuentra fuera del rango de operación de diseño recomendado por el AyA el cual como se mencionó anteriormente es una velocidad menor a los 2,5 m/s, esto se puede observar en el siguiente cuadro.

Cuadro 8. Puntos que sobrepasan las velocidades de diseño

| Punt  | Coordenad | Coordenad | Elevació<br>n | Demanda | Longitud | Diámetro | CDD  |
|-------|-----------|-----------|---------------|---------|----------|----------|------|
| 0     | ах        | a y       | ( <b>m</b> )  | (l/s)   | (m)      | (mm)     | SDR  |
| T-918 | 411127.3  | 1120321.9 | 248           | 1       | 120,3    | 160      | 32.5 |
| 919   | 411122    | 1120314   | 248           | 0       | 9,5      | 160      | 32.5 |
| T-920 | 411121    | 1120305   | 250           | 1       | 9,3      | 160      | 41   |
| 921   | 411098    | 1120253   | 248           | 0       | 56,9     | 160      | 32.5 |
| T-922 | 410959.2  | 1120118.2 | 235           | 1       | 193,9    | 160      | 32.5 |
| T-923 | 410948.7  | 1120111.2 | 235           | 1       | 12,6     | 106      | 32.5 |

Como se pudo observar estos puntos contienen demanda de parcelarios los cuales requieren que la velocidad del flujo y presión sean de acuerdo con la estipulada por la norma del AyA esto con el fin de no tener complicaciones en sus sistemas de riego o distribución y recibir las

dotaciones que se acordaron, en la siguiente figura se muestra este tramo de tubería el cual la velocidad sobrepasa los límites de diseño.



Figura 18. Tramo de tubería que sobrepasa los límites de velocidad

Después de obtener los tramos de tuberías con presiones y velocidades mayores a las recomendadas por el AyA para el diseño de redes de conducción distribución y almacenamiento, se puede realizar las mejoras en el campo para obtener las condiciones óptimas de funcionamiento de la red.

Se demostró mediante la modelación que los problemas mencionados por los parcelarios debido a quejas de poca presión y que el suministro de caudal que les llega es menor al solicitado se debe a problemas externos a la construcción y características físicas o hidráulicas de la red de distribución, conducción y almacenamiento ya que con el uso del Epanet se comprobó y dio como

resultado que si cada uno de los parcelarios recibe la presión acordada y el caudal acordado con las concesiones la red se mantiene en condiciones casi óptimas para su funcionamiento. El único punto para mejorar es en tramos donde las velocidades o presiones son mayores a los parámetros de diseño solicitados por el AyA, pero se encuentran dentro del límite de los parámetros de diseño de los fabricantes.

Una vez demostrado mediante la modelación que los parcelarios debería estar recibiendo el caudal solicitado con las presiones solicitadas es necesario realizar una investigación más a fondo para lograr determinar a que se debe esa falta de presión o agua que se está generando en la red y demostrar los usos incorrectos, indebido o abusivos que están dando algunos de los parcelarios (clientes) o personas externas al proyecto, que genere dificultades al funcionamiento óptimo del mismo.

7. CONCLUSIONES

La modelación realizada permitió conocer la situación actual de acueducto y, por ende, establecer como mejora la incorporación o cambio de tuberías en los tramos de alta presión y velocidad de la red de distribución y así regular las altas presiones y velocidades obtenidas cumpliendo lo establecido por el AyA.

Se analizó la red de distribución, considerando los parámetros de presión y velocidad en período de uso entre semana para conocer las condiciones en las que trabaja el sistema en sus momentos de máximo consumo. Mediante el análisis hidráulico realizado y los resultados arrojados en la modelación, se determinó que, existen tramos con presiones superiores a las permitidas por el AyA en la norma técnica de diseño (rango permitido 15,00 m.c.a -70,00 m.c.a, Y las velocidades obtenidas en algunos tramos de la red están por encima de la velocidad recomendada en la norma técnica, en promedio se obtienen velocidades que superan los 2,5 m/s. como velocidad máxima recomendada.

La conducción analizada y modelada cuenta con una longitud total cercana a los 30000 metros con diámetros nominales que rondan entre las 10 pulgadas hasta diámetros menores en tomas de una pulgada, el total de la red modelada está construida en PVC con cédulas que varían desde SDR17 hasta SDR41 a lo largo de la red y en tramos diferentes.

Mediante la modelación se puedo comprobar que tomando en cuenta los aspectos hidráulicos y de operación, el funcionamiento de la red es el óptimo para los 81 parcelarios, tanto en los tiempos de apertura y cierre de válvulas como dotaciones y presiones. Lo que sucede en la red que genere problemas a algunos parcelarios es debido a un abuso o uso ilícito de la red por lo que algunos parcelarios o personas externas al proyecto están haciendo un mal uso de la red.

8. RECOMENDACIONES

Es importante y urgente realizar una investigación más a fondo acerca del porqué no se está llevando el agua necesaria a cada parcelario con la presión y caudal necesario, porque como se vio en los resultados de la modelación, si el sistema se encuentra siempre trabajando de la manera con la que fue diseñada el caudal y la presión serían las ideales para la red y clientes. Es por esto que hay que demostrar los usos incorrectos, ilegales o abusivos que están dando algunos de los parcelarios (clientes) o personas externas al proyecto, que genere dificultades al funcionamiento óptimo del mismo.

Mediante las modelación se obtuvieron los resultados de puntos que son necesario tener en cuenta en el momento de generarse algún problema en la red ya que se puede observar que algunos tramos de tubería que se encuentra con más velocidad o presión que la recomendada para el diseño. Estos puntos es importante conocerlos para resolver los problemas que se presenten lo más antes posible para cumplir con las necesidades

Implementar la colocación de macro medidores en los principales ramales de distribución o en la salida del tanque, esto para poder llevar un registro del volumen de agua consumido por los parcelarios y compararlo con la dotación total por mes para determinar cuanta es la cantidad de agua que se pierde o no se está aprovechando, queda como agua no contabilizada. De esta manera se puede tener un control de lo que está sucediendo en la red y donde se genera un uso abusivo del consumo hídrico que genere problemas para los otros usuarios.

Llevar de una mejor manera los registros de aforos. Es conveniente realizar al menos un aforo cada seis meses, donde se anoten descripciones del día de aforo y hacerlo cuando las condiciones sean las ideales, así como también prestar atención al comportamiento del rio en época de estiaje.

Una vez que se cuente con registros de aforo que permitan evidenciar el comportamiento de la fuente, se recomienda recalcular el balance hídrico del mismo considerando un porcentaje de reducción en la producción de las fuentes de agua, para obtener un dato más preciso y además esto debido al aumento de las temperaturas y disminución de los afluentes.

9. BIBLIOGRAFÍA

- Álvares et al, M. (2018). *Hidraulica para ingenieros civiles*. Obtenido de https://books.google.co.cr/books?id=\_MtaDwAAQBAJ&pg=PA35&dq=red+abierta+o+ramificada&hl=es-419&sa=X&ved=2ahUKEwiRzpuV3bXyAhVGTDABHcPLDJQQ6AEwAHoECAcQAg#v=onepage&q=red%20abierta%20o%20ramificada&f=false
- AyA. (2017). Norma técnica para diseño y construcción de sistemas de abastecimiento de agua potable, de saneamiento y pluvial. Obtenido de https://www.aya.go.cr/Noticias/Documents/Norma%20dise%C3%B1o%20y%20constru ccion%20sistemas%20agua,%20saneamiento%20y%20pluvial.pdf
- Benjarano. (2013). Diagnóstico del acueducto de Santa Cruz y propuestas de mejora. Obtenido de https://www.aya.go.cr/centroDocumetacion/catalogoGeneral/Diagn%C3%B3stico%20%20del%20acueducto%20de%20Santa%20Cruz%20y%20propuesta%20de%20mejora%20%20Esteban%20Bejarano%20SP.pdf
- CONAGUA. (2015). Manual de Agua Potable, Alcantarillado y Saneamiento, Diseño de Redes
  . Obtenido de https://sswm.info/sites/default/files/reference\_attachments/CONAGUA%20s.f.a.%20Di se%C3%B1o%20de%20redes%20de%20distribuci%C3%B3n%20de%20agua%20potab le.pdf
- Corchón, F. (2005). *Acueductos: teoría y diseño*. Obtenido de https://books.google.co.cr/books?id=194g9lx5vpcC&printsec=frontcover#v=onepage&q&f=false
- Dondé, M. (2005). Transporte de momentum y calor teoría y aplicaciones a la ingeniería de proceso.

  Obtenido de https://books.google.co.cr/books?id=dVwEW2\_4434C&printsec=frontcover#v=onepag e&q&f=false

- Martínez. (2001). *Manual de operación y mantenimiento de equipos de riego presurizado*.

  Obtenido

  de https://biblioteca.inia.cl/bitstream/handle/123456789/7729/NR28083.pdf?sequence=1&i sAllowed=y
- Moratiel. (2015). *Operaciones auxiliares de riego en cultivos agrícolas*. Obtenido de https://books.google.co.cr/books?id=dU4jCgAAQBAJ&printsec=copyright&source=gb s\_pub\_info\_r#v=onepage&q&f=false
- Morelos et al. (2016). *Modelación hidráulica de la red de distribución de agua potable en una ciudad Mexicana EPANET*. Obtenido de http://www.reibci.org/publicados/2017/abr/2200106.pdf
- O'neal, K. (2017). *Universidad de Costa Rica*. Obtenido de https://www.ucr.ac.cr/noticias/2017/10/10/asi-enfrentamos-el-reto-de-llevar-agua-a-los-cultivos-en-guanacaste.html
- Ortiz, G. (2006). *El golpe de ariete en sistemas de agua potable*. Obtenido de http://biblioteca.usac.edu.gt/tesis/08/08\_2611\_C.pdf
- Palacios et al, L. (2005). *Métodos y algoritmos de diseño en ingeniería química*. Obtenido de https://books.google.co.cr/books?id=eIxZGIxhek4C&printsec=frontcover#v=onepage&q&f=false
- Peñaranda. (2021). Evaluación y rediseño del sistema de distribución, conducción y almacenamiento del sector Tucurrique centro perteneciente al Acueducto Rural de Tucurrique. Obtenido de https://repositoriotec.tec.ac.cr/handle/2238/12361
- Pérez. (2016). Evaluación de la capacidad hidráulica de la red de distribución del acueducto de San. Obtenido de https://repositoriotec.tec.ac.cr/bitstream/handle/2238/7390/08-11-16\_TFG%20Atahualpa%20Perez.pdf?sequence=1&isAllowed=y
- Rebollo, J. (2017). Replanteo de redes de distribución de agua y saneamiento. ENAT0108.

  Obtenido de

 $https://books.google.co.cr/books?id=J1UpEAAAQBAJ\&printsec=frontcover\#v=onepage \\ e\&q\&f=false$ 

SENARA. (2021). SENARA. Obtenido de http://www.senara.or.cr/acerca\_del\_senara/quienes\_somos.aspx

Solís, D. (2021). Informe de diseño proyecto de riego San Rafael Sardinal.

- Tormo, C., & Blanca, V. (2014). Recursos para la instalación de redes de abastecimiento y distribución de agua y saneamiento. Obtenido de https://books.google.co.cr/books?id=9Nv7CAAAQBAJ&printsec=frontcover#v=onepag e&q&f=false
- Trapote, J. (2014). *Infraestructuras hidráulico-sanitarias Abastecimiento y distribución de agua*.

  Obtenido de https://books.google.co.cr/books?id=3ejTAgAAQBAJ&printsec=frontcover#v=onepage &q&f=false

# 10. ANEXOS

## 10.1. Anexo1, Topografía de la red principal

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| 2     | 415125       | 1126743      | 499,46    |
| 3     | 415115       | 1126702      | 499,46    |
| 4     | 415144       | 1126656      | 499,46    |
| 5     | 415141       | 1126623      | 499,46    |
| 6     | 415140       | 1126582      | 499,46    |
| 7     | 415152       | 1126577      | 499,46    |
| 8     | 415154       | 1126577      | 495,143   |
| 9     | 415166       | 1126569      | 494,459   |
| 10    | 415176       | 1126574      | 492,29    |
| 11    | 415183       | 1126539      | 491,61    |
| 23    | 415179       | 1126533      | 489,74    |
| 24    | 415171       | 1126513      | 486,865   |
| 25    | 415168       | 1126509      | 485,335   |
| 26    | 415164       | 1126505      | 482,105   |
| 27    | 415158       | 1126496      | 481,801   |
| 28    | 415152       | 1126489      | 480,867   |
| 29    | 415144       | 1126480      | 477,152   |
| 30    | 415143       | 1126477      | 477,108   |
| 33    | 415092       | 1126482      | 475,132   |
| 34    | 415079       | 1126472      | 474,453   |
| 36    | 415067       | 1126457      | 473,29    |
| 37    | 415049       | 1126441      | 471,862   |
| 38    | 415047       | 1126429      | 470,511   |
| 39    | 415043       | 1126412      | 469,814   |
| 40    | 415043       | 1126408      | 470,885   |
| 41    | 415046       | 1126397      | 470,097   |
| 42    | 415045       | 1126391      | 469,518   |
| 43    | 415044       | 1126381      | 469,859   |
| 44    | 415042       | 1126361      | 468,403   |
| 45    | 415041       | 1126354      | 468,842   |
| 46    | 415040       | 1126345      | 468,281   |
| 47    | 415045       | 1126327      | 463,933   |
| 48    | 415045       | 1126310      | 462,961   |
| 49    | 415041       | 1126303      | 467,018   |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| 50    | 415040       | 1126300      | 467,01    |
| 51    | 415041       | 1126294      | 467,253   |
| 52    | 415027       | 1126290      | 466,814   |
| 53    | 415019       | 1126284      | 465,631   |
| 54    | 414998       | 1126268      | 465,553   |
| 55    | 414976       | 1126230      | 466,915   |
| 56    | 414956       | 1126199      | 465,926   |
| 57    | 414945       | 1126167      | 465,513   |
| 58    | 414933       | 1126142      | 465,323   |
| 69    | 414923       | 1126146      | 464,618   |
| 70    | 414919       | 1126141      | 463,62    |
| 71    | 414916       | 1126123      | 462,372   |
| 72    | 414917       | 1126105      | 462,953   |
| 73    | 414927       | 1126090      | 463,323   |
| 74    | 414932       | 1126071      | 464,439   |
| 75    | 414931       | 1126065      | 465,395   |
| 76    | 414918       | 1126031      | 462,298   |
| 77    | 414915       | 1126023      | 464,169   |
| 78    | 414915       | 1126011      | 464,01    |
| 79    | 414916       | 1125996      | 461,512   |
| 80    | 414916       | 1125991      | 464,038   |
| 81    | 414916       | 1125988      | 464,109   |
| 82    | 414905       | 1125982      | 464,7     |
| 83    | 414893       | 1125976      | 463,515   |
| 84    | 414890       | 1125975      | 462,387   |
| 85    | 414880       | 1125970      | 464,505   |
| 86    | 414862       | 1125940      | 463,129   |
| 87    | 414859       | 1125936      | 463,902   |
| 88    | 414853       | 1125926      | 463,097   |
| 89    | 414832       | 1125924      | 463,321   |
| 90    | 414819       | 1125923      | 463,308   |
| 91    | 414809       | 1125923      | 462,997   |
| 92    | 414794       | 1125922      | 463,206   |
| 93    | 414790       | 1125918      | 461,772   |
| 94    | 414789       | 1125907      | 458,274   |
| 95    | 414785       | 1125896      | 461,664   |
| 96    | 414788       | 1125877      | 461,023   |
| 97    | 414777       | 1125854      | 459,715   |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| 98    | 414765       | 1125841      | 458,125   |
| 99    | 414763       | 1125821      | 455,369   |
| 100   | 414744       | 1125801      | 457,928   |
| 491   | 414728       | 1125797      | 459       |
| 481   | 414711       | 1125794      | 465       |
| 471   | 414698       | 1125790      | 465       |
| 461   | 414675       | 1125767      | 466       |
| 451   | 414670       | 1125759      | 466       |
| 441   | 414636       | 1125747      | 467       |
| 421   | 414594       | 1125761      | 468       |
| 411   | 414570       | 1125767      | 468       |
| 131   | 414545       | 1125768      | 459,57    |
| 132   | 414535       | 1125766      | 456,993   |
| 133   | 414530       | 1125765      | 457,095   |
| 134   | 414520       | 1125763      | 459,407   |
| 135   | 414513       | 1125762      | 460,106   |
| 136   | 414498       | 1125760      | 460,06    |
| 137   | 414472       | 1125757      | 463,943   |
| 138   | 414451       | 1125756      | 464,198   |
| 139   | 414446       | 1125752      | 464,513   |
| 140   | 414430       | 1125741      | 474,7     |
| 371   | 414398       | 1125747      | 479,724   |
| 144   | 414369       | 1125743      | 477,18    |
| 145   | 414355       | 1125747      | 476,163   |
| 146   | 414347       | 1125747      | 475,539   |
| 147   | 414335       | 1125747      | 475,816   |
| 361   | 414329       | 1125756      | 484       |
| 351   | 414320       | 1125765      | 484       |
| 341   | 414306       | 1125766      | 484       |
| 331   | 414299       | 1125769      | 484       |
| 152   | 414280       | 1125768      | 469,459   |
| 153   | 414277       | 1125769      | 467,908   |
| 154   | 414249       | 1125776      | 457,638   |
| 155   | 414240       | 1125783      | 452,8     |
| 156   | 414234       | 1125788      | 446,832   |
| 157   | 414223       | 1125796      | 439,356   |
| 158   | 414221       | 1125798      | 439,506   |
| 159   | 414199       | 1125788      | 435,257   |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| 160   | 414192       | 1125786      | 434,266   |
| 161   | 414187       | 1125783      | 433,976   |
| 162   | 414183       | 1125782      | 436,384   |
| 163   | 414158       | 1125782      | 448,291   |
| 164   | 414141       | 1125784      | 451,838   |
| 165   | 414131       | 1125786      | 455,855   |
| 166   | 414114       | 1125788      | 466,229   |
| 167   | 414107       | 1125789      | 468,397   |
| 168   | 414084       | 1125782      | 471,847   |
| 169   | 414075       | 1125779      | 472,3     |
| 170   | 414031       | 1125768      | 470,312   |
| 171   | 414007       | 1125755      | 468,266   |
| 172   | 413999       | 1125750      | 465,934   |
| 173   | 413984       | 1125742      | 475,148   |
| 174   | 413974       | 1125736      | 475,779   |
| 175   | 413954       | 1125716      | 474,863   |
| 176   | 413905       | 1125702      | 471,565   |
| 177   | 413896       | 1125700      | 469,881   |
| 178   | 413882       | 1125696      | 463,286   |
| 179   | 413872       | 1125693      | 466,02    |
| T-180 | 413855       | 1125688      | 467,289   |
| 181   | 413851       | 1125687      | 466,866   |
| 182   | 413801       | 1125684      | 457,298   |
| 183   | 413794       | 1125685      | 456,258   |
| 184   | 413787       | 1125686      | 456,836   |
| 201   | 413785       | 1125593      | 447       |
| 191   | 413798       | 1125449      | 460       |
| 181   | 413807       | 1125332      | 476,27    |
| 171   | 413780       | 1125234      | 463       |
| 199   | 413755       | 1125175      | 441,615   |
| 200   | 413744       | 1125148      | 437,641   |
| 201   | 413732       | 1125129      | 433,572   |
| 202   | 413732       | 1125107      | 428,776   |
| 203   | 413734       | 1125087      | 425,063   |
| 204   | 413732       | 1125067      | 421,455   |
| 205   | 413714       | 1125046      | 416,117   |
| 206   | 413701       | 1125039      | 411,948   |
| 207   | 413691       | 1125037      | 410,315   |

| Punto  | Coordenada X | Coordenada Y | Elevación |
|--------|--------------|--------------|-----------|
| 208    | 413677       | 1125040      | 406,55    |
| 209    | 413659       | 1125042      | 401,451   |
| 210    | 413643       | 1125036      | 396,95    |
| 211    | 413639       | 1125029      | 396,843   |
| 212    | 413628       | 1125006      | 389,865   |
| 213    | 413614       | 1124989      | 385,993   |
| 214    | 413611       | 1124985      | 385,458   |
| 215    | 413609       | 1124982      | 387,144   |
| 216    | 413609       | 1124929      | 391,338   |
| 217    | 413600       | 1124914      | 394,062   |
| 218    | 413593       | 1124905      | 394,667   |
| 219    | 413547       | 1124900      | 399,461   |
| 220    | 413532       | 1124866      | 405,863   |
| 221    | 413518       | 1124849      | 406,572   |
| 222    | 413489       | 1124816      | 412,211   |
| 223    | 413467       | 1124788      | 416,888   |
| 224    | 413468       | 1124766      | 420,031   |
| 225    | 413469       | 1124758      | 422,863   |
| 226    | 413470       | 1124733      | 426,431   |
| 227    | 413473       | 1124696      | 431,241   |
| 228    | 413472       | 1124660      | 435,935   |
| 229    | 413468       | 1124649      | 440,48    |
| 230    | 413445       | 1124642      | 431,46    |
| 230,1  | 413422       | 1124637      | 440,48    |
| 231    | 413407       | 1124641      | 440,48    |
| 1041   | 413403       | 1124646      | 438       |
| T-1051 | 413337,3     | 1124648,5    | 431       |
| 1061   | 413307       | 1124649      | 431       |
| 1071   | 413303       | 1124631      | 423       |
| 1081   | 413262       | 1124522      | 419       |
| 1091   | 413243       | 1124391      | 391       |
| 1101   | 413239       | 1124367      | 391       |
| 1111   | 413228       | 1124328      | 399       |
| 1121   | 413162       | 1124309      | 396       |
| T-1131 | 413160       | 1124256      | 387       |
| 1141   | 413164       | 1124245      | 378       |
| 1151   | 413178       | 1124226      | 378       |
| 1161   | 413213       | 1124189      | 379       |

| Punto    | Coordenada X | Coordenada Y | Elevación |
|----------|--------------|--------------|-----------|
| 1171     | 413189       | 1124158      | 383       |
| 1181     | 413148       | 1124150      | 384       |
| 1191     | 413123       | 1124111      | 393       |
| 1201     | 413185       | 1124016      | 403       |
| 1211     | 413249       | 1123988      | 395       |
| 1221     | 413256       | 1123902      | 417       |
| T-1231   | 413253       | 1123897      | 417       |
| 1241     | 413220       | 1123839      | 430       |
| 255      | 413199       | 1123826      | 426,689   |
| 256      | 413187       | 1123812      | 425,234   |
| 257      | 413138       | 1123768      | 420,671   |
| 258      | 413122       | 1123747      | 421,063   |
| 259      | 413092       | 1123714      | 424,087   |
| 260      | 413065       | 1123665      | 429,627   |
| 261      | 413053       | 1123651      | 430,943   |
| 262      | 413011       | 1123606      | 438,616   |
| 263      | 412993       | 1123580      | 441,635   |
| 264      | 412973       | 1123571      | 440,954   |
| 265      | 412960       | 1123572      | 439,725   |
| 266      | 412950       | 1123577      | 438,64    |
| 267      | 412899       | 1123631      | 432,136   |
| 268      | 412856       | 1123663      | 433,644   |
| T-269    | 412828       | 1123676      | 432,551   |
| Tanque 1 | 412795       | 1123677      | 429,169   |
| 271      | 412795       | 1123677      | 429,169   |
| 272      | 412765       | 1123689      | 423,447   |
| 273      | 412753       | 1123687      | 421,351   |
| 274      | 412701       | 1123674      | 415,882   |
| 275      | 412677       | 1123668      | 414,019   |
| 276      | 412646       | 1123665      | 412,884   |
| 277      | 412617       | 1123672      | 412,507   |
| 278      | 412596       | 1123689      | 411,108   |
| 279      | 412583       | 1123693      | 410,081   |
| 280      | 412577       | 1123691      | 409,669   |
| 281      | 412528       | 1123660      | 403,936   |
| 282      | 412477       | 1123646      | 401,281   |
| 283      | 412392       | 1123625      | 395,967   |
| 284      | 412353       | 1123608      | 390,313   |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| 285   | 412325       | 1123596      | 385,012   |
| 286   | 412307       | 1123583      | 380,285   |
| 287   | 412281       | 1123562      | 375,71    |
| 288   | 412265       | 1123543      | 374,425   |
| 289   | 412263       | 1123540      | 371,187   |
| 290   | 412260       | 1123537      | 374,351   |
| 291   | 412249       | 1123517      | 373,949   |
| 292   | 412222       | 1123485      | 372,279   |
| 293   | 412186       | 1123440      | 375,21    |
| 294   | 412157       | 1123424      | 375,213   |
| 295   | 412131       | 1123410      | 374,864   |
| 296   | 412098       | 1123408      | 371,405   |
| 297   | 412085       | 1123405      | 371,046   |
| 298   | 412082       | 1123405      | 369,902   |
| 299   | 412078       | 1123403      | 371,079   |
| 300   | 412029       | 1123391      | 373,152   |
| 301   | 411995       | 1123385      | 375,17    |
| 302   | 411958       | 1123371      | 377,787   |
| 303   | 411937       | 1123352      | 378,883   |
| 304   | 411930       | 1123344      | 378,444   |
| 305   | 411906       | 1123321      | 374,602   |
| 306   | 411882       | 1123291      | 372,902   |
| T-307 | 411864       | 1123277      | 371,874   |
| 308   | 411833       | 1123252      | 372,043   |
| 309   | 411802       | 1123238      | 370,399   |
| 310   | 411765       | 1123219      | 369,998   |
| T-311 | 411755       | 1123212      | 369,965   |
| 312   | 411747       | 1123204      | 369,625   |
| 313   | 411728       | 1123175      | 368,362   |
| 314   | 411712       | 1123148      | 367,147   |
| 315   | 411697       | 1123130      | 366,692   |
| 316   | 411679       | 1123110      | 366,219   |
| T-317 | 411661       | 1123092      | 367,32    |
| 317,1 | 411655       | 1123084      | 366,172   |
| 317,2 | 411655       | 1123084      | 366,172   |
| 318   | 411616       | 1123073      | 367,448   |
| 319   | 411585       | 1123063      | 369,56    |
| 320   | 411532       | 1123036      | 371,308   |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| T-321 | 411497       | 1123025      | 374,176   |
| 322   | 411459       | 1123030      | 379,384   |
| 323   | 411451       | 1123027      | 380,687   |
| T-324 | 411442       | 1123022      | 381,644   |
| T-325 | 411432       | 1123015      | 382,235   |
| 326   | 411405       | 1122992      | 383,891   |
| 327   | 411366       | 1122956      | 392,428   |
| 328   | 411355       | 1122943      | 394,798   |
| 329   | 411354       | 1122942      | 394,186   |
| 330   | 411353       | 1122940      | 394,846   |
| 331   | 411326       | 1122920      | 397,868   |
| 332   | 411318       | 1122909      | 399,99    |
| 333   | 411313       | 1122900      | 401,354   |
| 334   | 411309       | 1122886      | 403,02    |
| 335   | 411307       | 1122874      | 403,538   |
| 336   | 411307       | 1122854      | 402,618   |
| 337   | 411310       | 1122820      | 401,317   |
| 338   | 411316       | 1122775      | 395,732   |
| T-339 | 411325       | 1122743      | 393,708   |
| 340   | 411360       | 1122671      | 384,359   |
| 341   | 411368       | 1122650      | 382,136   |
| 342   | 411371       | 1122631      | 379,471   |
| 343   | 411371       | 1122622      | 377,921   |
| 344   | 411369       | 1122607      | 376,641   |
| 346   | 411344       | 1122565      | 366,319   |
| 347   | 411320       | 1122494      | 360,758   |
| 348   | 411317       | 1122461      | 359,552   |
| 349   | 411320       | 1122408      | 359,626   |
| T-350 | 411318       | 1122385      | 360,781   |
| 351   | 411313       | 1122361      | 361,601   |
| 352   | 411301       | 1122277      | 352,237   |
| 353   | 411278       | 1122233      | 347,7     |
| 354   | 411272       | 1122201      | 346,331   |
| 355   | 411266       | 1122176      | 345,344   |
| 356   | 411249       | 1122141      | 344,462   |
| 357   | 411235       | 1122123      | 343,854   |
| 358   | 411233       | 1122119      | 343,101   |
| 359   | 411230       | 1122116      | 343,839   |

| Punto    | Coordenada X | Coordenada Y | Elevación |
|----------|--------------|--------------|-----------|
| 360      | 411193       | 1122068      | 345,939   |
| 361      | 411170       | 1122046      | 345,095   |
| 362      | 411128       | 1122009      | 342,514   |
| 363      | 411105       | 1121987      | 341,919   |
| 364      | 411093       | 1121968      | 341,704   |
| 365      | 411092       | 1121966      | 340,704   |
| 366      | 411092       | 1121964      | 341,618   |
| 367      | 411084       | 1121942      | 342,147   |
| 368      | 411077       | 1121922      | 343,149   |
| 369      | 411070       | 1121905      | 344,497   |
| 370      | 411063       | 1121891      | 345,777   |
| 371      | 411052       | 1121871      | 346,161   |
| 372      | 411029       | 1121851      | 346,45    |
| 373      | 411014       | 1121843      | 346,018   |
| 374      | 411013       | 1121843      | 345,297   |
| 375      | 411011       | 1121842      | 346,108   |
| 376      | 410995       | 1121834      | 347,94    |
| 377      | 410993       | 1121851      | 350       |
| 377,1    | 410980       | 1121873      | 361,14    |
| Tanque 1 | 410980       | 1121873      | 361,14    |
| 377      | 410993       | 1121851      | 350       |
| 377,1    | 410993       | 1121851      | 350       |
| 376      | 410995       | 1121834      | 347,94    |
| 882      | 410957       | 1121816      | 352       |
| 883      | 410915       | 1121806      | 349       |
| 884      | 410900       | 1121786      | 345       |
| 885      | 410888       | 1121754      | 348       |
| 886      | 410874       | 1121693      | 338       |
| 887      | 410889       | 1121646      | 322       |
| 888,1    | 410910,9     | 1121563,9    | 322       |
| 888      | 410912       | 1121555      | 339,764   |
| 889      | 410930       | 1121518      | 321       |
| 890      | 410936       | 1121461      | 316       |
| T-891    | 410945       | 1121434      | 312       |
| 893      | 410962       | 1121382      | 312       |
| Tanque 2 | 410967       | 1121353      | 313       |
| 895      | 410959       | 1121261      | 279       |
| 896      | 410981       | 1121197      | 287       |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| 897   | 410990       | 1121166      | 282       |
| 898   | 410998       | 1121153      | 276       |
| 899   | 410995       | 1121117      | 276       |
| 900   | 411005       | 1121104      | 266       |
| 902   | 411010       | 1121067      | 252       |
| 903   | 411017       | 1121052      | 258       |
| 904   | 411023       | 1121024      | 247       |
| 905   | 411035       | 1120994      | 242       |
| 906   | 411040       | 1120962      | 240       |
| 907   | 411051       | 1120910      | 249       |
| 908   | 411044       | 1120897      | 239       |
| T-909 | 411056       | 1120880      | 241       |
| 910   | 411078       | 1120829      | 231       |
| 911   | 411101       | 1120780      | 226       |
| 912   | 411148       | 1120721      | 225       |
| 913   | 411158       | 1120699      | 225       |
| 914   | 411169       | 1120633      | 228       |
| 915   | 411162       | 1120561      | 231       |
| 916   | 411147       | 1120504      | 227       |
| 917   | 411163       | 1120435      | 228       |
| T-918 | 411127,3     | 1120321,9    | 248       |
| 919   | 411122       | 1120314      | 248       |
| T-920 | 411121       | 1120305      | 250       |
| 921   | 411098       | 1120253      | 248       |
| T-922 | 410959,2     | 1120118,2    | 235       |
| T-923 | 410948,7     | 1120111,2    | 235       |
| 924   | 410936       | 1120111      | 235       |
| 925   | 410861       | 1120106      | 227       |
| T-926 | 410825,2     | 1120102,1    | 226       |
| T-927 | 410795       | 1120100      | 227       |
| 928,1 | 410772,3     | 1120094,2    | 229       |
| 928   | 410709       | 1120038      | 229       |
| T-929 | 410673       | 1119966      | 223       |
| 930   | 410643       | 1119910      | 224       |
| 931   | 410624       | 1119881      | 221       |
| T-469 | 410482       | 1119789      | 212,59    |
| T-971 | 410459       | 1119785      | 212       |
| T-972 | 410364       | 1119730      | 205       |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| T-973 | 410277       | 1119670      | 211       |
| 363   | 411658       | 1123092      | 368       |
| 364   | 411655       | 1123097      | 368       |
| 365   | 411653       | 1123098      | 368       |
| 366   | 411652       | 1123099      | 368       |
| T-367 | 411651       | 1123101      | 368       |
| 368   | 411640       | 1123109      | 365       |
| 369   | 411634       | 1123115      | 365       |
| 370   | 411598       | 1123148      | 360       |
| 371   | 411586       | 1123168      | 360       |
| 372   | 411512       | 1123250      | 350       |
| 373   | 411464       | 1123278      | 339       |
| 374   | 411415       | 1123291      | 339       |
| 375   | 411389       | 1123284      | 340       |
| 376   | 411349       | 1123305      | 324       |
| 377   | 411292       | 1123376      | 305       |
| 378   | 411263       | 1123404      | 308       |
| 379   | 411204       | 1123352      | 316       |
| 380   | 411155       | 1123352      | 322       |
| 381   | 411153       | 1123351      | 322       |
| 382   | 411134       | 1123344      | 322       |
| 383   | 411023       | 1123362      | 303       |
| 384   | 410890       | 1123326      | 281       |
| 385   | 410841       | 1123313      | 276       |
| 386   | 410811       | 1123299      | 275       |
| T-387 | 410770       | 1123273      | 268       |
| 388   | 410681       | 1123241      | 258       |
| 389   | 410564       | 1123267      | 258       |
| 390   | 410545       | 1123265      | 261       |
| 391   | 410498       | 1123265      | 261       |
| 392   | 410325       | 1123261      | 286       |
| 393   | 410267       | 1123271      | 291       |
| T-394 | 410233       | 1123297      | 289       |
| 395   | 410055       | 1123347      | 278       |
| 396   | 409969       | 1123387      | 278       |
| 397   | 409903       | 1123362      | 267       |
| 398   | 409763       | 1123443      | 267       |
| 399   | 409701       | 1123424      | 258       |

| Punto | Coordenada X | Coordenada Y | Elevación |
|-------|--------------|--------------|-----------|
| 400   | 409622       | 1123495      | 281       |
| 401   | 409539       | 1123474      | 289       |
| 402   | 409452       | 1123514      | 297       |
| 403   | 409318       | 1123454      | 324       |
| 404   | 409286       | 1123487      | 335       |
| 405   | 409237       | 1123525      | 350       |
| 406   | 409196       | 1123470      | 353       |
| 407   | 409144       | 1123479      | 355       |
| 408   | 409059       | 1123426      | 360       |
| T-409 | 409036       | 1123367      | 346       |
| 410   | 408931       | 1123308      | 341       |
| 411   | 408887       | 1123313      | 341       |
| 412   | 408833       | 1123304      | 344       |
| 413   | 408793       | 1123312      | 348       |
| 414   | 408748       | 1123311      | 345       |
| T-415 | 408725       | 1123312      | 345       |
| 416   | 408720,2     | 1123313,8    | 345       |
| 417   | 408707       | 1123327      | 346       |
| T-789 | 408618       | 1123398      | 347       |
| 418   | 408433       | 1123469      | 382       |
| 422   | 408414       | 1123468      | 387       |
| 432   | 408410       | 1123472      | 381       |
| T-433 | 408358       | 1123476      | 370       |
| 434   | 408288       | 1123491      | 357       |
| 435   | 408224       | 1123497      | 352       |
| 436   | 408216       | 1123504      | 343       |
| 437   | 408173       | 1123515      | 336       |
| 438   | 408094       | 1123524      | 318       |
| 439   | 407998       | 1123513      | 302       |
| 440   | 407959       | 1123507      | 298       |
| 441   | 407926       | 1123504      | 294       |
| 442   | 407897       | 1123491      | 293       |
| 443   | 407859       | 1123496      | 296       |
| 444   | 407816       | 1123514      | 299       |
| 445   | 407751       | 1123560      | 296       |
| 446   | 407702       | 1123619      | 283       |
| 447   | 407570       | 1123684      | 264       |
| 448   | 407520       | 1123723      | 257       |

| Punto    | Coordenada X | Coordenada Y | Elevación |
|----------|--------------|--------------|-----------|
| 449      | 407479       | 1123784      | 245       |
| 450      | 407438       | 1123817      | 237       |
| 451      | 407405       | 1123852      | 231       |
| 452      | 407395       | 1123857      | 231       |
| 453      | 407355       | 1123875      | 224       |
| 454      | 407294       | 1123872      | 218       |
| 455      | 407249       | 1123877      | 226       |
| 456      | 407178       | 1123891      | 251       |
| 457      | 407150       | 1123890      | 263       |
| 458      | 407085       | 1123901      | 272       |
| 459      | 407014       | 1123912      | 304       |
| 460      | 406957       | 1123960      | 324       |
| 461      | 406893       | 1123981      | 326       |
| 462      | 406836       | 1124006      | 321       |
| 463      | 406779       | 1124019      | 312       |
| 464      | 406762       | 1124021      | 318       |
| 465      | 406705       | 1124039      | 317       |
| 466,1    | 406670,8     | 1124050,8    | 317       |
| T-466    | 406670,8     | 1124050,8    | 317       |
| Tanque 1 | 406665,7     | 1124053,9    | 317       |
| 666      | 406692       | 1124043      | 317       |
| 667      | 406711       | 1124027      | 317       |
| 668      | 406695       | 1123999      | 297       |
| 669      | 406679       | 1123974      | 277       |
| 670      | 406661       | 1123947      | 277       |
| 671      | 406599       | 1123908      | 265       |
| 672      | 406573       | 1123883      | 256       |
| 673      | 406571       | 1123847      | 250       |
| 674      | 406587       | 1123725      | 232       |
| T-675    | 406592       | 1123635      | 238       |
| 676      | 406604       | 1123564      | 235       |
| 677      | 406614       | 1123535      | 231       |
| 678      | 406629       | 1123512      | 234       |
| 679      | 406658       | 1123458      | 223       |
| T-680    | 406673       | 1123416      | 213       |
| 681      | 406713       | 1123283      | 200       |
| 682      | 406767       | 1123238      | 200       |
| 683      | 406870       | 1123171      | 215       |

| Punto | Coordenada X | Coordenada Y   | Elevación |  |
|-------|--------------|----------------|-----------|--|
| 684   | 406906       | 1123148        | 215       |  |
| 685   | 406960       | 1123107        | 214       |  |
| 686   | 407006       | 1123073        | 221       |  |
| 687   | 407051       | 1123038        | 229       |  |
| 688   | 407093       | 1123011        | 239       |  |
| 689   | 407113       | 1122973        | 245       |  |
| 690   | 407120       | 1122940        | 251       |  |
| 691   | 407117       | 1122925        | 251       |  |
| 692   | 407112       | 1122894        | 256       |  |
| 693   | 407104       | 1122860        | 258       |  |
| 694   | 407096       | 1122827        | 258       |  |
| 695   | 407091       | 1122796        | 259       |  |
| 696   | 407110       | 1122753        | 262       |  |
| 697   | 407146       | 1122716        | 267       |  |
| 698   | 407178       | 1122677        | 272       |  |
| T-699 | 407206       | 1122647        | 269       |  |
| 716   | 407260       | 1122634        | 267       |  |
| 717   | 407329       | 1122629        | 265       |  |
| 718   | 407403       | 1122575        | 260       |  |
| 719   | 407455       | 1122536        | 262       |  |
| 720   | 407575       | 1122476 270    | 270       |  |
| T-721 | 407576       | 76 1122475 27  |           |  |
| T-722 | 407610       | 1122480        | 270       |  |
| 722,1 | 407612,6     | ,6 1122480 270 |           |  |
| 723   | 407654       | 1122483        | 264       |  |
| 724   | 407686       | 1122474        | 264       |  |
| 725   | 407724       | 1122468        | 261       |  |
| 726   | 407770       | 1122453        | 255       |  |
| 727   | 407805       | 1122419        | 252       |  |
| 728   | 407830       | 1122394        | 253       |  |
| 729   | 407846       | 1122373        | 253       |  |
| 730   | 407855       | 1122368        | 253       |  |
| 731   | 407863       | 1122363        | 253       |  |
| 732   | 407890       | 1122359        | 250       |  |
| 733   | 407924       | 1122334        | 247       |  |
| 734   | 407974       | 1122283        | 249       |  |
| 735   | 407982       | 1122273        | 249       |  |
| 736   | 408008       | 1122246        | 251       |  |

| Punto    | Coordenada X | Coordenada Y | Elevación |  |  |
|----------|--------------|--------------|-----------|--|--|
| 737      | 408060       | 1122176      | 256       |  |  |
| 738      | 408073       | 1122158      | 260       |  |  |
| 739      | 408110       | 1122137      | 257       |  |  |
| 740      | 408154       | 1122133      | 262       |  |  |
| 741      | 408169       | 1122125      | 262       |  |  |
| 742      | 408219       | 1122107      | 267       |  |  |
| 743      | 408246       | 1122062      | 273       |  |  |
| 744      | 408254       | 1122052      | 273       |  |  |
| 745      | 408289       | 1122005      | 271       |  |  |
| 746      | 408309       | 1121977      | 271       |  |  |
| 747      | 408331       | 1121946      | 272       |  |  |
| 748      | 408343       | 1121927      | 274       |  |  |
| 749      | 408357       | 1121904      | 273       |  |  |
| 750      | 408372       | 1121875      | 272       |  |  |
| 751      | 408384       | 1121857      | 273       |  |  |
| 752      | 408402       | 1121808      | 275       |  |  |
| 753      | 408401       | 1121803      | 276       |  |  |
| 754      | 408395       | 1121799      | 276       |  |  |
| 754,1    | 408384,47    | 1121797      | 277       |  |  |
| 754,2    | 408381,77    | 1121797      | 277       |  |  |
| Tanque 2 | 408380       | 1121796      | 277       |  |  |
| 756      | 408388       | 1121774      | 276       |  |  |
| 757      | 408410       | 1121761      | 276       |  |  |
| 758      | 408419       | 1121754      | 275       |  |  |
| 759      | 408443       | 1121728      | 273       |  |  |
| 760      | 408487       | 1121682      | 266       |  |  |
| 761      | 408543       | 1121615      | 261       |  |  |
| 762      | 408560       | 1121590      | 257       |  |  |
| T-763    | 408568       | 1121576      | 262       |  |  |
| 764      | 408593       | 1121544      | 258       |  |  |
| 765      | 408617       | 1121507      | 253       |  |  |
| T-766    | 408640       | 1121472      | 243       |  |  |
| 767      | 408673       | 1121434      | 230       |  |  |
| 768      | 408683       | 1121422      | 224       |  |  |
| 769      | 408716       | 1121376      | 218       |  |  |
| 770      | 408725       | 1121353      | 215       |  |  |
| 771      | 408725       | 1121347      | 215       |  |  |
| 772      | 408734       | 1121305      | 214       |  |  |

| Punto | Coordenada X | Coordenada Y     | Elevación |  |  |
|-------|--------------|------------------|-----------|--|--|
| T-773 | 408750       | 1121223          | 216       |  |  |
| T-774 | 408749       | 1121168          | 216       |  |  |
| 775   | 408754       | 3761 1121125 209 |           |  |  |
| 776   | 408761       |                  |           |  |  |
| 777   | 408788       |                  |           |  |  |
| 778   | 408792       | 1121056          | 193       |  |  |
| 779   | 408792       | 1121008          | 182       |  |  |
| 780   | 408805       | 1120990          | 174       |  |  |
| 781   | 408828       | 1120961          | 173       |  |  |
| 782   | 408877       | 1120879          | 163       |  |  |
| 783   | 408887       | 1120848          | 161       |  |  |
| 784   | 408892       | 1120834          | 161       |  |  |
| 785   | 408911       | 1120808          | 159       |  |  |
| 786   | 408946       | 1120787          | 159       |  |  |
| 787   | 408980       | 1120767          | 163       |  |  |
| 828   | 408984       | 1120762          | 163       |  |  |
| 829   | 408977       | 1120745          | 163       |  |  |
| 830   | 408969       | 1120733          | 165       |  |  |
| 831   | 408962       | 1120713          | 165       |  |  |
| 832   | 408954       | 1120661          | 164       |  |  |
| 833   | 408957       | 08957 1120623 15 | 159       |  |  |
| 834   | 408957       | 1120606          | 153       |  |  |
| 835   | 408966       | 1120593          | 153       |  |  |
| 836   | 409008       | 1120576          | 149       |  |  |
| 837   | 409050       | 1120548          | 155       |  |  |
| 838   | 409057       | 1120536          | 155       |  |  |
| 839   | 409062       | 1120530          | 155       |  |  |
| 840   | 409055       | 1120484          | 159       |  |  |
| 841   | 409067       | 1120470          | 166       |  |  |
| 842   | 409075       | 1120460          | 167       |  |  |
| 843   | 409087       | 1120452          | 167       |  |  |
| 844   | 409103       | 1120438          | 171       |  |  |
| 845   | 409106       | 1120411          | 169       |  |  |
| 846   | 409106       | 1120349          | 174       |  |  |
| T-847 | 409106       | 1120265          | 173       |  |  |
| 848   | 409106       | 1120225          | 170       |  |  |
| 849   | 409099       | 1120168          | 165       |  |  |
| 850   | 409099       | 1120123          | 160       |  |  |

| Punto | Coordenada X | Coordenada Y                                                        | Elevación |  |
|-------|--------------|---------------------------------------------------------------------|-----------|--|
| 851   | 409113       | 1120080                                                             | 152       |  |
| 852   | 409131       | 1120051                                                             | 152       |  |
| 853   | 409133       | .09133 1120013                                                      |           |  |
| 854   | 409131       | 1119975                                                             | 147       |  |
| 855   | 409152       | 1119946                                                             | 149       |  |
| 856   | 409172       | 1119934                                                             | 149       |  |
| 857   | 409239       | 1119835                                                             | 143       |  |
| 858   | 409250       | 1119817                                                             | 143       |  |
| 859   | 409250       | 1119785                                                             | 138       |  |
| 860   | 409287       | 1119728                                                             | 145       |  |
| 861   | 409327       | 1119649                                                             | 144       |  |
| 862   | 409326       | 1119619                                                             | 144       |  |
| 863   | 409313       | 1119599                                                             | 144       |  |
| 864   | 409309       | 1119538                                                             | 165       |  |
| 865   | 409305       | 1119500                                                             | 173       |  |
| 866   | 409313       | 1119447                                                             | 176       |  |
| T-867 | 409330       | 1119388                                                             | 182       |  |
| 868   | 409331       | 1119387                                                             | 183       |  |
| 869   | 409353       | 1119343                                                             | 182       |  |
| 870   | 409447       | 1119319                                                             | 189       |  |
| T-871 | 409511       | 409511       1119249       18         409598       1119172       19 |           |  |
| T-872 | 409598       |                                                                     |           |  |
| T-873 | 409599       | 1119157 196                                                         |           |  |
| 874   | 409748       | 1119075 199                                                         |           |  |
| 875   | 409759       | 1119045                                                             | 202       |  |
| T-876 | 409666       | 1118926                                                             | 194       |  |
| 877   | 409662       | 1118893                                                             | 190       |  |
| T-878 | 409624       | 1118851                                                             | 188       |  |
| T-879 | 409580       | 1118798                                                             | 187       |  |
| 790   | 408705       | 1123218                                                             | 334       |  |
| 791   | 408695       | 1123166                                                             | 333       |  |
| T-792 | 408695       | 1123157                                                             | 333       |  |
| 793   | 408677       | 1123105                                                             | 331       |  |
| 794   | 408673       | 1123082                                                             | 330       |  |
| 795   | 408667       | 1123036                                                             | 330       |  |
| 796   | 408667       | 1122975                                                             | 323       |  |
| T-797 | 408670       | 1122927                                                             | 322       |  |
| T-798 | 408655       | 1122912                                                             | 321       |  |

| Punto | Coordenada X | Coordenada Y | Elevación |  |  |
|-------|--------------|--------------|-----------|--|--|
| 799   | 408689       | 1122888      | 317       |  |  |
| 800   | 408709       | 1122861      | 318       |  |  |
| 801   | 408712       | 1122850      | 318       |  |  |
| 802   | 408727       | 1122815      | 316       |  |  |
| 803   | 408737       | 1122788      | 315       |  |  |
| 804   | 408730       | 1122735      | 312       |  |  |
| T-805 | 408725       | 1122708      | 308       |  |  |
| 806   | 408725       | 1122637      | 306       |  |  |
| 807   | 408733       | 1122605      | 307       |  |  |
| 808   | 408732       | 1122591      | 307       |  |  |
| 809   | 408726       | 1122573      | 307       |  |  |
| 810   | 408721       | 1122556      | 307       |  |  |
| 811   | 408702       | 1122531      | 302       |  |  |
| 812   | 408681       | 1122508      | 302       |  |  |
| 813   | 408675       | 1122488      | 292       |  |  |
| 814   | 408659       | 1122449      | 291       |  |  |
| 815   | 408672       | 1122412      | 290       |  |  |
| 816   | 408687       | 1122382      | 304       |  |  |
| 817   | 408698       | 1122352      | 306       |  |  |
| 818   | 408692       | 1122308      | 310       |  |  |
| 819   | 408661       | 1122253      | 305       |  |  |
| T-820 | 408653       | 1122242      | 305       |  |  |
| 823   | 408628       | 1122190      | 299       |  |  |
| 824   | 408618       | 1122157      | 291       |  |  |
| 825   | 408612       | 1122149      | 291       |  |  |
| 826   | 408584       | 1122138      | 282       |  |  |
| T-827 | 408547       | 1122105      | 286       |  |  |
| 821   | 408687       | 1122225      | 310       |  |  |
| T-822 | 408718       | 1122209      | 312       |  |  |
| 675,1 | 406584       | 1123635,8    | 238       |  |  |
| 516   | 406533       | 1123640      | 218       |  |  |
| 517   | 406505       | 1123634      | 214       |  |  |
| 518   | 406492       | 1123632      | 208       |  |  |
| 519   | 406472       | 1123627      | 208       |  |  |
| 520   | 406408       | 1123653      | 212       |  |  |
| 521   | 406400       | 1123655      | 212       |  |  |
| T-522 | 406371       | 1123670      | 217       |  |  |
| 523   | 406300       | 1123692      | 230       |  |  |

| Punto | Coordenada X | Coordenada Y   | Elevación |  |  |
|-------|--------------|----------------|-----------|--|--|
| T-524 | 406246       | 1123706        | 238       |  |  |
| 699,1 | 407199       | 1122633        | 269       |  |  |
| T-700 | 407188       | 1122620        | 272       |  |  |
| 701   | 407116       | 407116 1122525 |           |  |  |
| 702   | 407090       | 1122489        | 256       |  |  |
| 703   | 407032       | 1122415        | 260       |  |  |
| 704   | 406974       | 1122346        | 255       |  |  |
| 705   | 406960       | 1122329        | 246       |  |  |
| 706   | 406918       | 1122282        | 238       |  |  |
| 707   | 406871       | 1122222        | 230       |  |  |
| 708   | 406808       | 1122133        | 225       |  |  |
| 709   | 406740       | 1122054        | 216       |  |  |
| 710   | 406721       | 1122038        | 216       |  |  |
| 711   | 406697       | 1122057        | 216       |  |  |
| 712   | 406657       | 1122086        | 217       |  |  |
| T-713 | 406607       | 1122119        | 232       |  |  |
| 714   | 406596       | 1122143        | 232       |  |  |
| T-715 | 406610       | 1122189        | 243       |  |  |
| 476   | 407572       | 1122420        | 269       |  |  |
| 477   | 407578       | 1122335        | 253       |  |  |
| 478   | 407585       | 1122302 253    | 253       |  |  |
| 479   | 407592       | 1122264        | 251       |  |  |
| 480   | 407602       | 1122214 238    |           |  |  |
| 481   | 407606       | 1122199        | 238       |  |  |
| 482   | 407609       | 1122178        | 235       |  |  |
| 483   | 407612       | 1122151        | 236       |  |  |
| 484   | 407619       | 1122095        | 245       |  |  |
| 485   | 407614       | 1122058        | 244       |  |  |
| 486   | 407610       | 1122012        | 248       |  |  |
| 487   | 407583       | 1121941        | 242       |  |  |
| 488   | 407531       | 1121897        | 232       |  |  |
| 489   | 407469       | 1121845        | 219       |  |  |
| T-490 | 407453       | 1121831        | 210       |  |  |
| T-491 | 407437       | 1121813        | 210       |  |  |
| 495   | 407390       | 1121776        | 209       |  |  |
| 496   | 407362       | 1121752        | 208       |  |  |
| 497   | 407315       | 1121725        | 210       |  |  |
| 499   | 407291       | 1121703        | 210       |  |  |

| Punto    | Coordenada X | Coordenada Y    | Elevación |  |  |
|----------|--------------|-----------------|-----------|--|--|
| 500      | 407282       | 1121696         | 210       |  |  |
| 501      | 407264       | 1121686         | 209       |  |  |
| 507      | 407226       | 1121650         | 205       |  |  |
| 508      | 407214       | 2214 1121633 20 |           |  |  |
| 509      | 407212       | 1121628         | 205       |  |  |
| 510      | 407200       | 1121561         | 214       |  |  |
| 511      | 407198       | 1121532         | 219       |  |  |
| 512      | 407194       | 1121495         | 216       |  |  |
| T-513    | 407193       | 1121488         | 216       |  |  |
| 774,1    | 408735       | 1121166         | 216       |  |  |
| Tanque 1 | 408681       | 1121163         | 218       |  |  |
| 976      | 408614       | 1121039         | 195       |  |  |
| T-977    | 408600       | 1120992         | 182       |  |  |
| 978      | 408594       | 1120982         | 182       |  |  |
| 979      | 408558       | 1120963         | 185       |  |  |
| 980      | 408541       | 1120902         | 168       |  |  |
| 981      | 408547       | 1120878         | 169       |  |  |
| 982      | 408555       | 1120871         | 169       |  |  |
| 983      | 408582       | 1120824         | 175       |  |  |
| 984      | 408602       | 1120783         | 172       |  |  |
| T-985    | 408597       | 1120732         | 164       |  |  |
| 986      | 408591       | 1120624         | 162       |  |  |
| 987      | 408618       | 1120578         | 162       |  |  |
| T-997    | 408636       | 1120536         | 163       |  |  |
| 998      | 408612       | 1120537         | 163       |  |  |
| 999      | 408541       | 1120530         | 164       |  |  |
| T-1000   | 408404       | 1120607         | 161       |  |  |
| 1003     | 408351       | 1120639         | 167       |  |  |
| 1004     | 408321       | 1120669         | 166       |  |  |
| 1005     | 408214       | 1120710         | 168       |  |  |
| 1006     | 408137       | 1120680         | 169       |  |  |
| 1007     | 408026       | 1120635         | 165       |  |  |
| 1008     | 408028       | 1120627         | 165       |  |  |
| 1009     | 407985       | 1120611         | 163       |  |  |
| T-1010   | 407922       | 1120577         | 161       |  |  |
| T-1011   | 407778       | 1120583         | 159       |  |  |
| 933      | 410460       | 1119828         | 215       |  |  |
| 934      | 410433       | 1119862         | 214       |  |  |

| Punto | Coordenada X | Coordenada Y | Elevación |  |
|-------|--------------|--------------|-----------|--|
| 935   | 410410       | 1119916      | 217       |  |
| 936   | 410374       | 1119964      | 216       |  |
| 937,1 | 410364       | 1119997      | 213       |  |
| T-937 | 410362       | 1120003      | 213       |  |
| 938   | 410334       | 1120035      | 211       |  |
| 939   | 410270       | 1120071      | 198       |  |
| 940   | 410248       | 1120102      | 195       |  |
| 941   | 410228       | 1120182      | 195       |  |
| 942   | 410231       | 1120248      | 189       |  |
| 943   | 410217       | 1120277      | 189       |  |
| 944   | 410170       | 1120313      | 191       |  |
| T-945 | 410159       | 1120321      | 186       |  |
| 950   | 410138       | 1120359      | 185       |  |
| 951   | 410106       | 1120395      | 185       |  |
| 952   | 410071       | 1120448      | 188       |  |
| 953   | 410026       | 1120474      | 187       |  |
| T-954 | 409957       | 1120504      | 187       |  |
| 955   | 409916       | 1120513      | 191       |  |
| 956   | 409865       | 1120565      | 194       |  |
| 957   | 409800       | 1120584      | 192       |  |
| 958   | 409754       | 1120608      | 188       |  |
| 959   | 409708       | 1120627      | 185       |  |
| 960   | 409660       | 1120695      | 186       |  |
| 961   | 409598       | 1120744      | 186       |  |
| 962   | 409543       | 1120809      | 176       |  |
| 963   | 409551       | 1120866      | 176       |  |
| 964   | 409572       | 1120938      | 177       |  |
| 965   | 409600       | 1120991      | 173       |  |
| T-966 | 409584       | 1121040      | 175       |  |
| T-967 | 409582       | 1121067      | 175       |  |
| 968   | 409539       | 1121202      | 190       |  |
| T-969 | 409514       | 1121308      | 196       |  |
| T-970 | 409492       | 1121349      | 198       |  |
| 996   | 408684       | 1120522      | 161       |  |
| T-988 | 408706       | 1120512      | 158       |  |
| 989   | 408744       | 1120492      | 153       |  |
| 990   | 408750       | 1120484      | 155       |  |
| 991   | 408742       | 1120484      | 156       |  |

| Punto | Coordenada X | Coordenada Y | Elevación |  |
|-------|--------------|--------------|-----------|--|
| 992   | 408738       | 1120489      | 156       |  |
| 993   | 408728       | 1120484      | 159       |  |
| T-994 | 408724       | 1120483      | 158       |  |
| T-995 | 408710       | 1120486      | 161       |  |
| 946   | 410270       | 1120397      | 183       |  |
| 947   | 410334       | 1120451      | 181       |  |
| 948   | 410350       | 1120444      | 180       |  |
| T-949 | 410350       | 1120443      | 182       |  |
| 821   | 408687       | 1122225      | 310       |  |
| T-822 | 408718       | 1122209      | 312       |  |

10.2. Anexo 2, Especificaciones de tubería

| Pulg   | mm  | SDR 13.5<br>(315 psi)<br>(ASTM2241) | SDR 17<br>(250 psi)<br>(ASTM2241) | SDR 26<br>(160 psi)<br>(ASTM 2241) | SDR 32.5<br>(125 psi)<br>(ASTM2241) | SDR 41<br>(drenaje) | SDR 50<br>(drenaje) | *SCH 40<br>(ASTM1785) | PVC SCH80<br>ASTM 1785 | CPVC FlowGuard<br>Gold NSF SE 8225<br>CTS SDR 13.5 |
|--------|-----|-------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---------------------|---------------------|-----------------------|------------------------|----------------------------------------------------|
| 1/2"   | 12  | 18.2/21.3                           |                                   |                                    |                                     |                     |                     | 15.8/21.3             | 13,8/21,3              | 13,1/15,9                                          |
| 3/4"   | 18  | ***                                 | 23.5/26.7                         |                                    |                                     |                     |                     | 20.9/26.7             | 18,9/26,7              | 22,2/18,9                                          |
| 1"     | 25  |                                     | 29.5/33.4                         | 30.4/33.4                          |                                     | ***                 |                     | 26.6/33.4             | 24,3/33,4              | 24,4/28,6                                          |
| 1 1/4" | 31  |                                     | 37.2/42.2                         | 38.9/42.2                          | 39.1/42.2                           | 39.8/42.2           |                     | 35.0/42.2             | 32,5/42,2              | 29,7/34,9                                          |
| 1 1/2" | 38  | ***                                 | 42.6/48.3                         | 44.6/48.3                          | 45.3/48.3                           | 45.9/48.3           | ***                 | 40.9/48.3             | 38,1/48,3              | 35,2/41,3                                          |
| 2"     | 50  | 111                                 | 53.2/60.3                         | 5537/60.3                          | 56.6/60.3                           | 57.4/60.3           | 57.9/60.3           | 52.5/60.3             | 49,2/60,3              | 46,0/54,0                                          |
| 2 1/2" | 62  |                                     | 64.4/73.0                         | 67.4/73.0                          | 68.5/73.0                           | 69.5/73.0           | in.                 | 62.7/73.0             | 59,0/73,0              |                                                    |
| 3"     | 75  |                                     | 78.4/88.9                         | 82.0/88.9                          | 83.4/88,9                           | 84.6/88,9           | 83.3/88.9           | 77.9/88.9             | 73,7/88,9              |                                                    |
| 4"     | 100 |                                     | 100.8/114.3                       | 105.5/114.3                        | 107.3/114.3                         | 108.7/114.3         | 109.7/114.3         | 102.3/114.3           | 97,2/114,3             |                                                    |
| 6"     | 150 |                                     | 148.5/168.3                       | 155.3/168.3                        | 157.9/168.3                         | 160.1/168.3         |                     | 154.1/168.3           | 146,4/168,3            |                                                    |
| 8"     | 200 | ***                                 | 193.3/219.1                       | 202.2/219.1                        | 205.6/219.1                         | 208.4/219.1         | ***                 |                       | 193,7/219,1            |                                                    |
| 10"    | 250 |                                     | 240.9/273.1                       | 252.1/273.1                        | 256.2/273.1                         | 259.8/273.0         | -111                |                       | 243,0/273,1            |                                                    |
| 12*    | 300 | ***                                 | 285.8/323.8                       | 299.0/323.8                        | 303.9/323.8                         | 308.1/323.8         |                     |                       | 288,9/323,8            |                                                    |
| 15*    | 375 |                                     |                                   | 358.7/388.6                        | 364.7/388.6                         | 369.7/388.6         | ***                 |                       |                        |                                                    |
| 18*    | 450 |                                     |                                   | 422.0/457.2                        | 429.1/457.2                         | 434.9/457.2         |                     |                       |                        |                                                    |

Fuente: (Peñaranda, 2021).