INSTITUTO TECNOLÓGICO DE COSTA RICA

ESCUELA DE QUÍMICA CARRERA DE INGENIERÍA AMBIENTAL

PROYECTO FINAL DE GRADUACIÓN PARA OPTAR POR EL GRADO DE LICENCIATURA EN INGENIERÍA AMBIENTAL

"Diseño de un sistema de potabilización de agua como parte de las medidas de mitigación y prevención de desastres para la comunidad de San Pedro de Tarrazú, Costa Rica."

Realizado por:

Ruby Esperanza Hernández Arenas

Director de tesis:

Ing. Jorge Calvo Gutiérrez

Cartago,

Diciembre, 2021

"Diseño de un sistema de potabilización de agua como parte de las medidas de mitigación y prevención de desastres para la comunidad de San Pedro de Tarrazú, Costa Rica."

Informe presentado a la Escuela de Química del Instituto Tecnológico de Costa Rica como requisito parcial para optar por el título de Ingeniero Ambiental con el grado de licenciatura

Miembros del tribunal

M.Sc. Jorge Calvo Gutiérrez Director
M.Sc. Ana Lorena Arias Zúñiga Lector 1
Ing. Macario Pino Gómez Lector 2
Dra. Mary Luz Barrios Hernández Coordinadora COTRAFIG
MGLA. Ricardo Coy Herrera Director Escuela de Química

Diseño de un sistema de potabilización de agua como parte de las medidas de mitigación y prevención de desastres para la comunidad de San Pedro de Tarrazú, Costa Rica © 2021 por Ruby Esperanza Hernández Arenas está bajo una licencia Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

DEDIC	ATORIA
A mis maestros espirituales Srila Bhakti Aloka Paramad	vaiti Swami,
Antaryami Gurumata y Caitanya	Lila Acarya.

AGRADECIMIENTOS

A mi familia, padres y hermano, por todo su apoyo, ayuda, paciencia y motivación durante toda mi vida y a lo largo de la carrera y el proceso de realización de este proyecto. No existen palabras para agradecerles su amor profundo, puro y sincero.

Al profesor Jorge por su amistad, respaldo, preocupación y enseñanzas tanto el ámbito técnico y profesional como de la vida. Gracias por brindarme su orientación y sus consejos.

A los funcionarios de la ASADA, especialmente a Hazel Garro y don William Montero por su completa disposición y ayuda con toda la información necesaria para la realización de los análisis; y a los profesores Mary Luz Barrios, Macario Pino y Ana Lorena Arias por su disposición de ayuda y sus comentarios y recomendaciones para lograr la excelencia en los resultados de este proyecto.

A todas las personas que de alguna y muchas maneras hicieron posible este trabajo, mis amigos, especialmente a Radha, Guna y Stephi por su motivación continua, ayuda incondicional y apoyo durante todo este tiempo, a Ámbar mi amiga del alma y a Kath y Balaram por su ayuda desinteresada.

Al equipo del proyecto FEES, especialmente a las asistentes Paula y Litzy por arriesgar su vida conmigo en el cafetal para tomar las muestras de agua.

ÍNDICE

DEDIC	ATORIA	4
AGRAI	DECIMIENTOS	5
ACRÓ	NIMOS	14
UNIDA	DES	15
RESUM	1EN	16
ABSTR	ACT	17
CAPÍTI	ULO I: INTRODUCCIÓN	18
Objet	ivo general	21
Objet	ivos específicos	21
CAPÍTI	ULO II: MARCO DE REFERENCIA	22
A.	Recurso hídrico	22
1.	Cambio climático	24
2.	Contexto del recurso en Costa Rica	25
3.	Normativa	27
4.	Calidad de agua	27
B.	Generalidades de la potabilización de agua	30
1.	Sistema de captación	33
2.	Sistema de aducción	34
3.	Pretratamiento	34
4.	Tanques de almacenamiento.	35
5.	Válvulas	35
C.	Sistemas de potabilización de agua	36
1.	Planta convencional clásica	36
2.	Planta FiME	39
D.	Operación y mantenimiento de los sistemas de potabilización	45
E. A	Análisis de Significancia	47
F. E	Evaluación Multicriterio-Método AHP	48
CAPÍTI	JLO III: METODOLOGÍA	53
A.	Diseño de la investigación	53
B.	Determinación de los aspectos críticos de estudio	54

	C.	Lugar de estudio	.57
	D.	Descripción de la ASADA	.59
	1.	Localización	60
	2.	Conformación de los miembros de la ASADA	61
	3.	Catastro de los usuarios del acueducto	61
	4.	Descripción del sistema	62
	5.	Oferta de agua potable	63
	6.	Demanda actual de agua potable	63
	E. V	isitas de campo	63
	F. R	lecolección de muestras de agua	64
	Mu	estreo de agua superficial.	66
	Me	diciones de campo	67
	Me	dición de caudales	67
	G.	Análisis de las muestras de agua.	68
	H.	Modelación del caudal de la quebrada	70
	I. E	ncuesta a la comunidad	.71
	1.	Formulación	.72
	2.	Cálculo del tamaño de la muestra	.72
	3.	Validación de la encuesta	.73
	4.	Zonificación y selección de los encuestados	.73
	5.	Aplicación de la encuesta	.74
	J. C	Generación de mapas.	.74
	K.	Estimación de parámetros de diseño	.75
	1.	Selección de los periodos de diseño	.75
	2.	Proyección poblacional	.75
	3.	Demanda poblacional del recurso	.77
	4.	Estimación de la capacidad de la fuente	.79
	L. A	análisis para la selección del sistema	.80
	M.	Diseño del sistema de tratamiento	.83
C	APÍTU	JLO IV: RESULTADOS Y ANÁLISIS	85
	A.	Determinación de los aspectos críticos de estudio	85
	B.	Encuesta a la comunidad	86

1.	Datos generales	86
2.	Percepción del servicio	87
3.	Percepción de la problemática	88
4.	Disposición al proyecto	89
C.	Caracterización de la fuente de captación	90
1.	Análisis de las muestras de agua	91
2.	Modelación de caudal de la quebrada	92
D.	Análisis de oferta y demanda del recurso	93
1.	Oferta actual de agua potable	93
2.	Demanda actual de agua potable	96
3.	Cálculo de la dotación promedio estimada	97
4.	Comparación teórica de la oferta y la demanda actual	98
E. E	Estimación de parámetros de diseño	99
1.	Proyección poblacional	99
2.	Demanda futura del recurso hídrico	100
3.	Estimación de la capacidad de la fuente	102
F. A	Análisis para selección del sistema	103
1.	Selección del tipo de planta	103
2.	Selección de la alternativa.	104
G.	Diseño del sistema de potabilización	108
1.	Sistema de captación.	109
2.	Tanque de captación	111
3.	Filtro Grueso Dinámico.	111
4.	Filtro Lento en Arena.	114
H.	Planteamiento del costo del proyecto	117
CAPÍTU	ULO V: CONCLUSIONES	119
A.	Recomendaciones	120
B.	Limitaciones	121
REFER	ENCIAS BIBLIOGRÁFICAS	122
APÉND	DICES	129
APÉN	NDICE 1: ENTREVISTA	130
APÉI	DICE 2: ENCUESTA	136

APENDICE 3: ZONIFICACION Y EDIFICACIONES SELECCIONADAS	.142
APÉNDICE 4: APLICACIÓN DE LAS ENCUESTAS	. 146
APÉNDICE 5: RESULTADOS DE LAS ENCUESTAS	.147
APÉNDICE 6: MUESTREOS	.150
APÉNDICE 7: ANÁLISIS DE SIGNIFICANCIA PARA LOS PRINCIPIOS BÁSI DEL SERVICIO DE AGUA POTABLE	
APÉNDICE 8: PROYECCIÓN POBLACIONAL Y CAUDALES Qmd, QMD y C	_
APÉNDICE 9: TERRENO PARA CONSTRUCCIÓN DEL SISTEMA	. 159
APÉNDICE 10: ANÁLISIS PARA LA SELECCIÓN DEL SISTEMA TRATAMIENTO	
APÉNDICE 11: FÓRMULAS PARA EL DISEÑO DEL SISTEMA	. 163
1. Sistema de captación	. 163
2. Tanque de captación	. 170
3. Filtro Grueso Dinámico	. 170
4. Filtro Lento en Arena	. 176
APÉNDICE 12: MEMORIA DE CÁLCULO	.181
APÉNDICE 13: COSTOS	. 194
ANEXOS	. 195
ANEXO 1: RESULTADOS ANÁLISIS DE MUESTRAS DE AGUA	. 196
ANEXO 2: BALANCE HÍDRICO DE LA ASADA SAN PEDRO	197

ÍNDICE DE FIGURAS

Figura 1.	Problemática del recurso hídrico identificada en la comunidad de San Pedro	de
San Marcos d	le Tarrazú	20
Figura 2.	Interrelación entre características locales y diseño del sistema. [26]	31
Figura 3.	Esquema general de un sistema de abastecimiento de agua potable. [27]	33
Figura 4.	Vista de planta y corte de una toma de fondo. [30]	34
Figura 5.	Corte de planta y longitudinal. (a) Desarenador. (b) Sedimentador. [32]	35
Figura 6.	Esquema general del proceso de tratamiento en una planta de potabilizac	ión
convencional	l de agua. [34]	37
Figura 7.	Esquema general del proceso de tratamiento en una planta FiME. [38]	40
Figura 8.	Modelo para la selección de un sistema de tratamiento de agua por filtración	en
múltiples eta	pas, FiME. [39]	41
Figura 9.	Esquema isométrico de un FGDi. [39]	42
Figura 10.	Esquema isométrico de un (a) FGAC y (b) FGAS. [39]	43
Figura 11.	Esquema básico de un FLA. [39]	44
Figura 12.	Jerarquía simple. [44]	49
Figura 13.	Método de estandarización. (a) Indicadores de las alternativas.	(b)
Normalizació	ón de los indicadores. [44]	49
Figura 14.	Matriz de juicios de importancia. [44]	51
Figura 15.	Diseño de la investigación	53
Figura 16.	Matriz de valoración de la criticidad por zonas	56
Figura 17.	Ubicación de la ASADA San Pedro de San Marcos de Tarrazú	60
Figura 18.	Actividades realizadas en las visitas de campo	64
Figura 19.	Ubicación de los puntos de muestreo	66
Figura 20.	Medición de pH y temperatura	67
Figura 21.	Metodología de aplicación de encuestas	72
Figura 22.	Zonas de división del poblado	74
Figura 23.	Opciones de sistema de tratamiento. (a) Configuración de los trenes	de
tratamiento.	(b) Configuración de la tubería de aducción. [39]	81
Figura 24.	(a) Cantidad de personas por lugar de habitación. (b) Conocimiento sobre	el
ente que pres	ta el servicio	86
Figura 25.	Percepción del servicio de abastecimiento. (a) Según la calidad del agua.	(b)
Según la can	tidad de agua	87
Figura 26.	Percepción del servicio. (a) Según la continuidad del servicio. (b) Según	la
confianza del	l usuario hacia el servicio	87
Figura 27.	Percepción de la problemática. (a) Usuarios que conocen casos de personas q	ue
no han recibi	ido del servicio. (b) Frecuencia con la que perciben que sucede esta situación	ón.
	88	
Figura 28.	Personas que cuenta con tanque de almacenamiento en su propiedad	89
Figura 29.	Relación de mayor disponibilidad de agua con el desarrollo económico de	
comunidad.		

Figura 30.	gura 30. Disposición a pagar para la implementación de un nuevo sistema9				
Figura 31.	Comportamiento del caudal aforado en el punto #2 y extrapolados para el punto				
#1 durante el	periodo de octubre 2020 a noviembre del 202193				
Figura 32.	Comportamiento del caudal promedio mensual de las nacientes Chuleta #3,				
Chuleta #2, V	Vicente Rojas y Roque Mora del periodo 2018-202194				
Figura 33.	Proyección poblacional para el poblado de San Pedro de Tarrazú de 2020 al				
2045.	100				
Figura 34.	Clasificación jerárquica. (a) Clasificación de los aspectos de valoración. (b)				
Clasificación	de los criterios de valoración				
Figura 35.	Propuesta de diseño para el sistema de captación de agua cruda con bocatoma				
de fondo. (a)	Vista en planta. (b) Corte canal de aducción. (c) Corte cámara de recolección.				
	110				
Figura 36.	Vista en planta de la propuesta de diseño del Filtro Grueso Dinámico 112				
Figura 37.	Corte de la propuesta de diseño del Filtro Grueso Dinámico				
Figura 38.	Vista en planta de la propuesta de diseño del Filtro Lento en Arena 115				
Figura 39.	Corte de la propuesta de diseño del Filtro Lento en Arena				

ÍNDICE DE CUADROS

Cuadro 1.	Entes operadores del servicio a nivel nacional
Cuadro 2.	Estimación general de cobertura y calidad de agua para el 2017
Cuadro 3.	Parámetros de control de calidad según los niveles de control establecidos en
la reglamenta	ación30
Cuadro 4.	Factores para la valoración de aspectos específicos de sistemas de tratamiento
	32
Cuadro 5.	Válvulas y sus utilidades en los sistemas de abastecimiento
Cuadro 6.	Valores máximos para parámetros de calidad de agua cruda
Cuadro 7.	Valores máximos para parámetros de calidad de agua cruda39
Cuadro 8.	Clasificación de fuentes según rango de calidad
Cuadro 9.	Valores de eliminación reportados
Cuadro 10.	Valores de eliminación reportados
Cuadro 11.	Valores de eliminación reportados
Cuadro 12.	Escala de Saaty para la valoración de pares
Cuadro 13.	Condiciones básicas del servicio y criterios de valoración
Cuadro 14.	Criterios para la evaluación de la criticidad de los aspectos
Cuadro 15.	Criterios para la evaluación de la criticidad de los aspectos
Cuadro 16.	Intervalos de significancia
Cuadro 17.	División territorial administrativa del distrito San Marcos
Cuadro 18.	Resumen de la información general de la ASADA60
Cuadro 19.	Comité de la Asociación Administradora de Acueductos de San Pedro de
Tarrazú 2021	-2023
Cuadro 20.	Cantidad de usuarios por tipo de tarifa de la ASADA San Pedro 2021 61
Cuadro 21.	Cantidad de abonados por sector
Cuadro 22.	Caudal promedio por captación 2019-2020
Cuadro 23.	Criterios estándar para la selección del punto de muestreo
Cuadro 24.	Equipos utilizados para el muestreo y la medición parámetros
Cuadro 25.	Metodología de análisis para parámetro N1 y N4
Cuadro 26.	Periodos de diseño para componentes del sistema de abastecimiento 75
Cuadro 27.	Datos utilizados para el cálculo de la tasa de crecimiento
Cuadro 28.	Factores de demanda máxima
Cuadro 29.	Criterios del método porcentual para la determinación del caudal ambienta
para cuerpos	de agua superficial79
Cuadro 30.	Criterios para la selección de la planta de potabilización a diseñar80
Cuadro 31.	Criterios para la selección de tecnologías de tratamiento
Cuadro 32.	Indicadores valorados para cada criterio de valoración
Cuadro 33.	Requisitos de cumplimiento de parámetros de diseño para bocatoma de fondo
	83
Cuadro 34.	Criterios de diseño según CINARA-IRC83
Cuadro 35.	Criterios de diseño según CINARA-IRC84

Cuadro 36.	Nivel de riesgo asociado a cada principio85
Cuadro 37.	Análisis de laboratorio de los parámetros N4 para las muestras de agua
superficial de	e la quebrada (sin nombre) para captación periodo 202191
Cuadro 38.	Análisis de laboratorio de los parámetros fisicoquímicos y microbiológicos
para el agua	el agua superficial92
	Caudales de importancia para las nacientes de la ASADA San Pedro del
-	3-2021
Cuadro 40.	Caudal promedio mensual total de las 14 fuentes para los periodos 2018-2021 95
Cuadro 41.	Consumo promedio mensual por sector catastro de la ASADA del periodo
2020-2021	97
Cuadro 42.	Comparación de la oferta de la demanda del recurso hídrico para el año 2020-
2021	98
Cuadro 43.	Proyección poblacional para el poblado de San Pedro de San Marcos de
Tarrazú	100
Cuadro 44.	Caudal medio diario, máximo diario y máximo horario proyectados hasta el
año 2045 par	ra cada dotación
Cuadro 45.	Balance de oferta y demanda proyectados
Cuadro 46.	Balance de oferta y demanda proyectados son la inclusión de la fuente de agua
superficial	103
Cuadro 47.	Comparación de tipos de planta de potabilización
Cuadro 48.	Porcentaje de importancia obtenido para cada criterio de selección105
Cuadro 49.	Porcentaje de valoración obtenido para cada alternativa
Cuadro 50.	Análisis de laboratorio de los parámetros fisicoquímicos y microbiológicos
para el agua	de la naciente Toma #1 de periodo 2020-2021107
Cuadro 51.	Resumen de las dimensiones definidas para la bocatoma de captación 109
Cuadro 52.	Resumen de las dimensiones definidas para el tanque de captación111
Cuadro 53.	Resumen de las dimensiones definidas para el FGDi
Cuadro 54.	Resumen de las dimensiones definidas para el FLA
Cuadro 55.	Costos de inversión inicial aproximado por unidad constructiva
Cuadro 56.	Costos aproximados de operación de mantenimiento

ACRÓNIMOS

ARESEP Autoridad Reguladora de los Servicios Públicos

ASADA Asociaciones Administradoras de los Sistemas de Acueductos y

Alcantarillados Sanitarios Comunales

AyA Instituto Costarricense de Acueductos y Alcantarillados

CEQIATEC Centro de Investigación y de Servicios Químicos y microbiológicos

CINARA Instituto de Investigación y Desarrollo en Abastecimiento de Agua,

Saneamiento Ambiental y Conservación del Recurso Hídrico

CLOCSAS Confederación Latinoamericana de Organizaciones Comunitarias de

Servicios de Agua y Saneamiento

CONAFLU Confederación de Federaciones/Ligas y Uniones de ASADAS

DAP Disposición a pagar

FG Filtración Gruesa

FGDi Filtro Grueso Dinámico

FiME Filtración Múltiples Etapas

FLA Filtración Lenta en Arena

GPS Sistema de Posicionamiento Global

IMN Instituto Meteorológico Nacional

INEC Instituto Nacional de Estadística y Censos

MIDEPLAN Ministerio de Planificación Nacional y Política Económica

MINAE Ministerio de Ambiente y Energía

MS Ministerio de Salud

OCSAS Organizaciones Comunitarias de Servicios de Agua y Saneamiento

ODS Objetivos del Desarrollo Sostenible

O&M Operación y Mantenimiento

OMS Organización Mundial de la Salud

ONU Organización de las Naciones Unidas

PAA Programa de Abastecimiento de Agua

pH Potencial de hidrogeno

PNUD Programa de Naciones Unidas para el Desarrollo

PTAP Planta de tratamiento de aguas potables

PVC Cloruro de Polivinilo

QMD Caudal Máximo Diario

Qmd Caudal medio diario

QMH Caudal Máximo Horario

SENARA Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento

SINAC Sistema Nacional de Áreas de Conservación

TEC Instituto Tecnológico de Costa Rica

UCR Universidad de Costa Rica

UNED Universidad Estatal a Distancia

UNT Unidades Nefelométricas de Turbiedad

UNIDADES

μg/L Microgramos por litro

μS/cm Micro siemens por centímetros

mg/L Miligramos por litro.

U Pt-Co Unidades de platino cobalto

UNT Unidades nefelométricas de turbiedad

°C Grados Celsius

NMP/100 mL Número más probable de bacterias en 100 mililitros de agua

UFC/100mL Unidades formadoras de colonias en 100 mililitros de agua

UFC/mL Unidades formadoras de colonias en un mililitro de agua

RESUMEN

Los eventos meteorológicos producto del cambio climático y el grado de vulnerabilidad que presenta el recurso hídrico, por su tendencia a contaminarse con facilidad, hacen cada vez más importante abordar la problemática del abastecimiento de agua potable. En Costa Rica los sistemas de acueductos rurales siguen presentando una gran cantidad deficiencias; de forma que se hace necesario plantear y ejecutar soluciones a corto, mediano y largo plazo que permitan el mejoramiento de la calidad de vida de los en las comunidades. El poblado de San Pedro de San Marcos de Tarrazú se ha visto afectado por la falta de cobertura del servicio de agua potable; ya que la ASADA no cuenta con las capacidades estructurales para prestárselo a toda la población. Con el objetivo de generar posibles soluciones a dicha problemática se planteó proponer un sistema de potabilización de agua que permita captar agua superficial y así asegurar que se solventen las necesidades. Para esto, se optó por analizar la calidad (física, química y microbiológica) del agua a captar y se evaluar la cantidad necesaria del recurso para abastecer la población contemplando la cantidad de agua generada por las nacientes que abastecen actualmente la comunidad. Además, se realizó una encuesta a los abonados del acueducto con el fin de conocer su percepción sobre los principios básicos del servicio de abastecimiento que presta la ASADA y se entrevistaron a las autoridades del acueducto para determinar los aspectos de mayor relevancia a contemplar en la selección de la propuesta de diseño. El sistema seleccionado abarcó el dimensionamiento de una bocatoma de captación de agua superficial, un tanque de almacenamiento, un filtro grueso dinámico (FGDi) y un filtro lento en arena (FLA). Finalmente, se proyectó un aproximado de los costos constructivos y de operación y mantenimiento necesarios para su funcionamiento; de los cuales se estableció un recargo de \$\psi\$ 900, 00 colones mensuales en la factura del servicio para la recuperación de la inversión en 12 años.

Palabras clave: FiME, ASADA, Costa Rica, potabilización, oferta y demanda de agua, escasez de recurso hídrico.

ABSTRACT

Climatic events resulting from climate change and the degree of vulnerability presented by water resources, due to their tendency to become easily contaminated, make it increasingly important to address the problem of drinking water supply. In Costa Rica, the rural aqueduct systems continue to present many deficiencies; so that it is necessary to propose and execute solutions in the short, medium and long term that allow the improvement of the quality of life of those in the communities. The town of San Pedro of San Marcos of Tarrazú has been affected by the lack of coverage of the drinking water service; since the ASADA does not have the structural capacities to lend it to the entire population. To generate possible solutions to this problem, it was proposed a plan of water purification system that allows capturing surface water and thus ensure that the needs are met. For this, it was decided to analyze the quality (physical, chemical and microbiological) of the water to be captured and to evaluate the necessary amount of the resource to supply the population, contemplating the amount of water generated by the springs that currently supply the community. In addition, a survey was conducted of the subscribers of the aqueduct to know their perception of the basic principles of the supply service provided by the ASADA and the authorities of the aqueduct were interviewed to determine the most relevant aspects to consider in the selection of the design proposal. The selected system included the sizing of a surface water intake, a storage tank, a dynamic coarse filter (FGDi) and a slow sand filter (FLA). Finally, an estimate of the construction and operation and maintenance costs necessary for its operation was projected; of which a surcharge of $\not \in 900.00$ colones per month was established on the service bill for the recovery of the investment in 12 years.

Keywords: FiME, ASADA, Costa Rica, water purification, water supply and demand, water resource scarcity.

CAPÍTULO I: INTRODUCCIÓN

El consumo de agua presenta una alta tasa de crecimiento a nivel global, se estima que aproximadamente un 1% por año desde la década de 1980 [1]. Este crecimiento se debe principalmente a las altas demandas del recurso en los países desarrollados y de las economías emergentes, que a pesar de estar muy por debajo han logrado transformar significativamente sus estilos de vida y, por lo tanto, en comparaciones históricas, sus índices se muestran bastante elevados. Todo esto promovido, adicionalmente, por la convergencia entre el crecimiento poblacional, el progreso socioeconómico y los modelos de consumo [2]. De modo que se espera que la demanda continúe creciendo de manera similar hasta el 2050, provocando un aumento de entre un 20% y un 30% por encima de los consumos actuales [1].

En cuanto a las áreas de consumo la agricultura, la cual comprende la irrigación, la ganadería y los procesos agrícolas específicamente, es la actividad que consume mayor cantidad de agua, de forma que representa el 69% de las extracciones anuales a nivel mundial, por otra parte, la industria representa el 19%, y las actividades domésticas el 12% [1].

Sin embargo, la problemática de la escasez de agua no se deriva únicamente de las demandas del recurso; los efectos del cambio climático, específicamente las condiciones hidrometeorológicas extremas; y la vulnerabilidad a la contaminación, aumentan significativamente el riesgo de que cada vez una mayor cantidad de personas no puedan acceder al abastecimiento de agua segura [3].

En Costa Rica la mala gestión sobre el manejo de las cuencas hidrográficas se debe principalmente a la contaminación de las fuentes de agua producto de la disposición de aguas residuales en los afluentes, ríos y quebradas, de manera que estos presentan un deterioro significativo de su calidad, y, por lo tanto, de sus capacidades para su aprovechamiento como suministro de agua potable [4].

Las raíces de esta inadecuada disposición se sientan en la falta de control e intervención por parte de los entes reguladores, las fallas que presentan los sistemas de saneamiento y la insuficiencia de recursos necesarios para realizar acciones integrales de educación y cultura hídrica a lo largo del territorio nacional [4].

De forma que, a cuanto más ineficientes son los procesos de saneamiento, más vulnerables a la contaminación se vuelven los cuerpos de agua y mayor importancia toma la implementación de sistemas de potabilización que garanticen la inocuidad del recurso abastecido y la cobertura total de la población [5].

A pesar de que los porcentajes de agua no potable suministrada por las Asociaciones Administradoras de Acueductos Rurales y Saneamiento (ASADAs) han disminuido, aún para el 2017 un 15% de estos acueductos no proveían de agua segura a las comunidades, mientras que para los demás operadores no se superaba el 5%. Esto último, es solo una referencia puntual a la complejidad que abarca las diversas problemáticas a las que se enfrentan los entes abastecedores de agua rurales del país [6].

En cuanto a la cobertura y cantidad del recurso suministrado, los retos siguen siendo representativos; ya que la población continúa creciendo y las inversiones para la implementación de sistemas que logren cubrir la creciente demanda siguen siendo ineficientes. De forma que, todavía, un importante porcentaje de la población a nivel nacional utiliza agua para consumo humano sin controles de calidad y desinfección [6].

Particularmente, y como parte de las necesidades para el cumplimiento de los objetivos propuestos, relacionados con la Gestión Integral del Recurso Hídrico (GIRH), en el proyecto interinstitucional: "El recurso hídrico, el uso del suelo y la transformación social en la Cuenca Alta y Media del Río Parrita: La necesidad de una incidencia política", llevado a cabo por la Universidad de Costa Rica (UCR), el Tecnológico de Costa Rica (TEC) y la Universidad Estatal a Distancia (UNED), se identificó la de generar soluciones a la problemática de abastecimiento de agua potable de la comunidad de San Pedro de San Marcos de Tarrazú. En la Figura 1 se muestra un resumen de los factores relacionados a esta problemática señalados por la ASADA de la localidad.

Figura 1. Problemática del recurso hídrico identificada en la comunidad de San Pedro de San Marcos de Tarrazú.

La deficiencia en el servicio de abastecimiento de agua en la localidad está directamente relacionada con los principios de cantidad y cobertura del recurso; ya que, según lo exponen las autoridades de la ASADA, producto de la vulnerabilidad de las fuentes de agua en las épocas de estiaje y del crecimiento poblacional, las captaciones actuales dispuestas por el acueducto no consiguen suplir por completo la demanda, lo que desencadena inconvenientes sociales, económicos y de salud pública para la población.

Es por esto que, se planteó la necesidad de elaborar un estudio que permitiera proponer el diseño de un sistema de potabilización de agua alimentado por una fuente superficial que además de aumentar la oferta del recurso funcione como un recurso de contención ante los eventos naturales a los que son vulnerables las tomas con el que cuenta la comunidad.

Objetivo general

Proponer un sistema de potabilización de agua para la comunidad de San Pedro de San Marcos de Tarrazú, San José de Costa Rica.

Objetivos específicos

- 1. Evaluar la cantidad y calidad del agua de la quebrada (sin nombre) seleccionada para la captación con respecto a características físicas, químicas y microbiológicas.
- 2. Determinar la situación actual del servicio de abastecimiento en relación con su capacidad de suplir las necesidades de oferta y demanda.
- 3. Proponer un sistema de potabilización de agua que obedezca a las exigencias planteadas por la comunidad y sus representantes y las determinadas a partir de la situación actual del recurso en la localidad.
- 4. Plantear un estimado de costos necesarios para la implementación del diseño propuesto.

CAPÍTULO II: MARCO DE REFERENCIA

En el presente capítulo se definen los criterios necesarios para la comprensión adecuada de los análisis realizados en materia de lo que comprende este proyecto, de forma que se pueda comprender el contexto del mismo y los tópicos que abarca.

A. Recurso hídrico

El recurso hídrico en la actualidad se ha convertido en uno de los mayores aspectos de influencia en términos de desarrollo, ambiente, salud y bienestar; ya que su carácter como recurso limitado, la gran de manda global y su vulnerabilidad ante la contaminación y los cambios climáticos, genera problemáticas extendidas de disponibilidad y distribución [7].

Para América Latina y el Caribe se estimó, en 2017, que el acceso al agua potable se encontraba alrededor de un 74%; no obstante, este porcentaje se define en términos de conexiones instaladas dejando a un lado necesidades de continuidad, calidad y acceso [8].

Tradicionalmente el recurso hídrico en Latinoamérica enfrenta problemáticas asociadas al alto e irregular crecimiento poblacional que provoca variaciones en los esquemas de demanda, a los frecuentes cambios de uso de suelo cerca de las cuencas de suministro y la intensidad de los eventos naturales; entre estas la tendencia a la estacionalidad, como efecto del cambio climático, que disminuye las capacidades de abastecimiento [8]. Por lo que se vuelve indispensable desarrollar, tecnologías y métodos científicos que aceleren la implementación de medidas eficientes que combinen novedad, exploración e ingenio [9].

Sin embargo, como parte de un sistema social y cultural, la inclusión de este tipo de variables asegura que las técnicas sean realmente eficientes y seguras [10]. Es por esto que se hace necesario incorporar paulatinamente dentro de la cultura hídrica de las comunidades prácticas de sostenibilidad del recurso y conceptos de seguridad; de forma que las mejoras obtenidas por la implementación de sistemas de abastecimiento vayan de la mano de una participación ciudadana que asegure la coordinación tanto para el correcto funcionamiento de las tecnologías como para la exigencia de servicios seguros y de calidad [10].

Así, este enfoque estratégico sienta sus bases en asegurar la inclusión y cumplimiento de los principios básicos del servicio de abastecimiento brindado a las diferentes localidades; entre

estos se encuentran: calidad, cantidad, continuidad, cobertura, confiabilidad, costo y sostenibilidad [9].

Por otra parte, se establecen conceptos relacionados al recurso, necesarios para evaluar y comprender las condiciones específicas de una localidad y los sistemas aplicados o aplicables [9], entre estos se encuentran:

- Fuente de abastecimiento: "espacio natural del cual se derivan los caudales de agua, de los cuales se abastece la población. Pueden ser superficiales y subterráneos" [11].
- Agua cruda: se refiere al agua que ha sido captada de alguna fuente de abastecimiento y no cuenta con ningún tipo de tratamiento para el mejoramiento de su calidad [12].
- Agua tratada: es el agua cuyas características han sido transformadas por medio de procesos de tratamiento [13].
- **Agua potable:** hace referencia al "agua tratada que cumple con las disposiciones de valores máximos admisibles estéticos, organolépticos, físicos, químicos, biológicos, microbiológicos y radiológicos", estipulados en la reglamentación vigente, de forma que al ser consumida no genera daños en la salud [13].
- **Agua para consumo humano**: agua que, independientemente de los niveles de calidad que posea, su finalidad es ser utilizada por el ser humano para la ejecución de diversas actividades domésticas o productivas [14].
- **Agua segura:** agua que se obtiene bajo la combinación de los diferentes principios básicos del servicio de abastecimiento [15].
- Cultura hídrica: "son las costumbres, las actitudes y los valores compartidos en la dupla individuo-sociedad, en relación con la comprensión de lo hídrico" [16].

- Caudal ambiental o ecológico: cantidad de agua que debe correr en un cauce de dominio público para mantener condiciones básicas para la salud del ecosistema y otras actividades [17].
- **Dotación**: "cantidad de agua asignada a una población o a un habitante para su consumo en cierto tiempo" [18].

1. Cambio climático

Los principales efectos del cambio climático sobre el recurso hídrico se sintetizan en los daños que sobrellevan la cantidad, distribución y calidad de este, producto tanto del aumento de frecuencia e intensidad de las lluvias como a las sequías prolongadas [19].

Por un lado, este aumento en las precipitaciones genera un incremento en la erosión de suelos por arrastre de sedimentos que enturbian los ríos, lagos, entre otros; la reducción de reservas de agua superficial y subterránea; y destrucción de la infraestructura de abastecimiento lo que aumenta el costo del servicio y la frecuencia y duración de los racionamientos de agua [19]. Y con respecto a las épocas de sequía también se observa una tendencia a racionamientos del servicio más prologados con el fin de preservar la mayor cantidad del recurso para alcanzar a atravesar las temporadas [19].

Así mismo, la disminución del flujo en las fuentes y las altas temperaturas provocan que el recurso presente mayor vulnerabilidad a contaminarse; por lo que su calidad disminuye [19].

Esta variabilidad climática se deriva a su vez en el aumento de la cantidad y severidad de las tormentas tropicales que provocan desastres naturales con implicaciones tanto ambientales como sociales [19].

Es por esto, que el planteamiento de los Objetivos de Desarrollo Sostenible (ODS) apelan a la implementación de acciones orientadas a solventar y contrarrestar los daños generados y prevenir las afectaciones. El ODS 6 plantea la necesidad de "asegurar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos". De forma que se vuelve indispensable la ejecución de una alta inversión en términos de sistemas de abastecimiento y

los diferentes aspectos que se relacionan; para que se logren alcanzar niveles de cumplimiento satisfactorios [8].

De igual forma, el ODS 13 manifiesta la necesidad de la realización de acciones efectivas por el clima, dentro de las que se encuentran garantizar la permanencia de recurso hídrico frente a las amenazas que plantean los efectos directos del cambio climático. En relación con estas, los servicios y sistemas de infraestructura se vuelven fundamentales para garantizar la resiliencia y disminuir los impactos [8].

Es por esto que es esencial que estos sistemas tengan un tiempo de vida alto y una estructura resistente con capacidades proyectadas a las posibles condiciones futuras que deberá afrontar [8].

2. Contexto del recurso en Costa Rica

Si bien Costa Rica se ha caracterizado a nivel internacional por disfrutar de altos niveles de cobertura en los servicios de abastecimiento de agua potable, no está libre presentar deficiencias en cuanto a la prestación, organización, planificación e inversión, que a largo plazo representan disminuciones importantes en la calidad de los sistemas [20].

Según el Análisis Sectorial de Agua Potable y Saneamiento realizado por el Instituto Costarricense de Acueductos y Alcantarillados (AyA) junto con la Organización Panamericana de la Salud/ Organización Mundial (OPS/OMS) en el 2002, las principales debilidades que presenta el país en cuanto a la gestión de los acueducto son [20]:

- Las deficiencias en el control e inspección de la calidad del agua, mediante un sistema integral y continuo.
- La carencia de fiscalización por parte del AyA a las organizaciones comunitarias rurales.
- La falta de un sistema de financiamiento consistente para los acueductos rurales.

Por otra parte, debido a los altos índices de cobertura del servicio, el país cuenta con una estructura administrativa compleja, lo cual también representa un impedimento al correcto funcionamiento de esta; ya que existe una tendencia a "la duplicación de responsabilidades entre varias instituciones, y, por otra parte, la ausencia de un sistema de planificación y

desarrollo del sector salud, dentro del subsector agua potable y saneamiento" [20]. Los entes encargados de la regulación y fiscalización del servicio son:

- Autoridad Reguladora de Servicios Públicos (ARESEP).
- Ministerio de Ambiente y Energía (MINAE).
- Ministerio de Salud (MS).
- Ministerio de Agricultura y Ganadería (MAG).
- Instituto Costarricense de Acueductos y Alcantarillados (AyA).
- Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).
- Instituto de Normas Técnicas de Costa Rica (INTECO).

En el Cuadro 1 se presentan las instituciones operadoras del servicio que lo cubren a nivel nacional.

Cuadro 1. Entes operadores del servicio a nivel nacional

Operador	Descripción
Instituto Costarricense de Acueductos y Alcantarillados (AyA)	Su función está definida en términos de "dirigir y fijar políticas, establecer y aplicar normas, realizar y promover el planeamiento, financiamiento y desarrollo y resolver todo lo relacionado con el suministro de agua potable" [20].
Municipalidades	Mantienen a su cargo las funciones de administración de los sistemas de abastecimiento con los que se contara antes de la creación del AyA [20].
Empresa de Servicios Públicos de Heredia S. A. (ESPH)	Es una sociedad anónima conformada por corporaciones municipales de la región de Heredia con el objetivo de "unificar esfuerzos para satisfacer las necesidades de agua potable y asumir la conservación, administración y explotación racional de los recursos hídricos en la región de Heredia" [20].
Asociaciones Administradoras de Acueductos y Alcantarillados (ASADAs)	Son organizaciones locales de administración comunitaria de acueductos rurales amparados y tutelados por el AyA. Su fin es administrar, operar y mantener en buenas condiciones el acueducto y el alcantarillado sanitario de acuerdo con las normas y políticas emitidas por el AyA [20].

Además, en el Cuadro 2 se presentan los porcentajes de cobertura para cada institución operadora.

Cuadro 2. Estimación general de cobertura y calidad de agua para el 2017

Operador	No. Acueductos	% Población cubierta	% Población con agua potable	% Población con agua no potable
AyA	204	47,0	99,0	1,0
Municipalidades	237	12,6	95,2	4,8
ESPH	14	4,6	100	0
ASADAs	1267	11,8	85,1	14,9

Nota: El porcentaje de la población cubierta comprende las regiones con servicio. [6].

3. Normativa

En relación con la normativa costarricense respectiva a los aspectos que rigen el recurso hídrico, a continuación, se exponen algunos de los principales instrumentos (leyes, reglamentos y decretos) dirigidos a la materia de este proyecto.

- Ley de Aguas No. 276. (1942)
- Ley General de la Salud No. 5395. (1973)
- Ley del Sistema Nacional para la Calidad No. 8279. (2002)
- Reglamento para la Calidad del Agua Potable No. 38924-S-MS. (2015)
- Reglamento de las Asociaciones Administradoras de Acueductos y Alcantarillados Comunales No. 32529-S-MINAE. (2005)
- Reglamento para la Evaluación y Clasificación de la Calidad de Cuerpos de Agua Superficiales Decreto Ejecutivo N°33903. (2007)
- Política Nacional de Agua Potable de Costa Rica 2017-2030. (2016)
- Plan Nacional de Gestión Integrada de los Recursos Hídricos. (2008)
- Norma técnica para diseño y construcción de sistemas de abastecimiento de agua potable, de saneamiento y pluvial. Memorando PRE-DNC-2017-00057. (2017)

4. Calidad de agua

El establecimiento del cumplimiento o incumplimiento de la calidad del agua está dispuesto en el Reglamento para la calidad del Agua Potable; ya que este "tiene por objetivo, establecer los límites máximos permisibles de parámetros físicos, químicos y microbiológicos para este recurso, a fin de garantizar su inocuidad y la salud de la población" [13].

De forma que el término está basado en la cuantificación de indicadores físicos, químicos y microbiológicos, entre los cuales se encuentran:

• Físicos:

- 1. Turbiedad: "La turbiedad es originada por las partículas en suspensión o coloides (arcillas, limo, tierra finamente dividida, etcétera); es decir, aquellas que, por su tamaño, se encuentran suspendidas y reducen la transparencia del agua en menor o mayor grado. Su medición se realiza mediante un turbidímetro y las unidades utilizadas son, por lo general, unidades nefelométricas de turbiedad (UNT)" [21].
- 2. Color: "Existen dos tipos de color: color verdadero y color aparente. El color verdadero depende sólo del agua y la materia suspendida y disuelta. Una vez eliminado el material suspendido, el color remanente se le conoce como color aparente, producto de suspensiones no naturales" [22].
- 3. Temperatura: "Es uno de los parámetros físicos más importantes en el agua, pues por lo general influye en el retardo o aceleración de la actividad biológica, la absorción de oxígeno, la precipitación de compuestos, la formación de depósitos, la desinfección y los procesos de mezcla, floculación, sedimentación y filtración" [22].
- 4. Olor y sabor: Funcionan como indicadores de aceptación por parte del usuario general; ya que se asocial la ausencia de olor y de sabor con la de contaminantes [22].

Químicos:

 Potencial de hidrógeno (pH): "Es uno de los parámetros más importantes de la calidad del agua, ya que determinados procesos químicos ocurren únicamente en un determinado pH". Su evaluación continua en las diferentes fases del sistema de potabilización garantiza que no ocurren reacciones no deseadas o la presencia de algún contaminante [22]. 2. Conductividad: "La conductividad eléctrica del agua es la capacidad que tienen las sales inorgánicas presentes en el agua para conducir corriente eléctrica. Es por ello, que es un perfecto indicador de la cantidad de sales disueltas, pues a mayor cantidad de éstas, mayor será la conductividad del agua" [22].

• Otros:

También se pueden realizar análisis sobre la presencia de compuestos o contaminantes específicos para determinar si el agua está libre o no de estos. Específicamente, estos tres compuestos están clasificados como insecticidas o acaricidas. La peligrosidad de este tipo de sustancias se relaciona con sus efectos cancerígenos y mutagénicos a largo plazo [23].

- 1. Organoclorados: pueden ser "derivados ciclodiénicos (aldrin, dieldrin, endosulfan, mirex), derivados del 2,2-difeniletano (DDT, dicofol), derivados del ciclohexano (lindano), policloroterpenos o clorotalonil" [23].
- 2. Organofosforados: Pueden ser "ésteres fosfóricos: ortofosfaftos, pirofosfatos (TEPP, diclorvos), ésteres tiofosfóricos: fosfotionatos, fosfotiolatos (paratio, fenitrotion), ésteres diotiofosfóricos (dimetoato, metidation, malarion), amidas del ácido ortofosfórico, amidas del ácido pirofosfórico, fosfonatos (triclorfon) o tiofosfinatos" [23].
- 3. Carbamatos: compuesto por "N-metil carbamatos (carbaril, aldicarb) o N, N-dimetil carbamatos (dimetan,pirolan)" [23].

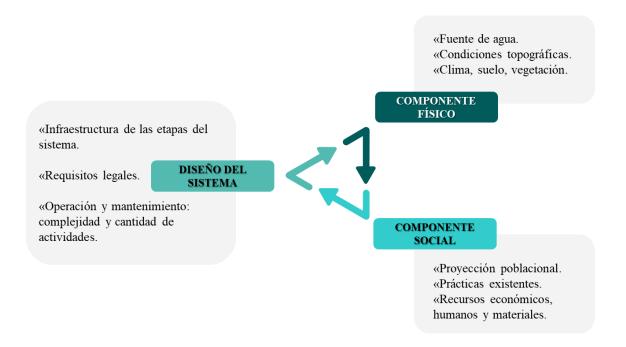
Microbiólogos:

- Coliformes fecales: "son un subgrupo de los coliformes totales, seleccionados a nivel general como indicadores de contaminación fecal debido a su relación con el grupo tifoide-paratifoide y a su alta concentración en diferentes tipos de muestras contaminadas" [24].
- 2. Escherichia coli: "Esta bacteria está presente en grandes cantidades en la microflora intestinal de las personas y animales donde suele ser inocua. Es por ello, que es el índice de contaminación fecal más adecuado" [22].

Por otra parte, el Reglamento para la calidad del Agua Potable también establece una serie de niveles de control de calidad en los que se clasifican los diferentes indicadores de calidad, conforme a los cuales se exige a llevar los controles respectivos [13]. En el Cuadro 3 se resumen dichos controles.

Cuadro 3. Parámetros de control de calidad según los niveles de control establecidos en la reglamentación

Tipo de control	Control Operativo (CO)	Nivel Primero (N1)	Nivel Segundo (N2)	Nivel Tercero (N3)	Nivel Cuarto (N4)
Descripción	Control realizado periódicamente por los entes operadores.	Programa de control básico. Evalúa la operación y mantenimiento en la fuente, el almacenamiento, la distribución.	Programa ampliado. Evalúa la operación y mantenimiento en la fuente de abastecimiento y en la red de distribución	Programa de control avanzado. Evalúa la operación y mantenimiento en la fuente de abastecimiento y en la red de distribución.	Programas ocasionales por situaciones especiales. Por identificación de riesgo inminente de contaminación.
Parámetros de control	Turbiedad Olor Cloro residual libre	Color aparente Conductividad pH Olor Temperatura Turbiedad Coliformes fecales Escherichia coli Cloro residual libre o combinado	Aluminio Calcio Cloruro Cobre Dureza total Fluoruro Hierro Magnesio Manganeso Potasio Sodio Sulfato Zinc	Amonio Antimonio Arsénico Cadmio Cromo Mercurio Níquel Nitrato Nitrito Plomo Selenio	Plaguicidas Plaguicidas organoclorados


Nota: Los entes operadores están sujetos a cumplir los parámetros establecidos. [13].

B. Generalidades de la potabilización de agua

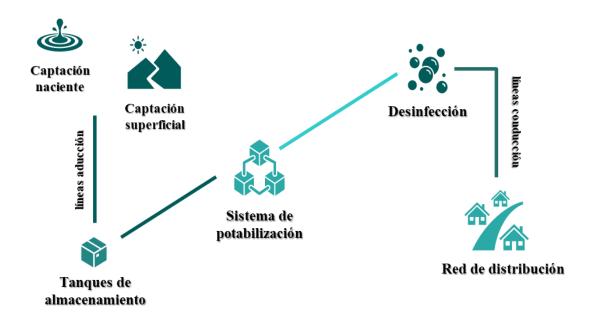
Los sistemas de potabilización de agua se pueden definir como un complejo de operaciones unitarias, que abarcan procesos físicos, químicos y bacteriológicos, seleccionados de forma

metódica para asegurar que el agua obtenida (efluente) cumpla con las necesidades de calidad demandadas [25].

Por su carácter sanitario, estas necesidades están generalmente relacionadas con condiciones higiénicas, que hacen referencia a la eliminación de patógenos presentes en el agua; y estéticas relacionadas con el tratamiento de características físicas que le puedan generar desconfianza a los usuarios [26]. Sin embargo, la complejidad que sostienen las agrupaciones sociales hace necesario abarcar también la interrelación que existe entre los diversos componentes que conforman una localidad. En la Figura 2 se describen estos elementos y su relación con el diseño del sistema de abastecimiento de agua.

Figura 2. Interrelación entre características locales y diseño del sistema. [26]

Es por esto que, para que los sistemas de potabilización cumplancon su objetivo es necesario evaluar las alternativas presentes mediante el uso de principios de factibilidad que contemplen de manera integral dichas condiciones [21]. En el Cuadro 4 se definen algunos de estos criterios.


Cuadro 4. Factores para la valoración de aspectos específicos de sistemas de tratamiento

Factor	Definición	
Contribución por remoción (FCR)	Permite evaluar la eficiencia del sistema en relación con la remoción de un contaminante específico detectado. Generalmente se calcula en términos de DQO o coliformes fecales, tomando en cuenta que a mayor eficiencia de remoción mayor es la dificultad para implementar el sistema.	
Costo inicial (FCI)	Contempla la factibilidad de aplicar un sistema en relación con la capacidad de la comunidad de cubrir con los costos de implementación; por lo que un menor costo inicial se deriva en menos dificultad para implementar dicho sistema.	
Tasa de retorno (FTR)	Relaciona los beneficios (económicos y de desarrollo, calidad de vida y salud, y mejora y ampliación) que puede percibir la comunidad al implementar un sistema con un valor que supone la recuperación de la inversión en un tiempo (años) específico, de forma que mientras mayores sean los beneficios brindados más factible se vuelve su implementación.	
Disponibilidad (FD)	Contempla la factibilidad de aplicar un sistema en relación con la capacidad de la comunidad de instalar, operar y mantener su funcionamiento de acuerdo con su cultura y capacidad técnica, contemplando que cuanto mayor sea la disponibilidad de los recursos necesarios mayor es la factibilidad de instalación.	
Aplicabilidad del tratamiento (FAT)	Reúne todos los factores evaluados para cada opción de tratamiento de forma que a mayor sea su valor más adecuado es el sistema valorado.	

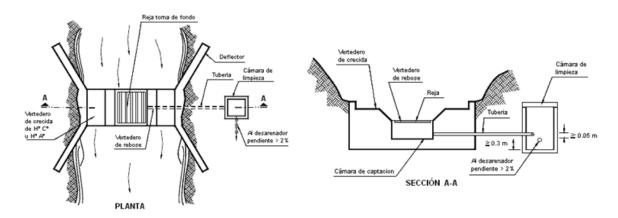
Nota: Estos factores son calculables mediante la determinación de valores específicos a las condiciones de la comunidad. [21].

No obstante, a pesar de la especificidad que se requiere en términos generales un sistema hidráulico de abastecimiento de agua potable se compone de siete etapas: (1) captación del afluente, (2) líneas de aducción, (3) obras complementarias (almacenamiento, reguladores de presión, puntos de medición, entre otros), (4) procesos de potabilización físicos y/o químicos,

(5) procesos de desinfección, (6) líneas de conducción y (7) red de distribución [27]; en la Figura 3 se muestra de forma gráfica la conexión entre estas fases.

Figura 3. Esquema general de un sistema de abastecimiento de agua potable. [27]

1. Sistema de captación


Los sistemas de captación son unidades constructivas que permiten recolectar el agua necesaria para abastecer la demanda del recurso. Estas estructuras se definen según la calidad del agua cruda, la cantidad necesaria a captar, el tipo de fuente de obtención del recurso y características topográficas del terreno [27]; en consecuencia, estas pueden clasificarse como [28]:

- De agua subterránea: tecnologías hidráulicas que permiten obtener agua de acuíferos, nacientes, drenajes o pozos poco profundos.
- De agua superficial: estos componentes captan el agua de arroyos, ríos, quebradas o lagos, entre las más comunes se encuentran la toma lateral y la de fondo.

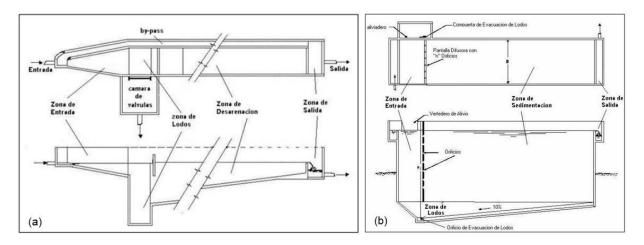
Específicamente, la toma de fondo es un sistema versátil para la captación de agua superficial; ya que permite captar agua de cursos con alta pendiente y sedimentos de

materiales gruesos. Este sistema se construye en dirección del flujo del cauce, permitiendo el paso del agua no captada, y está compuesto por una rejilla de captación que impide el paso de materiales grandes, una cámara de captación que dirige el caudal hacia una cámara de limpieza que permite realizar purgas de parte del sedimento que logró atravesar la rejilla [29].

En la Figura 4 se muestra la vista en planta y corte lateral de una bocatoma de fondo básica.

Figura 4. Vista de planta y corte de una toma de fondo. [30]

2. Sistema de aducción


Es el sistema de estructuras hidráulicas y constructivas que permiten el transporte del agua captada hasta los componentes de potabilización; ya sea directamente a procesos de desinfección o a un sistema de potabilización físico o químico previo.

Estos sistemas se clasifican según las características topográficas del sistema de abastecimiento como: por gravedad, cuando la captación se encuentra en una altura superior a la de la planta, y por bombeo, cuando la diferencia de alturas hace necesario la utilización de bombas hidráulicas. Así mismo, pueden clasificarse según su comportamiento hidráulico como: de flujo libre (utilización de canales) y de flujo a presión (utilización de tuberías) [27].

3. Pretratamiento

Los sistemas de pretratamiento de agua, como su nombre lo indica, incorporan una o varias estructuras auxiliares previas a cualquier otro proceso de potabilización del sistema con el objetivo de disminuir la cantidad de sólidos en suspensión que transporta el agua captada. Entre los diversos tipos que existen se encuentran las secuencias de rejillas de cribado, los

desarenadores y los sedimentadores. Estas unidades están definidas según el tamaño de las partículas que se debe remover por lo que se seleccionan dependiendo de las características del afluente [31]. En la Figura 5 se presentan los cortes de estos sistemas.

Figura 5. Corte de planta y longitudinal. (a) Desarenador. (b) Sedimentador. [32]

4. <u>Tanques de almacenamiento</u>

Los tanques de almacenamiento cumplen la función de asegurar un caudal de abastecimiento específico; además, también se utilizan cuando es necesario realizar bombeo. Sus dimensiones se diseñan generalmente para obtener un volumen equivalente a un día total de consumo, específicamente el día máximo [33].

Entre los más utilizados están los tanques de ferrocemento; ya que son fáciles de reparar y económicos en cuanto al costo de los materiales, y los tanques de marca registrada, generalmente diseñados con goma sintética en su interior y recubiertas de plástico, lo que los hace livianos, seguros y de fácil montaje [33].

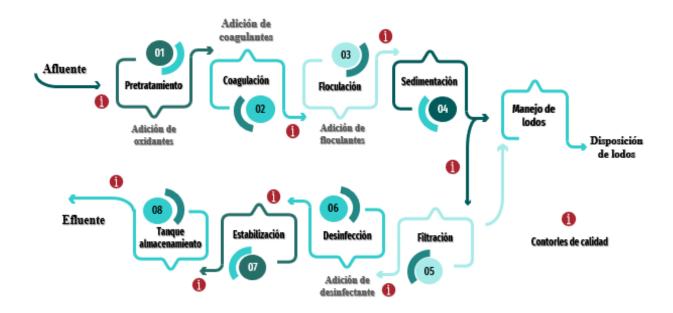
5. Válvulas

En los sistemas de abastecimiento de agua se pueden utilizar una gran variedad de válvulas en diversas fases del proceso según la función que cumplen. En el Cuadro 5 se resumen algunos de los tipos de válvulas más utilizados [33].

Cuadro 5. Válvulas y sus utilidades en los sistemas de abastecimiento

Tipo	Función	Aplicación	
De corte	Se emplean para abrir o cerrar tramos específicos de tubería. Se instalan en bifurcaciones importantes de las líneas y en la entrada de cada inmueble.	Se utilizan para cortar el suministro a algún usuario o de ciertos tramos en caso de que se necesite hacer arreglos con el fin de que no deje de funcionar toda la red.	
Reductoras de presión Se aplican para reducir la presión aguas abajo.		Se utilizan en los casos en que las presiones alcanzadas en las líneas sean extremadamente altas.	
Conservadoras de presión	Se instalan en lugares estratégicos en los que se necesita una presión específica aguas arriba.	Se utilizan existe alguna zona con alturas más altas a las del resto de la localidad.	
Reguladoras de flujo	Se emplean con la finalidad de asegurar que el caudal en un tramo específico no supere el establecido	Se utilizan cuando la topografía del terreno favorece más a una zona por encima de otra.	
De desagüe	Se instalan para vaciar una instalación en caso de que se necesite realizar un arreglo o dar mantenimiento.	es necesario impedir el	

Nota: Es importante hacer una selección adecuada debido a que son accesorios costosos. [33].


C. Sistemas de potabilización de agua

Los sistemas de potabilización de agua se pueden clasificar según el tipo de procesos que los conforman, filtración rápida o lenta, o el tipo de tecnología utilizada, convencional o no convencional. A continuación, se define el funcionamiento de una planta convencional clásica de potabilización y una planta de Filtración en Múltiples Etapas (FiME) [33].

1. Planta convencional clásica

Las plantas convencionales clásicas son el sistema moderno más antiguo; inicialmente utilizaban únicamente componentes hidráulicos, pero con el fin de mejorar su eficiencia actualmente se han incluido equipos mecánicos [21].

Por otra parte, su mayor ventaja con respecto a otras tecnologías convencionales es que en diseños de alta tasa de flujo se pueden trabajar caudales de más de 100 L/s necesitando entre el 25% y 30% del área que tomaría un sistema convencional simple de la misma capacidad [21]. Además, estos sistemas son sumamente eficientes, fáciles de construir; debido a que los materiales constructivos están generalmente disponibles y no poseen mecanismos complejos, lo que también permite que su mantenimiento sea fácil y rápido y asequible, y confiables; debido a que no demandan utilización de energía eléctrica y aseguran niveles de calidad y cantidad altos [35]. En la Figura 6 se presenta un esquema general de este tipo de plantas.

Figura 6. Esquema general del proceso de tratamiento en una planta de potabilización convencional de agua. [34]

A continuación, se describen brevemente las principales unidades de este proceso.

 Coagulación y floculación: en esta fase se adicionan dosis específicas de agentes químicos que facilitan y permiten la agrupación de partículas que provocan color y turbidez en el agua y que albergan una concentración importante de microorganismos, con el fin de que estos conglomerados sean eliminados del flujo en los procesos posteriores [36].

- Sedimentación: se utiliza la acción de la gravedad, propiciando el paso del agua casi en reposo, de forma que las partículas aglomeradas de las fases anteriores se depositen en el fondo del sedimentador eliminándolas de la corriente de flujo para posteriormente extraerlas del sistema [36].
- Filtración: se basa en retener el excedente de partículas que no pudieron ser eliminadas por sedimentación, mediante el uso de lechos filtrantes sencillos [36], generalmente de arena [35].
- Estabilización: también conocida como neutralización es la fase del proceso en la que se adicionan reactivos químicos que permita ajustar la acidez del agua de forma que se puedan evitar daños en las tuberías [36].
- Desinfección: en esta última fase se desechan los posibles excedentes de microorganismos que no pudieron ser eliminados en las fases anteriores, adicionando reactivos (generalmente cloro). Además, esta dosificación asegura que se mantenga la calidad del agua durante todo el trayecto hasta llegar al usuario [36].

Cabe recalcar, que existen diferentes alternativas de este tipo de planta; las cuales, generalmente están definidas en función del tipo de filtro que se utiliza [37], entre estas se encuentran:

Planta con sistema de filtración rápida

Comprende procesos de coagulación, precipitación, filtración y desinfección, en el Cuadro 6 se presentan los valores aceptables que debe tener el agua para garantizar el correcto funcionamiento del sistema [37].

Cuadro 6. Valores máximos para parámetros de calidad de agua cruda

Parámetro	Valores máximos 90% tiempo	Valores máximos 80% tiempo
Color (UC)	150	70
Turbiedad (UNT)	1000	800
Coliformes fecales (UFC/100)	600	-

Nota: La caracterización del agua cruda debe cumplir con estas condiciones para seleccionar este tipo de potabilización. [37].

• Planta de filtración directa

Este tipo de potabilización se utiliza principalmente para aguas crudas poco contaminadas; ya que solo está compuesto por un proceso de mezcla rápida, filtración y desinfección. En el Cuadro 7 se presentan los límites de calidad del agua cruda necesarios para poder utilizar este sistema [37].

Cuadro 7. Valores máximos para parámetros de calidad de agua cruda


Tipo filtración	Parámetro	Valores máximos 90% tiempo	Valores máximos 80% tiempo
Filtración directa	Color (UC)	25-30	< 20
descendente	Turbiedad (UNT)	< 25	-
Filtración directa	Color (UC)	< 100	< 50
ascendente	Turbiedad (UNT)	< 60	-
Filtración directa	Color (UC)	< 250	< 150
ascendente y descendente	Turbiedad (UNT)	< 60	-

Nota: Es importante que el agua cruda mantenga condiciones constantes en las diferentes estaciones del año. [37].

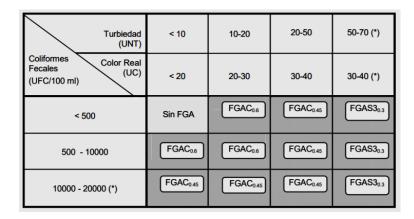
2. Planta FiME

La tecnología de planta FiME fue desarrollada por el Instituto de Investigación y Desarrollo en Agua Potable, Saneamiento Básico y Conservación del Recurso Hídrico (CINARA) de la Universidad del Valle en Colombia, y está diseñado para ser utilizado en poblados rurales o localidades pequeñas y condiciones de calidad del agua cruda captada muy específicas para este tipo de potabilización [38]. Concretamente, se basa en la combinación de tecnologías

de filtración gruesa en grava y lenta en arena, contemplando en general tres procesos específicos: (1) Filtro Grueso Dinámico (FGDi), (2) Filtro Grueso Ascendente (FGA) y (3) Filtro Lento en Arena (FLA), que abarcan el tratamiento de parámetros físicos, químicos y microbiológicos [39]. En la Figura 7 se muestra un diagrama general del sistema.

Figura 7. Esquema general del proceso de tratamiento en una planta FiME. [38]

Este llamado "sistema de multibarreras" asegura la eliminación de contaminantes presentes en el agua de una manera progresiva, hasta lograr niveles propicios de calidad, lo cual permite que su mantenimiento y operación sean sencillos de ejecutar y no necesiten la adición de reactivos químicos [38].


Dentro de las consideraciones generales que se deben tomar en cuenta para determinar la utilización de esta tecnología, es esencial la determinación de los parámetros de calidad del agua a tratar. En el Cuadro 8 se define la clasificación de la fuente determinada por el método de selección de opciones FiME [39].

Cuadro 8. Clasificación de fuentes según rango de calidad

Parámetro –		Rango	
rarametro –	Bajo	Intermedio	Alto
Turbiedad (UNT)	< 10	10 - 20	20 - 70
Coliformes fecales (UFC/100 mL)	< 500	500 - 10000	$10\ 000-20\ 000$
Color real (UPC)	< 20	20 - 30	30 - 40

Nota: Para caracterizaciones por encima de esto límites se recomienda el uso de otro tipo de tratamiento. [39].

Dependiendo de la clasificación obtenida y de las demandas de las condiciones sociales, topográficas y económicas que tiene la comunidad se puede adoptar alguna de las alternativas o trenes de tratamiento recomendados: (1) FGDi + FLA, (2) FGDi + FGAC + FLA, (3) FGDi + FGAS + FLA. En la Figura 8 se muestra la matriz para el modelo de selección, contemplando que todas las opciones incluyen FGDi_{2.0} y FLA_{0.15}, siendo el subíndice la velocidad de filtración aconsejada [39].

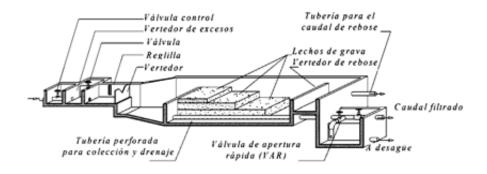


Figura 8. Modelo para la selección de un sistema de tratamiento de agua por filtración en múltiples etapas, FiME. [39]

• Filtro Grueso Dinámico (FGDi)

Esta primera fase trabaja como barrera de protección al sistema; ya que controla los picos de turbiedad que puede presentar el agua cruda, colmatándose y restringiendo de esta forma, el paso total o parcial del flujo. A nivel operacional, este tipo de filtros funcionan en dos módulos paralelos, con al menos tres lechos de grava, que van desde la más fina en la superficie a la más gruesa en el fondo; con flujo descendente; y con valores de carga

superficial bajos, lo que permite hacer uso de procesos de sedimentación [38]. En la Figura 9 se muestra un esquema de este tipo de filtro.

Figura 9. Esquema isométrico de un FGDi. [39]

En el Cuadro 9 se muestran los valores de eliminación de contaminantes reportados para el FGDi.

Cuadro 9. Valores de eliminación reportados

Parámetro	Porcentaje de remoción (%)
Sólidos suspendidos*	70-80
Turbiedad	30-50
Color verdadero	10-25
Hierro	40-70
Manganeso	40-60
Coliformes fecales**	50-80

Nota: *Para agua bruta con contenido de sólidos suspendidos de 10-50 mg/L. **Para agua bruta con 2 000-100 000 UFC/100mL. [39].

• Filtro Grueso Ascendente (FGA)

Se conforma por una o más unidades de filtro de grava, con flujo de agua ascendente, esta dirección facilita los procesos de lavado; ya que la carga hidráulica permite que los sólidos a extraer se acumulen en el fondo de las unidades. Éste puede ser de dos tipos [39]:

i. Filtro Grueso Ascendente en Capas (FGAC): comprende solo una unidad de lechos de grava de diferente tamaño, con la más fina en la superficie.

ii. Filtro Grueso Ascendente en Serie (FGAS): conformada por tres unidades de filtración con grava de tamaño uniforme en cada componente, pero decreciente en dirección del flujo; es decir, el tamaño de la grava en el primer filtro es mayor al del segundo y el del segundo al del tercero.

En la Figura 10 se muestra un esquema general de los componentes de ambos tipos de filtros.

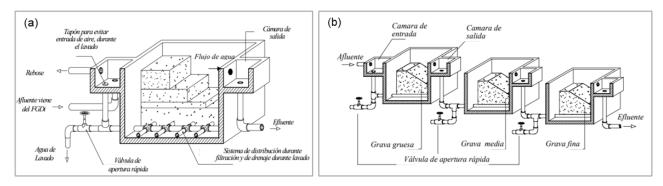
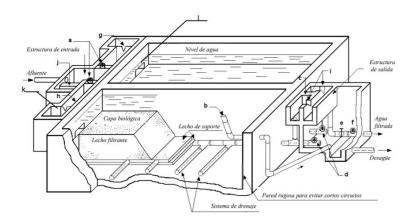


Figura 10. Esquema isométrico de un (a) FGAC y (b) FGAS. [39]

En el Cuadro 10 se muestran los valores de eliminación de contaminantes reportados para el FGA.


Cuadro 10. Valores de eliminación reportados

Parámetro	Porcentaje de remoción (%)
Sólidos suspendidos*	70-80
Turbiedad	50-80
Color verdadero	20-30
Hierro	50
Manganeso	50
Coliformes fecales**	0.65-2.5

Nota: *Para agua bruta con contenido de sólidos suspendidos de 50-200 mg/L. **En unidades logarítmicas. [38].

• Filtro Lento en Arena (FLA)

Su funcionamiento se basa en una o más unidades, generalmente trabajando en paralelo, que comprenden una capa de arena fina, como lecho filtrante, y de grava gruesa de distintos diámetros como soporte. Esta unidad de flujo descendente combina diversos procesos físicos (cribado, adsorción y sedimentación) químicos y microbiológicos para lograr eficiencias de remoción de patógenos muy altas, ayudados por la formación de una capa biológica en la parte superior del lecho en donde se proliferan microorganismos depredadores de bacterias [38]. En la Figura 11 se muestra un esquema básico de este tipo de filtro.

Figura 11. Esquema básico de un FLA. [39]

En el Cuadro 11 se muestran los valores de eliminación de contaminantes reportados para el FLA.

Cuadro 11. Valores de eliminación reportados

Parámetro	Porcentaje de remoción
Sólidos suspendidos*	70%-80%
Turbidez	Efluentes con valores < 1
Color verdadero**	30%-90%
Hierro Manganeso	Pueden ser significativamente removidos***
Coliformes fecales	90%-99%

Nota: *Para agua bruta con contenido de sólidos suspendidos de 10-200 mg/L. **Siendo 30% la más usual. *** El sistema no puede recibir más de 1 mg/L. [39].

Para los tres tipos de filtro existen valores de tamaños y espesores recomendados, por CINARA, para cada capa del lecho según la configuración seleccionada; como también de periodos de diseño y relaciones largo: ancho para el dimensionamiento de las unidades [39].

D. Operación y mantenimiento de los sistemas de potabilización

La operación y mantenimiento de los sistemas de potabilización se definen como la serie o secuencia de actividades que deben realizar los operadores para garantizar el correcto funcionamiento del sistema, de forma que este mantenga condiciones óptimas de trabajo y garantice un servicio de alta calidad [40].

Por otra parte, así como la caracterización del agua captada, la potabilización implementada y la disponibilidad de los recursos necesarios para un funcionamiento óptimo, determinan la buena calidad del agua que se suministra a una comunidad; la factibilidad de que el personal de operación y mantenimiento realice sus actividades de forma adecuada afecta de manera directa al producto y servicio que brinda el acueducto [41].

Debido a esto el diseño adecuado de un manual de operativo en conjunto con una apropiada capacitación del personal forman parte de las medidas cruciales para asegurar la eficiencia de la potabilización y la excelencia del servicio de abastecimiento [41].

A su vez, mediante el Manual de O&M se compila una serie de lineamientos que definen las labores a realizar en cada unidad del sistema, de forma que se asegure que su funcionamiento sea apropiado [40].

Por otra parte, en la reglamentación se mencionan los requisitos básicos y el formato que debe cumplir dicho manual; el cual debe estar escrito de forma sencilla y concreta, y contener las siguientes secciones [42]:

 Procesos de potabilización: debe describirse el sistema utilizado y cada una de sus fases, especificando las funciones del operador. Se debe anexar un diagrama descriptivo del sistema donde se muestre la relación entre los componentes.

- <u>Información básica de diseño</u>: se especifican criterios básicos para el funcionamiento del sistema; como por ejemplo: (1) la jornada de operación, reportada en horas por día, días por semana y semanas laboradas por año; (2) la jornada de trabajo en la planta de tratamiento, continua o intermitente; (3) los volúmenes de diseño y de capacidad de la planta en m³/día o m³/h; (4) el caudal promedio diario en m³/día o m³/h; (5) el caudal máximo horario en m³/día o m³/h; y (7) las características fisicoquímicas reportadas para el agua.
- <u>Personal</u>: se debe especificar el perfil laboral del personal necesario para que este pueda llevar a cabo los procedimientos descritos.
- <u>Equipo</u>: se deben especificar y describir los equipos, herramientas, vehículos, reactivos e implementos utilizados para llevar a cabo los procedimientos descritos.
- <u>Puesta en marcha</u>: se define la sucesión de procedimientos necesarios para que el sistema de tratamiento funcione adecuadamente.
- Operación: se enlistan y detallan las actividades que deben ejecutarse para garantizar una adecuada operación del sistema de tratamiento y los procesos involucrados.
- <u>Control operacional</u>: se describen las actividades y pruebas de campo que deben realizarse para comprobar que se conservan las condiciones apropiadas de operación.
- <u>Mantenimiento</u>: se enlistan y detallan las labores necesarias para mantener un mantenimiento adecuado.
- <u>Reportes Operacionales</u>: se deben detallar y explicar todas las actividades necesarias para elaborar los Reportes Operacionales solicitados por la reglamentación vigente.

E. Análisis de Significancia

Los análisis de significancia son una herramienta metodológica que permite identificar el nivel de prioridad que presentan los aspectos evaluados, mediante la determinación de su importancia en términos de los criterios de evaluación definidos. De esta forma se pueden plantear acciones más eficientes para la corrección y mitigación de las problemáticas que puede presentar una organización o proceso. Este sistema es ampliamente utilizado en evaluaciones de carácter ambiental, de forma que se definen los aspectos ambientales significativos de un Sistema de Gestión Ambiental [43].

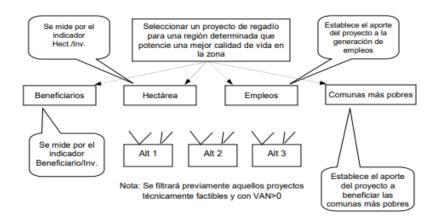
Esta metodología recurre a la ejecución de una serie de pasos para lograr la valoración deseada. A continuación, se explica cada uno [43]:

- Identificación de los aspectos a evaluar: se seleccionan aquellos elementos de las actividades, productos o servicios que definan el funcionamiento de este y que permitan determinar el estado de los productos obtenidos.
- 2. Evaluación de la significancia de cada aspecto:
- i. Definición de los criterios de evaluación: estos criterios deben definirse en relación con las circunstancias que afectan los aspectos identificados de forma que estos puedan ser valorados, según sus términos, y medidos, según valores que permitan tener un control y la posibilidad de detectar mejoras.

Estos criterios pueden ser simples, abarcan una sola condición; o complejos, que relacionan varias condiciones para obtener un valor.

ii. Valoración de los criterios: en el caso de criterios complejos, se debe hacer una ponderación de pesos de cada condición para obtener un valor global del criterio planteado. Este puede ser en valor numérico o prioridad de ocurrencia; es decir, que cada subcondición tenga un peso numérico respecto a la condición global o que la condición global se evalúe con respecto al subcriterio que ocurra primero en la evaluación de prioridad de cada criterio.

Se debe adjudicar un valor numérico ascendente a cada condición dentro del criterio.


- iii. Generación de la matriz de zonas de significancia: esta matriz se define en términos de la posible combinación entre los criterios evaluados, su complejidad se relaciona con la cantidad de criterios contemplados.
- iv. Control de los aspectos: es necesario conocer el estado actual del aspecto en términos de los criterios evaluados. Es de suma importancia que quede constancia de este estado; ya que las acciones correctivas deben ser planteadas en términos de cambiar esa situación.
- v. Valoración de los aspectos: se le otorga una "nota" a cada aspecto según se relacione con una condición específica.
- vi. Ponderación de la zona de criticidad: se multiplican los valores obtenidos en cada criterio para generar una "nota global" la cual se compara con la matriz de zonas de significancia para definir en la que se encuentra cada aspecto.
 - 3. Definición de acciones correctivas a implementar: según la criticidad definida la importancia con la que se deben abarcar los aspectos debe valorarse con el fin de (1) corregir, para aspectos muy significativos, (2) controlar o contener, para aspectos medianamente significativos y (3) prevenir, para aspectos leves o no significativos.

F. Evaluación Multicriterio-Método AHP

El método Analytic Hierarchy Process (AHP) se basa en la ejecución de tres principios para el procedimiento de evaluación: (1) construcción de las jerarquías, (2) establecimiento de prioridades y (3) consistencia lógica [44].

1. <u>Construcción de jerarquías</u>: estas jerarquías se construyen con base en que los demás elementos del marco conduzcan hacia el objetivo deseado. Los elementos en orden de prioridad son: (1) foco u objetivo, que es lo que se desea resolver; (2) criterios, los cuales definen el objetivo; (3) subcriterios, elementos que definen el criterio y deben

ser cuantificables; (4) alternativas, son las diferentes soluciones planteadas [44]. En la Figura 12 se muestra un ejemplo base de un esquema de jerarquización.

Figura 12. Jerarquía simple. [44]

2. Estandarización de los criterios: este procedimiento se realiza para que los valores otorgados a cada alternativa sean congruentes con respecto a lo que encierra cada criterio. Como lo muestra la Figura 13 (a) para la normalización de los valores de cada alternativa se construye una matriz que atribuye un valor específico a cada una según el criterio. Cada uno de esos datos se estandarizan, generando una nueva matriz normalizada como lo muestra la Figura 13 (b) [44].

Proyecto		valor de	los indicadores	dei proyecto	
,	P	Q	R	S	Concordancia
A	0,008	-0,0403	0,0075	73 857	80
В	0,0096	-0,0364	0,845	58 745	50
C	0,0056	-0,0625	0,0074	36 783	90
Media	0.007733	-0.0464	0,286633	56 4617	73 333
IVICUIA					
Desv. Est.	0,001644	0,011495	0,394825	15 2213	16 9967
Desv. Est.	0,001644				
Desv. Est.	0,001644		0,394825		
Desv. Est.	0,001644	alor de los ind	licadores norm	alizados del p	royecto
Desv. Est.) Proyecto	0,001644	alor de los ind	licadores norm	alizados del p	royecto Concordancia

Figura 13. Método de estandarización. (a) Indicadores de las alternativas. (b) Normalización de los indicadores. [44]

- 3. <u>Establecimiento de prioridades:</u> se realiza para priorizar entre los elementos de la jerarquía de forma que se generen pesos globales que no dependan de los valores específicos de cada uno y mediante los cuales se permita que las comparaciones sean más eficientes. Este proceso se ejecuta a partir de comparaciones pareadas, para las cuales se recomiendan tres tipos según la jerarquización obtenida [44]:
 - Importancia: Apropiada para cuando se comparan criterios entre sí.
 - Preferencia: Apropiada para cuando se comparan alternativas.
 - Más probable: Usado cuando se compara la probabilidad de los resultados, ya sea con criterios o alternativas.

Los valores que se otorgan en estas comparaciones se muestran en el Cuadro 12.

Cuadro 12. Escala de Saaty para la valoración de pares

Intensidad	Definición	Explicación
1	De igual importancia	Los dos elementos contribuyen de igual forma al objetivo.
3	Moderada importancia	La experiencia y el juicio favorecen levemente a una actividad sobre la otra.
5	Importancia fuerte	La experiencia y el juicio favorecen fuertemente una actividad sobre la otra.
7	Muy fuerte o demostrada	Una actividad es mucho más favorecida que la otra; su predominancia se demostró en la práctica.
9	Extrema	La evidencia que favorece una actividad sobre la otra, es absoluta y totalmente clara.

Nota: Los valores 2, 4, 6, 8 representan valores intermedios dentro de la escala [44].

A partir de esta valoración se construye una matriz de la que se pueden generar valores normalizados para los pesos otorgados. En la Figura 14 se muestra un ejemplo de esta matriz.

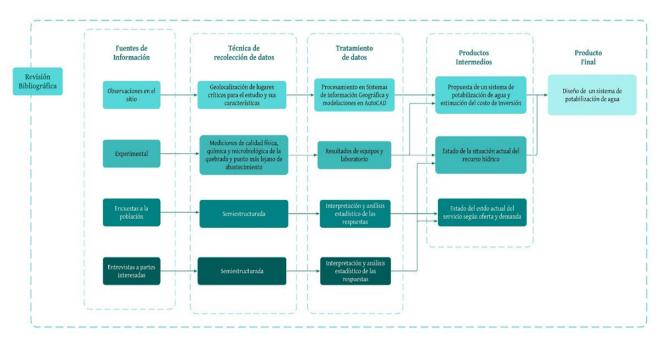
	Р	Q	R	S	Concordancia
Р		1	0	1	0
Q	0		1	0	0
R	1	0		1	1
S	0	1	0		0
Concord.	1	1	0	1	

Figura 14. Matriz de juicios de importancia. [44]

4. <u>Consistencia lógica</u>: este principio se basa en normalizar los criterios para identificar que no existan inconsistencias entre valores de priorización dados a un par de criterios con respecto a los otorgados en comparación con otros [44].

El procedimiento básico para la ejecución de este método se basa en:

- 1. Definición del problema: se define el objetivo general por el cual se realiza el proceso de decisión. Además, se debe hacer una descripción sobre todo lo que rodea el estudio; por ejemplo, sus características socioeconómicas, ambientales y culturales [44].
- 2. Definición de actores: la selección de los participantes debe asegurar que estos generen datos representativos para seleccionar la mejor alternativa [44].
- 3. Estructurar el modelo de jerarquía: se construye una estructura jerárquica que involucre todos los elementos de interés [44].
- 4. Identificación de alternativas factibles: se seleccionan las mejores alternativas dentro de gama de proyectos alternativos bajo un punto de vista de un análisis general; es decir se excluyen las opciones que bajo algún criterio no pueden ser ejecutadas de forma que se contemplen aquellas que son factibles [44].


- 5. Construcción del modelo jerárquico: se realiza la estructura del problema planteado en una jerarquía de criterios y alternativas [44].
- 6. Ingreso de los juicios: se ingresan los juicios para cada par de elementos con base en los conocimientos registrados o las percepciones de los actores principales. Realizando comparaciones pareadas de las alternativas, que son evaluadas con base en criterios técnicos más fáciles de tratar [44].
- 7. Validación de la decisión: se establece el rango de variación del peso relativo de los criterios para determinar la alternativa con mayor valor relativo [44].

CAPÍTULO III: METODOLOGÍA

En el libro Metodología de la Investigación [45], los autores exponen que el marco metodológico es el "plan o estrategia concebida para obtener la información que se desea con el fin de responder al planteamiento del problema". En otras palabras, en esta sección del proyecto de investigación se exponen los diferentes métodos y técnicas utilizadas para la correcta obtención, codificación y procesamiento de la información, de forma que los resultados puedan ser reproducibles.

A. Diseño de la investigación

Con la finalidad de generar respuestas a los objetivos del proyecto se definió un diseño experimental con enfoque cuantitativo contemplando las etapas y herramientas de trabajo descritas en la Figura 15.

Figura 15. Diseño de la investigación.

B. Determinación de los aspectos críticos de estudio

La valoración de la criticidad de las problemáticas asociadas al abastecimiento de agua potable se obtuvo mediante la realización de un análisis de significancia del estado actual de los principios básicos del servicio: calidad, cantidad, continuidad, cobertura y confiabilidad; en términos de vulnerabilidad y la necesidad de mejora. En el Cuadro 13 se presenta la definición de los aspectos y los criterios conforme fueron evaluados.

Cuadro 13. Condiciones básicas del servicio y criterios de valoración

Aspecto	Definición
Calidad	El agua suministrada cumple con los límites máximos permisibles establecidos en el "Reglamento para la calidad del agua potable" y al ser consumida no causa daño a la salud.
Cantidad	La dotación disponible permite solventar las necesidades básicas.
Continuidad	El servicio se mantiene sin interrupciones a cualquier hora del día, durante todo el año.
Cobertura	Se proporciona a toda la población sin ningún tipo de restricción.
Confiabilidad	Se facilitan evidencias que permiten a los usuarios comprobar la eficiencia del servicio en los diferentes aspectos que éste abarca.
Criterio	Definición
Vulnerabilidad	Capacidad o factibilidad de poder ser dañado o afectado.
Necesidad de mejora	Debe ocurrir para obtener o mantener un correcto funcionamiento.

Nota: Los conceptos se definieron con base en principios congruentes a los fines de la investigación. [46].

Como lo establece la metodología de análisis, se definieron indicadores para cada criterio de evaluación con el fin de lograr una correcta identificación del grado de cumplimiento de cada aspecto [43]. En el Cuadro 14 y Cuadro 15 se muestran estas definiciones y los pesos establecidos para cada uno.

Cuadro 14. Criterios para la evaluación de la criticidad de los aspectos

Valor	Impacto	Vulnerabilidad
5	Bajo	(1)No se han registrado deficiencias de cumplimiento, (2) la mayoría de los usuarios están satisfechos o (3) no hay quejas por parte de la comunidad en el último año.
10	Medio	(1)Se han registrado deficiencias en el cumplimiento con poca frecuencia, (2) un 40% o más de los usuarios insatisfechos; o (3) menos de cinco quejas por parte de la comunidad en el último año.
15	Alto	(1)Se han registrado deficiencias en el cumplimiento con mucha frecuencia, (2) la mayoría de los usuarios insatisfechos o (3) más de cinco quejas por parte de la comunidad en el último año.

Nota: Los criterios se definieron con base en principios congruentes a los fines de la investigación.

Cuadro 15. Criterios para la evaluación de la criticidad de los aspectos

Valor	Impacto	Necesidad de mejora
1	Bajo	No se han detectado necesidades de mejora en el último año.
2	Medio	Se han detectado necesidades de mejora en el último año y se han implementado acciones de corrección o mitigación que dan solución a la problemática.
3	Alto	Se han detectado necesidades de mejora en el último año y se han implementado acciones de corrección o mitigación que no dan solución a la problemática.

Nota: Los criterios se definieron con base en principios congruentes a los fines de la investigación.

En la Figura 16 se expone la matriz mediante la cual se valoraron las diferentes zonas de significancia que fueron determinadas a partir de todas las posibles combinaciones entre los criterios.

Vulnerabilidad	Valor	Rangos		
Alta	15	15 Zona Tolerable	30 Zona Grave	45 Zona Grave
Media	10	10 Zona Tolerable	20 Zona Grave	30 Zona Grave
Baja	5	5 Zona Aceptable	10 Zona Tolerable	15 Zona Tolerable
Necesidad de mejora	Valor	1 Bajo	2 Medio	3 Alto

Figura 16. Matriz de valoración de la criticidad por zonas.

En el Cuadro 16 se resumen las clasificaciones establecidas según los intervalos de severidad de los cuales se definió el "nivel de significancia total" para cada aspecto.

Cuadro 16. Intervalos de significancia

Valor	Clasificación
5	Zona aceptable
10-15	Zona tolerable
20-30	Zona grave
45	Zona inadmisible

El valor de cada aspecto con respecto a los criterios de valoración se obtuvo a partir de los datos registrados por la ASADA en el último año y las apreciaciones dadas por el presidente en la entrevista realizada el 2 septiembre del 2021 (APÉNDICE 1) [47]. Posteriormente, se realizó el procesamiento, valoración y clasificación del nivel de significancia total mediante el software Microsoft Excel 365 Office 2021.

C. Lugar de estudio

Tarrazú fue erigido como cantón en el Decreto Legislativo 20 del 7 de agosto de 1868 convirtiéndose en número cinco de la provincia de San José y en uno de los primeros del país [48]. Se ubica en las coordenadas geográficas 09°36'14" latitud norte y 84°04'00" longitud oeste, y posee una extensión de 297,50 km que se divide en tres distritos: San Marcos, San Lorenzo y San Carlos [49].

La principal actividad económica de la zona es el cultivo de café de altura que ha sido catalogado como uno de los cafés de especie arábica más finos del mundo. Sin embargo, el turismo rural y el cultivo de aguacate han tomado un papel importante en las actividades percibidas por la población [48].

Conjuntamente, la hidrografía y geomorfología de su territorio favorece el desarrollo económico; ya que pertenece al sistema fluvial de la vertiente del Pacífico comprendiendo las cuencas del río Pirrís, Damas y Naranjo, y se caracteriza por presentar valles profundos con declinaciones de alta pendiente [48].

Específicamente, la cuenca del río Pirrís, la cual conecta el río Parrita Chiquito y las quebradas Zapotal, Seca, La Cruz, Salado y Monterrey, que nacen en el cantón, se ha convertido, en una fuente importante de estudios hidrográficos para el país [48].

Por otra parte, el distrito de San Marcos fue fundado en el Decreto Ejecutivo 146 del 3 de agosto de 1938 [50]. Este posee un área aproximada de 45,53 km², con elevación media de 1429 m. s. n. m. y una densidad poblacional proyectada al 2021 de 247,88 hab/km², según el censo del 2011 [49]. Además, forma parte de la Zona de los Santos y comprende los poblados y barrios que se especifican en el Cuadro 17.

Cuadro 17. División territorial administrativa del distrito San Marcos

Poblado	Barrio
Alto Pastora	Corea
Bajo Canet	I Griega
Bajo San Juan	Las Tres Marías
Canet	Santa Cecilia
Cedral (parte)	Rodeo
Guadalupe	Sitio
Llano Piedra	
San Cayetano	
San Guillermo	
Sabana (parte)	
San Pedro	

Nota: Los barrios forman parte de algunos de los poblados mencionados. [50].

A su vez, el poblado de San Pedro empezó a poblarse a partir de 1880, cuando llegaron las primeras familias en asentarse en el lugar, desde entonces la cantidad de personas que conforman la comunidad ha ido aumentando paulatinamente; sin embargo, no lo suficiente como para lograr legitimar los nuevos barrios y calles que se han conformado [51].

La comunidad está ubicada en las derivaciones de los cerro de Dota, que van desde de San Pedro hasta cerro Pelón, por lo que su suelo se caracteriza por ser quebradizo, tener alturas elevadas y pendientes pronunciadas [51].

Así mismo, debido a su posición geográfica la región se caracterizaba por albergar gran variedad de flora y fauna; sin embargo, debido a la cacería y la alta tasa de deforestación especies como la danta, el venado, el cabro de monte, el pizote y el saíno han desaparecido; reduciéndose a algunos conejos, coyotes, ardillas, armadillos, aves y animales domésticos. En cuanto a la flora, las zonas boscosas se han visto restringidas pequeños conglomerados a las afueras del poblado con especies de árboles como: roble, encino, ciprés, eucalipto, pino y de variedad de orquídeas propias de la región; y también especies introducidas por su carácter mercantil como: naranja, limón, aguacate, manzana, níspero, poró, güitite y granadilla [51].

En cuanto a la hidrografía de la región, al oeste se encuentra un pequeño río que sirve de límite con el caserío el Rodeo y que tiene por nombre Parrita Chiquito, el cual recoge las aguas de las quebradas cercanas. Y en relación con el clima, este se considera templado; ya que las alturas oscilan entre los 1500 y los 1750 m. s. n. m [51].

A nivel social, la mayoría de los lugareños tienen un nivel de escolaridad de primaria completa, pocos adultos llegaron a cursar educación secundaria o complementaria. Por otra parte, la comunidad cuenta con servicio eléctrico y telefónico, dos pulperías, una tienda y un minisúper, la escuela y un salón comunal; además, empresas cafetaleras como Coopetarrazú instalaron recibidores de café lo que facilita el transporte de dicho producto [51].

D. Descripción de la ASADA

La fundación de la ASADA se celebró mediante la Asamblea General de vecinos en San Pedro el 20 de octubre del 2000, mismo año en el que, al entrar en vigor, se instalaron medidores de agua en todas las casas a las que se les prestaría el servicio.

Entre los objetivos de la asociación se especifican los siguientes:

- Administrar, operar y conservar en buenas condiciones el acueducto de acuerdo con las disposiciones y reglamentos que emita el AyA.
- Obtener una participación efectiva de la comunidad en la construcción y mantenimiento del acueducto.
- Colaborar en los programas y campañas de índole educativas que se emprendan.
- Ayudar a explicar a la comunidad las disposiciones y reglamentos del AyA.
- Cooperar con los planes, proyectos y obras que emprenda el AyA en la comunidad.
- Participar en la vigilancia y protección de las fuentes de abastecimiento del acueducto, evitar contaminaciones de estas y ayudar a la protección de las cuencas hidrográficas de la región.

En el Cuadro 18 se muestra información general del acueducto y sus medios de contacto.

Cuadro 18. Resumen de la información general de la ASADA

ID	Nombre del operador	Tipo de administración	Cédula jurídica	Teléfono	Correo electrónico
00833	San Pedro y San Luis	ASADA	3002295452	2546921	asadasanpedro
	de San Marcos de			5	00@gmail.co
	Tarrazú, San José.			-	m

Nota: Los datos presentados en el Cuadro son los registrados por el AyA. [52].

1. Localización

La ASADA se encuentra ubicada en la región Central Este en la provincia de San José, específicamente en San Pedro de San Marcos de Tarrazú, 75 metros oeste de la plaza de San Pedro. En la Figura 17 se muestra su ubicación según puntos estratégicos.

Figura 17. Ubicación de la ASADA San Pedro de San Marcos de Tarrazú.

2. Conformación de los miembros de la ASADA

Actualmente la ASADA San Pedro, brinda el servicio de agua potable por medio de un acueducto rural dirigido por el AyA. En el Cuadro 19 se presenta la junta directiva para el periodo 2021-2023.

Cuadro 19. Comité de la Asociación Administradora de Acueductos de San Pedro de Tarrazú 2021-2023

Nombre	Cargo en el comité
William Montero Cordero	Presidente
Eyuani Garro Rojas	Vicepresidente
Hazel Garro Esquivel	Secretaria
Marcela Morales Cordero	Tesorera
Ricardo Mora Ureña	Vocal 1
Wilberth Ureña Mora	Fiscal

3. Catastro de los usuarios del acueducto

La ASADA cuenta con dos tarifas establecidas, domiciliar y comercial, y una sectorización que facilita la prestación del servicio. En el Cuadro 20 se muestra la cantidad de abonados por tarifa y en el Cuadro 21 la cantidad de abonados suscritos al servicio por sector.

Cuadro 20. Cantidad de usuarios por tipo de tarifa de la ASADA San Pedro 2021

Tipo de tarifa	Cantidad de abonados
Domiciliar	237
Comercial	8

Cuadro 21. Cantidad de abonados por sector

Sector de abastecimiento	Cantidad de usuarios
Sector #1	42
Sector #2	30
Sector #3	58
Sector #4	115
Total de abonados	245

4. Descripción del sistema

Actualmente la ASADA cuenta con 14 tomas de captación en nacientes para abastecer la demanda de la comunidad, el Cuadro 22 describe el caudal disponible promedio de cada una, según los datos de aforos suministrados por la ASADA San Pedro para el periodo 2019-2020. También posee 13 tanques de almacenamiento y un sistema de desinfección alimentado con pastillas de cloro.

Cuadro 22. Caudal promedio por captación 2019-2020

Captación	Caudal promedio
Narciso	(L/s) 0,27
Omar Mora nueva	0,08
Omar Mora	0,06
Chuleta#1	0,11
Chuleta#2	0,28
Chuleta#3	0,06
Chuleta#4	0,06
Chorizo	0,47
Pintura	0,20
Roque Mora	0,74
Vicente Rojas	0,27
Toma#1*	0,36
Toma#2*	0,37
Los coyotes*	0,21

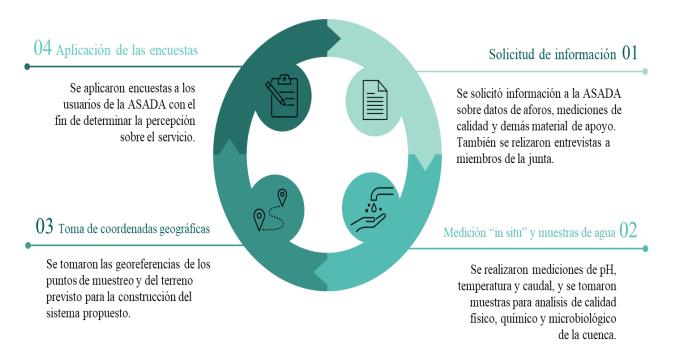
Nota: *Conforman el nuevo proyecto de bombeo de la ASADA.

Las pruebas de calidad de los parámetros establecidos se realizan periódicamente según lo establecido, se da mantenimiento mensual a las tomas de agua y a los componentes del sistema que lo requieran.

5. Oferta de agua potable

La oferta actual promedio del recurso se calculó a partir de los registros de aforos volumétricos mensuales por captación (ANEXO 2), suscritos al periodo de octubre del 2018 a octubre del 2021, los cuales fueron brindados por la ASADA de San Pedro y procesados por medio del software Microsoft Excel 365 Office 2021.

6. Demanda actual de agua potable


La demanda promedio actual se obtuvo a partir de la información de consumos totales facturados de las micro mediciones (m³/mes) en el periodo 2020-2021 (ANEXO 2), los cuales fueron brindados por la ASADA y divididos en las categorías catastrales de los usuarios suscritos al servicio (comercial y domiciliar). El cálculo de la demanda bruta, también se realizó con base en estos valores; ya que según la norma técnica las demandas reales de la localidad pueden ser utilizados para este fin [53]. Se asumieron 30 días por mes y 3,5 personas por casa de habitación, valor para el distrito de San Marcos [54]. Los datos fueron tabulados y procesados por medio del software Microsoft Excel 365 Office 2021.

E. Visitas de campo

Las visitas de campo, así como los análisis de las muestras tomadas, fueron subsidiadas por los fondos dispuestos para el proyecto interinstitucional: "El recurso hídrico, el uso del suelo y la transformación social en la Cuenca Alta y Media del Río Parrita: La necesidad de una incidencia política", al que está suscrita esta investigación. Debido a esto, también se contó con la colaboración de los profesores y las asistentes que conformaron el equipo de trabajo de ese proyecto.

Las giras se realizaron desde octubre del 2020 hasta noviembre del 2021 mensualmente, exceptuando diciembre del 2020, enero y julio 2021 debido a que no se contó con los recursos económicos (vacaciones), y el mes mayo del 2021 ya que las condiciones del terreno imposibilitaron el acceso a los puntos de muestreo. También se coordinaron las fechas de las visitas con los respectivos propietarios de las fincas y el préstamo y entrega del equipo necesario para la realización de las pruebas de campo con el personal de la Carrera de

Ingeniería Ambiental. En la Figura 18 se resumen las actividades que se llevaron a cabo en las visitas de campo.

Figura 18. Actividades realizadas en las visitas de campo.

F. Recolección de muestras de agua

Para la selección del punto de muestreo de agua superficial (punto #1) el principal criterio contemplado fue la factibilidad del lugar para construir en este la infraestructura de captación, de forma que los parámetros físicos, químicos y microbiológicos analizados integraran las condiciones específicas del agua que será captada mediante el sistema diseñado. Adicionalmente, según lo expone el dueño de la propiedad y lo corroborado durante el periodo de investigación, esta quebrada (sin nombre) cuenta con caudal permanente durante todo el año, por lo que se le atribuye carácter de dominio público [55]. Además, la propiedad ya poseía todos los requisitos legales y servidumbres correspondientes [53]; ya que cuenta con la infraestructura de aducción de dos nacientes cercanas pertenecientes al mismo acueducto, de forma que, se consideró la posibilidad de que esta infraestructura pudiera servir como base para el diseño del sistema a proponer.

Así mismo, se tomaron en cuenta criterios básicos de selección, los cuales están expuestos en el Cuadro 23.

Cuadro 23. Criterios estándar para la selección del punto de muestreo

Criterio	Definición
Accesibilidad	El lugar debe cumplir con condiciones básicas que permitan un fácil acceso, de forma que la obtención de las muestras y el manejo de los equipos y materiales de muestreo necesarios no representen un peligro para los investigadores.
Representatividad	El estado del punto de recolección de las muestras debe ser lo más representativo posible de las características físicas, químicas y microbiológicas totales del cuerpo de agua; y de otras características necesarias para el estudio.
Seguridad	Se cuenta con los medios para cumplir con todas las precauciones necesarias (uso de equipos de seguridad y de protección personal). Por otra parte, las condiciones meteorológicas no ponen en riesgo latente a las personas responsables del muestreo.

Nota: Para los muestreos en ríos se deben considerar posibles crecientes, deslizamientos o arrastres provocados por las corrientes. [56].

Por otra parte, debido a que no se contaba con los fondos suficientes (tiempo para el muestreo) para realizar los aforos de caudal y debido a que el criterio de accesibilidad y seguridad no se cumplen en el punto #1, se optó por utilizar los datos recabados, por el equipo de la Escuela de Agrícola, aguas abajo (punto #2); considerando homogeneidad entre ambos, por su pertenencia a la misma cuenca [57].

Tanto el punto #1 como el punto #2 están localizados en la quebrada (sin nombre), con coordenadas CRTM05, obtenidas de la aplicación GPS, longitud 9,662230, latitud -83,989471 y longitud 9,656618, latitud -83,991935 respectivamente. En la Figura 19 se presentan los sitios de muestreo.

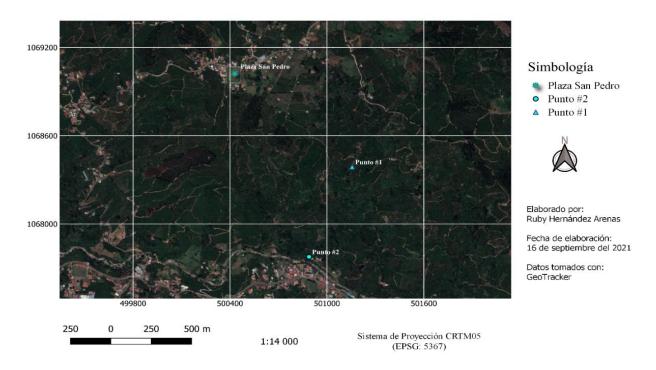


Figura 19. Ubicación de los puntos de muestreo.

Muestreo de agua superficial

La recolección de muestras de agua para análisis químico, físico y microbiológico en el punto #1 se realizó en los meses de abril, junio, agosto, septiembre, octubre y noviembre del 2021; ya que los meses de febrero, marzo y mayo las condiciones del terreno imposibilitaron acceder al punto de muestreo y el mes de julio no se contaba con el presupuesto para realizar la gira de campo (vacaciones).

Para la toma de muestras se aplicaron los procedimientos establecidos en la Guía didáctica para la gestión de la calidad de agua potable en acueductos rurales, tal y como se describen a continuación [58]:

- 1. Se prepararon las botellas colocando las etiquetas correspondientes para su debida identificación.
- 2. Se registró la localización GPS del punto de muestreo.
- 3. Se registró el estado del sitio con fotografías.

- 4. Se ambientaron las botellas y sus respectivas tapas por medio de un triple lavado con el agua de la quebrada (exceptuando los recipientes estériles de las pruebas microbiológicas).
- 5. Se tomaron las muestras de agua a contracorriente hasta llenar la botella completamente, en el caso de las muestras para análisis microbiológico el recipiente se llenó hasta tres cuartas partes.
- 6. Se tapó la botella cuidadosamente, en el caso de las muestras para análisis de plaguicidas de colocó un trozo de papel aluminio entre la boca de la botella y la tapa.
- 7. Las muestras se almacenaron verticalmente en una hielera con hielo y se transportaron cuidadosamente hasta el laboratorio en un plazo menor a 24 horas.

Mediciones de campo

Las mediciones "in situ" o pruebas de campo de los parámetros pH y temperatura (APÉNDICE 6), se realizaron según los procedimientos definidos en el manual del equipo: (1) se lavó el sensor del pH-metro con agua destilada, (2) se introdujo en la muestra de agua hasta que se estabilizaron los valores de medición, (3) se realizó la toma de los datos y (4) se lavó nuevamente. En la Figura 20 se muestran los pasos mencionados.

Figura 20. Medición de pH y temperatura.

Medición de caudales

El aforo de los caudales de la cuenca (punto #2 de muestreo) se realizó en el mismo periodo de las visitas de campo (2020-2021) con la excepciones ya mencionadas y se utilizó el Método de Velocidad-Área tomando las mediciones con un molinete, por lo que, primeramente, se midió el ancho total del cauce (medición horizontal) y las profundidades

respectivas (medida vertical) cada 50 o 30 cm, según lo permitiera el ancho medido; contemplando que la separación entre dos medidas verticales continuas no debe ser mayor a 1/20 del ancho total. Posteriormente, se introdujo el molinete a las mismas medidas verticales, 50 o 30 cm según correspondiera, obteniendo el número de revoluciones cada 30 segundos, esta medición se realizó por triplicado en cada punto [59]; las cuales se utilizaron para el posterior cálculo de velocidades y áreas transversales que permitieran definir los caudales respectivos. Estos datos se encuentran en el APÉNDICE 6.

Por otro lado, en el Cuadro 24 se describen cada uno de los equipos utilizados en las visitas de campo para la recolección de muestras y la medición de los parámetros mencionados.

Cuadro 24. Equipos utilizados para el muestreo y la medición parámetros

Equipo	Especificaciones
Celular con GPS	Aplicación: GeoTracker
	Versión: 5.1.1.2617 (octubre 2021)
pH-metro	Marca: Hanna instruments
	Modelo: HI98128
Molinete	Marca: FlowSens
	Modelo: Seba Hydrometric GmbH
Recipientes	-Análisis fisicoquímicos: galón polietileno.
	-Análisis plaguicidas: botella de vidrio color ámbar 500 ml.
	-Análisis microbiológico: recipiente estéril 250 ml.
Misceláneos	Trozo de papel aluminio, hielera, cinta métrica, libreta,
	lapicero, marcador, cinta de enmascarar (masking tape).

Finalmente, los datos de los muestreos fueron tabulados y procesados en el software Microsoft Excel 365 Office 2021.

G. Análisis de las muestras de agua

Para determinar la calidad de agua de la fuente de abastecimiento se estableció abarcar los parámetros de control básico (N1): color aparente, conductividad, pH, olor, temperatura,

turbiedad, cloro residual libre, coliformes fecales y *Escherichia coli*; por su carácter obligatorio, y los de control especial (N4): organoclorados, organofosforados y carbamatos; por precisar la existencia de compuestos de plaguicidas posibles de encontrar [13]. No se realizó un control ampliado ni avanzado; debido a que no se contaba con el presupuesto para su ejecución.

Las muestras fueron analizadas en los periodos de visitas de campo, ya mencionados, por el Centro de Investigación y de Servicios Químicos y Microbiológicos CEQIATEC (ANEXO 1), siguiendo la metodología del Standard Methods for the Examination of Water and Wastewater 23rd ed. 2017 APHA-AWWA-WEF para los parámetros N1 y la del Pesticide Analytical Manual: Multiresidue Methods (FDA) para los parámetros N4, tal y como lo estipula el Reglamento para la calidad del Agua Potable N°38924-S para laboratorios acreditados [13]. En el Cuadro 25 se especifica la metodología utilizada para cada parámetro.

Cuadro 25. Metodología de análisis para parámetro N1 y N4

Parámetro	Metodología	
	Primer Nivel (N1)	
Color aparente	2120 C. Spectrophotometric - Single-Wavelength Method [[60], pp. 3].	
Conductividad	2510 B. Laboratory Method [[60], pp. 2-4].	
Cloro residual libre	4500-Cl G. DPD Colorimetric Method [[60], pp. 11-12].	
Turbiedad	2130 B. Nephelometric Method [[60], pp. 3-4].	
Olor	Valoración cualitativa [13].	
pН	4500-H+B. Electrometric Method [[60], pp. 1-5].	
Coliforme fecal	9221 E. Fecal Coliform Procedure [[60], pp. 10-11].	
Escherichia coli	9221 F. Escherichia coli Procedure Using Fluorogenic Substrate [[60], pp. 11-12].	
Cuarto Nivel (N4)		
Organoclorados	PT-CR-02 Cromatografía de Gases acoplado a un triple cuadrupolo.	
Organofosforados		
Carbamatos	PT-CR-03 HPLC con detector de arreglo de diodos.	

Nota: La temperatura fue medida "*in situ*" [13]. La metodología para la medición de los parámetros N4 fue especificada por el laboratorio en los informes de resultados.

De igual forma, los resultados de los análisis fueron tabulados y procesados en el software Microsoft Excel 365 Office 2021.

H. Modelación del caudal de la quebrada

A partir de las profundidades, distancias y revoluciones obtenidas en los aforos realizados, en las fechas y frecuencia de las giras de campo mencionadas anteriormente, mediante el Método del Molinete en el punto #2, se calculó la velocidad y el área asociada a cada distancia, como se muestra en la Ecuación 1, y los caudales parciales (Ecuación 2), de forma que la suma de estos últimos representa el caudal total de la quebrada para el momento del aforo [61] (APÉNDICE 6).

$$A_i = \left(\frac{Prof_1 + Prof_2}{2}\right) * D_i$$
 Ecuación 1

Donde:

 A_i Área parcial (m²)

 $Prof_1$ Profundidad primera (m)

*Prof*₂ Profundidad siguiente (m)

Distancia parcial (m)

$$Q_i = V_i * A_i$$
 Ecuación 2

Donde:

 Q_i Caudal parcial (m³/s)

 V_i Velocidad parcial (m/s)

 A_i Área parcial (m²)

Así, el cálculo del caudal en el punto #1 de la cuenca se basó en tomar como referencia los caudales calculados del punto #2 asumiendo similitud en las características fisiográficas,

cobertura vegetal y comportamiento hidrológico de ambos puntos, de manera que contaran con un mínimo de 80% de probabilidad de ocurrencia [57].

El transporte del caudal (APÉNDICE 6) se realizó considerando el área transversal media de ambos puntos mediante el Método de Relación de Áreas, definido matemáticamente en la Ecuación 3 [57].

El área transversal para el punto #1 se definió utilizando un estimado de las medidas constructivas determinadas para las medidas al área previa al sistema de captación diseñado.

$$Q_X = \left(\frac{A_X}{A_r}\right) * Q_r$$
 Ecuación 3

Donde:

 Q_x Caudal de la cuenca a calcular (m³/h)

 A_x Área de la cuenca a calcular (m²)

 A_r Área de la cuenca de referencia (m²)

 Q_r Caudal de la cuenca de referencia (m³/h)

Tanto los datos y cálculos del punto #1 como del punto #2 fueron tabulados y procesados en el software Microsoft Excel 365 Office 2021.

I. Encuesta a la comunidad

Con el objetivo de identificar la percepción de la comunidad sobre la situación actual del acueducto, la problemática principal del recurso hídrico en la zona y su disposición a la implementación de la propuesta planteada en este proyecto se diseñó y aplicó una encuesta semiestructurada. En la Figura 21 se presenta un resumen de la metodología utilizada para su ejecución [62].

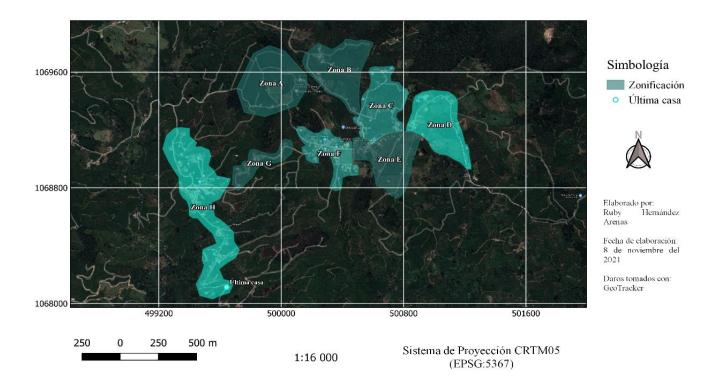
Figura 21. Metodología de aplicación de encuestas.

1. Formulación

La encuesta se compone de un total de 30 preguntas, 23 principales y siete complementarias, divididas en cuatro secciones: (1) Información general, (2) Agua potable, (3) Comunidad - ASADA y (4) Nuevo proyecto. Para su formulación se contempló abarcar la evaluación de las cinco condiciones básicas del servicio de agua potable y la percepción de la comunidad sobre la implementación del sistema diseñado (APÉNDICE 2).

2. Cálculo del tamaño de la muestra

La determinación de la cantidad de personas a las que se debía aplicar la encuesta se realizó mediante la herramienta "Sample Size Determination" del software Decision Analyst STATSTM 2.0 considerando un total de 245 abonados, un nivel de confianza del 90% y un error máximo aceptable del 5%.


3. Validación de la encuesta

La realización de la validación se basó en evaluar que las preguntas cumplieran con los siguientes criterios: ser breves y concisas, presentar un lenguaje claro, simple y entendible, hacer referencia a un solo aspecto, estar planteadas en positivo, no inducir a una respuesta específica, estar redactadas y escritas correctamente e indicar la misma cantidad de opciones positivas y negativas [62].

Por otra parte, la determinación de la cantidad de personas necesarias para validar la encuesta se realizó considerando un mínimo de 10 valoraciones por cada 100 personas a encuestar, y a partir de 100 una evaluación por cada 10 [62]. Además, se incluyó la misma cantidad de mujeres y hombres con edades entre los 20 y 67 años.

4. Zonificación y selección de los encuestados

Para facilitar su aplicación y asegurar que los datos recolectados fuesen representativos se zonificó el área total del poblado en ocho secciones, se enumeraron las edificaciones para cada una, eliminando las casas que no reciben el servicio por parte de la ASADA; ya que poseen agua en la propiedad, y se utilizó la herramienta "Random Numbers" del software Decision Analyst STATSTM 2.0 para seleccionar de manera aleatoria las casas en las que se realizarían las encuestas. En la Figura 22 se muestran las zonas delimitadas y los domicilios seleccionados.

Figura 22. Zonas de división del poblado.

5. Aplicación de la encuesta

Las encuestas fueron realizadas el sábado 13 de noviembre del 2021 de 9:00 a.m. a 4:00 p.m. Para cubrir la totalidad del área se asignaron dos zonas de muestreo a cada pareja de encuestadores. Las respuestas obtenidas fueron recolectadas mediante la herramienta Formularios de Google y procesadas en el software Microsoft Excel 365 Office 2021. Algunos de los resultados obtenidos se encuentran en la sección Resultados y Análisis, apartado B, y otros en el APÉNDICE 5.

J. Generación de mapas

Para la elaboración de los mapas realizados para la identificación y localización de los puntos importantes del estudio, se utilizó el software QGIS 3.16.13 empleando el Sistema de Referencia de Coordenadas CRTM05, EPSG:5367. Además, los datos están representados en metros y en el Sistema de Codificación ISO-859-1.

K. Estimación de parámetros de diseño

1. Selección de los periodos de diseño

Los periodos de diseño para los diferentes componentes del sistema se seleccionaron según las recomendaciones dadas por la "Norma de diseño y construcción de sistemas de abastecimiento de agua potable, saneamiento y pluvial". En el Cuadro 26 se muestran para cada uno.

Cuadro 26. Periodos de diseño para componentes del sistema de abastecimiento

Componentes	Periodo (años)	Consideraciones
Obras de captación y toma	25-50	El valor seleccionado depende del cuerpo de agua versus el caudal de diseño según la capacidad en la época de estiaje.
Tubería de aducción	25-30	Se debe seleccionar el mismo seleccionado para la toma.
Planta potabilizadora	20-25 15-20	Crecimiento menos del 3% anual. Crecimiento igual o mayor al 3% anual.
Tanques de almacenamiento	25	Se pueden diseñar por etapas cuando el volumen es mayor a 2000 m ³ .
Bombeo	20	Para estaciones de bombeo.
	10-15	Para bombas y motores.

Nota: Es fundamental realizar la comparación de caudales proyectados para que los periodos seleccionados sean los máximos eficientes [53].

2. Proyección poblacional

Para la realización de las proyecciones poblacionales, primeramente, se calculó la tasa de crecimiento poblacional como lo define la Ecuación 4 [63] utilizando los datos de tasas brutas reportadas para el cantón de Tarrazú, expuestos en el Cuadro 27.

La extrapolación poblacional, para un periodo de 25 años, se calculó cada cinco a partir de los modelos matemáticos: lineal (Ecuación 5), exponencial (Ecuación 6) y geométrico (Ecuación 7) [64].

Cuadro 27. Datos utilizados para el cálculo de la tasa de crecimiento

Parámetro	Dato
Tasa bruta de natalidad [65]	10,8
Tasa bruta de mortalidad [65]	4,8
Tasa de migración neta [66]	3,4

		r = b - d + sm	Ecuación 4
Donde:			
	r	Tasa de crecimiento poblacional	
	b	Tasa bruta de natalidad	
	d	Tasa bruta de mortalidad	
	sm	Tasa de migración neta	
		$P_t = P_0 * (1 + \frac{r}{100})^{t_i}$	Ecuación 5
Donde:			
	P_t	Población en el momento t (final)	
	P_0	Población en el momento 0 (inicial)	
	r	Tasa de crecimiento poblacional	
	t_i	Intervalo de tiempo (t - 0) (años)	
		$P_t = P_0 * e^{\frac{r}{100}*t}$	Ecuación 6
Donde:		t U	
	P_t	Población en el momento t (final)	
	P_0	Población en el momento 0 (inicial)	
	r	Tasa de crecimiento poblacional	
	t	Periodo de proyección (años)	

$$P_t = P_0 * (1 + \frac{r}{100})^t$$
 Ecuación 7

Donde:

P_t	Población en el momento t (final)
P_0	Población en el momento 0 (inicial)
r	Tasa de crecimiento poblacional
t	Periodo de proyección (años)

3. Demanda poblacional del recurso

Primeramente, se calculó la dotación bruta considerando un máximo de pérdidas del 15% [18]. La relación utilizada se muestra en la Ecuación 8 [18].

$$D_{bruta} = \frac{D_{neta}}{1 - \%P}$$
 Ecuación 8

Donde:

$$D_{bruta}$$
 Dotación bruta (L/hab*día)
 D_{neta} Dotación neta (L/hab*día)
%P Porcentaje de pérdidas

Para el cálculo de la demanda poblacional futura del recurso se utilizaron los factores establecidos por la norma técnica. En el Cuadro 28 se presentan estos datos.

Cuadro 28. Factores de demanda máxima

Factor	Valor
Máximo diario (FMD)	1,2
Máximo horario (FMH)	1,8

Nota: Para el cálculo de los caudales máximos. [53].

Por otra parte, se utilizó la Ecuación 9 para el cálculo del caudal medio diario (Qmd) [18].

$$Qmd = \frac{P * D_{bruta}}{86400}$$
 Ecuación 9

Donde:

Qmd Caudal medio diario (L/s)

P Población proyectada para el periodo de diseño (hab)

Dotación bruta (L/hab*día)

Mientras que el caudal máximo diario (QMD) se obtuvo a partir de la Ecuación 10 y el caudal máximo horario (QMH) a partir de la Ecuación 11 [18].

$$QMD = Qmd * FMD$$
 Ecuación 10

Donde:

QMD Caudal máximo diario (L/s)

Qmd Caudal medio diario (L/s)

FMD Factor máximo diario

$$QMH = QMD * FMH$$
 Ecuación 11

Donde:

QMH Caudal máximo horario (L/s)

QMD Caudal máximo diario (L/s)

FMH Factor máximo horario

Todos los datos de proyección poblacional fueron tabulados y procesados mediante el software Microsoft Excel 365 Office 2021 (APÉNDICE 8).

4. Estimación de la capacidad de la fuente

Para la determinación de la capacidad de abastecimiento de la fuente de agua se buscó establecer un escenario general proyectado, en el que se contemplaron condiciones básicas calculadas de oferta y demanda del recurso. El cálculo del caudal ambiental realizado se basó en la Metodología del porcentaje. Los criterios utilizados para dicha estimación se muestran en el Cuadro 29.

Cuadro 29. Criterios del método porcentual para la determinación del caudal ambiental para cuerpos de agua superficial

Porcentaje	Condición del aforo	Condición de la cuenca
20% del agua superficial	En época de estiaje	Con caudal permanente
30% del agua superficial	En época de lluvia	Con caudal permanente
10% del agua superficial	En época de estiaje	Periodos de captación menores a 15 días Limitaciones del caudal Caudal requerido para consumo humano

Nota: El 20% es el mínimo admisible para cuencas clasificadas como "buenas" según la metodología de Tennant adaptado a las zonas tropicales y subtropicales. [17].

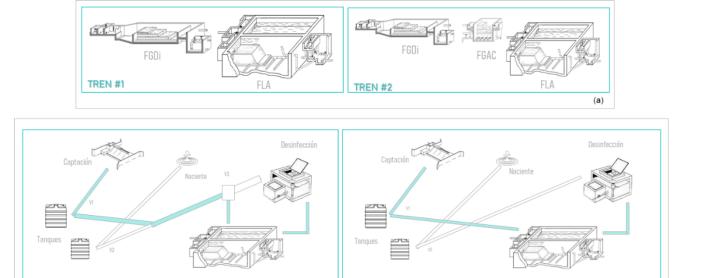
El caudal disponible de la quebrada para la proyección se estimó a partir de la Ecuación 12.

$$Q_d=Q_{Pf}-Q_A-P$$
 Ecuación 12

Donde:
$$Q_d \qquad \text{Caudal disponible (L/s)} \ Q_{Pf} \qquad \text{Caudal promedio de la fuente (L/s)} \ Q_A \qquad \text{Caudal ambiental (L/s)} \ Pérdidas del proceso}$$

Las estimaciones realizadas fueron tabuladas y procesadas mediante el software Microsoft Excel 365 Office 2021 y se mencionan en la sección de Resultados y Análisis, apartado E.3.

L. Análisis para la selección del sistema


Para definir el tipo de planta a diseñar se contemplaron los criterios expuestos en el Cuadro 30, de forma que se puntúo cada tipo de planta (convencional y una FiME) dando el valor de "1" a la opción que se acercara más a la expectativa propuesta.

Cuadro 30. Criterios para la selección de la planta de potabilización a diseñar

Criterio	Expectativa
Costo de inversión inicial	Se espera que sea el menor posible.
Área del sistema	Se espera que sea menor al área del terreno del que dispone la ASADA.
Costo O&M	Se espera que sea el menor posible.
Complejidad del sistema	Se espera sea que sea lo menos complejo posible.
Cumplimiento de calidad	Se espera que la eficiencia del sistema permita que los parámetros de calidad del efluente estén dentro los límites permisibles establecidos por la reglamentación.

Seguidamente, se seleccionó la opción que obtuviera mayor puntaje con respecto al total posible (5). Los resultados de esta puntuación se pueden consultar en la sección Análisis y Resultados, apartado F.1.

Con base en los resultados del análisis anterior, se procedió a realizar la selección de la alternativa más adecuada mediante un Análisis Multicriterio según el Método Jerárquico AHP, para el que primeramente se definieron cuatro alternativas en combinación de las opciones planteadas para la planta de potabilización y de tubería de aducción, como se muestra en los bosquejos de la Figura 23.

Figura 23. Opciones de sistema de tratamiento. (a) Configuración de los trenes de tratamiento. (b) Configuración de la tubería de aducción. [39]

TUBERÍA COMPARTIDA

De forma que la alternativa #1 contempló la combinación del tren #1 con tubería compartida, la alternativa #2 el tren #1 con tubería independiente, la alternativa #3 el tren #2 con tubería compartida y la alternativa #4 el tren #2 con tubería independiente. En la Figura 23 la tubería blanca representa la que existe actualmente, y la azul representa la configuración que llevaría el flujo del agua captada en la quebrada (sin nombre).

Posteriormente, se definieron los criterios necesarios para la valoración de dichas alternativas; estos fueron considerados según los aspectos calificados por el presidente de la ASADA como importantes para la comunidad. En el Cuadro 31 se muestran los respectivos conceptos y la condición ideal para cada uno.

Además, para cada criterio se determinaron indicadores que permitieran, a partir de aproximaciones, valorarlos cuantitativamente; éstos se resumen en el Cuadro 32, y las estimaciones definidas para cada alternativa pueden ser consultadas en el APÉNDICE 10.

Adicionalmente, todos los datos obtenidos (APÉNDICE 10) fueron tabulados y procesados mediante el software Microsoft Excel 365 Office 2021 y los resultados pueden consultarse en la sección Resultados y Análisis, apartado F.2.

Cuadro 31. Criterios para la selección de tecnologías de tratamiento

Aspecto	Criterio	Definición	
Económico-Social	Costo de	El costo necesario para construir e	
	inversión inicial	implementar el sistema de tratamiento.	
	Área del sistema	El área total que abarca el sistema de tratamiento.	
	Costo O&M	El costo necesario para operar y mantener e sistema de tratamiento.	
Técnico- Ambiental	Complejidad del sistema	Cantidad de módulos y cantidad de acciones para operarlo.	
	Cumplimiento de calidad	El sistema asegura que el efluente obtenido cumpla con los límites establecidos por la legislación.	

Por otra parte, la calificación del peso de importancia de los aspectos y criterios fue definida a partir de la entrevista virtual realizada a William Montero Cordero, presidente de la ASADA, realizada el 2 septiembre del 2021. La clasificación fue efectuada a partir de una herramienta desarrollada en el software Microsoft PowerPoint 365 Office 2021 que puede ser consultada en la segunda sección del APÉNDICE 1. El análisis de factibilidad de utilización de una planta FiME puede ser consultado en la sección Análisis y Resultados, apartados C.1 (criterios de parámetros técnicos) y F.2 (criterios de selección).

Cuadro 32. Indicadores valorados para cada criterio de valoración

Criterio	Indicadores	Unidades
Costo Inversión	Constructivos [67]	miles \$
	Otros [67]	miles \$
Costo Operación	Frecuencia actividades [67]	#eventos/año
Complejidad de operación	Unidades	#unidades
1 3	Iniciación de la planta	#acciones
	Rendimiento [[67], pp. 94]	horas/m³ filtro
Área de construcción	Área de la planta [[67], pp. 92]	m^2
Cumplimiento de calidad	Remoción de turbiedad [39]	Fracción de %
	Remoción de coliformes fecales [39]	Fracción de %

M. Diseño del sistema de tratamiento

En esta sección se exponen los criterios y parámetros teóricos utilizados en el diseño y dimensionamiento de las diferentes unidades el sistema. En el Cuadro 33 se muestran las condiciones que deben cumplir algunos de los parámetros calculados para el diseño de la captación de agua [68].

Cuadro 33. Requisitos de cumplimiento de parámetros de diseño para bocatoma de fondo

Parámetro	Simbología	Condición
Velocidad de agua sobre la rejilla	Vr	0.3 m/s < Vr < 3 m/s
Ancho del canal de aducción	В	$B \ge 0.4 \text{ m}$
Longitud de la rejilla	L	\geq 0,7 m
Velocidad final entre barrotes	Vbf	Vbf < 0.2 m/s
Velocidad de entrega a la cámara	Ve	0.3 < Ve < 3m/s

En relación con el diseño del FGDi las recomendaciones adoptadas [67] se resumen en el Cuadro 34.

Cuadro 34. Criterios de diseño según CINARA-IRC

Criterios de diseño	Unidad	Valores recomendados
Periodo de diseño	años	8 - 12
Periodo de operación	h/d	24
Velocidad de filtración	m/h	2 - 3
Mínimo de unidades en paralelo	#	2
Área de filtración por unidad	m2	<10
Velocidad superficial de flujo en lavado	m/s	0,15 - 0,3
Longitud lecho filtrante	m	0,6
Altura del vertedero de rebose	m	0,03 - 0,05
Borde libre	m	0,2

Así mismo, los valores recomendados [67] utilizados para el diseño del FLA se presentan en el Cuadro 35.

Cuadro 35. Criterios de diseño según CINARA-IRC

Criterios de diseño	Unidad	Valores recomendados
Periodo de diseño	años	8 - 12
Periodo de operación	h/d	24
Velocidad de filtración	m/h	0,1 - 0,3
Altura de la arena (inicial y mínima)	m	0,8 y 0,5
Diámetro efectivo	mm	0,15 - 0,3
Coeficiente de uniformidad Cu (aceptable y deseable)	-	<4 y <2
Altura de lecho de soporte (incluye drenaje)	m	0,25
Altura del sobrenadante	m	0,75
Borde libre	m	0,1
Área superficial por módulo	m2	<100

Finalmente, todos los cálculos fueron realizados, tabuladas y procesadas mediante el software Microsoft Excel 365 Office 2021. Las principales fórmulas utilizadas en el proceso de diseño y las hojas de cálculo de cada componente del sistema pueden ser consultadas en el APÉNDICE 11 y APÉNDICE 12 respectivamente.

CAPÍTULO IV: RESULTADOS Y ANÁLISIS

A. Determinación de los aspectos críticos de estudio

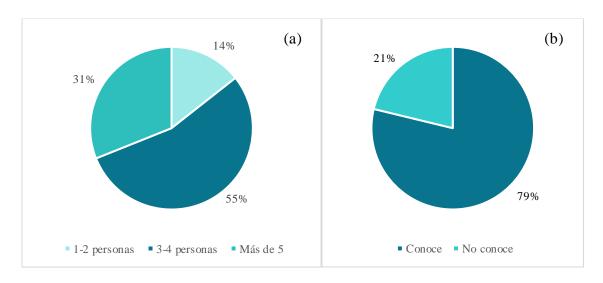
Con el fin de valorar a nivel general el estado de los principios básicos del servicio de abastecimiento de agua potable de la comunidad, e identificar aquellos que necesiten la implementación de acciones correctivas precisas, se realizó un análisis de riesgo para la vulnerabilidad y necesidad de mejora definidos.

Los valores de clasificación baja, media o alta, conferidos a cada principio se seleccionaron con base en el cumplimiento de los criterios definidos según los resultados obtenidos en las encuestas, para cantidad, continuidad y confiabilidad, y según los registros de cumplimiento de calidad y quejas presentadas, para calidad y cobertura respectivamente. En el APÉNDICE 7 se expone a mayor profundidad el procesos de valoración.

Cuadro 36. Nivel de riesgo asociado a cada principio

Duinainia		C	riterios	Nivel de viegos		
Principio	Vulnerabilidad Necesidad de mejora		Nivel de riesgo			
Calidad	5	Bajo	2	Medio	10	Zona tolerable
Cantidad	5	Bajo	2	Medio	10	Zona tolerable
Continuidad	10	Medio	2	Medio	20	Zona grave
Cobertura	15	Alto	3	Alto	45	Zona inadmisible
Confiabilidad	5	Bajo	1	Bajo	5	Zona aceptable

Según lo muestra el Cuadro 36 el principio de cobertura se encuentra en una zona de riesgo inadmisible, de forma que en términos de vulnerabilidad se han presentado deficiencias de cumplimiento con mucha frecuencia y más de cinco quejas oficiales en el último año; y en relación con las necesidades de mejora, no se han ejecutado correcciones eficientes que solucionen la problemática.


Por otra parte, la continuidad se encuentra en una zona grave, y la calidad y cantidad en zonas tolerables; de manera que, para poder garantizar el cumplimiento de los principios básicos del servicio, se evidencia la necesidad de realizar intervenciones correctivas urgentes y prioritarias para la cobertura, de contención para la continuidad, y de prevención para la calidad y cantidad.

B. Encuesta a la comunidad

Inicialmente, el tamaño de la muestra se calculó con un 95% de confianza de forma que debían entrevistarse 150 personas; sin embargo, debido a que al finalizar el periodo de encuestas solo se lograron 132, se recalculó este nivel; de forma que para los datos obtenidos es de un 90% (mínimo128 personas encuestadas). Por otra parte, la validación sí se realizó con 15 personas, el número recomendado para la primera muestra.

La encuesta aplicada puede encontrarse en el APÉNDICE 2 y otras respuestas obtenidas en el APÉNDICE 5.

1. <u>Datos generales</u>

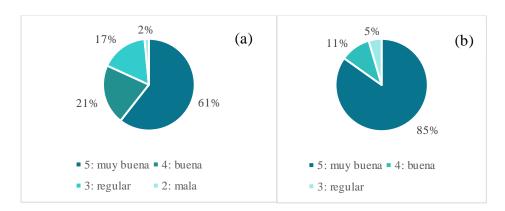
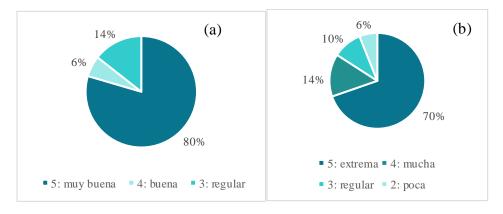


Figura 24. (a) Cantidad de personas por lugar de habitación. (b) Conocimiento sobre el ente que presta el servicio.

Como se muestra en la Figura 24 (a) el 14% de los usuarios encuestados aseguran que en sus viviendas viven entre una y dos personas, el 55% entre tres y cuatro y el 31% más de cinco (5-8 personas). De forma que según estos datos el promedio de habitantes por casa es de 4,1 mientras que según el censo 2011 los ocupantes por vivienda para el distrito de San Marcos de Tarrazú es de 3,5 [54]. Contemplando un 90% de confianza para las respuestas obtenidas de las encuestas se puede asegurar la validez de dicho promedio obtenido con respecto a los datos del INEC.


En la Figura 24 (b) se muestra que el 21% de los usuarios encuestados no conocían quién les presta el servicio de abastecimiento de agua potable, mientas que el 79% sabían que es la ASADA San Pedro.

2. Percepción del servicio

Figura 25. Percepción del servicio de abastecimiento. (a) Según la calidad del agua. (b) Según la cantidad de agua.

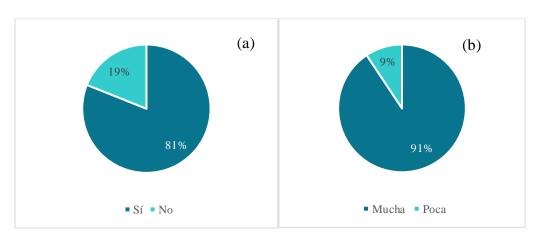

En la Figura 25 (a) se muestra como el 61% de los encuestados aseguró que la calidad del agua potable recibida es muy buena, el 21% la califica como buena, el 17% como regular y el 2% como mala. En la Figura 25 (b) se observa que el 85% de los usuarios encuestados perciben que la cantidad de agua recibida es muy buena, el 11% la consideran buena y el 5% regular.

Figura 26. Percepción del servicio. (a) Según la continuidad del servicio. (b) Según la confianza del usuario hacia el servicio.

En la Figura 26 (a) se observa que el 80% de los encuestados calificaron la continuidad del servicio como muy buena, el 6% como buena y el 14% como regular. Por otra parte, en la Figura 26 (b) se muestra que el 70% de los usuarios poseen una confianza extrema en el servicio recibido, el 14% confían mucho, el 10% tienen una confianza regular y un el 6% confían poco.

3. Percepción de la problemática

Figura 27. Percepción de la problemática. (a) Usuarios que conocen casos de personas que no han recibido del servicio. (b) Frecuencia con la que perciben que sucede esta situación.

En la Figura 27 (a) se muestra que el 81% de las personas encuestadas aseguran conocer el caso de al menos una persona de la comunidad que solicitó el servicio de abastecimiento de agua potable y se le fue negado; mientras que un 19% expresan no conocer sobre ninguno. Por otra parte, en la Figura 27 (b) se muestra que un 91% de las personas que aseguraron conocer algún caso consideran que esta situación es muy frecuente; mientras que un 9% considera que pasa poco. Entre los comentarios recibidos al respecto, algunos usuarios afirman conocer que se han interpuesto denuncias en el ARESEP y en el AyA; y que esta problemática genera que no se no se pueda construir ni vender lotes; ya que contar con la aprobación del servicio de agua es parte de los requisitos para la aprobación de permisos.

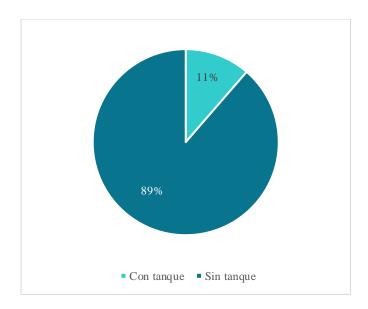
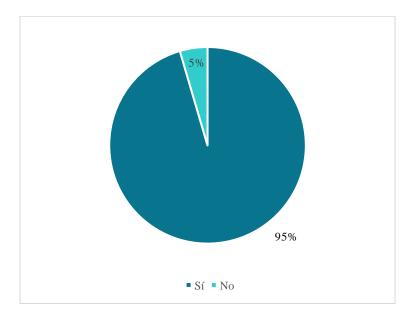



Figura 28. Personas que cuenta con tanque de almacenamiento en su propiedad.


La Figura 28 expone que el 89% de los encuestados no cuentan con tanque de almacenamiento en su propiedad, mientras que el 11% restante afirma los poseen para garantizar la cantidad del recurso en época seca, sobre todo para riego.

4. Disposición al proyecto

Figura 29. Relación de mayor disponibilidad de agua con el desarrollo económico de la comunidad.

En la Figura 29 se describe que un 95% de los encuestados consideran que es necesario la disponibilidad de mayor cantidad de agua para permitir el desarrollo de la comunidad, el 5% restante comenta que no es necesario debido a que ya se cuenta con la cantidad de agua necesaria para realizar actividades diarias. Entre los comentarios recibidos por quienes lo consideran necesario, se reconoce su importancia en relación con la posibilidad de permitir una mayor expansión poblacional, la construcción de nuevas edificaciones y el establecimiento de nuevos comercios.

Figura 30. Disposición a pagar para la implementación de un nuevo sistema.

La Figura 30 expone que el 45% de los usuarios encuestados no están dispuestos a pagar una cuota extra para que se implemente un nuevo sistema que asegure mayor cantidad de agua para la comunidad, un 31% estaría dispuesto a pagar entre \$\mathbb{C}500\$ y menos de \$\mathbb{C}1000\$ colones, un 14% entre \$\mathbb{C}1000\$ y menos de \$\mathbb{C}1500\$ y un 9% entre \$\mathbb{C}1500\$ y \$\mathbb{C}2000\$ colones. El pago promedio calculado, según las respuestas definidas ronda los \$\mathbb{C}\$ 600 colones extra mensuales.

C. Caracterización de la fuente de captación

Como parte de los requisitos fundamentales para la selección adecuada de un sistema de potabilización [35] se realizó la caracterización de la fuente, la cual fue definida en términos de los resultados obtenidos de los análisis de parámetros físicos, químicos y microbiológicos.

1. Análisis de las muestras de agua

Los parámetros de calidad analizados se seleccionaron con el fin de obtener la información necesaria para caracterizar adecuadamente el agua de la quebrada, teniendo como objetivo principal evaluar la factibilidad de utilizar esta agua como fuente de abastecimiento para la propuesta de sistema de potabilización.

Debido a que la quebrada atraviesa fincas cafetaleras aguas arriba del punto de muestreo se encontró la necesidad de analizar parámetros N4 con el propósito de identificar la presencia de plaguicidas e insecticidas en el agua. Específicamente se contemplaron organoclorados, organofosforados y carbamatos, para los cuales los resultados de los análisis de laboratorio obtenidos (Cuadro 37) registraron concentraciones "no detectables"; de modo que se puede asegurar que actualmente no existe contaminación por estas sustancias en dicho punto. Esta condición permite afirmar que, a este respecto, es factible captar y tratar esta agua como opción para el abastecimiento de la comunidad.

Cuadro 37. Análisis de laboratorio de los parámetros N4 para las muestras de agua superficial de la quebrada (sin nombre) para captación periodo 2021

Do seésse advers	Muestras							
Parámetros	Abril	Junio	Agosto	Septiembre	Octubre	Noviembre		
Corridas organoclorados (µg/L)	ND	ND	ND	ND	ND	ND		
Corridas organofosforados (µg/L)	ND	ND	ND	ND	ND	ND		
Carbamatos (µg/L)	ND	ND	ND	ND	ND	ND		

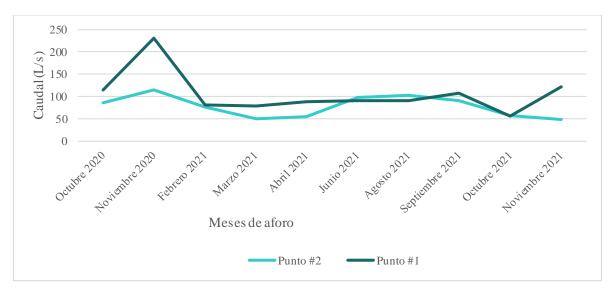
Nota: ND: no detectable.

En cuanto a los parámetros fisicoquímicos y microbiológicos que se analizaron, en el Cuadro 38 se presentan los resultados obtenidos para turbiedad y coliformes fecales; ya que es con base en estos parámetros que se realiza la selección del tren de tratamiento FiME más apropiado [39]; sin embargo el color real no pudo ser contemplado debido a que al definir los parámetros de análisis no se vislumbraba la realización de este proyecto, es decir, la necesidad de incluir este parámetro dentro del espectro de los análisis a realizar. En el ANEXO 1, se puede acceder a los resultados de los análisis de laboratorio completos.

Cuadro 38. Análisis de laboratorio de los parámetros fisicoquímicos y microbiológicos para el agua el agua superficial

Donómotnos	Muestras							
Parámetros	Abril	Junio	Agosto	Septiembre	Octubre	Noviembre		
Turbiedad (UNT)	$(0,78 \pm 0,01)$	$(7,3 \pm 0,9)$	$(14,3 \pm 2,0)$	$(5,9 \pm 0,7)$	$(4,6 \pm 0,6)$	(8 ± 1)		
Coliformes fecales (NMP/100 mL)	79	920	920	350	49	920		

A partir de los datos expuestos en el Cuadro 38 se observa que en los meses de época lluviosa se registran los valores más altos para los parámetros. Específicamente, en junio se alcanza una turbiedad de (14,3 ± 2,0) UNT y una concentración de coliformes fecales de 920 NMP/100 mL, de manera que por la presencia de estos puntos críticos la clasificación general para el agua es de rango Intermedio, según los ámbitos para la calidad de agua de fuentes superficiales (Cuadro 8); por lo tanto, el tren de tratamiento recomendado por el modelo para la selección de un sistema FiME incluye la adición de un FGAC [39].


2. Modelación de caudal de la quebrada

Las dimensiones utilizadas para la estimación del área transversal del punto #1 (0,15 m²) se realizaron midiendo el ancho del cauce (2,60 m), dejando un mínimo de 50 cm de cada lado, generando un ancho efectivo de 1,50 m, y una profundidad aproximada de 10 cm, la mínima medida obtenida en la quebrada (sin nombre) para el mes de abril.

En la Figura 31 se muestra la comparación gráfica entre los comportamientos de los caudales del punto #1 y el punto #2, de la cual se puede evidenciar como los datos obtenidos para el punto #1 muestra una tendencia muy similar a los datos del punto #2.

La desviación estándar calculada para el punto #2 es de 0,2 y para el punto #1 de 0,8 de forma que se puede asegurar que los valores obtenidos definen adecuadamente su comportamiento.

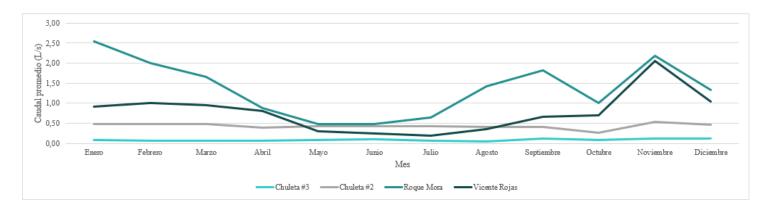
Por otra parte, se puede visualizar la relación del comportamiento de los caudales según las épocas estacionales para región del Pacífico, mostrando una disminución importante desde el mes de febrero hasta agosto, mes en el que, empezando la época de lluvias, comienzan a aumentar nuevamente de forma progresiva para llegar a valores altos en noviembre [69].

Figura 31. Comportamiento del caudal aforado en el punto #2 y extrapolados para el punto #1 durante el periodo de octubre 2020 a noviembre del 2021.

Los datos del transporte de caudal para el punto #1 por mes puede ser consultado en el APÉNDICE 6.

D. Análisis de oferta y demanda del recurso

1. Oferta actual de agua potable


Para analizar el comportamiento de la cantidad de agua con la que cuenta la ASADA en términos de la variación de sus caudales, se utilizaron los datos de los aforos realizados en el periodo 2018-2021. Los datos completos se encuentran tabulados en el ANEXO 2.

El comportamiento general de la producción de las nacientes y los puntos críticos que presentan se observan en el Cuadro 39, de modo que el mayor caudal promedio lo muestra la captación Roque Mora con 1,08 L/s, lo que corresponde a 33.909 m³ en un año, y el menor la Omar Mora y la Chuleta #4 con 0,06 L/s ambas, que corresponde a 1.946 m³ anuales. En cuanto a la naciente con producción máxima nuevamente la Roque Mora con 2,91 L/s y para la producción mínima la Chuleta #4 con 0,01 L/s.

Cuadro 39. Caudales de las nacientes de la ASADA San Pedro del periodo 2018-2021

Naciente	Caudal Promedio (L/s)	Caudal Mínimo (L/s)	Caudal Máximo (L/s)
Narciso	0,21	0,06	0,43
Omar Mora nueva	0,08	0,05	0,15
Omar Mora	0,06	0,03	0,11
Chuleta #1	0,17	0,05	0,57
Chuleta #2	0,29	0,09	0,37
Chuleta #3	0,06	0,03	0,13
Chuleta #4	0,09	0,01	0,19
Chorizo	0,43	0,20	1,00
Pintura	0,21	0,10	0,36
Roque Mora	1,08	0,11	2,91
Vicente Rojas	0,76	0,16	1,67
Toma #1	0,39	0,20	0,57
Toma #2	0,46	0,20	0,82
Los Coyotes	0,22	0,07	0,40
Caudal total promedio (L/s)	4,52	1,36	9,68

Por otra parte, la producción total promedio de la ASADA es de 4,52 L/s (suma de los caudales promedio de todas nacientes) que equivale a 142.429 m³ anuales de forma que la toma Roque Mora representa un 24% de la producción total, mientras que la Omar Mora solo 1%, la representación porcentual de cada naciente puede consultarse en el ANEXO 2.

Figura 32. Comportamiento del caudal promedio mensual de las nacientes Chuleta #3, Chuleta #2, Vicente Rojas y Roque Mora del periodo 2018-2021.

Debido a la dificultad que representa visualizar patrones de comportamiento de caudales en un gráfico con las14 nacientes con de las que se abastece la ASADA, se optó por dividirlas en tres grupos según sus caudales promedio y seleccionar una en representación de cada grupo. Los ámbitos fueron: menos de 0,2 L/s, entre 0,2 y 0,5 L/s, entre 0,5 y 0,8 L/s y mayores a 0,8 L/s; se tuvo en cuenta que la tendencia de las nacientes agrupadas fueran similares.

En la Figura 32 se puede observar que a mayores son los caudales obtenidos, mayores son los picos de disminución y aumento de estos a lo largo del año, y mientras menores son su tendencia mensual es más estable; es decir para las nacientes con caudales más bajos, la cantidad de agua que se produce es similar en cada mes a lo largo del año, pero en los caudales más altos se observan meses pico en donde se produce una cantidad mayor de agua.

Además, se muestra cómo en los meses de mayo a julio los caudales promedio representan los más bajos del año; y a partir de este mes el caudal promedio va aumentando hasta noviembre. En el Cuadro 40 también se observa este comportamiento.

Cuadro 40. Caudal promedio mensual total de las 14 fuentes para los periodos 2018-2021

Mes	Caudal promedio mensual (L/s)
Enero	5,69
Febrero	4,80
Marzo	4,49
Abril	3,17
Mayo	2,60
Junio	2,65
Julio	2,96
Agosto	3,62
Septiembre	4,86
Octubre	5,30
Noviembre	5,71
Diciembre	3,40

De forma que el mes en el que se produce mayor cantidad promedio de agua es noviembre con 5,71 L/s y en el que menos se capta es mayo con 2,60 L/s, siendo este el mes más crítico del año. Esta tendencia se debe a los comportamientos de las precipitaciones en la zona; ya que según los datos del Instituto Meteorológico Nacional (IMN) para la región del Pacífico

la época seca se extiende desde diciembre hasta marzo [69], y, cómo se puede observar los caudales empiezan a aumentar desde junio hasta noviembre, a partir de donde empiezan a disminuir gradualmente, a excepción del pico en diciembre, hasta el mes de mayo.

En el caso de la naciente Roque Mora por sus altas capacidades de producción ésta logra mantenerse en los meses de diciembre y enero; sin embargo, conforme avanza la época de estiaje los caudales comienzan a disminuir.

Por otro lado, según el balance hídrico anual (ANEXO 2), en cuanto a la oferta anual total (suma de los caudales disponibles por mes de las 14 fuentes de abastecimiento), por ejemplo, se observa un aumento en los periodos del 2019-2020 con respecto a los del 2020-2021, pasando de 42,53 L/s a 60,64 L/s, lo cual puede deberse a las buenas prácticas de conservación del recurso, a errores de medición en los aforos realizados, a eventos climáticos o a un conjunto de estas.

2. Demanda actual de agua potable

A partir de los datos de metros cúbicos totales facturados por mes dentro del periodo de octubre del 2020 a octubre del 2021 para usuarios domiciliares (237) y comerciales (8) se calculó el consumo promedio mensual por usuario y el consumo total mensual. En el ANEXO 2 se muestran todos los datos de las facturaciones por tarifa, según los registros de la ASADA para este periodo.

En el Cuadro 41 se muestran los consumos promedios mensuales por usuario para el sector domiciliar y comercial, los cuales representan un 97% y un 3% respectivamente del total de abonados activos del acueducto.

Para el sector domiciliar se presenta un consumo promedio mensual de 11 m³, con un máximo de 16 m³ y un mínimo de 6 m³; mientras que para el sector comercial de 7 m³, 13 m³ y 2 m³ respectivamente.

Por otra parte, con respecto a los consumostotales (ANEXO 2) el mes de consumo domiciliar más alto fue febrero con 3.788 m³ (3.788.000 L) y de comercial fue con 100 m³ (100.000 L). Para los usuarios domiciliares el consumo total anual (octubre 2020 - septiembre 2021)

fue de 31.752 m³ (31.752.000 L) y para usuarios comerciales fue de 682 m³ (682.000 L), de forma que el consumo total anual facturado por la ASADA fue de 32.434 m³ (32.434.000 L).

Cuadro 41. Consumo promedio mensual por sector catastro de la ASADA del periodo 2020-2021

Mes		promedio rio*mes)	Dotación – Domiciliar	Consumos Totales	
11105	Domiciliar			(m3/mes)	
oct-20	10	2	98	2447	
nov-20	11	7	109	2768	
dic-20	6	4	53	1344	
ene-21	14	11	135	3455	
feb-21	16	11	152	3878	
mar-21	12	13	118	3047	
abr-21	12	5	110	2779	
may-21	12	8	116	2947	
jun-21	7	4	67	1703	
jul-21	10	5	99	2504	
ago-21	13	8	122	3091	
sep-21	10	8	97	2471	
oct-21	11	5	100	2534	
Promedio	11	7	106	2690	
Máximo	16	13	152	3878	
Mínimo	6	2	53	1344	

3. Cálculo de la dotación promedio estimada

El cálculo del indicador promedio de dotación se realizó, como se mencionó anteriormente en el capítulo metodológico, asumiendo 30 días por mes y 3,5 personas por casa según los datos del INEC para el distrito de San Marcos [54]. De forma que, como lo muestra el Cuadro 41, para el sector domiciliar este es de 106 L/hab*día, su mínimo de 53 L/hab*día y su máximo es de 152 L/hab*día. Se puede observar que esta dotación estimada se encuentra por debajo del valor promedio propuesto por la "Norma de diseño y construcción de sistemas de abastecimiento de agua potable, saneamiento y pluvial" para zonas rurales que es de 200 L/hab*día.; sin embargo, se utiliza la dotación calculada (152 L/hab*día) con base en datos

reales para no sobredimensionar los diseños propuestos y al ser el valor máximo se contempla un factor crítico.

Por otra parte, este cálculo sólo se realizó con respecto al domiciliar debido a que en comparación el sector comercial sólo representa un 2% del consumo total.

4. Comparación teórica de la oferta y la demanda actual

Como lo muestra el Cuadro 42, con respecto a la oferta y demanda, se estima que en la actualidad el acueducto solo estaría consumiendo alrededor de un 22% del total producido por el recurso hídrico.

Cuadro 42. Comparación de la oferta de la demanda del recurso hídrico para el año 2020-2021

Mes	Oferta total (m3)	Demanda total (m3)	Superávit
Octubre 2020	21.121,26	2.447	18.674,26
Noviembre 2020	18.138,48	2.768	15.370,48
Diciembre 2020	14.283,20	1.344	12.939,20
Enero 2021	18.088,54	3.455	14.633,54
Febrero 2021	15.200,37	3.878	11.322,37
Marzo 2021	13.502,68	3.047	10.455,68
Abril 2021	8.861,63	2.779	6.082,63
Mayo 2021	7.989,13	2.947	5.042,13
Junio 2021	7.463,53	1.703	5.760,53
Julio 2021	8.772,27	2.504	6.268,27
Agosto 2021	9.868,15	3.091	6.777,15
Septiembre 2021	16.075,49	2.471	13.604,49
Total	159.364,72	32.434	126.930,72

Por lo que para la estimación de cuántas casas de más podrían ser abastecidas actualmente se asumió una oferta mínima de 7.463,53 m³ mensuales (según los datos junio 2021 del Cuadro

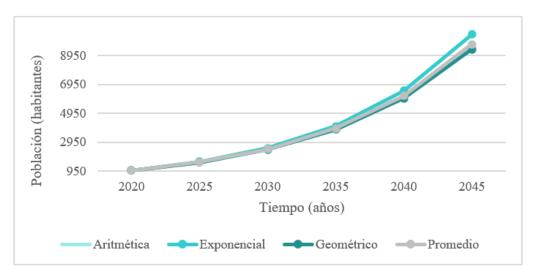
42), de manera que se pueda asegurar la prestación del servicio en condiciones críticas. El cual representaría una oferta mínima anual de 89.562 m³.

El excedente anual del recurso en estas condiciones críticas (diferencia entre la oferta mínima anual y la demanda total actual) es de 57.128 m³/año, de forma que con un consumo anual promedio por casa de habitación de 133,4 m³ (según los 11 m³/usuario*mes), el acueducto podría abastecer teóricamente 950 casas más.

De esta relación se deduce que el déficit actual que sufre la comunidad con respecto a las deficiencias de cobertura puede deberse a las condiciones estructurales del sistema abastecimiento y al diseño o capacidades del mismo.

E. Estimación de parámetros de diseño

1. Proyección poblacional


Debido a que los censos realizados a nivel nacional se limitan a la descripción de número de personas por provincia, cantón o distrito; es decir, no establecen la cantidad de personas por poblado. Se optó por utilizar métodos de proyección menos robustos con base en la población actual estimada de la comunidad (1.144 personas aproximadamente); ya que al no tener los datos de la población de la localidad en las fechas de los censos nacionales la opción de generar estas proyecciones con los datos distritales, 10.073 personas para el 2011 [54], no sería representativo a la evaluación de la zona. Además, la utilización de estos métodos se valida confirmando que el comportamiento del lugar es relativamente regular con respecto a las fluctuaciones debidas a la migración [64].

Para la proyección poblacional se calculó la tasa de crecimiento, a partir de los datos demográficos para el cantón de Tarrazú, la cual dio 9,4% y se asumió una población inicial de 1.144 personas para 2020, según el dato estimado registrado por la ASADA. En el Cuadro 43 se muestran las proyecciones obtenidas según los métodos propuestos. En el APÉNDICE 8 se muestran las proyecciones anuales a partir de los tres métodos.

Cuadro 43. Proyección poblacional para el poblado de San Pedro de San Marcos de Tarrazú

Método	Población proyectada							
Metodo	2025	2030	2035	2040	2045			
Aritmético o lineal	1.793	2.809	4.402	6.899	10.811			
Exponencial o logarítmico	1.830	2.929	4.686	7.497	11.995			
Geométrico	1.793	2.809	4.402	6.899	10.811			

Se puede observar que mediante el método lineal y el geométrico se obtuvieron las mismas proyecciones, pasando de 1.793 personas en 2025 a 10.811 personas para 2045; y que mediante el método exponencial se obtuvieron valores mayores de proyección, pasando de 1.830 personas en 2025 a 11.995 personas para 2045; de igual forma se puede observar en la Figura 33 como los valores proyectados por el método geométrico y aritmético se superponen, y los obtenidos mediante el método exponencial son más altos.

Figura 33. Proyección poblacional para el poblado de San Pedro de Tarrazú de 2020 al 2045.

2. Demanda futura del recurso hídrico

Para el cálculo de la dotación bruta, se asumió un valor de dotación neta máxima de 152 L/hab*día obtenida a partir del año 2020-2021, según los datos del Cuadro 41; de forma que se asegure la cantidad mínima de agua que debe ofrecer el sistema para satisfacer las

necesidades de la comunidad [18]. En cuanto a las pérdidas se asumió un 15% debido a que no se debe superar el 25% para sistemas con complejidad media-alta [18]. Obteniendo así, un valor de 179 L/hab*día.

En el Cuadro 44 se presentan los datos de los caudales obtenidos a partir de la dotación bruta calculada en comparación con los datos obtenidos a partir de la dotación recomendada por la Norma técnica, 200 L/hab*día, el cual se utiliza cuando no te cuenta con datos reales de la comunidad [53]. En el APÉNDICE 8 se muestran los valores anuales.

Cuadro 44. Caudal medio diario, máximo diario y máximo horario proyectados hasta el año 2045 para cada dotación

Dotación	Año Proyectado	Qmd (L/s)	QMD (L/s)	QMH (L/s)
	2021	2,60	3,12	5,62
	2025	3,79	4,55	8,18
C-11- 1-	2023	6,06	7,27	13,09
Calculada	2035	9,70	11,64	20,95
	2040	15,52	18,62	33,52
	2045	24,83	29,79	53,63
	2021	2,91	3,49	6,28
	2025	4,24	5,08	9,15
Dagamandada	2023	6,78	8,14	14,64
Recomendada	2035	10,85	13,02	23,43
	2040	17,35	20,83	37,49
	2045	27,77	33,32	59,98

De lo expuesto en el Cuadro 44 se puede observar que el caudal medio diario (Qmd), obtenido a partir de la dotación bruta calculada, para el 2045 es de 24,83 L/s; y el obtenido según la dotación dada por la norma es de 27,77 L/s, de forma que en comparación se requeriría 3 L/s de más, lo que representa 91.584 m³/mes.

Con respecto a los caudales máximos diarios (QMD) y máximos horarios (QMH) se puede observar que a pesar de estar por debajo de los datos teóricos, la diferencia no es realmente alta, de forma que el consumo de la población está muy cercano al consumo utilizado para el diseño de los sistemas de abastecimiento, lo que genera inestabilidad en el servicio; ya que

un aumento puntual en el consumo o un crecimiento inesperado de la población no permitiría que el sistema de abasto, parte de lo que sucede actualmente en la comunidad.

Cuadro 45. Balance de oferta y demanda proyectados

Doganinajón	Años						
Descripción	2021	2025	2030	2035	2040	2045	
Demanda máxima diaria (L/s)	3,13	4,55	7,28	11,65	18,65	29,84	
Producción promedio actual (L/s)*	4,52	4,52	4,52	4,52	4,52	4,52	
Superávit o Déficit	1,39	-0,04	-2,77	-7,14	-14,13	-25,32	

Nota: Los valores positivos representan superávit, y los negativos déficit del recurso. *El valor de la producción promedio actual puede consultarse en el Cuadro 39.

Según los datos que muestra el Cuadro 45 se puede observar cómo a partir del 2025 empieza generarse un déficit del recurso de 0,04 L/s aumentando hasta 25,32 L/s para el 2045.

Los problemas de déficit del recurso actuales se deben principalmente a que el sistema de abastecimiento no permite abastecer a toda la población; sin embargo, con respecto a las proyecciones realizadas, los datos reflejan que aun manteniendo la producción promedio total actual no se puede asegurar la prestación del servicio mínimo a toda la población en el futuro.

Estos resultados confirman la necesidad urgente que tiene la población de contar con un sistema que garantice la obtención del caudal necesario a mediano y largo plazo.

3. Estimación de la capacidad de la fuente

Para la estimación de la capacidad de la fuente en donde se construiría la captación de agua se realizó la proyección de un escenario futuro en el que se asumió una producción constante de las fuentes actuales (4,52 L/s), un comportamiento constante de los caudales de la quebrada (85,09 L/s), promedio en época de estiaje, un caudal ambiental del 10% de los caudales aforados en época seca (8,51 L/s), debido a que se trata de una captación para la prestación del servicio de abastecimiento de agua, y un 20% de pérdidas [17].

Cuadro 46. Balance de oferta y demanda proyectados son la inclusión de la fuente de agua superficial

Dogovinojón	Años						
Descripción	2021	2025	2030	2035	2040	2045	
Demanda máxima diaria (L/s)	3,13	4,55	7,28	11,65	18,65	29,84	
Producción de las nacientes (L/s)	4,52	4,52	4,52	4,52	4,52	4,52	
Producción de la fuente superficial (L/s)	61,26	61,26	61,26	61,26	61,26	61,26	
Superávit o Déficit	62,65	61,23	58,49	54,12	47,13	35,94	

Nota: los valores positivos representan superávit del recurso.

Como se observa de los datos obtenidos de la proyección en el Cuadro 45, con la inclusión del caudal producido por la quebrada se estima un superávit en todos los años por encima de los 30 L/s.

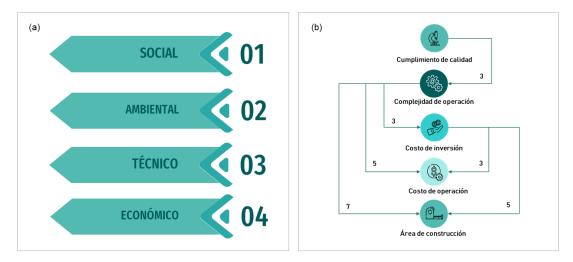
Estos resultados permiten contemplar la posibilidad de realizar concesiones de algunas de las nacientes a la ASADA a poblados vecinos que también atraviesan conflictos por escasez.

F. Análisis para selección del sistema

1. Selección del tipo de planta

Según las generalidades para cada tipo de planta, se entiende que tanto el costo de inversión inicial para la construcción como el de operación y mantenimiento de una planta FiME es menor que para una convencional, el área que abarcaría un sistema FiME es menor y la complejidad tanto constructiva como operacional es menor en sistemas FiMEs que en los convencionales; sin embargo, en cuanto a la eficiencia de potabilización con respecto a la calidad del efluente ambas alternativas son altamente eficientes.

Es por esto que, como lo muestra el Cuadro 47, el sistema FiME es más conveniente que el convencional; ya que éste obtuvo cinco puntos mientras que el convencional sólo uno. También se contempló que según los valores de demanda proyectados (Cuadro 44) hasta el 2040 estos se mantienen por debajo de los 20 L/s, por lo que se considera más conveniente un sistema que permita la realización de ampliaciones paulatinas que puedan ser sostenidas por la población.


Cuadro 47. Comparación de tipos de planta de potabilización

Criterio	Expectativa	FiME	Convencional
Costo de inversión inicial	Se espera que sea el menor posible.	1	0
Área del sistema	Se espera que sea menor al área del terreno del que dispone la ASADA.	1	0
Costo O&M	Se espera que sea el menor posible.	1	0
Complejidad del sistema	Se espera sea que sea lo menos complejo posible.	1	0
Cumplimiento de calidad	Se espera que la eficiencia del sistema permita que los parámetros de calidad del efluente estén dentro los límites establecidos por la reglamentación.	1	1
	Total de puntos	5	1

2. Selección de la alternativa

Como se mencionó anteriormente en la sección metodológica de este proyecto, tanto los aspectos (técnico, económico, social y ambiental) como los criterios utilizados para el análisis de selección del sistema de tratamiento, fueron valorados jerárquicamente con base en la escala de Saaty. En la Figura 34 se muestran la clasificación obtenida y en el APÉNDICE 1, se encuentra la herramienta utilizada.

Como se observa en la Figura 34 (b) como criterio de mayor importancia por encima de todos los demás se seleccionó el cumplimiento de los parámetros de calidad del agua con un valor de importancia "3" con respecto al criterio de complejidad de operación y los valores "5", "7" y "9" para los criterios de costo de inversión, costo de operación y área de construcción respectivamente. Los criterios sucesivos fueron calificados de igual manera con respecto al criterio superior. De forma que se obtuvo la ponderación de los pesos de importancia presentados en el Cuadro 46.

Figura 34. Clasificación jerárquica. (a) Clasificación de los aspectos de valoración. (b) Clasificación de los criterios de valoración.

Como lo muestra el Cuadro 46 el cumplimiento de calidad corresponde a un 50%, la complejidad a un 26% y los costos de inversión a un 13%, dejando el costo de operación y el área de construcción con apenas un 7% y 3% de importancia respectivamente.

Cuadro 48. Porcentaje de importancia obtenido para cada criterio de selección

Criterios de valoración	Porcentajes
Costo Inversión	13%
Costo Operación	7%
Complejidad de operación	26%
Área de construcción	3%
Cumplimiento de calidad	50%

En cuanto a las alternativas de selección definidas se contempló la opción de utilizar parte de la tubería de aducción, que se encuentra conectada desde uno de los tanques de almacenamiento hasta los tanques de desinfección de la ASADA, cercana a donde se

instalaría la obra de captación de agua para la planta, de forma que se pudieran disminuir los costos de inversión e instalación, iniciales del proyecto.

Para asegurar que dicha tubería cumpliera con un diámetro mínimo para conducir el caudal captado se utilizó la Ecuación 13 [70], asumiendo el caudal de diseño y una velocidad de 2 m/s [53].

$$Q_d = A_s * V_f$$
 Ecuación 13

Donde:

 $egin{aligned} Q_d & ext{Caudal de diseño (m}^3/\text{h}) \ A_S & ext{Área superficial (m}^2) \ V_f & ext{Velocidad de filtración (m}/\text{h}) \end{aligned}$

De esta forma se obtuvo un diámetro aproximado de 49 mm que sirve con respecto a los tubos de dos pulgadas conectados a dicho tanque.

Con respecto a las alternativas determinadas según el tren de tratamiento, se consideró en primera instancia el compuesto por FGDi+ FGAC+ FLA conforme a los criterios de selección definidos (Figura 8) para las diferentes clasificaciones del agua cruda según parámetros de calidad (Cuadro 8) que específicamente para el agua estudiada se clasificaría como "Intermedio" (Cuadro 38); sin embargo, considerando el área actual disponible para la construcción del sistema se planteó la posibilidad de mezclar el agua de captada con la de la naciente cercana para disminuir los niveles de turbiedad y coliformes fecales presentes en el agua por lo que se consideró incluir también el tren conformado únicamente por FGDi + FLA.

En el Cuadro 49 se muestran los porcentajes obtenidos de la valoración de las alternativas para la selección de la más conveniente.

Cuadro 49. Porcentaje de valoración obtenido para cada alternativa

Alternativas de selección	Priorización
Alternativa #1	34%
Alternativa #2	19%
Alternativa #3	25%
Alternativa #4	22%

Como lo muestra el Cuadro 49 la mejor alternativa de tratamiento es la #1 la cual está conformada por el tren #1 (FGDi + FLA) y el sistema de aducción con tubería compartida.

La tubería compartida permitirá la dilución del agua de la quebrada (sin nombre) para que en la época de lluvias su calidad permita al sistema seleccionado trabajar eficientemente.

En el Cuadro 50 se muestran los parámetros de coliformes fecales y *Escherichia coli* obtenidos para el agua de la naciente (Toma #1) cercana a la quebrada donde se realizará la captación. Estos parámetros logran evidenciar que la calidad de dicha agua consiente la factibilidad de utilizarse para la dilución planteada.

Cuadro 50. Análisis de laboratorio de los parámetros fisicoquímicos y microbiológicos para el agua de la naciente Toma #1 de periodo 2020-2021

Parámetros	Fecha de análisis									
	22/10/2020	19/11/2020	11/2/2021	11/3/2021	8/4/2021	10/6/2021	6/9/2021	16/9/2021	14/10/2021	11/11/2021
Coliformes fecales (NMP/100 mL)	ND	2,0	ND	12	33	4,5	2	ND	2	ND
Escherichia coli (NMP/100mL)	ND	2,0	ND	12	33	4,5	2	ND	2	ND

Como lo muestra el Cuadro 50 las concentraciones de coliformes fecales se mantienen bajas a lo largo del año en las fechas en las que se realizaron los muestreos.

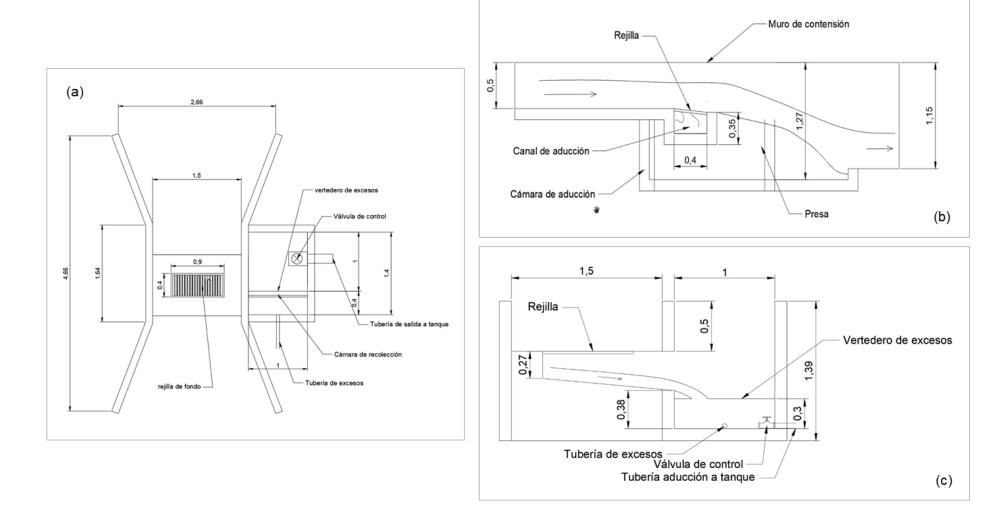
G. Diseño del sistema de potabilización

En primera instancia, la determinación del caudal de diseño para el periodo de 12 años [67], se realizó a partir del caudal máximo diario proyectado, contemplando el caudal que ofrecen las nacientes actuales (4,52 L/s) y un 5% anual del caudal medio diario para el lavado y mantenimiento de la PTAP [18]. Se asume que el periodo de diseño entra en vigor a partir del año de construcción y operación de la planta; ya que el crecimiento poblacional proyectado depende de la disponibilidad de agua.

Por otra parte, la propuesta de sistema diseñado consta de una bocatoma de captación de fondo, un tanque captación, un FGDi y un FLA, con sus respectivas cámaras de entrada y salida.

Esta propuesta funciona como contención a corto y mediano plazo, de forma que durante el periodo de diseño se pueda ampliar el área disponible para la planta de forma que se pueda aumentar la capacidad de potabilización y evaluar la posibilidad de, con mayor espacio, agregar el FGAC recomendado teóricamente.

A continuación, se exponen las principales dimensiones obtenidas en el diseño de los diferentes componentes del sistema. En el APÉNDICE 11 se pueden consultar las fórmulas utilizadas y en el APÉNDICE 12 las memorias de cálculo respectivas.


Los valores están reportados con dos decimales como lo define la "Norma técnica de diseño y construcción de sistemas de abastecimiento de agua potable, de saneamiento y pluvial" [53].

1. Sistema de captación

En el Cuadro 51 se presentan las dimensiones obtenidas de la bocatoma de fondo para la captación del agua a tratar y en la Figura 35 las vistas y cortes elaborados.

Cuadro 51. Resumen de las dimensiones definidas para la bocatoma de captación

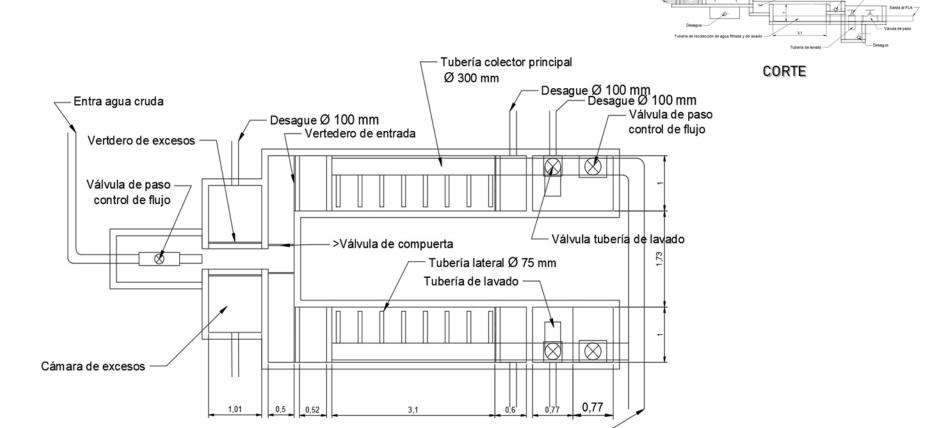
Sección	Parámetro	Unidades	Valor
Rejilla	Rejilla Ancho		40,00
	Largo	cm	60,00
	Número de barras	#	15
	Diámetro de las barras	pulg	1/2
Represa captación	Ancho	m	1,00
Canal de	Ancho	cm	40,00
aducción	Longitud	cm	90,00
	Ancho muros	cm	3,00
	Profundidad	cm	25,00
Cámara de	Ancho	m	1,00
recolección	Profundidad	m	1,00
	Largo	m	1,00

Figura 35. Propuesta de diseño para el sistema de captación de agua cruda con bocatoma de fondo. (a) Vista en planta. (b) Corte canal de aducción. (c) Corte cámara de recolección.

2. Tanque de captación

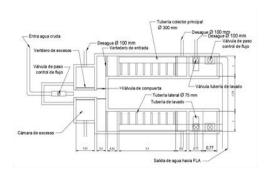
En el Cuadro 52 se presentan las dimensiones obtenidas para la propuesta de diseño del tanque de captación.

Cuadro 52. Resumen de las dimensiones definidas para el tanque de captación


Parámetro	Unidades	Valor
Volumen útil	m3	185,42
Diámetro del tanque	m	7,68
Borde libre	m	0,50
Altura total	m	0,50

3. Filtro Grueso Dinámico

En el Cuadro 53 se presentan las dimensiones obtenidas de la propuesta de diseño del FGDi y en la Figura 36 y Figura 37 las vistas y cortes elaborados.


Cuadro 53. Resumen de las dimensiones definidas para el FGDi

Parámetro	Unidades	Valor
Unidades de tratamiento	#	2,00
Área superficial por unidad	m2	3,08
Ancho del filtro	m	1,00
Largo del filtro	m	3,10
Cantidad de tubos laterales	#	8,00
Distancia entre laterales	cm	40,00
Separación de laterales extremos con pared	cm	10,00
Diámetro de los tubos laterales	mm	75,00
Diámetro de los orificios	mm	15,00
Cantidad de orificios por lateral	#	12
Distancia entre orificios	cm	10,00
Número de colectores por nudo	#	1,00
Diámetro del tubo recolector	mm	300
Pérdida de carga total	m	0,50
Altura total del filtro	cm	90,00

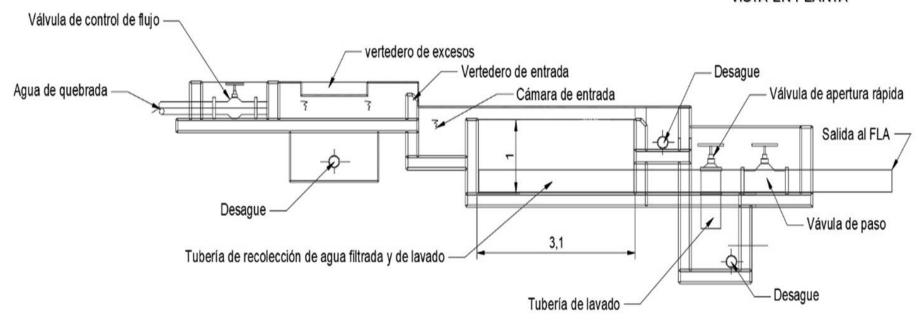
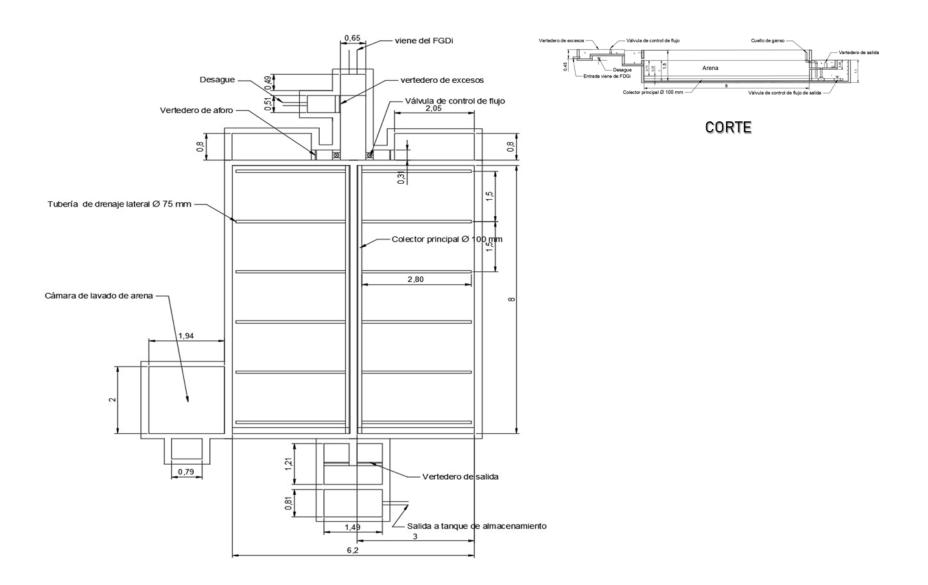


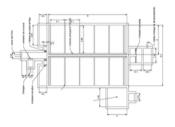
Figura 36. Vista en planta de la propuesta de diseño del Filtro Grueso Dinámico.

Salida de agua hacia FLA

VISTA EN PLANTA


Figura 37. Corte de la propuesta de diseño del Filtro Grueso Dinámico.

4. Filtro Lento en Arena


En el Cuadro 54 se presentan las dimensiones obtenidas de la propuesta de diseño del FLA y en la Figura 38 y Figura 39 las vistas y cortes elaborados.

Cuadro 54. Resumen de las dimensiones definidas para el FLA

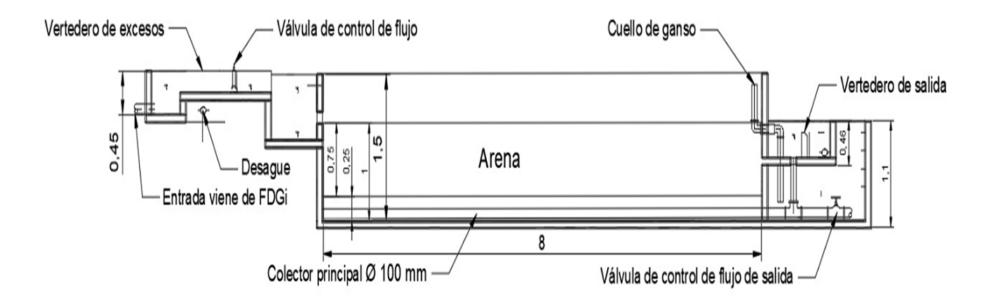

Parámetro	Unidades	Valor		
Unidades de tratamiento	#	2,00		
Área superficial total	m2	46,62		
Largo	m	8,00		
Ancho	m	3,00		
Cantidad de orificios por lateral	#	10,00		
Diámetro de los orificios	mm	13,00		
Distancia entre orificios	cm	15		
Cantidad de tubos laterales	#	6,00		
Distancia entre laterales	m	1,50		
Longitud del lateral	m	2,80		
Diámetro de los tubos laterales	mm	75,00		
Longitud del colector central	m	7,60		
Diámetro del colector central	mm	100,00		
Pérdida de carga total	m	0,20		
Altura borde libre	m	0,20		
Altura sobrenadante	m	0,75		
Altura de lecho filtrante (arena)	m	0,80		
Altura de lecho de soporte	m	0,25		
Altura total del filtro	m	2		
Lecho de soporte				
Espesor de la gravilla	m	0,05		
Espesor de la grava 1	m	0,05		
Espesor de la grava 2	m	0,15		

Figura 38. Vista en planta de la propuesta de diseño del Filtro Lento en Arena.

VISTA EN PLANTA

Figura 39. Corte de la propuesta de diseño del Filtro Lento en Arena.

H. Planteamiento del costo del proyecto

Para el planteamiento de los costos del proyecto se contempló un aproximado de la inversión inicial, de los gastos de operación y mantenimiento y de consumo eléctrico (bomba de aducción). En el Cuadro 55 se presentan los costos aproximados de inversión inicial obtenidos y en el Cuadro 56 los costos aproximados de operación y mantenimiento.

Cuadro 55. Costos de inversión inicial aproximado por unidad constructiva

Ítem -		Costos (\$)	
item -	FGDi	FLA	Limpieza y secado
Excavación	7.008,83	47.320,70	683,01
Concreto	4.661,95	15.258,47	1.699,43
Grava	814,32	2.447,76	-
Arena	-	9.324,79	-
Mampostería	-	-	2.858,30

Los costos presentados en el Cuadro 55 se estimaron a partir del área de filtración para cada componente del sistema y un aproximado de 20 m² para el área de limpieza y secado de la arena, como lo define el documento técnico para la Filtración en Múltiples Etapas [67], de forma que se obtiene un subtotal constructivo de \$ 92.077,57 dólares [67]. A este monto se le adicionó un 30% de costos de mano de obra (\$ 27.623,27) [67] y a la suma de ambos (\$119.700,84) un 25% (\$ 29.925,21) que contempla gastos imprevistos de construcción, instalación o administrativos [71].

Por lo tanto, se obtuvo un costo total aproximado constructivo de \$ 149.626,04 dólares, los cuales pueden disminuirse si la comunidad opta por utilizar materiales y mano de obra local.

Finalmente, a este último costo se le adicionó el valor obtenido a partir de la Ecuación 14, con un índice de incremento constructivo de 4,84% [72], para obtener un valor proyectado actual; ya que los datos base utilizados son del año 2012. De forma que se obtuvo un total global aproximado de \$ 228.955,09 dólares.

$$VA = \frac{VF}{(1+i)^n}$$
 Ecuación 14

Donde: VA Valor actual VF Valor final n Número de años entre un valor y el otro i Tasa de crecimiento del valor

Cabe aclarar que los costos evaluados se limitan únicamente a los constructivos de la planta de potabilización; es decir no contempla tubería ni accesorios. Para la recuperación de la inversión inicial en 12 años se estableció el pago de un monto fijo anual aproximado de \mathcal{C} 900,00 colones por abonado, el cual contempla la proyección de crecimiento poblacional realizada para el periodo 2021-2033 (APÉNDICE 13). Con respecto a los costos de operación y mantenimiento estos se estimaron con base en las proyecciones realizadas para plantas de una configuración y caudal similar [71]. En el Cuadro 56 se muestran los costos obtenidos.

Cuadro 56. Costos aproximados de operación de mantenimiento

Ítem	Costos (\$)
Sueldos (operador)	846,15
Prestaciones	80,59
Mantenimientos	223,33

Para los sueldos se contempló el salario mínimo de un fontanero y las prestaciones consideraron 20 días laborales, generando, junto al rubro de mantenimiento, un subtotal de \$ 1.150,07 dólares al cual se le suma un 10% (\$115,01) para la inclusión de gastos inesperados [67], de forma que se obtiene un total aproximado de \$ 1.265,08 dólares.

Por otra parte, se estimó el costo aproximado del consumo eléctrico generado por una bomba de aducción para las 730 horas de funcionamiento anual y el costo de Kwh de \emptyset 375,00 colones, lo cual genera un gasto de \$ 204,81 dólares mensuales. De modo que el costo total sería de \$1.469,89 dólares para el 2021. Así, el recargo a la factura mensual debe contemplar el costo fijo de recuperación de la inversión inicial y el costo de la operación y mantenimiento que depende del número de abonados, la inflación anual y los imprevistos que presente el sistema.

CAPÍTULO V: CONCLUSIONES

- 1. Dentro de los cinco principios básicos del servicio de abastecimiento de agua potable valorados se apreció que el de cobertura presenta una alta necesidad de ser abordado con soluciones a mediano y largo plazo para evitar seguir retrasando el desarrollo social y económico de la comunidad, y para mantener la apreciación positiva que se tiene sobre el desempeño actual de la ASADA.
- 2. Con base en el análisis de los parámetros de calidad realizados para el agua de la quebrada se confirma la factibilidad de utilizar esta agua como parte del recurso de abastecimiento para la comunidad; además que la capacidad productiva que ofrece la cuenca permite tener suficiente caudal promedio a lo largo del año, de forma que se pueden solventar las demandas futuras proyectadas.
- 3. El estudio realizado sobre la situación de la oferta y demanda actual del recurso en la comunidad permite deducir que en la actualidad la problemática de cobertura identificada no se debe directamente a la escasez del recurso en las fuentes de generación con las que cuenta la ASADA, de manera que está relacionada con las deficiencias de aprovechamiento que posee el sistema de abastecimiento; sin embargo aunque dicho sistema se optimizara de forma que se pudiera captar mayor cantidad de agua en menos de cinco años no se contaría con la capacidad necesaria para abastecer la totalidad de la población.
- 4. El sistema de potabilización propuesto cumple con los lineamientos planteados por la comunidad y sus representantes; ya que la configuración de su diseño permite obtener niveles de calidad de agua deseables, mediante procesos operacionales sencillos y de bajo costo de mantenimiento e inversión inicial y asegurando que la planta quede contenida en el terreno disponible para ese fin.

5. Con respecto a los costos de inversión se estima un costo fijo de Ø 900,00 colones que permite la recuperación de la inversión inicial aproximada en 12 años; además este monto es cercano al aproximado a partir de las encuestas realizadas (Ø 600,00).

A. Recomendaciones

- i. Promover en mayor grado la aplicación de los principios de la Gestión Integral del Recurso Hídrico, entre estos, la limpieza periódica del cauce y la colocación de plantaciones que eviten la erosión y el arrastre de contaminantes, de forma que se ayude a mantener el estado óptimo de la quebrada, y, por tanto, su capacidad de abastecimiento [73].
- ii. Realizar un estudio sobre los principios de calidad y cantidad, calificados como "tolerables" en el análisis de significancia (Cuadro 36); con el fin de detectar posibles acciones de mejora que permitan optimizar y perfeccionar el servicio actual de la ASADA.
- iii. Realizar un estudio del sistema de abastecimiento actual para determinar posibles acciones de mejora que permitan un mayor aprovechamiento de la oferta generada y que se cumpla con los requerimientos necesarios para dar sostenimiento al servicio en el transcurso del tiempo.
- iv. Realizar como mínimo dos años más de monitoreo de los aforos de la quebrada y los parámetros de calidad de agua, abarcando un esquema completo de análisis, es decir, incluyendo también parámetros N2 y N3 [39], monitoreando la dilución del agua de la quebrada con la de la naciente (Toma #1).
- v. Realizar un estudio de dosificación de desinfectante para determinar la nueva dosis según el aumento de caudal generado por la planta de potabilización.

vi. Realizar un análisis más profundo sobre la Disposición a Pagar (DAP) por parte de las personas de la comunidad, incluyendo a aquellas que no reciben el servicio por parte de la ASADA; ya que en las encuestas realizadas solo se contemplaron aquellas que contaban con dicho servicio.

B. Limitaciones

El principal limitante fue el presupuesto para la ejecución del proyecto; ya que este no permitió realizar los aforos de caudal en el punto exacto donde se definió la construcción de la captación, de forma que estos datos fueran más exactos, y debido a que no se pudieron contemplar parámetros N2 y N3 en el análisis de calidad de agua durante un periodo que permitiera tener mayor certeza de las condiciones actuales.

REFERENCIAS BIBLIOGRÁFICAS

- [1] UNESCO, "Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2019: no dejar a nadie atrás," *Organ. las Nac. Unidas para la Educ. la Cienc. y la Cult.*, p. 215, 2019, [Online]. Available: http://www.unwater.org/publications/world-water-development-report-2019/.
- [2] J. M. D. Juárez and A. T. Rodríguez, "Los problemas del abastecimiento de agua potable en una ciudad media," *Espiral Estudios sobre Estado y Sociedad*. pp. 129–162, 2006, [Online]. Available: http://www.scielo.org.mx/pdf/espiral/v12n36/v12n36a5.pdf.
- [3] E. y T. e I. M. N. Ministerio de Ambiente, "Riesgos del recurso hídrico ante la amenaza del cambio climático." Costa Rica, [Online]. Available: https://cambioclimatico.go.cr/wp-content/uploads/2019/02/Presentacion-Riesgos-Recurso-Hidrico-ante-Amenaza-Cambio-Climatico.pdf.
- [4] M. del M. Solano Arce, "Impacto ambiental por aguas residuales y residuos sólidos en la calidad del agua de la parte media- alta de la microcuenca del río Damas y propuesta de manejo." Costa Rica, 2011, [Online]. Available: https://www.aya.go.cr/centroDocumetacion/catalogoGeneral/Impacto ambiental por aguas residuales y residuos sólidos en la calidad del agua.pdf.
- [5] C. Idrovo, "Optimización de la planta de tratamiento de Uchupucun." Ecuador, 2010, [Online]. Available: https://dspace.ucuenca.edu.ec/bitstream/123456789/2426/1/tq1066.pdf.
- [6] D. M. Alvarado and F. P. Barquero, "Agua potable y saneamiento: coberturas en viviendas y más allá del hogar en Costa Rica al 2017." Costa Rica, 2017, [Online]. Available: https://dspaceaya.igniteonline.la/bitstream/handle/aya/266/CEDO AyA 5057.pdf?sequence=1&isAllowed=y.
- [7] F. S. Hernández, "El agua como derecho humano," *Rev. Inclusiones*, vol. 7, pp. 1–8, 2020, [Online]. Available: http://bkp.revistainclusiones.org/gallery/1 vol 7 num especialleabriljunio2020revinclusi.pdf.
- [8] H. Paltán, M. Basani, V. Minaya, and N. Rezzano, Servicios de agua potable y saneamiento resilientes en América Latina y el Caribe. 2020.
- [9] Global Water Partnership, "Principios de gestión integrada de los recursos hídricos bases para el desarrollo de planes nacionales," 2008, [Online]. Available: www.gwpsudamerica.org.
- [10] D. E. Pinilla Rodríguez, Y. A. Torres Sánchez, D. E. Pinilla Rodríguez, and Y. A. Torres Sánchez, "Gasto público social, el acceso al agua potable y el saneamiento de las poblaciones rurales en América Latina," *Probl. Desarro.*, vol. 50, no. 196, pp. 55–81, 2019, doi: 10.22201/IIEC.20078951E.2019.196.63499.
- [11] A. G. Monge et al., "Guía digital. Recurso Hídrico." [Online]. Available:

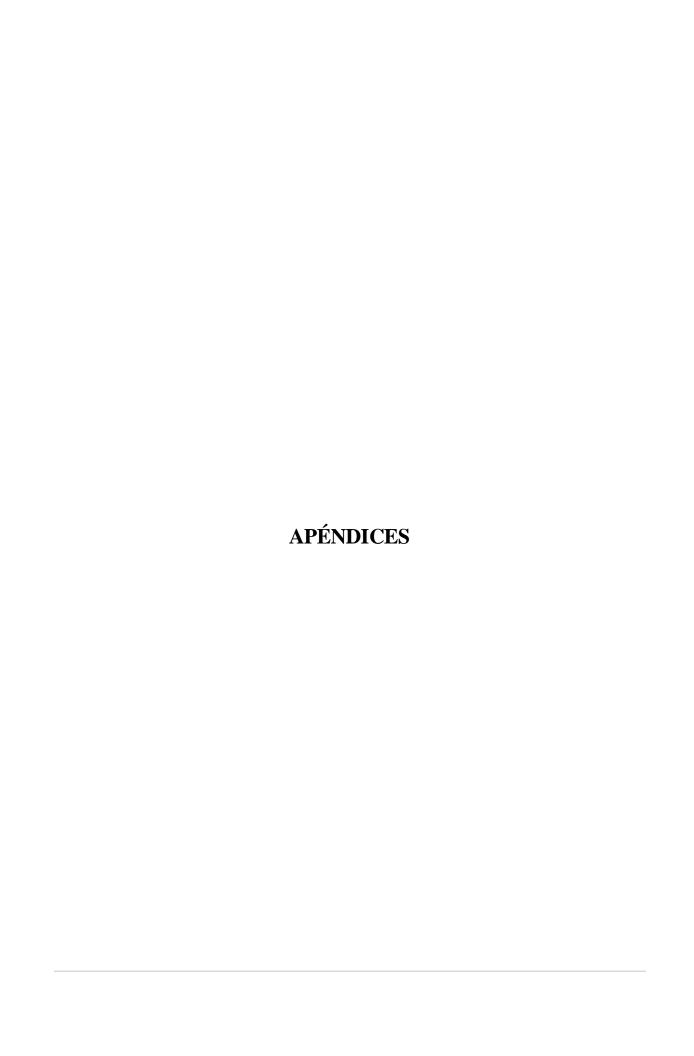
- https://www.inavirtual.ed.cr/pluginfile.php/1311918/mod_resource/content/3/Material_guia_digital_Recurso_Hidrico_ASEC_16022021.pdf.
- [12] A. O. Valdes and L. N. Roa, "Caracterización de agua cruda y tratada para el proceso de fabricacion de h2so4 en la empresa industrias basicas de caldas." Colombia, 2009, [Online].

 Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/1785/66108O83.pdf?seq uence=1&isAllowed=y.
- [13] Poder Ejecutivo, Reglamento para la calidad del Agua Potable. 2020.
- [14] L. H. Vásquez, H. C. García, and D. M. Albarado, "Calidad del agua para consumo humano y salud: dos estudios de caso en Costa Rica," *Revista Costarr Salud Pública*. 2011, [Online]. Available: https://www.scielo.sa.cr/pdf/rcsp/v20n1/art4v20n1.pdf.
- [15] Organización de las Naciones Unidas para la Alimentación y la Agricultura, "Cartilla de uso y manejo de agua segura para consumo y producción en huertos familiares," 2012.
- [16] C. M. Betancourti and L. C. Cruz, "Estado actual de la educación y la cultura hídrica: un mapeo sistemático de literatura," *Rev. Guillermo Ockam*, vol. 19, no. 1, 2021, [Online]. Available: http://www.scielo.org.co/pdf/rgdo/v19n1/2256-3202-rgdo-19-01-9.pdf.
- [17] J. M. Mejía, "Análisis metodológico de porcentaje utilizado por la dirección de agua para determinar el caudal ambiental, basados en aforos y caudales otorgados," Costa Rica, 2021. [Online]. Available: http://www.da.go.cr/wp-content/uploads/2021/02/ANALISIS-METODO-PORCENTAJE-UTILIZADO-POR-LA-DIRECCION-DE-AGUA-PARA-DETERMINAR-CAUDAL-AMBIENTAL.pdf.
- [18] G. P. Yara, G. C. Solórzano, Á. G. Rojas, and A. E. Ortiz, "Estudio de prefectibilidad para sistema de acueducto complementario de la Cabecera Municipal de La Vega, Cundinamarca," Universidad Militar Nueva Granada, 2014.
- [19] N. Rios and M. Ibrahim, *Impactos del cambio climático sobre los recursos hídricos*, 1st ed., vol. 1. Sede Central CATIE 7170, 2008.
- [20] O. P. de la Salud, C. del agua potable en Costa Rica: Situación actual y perspectivas /, and M. de Salud Organización Panamericana de la Salud, *Calidad del agua potable en Costa Rica: Situación actual y perspectivas*. 2004.
- [21] I. L. de Vargas and C. P. de Ingeniería Sanitaria y Ciencias del Ambiente, *Tratamiento de agua para consumo humano Plantas de filtración rápida Manual I: Teoría Tomo I.* 2004.
- [22] Organización Mundial de la Salud, Guías para la calidad del agua potable. 2006.
- [23] G. W. Ware, *The pesticide book*. Thomson Publications, 2000.
- [24] C. D. Delgado, C. Fall, E. Quentin, P. I. de Ciencia y Tecnología para el Desarrollo.

- Subprograma XVIII. Aprovechamieto y Gestión de Recursos Naturales., and R. I. de Potabilización y Depuración de Agua., "Indicadores de contaminación fecal en aguas," Agua potable para comunidades rurales, reuso y tratamientos avanzados de aguas residuales domésticas. 2003.
- [25] O. P. de la Salud and C. P. de Ingeniería Sanitaria y Ciencias del Ambiente, Tecnologías alternativas para la provisión de servicios de agua y saneamiento en pequeñas localidades. Impreso en Perú por Stampa Gráfica, 2004.
- [26] I. J. A. Orellana, "Tratamiento de las aguas," *Ing. Sanit.*, 2005, [Online]. Available: https://www.frro.utn.edu.ar/repositorio/catedras/civil/ing_sanitaria/Ingenieria_Sanitaria_A4_Capitulo_06_Tratamiento_de_Aguas.pdf.
- [27] I. J. M. J. Terán, "Manual para el diseño de sistemas de agua potable y alcantarillado sanitario." [Online]. Available: https://topodata.com/wp-content/uploads/2019/10/Manual-de-Diseño-de-agua-potable-y-alcantarillado-sanitario.pdf.
- [28] F. M. M. Ayllón, "Abastecimiento, diseño y construcción de sistemas de agua potable modernizando el aprendizaje y enseñanza en la asignatura de ingeniería sanitaria i."

 2008, [Online]. Available: http://siar.minam.gob.pe/puno/sites/default/files/archivos/public/docs/1522.pdf.
- [29] W. A. L. Rivas and G. L. Bravo, *Potabilización del agua: Principios de diseño, control de procesos y laboratorio Barreto Tejada, Juan Alejandro Google Libros*, 1st ed. 2015.
- [30] F. M. M. Ayllón, "Abastecimiento, diseño y construcción de sistemas de agua potable modernizando el aprendizaje y enseñanza en la asignatura de ingeniería sanitaria 1." Universidad Mayor de San Simón, Cochabamba, Bolivia, 2008, [Online]. Available: http://siar.minam.gob.pe/puno/sites/default/files/archivos/public/docs/1522.pdf.
- [31] H. A. V. Serrano, "Evaluación del sistema de filtración en múltiples etapas fime en tanques plásticos con pre-sedimentación y retro-lavado en la hacienda majavita." 2013, [Online]. Available: https://ridum.umanizales.edu.co/xmlui/bitstream/handle/20.500.12746/151/402_Veg a_Serrano_Haimar_Ariel_2013_Documento.pdf?sequence=1&isAllowed=y.
- [32] O. P. de la Salud, Guía para el diseño de desarenadores y sedimentadores. 2005.
- [33] E. R. Campalans, A. Pérez-Foguet, L. B. Bartolí, and S. O. Josa, "Abastecimiento de agua y Saneamiento. Tecnología para el Desarrollo Humano y acceso a los servicios básicos .," *Ing. Apl. a la Coop. para el Desarro.*, vol. 9, 2005, [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/25169/M9_Abastecimiento de agua y saneamiento.pdf?sequence=10&isAllowed=y.
- [34] C. J. M. Andrés, *Potabilización del agua*. España: Editorial Elearning S.L.
- [35] Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente, *Tratamiento de agua para consumo humano: Plantas de filtración rápida*. Lima, 2004.

- [36] C. de Isabel II Gestión, *Ciclo integral del agua Tratamiento del agua potable*. Canal de Isabel II Gestión, 2012.
- [37] G. L. K. Andrés, "Diseño de una planta de tratamiento de agua potable aplicando la tecnología de filtración en múltiples etapas." 2017, [Online]. Available: http://repositorio.utmachala.edu.ec/bitstream/48000/11066/1/TUAIC_2017_IC_CD0 021.pdf.
- [38] Ministerio de medio ambiente y agua and Viceministerio de Agua Potable y Saneamiento Básico, "Guía técnica de diseño y ejecución de proyectos de agua y saneamiento con tecnologías alternativas." 2012, [Online]. Available: https://unmundosalvadorsoler.org/_files/foro/guia-tecnica-agua.pdf.
- [39] O. P. de la Salud and O. M. de la Salud, Guía para diseño de sistemas de tratamiento de filtración en múltiples etapas. 2005.
- [40] C. Internacional and Avina, "Operación y Mantenimiento de sistemas de agua potable." 2012, [Online]. Available: https://sswm.info/sites/default/files/reference_attachments/CARE-AVINA 2012. Operación y mantenimiento de sistemas de agua.pdf.
- [41] F. A. P. Ministro *et al.*, "Operación y mantenimiento de plantas de potabilización de agua." 1999, [Online]. Available: https://repositorio.sena.edu.co/sitios/calidad_del_agua/operacion_potabilizacion/inde x.html#.
- [42] Poder Ejecutivo, Reglamento de Aprobacion y Operación de Sistemas de Tratamiento de Aguas Residuales Nº 31545-S-MINAE. Costa Rica, 2016.
- [43] Instituto Distrital de Gestión de Riesgos y Cambio Climático, "Guía Técnica para la Identificación de Aspectos e Impactos Ambientales." Bogotá, Colombia, 2015, [Online]. Available: https://www.idiger.gov.co/documents/20182/297947/PLE-GU-01+Guia+Para+la+Identificacion+de+Aspectos+e+Impactos+Amb+V3.pdf/db462a5 d-9133-4248-aa1d-422b2d9a105c.
- [44] J. F. Pacheco and E. Contreras, "Manual metodológico de evaluación multicriterio para programas y proyectos." 2008, [Online]. Available: https://repositorio.cepal.org/bitstream/handle/11362/35914/1/manual58_es.pdf.
- [45] R. Hernández-Sampieri and C. P. M. Torres, *Metodología de la investigación*, 6th ed., vol. 4. McGraw-Hill Interamericana México, 2018.
- [46] Instituto Costarricense de Acueductos y Alcantarillados, "Manual Informativo: Aspectos básicos para la gestión de las nuevas Juntas Directivas de las ASADAS."


 Costa Rica, [Online]. Available: https://www.aya.go.cr/ASADAS/documentacionAsadas/Aspectos Básicos de las ASADAS.pdf.
- [47] W. M. Cordero, "Comunicación personal." Costa Rica, 2021.
- [48] Guías Costa Rica, "Cantón de Tarrazú," 2015. https://guiascostarica.com/tarrazu/.

- [49] Municipalidad de Tarrazú, "Municipalidad de Tarrazú- Historia," 2021. https://munitarrazu.cr/index.php/mn-conozcanos/mn-micanton/mn-historiacanton (accessed Oct. 20, 2021).
- [50] V. P. Quesada, "División territorial administrativa de la República de Costa Costa Rica." Imprenta Nacional, San José, Costa Rica, p. 16, 2017, [Online]. Available: https://www.imprentanacional.go.cr/editorialdigital/libros/historiaygeografia/divisio n_17.pdf.
- [51] H. G. Esquivel, "Información ASADA San Pedro." Costa Rica, 2021.
- [52] Instituto Costarricense de Acueductos y Alcantarillados, "Listado de entes operadores e información general." Costa Rica, p. 35, 2021, [Online]. Available: https://www.aya.go.cr/ASADAS/documentacionAsadas/Información General de ASADAS.pdf.
- [53] Instituto Costarricense de Acueductos y Alcantarillados, "Norma técnica para diseño y construcción de sistemas de abastecimiento de agua potable, de saneamiento y pluvial." Costa Rica, 2017, [Online]. Available: https://www.aya.go.cr/Noticias/Documents/Norma diseño y construccion sistemas agua, saneamiento y pluvial.pdf.
- [54] Instituto Nacional de Estadística y Censos de Costa Rica, "Censo 2011. Indicadores de disponibilidad de servicios básicos, según provincia, cantón y distrito. Cuadro 39." 2011.
- [55] Asamblea Legislativa, Ley de Aguas. Costa Rica, 2012.
- [56] Acreditación y Gestión Ambiental en América Central, "Muestreo de aguas." CEGESTI, 2008.
- [57] W. L. C. Sanchez, F. Vera, A. Luna, J. Espinoza, A. Bustamante, J. Cárdenas, "Metodología para la estimación de caudales mínimos de una cuenca hidrográfica con escasa información hidrometeorológica," pp. 143–149, Apr. 2017.
- [58] L. C. Argüello, D. P. Cajina, M. F. Rodríguez, and M. J. Guido, "Guía didáctica para la gestión de la calidad de agua potable en acueductos rurales." Costa Rica, 2017, [Online].

 Available: https://repositoriotec.tec.ac.cr/bitstream/handle/2238/13226/guia_didactica...pdf?seq uence=1&isAllowed=y.
- [59] L. P. Días, "Construcción de un prototipo del molinete universal para la medición de la velocidad del agua en ríos, basado en el molinete universal utilizado en el Inamhi," Escuela Politécnica Nacional, 2011.
- [60] R. B. Baird, A. D. Eaton, and E. W. Rice, Standard Methods For the Examination of Water and Wastewater, 23nd edition, 23rd ed. 2017.
- [61] L. A. P. Díaz, "Construcción de un prototipo del molinete universal para la medición de la velocidad del agua en ríos, basado en el molinete universal utilizado en INAMHI." Costa Rica, 2011, [Online]. Available:

- https://bibdigital.epn.edu.ec/bitstream/15000/4165/1/CD-3870.pdf.
- [62] A. Escofet, P. Folgueiras, E. Luna, and B. Palou, "Elaboración y validación de un cuestionario para valoración de proyectos de aprendizaje o servicio," *RMIE*, vol. Vol. 21, no. 70, pp. 929–949, 2016.
- [63] Centro Centroamericano de Población, "Crecimiento poblacional e interpolación." Univerdidad de Costa Rica, Costa Rica, [Online]. Available: https://ccp.ucr.ac.cr/cursos/demografia_03/materia/5_crecimiento.htm.
- [64] M. del P. Granados, "Técnicas de proyecciones de población de áreas menores: aplicación y evaluación," 1987. [Online]. Available: https://repositorio.cepal.org/bitstream/handle/11362/32594/D-13118.00_es.pdf?sequence=1.
- [65] Instituto Nacional de Estadística y Censos, "Indicadores demográficos cantonales," Costa Rica, 2013. [Online]. Available: https://www.inec.cr/sites/default/files/documentos/poblacion/publicaciones/repoblac ev2013-02.pdf.
- [66] Instituto Nacional de Estadística y Censos de Costa Rica, "Censo 2011. Indicadores demográficos según cantón. Cuadro 1." Costa Rica, 2011.
- [67] G. G. Castaño, J. L. Montero, and J. T. Visscher, *Filtración en múltiples etapas:* tecnología innovativa para el tratamiento de agua. Bali, Colombia: CINARA & IRC, 1999.
- [68] R. A. L. Cualla, *Elementos de diseño para acueductos y alcantarillados*, 5th ed. Bogotá, Colombia: Escuela Colombiana de Ingeniería, 2000.
- [69] Instituto Meteorológico Nacional, "El clima y las regiones climáticas de Costa Rica," Costa Rica. [Online]. Available: https://www.imn.ac.cr/documents/10179/31165/clima-regiones-climat.pdf/cb3b55c3-f358-495a-b66c-90e677e35f57#:~:text=Se caracteriza por poseer una, extiende de diciembre hasta marzo.&text=Lo contrario sucede con el. noviembre un mes de transición.
- [70] Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente (CEPIS/OPS), Tecnologías alternativas para la provisión de servicios de agua y saneamiento en pequeñas localidades. Impreso en Perú por Stampa Gráfica, 2004.
- [71] D. M. P. Marín, "Análisis de la operación y mantenimiento de la filtración en gravas de flujo ascendentes a escala real," Universidad del Valle, 2012.
- [72] Dirección Órgano de Normalización Técnica, "Manual de Valores Base Unitarios por Tipología Constructiva," Costa Rica, 2021.
- [73] Gobal Water Partnership, "Principios de gestión integrada de los recursos hídricos bases para el desarrollo de planes nacionales," 2008, [Online]. Available: www.gwpsudamerica.org.

- [74] B. A. G. Pacheco and R. O. V. Serpa, "Estudio y diseño del sistema de agua potable de la comunidad San José de la Betania del cantón Pucará, provincia del Azuay," Universidad de Azuay, 2017.
- [75] J. Rodríguez Santos, M. Gómez de la Torre, A. Arellano Guevara, C. Romero Castillo, and F. Córdova Rizo, "Estimación de coeficientes de descarga en orificios circulares de pared delgada, en modelos físicos," *Rev. Lasallista Investig.*, vol. 15, no. 2, pp. 20–32, Dec. 2018, doi: 10.22507/rli.v15n2a2.
- [76] Comisión Nacional del Agua, "Manual de agua potable, alcantarillado y saneamiento." Comisión Nacional del Agua, México, 2007, [Online]. Available: http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/Libros/09 DisenoDeInstalacionesMecanicas.pdf.
- [77] G. S. Ávila, *Hidráulica General: fundamentos*. México: Editorial LIMUSA S.A., 1994.
- [78] L. Dominguez and C. Facundo, "Caracterización experimental del flujo de aproximación a una obra hidráulica en un modelo físico 2D (H:V)." Universidad Nacional de Córdoba, Argentina, 2016, [Online]. Available: https://rdu.unc.edu.ar/bitstream/handle/11086/4315/PSFLFINAL2016.pdf?sequence =1&isAllowed=y.
- [79] F. Willy and C. Escobar, "Descripción Hidráulica de la Batería de Filtros de Planta Nº1 de La Atarjea," Universidad Nacional Mayor de San Marcos.

APÉNDICE 1: ENTREVISTA

1. Determinación de los aspectos críticos de estudio

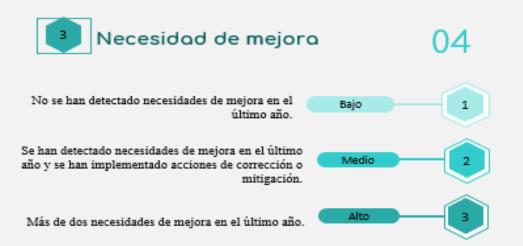
En este apéndice se presentan las herramientas utilizadas y las respuestas obtenidas en la entrevista realizada a el presidente de la ASADA [47], para la obtención de la información necesaria para el estudio de los aspectos críticos y la selección de las tecnologías.

PREGUNTAS PARTE 1 ANÁLISIS DE CRITICIDAD

Explique el porqué de su selección en cada una de las siguientes preguntas:

- Entendiendo el término "calidad" como: (...) Según los criterios de necesidad de mejora: ¿cuál es la categoría que en la que encaja la situación del servicio prestada por la ASADA en el último año?
- 1. Entendiendo el término "cantidad" como: (...) Según los criterios de necesidad de mejora: ¿cuál es la categoría que en la que encaja la situación del servicio prestada por la ASADA en el último año?
- 2. Entendiendo el término "continuidad" como: (...) Según los criterios de necesidad de mejora: ¿cuál es la categoría que en la que encaja la situación del servicio prestada por la ASADA en el último año?
- 3. Entendiendo el término "cobertura" como: (...) Según los criterios de necesidad de mejora: ¿cuál es la categoría que en la que encaja la situación del servicio prestada por la ASADA en el último año?
- 1. Entendiendo el término "confiabilidad" como: (...) Según los criterios de necesidad de mejora: ¿cuál es la categoría que en la que encaja la situación del servicio prestada por la ASADA en el último año?

La dotación disponible permite solventar las necesidades básicas.

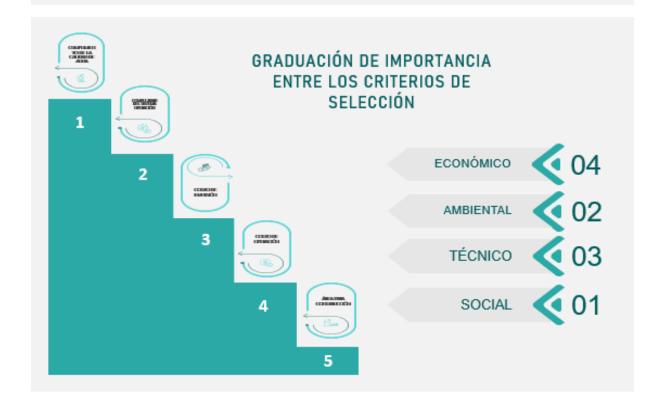


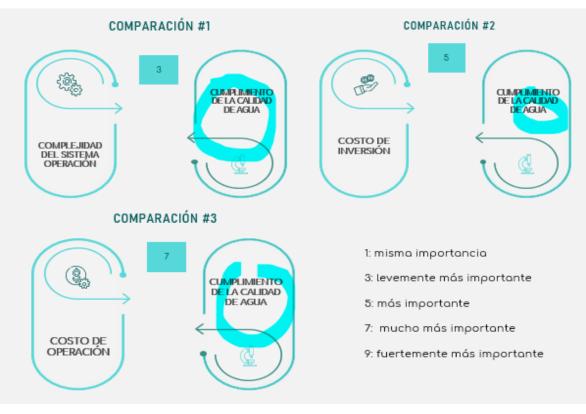
COBERTURA

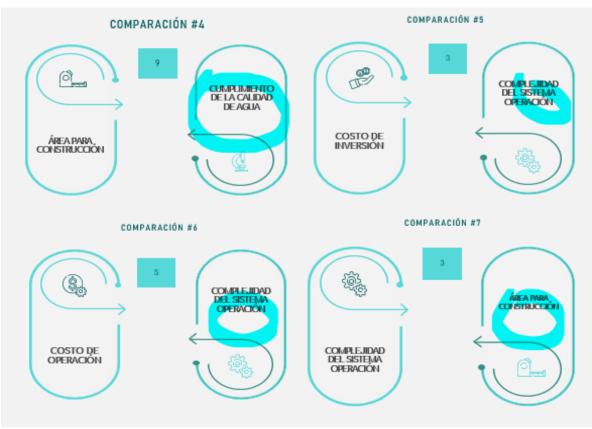
Se proporciona a toda la población sin ningún tipo de restricción.

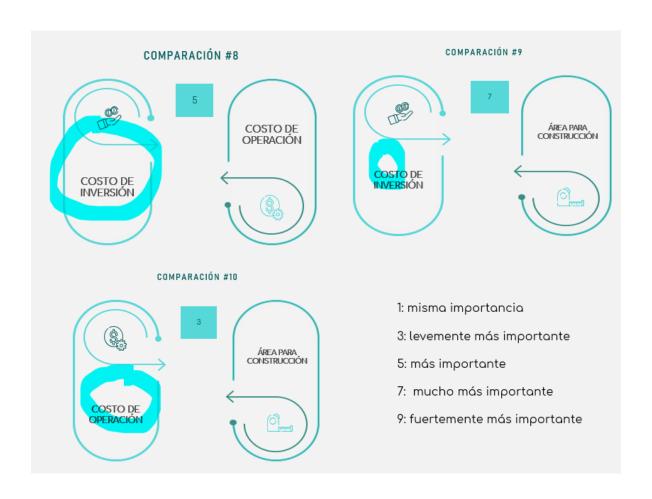
2. Valoración de los criterios de selección

PREGUNTAS PARTE 2 SELECCIÓN DE LA MEJOR OPCIÓN DE DISEÑO


Estratifique los criterios en orden de importancia. Recuerde que alguno puede considerarlo igual de importante que otro.


Comparando el criterio 1 con el criterio 2:


- 1. ¿los considera con la misma importancia? R/1
- 2. ¿considera uno levemente más importante que el otro? ¿Cuál? R/3
- 3. ¿considera uno más importante que el otro? ¿Cuál? R/5
- 4. ¿considera uno mucho más importante que el otro? ¿Cuál? R/7
- 5. ¿considera uno extremadamente más importante que el otro? ¿Cuál? R/9


Repetir las preguntas para cada par de criterios.

- Pareja 1: Costo inversión vs Costo operación
- Pareja 2: Costo inversión vs Complejidad de operación
- Pareja 3: Costo inversión vs Área para la construcción
- Pareja 4: Costo inversión vs Cumplimiento de calidad de agua
- Pareja 5: Costo de operación vs Complejidad de operación
- Pareja 6: Costo de operación vs Área de construcción
- Pareja 7: Costo de operación vs Cumplimiento de calidad de agua
- Pareja 8: Complejidad de operación vs Área de construcción
- Pareja 9: Complejidad de operación vs Cumplimiento de calidad de agua
- Pareja 10: Área de construcción vs Cumplimiento de calidad de agua

APÉDICE 2: ENCUESTA

SECCIÓN I: INFORMACIÓN GENERAL

1.	Código de la casa (zonificación)	
2.	Nombre del encuestado	
3.	Cantidad de personas que viven o trabajan en la propiedad	
SECC	IÓN II: AGUA POTABLE	
1.	¿La propiedad cuenta con medidor de agua?	
()Sí		
() No		
() No	sé	
2.	¿Posee tanque para almacenar agua?	
() Sí		
() No		
3.	¿Cómo recibe el servicio de agua?	
() Con	ntinuamente las 24 horas del día	
() Sólo medio día		
() Algunas horas al día		
() No recibo el servicio		

4.	¿Conoce si tiene fugas de agua en alguna parte de la propiedad?
() Sí t	iene
() No	tiene
() No	sabe
5.	¿Conoce qué ocurren fugas de agua en las casas o comercios de la comunidad?
() Sí	
() No	
Si la re	espuesta es "sí":
5.1.	¿Con qué frecuencia pasan estas fugas?
() Poc	a
() Mu	cha
Come	ntario abierto:
6.	¿Ha sufrido cortes del servicio en el último año?
() Sí	
() No	
Si la re	espuesta es "sí":
6.1.	¿Con qué frecuencia pasan los cortes?
() Poc	a
() Mu	cha
Come	ntario abierto:

6.2. ¿Se le notifica cuando se le va a suspender el servicio y la razon de la suspension?
() Sí
()No
Comentario abierto:
7. ¿Ha tenido problemas con que le llegue poca cantidad de agua o con poca presión en el último año?
() Sí
()No
Si la respuesta es "sí":
7.1. ¿Con qué frecuencia pasa?
() Poca
() Mucha
Comentario abierto:
8. ¿Conoce de algún caso en el que alguna persona de la comunidad haya solicitado el servicio de agua y que no fuera posible que se lo dieran?
() Sí
()No
Si la respuesta es "sí":
8.1. ¿Qué tan frecuente cree que pueda ser esta situación en la comunidad?
()Poca
() Mucha
Comentario abierto:

9.	¿Compra agua embotellada para tomar?	
() Sí		
() No		
(Si la 1	respuesta es "sí") ¿Por qué?:	
10.	¿Utiliza algún tipo de tratamiento casero para el agua?	
() No		
() Filt	°CO	
() Clo	ro	
() Her	vir el agua	
()Otro	D:	
11.	¿Ha notado algún olor o sabor extraño en el agua en los últimos meses?	
() Sí		
() No		
Come	ntario abierto:	
12.	¿Ha notado que el agua llegue turbia/sucia/blanca en los últimos meses?	
() Sí		
() No		
Come	ntario abierto:	
Si la respuesta anterior es "sí":		
12.1.	¿Con qué frecuencia llega turbia?	
()Poc	a	
() Mu	cha	

12.	2.2. ¿En qué época es más frecuente?					
()	() Verano					
()1	Invierno					
SEC	CCIÓN III: COMUNIDAD Y ASADA					
1.	¿Sabe cuánto es el consumo de agua	a en la pi	ropiedad?			
()	Sí					
()	No					
(Si	la respuesta es "sí") ¿Cuánto?:					
2.	¿Sabe un aproximado de lo que pag	ga mensu	almente p	or el servic	cio de agua	ι?
()	Sí					
()1	No					
(Si	la respuesta es "sí") ¿Cuánto?:					
3.	. ¿Sabe quién le presta el servicio de agua a la propiedad?					
()5	() Sí					
()1	No					
(Si	(Si la respuesta es "sí") ¿Quién?:					
4.	4. ¿Cómo calificaría el servicio de agua? (considere 5 muy bueno y 1 muy malo)					
_		1	2	3	4	5
	Calidad del agua que recibe					
	Cantidad de agua que recibe					
	Continuidad del servicio					
	(si tiene o no cortes de agua)					
	Confianza que siente por el servicio brindado					

5. Segun su opinion ei principai problema	ambientai en su comunidad es:	
() Manejo de residuos sólidos ("basuras")	() Calidad de agua potable	
() Aguas residuales sin tratar	() Disponibilidad de agua potable	
() Inundaciones	() Otro o ninguno de los anteriores	
SECCIÓN IV: NUEVO PROYECTO		
1. ¿Conoce sobre la propuesta de agrandar	el sistema de la ASADA?	
() Sí		
()No		
2. ¿Considera necesario que haya más ca comunidad?	antidad de agua potable disponible para la	
()Sí		
()No		
¿Por qué?:		
3. ¿Cree que es importante que haya más de el desarrollo económico de la comunidad?	lisponibilidad de agua potable para permitir	
() Sí		
()No		
¿Por qué?:		
4. ¿Cuánto estaría dispuesto a pagar en su f ASADA?	factura para agrandar el sistema actual de la	
() Nada		
() Entre \$\tilde{\pi}500\$ y menos de \$\tilde{\pi}1000\$		
() Entre @ 1000 y menos de @ 1500		
() Entre \$\tilde{C}1500-\tilde{C}2000		

APÉNDICE 3: ZONIFICACIÓN Y EDIFICACIONES SELECCIONADAS

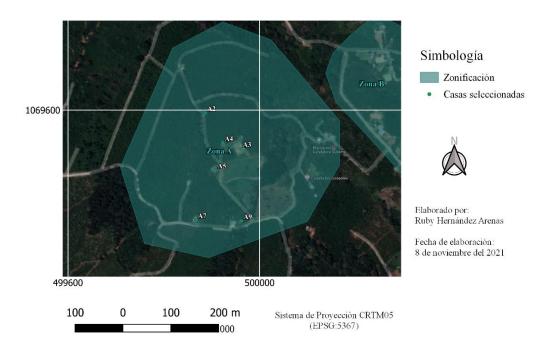


Figura. A.2.1. Zona A, edificaciones seleccionadas.

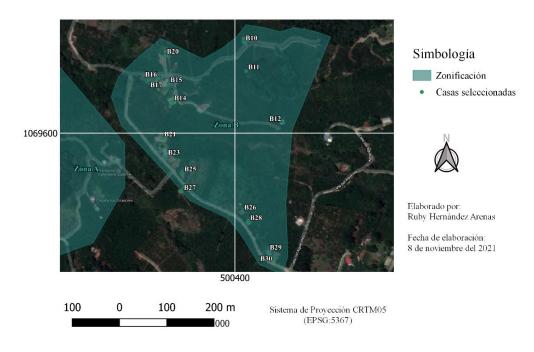


Figura. A.2.2. Zona B, edificaciones seleccionadas.

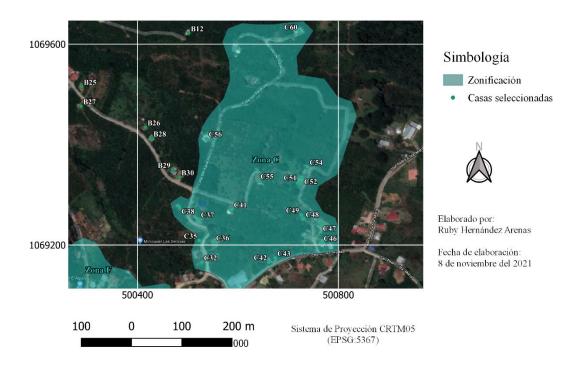


Figura. A.2.3. Zona C, edificaciones seleccionadas.

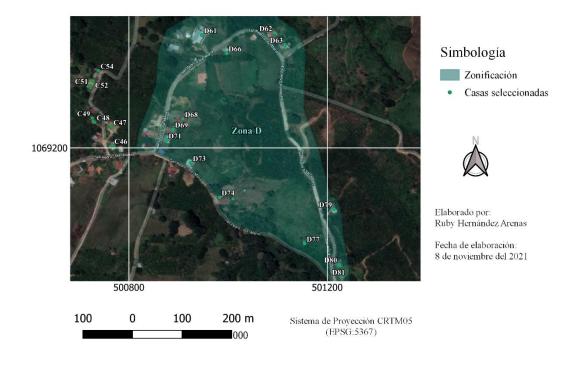


Figura. A.2.4. Zona D, edificaciones seleccionadas.

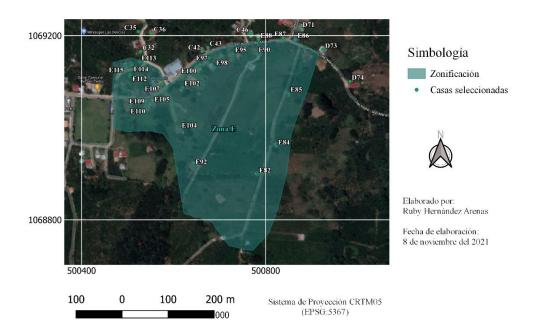


Figura. A.2.5. Zona E, edificaciones seleccionadas.

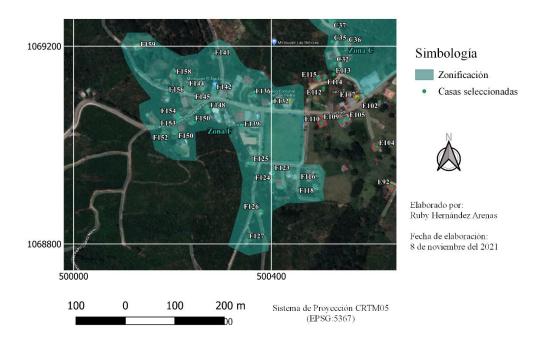


Figura. A.2.6. Zona F, edificaciones seleccionadas.

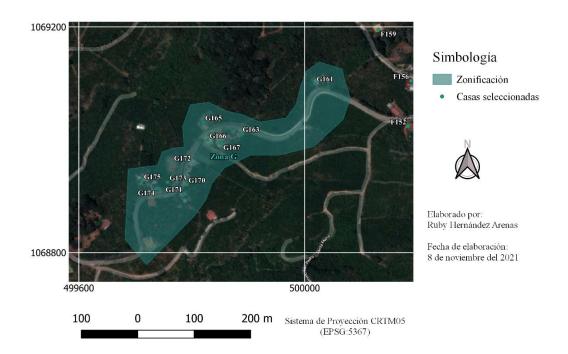


Figura. A.2.7. Zona G, edificaciones seleccionadas.

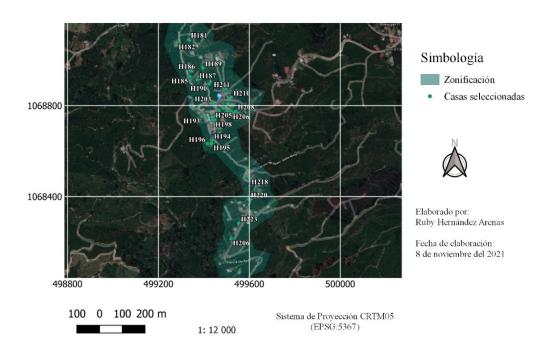


Figura. A.2.8. Zona H, edificaciones seleccionadas.

APÉNDICE 4: APLICACIÓN DE LAS ENCUESTAS

Figura. A.4.1. Registro fotográfico de la aplicación de las encuestas en la comunidad de San Pedro.

APÉNDICE 5: RESULTADOS DE LAS ENCUESTAS

En este apéndice se presentan los resultados de otras preguntas realizadas a los usuarios.

1. ¿La propiedad cuenta con medidor de agua?

El 100% de los encuestados respondieron que su propiedad cuenta con medidor de consumo de agua.

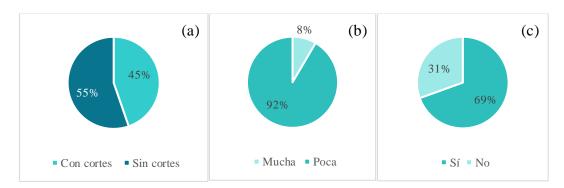

2. ¿Sabe si tiene fugas de agua en alguna parte de la propiedad? / Frecuencia

Figura.A.5.1. (a) Fugas en la propiedad. (b) Frecuencia de ocurrencia.

En la Figura A.5.1 (a) se muestra que un 95% de los encuestados no poseían fugas en sus casas, el 5% restante que afirmó tener, aseguró que ya estaban en procesos de reparación. La Figura A.5.1 (b) muestra que 91% de los usuarios consideran que la frecuencia con la que ocurren la fugas es poca. Los comentarios recibidos en general, apelan a que los usuarios consideran que cuando hay son reparadas rápidamente.

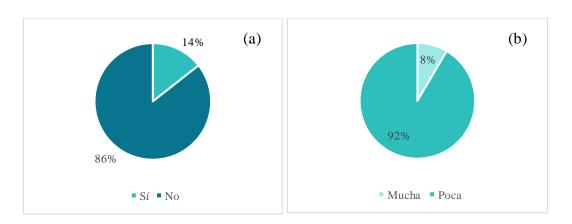

3. ¿Ha sufrido cortes del servicio en el último año? / Frecuencia / ¿Se le notifica cuando se le va a suspender el servicio y la razón de la suspensión?

Figura. A.5.2. (a) Cortes del servicio. (b) Frecuencia de los cortes. (c) Notificación de los cortes.

En la Figura. A.5.2 (a) se muestra que un 55% de los usuarios a sufrido cortes del servicio en el último año y en la Figura. A.5.2 (b) como el 92% de los encuestados aseguran que la frecuencia con la que ocurren dichos cortes es poca. En la Figura. A.5.2 (c) se expone que 31% de los usuarios afirman no recibir siempre notificación de cuando se realizará algún corte, mientras el 69% expresa que siempre son notificados vía WhatsApp.

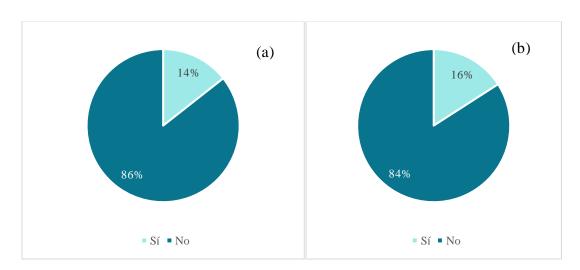

4. ¿Ha tenido problemas con que le llegue poca cantidad de agua o con poca presión en el último año? / Frecuencia

Figura. A.5.3. (a) Poca cantidad o presión en el agua. (b) Frecuencia de ocurrencia.

La Figura. A.5.3 (a) muestra que un 86% de los usuarios encuestados no ha sufrido por poca cantidad de agua o poca presión en el último año, y en la Figura. A.5.3 (b) que el 92% de los que confirman haber tenido este problema aseguran que ocurre con poca frecuencia.

5. ¿Ha notado algún olor o sabor extraño en el agua el último año? / ¿Ha notado que el agua llegue turbia/sucia/blanca en el último año?

Figura. A.5. 4. (a) Presencia de olor o sabor extraño en el agua. (b) Presencia de turbiedad en el agua.

En la Figura. A.5.4 (a) se expone que el 86% de los encuestados aseguran no haber percibido algún olor o sabor extraño en el agua el último año, mientras que 14% afirma que sí. Los comentarios recibidos a este respecto se relacionan con que los usuarios perciben ocasionalmente sabor a cloro.

Por otra parte, en la Figura. A.5.4 (b) un 84% de los usuarios asegura no haber percibido turbiedad en el agua, mientras un 16% asegura que sí. En general los usuarios que afirmaron percibir un color extraño expresaron que el agua se veía muy blanca.

APÉNDICE 6: MUESTREOS

En esta sección se presenta el registro fotográfico de los puntos de muestreo y las actividades realizadas en las visitas de campo, así como los resultados de las mediciones de parámetros "in situ".

Equipo de trabajo

Figura. A.6.1. Equipo de trabajo del proyecto interinstitucional: El recurso hídrico, el uso del suelo y la transformación social en la Cuenca Alta y Media del Río Parrita: La necesidad de una incidencia política.

Sitios de muestreo

Figura. A.6.2. Registro fotográfico del punto #1 de muestreo.

Figura. A.6.3. Registro fotográfico del punto #2 de muestreo.

Muestreos

Figura. A.6.4. Registro fotográfico de aforo de caudal por Método del Molinete en punto #2.

Figura. A.6.5. Registro fotográfico de muestreo de agua en el punto #1.

Figura. A.6.6. Registro fotográfico de medición de áreas en el punto #1.

Cuadro A.6.1. Resultados de análisis de campo

Parámetros/			Fech	a de análisis		
Características	8/4/2021	10/6/2021	6/8/2021	16/9/2021	14/10/2021	11/11/2021
рН	7,50	7,34	7,68	6,93	11,74*	7,6
Temperatura (°C)	23,7	22,2	22,8	20,7	16,8	17,9

Imágenes

Nota: *El pH-metro se encontraba descalibrado en el momento en que se realizó la lectura, el valor de pH de la muestra del 14 de octubre puede consultarse en los valores reportados en los resultados de los análisis de laboratorio.

Cuadro A.6.2. Resultados los aforos de caudal de la quebrada punto #2 en el periodo 2020-2021

Mes	Fecha	Áreas (m2)	Caudal (L/s)
Octubre 2020	22/10/2020	0,12	87,27
Noviembre 2020	19/11/2020	0,21	115,14
Diciembre 2020 Enero 2021	-	- -	-
Febrero 2021	11/2/2021	0,05	77,03
Marzo 2021	11/3/2021	0,10	50,17
Abril 2021	8/4/2021	0,10	55,74
Mayo 2021	-	-	-
Junio 2021	10/6/2021	0,16	98,75
Julio 2021	-	-	-
Agosto 2021	6/8/2021	0,17	103,26
Septiembre 2021	16/9/2021	0,13	91,12
Octubre 2021	14/10/2021	0,15	56,54
Noviembre 2021	11/11/2021	0,06	48,77

Cuadro A.6.3. Resultados de la modelación de los caudales del punto #1 según datos del punto #2 en el periodo 2020-2021

Mes	Fecha	Área transversal p#2 (m2)	Caudal p#2 (m3/s)	Área transversal p#1 (m2)	Caudal p#1 (m3/s)
Octubre 2020	22/10/2020	0,12	0,09	0,15	0,11
Noviembre 2020	19/11/2020	0,21	0,12	0,15	0,23
Diciembre 2020	-	-	-	-	-
Enero 2021	-	-	-	-	-
Febrero 2021	11/2/2021	0,05	0,08	0,15	0,08
Marzo 2021	11/3/2021	0,10	0,05	0,15	0,08
Abril 2021	8/4/2021	0,10	0,06	0,15	0,09
Mayo 2021	-	-	-	-	-
Junio 2021	10/6/2021	0,16	0,10	0,15	0,09
Julio 2021	-	-	-	-	-
Agosto 2021	6/8/2021	0,17	0,10	0,15	0,09
Septiembre 2021	16/9/2021	0,13	0,09	0,15	0,11
Octubre 2021	14/10/2021	0,15	0,06	0,15	0,06
Noviembre 2021	11/11/2021	0,06	0,05	0,15	0,12

APÉNDICE 7: ANÁLISIS DE SIGNIFICANCIA PARA LOS PRINCIPIOS BÁSICOS DEL SERVICIO DE AGUA POTABLE

Para la evaluación de los criterios de vulnerabilidad y necesidad de mejora se consideraron las apreciaciones de la comunidad obtenidas a partir de las encuestas realizadas y de la ASADA según los registros facilitados y las apreciaciones dadas por el presidente del comité.

Puntualmente, para el criterio de vulnerabilidad en primer lugar se evaluó el incumplimiento y la frecuencia de ocurrencia, seguidamente el porcentaje de satisfacción de los usuarios y como última instancia el registro de quejas oficiales respectivo (Cuadro A.7.1). Con respecto al criterio de necesidad de mejora se abarcó según las apreciaciones de la ASADA sobre la implementación de acciones de corrección y mitigación en las necesidades detectadas.

Cuadro A.7.1. Registros y percepción de la comunidad

Principio	Incumplimiento	Frecuencia	% Satisfecho	% Insatisfecho	Quejas
Calidad	No incumple	-	82%	18%	-
Cantidad	No incumple	Poca 100%	95%	5%	-
Continuidad	Incumple	Poca 100%	86%	14%	-
Cobertura	Incumple	Mucha 91%	-	-	8 registradas
Confiabilidad	No incumple	-	84%	16%	-

Cuadro A.7.2. Valores establecidos para cada principio

Duin aini a	Vulnerabilidad		Necesidad de mejora	
Principio	Situación actual		Situación actual	Valor
Calidad	La mayoría de la comunidad sa tisfecha	5	Se han detectado necesidades de mejora y se han corregido	2
Cantidad	No se han registra do deficiencias y la mayoría de la comunidad satisfecha	5	Se han detectado necesidades de mejora y se han corregido	2
Continuidad	Se han detectado deficiencias con poca frecuencia	10	Se han detectado necesidades de mejora y se han corregido	2
Cobertura	Se han detectado deficiencias con mucha frecuencia	15	Se han detectado y no se han corregido todas las necesidades de mejora	3
Confiabilidad	La mayoría de la comunidad sa tisfecha	5	No se han detectado necesidades de mejora	1

APÉNDICE 8: PROYECCIÓN POBLACIONAL Y CAUDALES Qmd, QMD y QMH

Cuadro A.8.1. Proyección poblacional anual del periodo 2020-2045 por el método aritmético, logarítmico y geométrico

Αño		Método	
Año	Aritmético	Exponencial	Geométrico
2020	992	992	992
2021	1085	1090	1085
2022	1187	1197	1187
2023	1299	1315	1299
2024	1421	1445	1421
2025	1555	1587	1555
2026	1701	1744	1701
2027	1861	1915	1861
2028	2035	2104	2035
2029	2227	2312	2227
2030	2436	2540	2436
2031	2665	2790	2665
2032	2916	3065	2916
2033	3190	3367	3190
2034	3489	3699	3489
2035	3817	4063	3817
2036	4176	4464	4176
2037	4569	4904	4569
2038	4998	5387	4998
2039	5468	5918	5468
2040	5982	6501	5982
2041	6544	7142	6544
2042	7160	7846	7160
2043	7833	8619	7833
2044	8569	9468	8569
2045	9374	10402	9374

Cuadro A.8.2. Estimación del Caudal medio diario, máximo diario y máximo horario anual

Tipo de	Año	anuar	Qmd	QMD	QMH
dotación	Proyectado	Población	(L/s)	(L/s)	(L/s)
40141011	2021	1090	2,26	2,71	4,87
	2022	1197	2,48	2,97	5,35
	2023	1315	2,72	3,27	5,88
	2024	1445	2,99	3,59	6,46
	2025	1587	3,29	3,94	7,10
	2026	1744	3,61	4,33	7,80
	2027	1915	3,96	4,76	8,56
	2028	2104	4,36	5,23	9,41
	2029	2312	4,78	5,74	10,33
	2030	2540	5,26	6,31	11,35
	2031	2790	5,77	6,93	12,47
	2032	3065	6,34	7,61	13,70
Calculada	2033	3367	6,97	8,36	15,05
Calculada	2034	3699	7,66	9,19	16,54
	2035	4063	8,41	10,09	18,16
	2036	4464	9,24	11,09	19,96
	2037	4904	10,15	12,18	21,92
	2038	5387	11,15	13,38	24,08
	2039	5918	12,25	14,70	26,46
	2040	6501	13,46	16,15	29,06
	2041	7142	14,78	17,74	31,93
	2042	7846	16,24	19,49	35,07
	2042	8619	17,84	21,41	38,53
	2044	9468	19,60	23,52	42,33
	2045	10402	21,53	25,83	46,50
	2021	1090	2,52	3,03	5,45
	2022	1197	2,77	3,33	5,99
	2023	1315	3,04	3,65	6,58
	2024	1445	3,34	4,01	7,22
	2025	1587	3,67	4,41	7,94
	2026	1744	4,04	4,84	8,72
	2027	1915	4,43	5,32	9,58
	2028	2104	4,87	5,85	10,52
	2029	2312	5,35	6,42	11,56
	2030	2540	5,88	7,05	12,70
	2031	2790	6,46	7,75	13,95
	2032	3065	7,09	8,51	15,32
Norma técnica	2033	3367	7,79	9,35	16,83
Norma tecnica	2034	3699	8,56	10,27	18,49
	2035	4063	9,41	11,29	20,32
	2036	4464	10,33	12,40	22,32
	2037	4904	11,35	13,62	24,52
	2037	5387	12,47	14,96	26,93
	2039	5918	13,70	16,44	29,59
	2040	6501	15,70	18,06	32,51
	2040	7142	16,53	19,84	35,71
	2041				
	2042	7846 8610	18,16	21,79	39,23
	2043	8619 9468	19,95 21,92	23,94 26,30	43,09 47,34
	2045	10402	24,08	28,89	52,01

APÉNDICE 9: TERRENO PARA CONSTRUCCIÓN DEL SISTEMA

Figura. A.9.1. Registro fotográfico del terreno donde se plantea la construcción del sistema de tratamiento propuesto.

Figura. A.9.2. Registro fotográfico de los tanques de almacenamiento y desinfección adyacentes al terreno donde se plantea la construcción del sistema de tratamiento propuesto.

Figura. A.9.3. Vista de la planta sobre el terreno disponible para su construcción.

APÉNDICE 10: ANÁLISIS PARA LA SELECCIÓN DEL SISTEMA DE TRATAMIENTO

Los valores definidos para cada uno de los indicadores para cada alternativa se muestran en el Cuadro A.10.1.

Cuadro A.10.1. Valores obtenidos de cada indicador para cada alternativa

Criterios	Indicadores	Unidades	Trer Tube compa	ería	Tren Tube indepen	ría	Tube	Tren 2: ría compar	tida		Tren 2: a independ	liente
		•	FGDi	FLA	FGDi	FLA	FGDi	FGAC	FLA	FGDi	FGAC	FLA
Costo	Constructivos	miles \$	22,2	.92	22,2	92		37,035			37,035	
Inversión	Otros	miles\$	4,4	-6	11,1	5		9,26			18,52	
Costo Operación	Frecuencia actividades	#eventos/año	2	0,2	2	0,2	3	0,2	0,3	3	0,2	0,3
	Unidades	#unidades	2		2			3			3	
Complejidad de operación	Iniciación de la planta	#acciones	2		3			2			3	
	Rendimiento	horas/m3 filtro	5,6	1	5,6	1	5,6	2,6	1	5,6	2,6	1
Área de construcción	Área de la planta	m2	417,	,14	417,	14		446,79			446,79	
Cumplimiento	Remociones turbiedad	%	0,3	0,8	0,3	0,8	0,3	0,5	0,8	0,3	0,5	0,8
de calidad	Remociones coliformes fecales	%	0,5	0,9	0,5	0,9	0,5	0,6	0,9	0,5	0,6	0,9

Nota: Se asumió el mismo peso para cada indicador referente a su representación dentro del criterio que define.

En el Cuadro A.10.2 se muestran los porcentajes de representación de cada alternativa con respecto a los cinco criterios de selección.

Cuadro A.10.2. Ponderaciones finales de cada alternativa con respecto a cada criterio de valoración

Alternativa	Costo Inversión	Costo Operación	Complejidad de operación	Área de construcción	Cumplimiento de calidad
Alternativa #1	56%	38%	56%	42%	17%
Alternativa #2	12%	38%	26%	42%	17%
Alternativa #3	26%	13%	12%	8%	33%
Alternativa #4	6%	13%	6%	8%	33%

APÉNDICE 11: FÓRMULAS PARA EL DISEÑO DEL SISTEMA

1. Sistema de captación

Para el diseño de la bocatoma de fondo se utilizaron las siguientes fórmulas y criterios [68]:

• Altura de la lámina de agua sobre la cresta de la presa:

$$H = (\frac{Q}{1.84 + L})^{\frac{2}{3}}$$
 Ecuación 15

Donde:

H Altura de lámina de agua (m)
Q Caudal de diseño (m³/s)
L Ancho de la presa (m)

• Ancho de la presa tentativo:

$$L' = L - 0.1 * n * H$$
 Ecuación 16

Donde:

L' Ancho tentativo (m)
L Ancho de la presa (m)
n Número de contracciones
H Altura de la lámina de agua (m)

• Velocidad de agua sobre la rejilla:

$$V_r = \frac{Q}{LH}$$
 Ecuación 17

Donde:

 V_r Velocidad de agua sobre rejilla (m/s) Q Caudal de diseño (m³/s) L Ancho tentativo (m) Q Altura de la lámina de agua (m)

• Alcance del chorro:

$$X_s = 0.36 * Vr^{\frac{2}{3}} + 0.6 * H^{\frac{4}{7}}$$
 Ecuación 18

$$X_i = 0.18 * V_r^{\frac{4}{7}} + 0.74 * H^{\frac{1}{4}}$$
 Ecuación 19

Donde:

X_i	Distancia pared inicio chorro (m)
$X_{\mathcal{S}}$	Distancia pared final chorro (m)
V_r	Velocidad de agua sobre rejilla (m/s)
H	Altura de la lámina de agua (m)

• Ancho del canal de aducción:

$$B = X_s + 0.1$$
 Ecuación 20

Donde:

$$B$$
Ancho del canal de aducción (m) X_s Distancia pared final chorro (m)

• Área neta de la rejilla:

$$Q = K * A_{neta}$$
 Ecuación 21

Donde:

$$Q$$
 Caudal de diseño (m³/s)
 K Coeficiente flujo paralelo a la sección
 A_{neta} Área neta de la rejilla (m²)

• Longitud de la rejilla y redimensionamiento del área neta de la rejilla:

$$A_{neta} = \frac{a}{a+b} * B * L_r$$
 Ecuación 22

Donde:

 A_{neta} Área neta de la rejilla (m²) a Separación entre barrotes (m) b Diámetro de los barrotes (m) B Ancho del canal de aducción (m) L_r Longitud de la rejilla (m)

• Número de separaciones entre barrotes:

$$A_{total} = (a + b) * B * N$$
 Ecuacion 23

Donde:

A_{total}	Área neta de la rejilla (m²)
а	Separación entre barrotes (m)
b	Diámetro de los barrotes (m)
В	Ancho del canal de aducción (m)
N	Número de separaciones entre barrotes

• Área neta de la rejilla por donde pasa agua:

$$A_{neta} = a * B * N$$
 Ecuación 24

Donde:

A_{neta}	Área neta por donde pasa agua de la rejilla (m²)
а	Separación entre barrotes (m)
В	Ancho del canal de aducción (m)
N	Número de separaciones entre barrotes

• Velocidad final del agua entre barrotes:

$$Q = k * A_{neta} * V_b$$

Ecuación 25

Donde:

Q Caudal de diseño (m 3 /s) k Coeficiente flujo paralelo a la sección A_{neta} Área neta por donde pasa agua de la rejilla (m 2)

 V_b Velocidad entre barrotes (m/s)

• Longitud del canal de aducción:

$$L_c = L_r + espesor del muro$$

Ecuación 26

Donde:

 L_c Longitud del canal (m) L_r Longitud de la rejilla (m)

• Profundidad aguas abajo del canal de aducción:

$$h_e = h_c = (\frac{Q^2}{g * B^2})^{\frac{1}{3}}$$
 Ecuación 27

Donde:

 h_e Profundidad aguas abajo (m) h_c Profundidad aguas arriba (m) Q Caudal de diseño (m³/s) B Ancho del canal de aducción (m) g Aceleración de la gravedad (m²/s) • Profundidad aguas arriba del canal de aducción:

$$h_o = [2 * h_e^2 + (h_e - \frac{i * L_r}{3})^2]^{\frac{1}{2}} - \frac{2}{3} * i * L_r$$
 Ecuación 28

Donde:

 h_o Profundidad aguas arriba (m) h_e Profundidad aguas abajo (m) L_r Longitud de la rejilla (m)

• Profundidad aguas arriba total:

$$H_o = h_o + B * L$$
 Ecuación 29

Donde:

 H_o Profundidad aguas arriba total (m) h_o Profundidad aguas arriba (m) B Ancho del canal (m) C Longitud de la cámara (m)

• Velocidad de entrega de canal a la cámara:

$$V_e = \sqrt{g * h_e}$$
 Ecuación 30

Donde:

 V_e Velocidad de entrega (m/s) g Aceleración de la gravedad (m/s²) h_e Profundidad aguas abajo (m)

• Longitud de la cámara:

$$L = X_i + 0.3$$

Ecuación 31

Donde:

L Longitud de la cámara (m)
Xi Distancia pared inicio chorro (m)

• Lámina de agua:

$$H = \left(\frac{Q}{1,84 * L}\right)^{\frac{2}{3}}$$
 Ecuación 32

Donde:

H Lámina de agua (m)
Q Caudal de diseño (m³/s)
L Ancho de la presa (m)

• Velocidad en la rejilla:

$$V_r = \frac{Q}{L + H}$$
 Ecuación 33

Donde:

H Lámina de agua (m)
Q Caudal de diseño (m^3/s)
L Ancho de la presa (m) V_r Velocidad del agua que pasa sobre la rejilla (m/s)

• Caudal captado:

$$Q_{captado} = C_d * A_{neta} * \sqrt{2 * g * H}$$
 Ecuación 34

Donde:

 $Q_{captado}$ Caudal captado por la rejilla (m³/s)

 C_d Coeficiente de descarga

 A_{neta} Área meta por donde pasa el agua (m²) g Aceleración de la gravedad (m/s²)

H Lámina de agua (m)

• Caudal de excesos:

$$Q_{excesos} = Q_{captado} - Q_{diseño}$$
 Ecuación 35

Donde:

 $Q_{captado}$ Caudal captado por la rejilla (m³/s)

 $Q_{excesos}$ Caudal de exceso (m³/s) $Q_{dise\~no}$ Caudal de dise $\~no$ (m³/s)

• Lámina de agua sobre el vertedero de exceso:

$$H_v = (\frac{Q}{1.84 * L})^{\frac{2}{3}}$$
 Ecuación 36

Donde:

 H_v Lámina de agua sobre el vertedero (m)

Q Caudal de diseño (m³/s) L Ancho de la presa (m)

• Velocidad de exceso:

$$V_{exc} = \frac{Q_{exc}}{H_{v} * L_{c\'amara}}$$
 Ecuación 37

Donde:

 V_{exc} Velocidad de exceso (m/s) Q_{exc} Caudal de exceso (m³/s)

 H_v Lámina de agua sobre el vertedero (m)

 $L_{csquarea}$ Longitud de la c\squarea (m)

2. Tanque de captación

Para el dimensionamiento del tanque se utilizó la siguiente fórmula [[74],pp. 60]:

• Volumen útil:

$$V_u = \frac{1}{3} * VMD$$
 Ecuación 38

Donde:

 V_u Volumen útil de almacenamiento (m³) VMD Volumen máximo diario (m³)

3. Filtro Grueso Dinámico

En el Cuadro A.11.1. se muestran los valores recomendados utilizados en su diseño [39] y en el Cuadro A. 11.2. las características de la grava utilizada.

Cuadro A.11.1. Criterios y requisitos recomendados por CINARA utilizados para el diseño del sistema

Requisitos	Unidad	Valores recomendados	
Área total de orificios Área de filtración	m2	0,0015	0,005
Área del tubo lateral Área orificios laterales	m2	1,67	5
Área del tubo colector Área de tubos laterales	m2	2	4
Diámetro de orificios	mm	6	19
Separación entre orificios	m	0,08	0,3
Separación entre laterales	m	0,5	1
Velocidad de flujo de orificios	m/s	4	5

Cuadro A.11.2. Características del lecho filtrante del FGDi

Posición en la unidad	Espesor de la capa (m)		le la grava ım)	Clasificación
Superior	0,2	3	6	Fina
Intermedio	0,2	6	13	Media
Fondo	0,2	13	25	Gruesa

Nota: Según la granulometría recomendada para FGDi [39].

Para el diseño se consideraron las siguientes fórmulas [39]:

• Área superficial por unidad:

$$A_s = \left(\frac{Q_f}{V_f}\right)$$
 Ecuación 39

Donde:

$$A_s$$
 Área superficial por unidad (m²)
 Q_f Caudal de filtración (m³/h)
 V_f Velocidad de filtración (m/h)

• Largo del filtro:

$$L = \frac{A_s}{b}$$
 Ecuación 40

Donde:

• Velocidad superficial de lavado:

$$V_s = \sqrt[3]{\frac{3,40 * Q_L}{b}}$$
 Ecuación 41

Donde:

 V_{SL} Velocidad superficial de lavado (m²) Q_L Caudal de lavado (m³/s) b Ancho del filtro (m)

• Lámina de agua sobre la cresta:

$$H = \left[\frac{Q_e}{M*b}\right]^{\frac{2}{3}}$$
 Ec. 42

Donde:

 $\begin{array}{ll} H & \text{Lámina de agua sobre la cresta (m)} \\ Q_e & \text{Caudal de filtración (m}^3\text{/s)} \\ M & \text{Coeficiente para vertedero de pared gruesa} \\ b & \text{Ancho del filtro (m)} \end{array}$

El M correspondiente equivale a 1,84.

• Caudal de lavado:

$$Q_L = A_f * V_L$$
 Ecuación 43

Donde:

 $egin{array}{ll} Q_L & {
m Caudal \, de \, lavado \, (m^3/s)} \ A_f & {
m \'Area \, de \, filtraci\'on \, (m^2)} \ V_L & {
m Velocidad \, de \, lavado \, (m/s)} \ \end{array}$

Se asumió de 20 m/h, dentro del rango establecido [53].

• Área de cada orificio según el diámetro de tubería:

$$A = \pi * D^{\frac{2}{4}}$$

Ecuación 44

Donde:

• Caudal en cada orificio:

$$Q_o = A_0 * V_0$$

Ecuación 45

Donde:

$$Q_0$$
 Caudal en cada orificio (m³/s)
 A_0 Área del orificio (m²)
 V_0 Velocidad en cada orificio (m/s)

• Cantidad de orificios:

$$N^{\circ}_{orificios} = \frac{Q_L}{Q_o}$$
 Ecuación 46

Donde:

$$N^{\circ}_{orificios}$$
 Cantidad total de orificios Q_0 Caudal en cada orificio (m³/s) Q_L Área del orificio (m²)

• Pérdidas por material filtrante:

$$h_g = \frac{Q * R^2}{823,7598 * d^{1,67} * L}$$
 Ecuación 47

Donde:

h_g	Pérdidas por grava (m)
Q	Caudal de filtración (m³/s)
R	Mitad de la distancia entre laterales
d	Diámetro efectivo de la grava (m)
L	Espesor de la capa (m)

Se asumió el espesor de la capa y el diámetro efectivo según lo muestra el Cuadro A.11.2. [39].

• Pérdidas por orificios:

$$h_o = \frac{{Q_o}^2}{Cd^2 * Ao^2 * 2 * g}$$
 Ecuación 48

Donde:

$$h_o$$
 Pérdidas por orificios (m)
 Q_o Caudal por orificio (m³/s)
 Cd Coeficiente de descarga
 A_o Área de cada orificio (m²)
 g Aceleración de la gravedad (m/s²)

Se asumió un coeficiente de descarga de 0,60 [75].

• Pérdidas en el colector principal:

$$h_p = \frac{1}{3} * \frac{0.0175 * L}{D} * \frac{V^2}{2 * g}$$
 Ecuación 49

Donde:

h_p	Pérdidas por colector (m)
L	Largo del colector (m)
D	Diámetro del colector (m)
V	Velocidad en el colector (m/s)
g	Aceleración de la gravedad (m/s²)

• Pérdidas en los accesorios:

$$hf = k * \frac{(V)^2}{2 * g}$$
 Ecuación 50

Donde:

h_f	Pérdidas por accesorios (m)
K	Coeficientes de pérdida
V	Velocidad del colector (m/s)
g	Aceleración de la gravedad (m/s²)

Los valores asumidos de k se muestran en el Cuadro A.11.3. [76].

Cuadro A.11.3. Coeficientes de pérdida k asumidos para los accesorios del FGDi

Accesorio	k
Codos 90°	0,90
Tes	0,40
Reducciones	0,30
Válvula mariposa	2,50
Descarga	1,00

• Pérdidas totales:

$$H_t = h_{colector} + h_{grava} + h_{orificio} + h_{accesorios}$$
 Ecuación 51

4. Filtro Lento en Arena

Para el diseño y dimensionamiento de los componentes del FLA, se utilizaron las siguientes fórmulas:

• Cantidad de unidades en paralelo:

$$n=0.5*\sqrt[3]{A}$$

Ecuación 52

Donde:

n Número de unidades
 A Área superficial total (m²)

• Largo:

$$L = (\frac{2 * n * A}{n+1})^{0.5}$$

Ecuación 53

Donde:

L Largo del filtro (m)

n Número de unidades

A Área superficial total (m²)

• Ancho:

$$b = (\frac{(n+1)*A}{2*n})^{0.5}$$
 Ecuación 54

Donde:

b Ancho del filtro (m)
n Número de unidades
A Área superficial total (m²)

• Caudal filtrado:

$$Q_f = A_f * V_f$$

Ecuación 55

Donde:

 Q_f Caudal filtrado por unidad (m³/h) A_f Área de filtrado por unidad (m²) V_f Velocidad del filtración (m/s)

Se asume una velocidad de filtración de 0,3 m/s [39].

• Caudal por cada orificio tentativo:

$$Q_{0} = A_{0} * V_{0}$$

Ecuación 56

Donde:

 Q_o ` Caudal que ingresa en cada orificio asumido (m³/h) A_0 Área de cada orificio (m²) V_0 Velocidad de cada orificio (m/s)

• Caudal en cada orificio:

$$Q_o = \frac{Q_d}{N^{\circ} \ orificios}$$
 Ecuación 57

Donde:

• Caudal por lateral:

$$Q_L = N^{\circ} \ orificios * Q_0$$

Ecuación 58

Donde:

 Q_L Caudal por lateral (m³/h) N° orificios Cantidad de orificios por lateral Q_o Caudal por orificio (m³/h)

• Velocidad por lateral:

$$V_L = \left(\frac{Q_L}{A_L}\right)$$
 Ecuación 59

Donde:

 $egin{array}{ll} V_L & ext{Velocidad en el lateral (m/s)} \ Q_L & ext{Caudal por lateral (m}^3/h) \ A_L & ext{Área del lateral (m}^2) \ \end{array}$

• Vertedero [77]:

$$Q = \frac{8}{15} * C_d * \sqrt{2 * g} * \left(tg \frac{\beta}{2} \right) * H^{\frac{5}{2}}$$
 Ecuación 60

Donde:

Q Caudal de diseño (m³/h)
 Cd Coeficientes de uniformidad
 β Ángulo del vertedero
 g Aceleración de la gravedad (m/s²)

Se asume un Cd de 0,60 para un ángulo de 45° [78].

• Pérdida en lecho de arena [79]:

$$hf_{lecho} = f * \frac{L * \circ}{g} * v * \frac{(1 - P_o)^2}{(P_o)^3} * \left(\frac{6}{C_e * D_c}\right)^2$$
 Ecuación 61

Donde: h_f Pérdida de carga (cm) f Coeficiente de Kozeny L Altura del lecho (cm) \circ Viscosidad cinemática del agua (cm²/s) g Aceleración de la gravedad (cm/s²) v Velocidad de filtración (cm/s) P_o Porosidad C_e Coeficiente de esfericidad D_c Diámetro de la arena (cm)

Se asumió un Coeficiente de Kozeny de 5,00, una viscosidad cinemática de 0,008 cm²/s y un diámetro de la arena de 0.03 cm [79]. En el Cuadro A.11.4 se muestran los coeficientes de esfericidad y la porosidad seleccionadas.

• Pérdida en los orificios [79]:

$$hf_{orificio} = k * \frac{(V_o)^2}{2 * g},$$
 Ecuación 62 $k = \frac{1}{(C_v)^2} - 1$ Ecuación 63

Donde:
$$V_o$$
 Velocidad de cada orificio (m/s) K Coeficiente de perdida C_v Coeficiente de velocidad g Aceleración de la gravedad (m/s²)

Se adoptó un Cv 0.75, para bordes no afilados y una k de 0,78 [79].

• Pérdida en los accesorios:

$$hf_{accesorios} = k * \frac{(V_c)^2}{2 * g}$$
 Ecuación 64

Donde: h_f Perdida de carga por accesorio k Coeficiente de perdida para accesorios V_c Velocidad del agua en el colector (m/s)

Se asumieron los mismos valor de k utilizados para el FGDi (Cuadro A.11.3.), con una k de entrada de 0,50 y de salida de 1,00 [76].

• Pérdidas totales:

$$H_t = H_a + h f_{lecho} + h f_{orificio} + h f_{accesorios}$$
 Ecuación

Cuadro A.11.4. Porosidad y coeficiente de esfericidad de materiales granulares adoptados

Tipo	Clasificación	Porosidad (Po)	Coeficiente de esfericidad (Ce)
Arena	Esféricos	0,36	0,95
Grava	Redondeados	0,40	0,82

Nota: Datos adoptados según clasificación teórica [79].

APÉNDICE 12: MEMORIA DE CÁLCULO

Diseño rejilla de captación

Parámetro	Simbología	Simbología / Unidades	
Datos del río			
Periodo de diseño	añ	años	
Población de diseño	habit	habitantes	
Caudal de diseño	QMD*2	QMD*2 m3/s	
Caudal del río en tiempo seco		m3/s	0,09
Caudal ecológico		m3/s	0,01
Caudal medio del río		m3/s	0,11
Caudal máximo del río		m3/s	0,23
Ancho del río		m	4,60

1. Comprobar que el caudal mínimo del río sea mayor al necesario+ ecológico

QMD (m3/s)*2 +Qecológico (m3/s)	Caudal mínimo del río (m3/s	
0,03	0,09	4

Dimensionar	la presa	Drevia a	la captación
z. zranca zoana	am pa com	pretin it	in cupincion

Ancho	L	m	1,00	
Altura de la lámina de agua	Н	m	0,05	
Debido a la existencia de contracciónes				
	I,	m	0,99	
Velocidad del agua sobre la rejilla	Vr	m/s	0,41	

3. Comprobar que la velocidad cumpla 0,3 m/s < Vr < 3 m/s

4. Dimensionar el canal de aducción			
Alcance de chorro	Xs	m	0,30
	Xi	m	0,18
Ancho del canal de aducción	В	m	0,40

5. Comprobar que el ancho cumpla

Bmin=0,4 m

6. Dimensionar la rejilla			
Área neta	Aneta	m2	0,21
		K	0,90
Velocidad entre barrotes	Vb	m/s	0,10
Longitud de la rejilla	Lr	m	0,76
		m	0.80
Diámetro de los barrotes	b	m	0,0127
Separación entre barrotes	a	m	0,03
7.Comprobar que la longitud cumpla	Lmin=0,7m		Δ
8. Redimencionar el Área neta según el L obte	enido		
Área neta	Aneta	m2	0,23
Numero de separaciones entre barrotes	N	#	13,16
		8	14,00
9. Calcular del Àrea neta por donde pasa el as	gua		
Área neta	Aneta	m2	0,17
Velocidad final entre barrotes	Vbf	m/s	0,13
10. Comprobar que la velocidad entre barrote	es cumpla	Vbf<0,2m/s	Δ
11. Redimensionar la longitud de la rejilla			
Longitud de la rejilla	Lrf	m	0,60
		8	0,60
12. Dimensionar el canal de aducción	_		
Longitud del canal	Lc	m	0,90
Ancho de muros		m	0,3
Pendiente del canal		%	2%
Borde libre	BL	m	0,15
Profundidad aguas abajo	he	m	0,06
Profundidad agua arriba	ho	m	0,08
Profundidad agua arriba total	Но	m	0,23

13 Dimensionar la cámara de recolección

13. Dimensionar la cámara de recolección			
Velocidad de entrega del canal a la cámara	Ve	m/s	0,78
14. Comprobar que la velocidad de entrega	0,3< Ve < 3m/s		Δb
Alcance de chorro	Xs	m	0,43
Alcance de chorio	Xi	m	0,25
Longitud de la cámara	L	m	0,73
		RS	1,00
Lámina de agua para resistir péridas en aducción	Н	m	0,70
Borde libre	BL	m	0,30
Profundidad de la cámara bajo el canal recolector	Hcámara	m	1,00
15. Calcular los caudales Lámina de agua	н	m	0,15
Velocidad de la rejilla	Vr	m/s	0,72
Caudal captado	Qcap	m3/s	0,087
Coeficiente de descarga	Cd		0,30
Caudal de excesos	Qexcesos	m3/s	0,07
Lámina de agua sobre el vertedero de exceso	Hv	m	0,14
Velocidad de exceso	Vexc	m/s	0,68
Fórmula de alcance de chorro	Xs	m	0,47
Separacióndel vertedero de la pared de la cámara	Xt	m	1,27

Diseño tanque de captación

Parámetro	Simbología	Unidades	Valores
Caudal de entrada	Qe	L/s	19,31

1. Calcular el volumen del tanque

Volumen útil de almacenamiento del tanque	Volutil	m3	154,52
---	---------	----	--------

Considerando la reserva para incendios

Volumen util de almacenamiento del tanque	V	m3	185,42

Considerendo tanque circular

Altura útil	h	m	4,00
Area	A	m	46,35
Diámetro del tanque	D	m	7,68

Borde libre		m	0,50
Altura total	ht	m	4,50

Diseño Filtro Grueso Dinámico FGDi

Parametro	Simbologia	Unidades	Valores
Periodo de diseño		años	12,00
Unidades en paralelo		#	2,00
Caudal necesario		L/s	5,14
		m3/h	18,51
Caudal que entra a la planta	Qe	m3/h	18,51
Caudal por filtrar	Qf	m3/h	18,51
Caudal por filtrar por módulo	Qf	m3/h	9,25
Velocidad de filtración	Vf	m/h	3,00
Velocidad de superficial	Vs	m/s	0,15
Calcular el área superficial por unidad			
Area superficial por unidad	As	m2	3,08
		<10	Δů
2. Calcular las dimensiones del filtro			
Ancho del filtro	ь	m	1,00
Largo del filtro	L	m	3,08
2.1 Medidas adoptadas del filtro grueso			
Ancho del filtro	ъ	m	1,00
Largo del filtro	L	<u>m</u>	3,10
Altura total		m	0,83
3. Calcular el área de filtración			
Area de filtración	Af	m2	3,10
Area de musición	Ai	ш2	3,10
4. Comprobar la velocidad superficial de lavado			
Caudal de lavado	QL	m3/s	0,003
Velocidad superficial de lavado	VsL	m/s	0,21
	0,15m/s=Vs=0,3m	/s	d
	0,15m/s=Vs=0,3m	/s	å
5. Calcular cámara de entrada		/s	
Calcular camara de entrada Coeficiente para vertedero de pared gruesa	0,15m/s=Vs=0,3m	/s	<u>1,84</u>
		/s 201	
Coeficiente para vertedero de pared gruesa	M		1,84
Coeficiente para vertedero de pared gruesa	M	<u>m</u>	1,84 0,01
Coeficiente para vertedero de pared gruesa Lamina de agua sobre la cresta	M	<u>m</u>	1,84 0,01

7. Calcular el sistema de drenaje Diametro de cada orificio		mm	15.00
		mm	21,11
Area de cada orificio	Ao	m2	0,0002
Velocidad en cada orificio	Vo	m/s	4,00
Caudal que ingresa en cada orificio	Q ₀	m3/s	0,0007
Numero de orificios	N*orificios	=	24,36
		=	27,00
Número de orificios asumidos	N*orificios	#	27,00
Area total de los orificios	Ato	m2	0,005
Comprobar que el área total de orificios/área de	e filtración (0,0015-0,	005)	0,0015
Comprobar que el área total de orificios/área de 8. Calcular diámetro de los laterales	e filtracion (0,0015-0,	005)	0,0015
8. Calcular diametro de los laterales	e filtración (0,0015-0,	005)	Δ
8. Calcular diametro de los laterales Número de laterales asumidos			8,00
S. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral			8,00 58,50
S. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral Separación entre orificios		ž Cm.	8,00 58,50 10,00
S. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral Separación entre orificios	Tubos laterales	# CEM.	8,00 58,50 10,00 41,43 41,00
S. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral Separación entre orificios Separación entre Laterales Número de orificios por lateral		# CEEL	8,00 58,50 10,00 41,43 41,00
8. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral Separación entre orificios Separación entre Laterales Número de orificios por lateral Diametro del orificio	Tubos laterales	# CEE	8,00 58,50 10,00 41,43 41,00 12,00
8. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral Separación entre orificios Separación entre Laterales Número de orificios por lateral Diametro del orificio	Tubos laterales	# GM GM GM = #	8,00 58,50 10,00 41,43 41,00 12,00
8. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral Separación entre orificios Separación entre Laterales Número de orificios por lateral Diametro del orificio Area del orificio	Tubos laterales Orificios tabo	# CEM. CEM. = #	8,00 58,50 10,00 41,43 41,00 12,00
8. Calcular diametro de los laterales Número de laterales asumidos Longitud de lateral Separación entre orificios Separación entre Laterales Número de orificios por lateral Diametro del orificio Area del orificio	Tubos laterales Orificios tubo Ao	# cm cm cm = # mm m2	\$,00 58,50 10,00 41,43 41,00 12,00 15 0,0002
Calcular diámetro de los laterales Número de laterales asumidos Longitud de lateral	Tubos laterales Orificios tubo Ao	# cm cm cm cm = # mm m2	\$,00 58,50 10,00 41,43 41,00 12,00 15 0,0002

Diametro interior del tubo lateral	Dint	mm	73,48
Diametro asumido		mm	75,00
Area del tubo lateral recalculada		m2	0,004
Area del tubo lateral/Area de orificios laterales	(2	- 4)	2,08
			Δ

 9. Calcular diametro del colector principal
 #
 8,00

 Laterales al colector
 #
 8,00

 Número de laterales por nudo
 N
 #
 1,00

 Area del tubo colector/Area de N tubo laterales
 (1,67 - 3,00)
 2,00

 Area de los N tubos laterales
 AN
 m2
 0,04

10. Calcular diametro interior del colector			
Diametro interno	Dint	mm	300,00
Diametro de la tuberta asumido		mm	300,00
Area de tubo colectar		m2	0,07
Alea de moo colectar			2,00
		1,67 - 3,00	₫

m2

Àrea del tubo colector

0,07

	_		
11. Calcular pérdidas de carga			
Separación entre laterales		cm	41,43
Caudal por filtrar	Q	m3/s	0,003
	R	m	0,21
Grava superior			0.2
Espesor de la capa	L	m	0,2
Diametro efectivo grava	d	m	0,003
		1	
	hgl	m	0,01
		cm	1,09
Grava intermedia			
Espesor de la capa	L	m	0,20
- 10 - 1 - 1	<u> </u>		0,01
Diametro efectivo grava	d		
	hg2	m	0,003
	262	CEM.	0,34
Grava inferior			
Espesor de la capa	L	m	0,20
Diametro efectivo grava	d	m	0,001
		1	
	hg3	m	0,04
		cm	4,42
5 55		m	0,06
Predida total en grava	Htg	cm	5,86
Pérdidas en los orificios Caudal de cada orificio	0-	m3/s	0,001
Caudai de cada orificio Cd. para orificios	Qo	m3/6	0,001
Area de cada orificio	Ao	m2	0,0002
Area total de orificios	Aot	m2	0,0002
Aceleración de la gravedad	g	m/s2	9,81
Caudal a filtrarse o drenar	Qf	m3/s	0,009
# total de orificios		ź	27,00
	Qo	m3/s	0,0003
		m	0,53
	ho	cm	53,25

12. Calcular perdidas en tubertas

12. Cateurar permuas en tuberras			
Pérdidas en colector principal			
Largo del colector	L	<u>m</u>	3,00
Diametro del colector	D	m	0,30
Velocidad del colector	v	m/s	0,24
	hp	m	0,0002
Pérdidas en colector lateral			
Cantidad de laterales		#	8,00
Largo del colector	L	m	0,59
Diametro del colector	D	m	0,08
Velocidad del colector	V	m/s	0,49
	hp	m	0,004
Accesosrios	L.E		0.003
Codos 90"	hf		0,003
	K		0,90
Tees	hf		0,001
	K		0,40
Reducciones	hf		0,002
	K		0,30
Valvula Mariposa	hf		0,008
	K		2,50
Descarga	hf		0,003
	K		1,00
	hf	200	
			0,016
Pérdidas totales	ht	m	0,016

Diseño de Filtro Lento en Arena

Parametro	Simbologia	Unidades	Valores
Datos del caudal			
Periodo de diseño		años	12
Población de diseño		personas	3883
	Qd	L/s	5,14
Candal de diseño	Qd	m3/h	13,99
	Od	m3/dia	335.69

-	 nordimetros		
- 5	nor america.	110	0.005/0.000

Candal de la planta	Qt	m3/h	13,99
Velocidad de filtración	Vf	m/h	0,3

4. Calcular Area superficial

Area superfical total	At	m2	46,62
Numero de unidades	N	#	1,80
		=	2.00

5. Calcular parametro por unidad

Caudal por unidad	Qd	m3/h	6,99
Area superficial por unidad	As	m2	23,31
		Asc 100	

6. Calcular las dimenciones

Largo	1	m	7,88
		=	8,00
Ancho	ъ	m	5,91
		=	3,00

7. Calcular de la altura total

Altura borde libre		0,20
Altura sobrenadante		0,75
Altura de lecho filtrante (arena)	Diametro 0,3 mm Ca=3	0,80
Altura de lecho de soporte		0,25
Altura total	m	2,00

9. Calcular el area de filtración

Area de filtración	Af	m2	24
Caudal filtrado	QF	m3/h	7,2

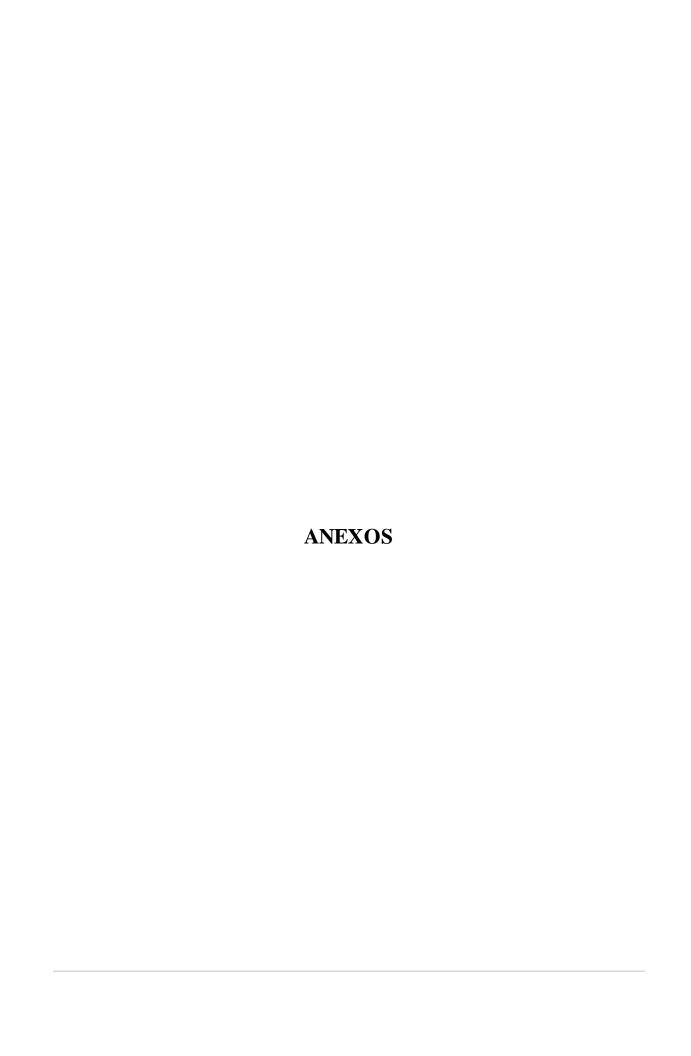
8. Diseñar el sistema de recolección de agua filtrada

Do	20000	13
Aο	m2	0,0001
Vo	m/s	0,14
Qo	m3/s	1,85826E-05
N	#	53,81
	=	54,00
	Ao Vo Qo	Ao m2 Vo m/s Qo m3/s

Se asumen 5 laterales: con dos orificios			
Separación entre orificios		m	0,15
Separación entre laterales		m	1,50
			2,22
Número de laterales		#	6,00
Longitud de cada lateral		m	2,80
Longitud total		m	16,8
Recalcular el número de orificios			
Número de orificios		#	56,00
		8	56,00
Recalcular el caudal en cada orificio Caudal en cada orificio	Qo	m3/h	0,12
Calcular lateral			
Número de orificos del lateral		#	10,00
Caudal del lateral	QL	m3/h	1,25
Àrea del tubo lateral	AL	m2	0,002313
Velocidad en el tubo		m/h	540.00
Diámetro interno del tubo	Dint	m	0,05
		mm	54,26
Comprobar la velocidad en el lateral principal			
Velocidad en el lateral	VL	m/h	282,68
		VL< 0,3 m/s	₫b
Calcular colector central CC			
Velocidad en el CC	Vcolec	m/h	1080,00
Àrea del colector central	Acolec	m2	0,01
Diámetro interno de CC	Dint		0.09
Diametro interno de CC	Dilli	mm	90.80
			90,00
Comprobar la velocidad en el colector central			
Velocidad en el colector central	Vcolec	m/h	890,45
		m/s	0,25
		VL< 0,3 m/s	d)

Calc	ular pérdidas		
Calcular pérdidas en la arena	um perusus		
Coeficiente de Kozeny	f		5,00
Altura del lecho	L	cm	20,00
Graveded	g	cm/s2	981,00
Viscocidad cinemática	0	cm2/s	0,008
Porosidad	Po		0,36
Coeficiente de esferidad	Ce		0,95
Diámetro de la arena	Dc	cm	0,03
Velocidad de filtración	Vf	cm/s	0,01
Pérdida en la carga de arena	Ha	cm	3,63
		m	0,036
2. Calcular pérdidas en la grava			
Coeficiente de Kozeny	f	12	5,00
Gravedad		cm/s2	981,00
Viscocidad cinematica	0	cm2/s	0,008
Porosidad	Po		0,40
Coeficiente de esferidad	Ce		0,82
Velocidad de filtración	Vf	cm/s	0,01
Primera capa			
Espesor de la capa	L	m	0,15
Espesor de la capa		cm	15,00
Diámetro efectivo de la grava	d	mm	16,00
Dimieno electivo de la gava		cm	1,60
		Can	1,00
Pérdida de la carga	hfl	cm	0,001
Segunda capa			
Espesor de la capa	L	m	0.05
Espesor de sa capa		cm	5,00
Diámetro efectivo de la grava	d	mm	8,50
Districtive Colonies of the garden		cm	0,85
			0,00
Pérdida de la carga	hf2	cm	0,0009
			2,000
Tercera capa			
Espesor de la capa	L	cm	0,05 5,00
Diámetro efectivo de la marca			
Diámetro efectivo de la grava	d	mm	3,50
		cm	0,35
Pérdida de la carga	hf3	cm	0,01
Pérdida en la carga de soporte	Hs	cm	0,01
		m	0,0001
		ш	0,000

3. Calcular pérdidas en los orificios			
Caudal de cada orificio	Qo	m3/s	3,46905E-05
Para orificios	Cv		0,75
Area de cada orificio	Ao	m2	0,0001
Aceleración de la gravedad	E	m/s2	9,81
Caudal a filtrarse	Qf	L/s	1,94
Cantidad total de orificios		#	56,00
k			0,78
Pérdida de carga en cada orificio	Hs	cm	0,27
		m	0,003
Pérdida de carga en cada orificio	Hs	cm	15,21
Pérdida de carga en cada orificio	H5	cm m	15,21 0,15
3. Calcular pérididas a la entrada y salida			0,15
3. Calcular pérididas a la entrada y salida Válvula de compuerta	k		0,15
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90°	k k		0,15 0,25 0,90
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90° Tees	k k k		0,15 0,25 0,90 0,15
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90° Tees Entrada	k k k		0,15 0,25 0,90 0,15 0,50
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90° Tees	k k k		0,15 0,25 0,90 0,15 0,50
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90° Tees Entrada	k k k		0,15 0,25 0,90 0,15 0,50
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90° Tees Entrada	k k k		0,15 0,25 0,90 0,15 0,50
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90° Tees Entrada Salida	k k k k	m	0,15 0,90 0,15 0,50 1,00 2,95
3. Calcular pérididas a la entrada y salida Válvula de compuerta Codo 90° Tees Entrada Salida	k k k k	m	0,15 0,90 0,15 0,50 1,00 2,95


Calcular	In today	حالم حقوم	antroda.	-1.61t
5 - 20 5 10 120 1			entranca	20 10 10 10 10 10

Calcular la tubería de entrada al filtro			
Caudal de diseño	Qf	L/s	1,94
Coeficiente	Cd		0,60
Carga	h		0,15
Área total de los orificios	Ato	m2	0,002
Diámetro	Do	mm	49,02
Imponer un diámero específico			
Diámetro de los orificios impuesto	Do	mm	10.00
Area por orificio	Ao	m2	7,85398E-05
Número de orificios	No	#	24,03
a Transition of the Schools and		8	26,00
			,
Caudal en cada orificio	Q ₀	L/s	0.07
Cutami Cir Cam Grincio	40		0,07
Tubería de PVC de 90 mm con 26 orificios cada	10	cm	
Tubella de l' v o de 30 diair con 20 dillicios cada	10	CIII.	
Longitud de la tubería de entrada		m	2,60
Longitud de cada tramo (un tramo por unidad)		m	1.30
Calcular el cajón recolector Caudal de entrada	Qe	m3/s	0.00
Tiempo de retención	- Ve	шэ/s S	120,00
Volúmen	Vol	m3	
vonimen	VOL	BL5	0,47
Ancho de la cámara	b	m I	1,00
Altura de agua	h	m	1,00
Longitud de la cámara	L	m	0,47
Calcular el vertedero rectangular			
Caudal de filtración	Qf	m3/s	0,002
Altura del agua en el vertedero	H	m	0,10
Area del vertedero	Av	m2	0,01
Velocidad en el vertedero	Vv	m/s	0,19
I see according has the Francisco W	W W		0,27
Y =1/2 * g*t^2		m	0,50
$t = (2*Y/g)^{(1/2)}$			0,32
X = Ve+t		m	0,10

APÉNDICE 13: COSTOS

Cuadro A.13.1. Proyección de recuperación anual según la cantidad de abonados calculados para el periodo 2021-2033

Número de años	Población	Abonados	Total anual recuperado
0	1257	314	\$ 9.425,64
1	1381	345	\$ 10.354,63
2	1517	379	\$ 11.375,18
3	1666	417	\$ 12.496,32
4	1830	458	\$ 13.727,95
5	2011	503	\$ 15.080,97
6	2209	552	\$ 16.567,35
7	2427	607	\$ 18.200,22
8	2666	666	\$ 19.994,03
9	2929	732	\$ 21.964,64
10	3217	804	\$ 24.129,47
11	3534	884	\$ 26.507,66
12	3883	971	\$ 29.120,25
	Γotal		\$ 228.995,09

ANEXO 1: RESULTADOS ANÁLISIS DE MUESTRAS DE AGUA

Cuadro A.1.1. Resultados análisis de laboratorio para muestras de agua superficial en el punto #1

Danámatus al Canastanística a			Fecha	de análisis		_
Parámetros/Características	8/4/2021	10/6/2021	6/8/2021	16/9/2021	14/10/2021	11/11/2021
Código de la muestra	420421	1100621	1960821	240921	1101021	121121
Color Aparente (U-Pt-Co)	(18 ± 4)	(99 ± 7)	(136 ± 18)	(46 ± 4)	(71 ± 18)	(46 ± 4)
Turbiedad (UNT)	$(0,78 \pm 0,01)$	$(7,3 \pm 0,9)$	(14 ± 2)	$(5,9\pm0,7)$	$(4,6 \pm 0,6)$	(8 ± 1)
pH	$(7,71\pm0,04)$	$(7,78 \pm 0,04)$	$(7,62 \pm 0,04)$	$(7,58 \pm 0,04)$	$(7,75 \pm 0,04)$	$(7,67 \pm 0,04)$
Conductividad (µS/cm)	(157 ± 7)	(146 ± 6)	(133 ± 6)	(143 ± 6)	(136 ± 6)	(142 ± 6)
Cloro residual libre (mg/L)	ND	ND	ND	ND	ND	ND
Cloro residual combinado (mg/L)	NA	NA	NA	NA	NA	NA
Olor	Aceptable	Aceptable	Aceptable	Aceptable	Aceptable	Aceptable
Coliformes fecales (NMP/100 mL)	79	920	920	350	49	920
Escherichia coli (NMP/100 mL)	79	540	860	110	49	920
Corridas organoclorados (µg/L)	ND	ND	ND	ND	ND	ND
Corridas organofosforados ($\mu g/L$)	ND	ND	ND	ND	ND	ND
Carbamatos (μg/L)	ND	ND	ND	ND	ND	ND

ANEXO 2: BALANCE HÍDRICO DE LA ASADA SAN PEDRO

Cuadrado A.2.1. Caudal mensual disponible por captación de la ASADA San Pedro de San Marcos de Tarrazú en el periodo 2019-2020

	Caudal mensual (mL/s)											Nuevo Proyecto Bombeo Caudal (mL/s)		
Mes	Narciso	Omar Mora nueva	Omar Mora	Chuleta #1	Chuleta #2	Chuleta #3	Chuleta #4	Chorizo	Pintura	Roque Mora	Vicente Rojas	Toma #1	Toma #2	Los Coyotes
oct-19	434	68	64	111	90	41	54	500	200	111	0	400	500	172
nov-19	375	154	0	125	371	67	54	500	200	1250	1600	400	500	200
dic-19	434	87	80	156	323	68	116	500	200	1250	200	400	500	273
ene-20	434	87	80	156	323	68	16	500	200	1250	200	400	500	273
feb-20	120	59	37	75	323	49	40	500	200	1000	333	429	250	400
mar-20	119	55	37	70	320	43	40	850	200	900	300	400	200	300
abr-20	100	50	110	70	300	45	14	400	200	574	300	360	250	200
may-20	100	50	80	66	300	64	63	400	200	181	0	340	250	68
jun-20	434	80	38	72	300	75	63	400	200	233	0	204	294	66
jul-20	370	80	50	97	267	45	73	400	200	233	0	300	340	127
ago-20	107	74	87	152	238	34	67	365	214	961	163	346	448	223
sep-20	207	74	87	175	238	68	75	333	214	961	163	346	448	223

Cuadro A.2.2. Caudal mensual disponible por captación de la ASADA San Pedro de San Marcos de Tarrazú en el periodo 2020-2021

Mes	Caudal mensual (mL/s)										Nuevo Proyecto Bombeo Caudal (mL/s)			
ivies	Narciso	Omar Mora nueva	Omar Mora	Chuleta #1	Chuleta #2	Chuleta #3	Chuleta #4	Chorizo	Pintura	Roque Mora	Vicente Rojas	Toma #1	Toma #2	Los Coyotes
oct-20	255	75	87	433	333	134	187	1000	333	2911	887	574	626	202
nov-20	290	90	100	574	333	87	150	500	335	1850	900	574	819	300
dic-20	146	90	94	200	286	87	145	570	360	150	1666	560	810	271
ene-21	242	90	78	148	330	45	83	333	153	2600	1428	485	588	280
feb-21	289	90	32	115	330	45	83	333	154	2000	1328	312	393	280
mar-21	280	90	32	115	330	45	83	300	153	1500	1300	312	398	200
abr-21	99	52	40	75	166	40	80	200	96	600	1000	284	535	105
may-21	105	52	40	75	244	40	80	230	96	600	600	353	420	105
jun-21	105	52	40	75	244	40	80	230	96	500	500	353	420	105
jul-21	57	92	62	52	327	39	97	235	200	833	363	353	420	208
ago-21	57	92	62	152	327	39	97	235	200	933	400	409	552	200
sep-21	75	92	63	515	328	97	170	500	277	1700	1000	430	570	300
oct-21	75	92	63	515	328	97	170	500	277	1800	1400	431	572	300

Cuadro A.2.3. Caudal promedio mensual y porcentajes de representación para cada naciente contemplando datos del periodo 2018-2021

Naciente	Caudal promedio mensual (L/s)	Porcentajes		
Narciso	212,36	5%		
Omar Mora nueva	78,68	2%		
Omar Mora	64,2916667	1%		
Chuleta #1	174,76	4%		
Chuleta #2	291,96	6%		
Chuleta #3	60,08	1%		
Chuleta #4	87,2	2%		
Chorizo	432,56	10%		
Pintura	206,32	5%		
Roque Mora	1075,24	24%		
Vicente Rojas	763,380952	17%		
Toma #1	390,2	9%		
Toma #2	464,12	10%		
Los Coyotes	215,24	5%		

Cuadro A.2.4. Caudal disponible mensual de las 14 nacientes en los periodos 2019-2020 y 2020-2021

	Periodo					
	2019-2020	2020-2021				
Mes	Caudal disponible por mes (L/s)	Caudal disponible por mes (L/s)				
Octubre	2,75	8,04				
Noviembre	5,80	6,90				
Diciembre	4,59	5,44				
Enero	4,49	6,88				
Febrero	3,82	5,78				
Marzo	3,83	5,14				
Abril	2,97	3,37				
Mayo	2,16	3,04				
Junio	2,46	2,84				
Julio	2,58	3,34				
Agosto	3,48	3,76				
Septiembre	3,61	6,12				
Total	42,53	60,64				

Cuadro A.2.5. Caudales mensuales facturados por la ASADA San Pedro de San Marcos de Tarrazú en el periodo 2020-2021

Tarifa	Consumo (m3/mes)												
	Octubre 2020	Noviembre 2020	Diciembre 2020	Enero 2021	Febrero 2021	Marzo 2021	Abril 2021	Mayo 2021	Junio 2021	Julio 2021	Agosto 2021	Septiembre 2021	Octubre 2021
Domiciliar +60	0	17	0	260	161	27	33	60	24	25	53	10	10
Domiciliar 1-10	1706	1720	825	1871	1987	1825	1805	1782	1075	1706	1802	1709	1727
Domiciliar 11-30	650	888	473	1023	1335	937	819	944	532	670	1090	636	721
Domiciliar 31-60	77	86	16	212	305	158	86	94	40	62	83	53	33
Total consumido mensual	2433	2711	1314	3366	3788	2947	2743	2880	1671	2463	3028	2408	2491
Comercial 1-10	14	26	30	40	60	56	32	34	24	25	32	35	23
Comercial 11-30	0	20	0	40	27	43	4	28	8	16	27	28	20
Comercial 31-60	0	11	0	9	3	1	0	5	0	0	4	0	0
Total consumido mensual	14	57	30	89	90	100	36	67	32	41	63	63	43