
Instituto Tecnológico de Costa Rica
School of Computing Engineering

Costa Rica

A Deep Reinforcement Learning Approach to
Multistage Stochastic Network Flows for

Distribution Problems

Javier Fabio Porras Valenzuela

Committee:
Advisor

Ignacio Trejos Zelaya, M.Sc.
Scientific Advisor

Luis Leopoldo Pérez Pérez, Ph.D.

A thesis
submitted in partial fulfillment of the

requirements for the degree of
Master of Science in Computing (Computer Science concentration)

May 27th, 2022

Abstract

Distribution networks are a crucial part of supply chains that often entail highly
complex optimization problems. An NP-hard example is minimizing the long-
term transportation cost of multiple kinds of goods over a time horizon from
suppliers to customers, considering order consolidation restrictions for shipments
and demand uncertainty. This work presents a novel instance of such a distribu-
tion problem called the Shipping Point Assignment (SPA) problem, formulated
as a multistage stochastic multicommodity network flows problem with addi-
tional nonlinear constraints, where the decision is to which warehouse to assign
to the delivery of incoming orders to minimize inventory movements. Inspired by
recent advances in combinatorial optimization using reinforcement learning and
graph neural networks, we propose a deep Q learning agent with a GCN-based
Value Function Approximator. We compare this agent with MLP-based, deter-
ministic and greedy approaches over different simulations scenarios of the SPA
problem. While the results do not suggest that the deep Q learning agent finds
better policies than the reference agents, interesting avenues of future research
were identified to enable reinforcement learning agents to learn from stochastic
optimization problems with a graph structure.

Keywords: deep reinforcement learning, graph neural networks, distribu-
tion networks, stochastic optimization, network flows.

2

Resumen

Las redes de distribución son una parte crucial de las cadenas de suministro
que frecuentemente implican problemas de optimización altamente complejos.
Un ejemplo NP-duro es minimizar el costo de transporte al largo plazo de mul-
tiples tipos de bienes en un horizonte de tiempo, de proveedores a clientes,
considerando restricciones de consolidación de embarques para las órdenes y la
incertidumbre de la demanda. Este trabajo presenta una instancia novedosa
de este problema de distribución, llamado el problema Shipping Point Assign-
ment (SPA), formulado como un problema de flujos de redes multimercanćıa
estocástico multietapa con restricciones no lineales adicionales, donde la de-
cisión es a qué almacén asignar la entrega de órdenes entrantes para minimizar
movimientos de inventario. Inspirados por avances en optimización combinato-
ria con aprendizaje por refuerzo y redes neuronales de grafos, proponemos un
agente de deep Q learning con una función de aproximación de valor basada en
GCN. Comparamos este agente con alternativas basadas en MLP, deterministi-
cas y greedy en diferences escenarios de simulación del problema SPA. A pesar
de que los resultados no sugieren que el agente de deep Q learning encontrara
mejores poĺıticas que los agentes de referencia, interesantes avenidas de investi-
gación futuras fueron identificadas para abilitar que agentes de aprendizaje por
refuerzo aprendan de problemas de optimización estocástica con estructura de
grafo.

Palabras clave: aprendizaje por refuerzo profundo, redes neuronales de
grafos, redes de distribución, optimización estocástica, flujos de redes.

3

To my mother, who arrived in this country 29 years ago to pursue a master’s
degree. Here it is, mom.

4

Contents

List of Figures 8

List of Tables 10

1 Introduction 12

2 Conceptual framework 14
2.1 Network flows . 14

2.1.1 Minimum cost flows optimization 14
2.1.2 Transportation problem 16
2.1.3 Network simplex algorithm 17
2.1.4 Multicommodity flows . 18
2.1.5 Flows over time . 20
2.1.6 Multicommodity min cost flows over time 22
2.1.7 Limitations of traditional flow models 23

2.2 Reinforcement learning . 23
2.2.1 Markov decision processes 24
2.2.2 Dynamic programming . 27
2.2.3 Monte Carlo methods . 28
2.2.4 Temporal-difference learning 29
2.2.5 SARSA for on-policy TD control 30
2.2.6 Q-learning for off-policy TD control 31
2.2.7 Expected SARSA . 31
2.2.8 Value function approximations 31

2.3 Stochastic optimization . 33
2.3.1 The farmer problem . 33
2.3.2 General two-stage model 35
2.3.3 Solution methods . 36
2.3.4 Stochastic integer programming 36

2.4 Deep learning . 36
2.4.1 Multilayer perceptrons . 38
2.4.2 Training and backpropagation 41
2.4.3 Convolutional neural networks 44
2.4.4 Recurrent neural networks 46
2.4.5 Attention . 48
2.4.6 Graph neural networks . 49
2.4.7 Deep reinforcement learning 53

3 Related work 54
3.1 Reinforcement learning approaches to supply chain 54
3.2 Dynamic resource allocation problems 54
3.3 Network flows problems with graph neural networks 54

5

4 Problem statement 56
4.1 Shipping point assignment problem 56
4.2 Mathematical formulation . 58

4.2.1 Linearization of quadratic terms 59
4.2.2 High density demand assumption 59
4.2.3 Simplification from other multicommodity flows problems 59

5 Motivation and justification 60
5.1 Innovation . 60
5.2 Impact . 60
5.3 Depth . 61

6 Hypothesis 62

7 Research objectives 63
7.1 General objective . 63
7.2 Specific objectives . 63

8 Scope and limitations 64

9 Deliverables 65
9.1 Literature review . 65
9.2 Optimization environment . 65
9.3 Reinforcement learning agent implementation 65
9.4 Deterministic agents implementation 65
9.5 Experiments . 65

10 Methodology 67
10.1 Environment . 67

10.1.1 Simulation loop . 68
10.1.2 Demand generator . 69
10.1.3 Valid warehouse generator 70
10.1.4 Inventory generator . 70
10.1.5 Graph generation . 71

10.2 Interaction with the environment 72
10.3 Agents . 73

10.3.1 Random . 73
10.3.2 Best Fit . 73
10.3.3 Lookahead . 73
10.3.4 Branch and bound . 73
10.3.5 Multilayer perceptron (MLP) 74
10.3.6 Graph neural network (GNN) 74

10.4 Markov decision process . 75
10.5 Metrics . 75

10.5.1 Average cost . 75
10.5.2 Time per action . 75

6

10.5.3 Average reward . 76
10.5.4 Interplant movements . 76

10.6 Parameters . 77
10.6.1 Environment parameters 77
10.6.2 Agent parameters . 77

10.7 Experimental technique . 78
10.8 Experiments . 78

10.8.1 Small . 79
10.8.2 Medium . 80
10.8.3 Large . 80
10.8.4 Huge . 80

10.9 Design decisions . 80
10.9.1 Handling of Big M Actions 80
10.9.2 Choice of reward function 81
10.9.3 Choice of cost parameters 83
10.9.4 Episodic vs. continuous reinforcement learning 84
10.9.5 Normalization of reported cost 84
10.9.6 Feature design . 85
10.9.7 MLP architecture . 86
10.9.8 GNN architecture . 86
10.9.9 Hyperparameter optimization 87
10.9.10 Deep reinforcement learning implementation details . . . 87
10.9.11 Training algorithm . 88

10.10Execution platform . 88

11 Experiment results 89
11.1 Small environment . 89
11.2 Medium environment . 90
11.3 Large environment . 90
11.4 Huge environment . 93
11.5 Assessment of neural network VFAs 94
11.6 Impact of environment size on time per action 95
11.7 Deterministic allocation environment 97
11.8 Limitations of the experiments 99

12 Conclusions 101

13 Future work 103
13.1 Improvement ideas for SPA agents 103

13.1.1 Encoding the optimization problem into a neural network 103
13.1.2 VFA architectures . 104
13.1.3 Different reinforcement learning algorithms 104
13.1.4 Modifying the reward function 104

13.2 Modifications to the environment simulator and demand generators105

References 107

7

List of Figures

1 Maximum flow problem without integer solution 20
2 Multicommodity min cost flow example with two commodities . 21
3 Example of a manifold with one degree of freedom. Taken from

Bengio et al. [1] . 38
4 Feedforward neural network with one hidden layer for the XOR

task. 39
5 XOR function. On the left, the plot of the XOR function, show-

ing that a linear model cannot completely represent it. On the
right, the hidden feature space has transformed the function to a
linearly separable mapping. Reproduced from [1] 39

6 Gradient cliffs, common in recurrent neural networks, that make
the gradient descent update perform abrupt jumps. Taken from
Pascanu [2]. 44

7 2D Convolution vs. Graph Convolution. A visual representation
of the analogy between 2D Convolutions in an image-like grid
and a graph convolution. The 2D convolution takes the weighted
average of pixels surrounding the red one. The proposed solution
to a graph convolution is to take the average of neighbor’s nodes
features. Taken from Wu et al. [3] 49

8 Physical Network Example . 72
9 Time expanded network . 72
10 A graphical representation of the Markov Decision process. The

agent selects a warehouse to ship the next order ot based on
the current state, the environment simulates its impact on the
network by optimizing the TEN that represents the distribution
problem, and then communicates the reward Rt+1 to the agent. . 76

11 Sample Time Expanded Network for two warehouses, two cus-
tomers in a time horizon of length 3 82

12 Box plots for cost and TPA per agent on 30 runs of the small
environment . 90

13 Box plots for cost and TPA per agent on 30 runs of the medium
environment . 91

14 Box plots for cost and TPA per agent on 30 runs of the large
environment . 92

15 Box plots for cost and TPA per agent of the huge environment,
considering only runs of at least 15 episodes without program
failure. 93

16 Comparison of box plots for cost and reward for the medium
environment. While the difference in average cost is clear between
agents, there is virtually no distinguishable difference in terms of
average reward. 95

17 Growth of average episode time with environment size for each
agent. B&B and Lookahead grow at a much higher rate than the
rest of the agents. 96

8

18 GNN and MLP’s interplants from a sample run over 250 episodes
of the deterministic allocation environment 98

19 Box plots for cost and TPA per agent on 30 runs of the deter-
ministic allocation environment 99

9

List of Tables

1 Data for the farmer’s problem . 34
2 Solution for the farmer’s problem 34
3 Variable experiment parameter settings 78
4 Constant experiment parameters 79
5 Description of the feature vector for the multilayer perceptron VFA 85
6 Multilayer perceptron architecture 86
7 Description of the feature fector for each node in the graph neural

network VFA. 86
8 Graph Convolutional architecture 87
9 Average metrics per agent on 30 runs of the small environment . 89
10 Average metrics per agent on 30 runs of the medium environment 91
11 Average metrics per agent on 30 runs of the large environment . 92
12 Average metrics per agent on 30 runs of the huge environment . 93
13 Comparison of average TPA per agent on all environments 96
14 Average metrics per agent on 30 runs of the deterministic alloca-

tion environment . 99

10

Acknowledgements

First and foremost, my infinite gratitude to my advisors, Ignacio Trejos Zelaya
and Luis Leopoldo Pérez Pérez, this work is what it is thanks to their expert
insight. I am very fortunate to be able to have worked with such talented
individuals. Thank you for all the support and patience over many years.

I would like to thank the Costa Rica Institute of Technology, the school
of Computer Science, and the defense committee comprised of Lilliana Sancho
Chavarŕıa and José Mario Carranza Rojas, for making this research possible.

The work of this thesis was inspired by my experience on supply chain opti-
mization projects carried during my years in Singularities. I am forever grateful
to Carlos Araya for all the guidance, as well as for granting me the opportunity
to work in the most challenging projects of my career.

Several people kindly offered their feedback regarding the supply chain and
operations research aspects of this work. Special thanks to Natalia Mesén, who
took much of her time to validate the use case and provided me with valuable
contacts. Thanks also to Sebastián Urbina, Marcos Moya Navarro, and Harold
Schoenbeck.

Thank you to the people who took the time to read the drafts, listen to
presentation rehearsals or offer feedback: Amber McKenzie, José Mario Maŕın,
René Reyes, and Miguel Porras. Thank you also to Barnum Castillo and Randall
Jiménez, for supporting the initial exploration of the topics during the Tema
Selecto course.

Finally, thank you to my parents for being a steady source of love and
support along the years. Thanks to my grandmother Helvia Pérez, for believing
in me when not even I did. Thank you also to all my dear friends and family,
for supporting me, and for putting up with me for so long when I would talk
about nothing else but my thesis.

11

1 Introduction

Supply chains are a critical part of modern economies. A supply chain is de-
fined by Snyder [4] as the activities and infrastructure dedicated to moving
products from where they are produced to where they are consumed. They are
expensive operations, accounting for $1.5 trillion in costs for companies in the
United States [5]. As supply chains are high scale operations, even marginal
improvements in operational costs have very significant benefits for companies
and consumers. Besides their high costs, having efficient supply chains give
companies a competitive advantage. Supply chain operations include a variety
of tasks such as demand forecasting, production planning, inventory planning,
warehouse location decisions, among many others. One important cost driver
is the daily decision-making involved with handling the distribution of goods.

The problem of distributing goods with minimal cost has been of interest
to academics since the 1940’s, with the proposal of the transportation problem
[6]. Since then, massive progress in mathematical modeling and optimization
have resulted in a mature field of supply chain management and optimization.
However, distribution problems in the real world are still computationally very
challenging due to their inherent uncertainty and high number of potential sce-
narios that must be considered. Additionally, existing algorithmic approaches
to solving problems with uncertainty are brittle and do not hold in general cases.
Instead, they typically exploit characteristics that are specific to each problem.

Distribution networks can be modeled as network flows programs, which in
the simpler scenarios are special cases of linear programs [7]. When consid-
ering additional variables such as multiple commodities or flows across time,
the computational complexity of the problem increases [8]. And even consid-
ering all these factors that add complexity, optimizing deterministically – that
is, ignoring the inherent randomness of certain variables, such as demand – in-
evitably leads to inefficient decision making in real world problems. Stochastic
optimization is a field that addresses this limitation with great success in linear
programming with stochastic variables, typically by exploiting characteristics of
the stochastic formulations. However, stochastic integer programs, which may
resemble more closely many real world scenarios, are more difficult to solve due
to the large number of NP-hard scenarios that must be considered on problems
with few exploitable characteristics, except on certain special cases [9].

An alternative could lie in deep learning and reinforcement learning meth-
ods. The deep learning approach is to use statistical techniques called neural
networks to automatically learn chained combinations of functions automatically
in order to perform a task. By removing human design as much as possible, deep
learning has enabled breakthroughs in diverse domains such as image recogni-
tion [10], machine translation [11] and speech recognition [12]. Reinforcement
learning, which is focused on how agents can learn not through patterns but
rather through experience by interacting with an environment, has also enabled
great progress on tasks when coupled with deep learning, such as learning to
play Atari games [13], and beating the Go world champion [14]. More recently,
deep learning in the form of graph neural networks and reinforcement learning

12

approaches has made significant progress in combinatorial optimization tasks,
performing better than previous machine learning strategies [15][16][17]. These
results motivate the exploration of deep learning methods to automatically ex-
ploit the graph structure of distribution problems in order to handle their in-
herent uncertainty and high dimensionality, instead of the manual analysis of
problem structure in order to exploit mathematical properties, which has been
the general direction of the research community.

This work presents a novel formulation of a distribution problem called the
shipping point assignment problem. It is inspired in real world characteristics
such as demand uncertainty, multiple commodities, order consolidation require-
ments and the consideration of the movement of goods across time. These
characteristics make it highly dimensional and difficult to solve even for deter-
ministic optimizers. The problem is formulated as a Markov decision process,
and a novel deep reinforcement learning-based agent is proposed to derive a
policy that can optimize long term efficiency in distribution planning decisions
by choosing the most efficient shipping point for customer orders. The pro-
posed agent is compared against deterministic optimization-based and greedy
heuristic-based policies in order to evaluate its performance.

The document is structured as follows. The first chapter is the introduc-
tion. Chapter 2 is the conceptual framework, which provides an overview of
network flows optimization, reinforcement learning, stochastic optimization and
deep learning techniques. Chapter 3 is a brief description of related work: re-
inforcement learning approaches to supply chain, dynamic resource allocation
problems that may be related to distribution networks, and graph neural net-
work applications to network flows. In chapter 4, the shipping point assignment
problem is stated. It is a kind of multistage, stochastic network flows prob-
lem that simulates the behavior of a distribution network. Chapter 5 presents
motivations and justifications of the proposed problem. Chapter 6 states the
hypothesis. Chapter 7 delineates scope and limitations of the presented work.
Chapter 8 formulates the research objectives. Chapter 9 is a summary of the de-
liverables that provide evidence of the work reported in this thesis. In Chapter
10, methodological aspects are addressed, such as specifications of the imple-
mentation of the shipping point assignment problem as a Markov decision pro-
cess, a simulator to represent the environment, a set of agents to derive policies,
metrics, parameters as well as the experimentation plan. Chapter 11 shows the
results and analysis of the aforementioned experiments. Chapter 12 summarizes
the work and findings. Chapter 13 proposes future research directions.

13

2 Conceptual framework

2.1 Network flows

Network flows problems are optimization problems with an underlying network
structure where the objective is to move an entity across the network efficiently.
This kind of problem arises naturally in many different settings: manufacturing,
transportation networks, energy gridlines, hydraulic systems, etc. The network
in question could be a vehicle transportation grid, a system of water pipes or
the paths between airports in various cities. In those examples, the things
to move through the network are cars, water flow and airplanes, respectively.
Network flows are interesting because their graph structure allows for specialized
algorithms to solve them more efficiently than with general linear programming
techniques.

The most common network flows problems fall in one of three categories:

1. Shortest paths: The shortest (or least cost) way to traverse a network
from point A to point B.

2. Maximum flows: Given a network with fixed maximum capacities on
the number of items that can flow through each arc, maximize the amount
of flow between two points in the network.

3. Minimum cost flows: Given a graph with demands of a commodity on
certain nodes and supply on others. The nodes are connected through
arcs, each associated with a cost and a capacity restriction. Find the
amount of units of the commodity that should flow through each arc in
order to satisfy the demand requirements with the minimum possible cost.

These three categories of problems can all actually be formulated as lin-
ear programming problems. However, due to their graph nature, the resulting
programs would be represented with very sparse constraint matrices, and the
algorithms would not be able to leverage the network structure to handle prob-
lems with a large number of variables and constraints efficiently. In this work,
the focus is mainly on minimum cost flows, which will be used to model the
distribution networks in a supply chain environment.

2.1.1 Minimum cost flows optimization

Minimum cost flows are related to moving commodities from supply nodes to
demand nodes to satisfy their demand by passing through the network with the
lowest cost possible. It is intuitive to think of it in the context of transportation
networks: moving physical goods from supply warehouses to consumer desti-
nations while minimizing transportation costs. However, they are applicable
to many other fields, such as energy grids, water pipelines, manufacturing and
traffic networks.

Formally, the network is defined as a directed graph G = (N,A), where
N is a set of n nodes and A a set of m directed arcs (i, j) ∈ A. Arcs have

14

an associated capacity uij and a cost cij . Some notations also include a lower
bound lij , which for the purposes of this work this will always be zero. Each
node i has an associated balance b(i) that represents either supply if positive or
demand if negative. Finally, the decision variable xij represents the flow going
through arc (i, j) The minimum cost flows problem is then formulated as: [18]

minimize
∑

j:(i,j)∈A

cijxij

subject to∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ N,

lij ≤ xij ≤ uij ∀(i, j) ∈ A

(1)

The first set of constraints are called mass balance constraints. They specify
that the balance of a node is equal to the sum of all flows from incoming arcs
minus the sum of all flows from outgoing arcs. The second set of constraints is
called the flow bound constraints and they model the physical limitations of the
network.

Alternatively, in matrix notation:

minimize cx

subject to

Nx = b,

l ≤ x ≤ u ∀(i, j) ∈ A

(2)

Where N is the node-arc incidence matrix for the minimum cost flows prob-
lem, with a + 1 for inbound nodes and a − 1 for outbound nodes, and zeros
elsewhere. The vector b is the balance for each node, x is the vector of flow
for each arc, l and u are the vectors with the lower and upper bounds for each
node.

The following assumptions must hold true when working with minimum cost
flows: [19]

1. The integrality assumption , which means that arc capacities, costs
and node supplies and demands are always integers. This does not limit
expressive power, as rational values can be converted to integers by mul-
tiplying them by a sufficiently large number.

2. The network must be a directed graph. An undirected graph can
be trivially generated by adding two arcs for each undirected arc.

3. The sum of all node balances must be equal to zero (
∑

i∈N b(i) =
0), and a feasible solution to the problem must exist. The first part of
this assumption can be guaranteed by creating artificial “dummy” nodes
with balance equal to the difference between supplies and demands of the
original problem. The feasible solution part can be obtained by solving

15

a max flow problem on this artificial formulation and ensuring no flow is
assigned to artificial arcs.

4. There exists uncapacitated directed paths between every pair of
nodes. This can be satisfied by creating artificial arcs with an arbitrarily
large cost and infinite capacity between all unconnected nodes. However,
these arcs would only be used if there is no feasible solution to the original
problem, so, in implementation, they do not need to be present.

5. Arc costs are nonnegative. To satisfy this also only takes a trivial
transformation, simply sum the greatest negative arc cost to all arcs to
transpose.

2.1.2 Transportation problem

An important special case of the minimum cost flows problem occurs naturally
in distribution settings, called the transportation problem. A classic problem
in operations research and management science literature first formulated by
Hitchcock [6], its objective is to minimize the cost of moving goods from their
origins, called sources, to their required locations, called sinks. A more general
formulation is called the transshipment problem, in which intermediate nodes
are allowed to be used to satisfy a given demand [20]. The transshipment
and transportation problems are equivalent and both can be represented as
minimum cost flows. The following example is taken from Ahuja [7] to illustrate
an application of the transshipment problem using networks.

Given a set of p plants with known supplies and q warehouses with known
demands, the goal is to find the flows on the arcs that satisfy the demands at the
warehouses while respecting the supplies and minimizing transportation costs,
to obtain an optimal production and shipping plan. Consider a car manufacturer
that produces several car models, which are then shipped to retailers in various
locations. The problem can be modeled as follows:

Generate four kinds of nodes:

• Plant nodes: Represent the plants that produce the models.

• Plant-model nodes: Represent the models produced at the plant.

• Retailer-model nodes: Represent the reception of a specific model at
a retailer.

• Retailer nodes: The nodes that aggregate the demand.

and three kinds of arcs:

• Production arcs: From plant nodes to plant-model nodes. The cost
represents the cost of producing a unit of this model at this plant, and
capacities may be used to control the limits of production capacities for
each model.

16

• Transportation arcs: From plant-model to retail-model nodes. The cost
of the arc is the cost of shipping that model to a specific retailer, and the
capacities associated may reflect contractual limitations or distribution
capacities.

• Demand arcs: From plant-model to retail-model. They can have zero
costs and lower bounds equal to the demand for the model.

After solving this problem, the flows in the arcs will represent the optimal
production plan at each plant, and the optimal shipping strategy from each plant
to each retailer. Notice that this model has an evident limitation: imagine that
the transportation channels are shared for all models and have a limited capacity.
With this formulation, it is not possible to represent such a constraint, since
the capacities are independent for each plant-model to retail-model arc. This
issue will be addressed in a subsequent section when discussing multicommodity
flows.

2.1.3 Network simplex algorithm

Network simplex methods are one of the most commonly used methods for op-
timizing minimum cost problems. Inspired by the simplex algorithm to solve
linear programs, discovered by George Dantzig in 1947 [21], network simplex
methods exploit the graph structure of network flow problems while using the
general simplex framework. The computation is performed by using the con-
cept of spanning-tree solutions, analogous to basic feasible solutions in linear
programming.These solutions are iteratively improved by moving from one span-
ning tree solution to another, each time introducing a new non-tree arc into the
solution and removing another one, an action analogous to pivoting in linear
programming [22].

To understand the network simplex algorithm, it is necessary to explain the
concepts of cycle-free solutions and spanning tree solutions. A cycle-free solution
is a feasible solution to the optimization problem that contains no cycle with
free arcs. A free arc in this case is an arc (i, j) such that 0 < xij < uij , whereas a
restricted arc has a flow of either 0 or uij . A solution is a spanning tree solution
if every arc in the graph not in the solution is a restricted arc. A property of
minimum cost flows is that there always exists an optimal cycle-free spanning
tree solution. This property allows the search for optimality to be limited to
spanning tree solutions only [22].

Formally, a spanning tree solution can be viewed as a partitioning on the arc
space: (T, L, U), where for all (i, j) ∈ L, xij = 0 and similarly, for all (i, j) ∈ U ,
xij = uij . The mass balance constraints define the flow on the arcs in T . The
optimality conditions are intrinsically related to this partitioning.

The optimality condition for a shortest path problem is d(j) ≤ d(i) + cij ,
where d(i) represents the shortest path cost from a source node s to node i. This
holds true because if it were not, then the arc cij would be part of the shortest
path and the shortest path cost of d(j) would be lower. This condition can be
rewritten as cdij = d(j) − d(i) + cij ∀(i, j) ∈ A, with the interpretation that cdij

17

is the reduced cost of the arc (i, j), which means that it is the cost of that arc
relative to the optimal shortest path distances between i and j. Inspired by this
optimality condition of shortest path problems, we can define the potential of
a node as π(i) and the reduced cost of an arc as cπij = cij + π(j)− π(i). These
node potentials also happen to be the dual variables in the linear programming
formulation of the minimum cost flows problem. [22]

With an understanding of node potentials, we can now state the so called
complementary slackness optimality conditions for a minimum cost flow prob-
lem, which state that a feasible solution x∗ is optimal if and only if the following
conditions hold true for some set of node potentials π: [22]

If cπij > 0 then x∗
i j = 0

If 0 < x∗
ij < uij then cπij = 0

If cπij < 0 then x∗
i j = uij

These conditions can also be used with spanning tree structures. We can
say that a spanning tree structure is optimal if it is feasible and the following
conditions hold true for some set of node potentials π:

If cπij = 0 then (i, j) ∈ T

If cπij ≥ 0 then (i, j) ∈ L

If cπij ≤ 0 then (i, j) ∈ U

An economic interpretation of reduced costs in minimum cost flows is that,
given a starting node with potentials π(1) = 0, the reduced cost of a nontree arc
(i, j) ∈ L cπij represents the change in the cost of the flow incurred by sending
one unit of flow from node 1 to i and then to j through (i, j) and finally back
into node i through the rest of the tree. Therefore, a positive reduced cost cπij
implies that it is not efficient to add this arc to the spanning tree solution.

Network simplex begins by obtaining a feasible spanning tree, and pivoting
from one spanning tree to the other. The pivoting operation is performed by
iteratively finding an arc that violates this optimality condition, adding it to the
spanning tree solution creating a negative cycle, sending the maximum possible
flow through this arc until the flow of another arc in the cycle reaches its lower
or upper bound, and removing that arc from the spanning tree. When no other
arcs violate the optimality condition, we have arrived at the optimal spanning
tree. Algorithm 1 shows the pseudocode for network simplex [7].

2.1.4 Multicommodity flows

As previously mentioned while reviewing the car manufacturing example, min-
imum cost flows are limited in the sense that flow is assumed to be of a single

18

Algorithm 1 Network Simplex Algorithm

function NetworkSimplex
Precondition: G = (N,A) is the graph for a minimum cost flow problem

satisfying the assumptions.
(T, L, U)← generateInitialFeasibleSolution()
X ← Flow associated to (T, L, U)
π ← Node potentials associated to (T, L, U)
while nonTreeArcV iolatesOptimality(T, L, U) do

(k, l)← findEnteringArcV iolatingOptimality(T, L, U)
(p, q)← findLeavingArc(T, L, U, (k, l))
(T, L, U,X, π)← updateTreeAndSolutions(T, L, U, (k, l), (p, q))

type of commodity. If the problem requires that goods of different kinds flow
across the same network, sharing the arcs’ capacities, a different formulation is
required. Using vector notation, the formulation for the multicommodity flow
problem is: [19]

minimize
∑

1≤k≤K

ckxk

subject to∑
1≤k≤K

xk
ij ≤ uij ∀(i, h) ∈ A,

Nxk = bk ∀k ∈ 1, 2, ...,K,

0 ≤ xk
ij ≤ uk

ij ∀k ∈ 1, 2, ...,K,

(3)

where ck and xk refer to the vectors of costs and flows respectively for each
arc on commodity k, N is the node-arc incidence matrix, bk is the vector of node
balances for commodity k and uk

ij is the upper bound of flow for commodity k
on arc (i, j).

The capacity constraints are called bundle constraints because they make
sure the combined flows of all commodities across each arc don’t exceed the total
arc capacities. It is also possible to impose capacities on the arcs if necessary.

The first difference in this formulation with respect to the single commodity
version is that costs, flows and balances are now expressed as a vector for each
commodity k. Which, if not for the bundle constraints, would mean having
|K| parallel single-commodity linear programs. This is a property exploited by
many solution schemes for multicommodity flows approximation.

Another important distinction is that multicommodity flows may not always
have integer solutions. In the maximum flow problem example with three com-
modities, sources and sinks in Figure 1 [7], the optimal solution would be to
send 0.5 units of each commodity to share the 1 unit arc capacities between
nodes 1,2 and 3, for a total flow of 1.5. If an integer solution is sought, only one
unit from one of the commodities can be delivered for a total max flow of 1 and
without satisfying all the demand constraints.

19

1

s1 t3

2s2 3 t2

t1 s3

∞
∞

1

1

1

∞

∞
∞

∞

i j
uij

Figure 1: Maximum flow problem without integer solution

There are two main scenarios where it makes sense to formulate a problem
as multicommodity flows:

• Different kinds of goods or commodities that share a common network.
For example, a distribution network with fixed capacities and different
kinds of products.

• The same kind of good but with multiple pairs of source and destinations
that need to send the good to each other. For example, in telecommuni-
cations, many messages with a source and a destination share the same
physical network.

The following example from Ahuja [7] illustrates a multicommodity flow
network. In Figure 2a, there are two commodities, k = 1 and k = 2. All supply
from k = 1 comes from node s1 and is required at t1, and all supply from
k = 2 comes from s2 and is required at t2. All but two arcs are uncapacitated:
(s1, t1) with a capacity of 5, and (1, 2) with a capacity of 10. The demand for
commodity k = 2 could be satisfied by sending all the flow directly through
(s2, t2). However, the arc (1, 2) with limited capacity has a lower cost, but it
must be shared by both commodities, because commodity k = 1 cannot satisfy
its demand by just using (s1, t1). Figure 2b shows the optimal solution, where
the shared arc is used by sending 5 units of each commodity, while the rest of
the flow is sent through the direct (s1, t1) and (s2, t2) arcs.

2.1.5 Flows over time

Flows in the real world typically happen over a period of time. A significant
limitation of the traditional network flows model is precisely that it does not

20

1 2

s1

s2

t1

t2

b(s1) = −10

b(s2) = −20

b(t1) = 10

b(t2) = 20

(1, 5)

(1, 10)

(5,∞)

(5,∞
)

(1
,∞

)

(5
,∞

)

(1,∞
)

(a) Problem

1 2

s1

s2

t1

t2

b(s1) = −10

b(s2) = −20

b(t1) = 10

b(t2) = 20

Flow=5

Flow=5

Flow=5

Flow=15

(b) Solution

Notation:

i j
(cij , uij)

Figure 2: Multicommodity min cost flow example with two commodities

21

consider flows as a function of time. Network flows over time models, also called
dynamic flows, seek to overcome this limitation. The first models, introduced
by Ford and Fulkerson [18], consider a maximum flow problem with a time τij
associated with the arcs as well as its capacities, and is solved by an iterative
static flow computation over the network.

The most popular approximation is for this problem is obtained by trans-
forming the network into a time expanded network (TEN), which is essentially
copying the network nodes for each discrete time step and adding arcs that con-
nect nodes through time based on the transportation time τij . This approach
has an important limitation: the size of the resulting TEN grows linearly with
both the size of the original network and with the number of time steps (as op-
posed to growing logarithmically with the number of timesteps), which is why
this kind of solution’s complexity is pseudopolynomial. [23]

Although the minimum cost flow problem over time is proven to be weakly
NP-hard [24], several special cases and approximation techniques have been
developed to tackle these kinds of problems.

Most ways of handling flows over time involve exploiting problem-specific
qualities or that may simplify the computation. For example, Klinz [24] proposes
a variant called quickest flows over time, where the objective is satisfy the
demand in the shortest possible time. Quickest flows with one commodity can be
solved in polynomial time [25]. Fleischer expands by proposing fully polynomial
time approximation schemes based on converting temporally repeated solutions
to paths. Also, time expanded networks can be solved approximately with
reasonable precision in polynomial time by coarsening the discretization of time
and then translating the coarse solution to the original network [23].

Other special cases to be noted are when transit times are zero [26] or when
transit times are uniform across arcs in a path [23]. In both scenarios, the time
expanded networks can be simplified and solved in polynomial time due to the
fact that all paths share the same transit time.

2.1.6 Multicommodity min cost flows over time

The combination of multicommodity flows and flows over time results in a dis-
tinctly more difficult problem. In this case, multiple commodities flow across a
common network with transportation times associated to the arcs. An impor-
tant condition that doesn’t arise in static flows is that prohibiting the storage
of flows at intermediate nodes results in a strongly NP-hard problem. Although
evidently harder than single-commodity flows over time, the NP-hardness of
multicommodity flows over time remained an open problem for many years un-
til proven by Hall, Hippler and Skutella in 2007 [8].

Efficient algorithms for approximating multicommodity min cost flows over
time also mostly leverage exploitable characteristics of the problem. For exam-
ple, multicommodity flows over time with uniform path lengths can be solved
as a static multicommodity flow problem in polynomial time, and quickest mul-
ticommodity flows over time with the same characteristics can be decomposed
into a logarithmic set of static multicommodity flow computations [8]. Another

22

useful approximation technique was developed by Groß and Skutella for multi-
commodity flows over time in the case where intermediate storage is not allowed
[27], which has been mentioned previously to be a complicating restriction on
flows over time problems. The method relies on condensing the time expanded
network into an intermediate between an arc-based and a path-based formu-
lation, by means of solving the separation problem (finding an arc sequence of
minimum cost connecting two nodes, with the length of the sequence is restricted
to lie on a given interval). It is developed first for maximum multicommodity
flows over time and then generalized to any multicommodity flows over time
problem.

In all the approximation scenarios laid out so far, not only are the solution
strategies heavily reliant on specific structural properties of each optimization
problem, but they also all work exclusively with linear optimization objectives.
Therefore, they are not suitable as general purpose tools for solving nonlinear
network flow problems. Additionally, the introduction of stochasticity in these
NP-hard flow problems has not been studied much to the best of our knowledge.

2.1.7 Limitations of traditional flow models

To illustrate with an example, consider a consumer goods company that seeks
to distribute their products from their factories to satisfy customer orders. The
orders are composed of multiple kinds of products that all share the same dis-
tribution and inventory storage capacity limitations, and a customer’s order
is required to be delivered in full by a single truck, which means that the re-
quired supply must be guaranteed to be available before shipment begins. Even
ignoring that customer demand is a random variable that influences the prob-
lem constraints, the single-origin requirement is sufficient to render traditional
network flows models useless in this scenario, since it would require the intro-
duction of integer variables. The company in question would then be forced to
make a decision: relax some of the nonlinear constraints and make suboptimal
decisions, or incur in a costly combinatorial optimization that may not even be
guaranteed to yield a feasible solution in time to execute the operation.

Multicommodity min cost flows over time offer a way of modeling dynamic
problems using algorithms from static flows. But as pointed out by Powell [28],
using deterministic models for dynamic problems brings several complications:
the resulting time-expanded models may be too large, they may be too sensi-
tive to demand forecast scenarios, and they may have inferior performance as
compared to directly considering stochastic scenarios.

2.2 Reinforcement learning

Reinforcement learning is a field of study that focuses on how autonomous agents
make decisions while interacting with an environment in order to achieve a goal
through a reward function. An autonomous agent is a decision-making entity
that perceives the environment through sensors and performs actions in order
to achieve some goal, and a reward function is a numerical feedback that tells

23

the agent whether its actions were beneficial towards the goal given the current
state of the environment. In a reinforcement learning framework, an agent is not
given explicit instructions about how to operate besides the “rules of the game”:
the constraints in the environment. Instead, it is expected to discover the best
way to take actions based on experience and its current situation in order to
maximize its reward over time. The goal of a reinforcement learning agent, in-
formally, is to maximize its expected reward in the long term. The strategy with
which an agent generates actions in a given state is called a policy. Inspired by
insights from animal psychology about the way organisms interact with reality
and adapt, reinforcement learning seeks to model intelligent behavior through
simple, general principles that can be used to act autonomously. It also draws
out ideas from the field of optimal control, which studies the behavior of a sys-
tem over time when its dynamics are known. In this review of the theory of
reinforcement learning, the notation and formulas of Sutton and Barto [29] will
be used unless stated otherwise.

Reinforcement learning should be considered a separate machine learning
framework, neither supervised nor unsupervised. The goal of supervised learn-
ing is to learn how to extrapolate predictions from a set of labeled examples.
Although supervised learning may be used in some specific contexts in rein-
forcement learning, it is a fundamentally different kind of learning with distinct
underlying objectives. The objective of reinforcement learning is to maximize
a reward signal in all kinds of situations possible for an environment, which
may be impractical to generalize based solely on specific labeled examples. On
the other hand, it is also not unsupervised learning. Unsupervised learning
tries to find underlying hidden structure in unlabeled data, which also does not
equate optimizing for a specific reward signal. Using experience to drive learn-
ing is unique to reinforcement learning and it sets it apart from supervised and
unsupervised learning [29].

Another fundamental distinction of reinforcement learning with other ma-
chine learning approaches is the arisal of the exploration vs. exploitation trade-
off. In its path to maximize its reward, an agent constantly faces a choice: to
leverage what it already knows and obtain a certain reward, or sacrifice short-
term gains to explore more about its environment in the hopes of discovering
higher reward-yielding situations. This dilemma clearly does not exist in super-
vised or unsupervised learning, as it is the result of an agent interacting with
the environment [29]. A number of techniques in reinforcement learning have
been developed to address the exploration-exploitation tradeoff and some will
be covered later.

2.2.1 Markov decision processes

To arrive to a formal definition of reinforcement learning problems, we must
first introduce the concept of Markov decision processes (MDP). MDPs are
a mathematical formulation for a sequential decision making scenario where
limited information about an environment is made available to an agent. In
an MDP, the agent is an entity that selects actions in an interaction with an

24

environment, which in turn gives feedback by taking the agent into a new state
and presenting it with a reward for its previous action. The objective of the
agent is to maximize this reward signal given by the environment over time. [30]
An important assumption is that the latent distributions of state transitions and
rewards of the environment are stationary to some degree, meaning that they
do not change for at least some period of time in order for the agent to be able
to learn it successfully.

We define S as a discrete set of states provided by the environment, A as
the set of possible actions and R as the set of possible rewards, and assume
these three to be finite. The agent-environment interaction occurs over discrete
timesteps t = 0, 1, 2, At each timestep t, the agent senses its current state
St ∈ S and selects an action At ∈ A(s). The environment, in response to the
action, returns a real-valued reward on the next timestep Rt+1 and takes the
agent to a new state St+1 ∈ S [30].

For the random variables St and Rt, a conditional probability distribution
can be drawn given the previous state and action in the MDP. This is called the
dynamics function, and is defined as follows:[29]

p(s′, r|s, a) := P{St = s′, Rt = r|St−1 = s,At−1 = a}

In simple terms, this reads as: the probability of obtaining the reward r and
arriving to state s′ given that the agent was previously in state s and chose
action a. Having access to the probability function p, it is possible to compute
an optimal policy to achieve the path of highest reward. However, in most
relevant problems, the function p is either not known or practically impossible
to evaluate, so we have to develop methods that approximate the value of the
states without having access to p.

The goal of reinforcement learning was previously defined informally as max-
imizing the expected return in the long term. In the simple case where the
interaction with the environment is episodic (the interaction happens in subse-
quences of finite length called episodes), then the return can be defined as:

Gt := Rt+1 + Rt+2 + Rt+3 + ... + RT

Where RT corresponds to the reward obtained after arriving to a terminal
state S+, which is the state at which the episode ends upon arriving. In a setting
where the interaction between the agent and the environment is continuous,
which means there are no terminal states, optimizing to the simple sum of all
episodes would make the goal itself tend to infinity. To handle these cases, the
exponentially decaying average of the rewards is best suited:

Gt := Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1

The hyperparameter γ is called the discount rate. Values of γ closer to zero
will bias an agent to give a higher weight to rewards in the near future, while
a γ closer to one will make rewards longer in the horizon more valuable [30].

25

Notice that this goal definition can be unified to define both discounted and
undiscounted tasks by allowing γ to be equal to 1 but limiting the timesteps to
being finite.

The function that maps states to their expected return while following a
given policy is called a state-value function and is defined as:

vπ(s) := Eπ[Gt|St = s] = Eπ[

∞∑
k=0

γkRt+k+1|St = s]

Similarly, the function that maps states and actions to their expected return
is called action-value function and is defined as:

qπ(s, a) := Eπ[Gt|St = s,At = a] = Eπ[

∞∑
k=0

γkRt+k+1|St = s,At = a]

Value functions are useful because they define how valuable it is for an
agent to be in a particular situation (state or state-action) in terms of the
reinforcement learning goal. They can be expressed recursively in terms of their
successor states and the environment’s dynamics function p using Bellman’s
equations: [31]

vπ(s) =
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γvπ(s′)]∀s ∈ S

qπ(s, a) =
∑
s′

∑
r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)]∀s ∈ S, a ∈ A

It is always possible to find at least one optimal policy π∗. Although there
may be multiple optimal policies, they all share the same optimal state-value
function which can be defined as v∗(s) := maxπvπ(s), and likewise for the action-
value function. The optimal value functions can be expressed independently of
any policy in the form of the Bellman optimality equations (first presented by
Bellman by the name of “basic functional equation” [32]), here presented in
Sutton and Barto’s unifying notation [29]:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)]

q∗(s, a) = max
a

∑
s′,r

p(s′, r|s, a)[r + γ max
a′

q∗(s′, a′)]

As illustrated by these equations, it is simple to derive the optimal policy if
the state-value function is known: the agent only needs to compute the value of
all possible next states and greedily choose the action that maximizes it. The
action-value function makes it even easier, no look-ahead evaluation is required.

26

2.2.2 Dynamic programming

Dynamic programming, in the context of reinforcement learning, refers to al-
gorithms that rely on computing and storing a value function from a perfect
model of the environment, with finite and discrete state and action spaces [31].
Evidently, these conditions are of little use in scenarios where the dynamics
of the environment are almost always unknown. Also, the memory require-
ments for the value function of an exponentially large state space with respect
to the number of state variables make dynamic programming computationally
infeasible to solve exactly, a phenomenon coined by Bellman as the curse of
dimensionality [31]. However, dynamic programming techniques are still worth
mentioning briefly due to their theoretical value; they serve as the foundation
for more sophisticated methods.

In reinforcement learning, there are two kinds of tasks that need to be solved:
prediction and control. The prediction task is to find the value function of a
given policy. In other words, if the agent keeps acting the same way forever,
we want to discover what the expected value will be for each state. On the
other hand, control is how to change the existing policy in order to improve
the agent’s performance. Solving the prediction task helps solve control, since
having knowledge of the value functions enables the agents to find better policies.
At the same time, control influences the prediction task, since changing the
policy also implies changing the value function.

The first method for solving the prediction task in dynamic programming is
called policy evaluation. The strategy is to use Bellman’s equation as an update
rule for the value function:

vk+1(s)←
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s′)]

This update rule illustrates the essential concept in dynamic programming
called bootstrapping, which is the process of iteratively updating a value function
based on incomplete approximations of it. The prediction task can also be solved
as a system of linear equations. However, linear programming-based methods
become impractical in size faster than their dynamic programming counterparts
[29].

Next, it is necessary to have a way of gauging whether a particular policy
is better than another one, in order to know whether it is worth changing the
policy. It is possible to do so thanks to the policy improvement theorem, which
states that given two deterministic policies π and π′ such that:

qπ(s, π′(s)) ≥ vπ(s)∀s ∈ S

Then,

vπ′(s) ≥ vπ(s)∀s ∈ S

That is, if following policy π most of the time and then following π′ leads to a
higher value state for all states, then it can be said that π′ is a better policy than

27

π. That means that if we create a policy that selects the best action greedily
with respect to the current estimates of qπ(s, a) all the time, it is guaranteed to
be better than the original policy. If the value functions remain equal, it means
that it is the optimal value function and both π and π′ are optimal policies
[29]. This improvement of a policy by acting greedily with respect to its value
function is called policy improvement. From this point on, when we refer to the
greedy policy, we mean greedy with respect to the approximation of the value
function under a given policy π.

The process of combining steps of policy improvement and policy evaluation
is called policy iteration. Since the policy improvement theorem guarantees
that the new policy will be a better one, and a finite MDP has a finite number
of policies, this method is guaranteed to converge to the optimal policy. The
convergence of this method can be improved substantially in some cases by
doing one sweep of value updates instead of a full policy evaluation. This
method, called value iteration, is a special case of Generalized Policy Iteration
(GPI), a framework that describes the interaction between the processes of
updating a policy and bringing the value function closer to the true value of the
current policy. GPI is a general framework that can be used to describe most
reinforcement learning algorithms [29].

2.2.3 Monte Carlo methods

Since having a perfect model of the environment’s dynamics is usually not a rea-
sonable assumption, the next question that arises is how to estimate state val-
ues by learning from experience generated by interacting with the environment.
Monte Carlo methods provide a solution: to calculate the expected returns per
state by sampling in an episode-by-episode basis.

In the case of the prediction task, there are two ways of calculating the state-
value function: first-visit Monte Carlo (averaging the returns after the first visit
to the state s on each episode) or every-visit Monte Carlo (averaging the returns
on all visits to s). They both converge to the expected value by law of large
numbers, but they differ in that every-visit Monte Carlo presents theoretical
properties which are related to eligibility traces, a concept not relevant for the
purposes of this work. These methods can be applied analogously for estimating
state-action values as well.

An important difference with Dynamic Programming methods is that in
Monte Carlo, the updates of one state do not influence other states; that is, there
is no bootstrapping. Another key difference is that the value updates are made
at the end of each episode, as opposed to every step in Dynamic Programming.
Although both prediction methods converge, Monte Carlo methods tend to be
better when only a subset of the state space is relevant. This is typically the
case if the state space is large but some states are very unlikely to occur [29].

In order to do control with Monte Carlo, Monte Carlo prediction for action
values is important. The reason is that, without a model, state values do not
carry enough information to structure a policy. However, this technique suffers
from an issue of “maintaining exploration”: since in evaluating a deterministic

28

policy some actions will never be selected for a particular state, their values will
never be updated. This can be solved by using a technique called “exploring
starts”, in which the first state-action pair is randomly chosen and all state-
action pairs have nonzero probability of being chosen as initial. However, it is
not always a reasonable requirement, as one cannot always choose the starting
state and action [29].

In order to do Monte Carlo Control with GPI, one needs to collect the action
values for a full episode, perform policy evaluation for the observed returns, and
then improve the policy for the visited episodes [29]. Some way of guaranteeing
that all states are visited is necessary to prove convergence. Exploring starts
is an option, another one is using an ϵ-greedy policy. An ϵ-greedy policy may
choose the non greedy action with probability ϵ

|A(s)| , and the greedy action with

probability 1− ϵ + ϵ
|A(s)| . ϵ-greedy policies are a way to tackle the exploration-

exploitation problem described earlier in a more flexible way than exploring
starts, which is not always feasible.

Methods that use a single policy to evaluate and optimize are called on-
policy. ϵ-greedy policies are an example of on-policy methods. In contrast, off-
policy methods have separate mechanisms for optimization and gaining knowl-
edge of the environment. Typically, this setting involves two policies, the policy
to be optimized, called the target policy, and the one that drives exploration,
called the behavior policy. [29] This brings the challenge of how to evaluate the
target policy while acting according to the exploratory behavior policy. The so-
lution is to calculate a weighted average of the returns by using the probability
of a trajectory occurring in the target policy relative to the trajectory in the
behavior policy, which is called the importance-sampling ratio:

ρt:T−1 :=

T−1∏
k=t

π(Ak|Sk)

b(Ak|Sk)

It has the useful property of not depending upon the dynamics of the MDP
because they are the same for both policies. With the importance sampling
ratio, the expected value can be transformed from E[Gt|St = s] = vb(s) to
E[ρt:T−1Gt|St = s] = vπ(s). To do Monte Carlo with importance sampling, all
that is needed is to calculate the weighted sum of the return values weighted
by the importance-sampling ratio, and average over the count of visits to each
particular state. This is called ordinary importance sampling, as opposed to
weighted importance sampling which is biased towards vb(s) but tends to have
lower variance and is more used in practice, according to Sutton and Barto.
Dealing with high variance in Monte Carlo methods is an ongoing area of re-
search. [29]

2.2.4 Temporal-difference learning

Temporal-difference (TD) methods draw ideas from both dynamic programming
and Monte Carlo. Like Monte Carlo methods, TD is able to learn state values
by sampling from experience without requiring a model of the environment.

29

And like DP, TD keeps track and updates state-value estimates, in other words,
it performs bootstrapping. TD differs from Monte Carlo methods because TD
does not need to wait until the end of the episode to update the values.

The simplest TD method, called one-step TD, updates the value of each
state after it is visited using the rule

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)],

where the parameter 0 ≤ γ ≤ 1 is called a trace decay parameter and 0 ≤ α ≤ 1
is the learning rate. The trace decay parameter γ controls how much weight
to assign to earlier state values with respect to older ones. A value of γ = 1
will result in an algorithm equivalent to Monte Carlo methods. The part of
the equation in brackets is also called the TD Error, which means the error
incurred in the estimate of the value function and is important in theoretical
reinforcement learning:

δt := Rt+1 + γV (St+1)− V (St)

Besides the evident advantages over DP methods such as not depending
on a model of the environment, TD methods may also be more practical than
Monte Carlo in continuous settings or where episodes are too long and updating
after every episode would be very inefficient. Also, though not a guarantee,
TD methods tend to converge faster than Monte Carlo methods in practice as
illustrated by Sutton and Barto on simulations using Markov Reward Processes
(MRP) for benchmarking the prediction task [29].

One possible explanation for this is that while Monte Carlo methods op-
timized the expected sampled return, which is equivalent to minimizing Mean
Squared Error on the observed data, whereas TD methods optimize according to
the maximum-likelihood estimation of the underlying MDP. That is, TD meth-
ods calculate the transition probability times the expected reward based on the
sample average, also known as the certainty-equivalence estimate, because it is
the estimate if we assume that the process is known with certainty rather than
approximated [29].

2.2.5 SARSA for on-policy TD control

Applying the concept of TD for control only requires to change from state-value
to action-value function. Since this requires the 5-tuple of states and actions
given by (St, At, Rt+1, St+1, At+1), this method is referred to as SARSA. The
update rule is:

Q(St, At)←− Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

To obtain an on-policy control algorithm, we can use an ϵ-greedy policy with
respect to our approximation of Q.

30

2.2.6 Q-learning for off-policy TD control

Q-learning is like SARSA, except that it approximates q∗ directly, regardless of
the policy being used. The values are updated with the maximum value for all
possible actions: [30]

Q(St, At)←− Q(St, At) + α[Rt+1 + γmaxaQ(St+1, a)−Q(St, At)]

A control algorithm with this update rule is off-policy, because the value
being predicted (q∗) is different from the actual value of the policy being followed
(which could be an ϵ-greedy policy, for example).

2.2.7 Expected SARSA

Expected SARSA is a variant of SARSA where the TD error is calculated with
respect to the weighted probability of each Q value while following policy π. It
is computationally more expensive than SARSA and Q-learning, but it tends to
converge faster. The reason for this is that expected SARSA has the same ex-
pected value than SARSA, but with lower variance due to the weighted average
over the actions. Here, the update rule is: [29]

Q(St, At) := Q(St, At) + α[Rt+1 +
∑
a

π(a|St+1)Q(St+1, a)−Q(St, At)]

Although typically used on-policy, it is worth noting that it can be made an
off-policy algorithm by setting a behavior policy. In fact, if the target policy is
the greedy policy, expected SARSA is equivalent to Q-learning [29].

2.2.8 Value function approximations

So far all the methods that have been presented are feasible only under the
assumption that the state space is both discrete and of limited cardinality so
as to be computationally tractable to keep the values of each state in memory.
However, this is not always feasible, or even desirable. It could be the case
that the state space is continuous, or that it is discrete but many states share
similar properties and it makes sense to generalize an agent’s behavior when
encountering them, so that updating the value of one state affects all similar
states. This is called value function approximation (VFA). Instead of having
exact values for each state, we aim to approximate the value of multiple states
at once.

For the prediction task, the objective must change from converging to the
true value of a state to minimizing the error in the estimation of all states.
Moreover, some state’s values may be more important than others, for example,
the values of the most frequently visited states. The objective of the predic-
tion task, to put an example, can be defined as minimizing the weighted Mean
Squared Error: [29]

31

V E(w) :=
∑
s∈S

µ(s)[vπ(s)− v̂(s, w)]2

where µ(s) is a distribution of the relevance of the states,
∑

s u(s) = 1 and
v̂(s, w) is the value approximation of state s with respect to parameters w.

Regarding the question of which method of value function approximation
to choose, it would be tempting to take any statistical approximation method
from the supervised learning framework and apply it here. However, as stated
by Sutton and Barto, there are key differences between the supervised and re-
inforcement learning frameworks that rule out some methods. Some supervised
algorithms learn over a whole training set and must be retrained from scratch
if the training data changes, which means that the training objective must be
non-stationary. Reinforcement learning requires that the training be done on-
line, while the agent is capturing data from the environment and the policy π
influencing the value estimates may be changing as well. Even if the policy does
not change, a bootstrapping method is constantly modifying the target values.
For this reason, non-stationary methods should be ruled out [29].

A well-suited alternative is to use methods based on stochastic gradient
descent (SGD). The idea is to represent the value function with a differentiable
approximation v̂(s, w), where w is a real-valued vector.

This value function estimator is approximated using stochastic gradient de-
scent in order to minimize the mean squared error of the difference between the
estimator and the true value of the state:

wt+1 ← wtα[vπ(St)− v̂(St, wt)]x(St)

Notice that vπ(St) is typically not known at the time of the update, therefore
an approximation is necessary, so to perform the update we replace with an
approximation Ut, which could be a noise-ridden approximation of vπ(St), or
the TD bootstrapping approximation of its value up to that point:

wt+1 ← wtα[Ut − v̂(St, wt)]δv̂(St, w)

The above equation requires Ut to be an unbiased estimate (E[Ut|St = s] =
vπ(St)) to guarantee convergence with decreasing α. This is true for Monte
Carlo estimates, which are generated by sampling. For TD methods, however,
this does not hold due to the bootstrapping. Given the bias that bootstrapping
introduces by the dependency on wt, TD methods that rely on stochastic gradi-
ent descent are not true gradient descent. Rather, they are called semi-gradient
methods. They do not have as robust convergence guarantees in all scenarios
as true stochastic gradient descent, but they work well enough in some cases,
such as when the VFA is a linear model [29].

A useful strategy to get better convergence performance on semi-gradient
methods is to keep two copies of the model, one that is temporarily fixed for
computing the gradient and another one that is updated with the gradient of the
former. This approach helps stabilize the target value by not having it change
with every exploration step [13].

32

Sutton and Barto put forth linear methods for approximation due to their
convergence guarantees and computational efficiency. In this case, the param-
eterized value function is a linear combination of a set of features x with the
weight vectors w, defined as:

v̂ := wTx(s) =

d∑
i=1

wixi(s)

with its respective update rule:

wt+1 ← wtα[Ut − v̂(St, wt)]x(St)

Their simplicity, computational efficiency and mathematical properties have
made linear-based models very popular for function approximation. The effec-
tiveness of linear methods rely on good constructions of features that enable
the model to generalize over the state space. Since this work focuses on ex-
ploring new nonlinear approximations of value functions, the present methods
are outside the scope. For a detailed overview of the most popular ones in
reinforcement learning, see Sutton and Barto [29].

2.3 Stochastic optimization

Stochastic optimization is the field of study concerned with sequential decision
making under uncertainty. After the community of mathematical programming
realized that many real world optimization problems are influenced by stochastic
variables, the community started developing techniques to handle them. These
techniques were developed in parallel as the reinforcement learning community
started growing, so many of them overlap with reinforcement learning strategies
but with different names and conventions. For example, methods that can
handle multidimensional state variables in reinforcement learning fall into the
umbrella of approximate dynamic programming in the stochastic community.
For an unifying view of the stochastic optimization and reinforcement learning
literature, see Powell (2021) [33].

2.3.1 The farmer problem

To illustrate the motivation for stochastic optimization, consider the farmer
problem, adapted from Birge and Louveaux [9]. A farmer plants wheat, corn
and sugar beets. Each year she must decide how many of her 500 acres of land
to allocate to each crop in order to maximize profit. She must meet a quota
of wheat and corn to satisfy her farm’s requirements, and can sell the rest of
the yield. Sugar beets are the most profitable crop and there are no minimum
requirements, but if she sells more than 6000 tons of sugar beets, government
regulations force her to sell for a lower price. This is a simple linear program
given by the following formulation:

33

Wheat Corn Sugar beets
Yield per acre (T/acre) 2.5 3 20
Planting cost($/acre) 150 230 260
Selling price($/T) 170 150 36 (if under 6000T)

10 (if above 6000T)
Purchase price($/T) 238 210 -
Minimum requirements(T) 200 240 -
Available land: 500 acres

Table 1: Data for the farmer’s problem

Wheat Corn Sugar beets
Surface (acres) 120 80 300
Yield (acres) 300 240 6000
Sales (T) 100 - 6000
Purchases (T) - - -

Table 2: Solution for the farmer’s problem

minimize 150x1 + 230x2 + 260x3 + 238y1 − 170w1

+ 210y2 − 150w2 − 36w3 − 10w4

subject to

x1 + x2 + x3 ≤ 500,

2.5x1 + y1 − w1 ≥ 200,

3x2 + y2 − w2 ≥ 240,

w3 + w4 ≤ 20x3,

w3 ≤ 6000,

x1, x2, x3, y1, y2, y3, w1, w2, w3, w4 ≥ 0

(4)

Table 1 shows the meanings of the variables alongside constraints. After
using a linear programming optimizer, the solution for the program is given
in Table 2. This would be sufficient if the crop yield was the same every year.
However, the farmer has observed that there is a ±20% variance in yield over the
years due to external force such as weather variations. In order to evaluate if this
uncertainty can alter her profits significantly, she runs two more optimizations
with the worst and best case scenario of crop yields (assuming all crops will
have the same variation in yield) and realizes that the profits may vary in the
range from $59,950 and $167,667. If the yields are low, more land is required to
plant the favorable beets, but if they end up being high, the risk is selling beets
at an unfavorable price.

Notice that this stochastic version of the problem is composed of two stages.
In the first stage, a decision must be made about the allocation of the land. In

34

the second, the yield random variable is observed and the optimization problem
of how to buy and sell crops must be solved.

One possible solution is to create an optimization with the constraints of all
three scenarios, assuming they are all equally likely to happen. The solution of
such a program would sacrifice meeting the maximum sugar beet quota in order
to reduce the risk of having to sell crops at an unfavorable price. This kind of
trade off would not need to happen if a perfect forecast of the yields existed.

Two important quantities arise from this scenario. Imagine that the yields
are still random, but the farmer has knowledge on the yields before planting,
allowing her to choose the best of the three allocation scenarios. The total profit
in this condition is called the expected value of perfect information (EVPI). The
second quantity, called the value of the stochastic solution (VSS), is the marginal
value of optimizing this stochastic program versus the expected value solution,
which is obtained by optimizing using the expected value of the yields. EVPI
measures the value of knowing the future with certainty and VSS measures the
value of knowing distributions on future outcomes.

2.3.2 General two-stage model

In the stochastic programming community, a decision taken before a random
event is called a first stage decision, represented with x. A decision taken after
the realization of a random vector ξ is a second stage decision, represented
with y. The boldface notation denotes a random vector, different from their
realizations. The following example can be generalized to the form

minimize cTx + Eξ Q(x, ξ)

subject to

Ax = b,

x ≥ 0

(5)

where Q(x, ξ) = min{qTy|Wy = h − Tx, y ≥ 0} is the value of the sec-
ond stage for a given realization, and ξ is the vector formed by the random
components qT, hT and T. Q here is analogous to the action value function
in reinforcement learning. In other words, minimize the value of the cost con-
straints in the first stage , plus the expected cost in the second stage after the
realization of the random variables. In the farmer example, the random vari-
able is the vector ξ = (t1, t2, t3) formed by the yields of the three crops. This
notation can be simplified by defining L(x) = Eξ Q(x, ξ), called the value or
recourse function.

Until now, the assumption has been that the random variable takes discrete
values. This assumptions can be lifted and the values of the yields can be
continuous. By deriving the recourse functions for each crop in this scenario,
one can find that they are piecewise linear, convex, continuous and differentiable.
Such calculations are not displayed here for brevity. These properties mean that
the optimization problem is convex and a global minimum can be found.

35

The literature mentions the concept of multistage optimization problems
[34]. Multistage refers to the fact that the second stage solution become the
variables of the next stage of the problem, in contrast to each pair of stages
being independent of each other, such as in the case of the farmer problem. For
example, in a distribution network, the decisions made to fulfill the orders in
one timestep affect the inventory that will be the starting point for the next
round of orders. In a multistage problem, the recourse function is recursive,
since it must consider all decision variables up until that point in time.

2.3.3 Solution methods

The naive way of solving this problem is to use a finite number of second stage
realizations in order to form the fully deterministic problem. This approach
is inefficient because the full deterministic form of the problem becomes quite
large. The structure of the stochastic program must be exploited for more
efficient methods.

The most common solution, called the L-shaped method [35] to solve this
problem is to create a linearization of the objective function and solve the first
stage problem plus the linearization. The linearization is typically done by a
Dantzig-Wolfe decomposition [36] or a Benders decomposition [37].

2.3.4 Stochastic integer programming

Stochastic integer programming problems are more difficult to solve, and fewer
theoretical results have been obtained. For example, adding integer restrictions
to the constraints on the second stage problem significantly increases the com-
plexity, because any first stage decision and outcome results in a different integer
program which is already NP-hard [38].

There are few properties that can be exploited to develop general, efficient
solution methods [9]. Instead, the literature focuses on special cases, such as
when the first stage variables are binary [38] or when the second stage deci-
sions are integer and the random variables come from a discrete distribution
[39]. In such cases, a branch and bound framework is prescribed by performing
optimality cuts based on the conditions.

2.4 Deep learning

Deep learning is a sub field of machine learning that has gained massive popu-
larity in the last decade due to the success of neural network-based algorithms
in a variety of supervised learning tasks such as image recognition [10], machine
translation [11] and speech recognition [12], as well as reinforcement learning
tasks such as learning to play Atari games [13], and beating the Go world
champion [14]. The deep learning strategy is to automatically learn which fea-
tures of an input space are required to perform a task, instead of relying on
manually-provided features as in traditional machine learning algorithms. This
is done via a series of nonlinear transformations on the input space that allow

36

neural networks to compose complex representations from simpler ones. This
approach of learning features is called representation learning [40]. The name
deep learning refers to the fact that a neural network that composes many of
such transformation graphically gives the impression of being deep.

Although artificial neural networks exist since the 1950s with the perceptron
[41], and have been applied to some tasks in the late 80s such as handwritten
text recognition [42], for many years they were believed to be unsuitable to be
applied to larger problems. In recent years, due to a combination of algorithmic
improvements, advances in computational capabilities and the availability of
large enough datasets, neural networks have regained popularity as they achieve
state of the art performance in various domains [43]. The initial groundbreaking
results were obtained in image processing, where convolutional neural networks
were first applied to drastically improve the accuracy in image classification
tasks [44].

While there is still much to be researched about why deep learning has been
so effective, there are a variety of empirical arguments that may justify using
deep models. The most salient one is their ability to deal with highly dimen-
sional data. The number of possible configurations grows exponentially with
the number of dimensions, a phenomenon known as the curse of dimensionality
[45]. Neural networks are statistically efficient in the sense that they are able
to generalize well in these highly dimensional spaces, even when the number of
examples is low relative to the number of possible configurations, thanks to the
distributed representations that they learn [40]. Conventional machine learn-
ing algorithms generally struggle with the curse of dimensionality, because they
typically depend on an implicit local constancy prior, which in essence means
working under the assumption that examples that are close together in the in-
put space of a function should not change much. Taking K-nearest neighbors
as an example, a region containing a set of points that all have the same neigh-
bors will predict a constant value. This is useful if the function varies in just a
few dimensions, however it poses challenges when moving to higher-dimensional
spaces [1].

To understand how the local constancy prior complicates generalization abil-
ity in highly dimensional problems, consider a checkerboard. In order to predict
the color of a point in the board, it would be necessary to have at least one
example in each square, even though it evidently has a structure that could
be extrapolated. Another approach would be to introduce another explicit,
stronger prior such as saying that the function is periodic. However, this way
of introducing domain knowledge is evidently not useful to generalize to a wide
array of problems.

It is indeed possible to represent highly-dimensional functions efficiently and
to have an approximation that generalizes well non-locally. This is due to the
fact that a O(2k) space can be represented with O(k) examples, given additional,
generic assumptions about the data generating distribution [46]. One such as-
sumption that deep learning makes is that the data generating distribution is
the result of a composition of features, possibly in many levels.

Another key idea that may help tackle the curse of dimensionality is related

37

Figure 3: Example of a manifold with one degree of freedom. Taken from Bengio
et al. [1]

to manifolds. A manifold, as viewed in machine learning, is a set of points
in space connected through a neighborhood of points with limited degrees of
freedom. Consider the example in Figure 3. The points are defined in a two-
dimensional space, but the data generating distribution is actually a manifold
with one degree of freedom. Similarly, when learning on manifolds, the assump-
tion is that most of the inputs in a Rn space are invalid, and that the learned
function would only vary within directions in the manifold. In other words,
that the probability mass is highly concentrated across few dimensions. This
assumption about the data generating distribution is called the manifold hy-
pothesis [47] [48]. An informal intuitive example to consider why the manifold
hypothesis seems reasonable, imagine that most randomly generated images are
perceived as noise, and most randomly generated strings of characters are not
real language. There is a non-zero probability of getting a picture of a dog, or
a real sentence, but it is infinitely small in the input space. Another informal
argument is that we can imagine transformations between valid examples, for
example rotating an image, or transforming a sentence via synonyms or gram-
matical restructuring.

For these reasons, it is compelling to utilize deep learning to solve tasks that
traditional machine learning algorithms have struggled with in the past.

2.4.1 Multilayer perceptrons

Multilayer perceptrons, also called feedforward neural networks, are the simplest
neural network architecture. They are function approximators that map y =
f(x; θ), where θ is the set of parameters that best maps x to the output y.
In a multilayer perceptron, the input is passed through a series of nonlinear
transformations that generate vector-valued representations. In figure 4, an

38

x1

x2

h1

h2

o1

Input
layer

Hidden
layer

Ouput
layer

Figure 4: Feedforward neural network with one hidden layer for the XOR task.

x1

x2

0

1

1

0

h1

h2

0 1

0

Figure 5: XOR function. On the left, the plot of the XOR function, showing
that a linear model cannot completely represent it. On the right, the hidden
feature space has transformed the function to a linearly separable mapping.
Reproduced from [1]

example of a multilayer perceptron is presented, with its main parts: input
layer, hidden layers and output layers. So if f (1),f (2),f (3) are the input layer,
one hidden layer and an output layer, the approximation would be computed
as f(x) = f (3)(f (2)(f (1)(x))). These functions can be, for example, a linear
transformation coupled with some nonlinearity, such as a sigmoid, hyperbolic
tangent or a rectified linear unit. The number of hidden layers is referred to as
the depth of the model, and the number of parameters in the hidden layers is
called the width. It is useful to think of the hidden layers as a way of computing
an alternative, nonlinear feature representation for ϕ(x) that allows the neural
network to represent a richer set of functions than, for example, a linear model.
In fact, neural networks are universal function approximators, which means that
they are capable of representing any Borel measurable function (any continuous
function on a closed subset of Rn), given a sufficiently large network [49][50].

An important caveat to the universal approximation theorem is that being
able to represent the function does not imply that it is guaranteed that the
training algorithm will be able to learn the function; it could fail to converge or
learn a different function due to overfitting.

39

As a concrete example, consider a multilayer perceptron with one hidden
layer used to solve the XOR task, which should be able to create a nonlinear
mapping. In Figure 5, we can see an example of the XOR function, where
the original x space is nonlinear, but it can be transformed into an alternate h
space that a linear model can be used to solve the task. The model contains
two sets of parameters, W and w, and two functions h = f (1)(x;W, c) and
y = f (2)(h;w, b), where b and c are the intercept terms. The full model would
be y = f (2)(f (1)(x)). f (2) is a linear model. f (1) cannot be a linear model,
because otherwise the whole model would become a linear model, as it could be
rewritten as f(x) = xTw′ in vector notation, where w′ = WTw. The solution
is to perform a linear combination of the input space and the parameter vector,
followed by some nonlinear transformation function, which is known as the
activation function. The most common choice for activation functions is ReLU
(Rectified Linear Unit) [51], defined as g(z) = max(0, z). With that, the full
model becomes, in vector notation,

f(x;W, c;w; b) = wT max(0,WTx + c) + b.

The objective is to minimize the loss function in a regression problem, which
can be mean squared error (MSE), defined as

J(θ) =
1

4

∑
x∈X

(f∗(x)− f(x; θ))2

The following vectors yield a solution to the XOR problem:

W =

[
1 1
1 1

]
; c =

[
0− 1

]
;w =

[
1− 2

]
; b = 0

The input matrix for XOR:

X =


0 0
0 1
1 0
1 1


After applying the model with the specified values, the resulting vector would

be: 
0
1
1
0


which is the correct mapping for the XOR problem. It is worth noting that

this is not the only set of values for W , w, c and b that result in a zero error
solution for the XOR task.

The question now becomes how to arrive at the parameters that minimize
the error. Since the model is not linear, we are unable to solve this equation
in closed form. Instead, the function must be approximated using non-convex
optimization techniques, such as gradient-based methods.

40

2.4.2 Training and backpropagation

Training a neural network means finding appropriate values for parameters θ
that approximate the distribution of the process that generated the training
data. However, in contrast with mathematical optimization, where the only
goal is to minimize the objective error, here the minimization of the error with
respect to the training data is being used as a proxy for approximating the true
data generating distribution pdata, which means that we may not necessarily be
interested in directly finding the absolute minimum for J(θ). The cost function
can be written as

J(θ) = E(x,y) p̂dataL(F (x; θ), y)

where p̂data is the empirical distribution observed by the training data, with
labels y assuming a supervised training scenario. We optimize this as a proxy
for approaching the minimum of the true cost function,

J∗(θ) = E(x,y) pdataL(F (x; θ), y).

Since it is not possible to observe pdata directly, the goal in machine learning
tasks is to reduce the expected generalization error J∗(θ), also known as min-
imizing the risk. The way this is achieved is by minimizing the empirical risk,
defined over the training set as:

E(x,y) p̂data(x,y)L[F (x; θ), y] =
1

m

m∑
i=1

L(f(x(i); θ), y(i))

where m is the number of training examples. Due to the fact that empir-
ical risk minimization leads to overfitting and that sometimes the direct loss
function does not have a useful derivative (for example when using 0-1 loss), a
surrogate function is used instead. A common choice for a surrogate loss func-
tion is negative log-likelihood of the correct class. Another advantage of having
surrogate loss functions is that generalization error can be further reduced even
once 0-1 loss has reached zero on the training set, by further separating the
boundary between classes. It is common to halt training not when the surro-
gate loss function reaches zero, but rather at a point where a metric based on
a validation set reaches an optimal point, after which overfitting tends to occur
[1].

The algorithm used to update the parameters of the layers of the neural
network is called backpropagation. Essentially, backpropagation is applying the
calculus chain rule to calculate the gradient of the error function and propagate
that information from the output layer into the hidden layers, causing them
to generate representations of meaningful features to fit the data [52]. The
algorithm used to approximate the parameters that minimize generalization
error is called stochastic gradient descent. In gradient descent, the intuition is
to use the derivative of the function given by the model to update the parameters
in small steps and thus reducing the value of the cost function iteratively, using
an update rule such as

41

θ ← θ − 1

m
α∇θ

∑
i

L(f(x(i); θ), y(i))

Algorithm 2 Stochastic Gradient Descent

Precondition: Randomly initialized parameters θ
Precondition: Learning rate ϵk
while convergence not met do

miniBatch← {x(1), x(2), ..., x(m)} ∼ X
ĝ ← 1

m∇θ

∑
i L(f(x(i); θ), y(i))

θ ← θ − ϵĝ

In stochastic gradient descent, a subset of the training data is used at each
update to approximate the gradient instead of the whole dataset [53]. The full
algorithm can be observed in Algorithm 0.

Consider finding the parameters that optimize maximum likelihood estima-
tion:

θML = argmaxθ

m∑
i=1

log pmodel(x
(i), y(i); θ)

which is equivalent to maximizing the expectation over the empirical distri-
bution:

J(θ) = E(x,y) p̂data log pmodel(x, y; θ).

to minimize this, an optimization over the full training set must be per-
formed:

∇θJ(θ) = E(x,y) p̂data log pmodel(x, y; θ).

Given that the gradient computation can be very expensive, and that the
training set can be very large, stochastic gradient descent approximates the
gradient instead of computing it exactly. Since the standard error of the mean
is σ/

√
n, this means that there are less than linear returns from computing

the gradient with more examples, so it is more statistically efficient to compute
the gradient based on a sample of the training set. Methods that compute
the gradient based on a sample are called mini batch gradient methods, not
to be confused with batch gradient methods, which use the whole training set.
Another method is online training, which uses one example at a time. It results
in high variance of the gradient approximation which must be controlled via a
lower learning rate, but often results in the lowest generalization error [54].

Since neural network training is a non-convex optimization problem, it is
highly likely that a large number of local minima exist. Moreover, due to neural
networks suffering from the model identifiability problem [55], there are poten-
tially infinite parameter settings that result in the same local minimum cost
function values. However, this is only a problem if the local minimum’s values

42

are high with respect to the true global optimum. Proving this is an open area
of research, but there is evidence to suggest that most local minima have a low
cost function value, and since it is not necessary to arrive at the global optimum,
most of the time it is not an issue [56]. Additionally, there is theoretical work
that proves that the number of saddle points in a high dimensional function
grows exponentially with respect to the number of local minima, and empiri-
cal work that suggests that gradient descent tends to be able to escape saddle
points most of the time for large enough networks, despite the small gradient
norm at these points. [57].

An important technique in regularizing neural network models is an approx-
imate bagging method called dropout [58]. The idea is to train the ensemble
of all sub-networks created by removing non-output units. However, there can
be exponentially many of these networks, and training a large ensemble of neu-
ral networks quickly becomes computationally intractable. Instead, the model
is trained by randomly multiplying the output of some units by zero. When
training using mini batch gradient descent, this equates to performing Bernoulli
sampling on all the units of the network at each training step to select the subset
that will be trained in that step. Formally, we are approximating, for a mask
vector µ of which units to include and the cost function of the model defined by
µ and the parameters θ, the expectation Eµ J(θ, µ). In inference time, while a
typical ensemble would calculate the arithmetic mean of the predictions, namely

1

k

k∑
i=1

p(i)(y|x),

in dropout the predictions are given as the mean over all masks:∑
µ

p(µ)p(y|x, µ).

This sum is clearly intractable. An approximation can be attained by applying
the weight scaling inference rule, proposed by Hinton et al. [59]. The idea is to
approximate the normalized harmonic mean by evaluating p(y|x) once on the
model with all units, and multiply the weights by the probability of including
each unit.

Another challenge in training neural networks, especially in recurrent neural
networks, is the steep cliff-like regions that create exploding gradients values,
as seen on figure 6. This may cause numerical overflow or straying very far
from the optimal values. Based on the intuition that the gradient does not
suggest the optimal magnitude but rather only the correct direction within an
infinitesimal region, this can be addressed by applying gradient clipping. As
long as the sign of the gradient is correct and the magnitude is not too large,
learning will occur, however slowly. Whenever the gradient becomes too steep,
gradient clipping reduces the learning rate to reduce the possibility of stepping
too far off from the region.

43

Figure 6: Gradient cliffs, common in recurrent neural networks, that make the
gradient descent update perform abrupt jumps. Taken from Pascanu [2].

2.4.3 Convolutional neural networks

One of the most popular neural network architectures has been convolutional
neural networks (CNNs) [42]. CNNs have been widely successful in tasks with
data that present a grid-like structure, such as two-dimensional image data
[44], spectral audio data [60] or time-series data [61]. They do so by means of
processing data via the convolution operation instead of the typical matrix mul-
tiplication in fully connected neural networks, which allows for several benefits
to automatic feature extraction and generalization.

The convolution operation is denoted as s(t) = (x ∗w)(t), where x is a real-
valued function referred to as the input, the function w is the kernel or filter,
and the output is called the feature map. Although formally it is defined as an
integral, here we focus on the linear transformation described by the discrete
case,

ws(t) = (x ∗ w)(t) =

∞∑
a=−∞

x(a)w(t− a),

with the implicit assumption that the filter is defined as zero wherever values
are not stored, so it is only necessary to compute the values where x and w are
defined.

In image processing theory, a similar function called cross-correlation is com-
monly used. It is equivalent to convolution, but without flipping the kernel,
and is sometimes called convolution regardless. The two-dimensional cross-
correlation for an image I with a kernel K, common in image processing is
defined as

s(t) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n).

To understand the motivation behind using convolutional operations in neu-
ral networks, consider processing images with a fully connected neural network.
The input layer would have dimensionality equal to the number of pixels, with
each pixel being an independent input to the network. If the image size is
256x256, that would be a vector of size 65,536. The next hidden layer would

44

have a neuron connecting to each of those inputs. If the hidden layer is of size
50, the number of parameters would 3,276,800. The first evident drawback is
that the network will be very large, with high data requirements and prone to
overfitting. Another problem is that the input layer will be invariant to the
ordering in the pixels: pixels that are close together will be independent from
each other. Finally, the network would be very sensitive to positional shifts to
the object of interest in the images [42].

Now consider a convolution with a kernel comprised of learnable parameters
K. By making the filters of smaller size than the input images, the parameters
connect sparsely to the input, instead of densely, like in a fully connected layer.
This means that a given input interacts only with a subset of the parameters,
and that an output has a limited receptive field (is only affected by a subset of
the input). Indirectly, however, deeper layers may interact with the entirety of
the input by means of hidden layers. In practice, this means higher statistical
efficiency due to having less parameters, and more computational efficiency,
as a matrix multiplication that results in an m × n matrix requires O(m ∗ n)
computations, while a filter K with orders of magnitude less dimensions than
m can perform a convolution with O(m ∗ k) steps.

Another advantage is that the filter parameters are shared between multiple
inputs. In a fully connected network, a parameter is used exactly once, whereas,
in a CNN, the same parameter is used to compute features in multiple parts
of the input, which also means that more features can be learned with fewer
parameters.

CNNs do not suffer from positional shifts in the input in the same way as fully
connected networks. This is thanks to a property called translation equivariance,
which means that if the input shifts, the output will shift as well. So if a part
of an image containing a feature, for example an edge in an image, is moved a
certain number of pixels, the output of the convolution with the transformed
image will be shifted in the same amount as the transformed image.

Finally, constructing features with convolutions introduces the useful prior
that the inputs are locally correlated. In the context of image processing, this
means that pixels that are close together are likely to be correlated and may
represent features. Fully connected networks make no such topological assump-
tions about the input dimensions, which makes it more difficult in practice to
extract meaningful features from spatial and temporal data [62].

After the linear transformation performed by the convolution, the next step
is to apply some nonlinearity, such as ReLU or hyperbolic tangent, and then
pass the output to a pooling function, which will summarize the outputs over
each region. One common operation is max pooling [63], which outputs the
maximum over each k × k region. Pooling has two major advantages. First,
it helps further reduce translation invariance, as it highlights the presence or
absence of a feature, regardless of exactly where it was found. Second, the
summarization of the output of a layer means a dimensionality reduction for
the next layer, which supports statistical efficiency.

CNNs are usually combined with fully connected layers to create a classifier.
An example of a CNN architecture that leverages convolutions, pooling and fully

45

connected layers is AlexNet [44]. Its architecture consists of five convolutional
layers, with pooling components in the first, second and last layers, followed by
two fully connected layers into a softmax-activated output layer for outputting
label probabilities.

2.4.4 Recurrent neural networks

Recurrent neural networks (RNN) [52] are networks that can process sequential
data – such as time series, sentences, DNA sequences – by applying a recurrent
function. The input to an RNN is a sequence of vectors x(1), x(2), . . . , x(τ) of
arbitrary length τ . RNNs are capable of scaling to longer sequences than other
neural network architectures thanks to parameter sharing and also to the fact
that the outputs of the RNN are a function of previous outputs. Most RNN
architectures can also process variable length sequences.

Although CNNs can also be used to process time series data by applying a
1-D kernel, for example as in Waibel et. al. [64], this approach only allows for
sequences that are locally correlated in the size of the filter. In contrast, RNNs
share parameters by means of unfolding a deep computational graph that relates
each output with all previous outputs [52].

A computational graph is a representation of a series of computations in the
form of a directed acyclic graph. For example, consider a dynamical system
with a hidden state and driven by an external signal x(t),

s(t) = f(h(t−1), x(t); θ).

In this model, the hidden state h(t) encodes information observed up until
timestep t, which can be interpreted as a lossy summary of the sequence history,
because it encodes the information of an arbitrary length sequence into a fixed
length vector. The operation that maps a circuit to a directed acyclic graph
is known as unfolding the computational graph, which makes it a fixed length
graph dependent on the length of the sequence. For example, for a sequence of
length 3, the computation can also be denoted as a recurrent application of the
function f ,

s3 = f(s(2); θ) = f(f(s(1); θ); θ).

This formulation is what allows the input to the model to have the same length
while being able to process sequences of arbitrary length. The same parameters
are also reused at each step.

Since any parameterized function that involves recurrence can in theory be
called an RNN, different kinds of RNNs can be identified. One architecture is
a network that produces an output at each timestep and is recurrent from the
output to the hidden state. In this architecture, each output o(t) is independent
from each other. This kind of network is more limited in the functions that it
can express, unless the output is highly dimensional and contains all the neces-
sary information about the past. However, since the outputs are independent,
backpropagation can be computed in parallel for each timestep.

46

A second recurrent network architecture produces an output at each timestep
and is recurrent in the connections to the hidden states. A neural network
with this architecture is capable of computing any function computable by a
Turing machine, in an asymptotically linear number of timesteps [65][66]. The
formulation of this network can be as follows, assuming a hyperbolic tangent
activation function:

a(t) = b + Wh(t−1) + Ux(t) (6)

h(t) = tanh(a(t)) (7)

o(t) = c + V h(t) (8)

ŷ(t) = softmax(o(t)) (9)

where U , V , W are parameter matrices for input-to-hidden, hidden-to-
output and hidden-to-hidden connections, and b and c are the bias terms for
input-to-hidden and hidden-to output layers. The loss is given by the sum of
the losses at each step:

L({x(1),...,x(τ)

}, {y(1),...,y
(τ)

}) = −
∑
t

log pmodel(y
(t)|{x(1),...,x(τ)

}), (10)

where pmodel is the probability of predicting y(t) given the previous observa-

tions x(1),...,x(τ)

Since in these equations, values of the output are dependent on previous
values of the hidden state h(t), the computation of the gradient with respect to
the parameters is an expensive O(τ) operation called back-propagation through
time (BPTT). To compute this, the gradient is calculated recursively from the
end of the sequence until the first step [67].

A third network architecture would have recurrent connections between hid-
den units and produce a single output value for sequence-level prediction. This
architecture would also require BPTT to calculate the gradients.

If the model has connections from the outputs back into the model, a strategy
called teacher forcing [68] may be used. In teacher forcing, instead of feeding
back the output into the model, the labels may be used. This allows us to remove
the time dependency if the model doesn’t have hidden-to-hidden connections,
which means that BPTT can be avoided.

In the cases where the prediction task depends on the whole of the sequence,
for example in machine translation, where the output may depend on future
values as much as on past values, the causal structure of the RNNs seen so
far might not be sufficient. Bidirectional RNNs [69] handle this by having two
RNNs, one in the forward direction. In this case, h(t) is the hidden state going
forward and g(t) is the hidden state going backward.

RNN architectures can also be made deep by stacking blocks of parame-
ters either in the hidden-to-hidden, hidden-to-output or input-to-hidden con-
nections. The evidence clearly suggests that deep RNNs using these techniques
outperform shallow ones [2].

47

One challenge particular to RNNs is handling long term dependencies. These
are hard because of the problem of vanishing and exploding gradients [70][71].
Consider a scalar weight w, multiply it by itself multiple times,

∏
t w

(t). De-
pending on the magnitude of w, this value will tend to either vanish or explode.
This happens during RNN training due to the time dependency and can rapidly
reduce the probabilities of successfully completing the optimization. Although
this problem is still open, several approaches exist to try to avoid it. Susillo
[72] argues that appropriate initialization of the weights to aim for a certain
variance can avoid exploding or vanishing gradients. Echo state networks [73]
and liquid state machines [74] try to avoid learning the recurrent hidden state
weights by setting them in a way that they can represent the history and in-
stead only learn the output weights. These techniques have also been found to
be useful for initializing the weights to improve fully trainable RNNs [75] An-
other idea proposed by Lin et al. [76] is implementing skip connections in the
unfolded computational graph to provide a shorter path to propagate gradient
information.

One of the most successful strategies for solving this problem has been gated
RNNs such as long short-term memory (LSTM) [77] and Gated Recurrent Units
(GRUs) [78] [79]. In Gated RNNs, the model is allowed to accumulate infor-
mation over many timesteps, and forget it once it has been of use, by using
gate components that pass or eliminate information. This allows the potential
timescale for the gradient computation to be dynamic, and thus support longer
length dependencies.

2.4.5 Attention

An important idea in recent years for deep learning has been the concept of at-
tention, first proposed by Bahdanau et al. for neural machine translation [11],
but it has transcended into other domains such as computer vision, recommender
systems and interpretability [80] and some graph neural network architectures
such as GaAN [81]. The objective is to have a memory about previous inputs
that an attention mechanism can selectively draw from. Before attention, most
neural machine translation models used the encoder-decoder [78] approach, in
which the model encoded the source sentence into a fixed-length context vector
c using an RNN, and using that context to predict the words in the transla-
tion. The major drawback of this approach is that encoding a variable length
sequence into a fixed length vector results in deteriorating performance with
longer sequences. Using attention, the model generates a probability αij that
reflects the importance of the hidden state hj to the next word to be predicted
yi. The context vectors for each timestep are then calculated as

ci =

T∑
j=1

αijhj

and used by the decoder in order to signal which hidden states to direct
attention to.

48

Figure 7: 2D Convolution vs. Graph Convolution. A visual representation of the
analogy between 2D Convolutions in an image-like grid and a graph convolution.
The 2D convolution takes the weighted average of pixels surrounding the red
one. The proposed solution to a graph convolution is to take the average of
neighbor’s nodes features. Taken from Wu et al. [3]

Transformers [82] take attention one step further. Instead of having an atten-
tion mechanism coupled to a recurrent or convolutional network, transformers
rely solely on attention and multilayer perceptrons, resulting in a more paral-
lelizable model structure. Transformers are massively scalable, as proven by the
175 billion parameter language model, GPT-3 [83].

2.4.6 Graph neural networks

An area of research that has significantly grown in interest in the last ten years
is graph neural networks. Deep learning has shown great success in applications
using Euclidean data, that is, data that can be mapped into an Euclidean Rn

space, such as images, text or audio. Inspired by such advances in network ar-
chitectures and training techniques, the idea of applying neural networks in non-
Euclidean domains, where data is represented as graphs, has grown stronger.

Graph data presents additional complications for neural network architec-
tures such as CNNs and RNNs. First, a node’s neighbors have no particular
order and nodes have a variable number of neighbors, which complicate the
calculation of a convolution operation. Second, graphs violate the core assump-
tion in these frameworks that every example is independent, since nodes may
be related by their arcs.Although there has been work on applying neural net-
works in graphs since the 1990s, recent advances in a new type of architecture
called Graph Convolutional Networks (ConvGNN) have sparked renewed inter-
est in GNNs [84]. The central concept in ConvGNNs is a generalization of the
convolution operation as understood in the two-dimensional context. One can
consider 2D convolutions as a special case of a graph convolution. An image
is a grid-like graph with every pixel connected through arcs to all surrounding

49

pixels, and the convolution operation calculates the weighted average of a pixel
and its neighbors. Likewise, a graph convolution for any kind of graph aggre-
gates the values of the features for each node with its neighbors. An example
of this intuition can be visualized in Figure 7.

The first application of neural networks on graph data was on directed acyclic
graphs by Sperduti et. al. [85]. The concept of Graph Neural Networks, how-
ever, started with Gori et. al [86], and resulted in a family of methods now
known as recurrent graph neural networks (RecGNNs). RecGNNs typically ap-
ply a single set of parameters to nodes on a graph to generate node hidden rep-
resentations. For instance, Scarselli’s Graph Neural Network [87] calculates,for
each node v,

h(t)
v =

∑
u∈N(v)

f(xv, x
e
(v,u), xu, h

(t−1)
u),

until convergence is reached. Here, f is the neural network applied to the
concatenation of the features of v, the features of each edge xe

(u,v) and the

features of the neighbors xu and the previous hidden state h
(t−1)
u . This is

applied to all neighbors of v and then summed to give a new representation h
(t)
v .

RecGNNs research was mostly focused on directed acyclic graphs using limited
computational resources, with the objective of extracting node representations
assuming that an equilibrium will be reached. [85]

In parallel, other approaches called convolutional graph neural networks
(ConvGNNs) were developed. Instead of applying the same set of parameters
recurrently until convergence, ConvGNNs have a fixed number of parameter
sets (convolutional layers) that are applied sequentially.

Wu et. al. identify two families of ConvGNNs [84]. The first one is spectral-
based ConvGNNs. They stem from techniques of graph signal processing the-
ory, assume an undirected graph, and represent the graph with a normalized
Laplacian matrix L = An − D− 1

2AD− 1
2 where D is the degree matrix and

A is the adjacency matrix. The Laplacian normalized matrix can be decom-
posed as L = UΛUT , with U being the eigenvalues and Λ the diagonal matrix
of eigenvectors. The features are represented in terms of the inverse graph
Fourier transform, defined as F−1(x̂) = Ux̂, in order to represent the input as
x =

∑
i x̂iui. The graph convolution operation, for a given signal x and a filter

gθ, is then defined as

x ∗G gθ = UgθU
Tx, (11)

and the different spectral-based methods vary on the implementation of the
parameterized filter gθ.

The second family is spatial-based ConvGNNs. Based on the aforementioned
intuition that an image is a graph of spatially related pixels, spatial ConvGNNs
create a convolution of a node’s representations with its neighbors’ representa-
tion. They borrow the idea of message passing of nodes to their neighbors from
RecGNNs. For example, Neural Network for Graphs (NN4G) [88] calculates the

50

hidden states as H(k) = f(XW (k) +
∑k−1

i=1 AH(k−1)Θ(k)), where f is an activa-
tion function, W (k) is the parameter matrix for layer k for the node features and
Θ(k) is a diagonal matrix of parameters for the adjacency matrix. The usage
of H(k−1) allows the hidden representations of nodes to be propagated into the
neighbors in further convolutions.

Message Passing Neural Networks (MPNN) turns NN4G’s approach into
a general framework for spatial-based ConvGNNs by defining the convolution
operation as

h(k)
v = Uk(h(k−1)

v ,
∑

U∈N(v)

Mk(h(k−1)
v , h(k−1)

u , xe
uv)),

where h
(0)
v = xv and Uk and Mk are functions with learnable parameters

[89].
Currently, spatial-based ConvGNNs are often preferred to spectral-based

ones for a variety of reasons. First, spectral-based ConvGNNs are computa-
tionally less efficient due to having to compute the eigenvector or requiring to
compute the whole graph at once, which means they are more difficult to scale to
larger graphs. Second, they tend to generalize poorly to new graph structures,
since any change to the graph means a change in eigenbasis. Finally, spectral-
based graphs assume an undirected graph, which in many cases is not desirable,
whereas spatial-based models are more flexible in the kind of information that
can be incorporated into the aggregation function [84].

A special case is GCN [90], which is technically spectral-based, but instead
of computing the expensive eigendecomposition of the graph Laplacian, it uses
a first-order approximation using Chebyshev polynomials. The spectral graph
convolution equation can be rewritten as

x ∗G gθ = θ(IN + D− 1
2AD− 1

2)x. (12)

This approximation of the Laplacian is dependent only on the neighborhood
instead of the full graph. For this reason, [3] points out that the composable
GCN layer can be reinterpreted as a spatial method, by rewriting it as

hv = f(ΘT (
∑

u∈N(v)∪v

Āv,uxu)) ∀v ∈ V (13)

where Ā = D̃− 1
2 ÃD̃− 1

2 , with Ã = A+ IN and D̃ii =
∑

j Ãij . This definition

of Ā is a renormalization trick to improve numerical stability.
After convolutions are applied a downsampling operation called graph pool-

ing is used. Graph pooling is useful for dimensionality reduction, permutation
invariance and regularization, while avoiding the Fourier Transform required in
spectral-based methods [91]. The operation is simply

hG = (mean|max|sum)(h
(K)
1 , h

(K)
2 , ..., h(K)

n),

that is, the mean, max or sum of the hidden representations of all the nodes
in the last convolutional layer. This operation is also called graph readout when

51

pooling all the node representations in order to obtain a representation that will
be attached to an output layer for graph-level predictions. [91]

Graph pooling, however effective for dimensionality reduction, is still ineffi-
cient, since the embedding is of a fixed size regardless of graph size. One solution
is Set2Set, which generates a variable size memory, passes it through an LSTM
to encode order-dependent information and then aggregates it. [92]. Other ap-
proaches sort the nodes into a meaningful order [93] [94], add parameters to the
pooling mechanism [95] or, use self-attention to learn the pooling mechanism
[96].

For graphs that present variability not just in their structure but also in the
nodes features over time, Spatial-temporal graph neural networks (STGNNs)
have been developed. Two kinds of methods exist as of this writing: RNN-
based and CNN-based methods. RNN-based methods, such as Graph WaveNet
[3] combine a spatial ConvGNN with an RNN in the following way:

H(y) = σ(Gconv(X(t), A;W) + Gconv/(H(t−1), A;U) + b).

Another framework used to capture the temporal aspect of the graph in
both nodes and graphs is Structural-RNN [97]. Two RNNs are used, one for
the nodes and one for the edges, with the node-RNN taking the outputs of the
edge-RNN as input to represent the spatial information.

RNN-based methods have all the same issues of RNNs: high computational
complexity due to the time-dependent backpropagation, and vanishing and ex-
ploding gradients. To address this, CNN-based methods instead pass the output
of a spatial-convGNN to a one-dimensional CNN layer., thus removing the tem-
poral dependency on the gradient. For example, CGCN stacks a CNN, followed
by a graph convolutional layer followed by another CNN layer [98].

In order to learn latent dynamic spatial dependencies, for instance, when
travel time between roads in a traffic network depends on traffic conditions,
GaAN uses attention to learn dynamic spatial dependencies using an RNN-
based approach. The attention mechanism works on the edges based on the
input of the current state of its two nodes [81]. ASTGCN includes both a
spatial and a temporal attention mechanism to learn latent dynamic spatial
dependencies and temporal dependencies [99].

One application were graph neural networks have been successful is in com-
binatorial optimization. Gasse et. al. [15] was able to improve upon state-
of-the-art branch and bound solvers by training a spatial ConvGNN on the
bipartite graph representing the optimization problem with the labels from a
slow expert. Dai et. al [16] uses a reinforcement learning approach with graph
embeddings in order to learn to solve combinatorial problems over graphs. It
does so by reducing several NP-hard problems such as max cut and travelling
salesman problems into minimum vertex cut problems, and training a struct2vec
embedding network, which is then use as a value function approximation on the
state space for the deep RL agent, being on par with commercial greedy solvers.
Li et. al. [17] also manage to surpass other deep learning methods for graph
NP-hard problems by combining a Graph Convolutional Network with guided

52

tree search applied on problems reduced to Maximal Independent Set (MIS).

2.4.7 Deep reinforcement learning

Experience replay [100] is a reinforcement learning technique by which an agent
stores and continually learns from past experiences to gain stability and learn
more efficiently from the interaction with the environment. DQN [101] leverages
this technique along with neural networks value function approximation to im-
prove upon online Q learning. In DQN, a replay buffer is updated sequentially
with the last n steps of interaction with the environment. In order to decor-
relate this sequentially derived experience, a random sample of the experience
buffer is taken to create the minibatch. This is also beneficial for neural net-
work training, as a batch of experiences will be more stable during training than
single point experiences and will make better use of computational resources.
To further improve training stability, DQN uses a separate network, called the
target network, to calculate the target values of the Q learning update rule. The
target network is only updated periodically, therefore making the target values
more stable than if they were computed using the same network.

53

3 Related work

3.1 Reinforcement learning approaches to supply chain

Reinforcement learning has been investigated on supply chain scenarios, but
mostly on inventory management, for example [102] or the RL agents that learn
to play the Beer Game [103] [104]. In these scenarios, multiple RL agents
collaborate in an environment with a single commodity and demands that do
not necessarily match supply. Instead, when a demand is not satisfied by the
available inventory, an additional cost is incurred. The action space is the
amount to request to other agents in order to replenish inventory.

Stockheim [105] proposes a multi agent approach to supply chain optimiza-
tion, where the agent’s action space is to accept an incoming job or not, based
on the job price, due date and expectation of other jobs in the future. It does
not give the agents the option of manipulating the due dates of incoming jobs
nor reassigning jobs from one agent to another.

Portrandolfo [106] proposes another pure RL model based on an average
reward algorithm (SMART) for a global supply chain management that also
focuses on inventory optimization but considers transportation and inventory
costs in its reward function.

3.2 Dynamic resource allocation problems

Topaloglu and Powell [107] work on a time-staged multicommodity flow prob-
lem in the context of airline fleet allocation. In this case, the commodities are
the planes themselves and the allocation decision is whether to take a particular
trip, awaiting the realization of the next demand at the trip’s destination. They
address this case by using linear and piecewise linear value function approxima-
tions, with the objective of maximizing expected profit. They are able to do
this efficiently due to the network structure of their particular problem, which
can be solved via flow augmenting paths.

3.3 Network flows problems with graph neural networks

Very little research has focused on exploiting the graph structure of a network
flows problem using neural network approaches. Recently, Busch et. al. [108]
have applied a message passing graph neural network to a network flows graph
to classify malware and spam. The graph is a communication network graph and
the flows are the content passed between each pair of sources. No mathematical
or stochastic optimization is involved.

Cheung and Powell [34] explore a stochastic distribution problem called the
multilocation inventory problem, where decisions must be made anticipating an
uncertain customer demand forecast. They also use a multistage, multicom-
modity min cost network flows formulation. However, hard constraints to ship
customer orders from a single warehouse are not imposed. Additionally, they
analyze the effect of redundancy in the number of warehouses that can serve each

54

customer. They find that, unlike standard distribution networks which assign
one warehouse per customer, assigning at least two warehouses per customer
implies a significant cost reduction in distribution.

55

4 Problem statement

In most supply chains, an important part of a distribution network is transport-
ing the goods from warehouses to customers in an efficient and timely manner.
A common requirement is that all of the items of an order must be shipped from
the same location in one shipment. Given that customers tend to order multiple
products at a time and that products may be scattered across warehouses due
to the positioning of production plants, inventory management becomes hard
to manage as the number of commodities and customer facilities increases. If
there is more than one warehouse that can satisfy a customer’s orders with its
available inventory, it could be possible to reduce transportation costs by care-
fully assigning the best warehouse to be the shipping point of each order, in
order to minimize the costly inventory relocation from a warehouse to another,
known as interplant movements.

This work considers a distribution problem with uncertain demands and the
characteristics described above, and will be referred to as the shipping point
assignment problem.

The mathematical formulation is a multistage, stochastic optimization prob-
lem, with a second stage network flows optimization problem that may contain
thousands of variables depending on the number of commodities being managed.
Additional binary variables will be added to the traditional multicommodity min
cost flows in order to enforce the consolidation of all the commodities required
to satisfy an order. The constraints that use the binary variables will be referred
to as order consolidation constraints. The underlying optimization problem is
already NP-hard [8], and the stochasticity makes it an even more difficult prob-
lem. This kind of problem is typically approached either as a deterministic
optimization problem, thus ignoring stochasticity, optimized based on a fore-
cast, which does not directly optimize long-term expected reward, or otherwise
is subjected to a relaxation in order to solve it as a convex optimization problem
with random variables.

The aim of this work is to design an algorithm that can optimize a policy
in an environment that simulates the shipping point assignment problem, using
neural networks as value function approximators. The proposed solution should
be benchmarked against state-of-the-art deterministic and greedy heuristic ap-
proaches to assess whether it is superior in terms of computational performance
and average optimization cost.

4.1 Shipping point assignment problem

The shipping point assignment problem is a multicommodity version of a trans-
portation problem with random demand variables and order consolidation con-
straints. The goal is to satisfy the demand balance constraints in a multicom-
modity flows network with minimal long-term operational costs over a number
of timesteps.

This formulation is derived from the empirical observation that on some
supply chains, there is more than one warehouse that can satisfy an order.

56

This results in a combinatorial set of decisions that must be considered at each
timestep for all outstanding orders, since there are multiple order-to-warehouse
assignments that may satisfy the supply and demand constraints. To make
matters more complex, the solution to the combinatorial problem should be
optimal not only for the visible planning horizon, but also for the long term
objective of minimizing the operational costs for future orders.

More specifically, the distribution network in question is comprised of a set
of warehouses W , a set of customers C and a set of commodities K. Each
customer c ∈ C is associated to an Fc ⊆ W that contains the warehouses
which are allowed to fulfill their orders. Each day, customers will issue new
orders according to their demand probability distribution parameters. When
an order is generated, it will be considered an open order, since it does not have
a warehouse assigned as a shipping point yet. Orders are composed of a positive
number of units of different commodities from a random, nonempty subset of K
with a random number of units for each selected commodity, which are expected
to be available completely from a shipping point in the timestep of departure
to the customer. The demand distribution is assumed to be stationary. More
details about the demand generating distribution will be specified in chapter 11.

A certain number of new open orders appear each day, and shipping decisions
must be taken on these orders on the same day that they arrive. For simplicity,
all orders are assumed to arrive at the first working hour of each day, and
decisions need to be made before the end of day, before the orders of the next
day arrive. When an agent assigns a warehouse as the shipping point of an order,
that order becomes a committed order, and the decision cannot be changed in
the future. The order consolidation constraints require that, if the flow xk

wc is
positive for an arc from warehouse w to customer c for commodity k, arcs xk′

wc

for all other k′ ∈ K must also be positive. All other arcs to that customer’s
order must be zero.

Inventory can be moved between warehouses to ensure that each warehouse
has the necessary materials to fulfill all customer orders, albeit with a high
cost relative to inventory storage costs. To maintain supply-demand balance,
inventories for each commodity are replenished according to a distribution at
every step. Inventory movements are not modeled directly as decision variables
in this scenario, rather they are automatically issued to satisfy the demand
balance constraints at each warehouse as quickly as possible; they happen as a
consequence of deciding the shipping point of each order. An agent that finds a
policy for the shipping point assignment problem must choose shipping points
for the orders generated each day so that service levels are as high as possible
and with minimal inventory movements, thus reducing operational costs.

In chapter 11, the shipping point assignment problem will be formulated as
a Markov decision process in order to train reinforcement learning agents and
evaluate policies on it. Its implementation will be referred to as the shipping
point assignment environment.

57

4.2 Mathematical formulation

The shipping point assignment can be expressed as an mixed integer linear
program with a linear objective by modifying the traditional multicommodity
network flows formulation to account for the order consolidation constraints. In
order to achieve this, it is required to introduce indicator variables for the pres-
ence of positive flow on customer-incident arcs. Then, additional constraints are
needed to model the interaction between arcs to the same customer. This for-
mulation assumes the physical network for the problem has been expanded and
duplicated for each commodity. First, if an arc from a warehouse to a customer
has positive flow on any commodity, the solution to the problem should also
have positive flow on the rest of the commodities for that warehouse-customer
pair, and vice versa if the arc has zero flow. Second, if any of the arcs for a
given warehouse has positive flow, the rest of the arcs corresponding to the other
warehouses to that customer should have zero flow.

minimize
x

(i,j)∈A∑
xk
ijc

k
ij (14a)

s. t. (14b)

i∑
xk
in −

j∑
xk
ni = bkn ∀n ∈ N ; k ∈ K (14c)

xk
ij ≤ xk

ij l
k
ij ∀(i, j) ∈ AC ; k ∈ K (14d)

xk
ij ≥ lkij ∀(i, j) ∈ AC ; k ∈ K (14e)

lkij = lk
′

ij ∀(i, j) ∈ ACk; k′ ∈ K (14f)

k∑
lkic = kl0ic ∀(i, c) ∈ AC ; k ∈ K (14g)

xk
ij ≥ 0, ∀(i, j) ∈ A; k ∈ K (14h)

lkij ∈ {0, 1} ∀(i, c) ∈ AC ; k ∈ K (14i)

The equation above describes the optimization program for the shipping
point assignment problem. The constraint set 14c corresponds to the mass
balance constraints. The constraints in 14d and 14e bind the indicator vari-
ables. The constraints on 14f restrict the indicator variables from a warehouse-
customer pair to be equal to all other commodity arcs corresponding to that
pair. Finally, the 14g constraints specify that, for each warehouse-customer
pairs, the sum of all indicator variables equals to the number of commodities if
that warehouse-customer pair is present in the solution, and is zero for all other
warehouse-customer pairs. Without this last constraint, multiple warehouses
could incorrectly send flow to a customer node, so long as each contributes at
least one unit of each commodity. Constraints 14h ensure flows are positive and
14i declares indicators as binary variables, only for arcs going to customers.

58

4.2.1 Linearization of quadratic terms

The integer program, as formulated on 14, is problematic for MILP solvers as the
constraints defined in 14d, which are required to bind the indicator variables
to the xk

ij flows, contain a quadratic term between an integer variable and a
binary variable. As a result, the program cannot be effectively relaxed into a
convex linear program. Fortunately, this can be trivially resolved by rewriting
the constraint in terms of the upper bound of the flows,

xk
ij ≤ x̄lkij

xk
ij ≥ lkij

where x̄ is an upper bound on the flow. An easy way to calculate an upper
bound in this case is to sum the balances of all the supply nodes. In practice,
no arc will ever receive all flow, and thus a more sophisticated per-node upper
bound could be calculated and potentially be more efficient to solve. In the
present work, this was not implemented. However, any gains in performance for
a branch and bound optimizer are uncertain and beyond the scope of this work.

4.2.2 High density demand assumption

For conciseness, an assumption is made in the previous formulation of the ship-
ping point assignment problem. All orders must be comprised of at least one
unit of each commodity in order for the sum of indicator variables to equal to
k. In practice, however, it is extremely common for companies to have highly
sparse product portfolios and customers to submit orders from only a subset of
that portfolio. This assumption does not limit the method, it is only necessary
to replace the k constant with the count of commodities presenting nonzero
demand for each order. In this implementation, the demand generator respects
the high density assumptions and only creates order vectors with positive values
on all entries.

4.2.3 Simplification from other multicommodity flows problems

For the sake of comparing agents only in terms of their ability to choose shipping
points that reduce transportation costs, this work incurs in some simplifications
from a typical multicommodity flows problem. First, all arc capacities are set
to a high enough number such that they are never a constraining factor. Also,
inventory and demand generators are expected to be in sync so that the opti-
mization problem is always perfectly balanced. Finally, all costs of the same
kind (inventory, interplant and delivery) are set to the same value, instead of
varying per warehouse-customer pair or other conditions that typically vary on
a distribution network.

59

5 Motivation and justification

Work on multistage multicommodity flow problems has been scarce and, as
revealed by the literature review, the problem of shipping point assignment, as
posited here, has not been treated previously. More work on this area could be
of benefit to supply chain management practices.

5.1 Innovation

Research related to multistage nonlinear optimization problems is limited due
to the computational challenge of generating experience on NP-hard problems
[38], and thus it is worth investigating new methods that learn better policies
in these environments with good sample efficiency.

Concretely, the innovating factors of this work are:

1. The proposal of a novel, multistage stochastic optimization problem re-
ferred to as the shipping point assignment problem.

2. The implementation of an environment to simulate the shipping point
assignment problem that enables the training and benchmarking of rein-
forcement learning agents.

3. The design of a relaxation of the underlying NP-hard network flow problem
related to the shipping point assignment environment. This relaxation can
be used as a reward signal to train a reinforcement learning agent.

4. The proposal of a novel reinforcement learning agent with a neural network
as a value function approximator that can optimize a policy in the shipping
point assignment environment.

5. The usage of a graph convolutional network architecture in the context of
a stochastic nonlinear optimization problem.

6. A benchmark of greedy heuristics and state-of-the-art deterministic op-
timization methods against the proposed reinforcement learning agent in
the multistage shipping point assignment environment.

5.2 Impact

Supply chains are ubiquitous in our modern economy. Large scale supply chains
are challenging to design, maintain and manage, and typically require large
teams of people using a variety of information management and optimization
tools to be able to maintain service levels while keeping costs as low as possible.
Specifically, in the case of distribution optimization, the large number of deci-
sion variables, coupled with the inherent uncertainty of demand requirements,
and the short windows of action, force supply chain teams to make suboptimal
operational decisions. Furthermore, the stochasticity and high dimensionality

60

of the scenarios make it difficult to evaluate how much the decisions had cost in
the long run.

Improving the toolset with which supply chain teams can automatically cre-
ate strategies to fulfill demand with the available supply in the long run could
help companies with large supply chains save time spent planning, reduce the
costs of suboptimal decisions, and become more competitive by means of bet-
ter service levels. All of these would have a direct impact in the retail cost of
consumer goods. The environmental footprint of maintaining a supply chain
network may also be reduced as a result. Additionally, having an environment
to simulate an order management scenario with which to perform benchmarks
can shed light on the magnitude of the potential gains and motivate further
research.

5.3 Depth

The activities required to create a reinforcement learning agent for the specified
environment are:

1. Design the environment that simulates the shipping point assignment
problem, which includes: choosing the data generating distributions, defin-
ing the dimensionality of the network (number of commodities, ware-
houses, customers, length of the time window), determining the connec-
tions between sources and destinations, and determining the parameters
for the distributions to be used.

2. Explore a number of candidate architectures for the value function ap-
proximation network, including linear models, multilayer perceptrons and
graph convolutional networks.

3. Implement deterministic optimizers to represent short-sighted agents op-
erating in the shipping point assignment environment.

4. Compare the novel agent with the deterministic and stochastic optimizers
in a suite of experiments on different environment configurations in terms
of their computational efficiency and average optimization cost.

61

6 Hypothesis

A deep reinforcement learning agent that leverages a graph neural network for
value function approximation should be able to learn a policy on the shipping
point assignment environment that is statistically superior to greedy heuristic-
based policies and deterministic optimization-based policies, as measured by
average cost and time per action.

62

7 Research objectives

7.1 General objective

To propose a novel reinforcement learning agent that learns a policy for the ship-
ping point assignment environment and is statistically superior in terms of long
term reward and time per action when compared to state-of-the-art determin-
istic optimizers and greedy heuristic-based policies on the same environment.

7.2 Specific objectives

• Design an environment that simulates a realistic scenario of an order man-
agement distribution problem.

• Review the existing literature for strategies used to approximate policies
on environments with similar characteristics.

• Design novel methods based on neural network models that can make
decisions in the proposed shipping point assignment environment.

• Implement baseline deterministic agents that can make decisions in the
proposed shipping point assignment environment based on the determin-
istic time window.

• Implement baseline greedy heuristic-based agents that can make decisions
in the proposed shipping point assignment environment in a short amount
of time.

• Execute a suite of experiments to be able to empirically assess the per-
formance of the novel, neural network-based agent with respect to the
baseline agents.

• Perform an analysis of the experiment suite results in order to derive
conclusions about the best suited method to optimize an environment
with the characteristics of the order management scenario proposed.

63

8 Scope and limitations

It is within the scope of this work:

1. The study of the performance of different implementations of decision
agents in a multistage, multicommodity order management scenario as-
suming stationary demand generation distributions and fully balanced
network flow problems.

2. Experimentation with deep neural network architectures, especially graph
neural networks as potential value function approximators for multistage
stochastic optimization problems.

3. The design and implementation of a deep reinforcement learning agent
that may be used to optimize policies in an environment with a non-
convex, expensive-to-compute reward signal.

4. The comparison of state-of-the-art deterministic and stochastic optimiza-
tion methods as decision-making agents in non-convex stochastic opti-
mization environments.

It is not within the scope of this work:

1. To study convex stochastic optimization problems that can be solved as
linear programs with stochastic variables.

2. To study convex or non-convex stochastic optimization problems that are
not represented by a network flow structure.

3. To study multistage stochastic optimization problems where the random
variables present non-stationary distributions.

4. To consider similar supply chain scenarios and environments that do not
share the same assumptions as the one proposed: orders must be delivered
in full, there is a limited visibility horizon, there are no fractional flows,
etc.

5. To use of stochastic integer programming techniques to solve the shipping
point assignment problem.

6. To consider other supply chain scenarios such as: inventory optimization
or vehicle routing or network design.

7. To apply non deep learning-based value function approximation methods.

8. To assess the feasibility of the proposed reinforcement learning method in
a real world scenario.

9. To consider non-stationary demand generating distributions.

64

9 Deliverables

9.1 Literature review

A non-exhaustive overview of reinforcement learning and stochastic optimization
methods for solving non-convex optimization problems with random variables
and high-dimensionality in the decision variables. Furthermore, the following
questions will be addressed:

1. What are the major challenges in optimizing multistage, non-convex
stochastic optimization problems?

2. What are the most common approaches in the literature to optimize sim-
ilar problems?

3. How can advances in deep learning and reinforcement learning methods
help address the challenges in the field of stochastic optimization?

9.2 Optimization environment

The design and implementation of a novel reinforcement learning environment
based on a multistage, multicommodity flows optimization problem with which
to benchmark reinforcement learning agents. The environment in question must
solve the challenge of efficiently generating a meaningful reward signal without
exactly solving the underlying NP-hard optimization problem.

9.3 Reinforcement learning agent implementation

The design and implementation of reinforcement learning agents that uses a
deep learning architecture for value function approximation of the proposed
optimization environment.

9.4 Deterministic agents implementation

The implementation of baseline agents based on deterministic optimization to
compare against the proposed reinforcement learning agent.

9.5 Experiments

A set of experiments comparing the proposed reinforcement learning agent with
the two baseline agents. The experiments should be able to conclusively deter-
mine which agent is better in scenarios that vary in:

1. The parameters of the data generating distributions.

2. The size of the underlying network flow architecture.

3. The number of degrees of freedom in the decision variables.

65

In order to correctly assess this, the experiments should measure:

1. Average reward over time: The reward signal accumulated by the
agent, averaged over a number of episodes.

2. Time per action: The time taken by the agent to generate an action for
the current state.

66

10 Methodology

In this chapter, we present the methodological aspects of the design and im-
plementation of a set of experiments on an instance of the SPA problem. The
chapter is structured as follows. Section 10.1 describes the simulation environ-
ment. Section 10.2 explains how agents interact with the environment. Section
10.3 presents types of agents used for modeling and simulating different ap-
proaches for solving the SPA. Section 10.4 frames the SPA as a Markov decision
process (MDP). Section 10.5 enumerates the metrics for the experiment. Section
10.6 contains the environment and agent parameters. Section 10.6 presents the
experimental technique. Section 10.7 presents the three parameter settings for
each experiment scenario. Section 10.8 describes various design decisions and
their motivation. Finally, section 10.8 describes the computing platform where
the experiments were executed.

10.1 Environment

Algorithm 3 Shipping Point Assignment Environment

Precondition: The physical network P with associated actions AP

Precondition: Demand generator DemandGen(P)
Precondition: Inventory generator InvGen(P, Inv,Open,Committed, o)
Precondition: Min cost flows optimizer function MCF (G)
Precondition: Time expanded network generator from a state TEN(St)
Precondition: A decision agent Agent
function Simulate

o1 ∼ DemandGen(P)
Open← {o1}
Committed← {}
Inventory ∼ InvGen(P, {}, Open,Committed, o1)
S0 ← {Open||Committed||Inventory||P}
A1 ← Random(AP)
for t = 1..T do

for j = 1..DailyOrders do
At+1 ← Agent.act(St, At)
ot ∼ DemandGen(P)
Inventory ← InvGen(P, Inventory,Open,Committed, ot)
Committed← Committed :: {(ot−1, At)}
Open.remove(ot−1)
Open← Open :: {ot}
St+1 ← {Open||Committed||Inventory||P}
Rt+1 ←MCF (TEN(St+1))
Agent.feedback(St, Rt+1, At+1)

The shipping point assignment environment is a simulation of a distribution
network that follows the constraints of the shipping point assignment problem,

67

where a decision agent relays the allocation choices made for a set of orders
generated according to a distribution and then moves forward in time. This
simulation is necessary, not only because distribution network data is typically
proprietary, but also because of the multistage nature of the decision problem:
actions taken at t = 1 affect the state of the network at t = 2 and so on. It is
impossible to recreate a scenario based solely on historical data, because states
are dependent on an agent’s previous decisions.

Instead of solving the full multicommodity flow problem at timestep t to
derive the current cost of the shipping plan, it will generate a proxy problem
that is easier to optimize. More specifically, it will generate |K| time expanded
networks containing all previously planned orders with their respective shipping
warehouses, and the new order ot scheduled on the current timestep with the
warehouse Aot assigned by the agent.

This problem is simpler to solve on two accounts. First, the resulting opti-
mization is decomposed into |K| linear minimum cost flows, which can be solved
in parallel and are significantly easier to solve than the full NP-hard multicom-
modity flows over time. Second, optimizing on orders where the warehouse has
been decided means that the arcs from all the other warehouses to the order
can be removed, thus removing constraints from the optimization problem.

The selected arc for each order will have a fixed delivery cost cD if it is a
valid warehouse for that order, or an arbitrarily large cost M for all other arcs
to that order. If a decision agent chooses an invalid warehouse, in other words,
a warehouse not in the customer’s set of authorized warehouses, that arc to the
customer will have cost M . Valid warehouses are determined at the beginning
of the simulation for each customer. The environment then runs |K| parallel
min cost flows over time network optimizations assuming all shipping decisions
are now fixed. The result of this optimization will be used as the reward signal
for the agent. The pseudocode for the environment’s simulation is presented in
Algorithm 3.

This section presents a deep dive on the implementation details of the envi-
ronment, including the simulation loop, the demand generator, the valid ware-
house generator, the inventory generator and the process to create time ex-
panded networks.

10.1.1 Simulation loop

The shipping point assignment environment implements the OpenAI Gym envi-
ronment interface, composed of the step and reset functions. The reset function
runs at the start of each episode and initializes all the environment data struc-
tures, such as the inventory vector, the open and fixed order lists, time counter
and statistics accumulators.

The step function executes all the reactions of the environment to an agent’s
action to the last state. Concretely, the process it follows is:

1. Assign the warehouse chosen as an action by the agent to the next open
order in the open order queue.

68

2. Move the open order to the fixed orders list.

3. Generate the k TENs and execute the min cost flows optimizations.

4. If there are no more open orders, call the step update routine.

5. Generate the next state data structure and statistics.

6. Return reward, current state and statistics.

The step update routine is called at the end of a timestep, which happens
when no more open orders are available. It executes all the actions necessary
to move to the next timestep by removing orders that are now in the past,
generating new open orders, and generating inventory to preserve the mass
balance constraints. The routine is as follows:

1. Calculate the consumed inventory, the inventory of the orders that will be
delivered in the current timestep t.

2. Call the order generator to generate new open orders.

3. Call the inventory generator for the new open orders, ensuring that the
balance of the problem remains zero.

4. Update the inventory vector as

Inventory = Inventory + newInventory − consumedInventory

5. Set t = t + 1

10.1.2 Demand generator

The demand generator is designed to generate orders that have correlation across
commodities for each customer. It uses a Gaussian copula to generate the
parameters for a geometric distribution, which will yield order vectors of size K
with correlated demands for each commodity.

The full algorithm for the order generator is shown in Algorithm 4. First, we
generate covariance matrices for each customer as a (|C|,K,K) cube using an
inverse Wishart distribution, as well as a vector of commodity means sampled
from a Poisson with a parameter λ/|K|, where λ is set by the user beforehand.
Therefore, λ controls the total volume of the demand across all commodities.
Then, at each step of generation, a subset of Φ customers are chosen uniformly
to generate orders. A multivariate normal is sampled with the covariances for
each customer and a vector of zeros for the means. The probability density
of the outcome is calculated from a normal distribution with mean zero and
variance equal to the square root of the diagonal of the covariance matrix.
Finally, this probability is passed into a geometric distribution with parameters
p = pz ∗ (1 − pz), where pz = 1/commodityMeans in order to obtain the
demand vector of size K. Finally, the initial shipping point of the order is
chosen uniformly and the order is scheduled to be delivered at the last day of
the planning horizon, to simulate its appearance in the agent’s visibility.

69

Algorithm 4 Order Generator

function OrderGen
Precondition: K,W ,C,Fc,λ,

customerCovariances ∼ InvWishart(K, [1 ∀ k ∈ K])
λ← DemandMean/K
commodityMeans ∼ [Poisson(λ)∀k ∈ K]
while Simulating do

C ′ ← UniformSubset(C)
while c ∈ C ′ do

Cov ← customerCovariances[c]
ZeroMu← [0 ∀ k ∈ K]
mnx←Multinorm(µ = ZeroMu, σ = Cov)
px← NormalCDF(µ = 0, σ =

√
Diag(Cov))(mnx)

pz ← 1
commodityMeans

OrderDemand← GeomPPF(p = pz ∗ (1− pz))(px)
InitialShipping ← Uniform(Valid(W, c))
Delivery ← t + HorizonLength− 1

10.1.3 Valid warehouse generator

The valid warehouse generator determines which warehouse can serve a specific
customer. At the beginning of the simulation, it generates a matrix of dimen-
sions (|C|, |W |), with Fc elements per row set to 1 and the rest to 0. For each
customer row, entries with a 1 represent valid warehouses for that customer.

10.1.4 Inventory generator

The inventory generator is based on a Dirichlet distribution Dir(α). A total of
|K|, with α being a |W | dimensional vector calculated as:

α =
|W |

[1, 2, . . . , |W |+ 1]
.

Thus, the generator will yield |K| samples of |W |, each summing to one.
The choice of α is meant for some warehouses to have a higher concentration
of a commodity than others, thus simulating that some warehouses are closer
to the commodities’ production plants than others. This α favors concentration
towards the lower ID warehouses, but since the samples are independent, the
warehouse of highest concentration may differ from one commodity to the next.
This clear inventory allocation strategy makes the inventory generator more
realistic and ensures that there is a clear pattern for the RL agent to identify.
As an illustration, the following is a sample for a 10 commodity setting with

70

five warehouses: 

0.5000 0.1300 0.0300 0.0800 0.2500
0.3100 0.1700 0.3500 0.1700 0.0018
0.4700 0.4000 0.0680 0.0540 0.0087
0.3700 0.3900 0.0780 0.1200 0.0360
0.3300 0.3900 0.0260 0.1800 0.0740
0.4100 0.1400 0.1400 0.0830 0.2200
0.5000 0.0880 0.2400 0.0290 0.1400
0.5300 0.2400 0.0790 0.1500 0.0019
0.6100 0.0390 0.0270 0.2700 0.0490
0.6400 0.0800 0.1900 0.0740 0.0190


.

In this example, seven out of the ten commodities will be more concentrated
on the first warehouse, two will have more inventory on the second, and one on
the third warehouse. Also, the degree of skew between the warehouses varies
between commodities.

The Dirichlet generator is called once at the beginning of the simulation
to generate the proportions of each commodity in each warehouse. When the
inventory generator is called, it takes the sum of units for each commodity gen-
erated by the last call of the demand generator and distributes them according
to the established proportions.

10.1.5 Graph generation

The physical network, depicted in Figure 8, is comprised of the warehouse and
customer facilities, as well as the valid arcs between them. The information of
the current state of the distribution network can be converted into a time ex-
panded network to create a multicommodity network flow problem representing
the transportation of goods in a planning horizon to satisfy current demands,
as seen in figure 9. The environment is responsible of generating |K| single-
commodity min cost flow graphs from the multicommodity TEN so that the
min cost flow solver can assess the current state of the network given the allo-
cation plan.

For simplicity, all costs on transportation and inventory arcs are fixed, with
inventory costs significantly lower than transportation costs. This implies that it
is desirable to deliver the orders with as little relocation of inventory as possible,
since allocation on the wrong warehouse will create flow between transportation
arcs and drive costs up.

Scheduled orders in the generated graph will have a single incoming arc
from the chosen warehouse. If the scheduled warehouse belongs to the subset
of warehouses Fc, then the cost of this arc will be a fixed low delivery cost,
otherwise, the cost of the arc is a sufficiently large M to represent an illegal
movement (or an unfulfilled order). This is to motivate an agent to learn which
warehouses are desirable without being explicitly aware of the set Fc. As an
illustration, the TEN in Figure 9 corresponds to the physical network of Figure
8 with some orders. Warehouse nodes are replicated for timesteps 1, 2 and 3.

71

W1

C1

W2

W3

C2

Figure 8: Physical Network Example

1 2 3 4

W1

W2

W3

C1

C2

1:2 1:2 1:3

2:1 2:2 2:3

3:1 3:2 3:3

C1:2

C2:3

C1:4

C2:4

Figure 9: Time expanded network

C1 has an order due on timestep 2, which is already allocated to be delivered
from W1 on timestep 1. C2 has an order due on timestep 3, allocated to be
shipped from W3 in timestep 2. Finally, both customers have open orders due
on timestep 4, which may be allocated to either of the warehouses as specified
in the physical network of Figure 8 (W1 and W2 for C1, and W2 and W3 for
C2).

10.2 Interaction with the environment

The agent that interacts with this environment is required to allocate each order
to any of the existing warehouses, at the given timestep. This means that the
action space is all the possible permutations of warehouse-customer allocation
pairs possible for the generated orders.

72

The cardinality of the action space depends on how many orders are gener-
ated per timestep. The agent acts on the first order from the list of open orders
by selecting a warehouse. This action is then communicated to the environ-
ment, which advances to the next state, calculates the changes in the network
and inventories, and emits a reward.

10.3 Agents

In this section, the agents for the SPA environment will be presented. In to-
tal, six agents were implemented: a random baseline, a greedy heuristic agent,
two agents that use deterministic optimizers, and two that use neural network
agents.

Throughout this work, when referring to deterministic agents, it is under-
stood to refer to B&B and Lookahead. Likewise, when referring to neural net-
work or deep reinforcement learning agents, it is in reference to the MLP and
GNN agents.

10.3.1 Random

The Random agent will simply make a random decision at each timestep from
the list of valid warehouses for each customer. It is meant to be a baseline to
see how better the other agents are when compared to a coin toss.

10.3.2 Best Fit

The Best Fit agent will follow the heuristic of choosing the warehouse that
has the highest availability of the products required to fulfill the current order.
This is meant to represent a typical behavior of a human making decisions in
a supply chain scenario. It does not have any regard for the future impact of
that decision, the expectation is that warehouses with more inventory will be
less likely to cause problems later.

10.3.3 Lookahead

The Lookahead agent uses the same min cost flows solver as the environment
to evaluate each possible warehouse for the current customer. It solves a total
of |Fc| minimum cost flows per action. This can be interpreted as a heuristic
to avoid the complexity of exhaustively considering all possible combinations of
warehouse and customer for all open orders. This combination of a deterministic
optimization with a relaxation heuristic is a tradeoff between very fast heuristic
agents that do not directly optimize a metric, and more expensive deterministic
optimizers that solve the full problem on a planning horizon.

10.3.4 Branch and bound

The branch and bound (B&B) agent uses a general purpose branch & bound
solver for Mixed Integer Linear Programs (MILPs). It uses the MILP formu-

73

lation of the SPA in order to arrive at the optimal solution for the current
planning horizon, without taking into account any stochasticity.

This deterministic optimization problem quickly becomes hard to solve ex-
actly, as for every timestep with orders, potentially all combinations of or-
ders and shipping point assignments must be considered. Even then, at every
timestep, the optimization algorithm will only decide locally based on the vis-
ibility of the order demand window. It is possible that the linear relaxation
of the order consolidation constraints are useful enough that not all combina-
tions of warehouses and orders need to be evaluated, which would reduce overall
runtimes.

Given that B&B is exhaustive, this agent is expected to outperform Looka-
head in terms of average cost when the number of orders per day Φ is greater
than one. It is also expected to be significantly slower because of two reasons:
the exhaustive search and the fact that the B&B solver is not a specialized solver
for minimum cost flows.

The problem will be solved using the Google OR Tools optimization library
[109] with the SCIP solver for Mixed Integer Programs[110]. The problem’s
constraints are the same as in classical multicommodity flow formulation, with
added nonlinear constraints for restricting customer demands to be satisfied
using the same warehouse arcs for all commodities.

10.3.5 Multilayer perceptron (MLP)

The first deep reinforcement learning agent uses Q learning with a multilayer
perceptron (MLP) for value function approximation, hence its name. The MLP
consumes a feature vector that describes the current state of the MDP, such
as the inventory levels and the next order to decide upon, and has an output
shape of |W | for the Q values. This agent leverages advances in deep reinforce-
ment learning techniques to make learning more efficient. More details about
the network’s architecture, feature design and deep RL techniques applied are
discussed later in the design decisions section.

This agent is meant to serve as a baseline for other reinforcement learning
agents, as it is unclear that the simplistic representation of the environment via
the hand-crafted feature vector is sufficient to derive useful policies for the SPA
environment.

10.3.6 Graph neural network (GNN)

The GNN agent is similar to MLP, but instead of using a Multilayer Perceptron
for Value Function Approximation, it generates graph-level embeddings using
a graph convolutional network (GCN) [90]. The graph convolutional layers
generate node level embeddings, which are then pooled and passed to a fully
connected layer with output size |W |, corresponding to the Q values for each
possible action.

74

10.4 Markov decision process

Here we express the shipping point assignment scenario as a Markov decision
process, in order to be able to solve it with a reinforcement learning approach.

State: A state is described by the information of the physical network, the
available inventory at each warehouse at timestep t, the open orders at timestep
t and the committed orders at timestep t.

Actions: The agent acts by choosing a shipping point from the set of ware-
houses W for the next upcoming open order ot. For this reason we use the
notation aot to refer to the action for the order ot Notice that, according to this
action space definition, it is technically possible that the agent chooses to ship
the order from an unacceptable warehouse for that customer, which would re-
sult in a high cost penalty, also known as a Big M cost. In the implementation,
however, most agents will have mechanisms that prevent them from choosing
such actions.

Reward: The negative cost of the solution found for the |K| linear min
cost flow optimizations with the fixed shipping points, delivery dates and arc
capacity distributions specified by the agent’s actions.

As portrayed in Figure 10, the environment contains three components that
comprise the state abstraction: a physical network (such as the one on Figure
8), an order generator that creates the next step’s new orders and a time ex-
panded network representation of the current state. For calculating the Rt+1,
the environment runs |K| min cost flow optimizations, which are equivalent to
|K| linear programs.

10.5 Metrics

10.5.1 Average cost

The most direct way of comparing the agents is by analyzing the average opti-
mization cost per timestep over a series of simulations for each agent. The deep
RL agents do not optimize directly against this metric for reasons of numerical
stability, but a better long-term policy should reflect a decrease in optimization
cost.

10.5.2 Time per action

Time per action (TPA) is the time in milliseconds taken by the agent to gener-
ate an action for the next open order. With a sufficiently large network flows
problem, the deep RL agent should always outperform deterministic agents in
this metric, since the latter has to run a full branch & bound or a large linear
optimization for each action. This metric does not include the time it takes
for the single commodity optimization done by the environment to generate the
reward function.

75

ENVIRONMENT

TEN

DemandGenerator

Physical Network Rt+1

St+1 = {network, inventory,
open, committed}

aot

AGENT

Figure 10: A graphical representation of the Markov Decision process. The
agent selects a warehouse to ship the next order ot based on the current state,
the environment simulates its impact on the network by optimizing the TEN
that represents the distribution problem, and then communicates the reward
Rt+1 to the agent.

10.5.3 Average reward

The reward function acts as a proxy signal to give feedback to the RL algorithms
of the quality of their actions. It can be useful to observe this metric to compare
each RL agent, and evaluate the effectiveness of the reward function choice.
Similarly to the cost metric, the expectation is that deep RL agents outperform
deterministic optimizers and greedy policies in this regard, due to effect of the
long-term cost optimization.

10.5.4 Interplant movements

A proxy indicator that an agent is making decisions that consider future sce-
narios is interplant movements. Interplant movements refer to the number of
items moved from a warehouse to another in a timestep. If an agent doesn’t
plan for future orders, it may use up inventory in warehouses that will need it
in the future, requiring to incur in additional interplant movements that could
be avoided. Although this measure is indirectly explained by the reward, it is
more interpretable since it shows improvement in terms of material units moving
through the network.

76

10.6 Parameters

10.6.1 Environment parameters

Physical network parameters. These are the parameters that influence the
physical characterization of the distribution network. It includes:

• W : The set of warehouses

• C: The set of customers

• K: The set of commodities

• Fc: The set of valid warehouses per customer

• l: Lead time per order

• Φ: Number of orders per day

• H: Planning horizon length in timesteps

• ι: Interplant arcs cost

• κ: Warehouse to customer arc cost

• ζ: Inventory storage cost

Distribution parameters. The parameters to the data generating distri-
butions for the demand component of the environment:

• λ: Poisson parameter for the customer means.

• α: Dirichlet parameter to distribute the inventories in the inventory gen-
erator.

Reinforcement Learning parameters. Parameters related to a reinforce-
ment learning optimization, including:

• Number of episodes

• Number of steps per episode

10.6.2 Agent parameters

Greedy heuristic agents do not have any parameters to configure. The parame-
ters in the B&B optimizer were left to the defaults of the library and thus are
not presented. In the case of the Q learning-based reinforcement learning agents
there is the following set of tuneable hyperparameters:

• Learning rate

• Discount factor

• Warmup steps

• Batch size

• Replay buffer length

77

10.7 Experimental technique

The experiments that will be proposed should be sufficient to answer the fol-
lowing questions about each of the proposed agents in the order management
scenario:

1. Does the size of the physical network affect the agent’s performance?

2. Does the number of commodities affect the agent’s performance?

3. Does the total number of possible actions (decision variables) affect the
agent’s performance?

4. Do agents that optimize against a long term goal perform better than a
short-sighted, deterministic agent?

5. How do the agents perform in intractably large optimization problems?

6. If the agent learns, how quickly can it start making reasonable decisions
in the environment?

Each of the proposed experiments will modify the environment construc-
tion parameters to simulate different realistic supply chain scenarios: number
of warehouses, number of customers, number of new orders generated per day,
number of distinct commodities, number of available warehouses for delivery
per customer. This will make the underlying optimization problem progres-
sively larger in terms of constraints and variables. In order to reliably evaluate
the performance of the agents, their average performance after 250 episodes of
training will be reported. The expectation is that as problems become larger,
deterministic optimization becomes progressively slower. Learning agents might
also begin to struggle when the number of random variables increase.

The data generating distribution’s parameters will be held constant across all
episodes on all experiments. Although non-stationary processes are important
in real world scenarios, they are outside the scope of this work.

The environment, agents, and simulation environments will be implemented
using Python, with PyTorch leveraged for gradient-based methods, and Numpy
for data generation.

10.8 Experiments

Description |W| |C| |K| Φ Fc wo

Small 3 16 1 1 2 1
Medium 8 32 8 3 2 9
Large 8 64 16 5 3 125
Huge 16 128 32 7 4 2401

Table 3: Variable experiment parameter settings

78

Parameter Parameter kind Value
Episodes RL 250
Steps per episode RL 30
Learning rate RL 0.009
Discount rate RL 0.90
Warmup steps RL 32
Batch size RL 32
Buffer length RL 90
Planning horizon Network 7
Demand mean Network 500
Demand variance Network 150
Big M Factor Network 10000

Table 4: Constant experiment parameters

In this section, each experiment scenario will be described, along with its de-
sign motivations. Four scenarios with increasing sizes in parameters will be
evaluated. Table 3 shows the varying parameters: number of warehouses |W |,
number of customers |C|, number of commodities |K|, new orders appearing per
day Φ, warehouses per customer Fc. An important number to have a notion of
the complexity of the problem is the number of shipping assignment variations,
which depends on the total number of warehouses and the number of orders to
be considered at each timestep, denoted in the table by wo.

Originally, the number of commodities on the largest scenario was planned
to reach 64, however, this proved to be too expensive to compute for the linear
optimizer, and the execution time for 30 runs of 5 different agents in such a
scenario proved to be infeasibly long for the project at hand. The parameters
Φ and Fc were also reduced in size in order to keep runtimes in a reasonable
range.

It is also worth noting that, although the largest scenario is termed “huge”
due to its computational complexity, a product portfolio of 32 is actually consid-
ered very small. Many companies have portfolios of hundreds, even thousands
of SKUs. Such environment configurations would be tractable if the linear pro-
gram were to be solved once per day, as in real world scenarios. However, for
simulating runs over many days, as in this experiment setting, it is infeasibly
long.

Table 4 shows the set of hyperparameters that remain constant, for rein-
forcement learning training or network problem graph generation.

10.8.1 Small

This is the smallest possible scenario, with only one commodity, three ware-
houses, sixteen customers and only one customer arriving per day, with two
possible warehouses to choose from. The goals of this scenario are to have a
baseline of run times when constraints are low and to understand whether it is
possible to learn long term assignment policies in a low complexity scenario.

79

10.8.2 Medium

The medium scenario, with eight commodities, eight warehouses and three or-
ders per day, is at least eight times larger in the linear optimization program
to solve at each time window. The number of customers also increases, which
will result in higher overall demand variance. This scenario will showcase the
impact of having multiple commodities enter into play and its impact on the
deterministic optimizers. In the case of branch and bound, the optimizer would,
in the worst case, visit nine nodes in order to arrive at the optimal deterministic
solution.

10.8.3 Large

The large scenario doubles the number of commodities again, and increases
the number of orders per day to five. There are also three warehouses out of
eight to choose for each customer. With 125 possible combinations of orders to
warehouse assignments, the branch and bound and lookahead optimizers are ex-
pected to receive a performance hit. The linear optimizer from the environment
simulator should also start seeing significant slowdowns.

10.8.4 Huge

The huge scenario doubles the commodities, increases the total number of ware-
houses to 16, and the valid warehouses per customer to 4. There is very high
variability in the demand due the 128 customers. The linear optimizer of the
environment also becomes a bottleneck for this experiment, as it is required
to solve 32 linear programs of considerable size on every simulation step. The
deterministic optimizers have to visit 2401 possible combinations on the worst
case to arrive at a solution, which means that their TPA is expected increase
significantly or they may not be able to reach a solution at all in reasonable
time.

10.9 Design decisions

This section covers several design decisions that had to be addressed before
implementing and executing the experiment suite.

10.9.1 Handling of Big M Actions

For implementation purposes, the action space for all orders is given by all
the warehouses in the system. However, each agent can only be realistically
served from a subset of these. For instance, serving to a customer hundreds of
kilometers away would be infeasibly expensive. These actions will be referred
to as “illegal actions” for a customer. From an optimization standpoint, this is
managed using Big M costs. Illegal actions are no problem for heuristic-based
agents or deterministic optimizers, as they will naturally avoid these actions.

80

For a deep reinforcement learning agent, however, the output layer is the same
for orders of all customers, so it must be of size |W |.

Originally, it was intended to leave it to the reinforcement learning agent to
learn to avoid illegal warehouse-customer pairings by means of very low rewards.
Preliminary experiments showed that even with careful reward function design,
which will be covered on the next section, this approach led to poor results,
close to random choice. The reason is that the neural network has to handle
two scales of rewards: when there are Big Ms in the system and where there are
not. The neural network had to first explore the space of possible warehouses
and learn which ones to avoid due to Big Ms, and by the point that it had
learned it, the variations in cost were so trivial relative to big Ms that it tended
to only choose one valid warehouse per customer, instead of adapting to the
circumstance at hand.

The solution was to introduce a mask after the output layer to penalize the
Q values, ensuring that a Q learning-based agent never chose an illegal action,

Q(S,A)masked = Q(S,A)− Fc ∗BigM

where Fc is a vector of size |W | with ones for valid warehouses of customer c.
The Q Values for illegal actions will always be low enough that they will never
be chosen by argmaxaQ(S, a).

10.9.2 Choice of reward function

The reward function must convey information about the state of the physical
network and the impact that an action has on it. The most intuitive way to
model this is by taking the sum of the cost of the relaxed linear programs, since
it summarizes the totality of all the flows going through the network and how
good were the decisions that resulted in those flows. However, some challenges
arise with this approach.

First, there are reasons unrelated to an action for why the optimization cost
changes. For example, at every timestep, the planning horizon shifts, new orders
appear into the picture, orders shipped in the previous step disappear from view,
resulting in a completely different cost function every time. It is unclear if a
reinforcement learning agent will be able to tease out the fluctuations in the
cost due to the optimization problem’s constraints from the impact that actions
have on the long term reward gain.

Consider the following scenario to illustrate the above issue. On Figure
11, two time expanded networks are shown for a planning horizon of three,
with two warehouses and a single commodity. On timestep one, W1 serves an
order of five units to C1 on the current timestep, and another one on timestep
three to C2, also for five units. W1 is also sending three units to W2 to satisfy
the requirements for C3 on timestep three. On timestep two, the optimization
window shifts, the order to C1 is already in the past, as well as the three units
moved from W1 and W2.

The shift from the planning window on t = 1 to t = 2 implies a change in
the optimization cost for multiple reasons. Assuming costs per unit of κ = 1,

81

t=1

b(W1) = 8

b(W2) = 0

W1:1 W1:2 W1:3

C1:1b(C1) = −5 C2:3b(C2) = −5

W2:1 W2:2 W2:3

C3:3b(C3) = −3

5

3

5

0 3

5 5

3

t=2

b(W1) = 6

b(W2) = 4

W1:2 W1:3 W1:4

C2:3b(C2) = −5 C4:4

b(C4) = −1

W2:2 W2:3

C3:3b(C3) = −1

W2:4

C5:4

b(C5) = −1

5 1

4 1

5 1

3 1

Figure 11: Sample Time Expanded Network for two warehouses, two customers
in a time horizon of length 3

ι = 10 and ζ = 1 for warehouse-to-customer, interplant and storage, the total
cost on t = 1 is given by Costt=1 = 5κ + 3ι + 13ζ, while the cost at t = 2 is
Costt=2 = 10κ+0ι+8ζ. The cost increased simultaneously due to a decrease in
total number of total order units, a decrease of interplants in the horizon, and
a decrease in total storage costs. Out of these three factors affecting the total
cost in a time window, the agent is only directly responsible for the interplant
part. This poses a challenge for a reinforcement learning agent: distinguishing
the causal component of its actions on a reward function affected by multiple
factors.

A second challenge is that the cost-based metric might have issues of nu-
merical stability. With a larger number of commodities or a larger number of
average units generated per timestep, the reward values will vary over a larger
range.

Given these challenges, five different reward functions were developed to
compare the performance of Deep RL agents on them and choose the best one.
When referring to the cost, the sum of the optimization cost for all commodities

Costt =

k∑
Costk(TEN(St))

is used as a shorthand.

1. Simple negative cost: The simplest reward function, with the draw-
backs described above.

Rt = −Costt

2. Diff negative cost: As an attempt to have a reward that emphasizes the
impact of an action on the optimization cost, the diff reward will give a

82

positive result if cost went down as a result of the last action, and negative
otherwise.

Rt = (Costt−1 − Costt)

3. Negative log cost: Log transform of the negative cost to have a more
stable reward.

Rt = −log(Costt)

4. Negative log cost or Big M (NLCOM): When a Big M action is cho-
sen, it is carried over the horizon for many steps. This function attempts
to avoid it by only including Big M costs on the penalty if they correspond
to the latest order.

f(x) =

{
−log(Costt), if LastOrderBigM

−log(Costt −BigMCosts), otherwise

5. Negative Log Cost Minus Big M (NLCMM): This function intends
to accentuate the benefit of having a Big M unit free solution. When the
number of Big M units is zero, the function enters a higher reward space
by means of log(ϵ), where epsilon is a small enough number.

−log(cost + ϵ)− log(BigMUnits + ϵ)

The functions described above were tested on single runs with the same pa-
rameters and RNG seed, before implementing the Big M mask filter described
in the previous section. It was informally observed that NLCMM was most
effective not only at reducing Big Ms, but also interplants and total cost . The
simple negative cost, diff cost and log cost functions all performed significantly
worse. The interpretation for this outcome is that, besides being effective for re-
ducing Big Ms (in the absence of the mask described in the previous section) the
reward space for zero big Ms, on the plateau of the log function, makes learning
more stable. For these reasons, NLCMM was chosen for experimentation.

Although most reward functions tested successfully reduced Big Ms, the high
variance between attained rewards with and without Big Ms hinders learning
later on. This motivated the usage of the Big M mask filter in conjunction with
the NLCMM reward function.

10.9.3 Choice of cost parameters

The cost parameters ι,κ and ζ have two purposes: to drive flows correctly
from warehouses to customers and to convey information to the reinforcement
learning agent via the reward function. In order to satisfy customer demands,
all that is needed is to satisfy the condition that transport costs are higher than

83

storage costs, that is, ι ≥ κ. However, for the reinforcement learning agent, it
is helpful for the proportion ι

κ to be significantly high in order to incentivize
reducing interplants as much as possible. For this reason, the values ι = 150,
and κ = 1 were chosen. ζ = 10 just to represent the realistic assumption that
transports to customers are relatively more expensive than storing inventory,
but this has no impact on the decisions made by the optimizer.

A more realistic cost scheme was purposefully avoided, for example by sam-
pling the costs for each warehouse-customer pair to represent variance in dis-
tances and transportation routes, in order to avoid confusions on the decisions
of the optimizer and agent. It is worth noting that an advantage of this reward
function/cost parameter framework is that it is possible to model any kind of
scenario and decision tradeoff to convey to the agents by manipulating the cost
parameters.

10.9.4 Episodic vs. continuous reinforcement learning

The shipping assignment problem lends itself naturally to be framed as a con-
tinuous RL problem. The experiments described previously were designed as
en episodic task, with each task comprised of a certain number of simulation
steps. However, this episodic simulation is only done to reset the order genera-
tion process every few steps, in case the agent falls into a series of wrong actions
(analogous to the pole falling on the cartpole example). The Q learning agents
presented, however, incorporate the γ = 0.9 discount rate on their formulas,
so they are essentially treating all episodes in a simulation as one continuous
stream of agent interaction steps.

The number of episodes per run was decided to be 250 based on informal
observations from preliminary executions of neural network agents. The training
loss typically stabilizes after 100 episodes on any environment size, with some
slight variations in the range of 100 episodes until 250 episodes. After 250
episodes, no significant variation in agent’s performance is expected to happen.
Given that the first episodes of the neural network agents tend to perform poorly
while the network adapts to the environment, they were trained for 275 episodes
and the comparisons with other agents were made from episode 25 to episode
275.

10.9.5 Normalization of reported cost

Given that the demand generator is initialized at each run with different cus-
tomer means, runs of the same environment can vary greatly in the average
total demand observed. This makes run metrics not directly comparable. The
cost metrics reported in the results section are normalized by the total demand
observed in that step of the simulation:

NormalizedCostt =
Costt

CustomerF lowst
,

where Costt refers to the unnormalized cost observed at timestep t, and

84

Features Dimension
Valid warehouse mask |W |
Inventory consumption |W | ∗ |K|
Total |W |+ |W | ∗ |K|

Table 5: Description of the feature vector for the multilayer perceptron VFA

CustomerF lowst is the sum of all flows inbound to a customer node in the
TEN. Whenever not specified, when referring to cost in the results section, it is
assumed that the metric is NormalizedCostt. A similar treatment is given to
the interplants metric.

The normalized cost can be interpreted as “the optimization cost of the
whole system to satisfy the demand of one unit”. In the case of interplants, how
many units must be moved from a warehouse to another in order to satisfy the
demand of one unit.

For illustration purposes, the reward metric is presented without any normal-
ization. This highlights that the differences in the reward function when neural
network agents are relatively small when compared to deterministic optimizers,
even though the difference in real cost is significant.

10.9.6 Feature design

The input features used to feed the neural network VFAs varied depending on
the agent. MLPs required a feature set that was rich enough to represent the
whole state space, while GNNs already implicitly encode graph-based informa-
tion, and the features are at the level of nodes, which represent warehouses and
customers.

For MLPs, the feature set has two parts, the first will be referred to as the
“valid warehouse mask” and the second one is the “consumption vector”. The
valid warehouse mask is a vector of size |W | with a one indicating that Wi is
valid and a zero if it is not a valid warehouse for the current customer. The
consumption vector, of size |W | ∗ K, is computed by subtracting the current
order’s demands to the current inventory vector, thus representing what the
inventory would look like if the current order were served from that warehouse.
The motivation behind the consumption vector is to illustrate which warehouses
have currently deficient inventories for the current order’s demands. Since the
mask and consumption vectors have different scales, it is important to normalize
them before passing them into the network. Before settling on the consumption
vector as part of the feature set, having demands and inventories separated was
also attempted. An example of the feature set can be visualized on Figure 5

GNNs do not require to encode information about valid warehouses, because
they operate on the physical network graph, and the arcs already represent that
information. Therefore, the feature set for GNNs is only a vector of size K
representing the inventory on warehouse nodes and the demand on customer
nodes. Additionally, two indicator features are added: one to indicate whether

85

Layer Activation Input dimensions Output dimensions
Noisy Linear Tanh |W |+ |W | ∗ |K| 512
Noisy Linear Tanh 512 256
Linear None 256 |W |

Table 6: Multilayer perceptron architecture

Features Dimension
Balance |K|
Node type indicator 1
Current order indicator 1
Total |K|+ 2

Table 7: Description of the feature fector for each node in the graph neural
network VFA.

a node is a warehouse or a customer, and another one to signal to which customer
node the current open order belongs. A graph example with a feature set can
be observed in Figure 7.

10.9.7 MLP architecture

The architecture for the MLP agent can be seen in Table 6. The network
is a multilayer perceptron comprised of two hidden noisy linear layers with
hyperbolic tangent activations and a linear layer, decreasing the layer size by a
factor of two, with an output size of |W |. Some other architectures that were
explored were a single layer linear model, a one layer wide neural network, and a
three layer neural network. The two and three layer networks performed better
than the other models tried, and so the simplest model was preferred. Sigmoid
activations were also tried and observed to perform similarly.

10.9.8 GNN architecture

GCN was chosen for the graph convolutional layers of the GCN value function
approximation because of its properties as they relate to the structure of the
network graphs it consumes. The graphs across time are completely regular in
structure and only vary in the node features, so the issue of changing eigenbasis
is not a concern. Additionally, GCN provides good numerical stability due to its
renormalization trick, which is important for the reinforcement learning use case.
Although GCN is a spectral-based method, it can be reinterpreted as a spatial
method due to its first-order approximation of the graph Laplacian matrix being
equivalent to a node communicating its information with its neighbors.

The value function approximation of the GNN agent is a graph-level GNN
with two GCN layers as defined in equation 13, with ReLu activations. The
GCN layers are followed by a global max pooling operator and finally, a linear

86

Layer Activation Level Input dimensions Output dimensions

GCN ReLu Node |K| 1024

GCN ReLu Node 1024 512

Pooling None Graph 512 ∗ (|W |+ |C|) 512

MLP None Graph 512 |W |

Table 8: Graph Convolutional architecture

output layer to transform the embeddings into the |W | sized Q values, as seen
in Table 8.

The global max pooling operator aggregates the node features into a single
graph embedding by taking the channel-wise maximum per node feature. The
max operation was chosen because of the ReLu activations. Since the graph
consumed by the network is a bipartite graph, having more than two graph
convolutional layers yields no benefit. Finally, no performance improvement
was observed from adding more dense layers after the graph pooling.

10.9.9 Hyperparameter optimization

In order to decide the hyperparameters for the MLP and GNN agents, a grid
search was performed to tune the learning rate, discount factor and number of
units on the first layer on the GNN-based agent.

10.9.10 Deep reinforcement learning implementation details

A number of Deep RL specific optimizations were incorporated into the imple-
mentation for neural network based agents, inspired by DQN [101]. Specifically:

1. Experience replay: A replay buffer is kept with the experiences from
the last 90 steps. This buffer is populated at the beginning of training by
means of a random sample.

2. Target network: As in DQN, the targets are calculated using a separate
copy of the neural network, which in this case is updated every 30 steps
(every episode end).

3. Noisy dense layers: On MLP and GNN agents, all fully connected layers
are implemented using noisy linear layers to improve learning stability and
encourage exploration.

4. Huber loss: Instead of the typical MSE loss, Huber loss was chosen to
mitigate the impact of outliers, which were expected to be common given
the variance between the average customer demand sizes.

5. Epsilon greedy exploration: Regular ϵ-greedy exploration was used.
Some preliminary experiments were made by attempting have a decaying
ϵ parameter, but no significant benefit was observed.

87

10.9.11 Training algorithm

For the training of neural network agents, an Adam optimizer, with no tuning
on the Adam parameters except for the learning rate. Additionally, a decaying
learning rate scheduler with a decay rate of 0.999992 per epoch was incorpo-
rated. This was implemented after observing that the loss values tend to become
unstable after several training episodes.

10.10 Execution platform

All non neural-network-based experiments were run using Google Cloud Plat-
form’s n1-highcpu-64 instances, which have Intel Xeon E5 processors with base
frequencies of 2.3Ghz and 57.6GB of memory. Experiments were run on batches
of 30 parallel processes, corresponding to all runs of an agent in one environment
size.

Due to limitations provisioning instances with GPUs, neural network exper-
iments had to be run on n1-standard-4 instances, which have the four cores of
the same same Intel Xeon E5 processors, with 16GB of memory and an NVIDIA
K80 GPU with 8vCPUs and 12GB GDDR5. Processes were limited to two per
instance to avoid thrashing.

Although experiments were run on different machine configurations and dif-
ferent number of parallel processes, which could potentially affect execution
time benchmarks, those differences should be negligible due to the fact that
time is being measured using Python’s time.process time() function, which only
measures time the process is actively using the CPU.

88

Reward Cost TPA
Agent Mean STD Mean STD Mean STD

Lookahead 9.41 0.78 6.94 1.55 4.50 2.48
B&B 9.39 0.80 7.17 1.66 20.34 127.66
MLP 9.26 0.82 8.05 2.08 4.67 2.22

Best Fit 9.24 0.82 8.12 1.94 0.22 0.10
GNN 9.15 0.83 8.84 2.31 5.81 1.76

Random 9.04 0.85 10.45 2.44 0.20 0.12

Table 9: Average metrics per agent on 30 runs of the small environment

11 Experiment results

In this section, each agent’s performance will be evaluated for each of the envi-
ronment sizes tested. The performance will be reported in tables showing the
average reward, time and cost with one standard deviation over 30 instances of
the simulation. Additionally, plots will be presented to illustrate the distribu-
tion of the runs. Finally, an informal exploration on the impact of environment
size on the TPA performance of each agent will be presented.

11.1 Small environment

Table 9 shows the average metrics for 30 runs of the agents on the small envi-
ronment. Figure 12 contains box plots to further explore the distribution of the
metrics for each agent. Lookahead achieved the lowest average cost of all agents,
followed by B&B, then MLP, Best Fit, GNN, and finally Random. Lookahead
is very close to the B&B solution, as expected. This is because B&B optimizes
for the only open order visible each day, which is equivalent to what Lookahead
does as a heuristic. MLP, Best Fit, and GNN can be regarded as similar in
terms of average cost. All of the aforementioned agents performed better than
random.

With respect to time, Lookahead took almost a fifth of the time of B&B. On
such a small environment, this can be explained because of the additional time
that B&B takes to solve the linear programs using a generic solver instead of a
network flows-specific algorithm, like Lookahead does. B&B also shows a high
variance in TPA, which suggests that some of the linear programs generated
may be simpler to solve than others.

Since MLP and GNN were not able to outperform the deterministic optimiz-
ers in this scenario, the results do not suggest that these reinforcement learning
agents were not able to derive better long term policies that the short-sighted
strategies of deterministic optimizers and greedy heuristic policies.

However, with such a small problem setting, it would not be advisable to
derive any meaningful conclusions from the performance of the agents, neither
with respect to time or overall cost.

89

L
o
o
k
a
h
ea

d

B
&

B

B
es

t
F

it

M
L

P

G
N

N

R
a
n
d
o
m

6

8

10

12

14

Cost

L
o
o
k
a
h
ea

d

B
&

B

B
es

t
F

it

M
L

P

G
N

N

R
a
n
d
o
m

0

5

10

15

20

25

TPA(ms)

Figure 12: Box plots for cost and TPA per agent on 30 runs of the small
environment

11.2 Medium environment

Table 10 and the box plots on Figure 13 show the average performance for each
agent on the medium scenario. In terms of average reward and cost, Lookahead
is the most effective agent, followed by B&B, then Best Fit. GNN outperforms
MLP and Random, but is not near the results of Best Fit. MLP had an average
performance worse than Random.

In terms of time, however, B&B and Lookahead are the slowest agents, with
GNN being faster than B&B by almost two orders of magnitude. Best Fit,
being a greedy heuristic agent, is of course faster than neural network agents,
almost as fast as Random while achieving a good performance in overall cost.
The neural network agents are at least an order of magnitude slower than Best
Fit. Lookahead is the best agent both in terms of cost and time, although the
small difference in cost with B&B might be attributed to random variations.
Even then, it achieves so in almost a fifth of the execution time.

It is observed that the differences in average reward between the agents is
negligible when considering the variance. This may be due to the log transfor-
mation to the cost applied by the reward function that was chosen, and might be
a possible explanation why agents struggle to find better policies after achieving
certain level of reward.

In terms of long term reward optimization, the reinforcement learning agents
used in this scenario cannot be said to have performed better than any greedy
or deterministic-based optimizer.

11.3 Large environment

The results for the large environment can be seen in Table 11 and the box
plots of 14. In this case, B&B slightly outperformed Lookahead, which was
expected, given the exhaustive evaluation of Lookahead. Next, Best Fit with
a significantly higher cost, followed by Random, then MLP and finally GNN.
It was unexpected to find MLP and GNN perform worse than Random in this
environment. A possible explanation is that the hyperparameter tuning was

90

Reward Cost TPA
Agent Mean STD Mean STD Mean STD

Lookahead 7.97 0.11 7.73 0.57 74.68 13.21
B&B 7.94 0.10 7.98 0.70 349.24 160.78

Best Fit 7.83 0.11 9.00 0.82 0.27 0.02
GNN 7.77 0.11 9.64 0.97 4.10 0.52

Random 7.72 0.10 9.84 0.81 0.19 0.01
MLP 7.69 0.13 10.32 1.13 2.33 0.14

Table 10: Average metrics per agent on 30 runs of the medium environment

L
o
o
k
a
h
ea

d

B
&

B

B
es

t
F

it

G
N

N

R
a
n
d
o
m

M
L

P

7

8

9

10

11

Cost

L
o
o
k
a
h
ea

d

B
&

B

B
es

t
F

it

G
N

N

R
a
n
d
o
m

M
L

P

0

50

100

150

200

250

300

350

TPA

Figure 13: Box plots for cost and TPA per agent on 30 runs of the medium
environment

91

Reward Cost TPA
Agent Mean STD Mean STD Mean STD

B&B 7.65 0.08 6.29 0.32 1366.75 534.37
Lookahead 7.64 0.08 6.38 0.32 370.65 106.90

Best Fit 7.38 0.10 8.43 0.62 0.20 0.01
Random 7.24 0.09 9.47 0.58 0.16 0.02

MLP 7.19 0.13 10.07 1.14 2.32 0.11
GNN 7.17 0.13 10.29 1.20 5.48 0.81

Table 11: Average metrics per agent on 30 runs of the large environment

B
&

B

L
o
o
k
a
h
ea

d

B
es

t
F

it

R
a
n
d
o
m

M
L

P

G
N

N

6

7

8

9

10

11

Cost

B
&

B

L
o
o
k
a
h
ea

d

B
es

t
F

it

R
a
n
d
o
m

M
L

P

G
N

N

0

200

400

600

800

1000

1200

1400

TPA

Figure 14: Box plots for cost and TPA per agent on 30 runs of the large envi-
ronment

performed on simulations of the medium scenario, which has a different cost
scale because of only having half the commodities. Training on a non-optimized
set of hyperparameters resulted in instability during training.

In terms of TPA, as expected, greedy agents and neural network agents per-
formed similarly as on previous environment. Lookahead and B&B solve times
increased significantly with the larger optimization problem, with Lookahead
taking 730ms per action on average, and B&B upwards of 3.6 times that, at
1366ms per action taken. The standard deviation of B&B runs is also very el-
evated: this happens because some simulation steps end up being easy to solve
for the optimizer, while others require a more exhaustive search, resulting in
high variability in solve times.

Although B&B was able to outperform Lookahead in this environment, it is
difficult to justify the marginal reduction in cost for the massive increase in com-
putation time. Best Fit is a feasible heuristic that achieves good performance
for a minimal amount of computational effort.

Once again, the results do not suggest that the proposed neural network
VFAs are able to learn a good long term policy for the shipping point assignment
scenario.

92

Reward Cost TPA
Agent Mean STD Mean STD Mean STD

Lookahead 7.27 0.1 6.57 0.29 6043.83 137.81
Best Fit 7.03 0.09 8.34 0.47 0.34 0.01
Random 6.82 0.06 9.88 0.41 0.19 0.04

GNN 6.73 0.11 11.23 1.08 6.38 1.32
MLP 6.68 0.12 11.56 1.06 2.55 0.21
B&B OOM OOM OOM OOM OOM OOM

Table 12: Average metrics per agent on 30 runs of the huge environment

L
o
o
k
a
h

ea
d

B
es

t
F

it

R
a
n

d
o
m

G
N

N

M
L

P

6

7

8

9

10

11

12

Cost

L
o
o
k
a
h

ea
d

B
es

t
F

it

R
a
n

d
o
m

G
N

N

M
L

P

0

1000

2000

3000

4000

5000

6000

TPA

Figure 15: Box plots for cost and TPA per agent of the huge environment,
considering only runs of at least 15 episodes without program failure.

11.4 Huge environment

The results for the huge environment are presented in Table 12 and in the box
plots of Figure 15. However, these results are incomplete due to execution
challenges associated to the scale of the experiment. Therefore, they must be
analyzed with reservation.

The first execution challenge was associated to the environment itself. Some
experiment runs on all agents failed. While the root cause is unknown, a likely
explanation is that they are associated to a memory or garbage collection issue
from the large number of objects generated during the environment’s optimiza-
tion step. Each run takes approximately five minutes per episode for greedy
agents, and twenty six minutes for Lookahead. This translates to 20.8 and 108
hours of run time, respectively, making the experiments of the huge environment
prohibitively costly to repeat. Thus, the decision was made to present partial
results instead, with runs not containing the full 520 episodes. Additionally, for
the runs to be more comparable, the results were reported on a cutoff of 100
episodes, because only a handful of runs managed to finish through the full 250
episodes.

The second execution challenge was that it was impossible to generate any
data about the behavior of B&B. Informally, it was observed that some runs

93

failed with out of memory errors, while others did not return results for even one
simulation step after over four hours of execution. For this reason, the results
on Table 12 show the legend “OOM” for the B&B agent.

The consequence of the partial results is that the reported means and stan-
dard deviations in reward, cost and TPA cannot be regarded as representative.
With that limitation in mind, some clear trends that continue from previous ex-
periments can be observed: Lookahead is the best performing agent in terms of
cost, beating Best Fit by around 21%. Best Fit is also clearly superior to a ran-
dom choice. Meanwhile, RL agents strayed further away from the random choice
performance, relative to the results of the medium and large environments. It
cannot be determined with certainty if GNN significantly outperforms MLP in
average cost.

In terms of TPA, Lookahead is three orders of magnitude slower than all of
the other agents. Best Fit and Random take under a millisecond to generate a
decision, consistent with previous environments. MLP and GNN show only a
slight increase in TPA. GNNs unsurprisingly require a slightly longer inference
time than MLPs in this environment, as it scales with the number of nodes and
arcs in the physical network graph.

11.5 Assessment of neural network VFAs

As observed on the results of small, medium and large environments , GNN
agents can outperform random choice. On huge environments, both GNN and
MLP perform similarly to a random choice. This evidence suggests that the
NN-based VFAs may be encoding valuable information about the dynamics of
the network, but that it struggles to scale as the optimization problem becomes
more complex. The results on the large environment cast doubts about the
robustness of the learning of the RL agents with respect to hyperparameter
tuning. The results encourage further research to discover learning strategies
using GNNs to solve challenging optimization problems.

It is important to highlight that agents that leveraged neural network VFAs
struggled to surpass not only short-sighted deterministic optimizers, but even
very simple greedy heuristics such as Best Fit. In the case of MLP, its perfor-
mance can be said to be worse than a random choice. There are several factors
that could have affected the neural network agents.

First, the results show that, due to the logarithmic scaling of the reward
function, the performance of all agents in terms of average reward was virtually
indistinguishable, as can be appreciated in the box plot of Figure 16 . This sug-
gests that although the choice of reward function might have helped to stabilize
learning, it made it increasingly difficult for the NN-based agents to distinguish
the impact of one action from another on a given state. A better choice of a re-
ward function should offer both numerical stability as well a good signal-to-noise
ratio of the impact of an action on the environment.

Second, the fact that neural networks in the experiments do not manage to
outperform deterministic optimizers in any environment, suggests that neural
networks are struggling to learn both the constraints of the optimization problem

94

L
o
o
k
a
h

ea
d

B
&

B

B
es

t
F

it

G
N

N

R
a
n

d
o
m

M
L

P

7

8

9

10

11

Cost

L
o
o
k
a
h

ea
d

B
&

B

B
es

t
F

it

G
N

N

R
a
n

d
o
m

M
L

P

0.00015

0.00016

0.00017

0.00018

0.00019

Reward

Figure 16: Comparison of box plots for cost and reward for the medium envi-
ronment. While the difference in average cost is clear between agents, there is
virtually no distinguishable difference in terms of average reward.

alongside the dynamics of the stochastic variables embedded in it. Although
the network structure is encoded into the GNN, it still does not seem to be
a sufficient representation to learn both the structure and the random variable
distributions simultaneously. It must be necessary, via specialized layers or some
other mechanism, to feed the prior information of the optimization problem into
a neural network, so that the reinforcement learning agent can focus only on
learning the optimal decision given the random variables.

Third, a more exhaustive treatment of neural network architectures and
feature design might be useful to find better policies. For example, a few un-
explored ideas are: node level embeddings instead of graph level GNNs, Graph
Attention Networks, and using the greedy heuristic methods to generate neural
network features.

Finally, the marginal improvements in cost from using Lookahead to B&B
even on larger scenarios might be an indicator that the environments that were
designed do not offer much room for long term optimization of cost. It re-
mains an open question whether this phenomenon is a property of distribution
networks in general or only of this particular simulation environment. Several
improvements to the simulator are proposed in the Future Work section to shed
light on this question.

11.6 Impact of environment size on time per action

As seen on each environment, TPA varies at different rates for each agent. Figure
17 and Table 13 illustrate how this growth happens at an exponential rate for
deterministic optimizers, in line with expectations. Best Fit and Random’s
TPA remains constant with environment size. MLP also shows a relatively
constant TPA. GNN’s TPA grows slightly from medium through large. This is
an expected consequence of the GCN convolution operation, which depends on
the size of the physical network graph. There is a small, unexpected decrease in
TPA for MLP and GNN when comparing the small and medium environments,

95

Small Medium Large Huge

0

1000

2000

3000

4000

5000

6000

T
P

A
(m

s)

Agent
Lookahead

B&B

GNN

MLP

Best Fit

Random

Figure 17: Growth of average episode time with environment size for each agent.
B&B and Lookahead grow at a much higher rate than the rest of the agents.

Agent Small Medium Large Huge

Random 0.20 0.19 0.16 0.19
Best Fit 0.22 0.27 0.20 0.34

MLP 4.69 2.35 2.32 2.67
GNN 5.84 4.12 5.49 6.47

Lookahead 4.50 74.57 370.67 6032.39
B&B 16.35 349.34 1364.47 OOM

Table 13: Comparison of average TPA per agent on all environments

96

possibly due to random variations in memory transfer times between GPU and
CPU. It is worth noting that B&B was not able to generate any results at all
on the huge environment, hence the missing data point.

This view of the results highlights the relevance of finding good heuristic
methods in order to solve larger scale instances of the SPA problem, as de-
terministic optimizers are evidently unable to scale at this rate to real world
problems, while RL and heuristic-based methods present constant time.

11.7 Deterministic allocation environment

The environment simulator introduces variance to the optimization cost via two
of its mechanisms: the inventory generator, and the demand generator. At the
same time, an agent’s policy is also a source of variance, as is illustrated by the
difference in cost variances between agents: on the large environment, variance
for B&B and Lookahead were much lower, and MLP showed an even higher
variance than random. The high variance observed in average costs across all
runs of neural network agents motivates the question: How much of this observed
variance can be attributed to these two sources of uncertainty, and how much is
due to the agent’s actions? Furthermore, could the neural network agents’ poor
performance be attributed to some particular aspect of this demand generator?

To address these questions, a new scenario was designed by using the small
environment parameters and modifying the generators to ensure that a deter-
ministic mapping of orders to warehouses exists. Such a scenario enables a
clearer comparison of agent performance, especially between random choice and
the RL agents. Recall that the inventory generator distributes all of the avail-
able inventory based on a fixed Dirichlet distributed vector of allocations per
warehouse and commodity. In the new scenario, the inventory generator de-
terministically allocates all inventory required to fulfill arriving orders into the
valid warehouse with the lowest warehouse identifier, thus functioning as an
oracle of the best action. This setting removes one source of uncertainty and
guarantees that the optimal policy with minimal interplant movements on all
windows should be easy to learn by always allocating each customer’s order to
the same warehouse. Notice that in this deterministic mapping, the decision is
between the lower and upper bound on the cost for each optimization window:
if orders are allocated to the optimal warehouse, the cost to fulfill that order
will be u∗PD and the interplants resulting from it will be 0, where u is the total
number of units and PD is the cost across all arcs required for that order to
be delivered. On the other hand, any warehouse other than the optimal would
in theory result in a 100% of the order’s units being transported from a ware-
house to another, for a total cost of u ∗ PD + u ∗ PI , where PI is the cost of the
path of interplants the inventory would take to satisfy that order. In practice,
however, the interplants will not equal exactly 100% at any timestep, because
the inventory is shared across all orders, and inventory of future orders can be
used to satisfy part of the demand. Another consequence of this setting is that
optimization of the long term cost is no longer relevant, since every order has a
deterministic and locally optimal action to that time window that reduces costs

97

0 50 100 150 200 250

Episode

0

1000

2000

3000

4000

5000

6000

7000

8000
In

te
rp

la
n
ts

Agent = GNN

0 50 100 150 200 250

Episode

Agent = MLP

Figure 18: GNN and MLP’s interplants from a sample run over 250 episodes of
the deterministic allocation environment

as much as possible.
Table 14 and Figure 19 show the results for deterministic allocation with

parameters equivalent to the small environment. In this case, MLP averages a
normalized cost of 2.54 per unit, which corresponds to 3.92 times better than
random choice, while GNN’s normalized cost of 3.78 is 2.63 times better than
random choice. It is clear from this result that the RL agents are able to
understand the dynamics of this simple environment.

Regarding the difference in cost between deterministic and RL agents, it
can be explained by the ϵ-greedy search that the NN agents use to maintain
exploration. On 1% of the steps, the RL agents will select a random action that
can potentially result in unnecessary interplants.

There is a noticeable difference between GNN and MLP. It can be observed
on Figure 18 that MLP tends to stay at zero interplants besides some sporadic
spikes due to ϵ-greedy, while MLP diverges more frequently. This difference in
stability is likely due to MLP having access to the valid mask explicitly on the
feature vector, which enables it to more quickly associate a specific input neuron
with the best action for the current order. GNN, on the other hand takes longer
to converge to this policy, since it needs to propagate that information from the
warehouse nodes to the appropriate customer node.

The variance in average cost is observed to be clearly reduced on all agents
with respect to the regular small environment. Additionally, the random choice
provides a reference on how much variance can be introduced by a policy. We
observe that while Lookahead and B&B show a lower average cost with lower
variance than the RL agents, the difference between the agents’ performance is
notably reduced.

These results, when contrasted against the results of the regular small en-
vironment, confirm that the RL agents are successfully learning useful policies

98

Reward Cost TPA
Agent Mean STD Mean STD Mean STD

Lookahead 10.46 0.21 2.17 0.10 2.92 0.43
B&B 10.45 0.21 2.17 0.10 8.94 1.29
MLP 10.39 0.25 2.54 0.98 2.43 0.20

Best Fit 10.30 0.27 2.93 0.97 0.16 0.02
GNN 10.19 0.37 3.78 2.20 5.44 0.67

Random 9.22 0.34 9.97 2.59 0.13 0.01

Table 14: Average metrics per agent on 30 runs of the deterministic allocation
environment

L
o
o
k
a
h
ea

d

B
&

B

M
L

P

B
es

t
F

it

G
N

N

R
a
n
d
o
m

2

4

6

8

10

Cost

L
o
o
k
a
h
ea

d

B
&

B

M
L

P

B
es

t
F

it

G
N

N

R
a
n
d
o
m

0

2

4

6

8

TPA

Figure 19: Box plots for cost and TPA per agent on 30 runs of the deterministic
allocation environment

when the environment’s variance sources are reduced. They also confirm that
on deterministic settings, that RL-based agents can perform at least similarly
to the deterministic optimizers.

Given that the inventory allocation is the only component of the environ-
ment that enables optimization outside the current optimization window, the
question that remains is whether the demand generator is too stringent to al-
low for significant long term optimization. This question is harder to explore,
as it would require rewriting the demand generator and optimizer to support
generating excess inventory to be used in future optimization windows.

11.8 Limitations of the experiments

The evidence from the experiments on the regular SPA environments show that
none of the implemented agents was able to obtain an average reward superior
to that of a deterministic optimizer over many episodes, which is the goal of a
reinforcement learning agent. These results raise doubt as to whether it is pos-
sible to find a better policy than the short-sighted optimization of deterministic
agents, given the current network, supply and demand generating distributions.

Besides the previously discussed challenges of having a stable and informa-

99

tive reward function, there is also the question of whether the way the inventories
are generated allow for long term optimization strategies. In theory, even with
perfectly balanced inventories, the possibility of long term optimization should
exist; the inventory units generated for one order within the horizon could be
used to satisfy another that appears a few timesteps after, and await for fu-
ture inventory generations with better allocation to satisfy outstanding orders.
However, it is possible that these opportunities are marginal to the overall cost
given the current design. The possibilities to reduce inventory costs using per-
fectly balanced problems would certainly be significantly less frequent than in
a scenario where surplus inventories were allowed to exist. By simplifying the
simulator to avoid having to deal with imbalanced problems and edge cases,
we may have effectively removed the possibility of policies that optimize long
term cost. Having new inventory arrivals be periodic and not tightly bound to
orders in a horizon would also enable RL agents to learn to hold off shipping
certain orders with inefficient allocations, something that a deterministic agent
could not do. This would align more closely with a real world scenario, where
production plants periodically create new goods and ship them to warehouses.

Another fundamental limitation of experiments done with this framework
is the scalability of the problem. It is prohibitively expensive to simulate real
world scenarios with the current simulator, especially due to the problem size
scaling by a factor of K, as evidenced by the growth in TPA with the size of
the environment. Whether the results obtained with a small K would apply to
larger distribution networks with hundreds of thousands of commodities cannot
be determined at the moment.

100

12 Conclusions

In this work, a novel multistage stochastic optimization problem, called the ship-
ping point assignment (SPA) problem, was presented. It represents a distribu-
tion network with order consolidation constraints that give rise to the decisions
of how to assign order shipments to warehouses. The SPA problem is challenging
to handle with existing optimization techniques due to its high dimensionality
and high computational complexity. It was formulated as a mathematical op-
timization program, as well as a Markov decision process (MDP), in order to
optimize it using reinforcement learning techniques.

A simulator design and implementation was presented with the purpose of
gaining a better understanding of the kind of policies that are effective to min-
imize expected cost over time on the SPA problem. The simulator generates
instances of distribution networks with different structures and demand distribu-
tions that balance representing a real world distribution network with computa-
tional scalability. Agents are tasked with assigning orders to warehouses during
the simulation, with the objective of minimizing costs incurred from inventory
mismatches. The performance of a given policy may be assessed in terms of
average cost, time per action (TPA) and number of interplant movements and
average reward.

Six agents with different policies for the SPA were compared. One was a
random choice baseline. Two used deterministic optimizers: a branch & bound-
based integer programming solver and a linear programming-based lookahead
solver. One was a greedy heuristic policy that consisted in finding the best fit
according to the current inventory availability. The last two used Q learning
with different neural networks for value function approximation: one using a
multilayer perceptron and the other used GCN. Additionally, a random choice
agent was included as a baseline. For the reinforcement learning agents, a
reward function was designed in order to give feedback about the impact of the
agent’s actions in the environment’s state. A novel contribution of this work
was the use of a GCN network as a value function approximation of one of the
agents in order to leverage the graph structure of the stochastic optimization
program. The hypothesis that was presented stated that an agent leveraging
the graph structure of the distribution network by means of the aforementioned
GCN-based VFA should be superior in terms of long-term optimization cost and
time per action, when compared against the greedy policy and the deterministic
optimizers.

A set of experiments was performed in order to compare the proposed agents
in terms of their average cost and time elapsed per action on multiple instances
of the SPA with increasing optimization sizes. The experiments confirmed that
deterministic agents’ TPA increased exponentially with environment size, while
greedy and neural network agents remain at a virtually constant TPA. Fur-
thermore, the B&B agent was entirely unable to enact a policy on the largest
environment. However, the hypothesis that the reinforcement learning agents
would outperform greedy heuristic and deterministic optimizers in terms of cost
was rejected for all sizes of the SPA environment. An encouraging finding was

101

that GCN-based VFAs perform better than a random choice on certain sce-
narios. This suggests that the agents were successful in extracting some useful
information from the graph structure of the optimization problem. The fail-
ure to observe this same behavior on the larger environments highlights the
importance of hyperparameter tuning when the scale of demand changes.

The results obtained suggest that the best policies for the experiment sce-
narios are the ones based on deterministic optimizers. The two deterministic
optimizers, Lookahead and B&B, perform similarly, although B&B seems to
gain a marginal advantage in average cost as the optimization problem becomes
more complex, at the expense of a much higher computational overhead. The
marginal advantage of B&B over Lookahead also suggests that the potential
improvement of a policy that successfully optimizes cost in the long-term might
also be quite small.

Additionally, the results observed using the deterministic allocation setting
shed light on the shortcomings of the current design of the inventory and de-
mand generators. The results on this simpler environment showed dramatic
differences in cost of RL agents with respect to random choice, which confirm
the correctness in the implementation of the RL agents. It is possible that
RL agents are suitable for this problem, but the environment is too stringent
to showcase significant improvements on long-term optimization cost. Further
work is necessary in order to make deep reinforcement learning agents compet-
itive for stochastic optimization problems.

Finally, it is suspected that the reason why RL agents struggle to match even
the performance of deterministic optimizers is because they must learn both the
optimization problem constraints, as well as the stochastic variable dynamics,
in order to generate decisions that maximize long-term reward attainment. In
the future work section, improvements to the neural network architectures are
proposed to address this issue.

102

13 Future work

The results obtained in this work should motivate further research on the com-
bination of deep reinforcement learning techniques as a viable alternative to
improve upon the state of the art on challenging stochastic optimization prob-
lems that cannot be exploited by properties such as convexity of the underlying
optimization problem. Two large areas of future work can be identified. The
first is to try to improve the results attained by existing agents. The second is
to make modifications to the simulator to make it more scalable and to have
demand generators that represent different scenarios. In this section, some un-
explored ideas on these two areas are presented.

13.1 Improvement ideas for SPA agents

With respect to improving the results of the current agents, several improve-
ment ideas were left out of the scope of this work. The most important area
of improvement is exploring how to encode information of the optimization
problem into neural networks. Other improvements include: using different re-
inforcement learning algorithms, changing the architectures for the VFAs and
modifying the reward function.

13.1.1 Encoding the optimization problem into a neural network

The evidence strongly suggests that the neural networks are struggling to learn
the stochastic variable dynamics alongside the constraints of the optimization
problem. For this reason, the most promising direction of future work is to
explore encoding information about the optimization problem as prior knowl-
edge to the network. Recently, it has been shown that certain subclasses of
convex optimization problems can be differentiated through by treating them
as a function that maps problem data to solutions [111]. Moreover, Agrawal
e.t al. [112] have proposed a framework that allows to integrate differentiable
convex optimization layers for a subset of convex programs called Disciplined
Convex Programs (DCP). They implement this as a layer that can be integrated
with differentiable programming frameworks. This is achieved generally for all
DCPs by differentiating through the solutions of the cone form of a DCP (all
DCPs can be rewritten into cone form, which can be achieved by feeding the
problem in its natural mathematical form into a Domain Specific Language for
rewriting convex problems such as Cvxpy [113][114]). It might be promising to
attempt to encode the deterministic optimization window of the current state
into this framework and add it as a differentiable layer to the neural network
VFA, allowing an RL agent to focus mainly on learning the stochastic variable
dynamics to find the best policy. The question that remains for this approach
to be feasible is whether the SPA problem can be represented as a DCP. While
Integer Programs are by definition not convex, a convex approximation may be
achieved in some cases by relaxing the binary variables into a continuous [0, 1]
space. Formally demonstrating that the SPA problem is indeed a DCP requires

103

extensive work in convex analysis. However, there are convex optimization DSLs
that can be used to write an optimization problem in its natural mathemati-
cal notation in order to analyze the convexity of its variables and constraints.
We informally observed that a sample optimization window based on the SPA
constraints is indeed a DCP by writing it in the Cvxpy DSL.

13.1.2 VFA architectures

Many different and promising VFA architectures are left to explore. For exam-
ple, a Graph Attention Network (GAT) [115], might be useful to bring attention
to certain nodes of the distribution network that are more relevant to the cur-
rent window of the optimization window. Since the graph structures generated
by this problem are fairly stable (a fixed-length planning horizon with different
nodes only for the demand nodes), a spatial-temporal graph network could be
used to encode the state information from the graphs and the state transitions
simultaneously. Using Message Passing Networks, only graph-level embeddings
were used to generate decisions, but node-level embeddings could also be gener-
ated and then extract the Q values from the embeddings of the order node for
which the decision will be made. Finally, only graph embeddings on the physi-
cal network graph were explored, but an interesting strategy could be to create
embeddings from the TEN network, which encodes both spatial and temporal
information and is the graph that most closely resembles the actual network
flows problem.

13.1.3 Different reinforcement learning algorithms

This work focused more heavily on the design of VFA networks and thus, all
reinforcement learning agents used Q learning. No other reinforcement learning
algorithms such as Actor-Critic, Double DQN, Dueling DQN, were evaluated.
While these algorithms could potentially improve learning stability and con-
vergence, we consider that it is much more pressing to ensure find a VFA that
actually reduces short and long term cost before venturing into different learning
techniques.

13.1.4 Modifying the reward function

With respect to reward functions, the results obtained suggest that the chosen
reward function did not offer a strong enough signal for reinforcement learning
agents to distinguish a good policy from a bad one, since the variance between
average rewards for all agents fell under one standard deviation of each other.
One idea of a reward function that was not explored consists of evaluating the
interplant cost relative to the total overall cost,

Rt = −InterplantCostt
Costt

,

where InterplantCostt is the portion of the optimization cost related to inter-
plant flows. This reward function has the advantage of being numerically stable

104

and always between zero and one, which could be advantageous in terms of
scale for neural networks. Also, since it is a proportion of parts of the cost, this
function should be resilient to changes in total demand observed.

13.2 Modifications to the environment simulator and de-
mand generators

The implementation of the SPA environment is valuable because it enables the
evaluation of different policies to minimize long term cost, but it was evidenced
by experiments that it is limited by problem sizes, which scale with the number
of commodities, planning horizon length and number of orders per timestep.
Further technical improvements can be done to the simulator in order to scale
to larger optimization problems and be able to simulate environments that more
closely resemble real world scenarios.

Since it is not uncommon to find supply chains that are concerned with
the fulfillment of hundreds, even thousands of SKUs at the same time, making
more realistic scenarios requires supporting a high number of commodities. One
improvement in this direction is to parallelize the linear optimization routine.
Since the relaxation of fixing the shipping point of all orders means that the
optimizer runs k independent min cost flows problems, these could be solved in
parallel. For a network with high dimensionality in the number of commodities,
this would allow the simulation to scale horizontally by distributing the separate
subproblems into machines on a cluster.

Another improvement to reduce optimization times would be to solve sim-
ulation steps incrementally. Currently, the simulator constructs and optimizes
new minimum cost flows from scratch after each action. This is inefficient, since
much of the nodes and flows from one optimization step to the other will remain
the same from one timestep to another. By using this information to provide
hints of the optimal values of the decision variables, the overall optimization
time could be reduced to facilitate running larger experiments.

In order to focus on the comparison between deterministic and reinforcement
learning agents on the shipping point assignment, several simplifications to the
distribution network were imposed in this work. For example, in order to make
the generated problems always have solutions, capacities were always set to
infinite and supply always perfectly matches demand. It would be more realistic
to have limited capacities, allow for inventory generators to produce an inventory
surplus and support having supply-demand mismatches by using dummy nodes
to capture any unsatisfied demand and impose a cost on unfulfilled orders. The
evidence provided by the deterministic inventory allocator suggests that this
modification might give agents more degrees of freedom to make decisions that
optimize in the long term. Another simplification mentioned in the problem
statement was that costs were held constant for each kind of arc (inventory,
interplant, delivery), while on a real world scenario, costs would be modeled by
the distance to a warehouse, or vary according to route conditions or time of
day.

105

Finally, some simplifications of the demand generating distributions could be
removed. Currently, the generator assumes demand to be dense, which means
that all commodities are being requested on all orders for all customers. It
is more realistic to assume that customers order from a subset of the overall
commodity set, which would be generated from a vector of probabilities that
customer c orders commodity k. Another simplification is that a fixed set of
orders is generated per day Φ. This could be replaced by sampling a Poisson to
generate a certain number of daily orders.

106

References

[1] Aaron Courville, Ian Goodfellow, and Joshua Bengio. Deep Learning. In
MIT Press, volume 29. 2016.

[2] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training Recurrent Neural Networks. 30th International Conference on
Machine Learning, ICML 2013, (PART 3):2347–2355, 11 2012.

[3] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. IJCAI In-
ternational Joint Conference on Artificial Intelligence, 2019-Augus:1907–
1913, 5 2019.

[4] Lawrence V Snyder and Zuo-Jun Max Shen. Fundamentals of Supply
Chain Theory, Second Edition. Wiley, 2019.

[5] Council of Supply Chain Management Professionals. 29th Annual State of
Logistics Report. Technical report, Council of Supply Chain Management
Professionals, Washington D.C., 2018.

[6] Frank L. Hitchcock. The Distribution of a Product from Several Sources to
Numerous Localities. Journal of Mathematics and Physics, 20(1-4):224–
230, 4 1941.

[7] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-
work flows. Handbooks in Operations Research and Management Science,
50(1):99, 1989.

[8] Alex Hall, Steffen Hippler, and Martin Skutella. Multicommodity flows
over time: Efficient algorithms and complexity. Theoretical Computer
Science, 2007.

[9] John R. Birge and François Louveaux. Introduction to Stochastic Pro-
gramming. Springer, second edi edition, 2011.

[10] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and
Fuad E. Alsaadi. A survey of deep neural network architectures and their
applications. Neurocomputing, 234:11–26, 4 2017.

[11] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings. International Conference on Learning Representations,
ICLR, 9 2015.

[12] Jayashree Padmanabhan and Melvin Jose Johnson Premkumar. Machine
learning in automatic speech recognition: A survey. IETE Technical Re-
view (Institution of Electronics and Telecommunication Engineers, India),
32(4):240–251, 2015.

107

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with
Deep Reinforcement Learning. CoRR, 12 2013.

[14] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, 1 2016.

[15] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and An-
drea Lodi. Exact combinatorial optimization with graph convolutional
neural networks. In Advances in Neural Information Processing Systems,
volume 32, pages 15580–15592, 2019.

[16] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song.
Learning Combinatorial Optimization Algorithms over Graphs. Ad-
vances in Neural Information Processing Systems, 2017-Decem:6349–6359,
4 2017.

[17] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial Optimiza-
tion with Graph Convolutional Networks and Guided Tree Search. Ad-
vances in Neural Information Processing Systems, 2018-Decem:539–548,
10 2018.

[18] L. R. Ford and D. R. Fulkerson. Flows in networks. RAND Corporation,
2015.

[19] T. C. Hu. Minimum-cost flows in convex-cost networks. Naval Research
Logistics Quarterly, 13(1):1–9, 3 1966.

[20] Alex Orden. The Transhipment Problem. Management Science, 2(3):276–
285, 4 1956.

[21] G.B. Dantzig. Problems for the Numerical Analysis of the Future. In
Problems for the Numerical Analysis of the Future, number v. 15-16 in
Applied mathematics series, chapter Chapter 4, page 18. U.S. Government
Printing Office, 1951.

[22] George Bernard Dantzig. Linear Programming and Extensions, volume 53.
RAND Corporation, Santa Monica, CA, 1963.

[23] Lisa Fleischer and Martin Skutella. Quickest flows over time. SIAM
Journal on Computing, 2007.

[24] Bettina Klinz and Gerhard J. Woeginger. Minimum-cost dynamic flows:
The series-parallel case. Networks, 2004.

108

[25] Rainer E Burkard, Karin Dlaska, and Bettina Klinz. The Quickest Flow
Problem. Technical report, 1993.

[26] Lisa Fleischer, James B. Orlin, and Working Paper. Optimal rounding
of instantaneous fractional flows over time. SIAM Journal on Discrete
Mathematics, 13(August):145–153, 8 1999.

[27] Martin Groß and Martin Skutella. Maximum multicommodity flows over
time without intermediate storage. In Lecture Notes in Computer Science,
volume 7501 LNCS, pages 539–550. Springer, Berlin, Heidelberg, 2012.

[28] Warren B. Powell, Patrick Jaillet, and Amedeo Odoni. Stochastic and
dynamic networks and routing. Handbooks in Operations Research and
Management Science, 8(C):141–295, 1 1995.

[29] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
2nd edition, 2018.

[30] R. S. Sutton, Andrew G Barto, and C. J. C. H. Watkins. Learning and
Sequential Decision Making. In Michael Gabriel and John Moore, edi-
tors, Learning and Computational Neuroscience, Foundations of Adaptive
Networks, number September 1989, pages 539–602. MIT Press, 1990.

[31] Richard Bellman. The Theory of Dynamic Programming. Bulletin of the
American Mathematical Society, 1954.

[32] Richard Bellman and A Markovian Decision Process. A Markovian Deci-
sion Process. Indiana University Mathematics Journal, 1957.

[33] Warren B. Powell. Reinforcement Learning and Stochastic Optimization:
A unified framework for sequential decisions. 2021.

[34] Raymond K-M Cheung and Warren B Powell. Models and Algorithms for
Distribution Problems with Uncertain Demands. Technical report, 1996.

[35] R.M. Van Slyke and Roger Wets. L-Shaped Linear Programs With Appli-
cations To Optimal Control and Stochastic Progrqmming. SIAM Journal
on Applied Mathematics, 17(4):638–663, 7 1969.

[36] George B. Dantzig and Philip Wolfe. Decomposition Principle for Linear
Programs. Operations Research, 8(1):101–111, 2 1960.

[37] J. F. Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4(1):238–252, 12 1962.

[38] Claus C. Carøe and Jørgen Tind. L-shaped decomposition of two-stage
stochastic programs with integer recourse. Mathematical Programming,
Series B, 83(3):451–464, 11 1998.

109

[39] Shabbir Ahmed, Mohit Tawarmalani, and Nikolaos V. Sahinidis. A finite
branch-and-bound algorithm for two-stage stochastic integer programs.
Mathematical Programming, 100(2):355–377, 6 2004.

[40] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

[41] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–
408, 11 1958.

[42] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation Applied to Handwritten Zip
Code Recognition. Neural Computation, 1(4):541–551, 12 1989.

[43] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,
Maria Presa Reyes, Mei Ling Shyu, Shu Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications, 8
2018.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. Technical report,
2012.

[45] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 7
1966.

[46] Yoshua Bengio and Martin Monperrus. Non-Local Manifold Tangent
Learning. Technical report, 2004.

[47] Lawrence Cayton. Algorithms for manifold learning. 2005.

[48] Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing
the manifold hypothesis. In Advances in Neural Information Processing
Systems 23: 24th Annual Conference on Neural Information Processing
Systems, 2010.

[49] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2(5):359–
366, 1 1989.

[50] G Cybenkot. Mathematics of Control, Signals, and Systems Approxima-
tion by Superpositions of a Sigmoidal Function*. Math. Control Signals
Systems, 2(3):303–314, 1989.

[51] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve Re-
stricted Boltzmann machines. Technical report, 2010.

110

[52] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-
ing representations by back-propagating errors. Nature, 323(6088):533–
536, 1986.

[53] Léon Bottou. On-line Learning and Stochastic Approximations. In On-
Line Learning in Neural Networks, pages 9–42. Cambridge University
Press, 2 1998.

[54] D. Randall Wilson and Tony R. Martinez. The general inefficiency of batch
training for gradient descent learning. Neural Networks, 16(10):1429–1451,
12 2003.

[55] Geoffrey Roeder, Luke Metz, Google Brain, and Diederik P Kingma. On
Linear Identifiability of Learned Representations. 7 2020.

[56] Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively
characterizing neural network optimization problems. 3rd International
Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings, 12 2014.

[57] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization. In Advances
in Neural Information Processing Systems, volume 4, pages 2933–2941.
Neural information processing systems foundation, 6 2014.

[58] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Technical report, 2014.

[59] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R. Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. 7 2012.

[60] Ossama Abdel-Hamid, Abdel Rahman Mohamed, Hui Jiang, Li Deng,
Gerald Penn, and Dong Yu. Convolutional neural networks for speech
recognition. IEEE Transactions on Audio, Speech and Language Process-
ing, 22(10):1533–1545, 10 2014.

[61] Tim Hill, Marcus O’Connor, and William Remus. Neural network models
for time series forecasts. Management Science, 42(7):1082–1092, 7 1996.

[62] Y Bengio. Convolutional Networks for Images, Speech, and Time-Series
Unsupervised Learning of Speech Representations View project Parsing
View project. Technical report, 1997.

[63] Y. T. Zhou and R. Chellappa. Computation of optical flow using a neural
network. pages 71–78. Publ by IEEE, 1988.

111

[64] Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro
Shikano, and Kevin J. Lang. Phoneme Recognition Using Time-Delay
Neural Networks. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 37(3):328–339, 1989.

[65] Hava T. Siegelmann and Eduardo D. Sontag. On the computational power
of neural nets. Journal of Computer and System Sciences, 50(1):132–150,
2 1995.

[66] D Sontag, Hava T. Siegelmann, and Eduardo D. Sontag. Turing com-
putability with neural nets. Applied Mathematics Letters, 4(6):77–80, 1
1991.

[67] Paul J. Werbos. Backpropagation Through Time: What It Does and How
to Do It. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[68] Ronald J. Williams and David Zipser. A Learning Algorithm for Con-
tinually Running Fully Recurrent Neural Networks. Neural Computation,
1(2):270–280, 6 1989.

[69] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[70] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. Problem of learning
long-term dependencies in recurrent networks. In 1993 IEEE International
Conference on Neural Networks, pages 1183–1188. Publ by IEEE, 1993.

[71] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning Long-Term
Dependencies with Gradient Descent is Difficult. IEEE Transactions on
Neural Networks, 5(2):157–166, 1994.

[72] David Sussillo and L. F. Abbott. Random Walk Initialization for Training
Very Deep Feedforward Networks. 12 2014.

[73] Herbert Jaeger. Adaptive nonlinear system identification with Echo State
networks. In Advances in Neural Information Processing Systems, 2003.

[74] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time
computing without stable states: A new framework for neural computa-
tion based on perturbations. Neural Computation, 14(11):2531–2560, 11
2002.

[75] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. Technical
report, 5 2013.

[76] Tsungnan Lin, Bill G Horne, Peter Tii No, and C Lee Giles. Learning long-
term dependencies is not as diicult with NARX recurrent neural networks.
Technical report, 10 1998.

112

[77] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 11 1997.

[78] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine
translation. In EMNLP 2014 - 2014 Conference on Empirical Methods in
Natural Language Processing, Proceedings of the Conference, pages 1724–
1734. Association for Computational Linguistics (ACL), 6 2014.

[79] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling. 12 2014.

[80] Sneha Chaudhari, Varun Mithal, Gungor Polatkan, and Rohan Ramanath.
An Attentive Survey of Attention Models. 4 2019.

[81] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-
Yan Yeung. GaAN: Gated Attention Networks for Learning on Large
and Spatiotemporal Graphs. 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, 1:339–349, 3 2018.

[82] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
volume 2017-Decem, pages 5999–6009. Neural information processing sys-
tems foundation, 6 2017.

[83] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language Models are Few-Shot Learners. 5 2020.

[84] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Philip S Yu. A Comprehensive Survey on Graph Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems, pages 1–
21, 2020.

[85] Alessandro Sperduti and Antonina Starita. Supervised neural networks for
the classification of structures. IEEE Transactions on Neural Networks,
8(3):714–735, 1997.

[86] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model
for learning in graph domains. In Proceedings of the International Joint
Conference on Neural Networks, volume 2, pages 729–734, 2005.

113

[87] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transac-
tions on Neural Networks, 20(1):61–80, 2009.

[88] Alessio Micheli. Neural network for graphs: A contextual constructive
approach. IEEE Transactions on Neural Networks, 20(3):498–511, 2009.

[89] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural Message Passing for Quantum Chemistry. Tech-
nical report, 7 2017.

[90] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017 - Conference Track Proceedings. Interna-
tional Conference on Learning Representations, ICLR, 2017.

[91] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Net-
works on Graph-Structured Data. 6 2015.

[92] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order Matters:
Sequence to sequence for sets. 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, 11 2015.

[93] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filtering.
Advances in Neural Information Processing Systems, pages 3844–3852, 6
2016.

[94] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-
to-End Deep Learning Architecture for Graph Classification. Technical
Report 1, 4 2018.

[95] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L.
Hamilton, and Jure Leskovec. Hierarchical Graph Representation Learn-
ing with Differentiable Pooling. Advances in Neural Information Process-
ing Systems, 2018-Decem:4800–4810, 6 2018.

[96] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pool-
ing. In 36th International Conference on Machine Learning, ICML 2019,
volume 2019-June, pages 6661–6670. PMLR, 5 2019.

[97] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena.
Structural-RNN: Deep Learning on Spatio-Temporal Graphs. Technical
report, 2016.

[98] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-Temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecast-
ing. IJCAI International Joint Conference on Artificial Intelligence, 2018-
July:3634–3640, 9 2017.

114

[99] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan.
Attention based spatial-temporal graph convolutional networks for traf-
fic flow forecasting. In 33rd AAAI Conference on Artificial Intelligence,
AAAI 2019, 31st Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, volume 33, pages 922–929. AAAI
Press, 7 2019.

[100] Long-Ji Lin. Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching. Machine Learning 1992 8:3, 8(3):293–321, 5
1992.

[101] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529–533, 2 2015.

[102] Ilaria Giannoccaro and Pierpaolo Pontrandolfo. Inventory management in
supply chains: A reinforcement learning approach. International Journal
of Production Economics, 78(2):153–161, 2002.

[103] Afshin Oroojlooyjadid, MohammadReza Nazari, Lawrence Snyder, and
Martin Takáč. A Deep Q-Network for the Beer Game: A Deep Reinforce-
ment Learning algorithm to Solve Inventory Optimization Problems. 8
2017.

[104] S. Kamal Chaharsooghi, Jafar Heydari, and S. Hessameddin Zegordi. A
reinforcement learning model for supply chain ordering management: An
application to the beer game. Decision Support Systems, 45(4):949–959,
11 2008.

[105] Tim Stockheim, Michael Schwind, and Wolfgang Koenig. A Reinforce-
ment Learning Approach for Supply Chain Management. 1st European
Workshop on MultiAgent Systems, 40(6):1299–1317, 2002.

[106] P. Pontrandolfo, A. Gosavi, O. G. Okogbaa, and T. K. Das. Global supply
chain management: A reinforcement learning approach. International
Journal of Production Research, 40(6):1299–1317, 4 2002.

[107] Huseyin Topaloglu and Warren B Powell. Dynamic Programming Ap-
proximations for Stochastic, Time-Staged Integer Multicommodity Flow
Problems. Technical report, 2006.

[108] Julian Busch, Anton Kocheturov, Volker Tresp, and Thomas Seidl. NF-
GNN: Network Flow Graph Neural Networks for Malware Detection and
Classification. 12(18), 3 2021.

115

[109] Google Developers. OR-Tools — Google Developers, 2021.

[110] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen,
Leon Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona
Gottwald, Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten
Koch, Pierre Le Bodic, Stephen J Maher, Frederic Matter, Matthias Mil-
tenberger, Erik Mühmer, Benjamin Müller, Marc E Pfetsch, Franziska
Schlösser, Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske,
Fabian Wegscheider, Dieter Weninger, and Jakob Witzig. The SCIP Op-
timization Suite 7.0. Technical report, Optimization Online, 3 2020.

[111] Brandon Amos and J. Zico Kolter. OptNet: Differentiable Optimization
as a Layer in Neural Networks. 34th International Conference on Machine
Learning, ICML 2017, 1:179–191, 3 2017.

[112] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven
Diamond, and J. Zico Kolter. Differentiable Convex Optimization Layers.
Advances in Neural Information Processing Systems, 32, 10 2019.

[113] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd.
A rewriting system for convex optimization problems. JOURNAL OF
CONTROL AND DECISION, 5(1):42–60, 2018.

[114] Steven Diamond and Stephen Boyd. CVXPY: A Python-Embedded Mod-
eling Language for Convex Optimization. Journal of Machine Learning
Research, 17:1–5, 2016.

[115] Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adri-
ana Romero, and Yoshua Bengio. Graph Attention Networks. 6th Interna-
tional Conference on Learning Representations, ICLR 2018 - Conference
Track Proceedings, 10 2017.

116

	List of Figures
	List of Tables
	Introduction
	Conceptual framework
	Network flows
	Minimum cost flows optimization
	Transportation problem
	Network simplex algorithm
	Multicommodity flows
	Flows over time
	Multicommodity min cost flows over time
	Limitations of traditional flow models

	Reinforcement learning
	Markov decision processes
	Dynamic programming
	Monte Carlo methods
	Temporal-difference learning
	SARSA for on-policy TD control
	Q-learning for off-policy TD control
	Expected SARSA
	Value function approximations

	Stochastic optimization
	The farmer problem
	General two-stage model
	Solution methods
	Stochastic integer programming

	Deep learning
	Multilayer perceptrons
	Training and backpropagation
	Convolutional neural networks
	Recurrent neural networks
	Attention
	Graph neural networks
	Deep reinforcement learning

	Related work
	Reinforcement learning approaches to supply chain
	Dynamic resource allocation problems
	Network flows problems with graph neural networks

	Problem statement
	Shipping point assignment problem
	Mathematical formulation
	Linearization of quadratic terms
	High density demand assumption
	Simplification from other multicommodity flows problems

	Motivation and justification
	Innovation
	Impact
	Depth

	Hypothesis
	Research objectives
	General objective
	Specific objectives

	Scope and limitations
	Deliverables
	Literature review
	Optimization environment
	Reinforcement learning agent implementation
	Deterministic agents implementation
	Experiments

	Methodology
	Environment
	Simulation loop
	Demand generator
	Valid warehouse generator
	Inventory generator
	Graph generation

	Interaction with the environment
	Agents
	Random
	Best Fit
	Lookahead
	Branch and bound
	Multilayer perceptron (MLP)
	Graph neural network (GNN)

	Markov decision process
	Metrics
	Average cost
	Time per action
	Average reward
	Interplant movements

	Parameters
	Environment parameters
	Agent parameters

	Experimental technique
	Experiments
	Small
	Medium
	Large
	Huge

	Design decisions
	Handling of Big M Actions
	Choice of reward function
	Choice of cost parameters
	Episodic vs. continuous reinforcement learning
	Normalization of reported cost
	Feature design
	MLP architecture
	GNN architecture
	Hyperparameter optimization
	Deep reinforcement learning implementation details
	Training algorithm

	Execution platform

	Experiment results
	Small environment
	Medium environment
	Large environment
	Huge environment
	Assessment of neural network VFAs
	Impact of environment size on time per action
	Deterministic allocation environment
	Limitations of the experiments

	Conclusions
	Future work
	Improvement ideas for SPA agents
	Encoding the optimization problem into a neural network
	VFA architectures
	Different reinforcement learning algorithms
	Modifying the reward function

	Modifications to the environment simulator and demand generators

	References

