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Introduction. 

 Justification 

Since 1990, global CO2 emissions have increased by 50% (United Nations, 2015). Given this situation, in 

the Paris agreement, Costa Rica acquired the commitment of passing from 2 tons to 1.19 tons of 

greenhouse gas emissions per person by 2050 (Avendaño, 2017). For this reason, Costa Rica decided to 

carry out more research and innovation in non-conventional renewable energies (Gutiérrez Espeleta, 

Edgar E, 2015) identifying a potential of 576,747 MW for solar energy (Herrera Murillo, 2017). 

The Instituto Tecnológico de Costa Rica (TEC), in its 2017-2020 strategic plan, establishes "Energy" as 

one of its main areas of knowledge, where it proposes to make more efficient use of renewable energies 

(Tecnológico de Costa Rica, 2017). Part of this effort is provided by the Laboratory of Electronic Systems 

for Sustainability of the School of Electronic Engineering at TEC (SESLab), which manages 1,200 solar 

panels in operation (Mata Jiménez, 2019) and this master's degree through the Doctorate in Natural 

Sciences for Development (DOCINADE). 

Solar photovoltaic (PV) technology provides low CO2 electricity from a free and virtually inexhaustible 

source (María Fernanda & Pérez-Ruiz, 2017; Miguel A & Williams, 2016). The highest performance of PV 

systems is determined by their lifetime (International Renewable Energy Agency, 2017), which is met when 

the efficiency of the system reaches 80% with respect to the initial one (International Renewable Energy 

Agency, 2017; Rolf Frischknecht, René Itten, Parikhit Sinha, Mariska de Wild-Scholten, Jia Zhang, 2015). 

The manufacturers guarantee that the efficiency of the solar modules will drop by about 0.5 % per year 

under normal conditions, however, PV installations are not exempt from failures, which: reduce efficiency, 

increase the payback time of the investment, and may cause irreversible deterioration (permanent failures) 

(Zhao, 2015) or even generate fires (Mellit et al., 2018). Therefore, with the growth in the number of solar 

farms of up to thousands of PV panels (Watson & Hudson, 2015), the search for effective fault detection 

strategies for PV systems has become a major issue. 

There are multiple causes of failures in solar panels that are being studied to find solutions. Maghami 

(2016) studied the effect of soiling, Mekki (2016) analyzed partial shadows, and Zhao (2015) the electrical 

failures. Besides them, many other research works have been written about these faults, because they 

are among the most common (Madeti & Singh, 2017).    

To counteract this problem, multiple alternatives for failure detection have been developed. However, 

despite great efforts to generate better methods for failure detection, more experimental research is lacking 

in real low-cost systems (Mellit et al., 2018) and insufficient information has been detected to quantitatively 

compare different detection techniques.  
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The need to compare the existing alternatives in failure detection techniques has caused the generation 

of scientific research around the topic, for example, the authors Appiah, Zhang, Ayawli, & Kyeremeh (2019) 

have made a comparative analysis from the review of 40 articles, in which, it was identified that no 

quantitative data is detailed, such as the accuracy of the techniques.  

The authors Mellit, Tina, & Kalogirou (2018), from a literature review, identified the advantages and 

limitations of multiple techniques for detecting, locating, and classifying faults in PV arrays. This study 

highlights infrared thermography (IRT) and visual inspection (VI) techniques, mentioning that they are 

suitable for small and large scale installations. Also, Tsanakas, Ha, & Claudia Buerhop (2016) recommend 

their use by drones to speed up the work. Concerning electrical analysis (EA) techniques, Mellit, Tina & 

Kalogirou (2018) y Ventura & Tina, (2016) highlight that they have low hardware requirements, can detect 

practically any failure in the array, and apply to small and large scale installations. 

Therefore, according to Appiah (2019), Mellit (2018), Tsanakas (2016) and Ventura (2016) the current 

challenges were identified as: a) to implement economically profitable techniques, b) to develop efficient 

techniques, easy to implement, scalable to different technologies and small-scale installations, which 

classify, identify and detect new failures. They recommend, a) experimenting in low-cost electronic 

solutions that transmit information over the Internet, b) integrating at a large scale the methods designed 

with experimental validation to analyze the cost-complexity relationship. 

Considering that: a) there is a theoretical frame of reference about the failures and existing methods to 

detect them, b) there is a need to carry out experimentation in this subject through real cases, c) there is 

a lack of studies of quantitative experimental comparison between methods and d) the techniques of VI, 

IRT, and EA (by efficiency analysis), with low-cost platforms, are techniques that have a high potential. 

Therefore, the following research question was identified: What is the most effective method of detecting 

failures in solar panels? To contribute to answering the previous question, the scope of this research was 

defined as: to compare the effectiveness of IRT, VI, and EA from a quantitative and experimental approach, 

inducing failures due to soiling, shading, and electrical faults. As mentioned, the answer to this question 

will contribute to Sustainable Development and make PV generation more profitable by providing 

information that will be used to increase the lifetime of PV systems. 
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 Theoretical framework 

 Renewable energies in the context of sustainable development 

With the 1987 report called “Our Common Future” by the World Commission on Environment and 

Development, the term "Sustainable Development" became more important. Sustainable development can 

be understood as: "meeting the needs of the present generation without compromising the ability of future 

generations to meet their own needs" (Asamblea General de las Naciones Unidas, 2019). With the 

increase in society's needs, the challenge of meeting them sustainably over time has arisen. 

Goal 7 of the Millennium Development Goals for Sustainable Development states "Ensure environmental 

sustainability".  Society's energy demands are constantly growing, such is the case of the United States, 

wherein 2018 energy consumption was the highest in history (McFarland, 2019). Given this reality, 

renewable energies have a fundamental role to play, since they contribute to sustainable development in 

the fight against climate change. Thanks to the best technologies, competitiveness, and international 

experience developed, renewable energies have decreased their cost, making some projects even more 

profitable than fossil fuel generation (International Renewable Energy Agency, 2017). 

  Description of PV systems 

PV generation systems represent one of the most promising forms of renewable energy transformation 

today, as their cost has decreased by 80% by 2017 with respect to 2010 (International Renewable Energy 

Agency, 2017). They allow transforming the energy contained in solar radiation into electric energy 

employing solar cells. The increase in the use of these systems has made it possible to generate greater 

technical-scientific knowledge and achieve greater efficiencies over the years (International Renewable 

Energy Agency, 2017). At present, manufacturers of solar panels guarantee a lifetime between 25 and 30 

years (International Renewable Energy Agency, 2017; Rolf Frischknecht, René Itten, Parikhit Sinha, 

Mariska de Wild-Scholten, Jia Zhang, 2015), at a time they operate at 80% efficiency, however, they 

continue to operate normally after this period. 

PV systems that are connected to the grid are made up of the following components: 1) solar panels, 2) 

inverter, 3) breaker panel, 4) power meter, 5) utility service, and 6) consumer loads. In this type of system, 

the inverter seeks to extract as much energy as possible from the solar panels, which is delivered to the 

load, and the excess is delivered to the grid (ACESOLAR, 2019).  A general diagram of the parts of a grid-

connected PV system is shown in Fig. 1. In this document, attention is paid to the solar panels, which 

correspond to an arrangement of cells that are electrically interconnected with each other. The solar panels 

are connected in series or parallel arrays to the inverters (see Fig. 2). 
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Fig. 1. Main components of a grid-connected PV system. The inverter converts direct current into 
alternating current, leaving the panels connected to the grid so that they can work at maximum efficiency 

(ACESOLAR, 2019). 

 

Fig. 2. PV installation configuration constituted by 3 parallel strings of 4 panels in series each. 

 Solar panel failures 

Each of the components that are part of the PV system is susceptible to failure (Kazem & Jabar H, 2016), 

these failures will affect the operation of the system, which may decrease the performance temporarily or 

permanently, which consequently implies a decrease in its lifetime (Madeti & Singh, 2017). Among the 

parts of a PV installation, solar panels are the energy-generating component, therefore, a failure in this 

one will have a direct impact on the system performance, hence the priority that has been identified in 

finding failures in this component before others (Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-

Pérez, 2019). 

Some of the failures that can be found in solar panels are partial shading, soiling, and electrical faults 

(Chine et al., 2016; Mellit et al., 2018; Murillo-Soto & Meza, 2020a). Each of these is described below: 

 

A. Soiling failures 

The soiling of PV panels causes a reduction of the generated power, which is considered a temporary 

failure (Livera et al., 2019). Dirt, dust, leaves, pollen, or grasses are examples of substances that cause 
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soiling of solar panels, the reduction in PV module performance is greater as the soiling increases 

(Maghami et al., 2016).  

Soiling due to dust consists of particles of different sizes and materials that cover the entire photovoltaic 

module, which eventually forms uniform layers of dust and regions with greater accumulation of soiling 

(Javed et al., 2017). 

Soiling due to leaves, bird drops, or patches of dirt, covering only a few cells of the PV module, generates 

non-uniform soiling. This has a severe power loss effect and is associated with both soiling and partial 

shading. PV cells that capture less irradiance will have a lower short circuit current than the rest, forcing 

the entire module to decrease its generated current and causing a hot spot to appear (Maghami et al., 

2016). Fig. 3 shows a dirty solar panel that accumulated natural dirt distributed in non-uniform patches. 

 

Fig. 3. Monocrystalline PV module used in this research for the evaluation of natural soiling. It is possible 
to observe the presence of non-uniform dirt. 

 

B. Partial shading failures 

In a string of solar panels in series, if one of the panels is exposed to partial shading, the power generated 

will decrease and this decrease will depend on the portion of the module that is shaded and the degree to 

which it is shaded (Maghami et al., 2016; Mäki & Valkealahti, 2012). The degree of shading depends on 

the decrease in irradiance that affects the PV module. It can be weak when the irradiance decreases a 

little or strong when the irradiance decreases a lot in the shaded area. Also, it has been found that under 

strong shading conditions the power falls linearly as the shaded area increases, and under a high 

percentage of shaded area conditions, the power falls linearly as the degree of shading increases (Mäki & 

Valkealahti, 2012). An example of weak and strong shading can be seen in Fig. 4.a and Fig. 4.b, 

respectively. 
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Fig. 4. Solar panels with partial shading. In Fig 4.a a weak partial shadow is identified due to a tree that 
interrupted the passage of direct radiation. Figure 4.b shows a strong shading due to a foreign object on 

the panel. 

 

C. Electrical faults in the solar panels 

From the electrical point of view, the failures can be classified as follows, 1) ground faults, 2) faults between 

nodes, 3) open circuit faults, 4) others (Zhao, 2015). Faults cause a decrease in the power delivered and 

an increase in the temperature that varies according to the type of fault  (Appiah et al., 2019; Chaudhary 

& and D.K. Chaturvedi, 2018; Tsanakas et al., 2016; Yadong Wang et al., 2016). The types of failures 

studied in this research are illustrated in Fig. 5. 

 

Fig. 5. Types of solar cell failures. 1) Short circuit to ground, 2) short circuit in a panel and 3) open circuit. 

 

 Failure detection methods for solar panels 

Given the importance of diagnosing faults in solar panels, different techniques have been developed for 

this purpose. Each technique has different characteristics, for example, cost, possible failures to be 

detected, the complexity of the application, among others (Chen, Y H, Liang, R, Tian, Y, Wang, 2016). VI 
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is the first method to be used because it can be done without specialized equipment (Grimaccia, F, Aghaei, 

M, Mussetta, M, Leva, S, Bellezza Quater, 2015; Madeti & Singh, 2017). EA is highly implemented as the 

installation records the main variables (Ali, Mohammed Hassan, Rabhi, Abdelhamid, Hajjaji, Ahmed El, 

Tina, 2016; Chen, Y H, Liang, R, Tian, Y, Wang, 2016; Nemet, Gregory F, O’Shaughnessy, Eric, Wiser, 

Ryan, Darghouth, 2017). IRT is increasingly being used on a commercial basis (Alsafasfeh et al., 2017; 

Palmer Wahl Instrumentation group, 2007). Each has different capabilities and limitations for fault 

detection, among them, VI, IRT, and EA are classified as "advanced detection and diagnostic methods" 

(FDD) (Appiah et al., 2019; Madeti & Singh, 2017; Mellit et al., 2018). Techniques for analyzing electrical 

variables are subclassified into, (a) comparison, (b) statistical and signal processing-based, (c) 

reflectometry-based, (d) machine-learning-based, and (d) other techniques (Appiah et al., 2019; Madeti & 

Singh, 2017; Mellit et al., 2018). The techniques mentioned are briefly described below. 

 

a) Detection of faults by VI 

It consists of periodically observing visually the general state of the solar cells (Madeti & Singh, 2017). 

This method takes as a reference state the visual appearance of the solar panels in optimal conditions 

and compares it with the current visual condition of the solar cells. The visual differences are evaluated 

and interpreted to identify if they correspond to a failure and if possible to identify the type of failure 

(National renewable energy laboratory, 2012).  

The method can be done with a camera or personally by an inspector. For the correct application, it is 

required to use the light conditions according to the IEC61215 standard, also, it must be done at different 

angles to eliminate errors due to reflection. For more information related to the maintenance of solar cells 

by visual inspection, please refer to the reference (Haney & Burstein, 2013). Fig. 3 and Fig. 4 are examples 

of suboptimal conditions that can be visually detected. 

 

b) Fault detection by infrared thermography 

This method uses the pattern of heat radiated by objects in the infrared spectrum (Land Instruments 

International, 2004), which cannot be seen by the eye but can be seen by a thermal camera. Objects with 

some damage vary their thermal image, being possible to detect them with infrared thermography. The 

heat pattern of solar cells can be analyzed with thermal cameras (Kaplani, 2012). 

Under normal conditions all solar cells in a station will be exposed to the same solar radiation, generating 

the same power. Electrical conduction generates heat in the cells so that they all have the same thermal 

image. With the existence of short-circuited cells, false electrical contact, cell resistive problems, partial 

shadows, among others, there will be a higher temperature with respect to the faultless cells (Moretón et 

al., 2015). Any problem that generates temperature increase in the faulty cells will be visible as hot spots 

in the thermal image, that is, the infrared thermography method is based on the comparison of thermal 
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images between elements in good conditions and elements that are not. For example, in Fig. 6 it is 

detected from a qualitative analysis that a solar cell is hotter than the rest and in Fig. 7 a panel is observed 

that has certain sections that are hotter in comparison with the neighboring panels. 

 

Fig. 6. Thermal image of PV arrays taken at a height of 25 m with a Flir Vue Pro R camera. In this 
thermogram, dark colors represent lower temperature and light colors represent higher temperature. 

 

IRT uses the measurement of energy by infrared radiation and automatically estimates the temperature of 

the object. However, for the calculated temperature to be correct, it is required to make a detailed analysis 

of the object of interest using specialized software, for which it is necessary to know: the emissivity of the 

object, the distance between the camera and the object, the reflected temperature and the relative humidity 

(Land Instruments International, 2004).  As an example, it is possible to know quantitatively the 

temperature differences that are observed in Fig. 6 and Fig. 7. 

 

Fig. 7. Thermal image captured in this investigation of a PV array with a hot spot due to a short circuit in 
the panel that is observed to be hotter. 
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c) Fault detection through EA 

 

Multiple techniques use analysis of electrical variables for fault detection, including statistical 

methods through signal processing (Zhao, 2015), current-voltage curve analysis (I-V) (Mellit et al., 

2015), power loss analysis (Chen, Y H, Liang, R, Tian, Y, Wang, 2016) and through voltage and 

current measurements (Jones et al., 2016). These methods are based on the analysis of the 

electrical model of the solar panels. 

 

The main variables that determine the power delivered by a PV array are the irradiance and 

temperature of the cells, therefore, knowing these variables and the characteristics of the PV array 

it is possible to estimate the generation of the cell (Evans, 1981). Murillo-Soto & Meza (2020b) 

proposed a method based on the comparison of the generated power with the theoretical power 

by estimating the instantaneous efficiency. The method uses the mathematical model shown in 

equation (1). 

 

η𝑇(𝑇, 𝐺) = (𝐾1𝑇 + 𝐾2𝐺 + 𝐾3) 
( 1 ) 

Where K1, K2 y K3 are determined by equation (2) from the solar panel manufacturer's data. 

 

𝐾1 = (𝑏3𝑐2 − 𝑏2𝑐3) 𝑎2𝑏3⁄ , 𝐾2 = 𝑐2 𝑏3⁄ ,  𝐾3 = (η𝑠𝑡𝑐 − 𝑇𝑠𝑡𝑐𝐾1 − 𝐺𝑠𝑡𝑐𝐾2)   
( 2 ) 

 

Where, 𝑎2 = 𝑇𝑛𝑜𝑐𝑡 − 𝑇𝑠𝑡𝑐, 𝑏2 = 𝐺𝑛𝑜𝑐𝑡 − 𝐺𝑠𝑡𝑐 , 𝑐3 = η𝑝𝑙𝑖 − η𝑠𝑡𝑐. Stc, noct, and pli are the standard conditions, 

conditions under nominal temperature, and performance under low irradiance conditions, respectively. 

The model shown in (2) corresponds to the power generated at the terminals of the PV array, therefore, 

for greater accuracy the actual conditions should be considered, e.g., wiring losses and aging losses 

(Murillo-Soto & Meza, 2020b). 

  



15 

 

 Objectives 

 General objective 

Compare the effectivity of failure detection techniques based on visual inspection, infrared thermography, 

and measurement of electrical variables through a case study on solar panels with specific failures to 

contribute to the state of photovoltaic installations. 

 Specific objectives 

1. To design a protocol for the quantitative evaluation of the effectivity of failure detection techniques 

in solar panels of interest for conditions of soiling, partial shading, and electrical faults. 

2. To develop an experiment that evaluates each of the failure detection techniques in PV strings in 

operation under defined conditions of soiling, partial shading, and electrical failures for the 

generation of quantitative indicators of effectivity. 

3. To compare the effectivity of each technique through descriptive and inferential statistics for the 

determination of the capacities and limitations of each technique in failure detection. 
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 Methodological framework 

The project was developed through a case study with a quantitative approach and descriptive scope 

applying an experiment. According to Hernández Sampieri (2010) and Wohlin (2012), a case study is 

appropriate for this research because it has the following characteristics:  

a) can be used in complex, unpredictable, and dynamic environments, under conditions where you 

do not have control of all variables. 

b) works for comparative research between methods. 

c) can generate qualitative or quantitative conclusions from multiple sources of information. 

It was defined as five general and systematized stages as established by Wohlin (2012) for a case study. 

The stages were: 

1) Design and planning (objective 1): Based on the objectives and the defined research question, the 

object of study was identified, a theoretical framework, the methods for the collection of information, 

and the sample for the experiment were collected. 

2) Protocols (objective 1): Procedures to apply each failure detection method and the criteria for the 

detection of the failures of interest were established. 

3) Preparation and data collection (objective 2): An experiment was applied under real conditions of 

minimum control as established by Hernández Sampieri (2010). 

4) Data analysis (objective 3): Quantitative analysis of the information collected with its respective 

validation. 

5) Results report (objective 3): Generation of research conclusions. 

The following describes each of the stages. 

 Design and planning (objective 1) 

A) Literature Review 

The project began by reviewing the literature, which identified the current problems and established a 

solution that met the objectives of the research. The following is the procedure followed for the literature 

review: 

A search of scientific articles was performed in the Web of Science database. Keywords were used which 

were then combined with logical AND or OR operators as required. The search included: 1) photovoltaic 

systems, 2) failure detection methods, 3) visual inspection, 4) electrical analysis, 5) infrared thermography. 

Each search also included similar terms (synonyms) to find a larger number of articles; the results were 

limited to the last 5 years. The search yielded 158,400 articles with the first filter and then ended with 130 

articles when all filters were applied. Then, sorting by relevance was applied and the 11 articles with the 
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greatest relation to the topic and the greatest number of citations were selected. Finally, the 5 articles that 

were identified as most related to the topic of interest were selected to establish a current framework.  

Subsequently, to expand the conceptual framework, scientific articles with less than 10 years of 

publication, books, standards, and technical notes from equipment manufacturers and service providers 

related to the subject that show current information were studied. 

B) Population and data collection methods 

With the recognition of the problem, solar panels were identified as the object of study, since they have a 

significant effect on the performance of the system in comparison with the other components of a 

photovoltaic installation (Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-Pérez, 2019).  

Other case studies related to the experimental failure analysis in photovoltaic systems, which used one or 

more of the methods of this project, were taken into account to select the population and the methods of 

information collection.  

 Protocols (objective 1) 

The protocols for the development of the experiment considered the following aspects: 

a) Procedures required for each technique to be considered valid. 

Each one of the techniques is different, therefore, through a bibliographic review, the conditions required 

for the application of each one were established, which were also focused on the detection of the failures 

of interest. 

b) Criteria for the detection of each failure. 

A bibliographic review was made that established the characteristics of the information given by each 

technique in case any of the study failures were detected. This criterion allowed generating a binary 

response signal of the form: detected or not detected. 

 Preparation and data collection (Objective 2) 

A second-degree data collection was implemented, i.e., it was done at the time, but without direct contact 

with the object (Wohlin et al., 2012), this considering that all tests do not have a permanent effect on the 

PV modules. Also, each measurement was made using pre-test conditions to indirectly control the 

variables of the experiment (Hernández Sampieri et al., 2010), for this, the time and climate conditions 

required were planned according to the protocols. 

The measurements were made by category 4 observation, i.e., with a low level of interaction by the 

researcher and the object is not aware of being observed (Wohlin et al., 2012). The information was 
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digitally archived to achieve dependence on the reliability of the research (Hernández Sampieri et al., 

2010). 

 Description of the instrumentation used during the experiment (objective 2) 

From the protocols and nature of each technique under study, the requirements of the instrumentation for 

data collection were identified. 

 Design of the experiment (objective 2) 

The available resources and the nature of the study implies having to work with a small sample, so a 

design of repeated measurements by replication was used (Tango, 2017); in this study, two PV arrays 

were tested as study subjects. Each array was treated for each type of failure studied and evaluated using 

all three techniques. A control subject was also available to validate that each treatment corresponded to 

a real failure. 

 Data analysis (objective 3) 

The data were interpreted from statistical analysis with a comparative approach of the effectivity of each 

studied technique. Data analysis was done with Jamovi 1.1.9.0 statistical software, starting with descriptive 

statistics through an exploratory analysis of the data and then inferential statistics through contingency 

tables with hypothesis testing (Hernández Sampieri et al., 2010). 

 Report of results (objective 3) 

Conclusions were generated that were reflected in three scientific articles and this master's thesis. 
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Synthesis. 

 Summary of the thesis 

The main objective of this research was the quantitative comparison of the effectivity of three failure 

detection techniques in PV systems: a) VI, b) IRT, and c) EA; focused on the detection of partial shadows, 

soiling, and electrical failures. For this, an experiment was developed in a PV installation at the San Carlos 

Local Technological Campus of the Tecnológico de Costa Rica. The VI and IRT techniques were made 

using an unmanned aerial system and the electrical analysis compared the generated power with the 

estimated power using an embedded system Raspberry Pi 3 model b; each technique was implemented 

using low-cost instrumentation. The results showed that there were no significant differences in the total 

amount of failures detected by the three techniques; however, the VI was the best at detecting soiling and 

the worst at detecting electrical failures. Also, partial shadows were the type of failure that was most 

detected by all the techniques. Therefore, to detect as many faults as possible, VI should be combined 

with IRT or EA. This research contributes to the search for better fault detection techniques, also, the 

methodology developed can be replicated to compare other techniques and other types of faults. Finally, 

the results create objective indicators for the generation of suitable maintenance plans that will achieve a 

greater contribution to the environment and more profitable generation projects.   

 Articles 

The thesis was developed from a compendium of three articles, as indicated below: 

 

1. Cardinale-Villalobos, L., Rimolo-Donadio, R., & Meza, C. (2020). Solar panel failure detection by 

infrared UAS digital photogrammetry: a case study. International Journal of Renewable Energy 

Research (IJRER), 10(3). https://ijrer.com/index.php/ijrer/article/view/1104Indexed in Scopus 

 

2. Cardinale-Villalobos, L., Meza, C., & Murillo-Soto, L. (2020). Experimental comparison of visual 

inspection and infrared thermography for the detection of soling and partial shading in photovoltaic 

arrays. In S. Nesmachnow & L. Hernández Callejo (Eds.), Smart Cities, Third Ibero-American 

Congress, ICSC-Cities 2020, San José, Costa Rica, November 9-11, 2020, Revised Selected 

Papers (1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-69136-3 

Indexed in Scopus 

 

3. Cardinale-Villalobos, L., Meza, C., Méndez-Porras, A. & Murillo-Soto, L. D (2021).  Quantitative 

comparison of infrared thermography, visual inspection, and electrical analysis techniques on 
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photovoltaic panels: a case study. To be submitted. 

 

Each one of the articles has a contribution to the specific objectives of the thesis, allowing this, to reach 

the general objective of the research. The contribution of each one is indicated below. 

The protocols (objective 1) of each technique studied were determined from the review of the literature. 

In article 1, the IRT is presented in detail and the protocol is tested in an experimental approach. The 

protocol of the VI is presented in article 2 and for the EA in article 3. 

Article 2 presents the design of the research experiment (objective 2) and it is used to compare IRT and 

VI in the presence of soiling and partial shading faults. 

Article 3 develops objective 3. In this one, the design of the experiment of article 2 was replicated, now to 

compare the effectivity of the three techniques (IRT, VI, and EA) considering the three faults of interest 

(partial shadows, soiling, and electrical faults).  
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Abstract- Infrared thermal photogrammetry is an attractive solution for the diagnosis of photovoltaic systems. Traditional 

systems often require high-end drones and expensive cameras, but more recently, low-cost thermal sensors on board of small-

scale drone platforms suitable for digital photogrammetry have emerged as a promising approach. Nevertheless, studies 

evaluating its effectiveness can barely be found in the literature.  

Unlike many works in the literature that analyze individual images, through digital photogrammetry it is also possible to create 

orthomosaics of complete installations or high-resolution maps of segments that cannot be visualized and analyzed properly with 

single images. 

In this work, a photogrammetric thermal analysis methodology with a small-scale drone and a thermal camera is presented and 

a case of study is analyzed. To validate and quantitatively scale the results, functional tests on the panels were performed and 

temperature measurements with a thermocouple on the panels were carried out. The results from both single images and 

orthomosaics confirm that it is possible to obtain qualitative and quantitative information to detect failures in solar panel 

installations with a low-cost thermal sensor on board of small-scale drone platforms. These results may be useful for defining 

surveillance and maintenance procedures with low-cost equipment in photovoltaic installations, which can help for early 

detection of failures, operation with higher efficiency and to achieve longer lifetimes of the panels. 

 

Keywords Photovoltaic system, Photogrammetric techniques, Infrared thermal imaging, Unmanned aerial vehicle, Solar panel. 

 

1. Introduction 

Steady cost reduction in photovoltaic (PV) solar 

technology has made it possible to significantly increase the 

number of installations worldwide. PV installations with 

hundreds of thousands of PV modules that occupy thousands 

of hectares are not uncommon [1]. In grid-connected solar 

installations, PV modules are connected in series, forming 

strings that are then connected in parallel. In this scenario, a 

fault in a single cell in a PV module affects all the modules 

electrically connected to it. 

In this context, techniques related to the operation and 

maintenance of PV modules acquired greater importance. As 

reported in [2], expert visual inspection and fault analysis in a 

3 MW installation take 60 days. Thus, developing techniques 

that diagnosticate faults efficiently in shorter times becomes a 

necessity. 

Multiple failures can manifest in solar modules, some of 

them are shading and hot spots [3, 4, 5]. Shading exists when 

there are cells of a solar panel that are subjected to less solar 

radiation due to external shadows (see Fig. 1) [6, 7, 8, 9, 10]. 

Hot spots exist when at least one solar cell in an illuminated 

module has a considerably smaller short-circuit current than 

the other cells [11]. All of the above-mentioned faults cause 

an efficiency decrease [12, 5, 13, 14], i.e., they correspond to 

sub-optimal operating conditions.    
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Fig. 1. Example of a solar panel with a partial shadow. 

 

Infrared thermography (IT) is a failure detection 

technique [15], which is based on the analysis of thermal 

images of solar panels [16, 17], it allows the identification of 

temperature gradients or hot spots that can be associated with 

panel failures [16, 18, 19]. This failure detection technique 

does not require contact with the element of interest and 

generates a large amount of qualitative and quantitative 

information for each image; this allows the estimation of the 

temperature of each pixel in the thermogram [11]. Fig. 2 

shows a fault detected in a solar panel by a thermogram taken 

with a drone. 

 

 

Fig. 2. Solar panel thermogram showing a fault (hot 

spot), taken with a drone. 

 

The correct application of IT can be complex, especially 

in the large areas of solar farms with thousands of PV panels. 

Because the solar panels are oriented upwards and sometimes 

on roofs, it is often necessary to make the inspections from 

high points. Unmanned aerial systems (UAS), also known as 

drones, with onboard thermal cameras, are therefore a useful 

tool for this task; they enable inspections from the air and 

through digital photogrammetry techniques it is possible to 

detect failures in an agile way [11, 20]. Fig. 2 shows an 

example of a thermogram taken with a drone.  

Due to the variety of failures and a large number of solar 

panels that can be involved in an inspection, the capabilities 

of the drones and the requirements for IT analysis demand a 

systematic engineering planning for each mission that include 

both photogrammetry and individual thermograms [21, 11]. 

This article demonstrates that it is possible to detect 

failures in solar panels with low-cost drones and thermal 

cameras, both through individual image and orthomosaic 

analysis, applying procedures similar to those available in the 

literature that had been validated with high-end equipment. 

This work provides an approach that might contribute making 

decisions in the maintenance management of photovoltaic 

systems.  

The article is structured as follows: Section 2 discusses 

briefly previous works and the tools and methods applied, 

section 3 addresses the configuration of the experiment, and 

section 4 shows the results with their respective analysis. 

Section 5 gathers the main conclusions and perspectives for 

further work. 

 

2. Photovoltaic fault detection and infrared thermal 

photogrammetry 

Two main aspects of fault detection are considered in this 

work: the presence of hot spots and partial shading. After 

discussing briefly both cases, the basics for their assessment 

through UAS imagery and photogrammetry are discussed in 

this section.  

2.1. Thermal imaging characterization of solar panels with 

hot spots 

In a solar panel, multiple failures manifest as hot spots, 

i.e., small surfaces in a PV cell that exhibit an anomalously 

high temperature with respect to the neighbouring areas. For 

example, in [22], the following thermal gradients have been 

related with faults: a) poor thermal conductivity of the cell's 

encapsulation material reached 100 °C, b) a micro defect in 

the cell reached 71.3 °C and c) deformations in resins with a 

temperature of 136.1 °C. In [11],  hot spots were detected due 

to: cell breaks, false contacts, defective welds, and inactive 

modules due to bypass diode failures [11].  

A hot spot varies in size depending on the type of fault, 

for example, we can find faults that cover a set of cells (open 

circuit [11]) or a fraction of the cell (microdefect  [22]). Thus, 

the size of the fault is a parameter that determines the spatial 

resolution required for the images taken in a drone mission, a 

parameter known as ground sampling distance (GSD). The 

temperature variation due to a hot spot is also an indicator of 

the severity of the fault, where less than 10° is considered 

within the normal operation tolerance [23, 15]; however, at 

lower irradiance, the temperature variation of a fault will 

decrease [24]. 
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2.2. Characterization of panel thermograms with partial 

shading  

The region of a solar panel that is found to have lower 

radiation levels, i.e., it is partially shaded, will experience a 

higher temperature [21, 25]. This type of hot spot can range 

from a fraction of a cell (e.g., bird droppings) [11] to multiple 

cells (e.g., the shadow of an object close to the panel) [21]. 

According to tests carried out by [26, 27], there may also be 

cases in which a shadow that covers several cells of the panel, 

not all or only one, will experience heating. The temperature 

variation in tests made by [27] with partial shadows was 

between 10 °C - 20 °C, however, smaller temperature 

variations were also found. 

2.3. Digital photogrammetry 

Panel faults can be of different sizes and must be detected 

most of the time over large installations, which imply that a 

large number of images with good resolution are required. 

Since from many single images it might be difficult to identify 

the exact position of the fault, digital photogrammetric 

techniques can be used for the creation of orthomosaic views 

of the complete area with georeferencing, thermogram raster 

and three-dimensional (3D) or 2.5 D profiles of the installation 

from a set of 2D images. 

To apply this technique, images should be taken along a 

predefined flight route that covers the area under study and 

provides enough lateral and frontal overlap among images (of 

at least 60%). The data set is then processed to find 

coincidence points among images in order to align them, as 

depicted in Fig. 3. From this step, the matched points are used 

to project the model in a 3D space in the form of a sparse point 

cloud. This cloud is refined to create the dense point cloud 

from which diverse photogrammetric products such as 

orthomosaics or digital elevation models.  

The flow used in this work is based on the well know SIFT 

and SfM algorithms, implemented in the commercial software 

tool called Agisoft Metashape, which is the same described in 

[28, 29]. 

2.4. Considerations for implementing photogrammetric 

surveys 

In our approach, it is assumed that the thermal camera 

uses an uncooled microbolometer sensor (UMS) that measures 

infrared radiation and thus estimates the temperature of the 

object [21]. This means that the camera does not perform a 

direct measurement of temperature and therefore the acquired 

images require interpretation. 

The measurement should be made at a time with sufficient 

irradiance to allow the capture of thermal contrasts, with a 

correct angle and without wind currents that generate 

convection cooling [21], constant sunlight conditions with a 

clear sky are also desirable so that solar panels in good 

conditions have a homogeneous thermal distribution [11]. In 

[21], it is recommended to have an irradiance between 500 

W/m2 and 700 W/m2 and to capture the images with an angle 

between 5° and 60° with respect to the perpendicular of the 

 

Fig. 3. Illustration of a photogrammetric survey and 

aligned post-processed images to construct the point clouds. 

 

 

Fig. 4. Recommended orientation of the thermal camera 

with respect to the panel position. 

 

panel (see Fig. 4). In [15] they indicate that the irradiance 

should be greater than 700 W/m2 with an angle between 0° - 

30° from the perpendicular direction. Also, the drone can 

create a partial shadow, so it is recommended to take the 

measurements in the morning or the afternoon, when the 

shadow is no projected on the capture footprint [21]. 

The height is determined from the required spatial 

resolution or GSD; according to [30], 15 cm/px are required 

for quick inspections at panel string level, 5.5 cm/px for 

annual preventive inspections and 3.0 ± 0.5 cm/px for deep 

inspections, which, according to IEC TS 62446-3, can detect 

dirt and white spots at cell level [21]. 

It is recommended that thermal images are captured with 

georeferenced metadata (GPS coordinates) that facilitates 

their photogrammetric processing  [21]. In the case of using 

ground control points for precise georeferencing, it is 

recommended to use aluminum markers, because in the 

thermogram they are observed in black color due to their low 

emissivity [21]. This represents an additional cost in material 

and time, however, in large facilities where the missions will 

be repeated and compared many times, this cost is justified 

[21]. 

According to [31], the camera's emissivity should be set 

to 0.90 for crystalline cells, and [15] recommends 0.85.  

Concerning the flight speed, it should be low to avoid 

blurry images. In [32], good results were obtained at 1.0 m/s, 

in comparison to other experiments with higher speeds in the 

generation of RGB orthophotos. Of course, flight times must 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  

L.Cardinale-Villalobos et al., Vol.10, No.3, September, 2020 

25 

 

be adjusted accordingly to the autonomy of the drone and area 

to be covered. 

 

3. Case Study  

A DJI Phantom 4 UAS with a FLIR Thermal camera was 

used to inspect a photovoltaic installation in operation, using 

the photogrammetric approach described in section 2. This 

section describes the site, the flight missions, and 

configuration settings used. 

3.1. PV station analyzed. 

The Tecnológico de Costa Rica (TEC) has in its campuses 

in Costa Rica PV installations with about 1,200 panels that are 

managed by the Laboratory of Electronic Systems for 

Sustainability (SESLAB); the energy generated is distributed 

to different facilities in the campuses [33]. For this article, the 

19.4 kW PV station located in Santa Clara, San Carlos, was 

taken as the evaluation site (see Fig. 5), which has the 

following characteristics: 

1) Configuration: 72 panels distributed in 6 strings of 12 

panels in series (see Fig. 6), with 3 monocrystalline and 3 

polycrystalline strings. 

2) Dimensions: The panels are 1650 mm x 992 mm and 

the strings are 4.95 m x 3.97 m. 

3) Geolocation WGS-84: 10.361085, -84.509056. 

An RGB picture taken with the drone is shown in Fig. 6. 

 

 

Fig. 5. Aerial photograph of TEC's photovoltaic station 

(identified in red) located in San Carlos. Source: Google 

Maps. 

 

Fig. 6. Aerial photograph of the photovoltaic installation, 

where each string is identified. 

3.2. Description of the UAV and thermal camera. 

A commercial Phantom 4 Pro multirotor drone was the 

UAS platform, with a thermal camera attached. According to 

the manufacturer, the drone (see Fig. 7) weights 1388 g and a 

flight time of 30 minutes without the thermographic system. 

 

 

Fig. 7. Drone with RGB and thermal camera used in this 

work. 

 

To use the thermal camera with the drone, the following 

components were included: voltage regulator, 7" monitor (to 

view the camera image wirelessly), LIPO 3S battery, remote 

control for the thermal camera gimbal, and the FLIR VUE 

PRO R camera. 

Table 1 shows the specifications of the thermal camera. 

The camera has a fixed focus set by the manufacturer. The 

color palette range is automatically adjusted to improve 

viewing; it cannot be adjusted manually. 
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Table 1. Characteristics of the FLIR VUE PRO R 336 

thermal camera [34, 35]. 

Parameter Value 

HFOV x VFOV 25° x 19° 

Sensor (width x height) 5.764 mm x 4.351 mm 

Focal length 13.00 mm 

Image width x height 336 x 256 

Frequency 9 Hz 

Weight 4 oz 

Accuracy +/- 5°C o 5% from reading 

Spectral band 7.5 µm -13.5 µm 

Size 

57.4 mm x 44,45 mm x 

44,45 mm 

Input voltage 4.8 VDC - 6.0 VDC 

Power dissipation (Peak) 2.1 W (3.9 W) 

Thermal sensitivity 40 mK 

Sensor Uncooled microbolometer 

3.3. Thermal camera setup 

The camera was configured with the FLIR UAS 2 

application. The configuration was done via Bluetooth, 

starting to take pictures before take-off and then turning off 

the Bluetooth to avoid interference with the mission. Table 2 

shows the configured parameters. 

Table 2. Parameters for image capture and 

thermographic analysis 

Parameter Value 

Distance 24 m 

Emissivity 0.9 

Color palette Fusion 

Humidity >60 % 

Reflected temperature 22 °C 

Average Atmospheric 

Temperature 

30 °C  

Interval between 

captures 

1 s 

File extension RJPEG for Still Images / 

Tiff for Orthomosaic 

3.4. Orientation used for the thermal camera. 

To satisfy the premises indicated in section 2.4, the 

inclination of the panels α = 9° must be considered. The 

orientation used with respect to the vertical plane β + α was 

30° (β = 21°) (see Fig. 8). 

 

Fig. 8. Diagram of the orientation of the thermal camera 

relative to the solar panel. 

3.5. Flight Plan. 

The route of the mission was made manually following 

the recommendations in section 2.4. The route used is shown 

in Fig. 9. 

 

Fig. 9. Route employed in the infrared photogrammetry 

mission. 

With Eq. (1) [36], the height to reach an effective GSD of 

3.0 cm/pixel was determined.  

ℎ = (𝑓𝑟 ∙ 𝐼𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ ∙ 𝐺𝑆𝐷) (100 ∙ 𝑆𝑊)⁄  ( 1 ) 

where fr is the focal length of the image sensor, Imagewidth 

is the footprint of the image on the panel and Sw is the size of 

the sensor. This was adjusted considering 1.3 m (see Fig. 10) 

of the solar minimum panel height, resulting in a maximum 

flight height (h) of 24 m from the take-off ground level. 

 

Fig. 10. Top and side view diagram of a solar panel 

string. The green line represents the way they are electrically 

interconnected 
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4. Results and discussion 

4.1. Generation of the orthomosaic. 

The mission reported here was performed on November 

9, 2019, with the following considerations: flight height of 

23.7 m, the thermal camera was turned on 60 min before the 

flight to achieve greater stabilization in the temperature of the 

camera, and the images began to be taken at 14:48 h local time 

with 96% battery and ended at 14:57 h with 32% of charge. 

Additional images were taken and the drone landed at 14:59 h 

with 20% of battery charge. 

The weather was partially cloudy with an irradiance of 

523 W/m2, the ambient temperature of the camera was set to 

30 °C, and the drone flight speed was less than 1 m/s. Because 

the mission was manual with low flight speed, the effective 

overlap was greater than required (90%). Images were taken 

every second independently of the drone's operation, 

generating approximately 600 images during the mission. It 

was found that with a mission of 11 min the battery was 

consumed to 20% (remaining charge to switch to the "return 

to home" mode), showing that the autonomy decreases 

considerably from the 30 min indicated by the manufacturer 

under normal conditions (without the additional equipment for 

thermography measurement). For inspections in larger PV 

stations, multiple missions would be required or an alternative 

UAS platform with more flexible payload configuration or 

capacity could be used. 

The data processing was done with Agisoft Metashape 

v1.5.5. Not required photos were manually removed, 

processing 525 images. A raster transformation was made (see 

Fig. 11 for the selected palette) and the processes shown in 

Table 3 were applied. The photogrammetric process allowed 

the generation of the orthomosaic in Fig. 12.  

 

 

Fig. 11. Color palette assigned for raster processing. 

Source: image adapted from Agisoft Metashape. 

 

Table 3. Parameters used for the creation of the 

orthomosaic. 

Procedure Parameters 

Align photos Accuracy: Highest 

Generic preselection 

Apply mask to: key points 

Build dense cloud Quality: High 

Depth filtering: Aggressive 

Calculate point colors 

Build Mesh Source data: Dense cloud 

Surface type: Height field (2.5D) 

Face count: High 

Build Texture Mapping mode: Orthophoto 

Blending mode: Mosaic 

Enable hole filling 

Enable ghosting filter 

Build Tiled Model Source data: Dense Cloud 

Face count: High 

Enable ghosting filter 

Build Orthomosaic Type: Planar 

Projection plane: Top XY 

Surface: Mesh 

Blending mode: Mosaic 

Enable hole filling 

 

 

Fig. 12. Orthomosaic generated from the UAS mission. 

This process was laborious, requiring masks to be placed 

on panel strings 1 and 5 due to variations in the tonality of the 

images by the self-calibration of the camera. A large number 

of images was used concerning the area covered, however, the 

processing time for the orthomosaic was 19 minutes with 11 

seconds using a server with an Intel Xeon CPU X5675@3.07 

GHz, 64 GB of RAM and 4 CUDA GPUs @ 849 MHz with 

4096 MB of RAM; the process is relatively fast due to the low 

resolution of the thermal images in comparison to RGB 

images that usually require several MB per image. 

The orthomosaic generated allowed the apparent 

temperature of the PV installation to be evaluated from a 

mailto:X5675@3.07
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qualitative point of view. String 2 was found to have a higher 

temperature than the others. On strings 5 and 6 a cell was 

identified as being hotter than its neighboring cells (see Fig. 

13).  With this, it is shown that the GSD of 3 cm/pixel used is 

sufficient to visualize thermal information at the cell level, 

which meets the requirements, mentioned in 2.4, to detect hot 

spots and partial shadows; however, this will be possible only 

if the orthomosaic has no distortion at the cell level. Regarding 

the heating of string 2, it was later found that the associated 

panels were not in operation due to an undetected failure in 

the main switch; this proved the possibility of detecting 

failures at string level. 

 

 

Fig. 13. Identification of cells with higher temperature 

(indicated in green) in the orthomosaic for string 5 (left) and 

string 6 (right). 

 

The image processing presented difficulties due to the 

variation in the tonality of consecutive images due to 

automatic self-calibration of the camera. Therefore, it is 

important that the environmental conditions during the 

mission do not change considerably to avoid obtain different 

color maps within the images. Although the images could be 

pre-processed to balance the maps, this issue requires further 

analysis in future work. 

4.2. Individual images. 

Since the color map after the photogrammetric process 

might vary from the actual scale associated with certain 

temperature levels, after the general inspection it was required 

to acquire single images at the points where anomalies were 

detected.  

A second mission to collect these additional images was 

performed on October 29, 2019, using the same protocol as for 

the orthomosaic mission; about 57 images were taken during 

the flight, the weather was clear with irradiance between 535 

W/m2 - 633 W/m2, the ambient temperature in the camera was 

set to 30 °C. The image processing was done with the Flir 

Tools application. Forty images were selected, which allowed 

an analysis of the condition of each string. Two of the 

processed images are shown in Fig. 14 and Fig. 15. 

The results of the individual images are in conformity 

with those of the orthomosaic since it was also qualitatively 

identified that strings 5 and 6 have a warmer cell (Fig. 14); the 

quantitative analysis shows that the cells with higher 

temperature have a variation of less than 3 °C from those with 

normal temperature, which is within the expected normal 

operation range. It was also possible to identify the higher 

heating of the entire string 2 with respect to the 3 (Fig. 15). 

 

 
Fig. 14. Thermal image of strings 5 and 6 (from left to 

right). Two cells are displayed with a higher temperature 

which after a quantitative analysis indicates a temperature 

differential of 2.9 °C (left) and 1.1 °C (right). 

 

 

Fig. 15. Thermal image analysis of strings 2 and 3 (from 

left to right) using Flir Tools software 

4.3. Result validation 

To validate the thermography estimations, it is possible to 

perform direct temperature measurements with thermocouples 

[37, 38], keeping in mind that the aim is not to find the same 

temperature measurements, since this would require that the 

measurements be simultaneous to ensure the same 

environmental conditions, however, the temperature 

variations must be consistent. To address this, the following 

procedure was applied between Feb. 27 and March 5, 2020: 

a) In strings 5 and 6, measurements were taken with a 

thermocouple on the back of the hot cell (the cell with the 

highest temperature in the thermogram) and of another cell 

with normal temperature. The results are shown in Table 4. 
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b) An additional thermogram was taken on string 2 (Fig. 

16) after correcting the fault detected in the main switch. In 

this new experiment, a new hot point was found, for which a 

thermocouple temperature measurement was made to validate 

the new thermogram (see Table 5). 

Table 4. Temperature of the hottest cells identified in 

strings 5 and 6. On-site irradiance was between 773 W/m2 

and 830 W/m2. 

String 

Temperature measured with 

thermocouple [C°] 

Hot cell Reference cell Difference 

5 45 38 7 

6 44 41 3 

 

 

Fig. 16. Analysis of the thermograph of string 1 (left) 

and string 2 (right) after repairing the false contact in the 

main switch of string 2. 

Table 5. Hot spot measurements of string 2 by 

thermography and contact measurement. 

Measuring 

mechanism 

Temperature (°C)  

Hot 

cell 

Cold 

Cell 

Difference Irradiance 

(W/m2) 

Thermography 73.6 47.5 26.1 932 

Contact 

measurement 

65 39 26 886 

 

Table 4 shows that the thermocouple measurement in the 

hot cells of strings 5 and 6 have a temperature difference of up 

to 7 °C, in contrast to the thermography where the difference 

was less than 3 °C (Fig. 14). This is to be expected because 

the irradiance was higher during thermocouple measurements, 

which generates more heating in the panels [24]. The results 

are satisfactory, as they agree with the diagnosis that there is 

no failure until a difference of 10 °C is present, as mentioned 

in Section 2.1. 

The thermogram of string 2 after correcting the fault in 

the main switch (Fig. 16) shows a difference of 1.1 °C with 

respect to a neighbouring string, whereas, with the fault 

present, it was 2.3 °C (Fig. 15). This indicates that a small 

temperature increase between strings may indicate a fault, in 

this case, an open circuit. 

The cell with the highest temperature identified in string 

2 shows, both with the thermograph and with the 

thermocouple measurement, a difference in temperature 

higher than 26 °C (see Table 5), which tells that the 

quantitative information of the thermograph allows to 

effectively detect a failure at the cell level. 

4.4. Comparison between orthomosaic and individual images 

It can be stated from the previous evaluation that the 

uncalibrated orthomosaic can provide a general overview of 

the installation, and allows to identify suspicious areas where 

fails might occur. However, this approach in its current form 

does not provide precise quantitative information.  

In contrast, with individual thermograms, it is possible to 

obtain quantitative data but without being able to observe the 

full installation, and this approach can be used as a second pass 

to inspect suspicious areas observed in the orthomosaic.  This 

means that both, the photogrammetric analysis and 

thermogram are required and can be viewed as complementary 

tools to achieve a precise evaluation of a photovoltaic 

installation. 

Although the minimum irradiance conditions indicated in 

section 2.4 were assured, the greater the irradiance present at 

the site, the greater the thermal contrast will be when a failure 

exists [24]; however, this can be a challenge at sites with 

varying climatic conditions, such as this research site. 

 

5. Conclusions 

The results showed that with relatively low-cost 

equipment it is possible to achieve the necessary autonomy 

and precision requirements to detect failures, due to hot spots 

for instance, or inadequate operating conditions such as partial 

shadows in crystalline silicon photovoltaic installations. The 

presented approach is very useful in the management of 

photovoltaic installations, as it may allow extending the life of 

the system, which also can improve the return of investment 

and contribute to sustainable development. 

Using the applied methodology, individual images 

allowed detecting failures with reliable quantitative 

information, although with the difficulty of identifying the 

string of interest and not achieving a vision of the complete 

installation. In contrast, the orthomosaic showed a complete 

picture of the PV installation with a good resolution, enabling 

qualitative analysis that guided the detection of possible 

failures at the cell level, identifying the string of interest 

easily. 

Good correlation of thermograms with respect to 

thermocouples measurements on the panels could be 

observed. This is a useful resource as a complement to the 

general uncalibrated orthomosaic obtained through 

photogrammetry.   
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The qualitative information of the orthomosaic is useful 

but can also lead to false positives, as in the case here that two 

spots on the orthomosaics of strings 5 and 6 were discarded 

after evaluation of the thermogram. The self-calibration of the 

thermal camera made it difficult to generate orthomosaic with 

even color scales, even after giving one hour for stabilization 

of the temperature in the camera.  

The autonomy and stability of the small scale drone used 

are significantly affected by the inclusion of additional 

equipment for thermography; therefore, for larger 

installations, a larger GSD would be necessary or many 

consecutive missions would be required to cover the entire 

area. Other UAS platforms with more flexible management of 

the payload in the same range of price could solve this issue 

for larger installations. 

Future work will address photogrammetric surveying with 

autonomous flight missions, to reduce the number of images 

and consequently the mission execution and data processing 

times. Calibration of the processed orthomosaics, to adjust 

color maps to actual temperature values, is also a topic for 

further investigation. 
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Abstract. Soling and partial shading of solar panels are two of the most
common conditions that affects the power yield of a photovoltaic (PV)
installation. Even though human inspection can easily identify such sit-
uations, in the case of large power plants covering thousands of hectares
it is not practical. In this regard, unmanned areal systems (UAS) repre-
sents a useful tool to gather images in a short time for the inspection of
thousands of PV panels. Using RGB and infrared cameras, UAS can be
used to perform visual inspection (VI) and infrared thermography (IRT)
to detect failures in PV arrays. The present paper presents the results
of an experiment designed to evaluate the effectiveness of VI and IRT
for detecting soiling and partial shadowing. It has been found that for
the aforementioned conditions VI are more effective. Also, the method-
ology presented can be used as a reference for future research for other
techniques and other failures. The results provide technical-scientific in-
formation for those in charge of operation and maintenance to make an
objective choice of failure detection techniques.

Keywords: Solar PV System · Fault detection performance · Partial
shading · Soiling · Thermography

1 Introduction

A photovoltaic (PV) power plant is capable of operating for more than 25 years
and due to its low energy density the installations can occupy thousands of
hectares [38]. A group of PV panels are connected in series to form strings and,
in some cases, in parallel to form arrays injecting the generated energy through
a power inverter. Weather, soling and obstacles that produces shadows yield
suboptimal conditions in the PV array, i.e., the group of PV panels produces less
power than expected. In the case of soling or obstructing elements the suboptimal
condition can be corrected if detected. In this regard, strategies related to the
operation and maintenance of PV modules acquired greater importance. Even
though such conditions can be identified by human operators, as reported in [12],



expert visual inspection and fault analysis in a 3 MW installation take 60 days.
Thus, developing techniques that detects such suboptimal conditions in shorter
time becomes a necessity.

There are several techniques to identify faults and suboptimal techniques,
e.g. [37], [9], [5], [32], [22], [17], [20], [12], [4], [30], [29]. Two of the most promising
are based on imaging, given that these techniques do not require to intervene
the PV power plant circuit, does not require contact with the element of interest
and generates a large amount of qualitative and quantitative information for
each image. Such images can be taken in a relative short time if unmanned
aerial systems (UAS) are used. UAS also known as drones with onboard thermal
cameras enable inspections from the air and through digital photogrammetry
techniques it is possible to detect failures in an agile way (e.g., [15], [36]).

The camera attached to the UAS can be of the type that captures the red,
green, blue (RGB) band or the infrared band. With an infrared band detection
camera it is possible to obtain thermal images of solar panels which allows the
identification of temperature gradients or hot spots that can be associated with
panel failures [2,23]. Such technique is referred as infrared thermography (IRT).

The present paper compares two drone image-based fault detection tech-
niques: (1) visual inspection (VI) based on RGB images and (2) a strategy based
on IRT through infrared images. An experiment has been designed to measure
the performance of the aforementioned techniques for partial shadowing and soil-
ing, which represents two of the most common suboptimal techniques. The rest
of the paper is structured as follows: firts the suboptimal conditions considered
are described, then the material and methods are presented. Section 4 presents
the main results and section 5 gathers the main conclusions.

2 Suboptimal conditions considered

For the comparative analysis we consider the following suboptimal conditions:

– Partial shadowing: The power generated by a series of solar panels will suffer
a decrease in the power generated when they are partially shaded [27]. Partial
shading can be caused by objects located in the surface on the panel or by
objects not in contact with the panel. The power affectation depends on
the portion of the module that is shaded and on the degree to which it is
shaded [24,31]. An example of a shadowed panel is shown in Fig. 1.

– Soiling: can be caused due to the presence of a thin layer of particles such
as soil, dust, leaves, pollen or bird droppings [24]. The PV power affectation
is greater as the soiling increases. A dirty PV module is shown in Fig. 2.
Soling can be uniform or non-uniform. Dirt due to dust consists of particles
of different sizes and materials that cover the entire PV module, which, over
time, will form uniform layers of dust and regions with greater accumulation
of dirt [18]. Non-uniform dirt covering only some cells of the PV module, due
to leaves, bird droppings or patches of soil have a severe power loss effect,
this type of failure is associated with both soiling and partial shading. PV
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cells that capture less irradiance have a lower short circuit current than the
rest, causing the entire module to deliver less current. In addition, dirty cells
will cause a hot spot that can be detected with IRT [24].

Fig. 1. Partial shadow on a PV panel (left) and strange object on a PV panel (right).

Fig. 2. Soiled PV module.

3 Materials and methods

3.1 The PV installation analyzed

The data used to compare VI and IRT suboptimal detection techniques consisted
of images from a ground mounted PV installation located in Santa Clara, Costa
Rica. The details of the PV installation are shown in Table 1.
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Table 1. Information about the PV installation analyzed

Longitude -84.51

Latitude 10.36

Azimut angle 0° with respect to the South

Inclination angle 15°
Peak DC power 19.4

Number of PV panels 72

PV panel models Canadian Solar CS6k-280M and
HANWHA Q-Cells QPRO BFR G4.3

Total surface (m2) 125

Performance factor (%) 77.7

Annual Yield (MWh) 28.69

Date of commissioning May 31st, 2017

Figure 3 shows an aerial view of the PV installation considered, where it can
be seen that the site consists of six well distinguished sections. Each section has
a string of 12 PV modules connected to an inverter SMA Sunny Boy 3000TL-
US. In this analysis only strings 2, 4, and 6, shown in Fig. 3, were used. The
aforementioned strings have a direct current STC power of 3380 W.

Fig. 3. Picture of the PV installation. Strings 2, 4 and 6 were used in this research.

3.2 Image capturing

The data used to determine the suboptimal conditions in the PV installation
consisted of images taken from an (UAS). The following considerations have
been considered to take the images:

– The drone is always flown at a height greater than 5 m to avoid that it causes
shadows on the panels [20].
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– The flight height depends on the detail that is necessary to observe in the PV
modules for proper fault detection, thus, the size of the fault has been taken
into account to determine the spatial resolution require for the images taken
in a drone mission (ground sampling distance (GSD) [8]). A GSD of 3.0±0.5
cm/px is required for deep inspections [9], allowing to detect possible hot
spots at cell level [4].

– The measurements were made at a time with sufficient irradiance to allow
the capture of thermal contrasts, with a correct angle and without wind
currents that generate convection cooling [40], constant sunlight conditions
with a clear sky are also desirable so that solar panels in good conditions
have a homogeneous thermal distribution [36].

– The images were captured with an angle between 5°and 60°with respect
to the perpendicular of the panel (see Fig. 4) [40] and the irradiance was
always greater than 700W/m2 [16]. The camera’s emissivity was set to 0.85
for crystalline cells as indicated in [17].

– The drone was set to consecutive image capture as recommended in [37,40]
for fault detection in PV installations.

Fig. 4. Recommended orientation of the thermal camera with respect to the panel
position.

A commercial Phantom 4 Pro multirotor drone was used as the UAS platform
(see Fig. 5). The characteristics of the RGB and thermal infrared camera are
shown in Table 2 and 3, respectively.

Table 2. Characteristics of the RGB camera used

Parameter Value

Sensor 1” CMOS/ Effective pixels 20M

Lens FOV 84° 8.8 mm/24mm

PIV Image Size 4096 x 2160

Photo JPEG

Image Size 3:2, 4:3, 16:9

ISO Range 100-3200 (Auto)
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Fig. 5. Drone with RGB and thermal camera used in this research.

Table 3. Characteristics of the FLIR VUE PRO R 336 thermal camera [10,11]

Parameter Value

HFOV x VFOV 25°x 19°
Sensor (width x height) 5.764 mm x 4.351 mm

Focal length 13.00 mm

Image width x height 336 x 256

Frequency 9 Hz

Accuracy +/- 5 °C o 5% from reading

Thermal sensitivity 40 mK

Sensor Uncooled microbolometer
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3.3 Other instruments and measurements

On-site irradiance was measured with a Spektron 210 sensor and the ambient
temperature and relative humidity from a Vantage Pro 2 weather station. The
power from the inverters was taken from the built-in SMA data logging system.
A schematic of the system is shown in Fig. 6.

Fig. 6. Schematic diagram of communication links to information sources.

3.4 Experiments

The research was developed through a case study applying an experiment. Pre-
defined temporary suboptimal conditions were induced to the PV installation
in operation which allowed collecting and processing quantitative information
to compare the IRT and VI techniques through statistical analysis. Taking as
reference [14,39] the following stages were used:

– Selection of the sample and information sources.
– Design of the experiment.
– Definition of protocols and criteria for the interpretation of results.

The experiment used a repeated measurement design because multiple treat-
ments had to be applied to the same subjects [35]. A total of 28 experimental
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units were analyzed from the 8 treatments applied to the 2 subjects (Strings 4
and 6). String 2 was used as a control subject to establish a reference condition
in each experimental unit for the normal operation of the PV strings, i.e. without
applying failures. The factors and levels evaluated are shown in Table 4.

Table 4. Factors and levels used in the experiment to generate the diverse treatments.

Failure Factor Level

S1

Soiling

10 months of natural soil
S2 30 months of natural soil
S3 12 cells with white spots
S4 12 cells with dry leaves from the site
S5 21 cells with white spots
S6 21 cells with dry leaves from the site

PS1
Partial shading

Shading of approximately 70% of a panel’s area
PS2 2 shadows, each approximately 30% of the area of a panel

The treatments were applied to the subjects without interaction between fac-
tors. Each level was applied in both subjects making two repetitions in each one.
The selection of the modules of each string to which the failure was applied was
chosen at random. The partial shadows were limited to the modules on the right
margin due to site conditions. It was considered that there is an independent
relationship between the treatments, because they were randomized and do not
generate a residual effect in the subject [13], i.e., the PV string return to their
normal state once the treatment is removed.

3.5 Description of each factor and the levels of the experiment

– A. Soiling

Table 4 describes the dirt conditions used for faults S1 - S6. Faults S1 and S2
allowed the generation of soil conditions that cause weak shading [24]. Natural
dirt accumulated in the solar panels over time was used as suggested in [18]
which states that it is possible to take as an indicator of soiling the exposure
time that the module has been under natural conditions.

Failures S3 and S5 were made to generate a strong obstruction of the irradi-
ance due to some strange object on the solar panel. Samples of glass of 480 mm
x 160 mm x 5 mm were prepared in which white paint was placed to simulate
dirt on the PV module (see Fig. 7); this allowed to replicate the treatments in
multiple moments in different positions of the PV array. The experiment took
as a reference the methodology used in [34] to study the effects of dirt on solar
modules.

Faults S4 and S6 are a variation of S3 and S5 to evaluate soiling. In this case,
dry leaves and seeds were used, where to achieve repeatability in the experiment
the objects were adhered to the glass with cold silicon (see Fig. 8).
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Fig. 7. Glass with white circles used to simulate dirt obstructing the path of radiation
in three PV cells.

Fig. 8. Glass with dry leaves and seeds to simulate dirt obstructing the radiation path
in three PV cells.

– B. Partial shading

The experiment was developed by applying shadows to the solar modules in
operation. The methodology took as reference experiences of previous investiga-
tions, in which, they placed an object to obstruct the solar radiation of a portion
of the solar module, allowing that it influences diffuse radiation [26]. The two
partial shading levels (PS1 and PS2) applied were made by placing an object
next to the PV string to create the shadow (Fig. 9).

3.6 Protocol for missions with UAS

As mentioned previously, for each treatment a flight was performed with the
UAS capturing RGB and infrared images of the PV strings of interest ensuring
that the requirements indicated in section 3.2 were met. The flight height was
25 m according to the GSD equation presented by [21] to obtain a maximum
GSD of 3.0 cm/pixel in thermal images and even less in RGB images.

The thermal images were configured to contain the radiometric information
in RJPEG format. Thermographs were taken every 1 s and RGB images ev-
ery 2 s during each test. The orientation of the cameras with respect to the
perpendicular plane of the module was around 20 °C.

For each test, the irradiance, ambient temperature and relative humidity
were recorded. Each treatment was applied 15 minutes before the measurement
was taken to ensure that thermal equilibrium existed [17].
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Fig. 9. Example of partial shadows generated on the PV modules.

3.7 Fault detection criteria

The temperature variation due to a hot spot is an indicator of the severity
of the fault, where less than 10 °C is considered within the normal operation
tolerance [16, 28] however, at lower irradiance, the temperature variation of a
fault will decrease [7].

Fault detection in PV installations by VI can be done following the detailed
guidance of [32]. For example, it is possible to identify soiling by evaluating the
appearance of the solar modules so that it is classified as: clean, slightly dirty or
very dirty. Furthermore, the dirt can be classified according to its location as:
close to the frames or located somewhere on the glass (e.g. bird droppings). Par-
tial shadows can be identified by observing the glass surface of the PV module.

According to the literature review, the criteria for the detection of the failures
of interest for the applied techniques were determined. The criteria used are
shown in the Table 5.

Table 5. Criteria used for the determination of failures

Technique Criteria for fault detection

IRT Hot spot with a delta ≥ 10 °C

VI
Presence of radiation attenuation on the panel due to shade
Appearance of light or heavy soiling
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3.8 Date and conditions of the experiment

All measurements were made between august 18 and september 2, 2020. The
average ambient temperature was 30 °C, the relative humidity 60 % and the
reflected temperature 22 °C.

3.9 Measurement normalizing

The three mono-crystalline strings are equivalent, however, their output power
may vary slightly, so the power of the strings under test (String 4 and String 6)
were compared with the control String 2 to set a reference level. Table 6 shows
the variation in the average output power under non-fault conditions after two
hours of operation with an irradiance greater than 700 W/m2.

Table 6. Power comparison of the string under test with respect to the control string

String Power (W) Variation (%)

2 (control) 2549 -

4 2566 0.67

6 2534 -0.59

4 Results and discussion

The results of the induced suboptimal conditions are shown in Table 7. Each one
of the induced condition was considered as a fault because it caused a decrease
of at least 4 % in the power of the array [1].

Table 7. Power effect of the faults studied

Fault (String) Power in
control

string (W)

Power in
string under
test (W)

Estimated
power without

fault (W)

Losses
(%)

PS1 (4) 2224 1920 2239 14.2

PS2 (6) 3133 2746 3115 11.9

S1 (4) 2137 1879 2151 12.7

S2 (6) 2137 1461 2124 31.3

S3 (6) 2421 1994 2407 17.1

S4 (4) 2421 1749 2437 28.3

S5 (6) 2094 1648 2082 20.8

S6 (4) 2094 1573 2108 25.4
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4.1 RGB and IR images analysis

The most representative images that identifies suboptimal conditions are shown
in Fig. 10 to 15. For each experimental unit, a discrete output variable was
generated to indicate whether or not the technique detected failure; the results
are shown in Table 8.

Fig. 10. RGB (left) and IR image (right) analyzed for experimental unit 1.

Fig. 11. RGB (left) and IR image (right) analyzed for experimental unit 2.

Figure 16 shows the summary of the failures detected with each of the tech-
niques. It can be seen that VI identified more failures than IRT. The VI was
able to detect all the failures, on the other hand, the IRT detected only 68% of
the evaluated test, missing 45% of the cases of soiling.

The results of soiling failures for IRT are shown in the Fig. 17. IRT was not
able to detect the 30 month natural soiling (S2). Also the types of soiling with
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Fig. 12. RGB (left) and IR image (right) analyzed for experimental unit 6.

Fig. 13. RGB (left) and IR image (right) analyzed for experimental unit 18.

Fig. 14. RGB (left) and IR image (right) analyzed for experimental unit 19.
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Fig. 15. RGB (left) and IR image (right) analyzed for experimental unit 22.

Table 8. Output variable of the experiment for IRT and VI. D = Detected, ND = Not
detected

Experimental unit Treatment IRT output VI output

1 S1 D D

2 S2 ND D

3 S1 D D

4 S2 ND D

5 S4 ND D

6 S6 D D

7 S4 D D

8 S6 D D

9 S4 D D

10 S6 ND D

11 S4 D D

12 S6 D D

13 S5 ND D

14 S3 ND D

15 S5 ND D

16 S3 D D

17 S5 D D

18 S3 D D

19 S5 ND D

20 S3 ND D

21 PS1 D D

22 PS2 D D

23 PS1 D D

24 PS2 D D

25 PS1 D D

26 PS2 D D

27 PS1 D D

28 PS2 D D
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Fig. 16. Percentage of failures detected by each technique in the experiment.

white spots (S3 and S5) were the least detected. Finally, for the soiling with
dry leaves (S4 and S6) there was one case of each that the failure could not be
detected. Therefore, IRT is able to detect all types of soiling evaluated, however,
there are levels of soiling that were not detected in some cases.

Fig. 17. Failures detected and not detected by the IRT under soiled conditions.
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The detection of the failures was done strictly following the criteria of Table
5. However, in Fig. 11 it can be seen that through the IRT it was possible to
appreciate a distortion in the thermal distribution of the PV array. In addition,
in Fig. 14 it was possible to identify specific regions of lower temperature on the
PV modules and temperature gradients lower than 10 °C, even though none of
these cases met the requirement to be cataloged as failures, this suggests that,
to detect soiling suboptimal conditions a lower threshold for the temperature
gradient might be required.

4.2 Statistical analysis

To determine if one method performed significantly better than the other, a
hypothesis test was done using Fisher’s exact test [3, 19] as follows:

H0 : Ni = Nj

Ha : Ni 6= Nj

∀i 6= j

Where N is the number of identified failures, i and j are IRT and VI tech-
niques respectively.

The test yields a p-value of p = 0.002 and odds ratio (OR) = 27.8, therefore,
considering a significance level of α = 0.05 it fulfills the alternative hypothesis
(p < α), i.e. significant differences were found between both methods [6]. In
addition, when evaluating the hypothesis tests for each of the failure factors
(soiling and partial shading) with the contingency tables shown in the Table 9,
significant differences were obtained for soiling (S) with p = 0.001 and an OR
= 33.87. The OR coefficient obtained in both cases indicate that there is a high
probability that a fault will be not detect using IRT instead of VI, specifically
detecting soiling [25]. That is, the VI is associated with a greater capacity for
dirt detection compared to the IRT.

Table 9. Contingency table separating the factors (types of failures) of the experiment

.

Factor Technique
Result

Total
Not Detected Detected

S
TI 9 11 20
VI 0 20 20
Total 9 31 40

PS
TI 0 8 8
VI 0 8 8
Total 0 16 16

Total
TI 9 19 40
VI 0 28 40
Total 9 47 56
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Another way to compare both methods is by the sensitivity in the effective-
ness of fault detection, this is based on the analysis of true positives achieved by
each technique [33]. The results show that IRT had a sensitivity of 68% while
VI had 100%.

5 Conclusions

The present paper has analyzed two image-based fault detection technique (IRT
and VI) for photovoltaic arrays for two of the most common temporary faults or
suboptimal conditions, i.e., soiling and shading. Partial shadows were correctly
detected with both techniques, however, IRT did not perform as well as VI
for the detection of soiling. Nevertheless, IRT did detect at least once all the
types of faults evaluated. The results also suggest that soling with IRT might be
detectable if a temperature difference threshold smaller than 10 °C is used.

The methodology used allowed a quantitative comparison from experimental
data between two techniques for failure detection in PV systems. This can be
used for future experiments with other configurations of PV arrays and other
types of failures, making it possible to validate theoretical models that are still
being studied and to generate quantitative indicators of the effectiveness of each
technique. Including treatments of conditions that are an apparent failure but
without a significant affectation on power will allow studying the capacity of
each technique to discriminate between true and false failures; this is pending
for future research.
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Abstract. Solar farms are exposed to failures that cause a decrease in
performance. Infrared thermography (IRT), visual inspection (VI) and
electrical analysis (EA) are examples of methods to deal with faults. In
order to make the best use of the PV installation, it is necessary to make
optimal use of failure detection techniques, however, there is a lack of
information about the effectiveness of each method to achieve this. This
article calculates and compares the effectiveness of VI, IRT and EA in
detecting soiling, partial shadows and electrical faults by applying an
experiment in a real PV system using low-cost equipment. The results
showed that there were no significant differences in the number of failures
detected by the three techniques, however, the visual inspection was the
best at detecting soiling and the worst at detecting electrical failures,
in addition, the partial shadows were the type of failure that was most
detected by all the techniques. The results contribute to a better use of
PV systems, through objective information for the correct selection of
failure detection methods.

Keywords: Solar PV System · Fault detection performance · Partial
shading · Soiling · electrical faults · Thermography · electrical analysis

1 Introduction

The benefit of PV systems is determined by their performance over their lifetime.
Due to electrical failures, partial shading and soiling, the power delivered by the
solar panels decreases and may even generate irreversible damage [Zhao, 2015].
Therefore, it is critical to be able to effectively detect these conditions.

By using infrared thermography [Zefri et al., 2018], visual inspection [Madeti
and Singh, 2017] and electrical analysis [Murillo-Soto and Meza, 2020], it is



possible to detect failures to act in a timely manner before a major impact on
the energy delivered [Zhao, 2015] or a fire occurs [Mellit et al., 2018], These have
contributed to the better performance of the system over time [Madeti and Singh,
2017] and to fire prevention [Mellit et al., 2018]. Although these techniques have
been widely used, there is a lack of quantitative information [Appiah et al., 2019]
that allows us to know their effectiveness in detecting failures, therefore, it is not
possible to give optimal maintenance to PV systems through a correct selection
of failure detection methods. To contribute to the solution of the problem, as
a previous stage to this research, a methodology was proposed to compare the
effectiveness for failure detection of infrared thermography and visual inspection
[Cardinale-Villalobos et al., 2020b].

In this research an experiment was developed replicating the methodology
and experiment proposed by [Cardinale-Villalobos et al., 2020b]. In this way, it
was compared the effectiveness of IRT, VI and EA to detect failures by shading,
soiling and electrical faults. The rest of the paper is structured as follows: firts the
suboptimal conditions considered are described, then the material and methods
are presented. Section 4 presents the main results and section 5 gathers the main
conclusions.

This research contributes to the characterization of failure detection meth-
ods from the generation of quantitative indicators that have been absent. This
contributes to a better selection of failure detection methods, and also allows
identifying the strengths and limitations of each method in the face of specific
failures, which can be used to improve each failure detection technique.

2 Suboptimal conditions considered

For the comparative analysis we consider the following suboptimal conditions:

– Partial shadowing: A partial shadow on a PV array creates a specific region
in which the irradiance is lower, resulting in a decrease in the power of the
entire array [Mellit et al., 2018]. Figure 1 shows a PV array with a shaded
region due to a tree on the left, and dirt on the panel on the right. Both
cases cause a decrease in power, which will depend on the size and degree of
shading [Mäki and Valkealahti, 2012,Maghami et al., 2016].

– Soiling: The presence of dust, leaves, dirt and generally any kind of dirt
will cause a decrease in the power generated by a solar array, which will be
greater as the amount of dirt increases [Maghami et al., 2016]. Uniform dirt
(evenly distributed dust) [Javed et al., 2017] and non-uniform dirt (patches
of dirt or bird drops) will have an affection on the power; the latter can also
be classified as shading, since it creates a decrease in the irradiance that
affects the PV panel, equivalent to a partial shade. The effect on the power
due to non-uniform dirt causes a hot spot to be formed [Maghami et al.,
2016]. Figure 2 shows a PV array with natural dirt, in which, non-uniform
dirt can be observed.
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– Electrical Faults: From the electrical point of view, the failures can be classi-
fied as follows 1) Ground faults, 2) Interline faults, 3) Open circuit faults, 4)
others. [Zhao, 2015]. Faults cause a decrease in the power delivered and an
increase in the temperature that varies according to the type of fault [Ap-
piah et al., 2019,Chaudhary et al., 2018,Tsanakas et al., 2016,Wang et al.,
2016]. In this investigation, the following faults were applied: short circuit
in a panel, ground fault, and open circuit. These are represented in Fig. 3
with red lines.

Fig. 1. PV-chain of the analysed installation, with partial shade due to a tree (left)
and dirt due to a foreign object (right).

Fig. 2. Monocrystalline PV module analyzed with the presence of natural non-uniform
dirt.

57



Fig. 3. Types of solar panel failures analyzed in this research. 1) Short circuit to ground,
2) Short circuit in panel and 3) Open circuit.

3 Materials and methods

As it was mentioned before, it was replicated the methodology proposed by
[Cardinale-Villalobos et al., 2020a], in order to analyze the effectiveness of a
failure detection method for the analysis of electric variables. Moreover, the
results were used to compare VI, IRT and EA techniques in case of soiling,
shading and electric faults. The methodology is detailed in the following sections.

3.1 The PV installation analyzed

The photovoltaic installation used for this research has a ground mount and is
located at the San Carlos Local Technological Campus in Santa Clara, Costa
Rica. It is made up of six PV arrays, of which, three of monocrystalline technol-
ogy were used for the development of the experiment because the EA method
is designed for monocrystalline modules. The details of the PV arrays used are
shown in the Table 1.

Table 1. Information about the PV arrays analyzed

Longitude -84.51

Latitude 10.36

Azimut angle 0° with respect to the South

Inclination angle 15°
Peak DC power (kW) 3.36

Number of PV panels 12

PV panel models Canadian Solar CS6k-280M

Total surface (m2) 19.6

Date of commissioning May 31st, 2017
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The installation used in the research consists of 6 PV arrays of 12 monocrys-
talline and polycrystalline modules in series, each connected to a Sunny Boy
3000TL-US SMA inverter. The monocrystalline arrays selected as test subjects
in this research are identified by the numbers 2, 4 and 6 in the Fig. 4.

Fig. 4. Aerial photo of the analyzed PV installation. The monocrystalline strings 2, 4
and 6 were used in this research.

3.2 Instrumentation

For the development of the experiment, a drone and a series of instruments were
used as detailed in Fig. 6. Each one is detailed below:

– Drone Phanton 4 Pro with a FLIR VUE PRO R thermal camera. The spec-
ifications of the RGB camera are shown in Table 2 and those of the thermal
camera in Table 3.

– Vantage Pro2 Weather Station with temperature sensor to measure the am-
bient temperature required for thermogram analysis. Accuracy is 0.3 °C.

– Spektron 2010 pylanometer to verify that minimum irradiance conditions
are met and to apply the EA method. The accuracy is ± 5% of the annual
measurement.

– Invert for the measurement of real power required by the AI. Accuracy meets
ANSI C12.20 standard.

– Digital contact temperature sensor model DS18B20 to apply the AI. Accu-
racy is ± 0.5 °C.

3.3 Experiments

An experiment was developed by inducing the faults of interest and the three
fault detection techniques were applied to each one.

The experiment used a repeated measurement design because multiple treat-
ments had to be applied to the same subjects [Tango, 2017]. A total of 40 ex-
perimental units were analyzed from the 11 treatments applied to the 2 subjects
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Fig. 5. Side (left) and front (right) view of the drone with infrared and RGB cameras
used in the investigation.

Table 2. Characteristics of the RGB camera used

Parameter Value

Sensor 1” CMOS/ Effective pixels 20M

Lens FOV 84° 8.8 mm/24mm

PIV Image Size 4096 x 2160

Photo JPEG

Image Size 3:2, 4:3, 16:9

ISO Range 100-3200 (Auto)

Table 3. Characteristics of the FLIR VUE PRO R 336 thermal camera [Flir.com,
2019,Flir, 2019]

Parameter Value

HFOV x VFOV 25°x 19°
Sensor (width x height) 5.764 mm x 4.351 mm

Focal length 13.00 mm

Image width x height 336 x 256

Frequency 9 Hz

Accuracy +/- 5 °C o 5% from reading

Thermal sensitivity 40 mK

Sensor Uncooled microbolometer
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Fig. 6. Schematic diagram of the communication links used to access the information
sources of the experiment.

(Strings 4 and 6). String 2 was used as a control subject to establish a reference
condition in each experimental unit for the normal operation of the PV strings,
i.e. without applying failures. The factors and levels evaluated are shown in Table
4.

The treatments were applied to the subjects without interaction between
factors. Each level was applied in both subjects making two repetitions in each
one (Except S1 and S2, which were each applied to a single test subject because
it was natural soiling). The selection of the modules of each string to which
the failure was applied was chosen at random. It was assumed that there is an
independent relationship between the treatments, because they were randomized
and do not generate a residual effect in the subject [Gutiérreza-Pulido and De
la Vara-Salazar, 2008], i.e., the PV string return to their normal state once
the treatment is removed. Each of the treatments is described in the following
section.

3.4 Description of each factor and the levels of the experiment

The soiling and partial shading treatments developed in [Cardinale-Villalobos
et al., 2020a] were replicated and the treatments corresponding to electrical
failures were included. Each is described in this section.

– A. Soiling

Six soiling treatments were used; these are identified as S1-S6 in table 4.
For the treatments S3 and S5, the glasses shown in Fig. 7) were used. For the
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Table 4. Factors (types of failures) and levels used to generate the diverse treatments
to be evaluated in the experiment.

Treatment Factor Level

S1

Soiling

10 months of natural soil
S2 30 months of natural soil
S3 12 cells with white spots
S4 12 cells with dry leaves from the site
S5 21 cells with white spots
S6 21 cells with dry leaves from the site

PS1
Partial shading

Shading of approximately 70% of a panel’s area
PS2 2 shadows, each approximately 30% of the area of a panel

E1
Electrical fault

Short circuit in module
E2 Ground fault in second module
E3 Open circuit in the array

treatments S4 and S6 the glasses shown in Fig. 8 were used. The glasses used
were 480mm x 160mm x 5mm.

The treatments S3 and S5 were prepared by applying white paint to the glass.
Treatments S4 and S6 used leaves and seeds found on site around the solar panels.
These treatments represent failures due to strong shading [Maghami et al., 2016].

Fig. 7. Glass with white circles used to simulate dirt obstructing the path of radiation
in three PV cells.

– B. Partial shading

The PS1 and PS2 treatments generated a natural shade allowing the inci-
dence of diffuse radiation [Mekki et al., 2016]. For this, an object was placed
next to the PV array (see Fig. 9) at 9:30 am for PS1 and at 10:30 am for PS2.

– C. Electrical faults
In previous research work, electrical failures were evaluated at the experi-
mental level by modifying the electrical connections of the PV system, e.g.
open circuits and short circuits [Zhao et al., 2013]. Using this as a reference,
switches were installed in the study PV arrays to emulated that effect; an
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Fig. 8. Glass with dry leaves and seeds to simulate dirt obstructing the radiation path
in three PV cells.

Fig. 9. Object used to generate the treatments of partial shade failures. The shadow
generated corresponds to the PS1 treatment.

electrical diagram of how this was implemented is shown in Fig 10. The E1
treatment was randomly located in each of the experimental units evaluated.
E2 was applied maintaining the fixed position to generate a short circuit at a
low voltage and not to expose the circuit to electric arcs. The E3 treatment
has the same effect in any location due to the series circuit configuration of
all the modules, therefore, the location of the switch was not changed.
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Fig. 10. Diagram of the location of the switches used to generate the electrical failure
treatments evaluated in the experiment.

3.5 Protocol for IRT and VI missions

The protocol used in [Cardinale-Villalobos et al., 2020b] was replicated. For each
treatment, a flight was made with the UAS capturing RGB and infrared images
of the PV chains. The flight height was 25 m to detect possible failures with
a PV cell resolution [Cardinale-Villalobos et al., 2020b] for IRT and VI. The
irradiance was always higher than 700 W/m2 with an angle around 20° from
the panel perpendicular, the sky was clear and there were no wind currents.
Emissivity was 0.85 for IRT. Consecutive images were taken every 1 s for the
IRT and 2 s for the VI. The thermal images were configured to contain the
radiometric information in RJPEG format.

For each test, the irradiance, ambient temperature and relative humidity were
recorded. Each treatment was applied 15 minutes before the measurement was
taken to ensure that thermal equilibrium existed [International Energy Agency,
2018].

3.6 Protocol for EA measurements

This method was based on the comparison between the real generated power
and the estimated theoretical power. The model used to estimate the generated
power is the one proposed by [Murillo-Soto and Meza, 2020]; see (1).
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ηT (T,G) = −765.231E − 6 · T + 7.484E − 06 ·G+ 182.712E − 3

(1)

For greater accuracy in the model, wiring and aging losses were included as
shown below:

ηl(T,G) = ηT (T,G)(1− lw)(1− ly)

(2)

Where, lw = 0.01 and represents the electrical wiring losses and ly = 0.03625
represents the aging losses according to the manufacturer’s information. Finally,
the system was tested under normal conditions to be empirically calibrated using
the control subject (string 2), so a correction factor k was applied and a constant
a was added to obtain the equation used by the EA method:

ηE(T,G) = 1.0111ηE − 35.734)

(3)

When applying each treatment, it was waited at least 5 minutes to take the
measurements of the required physical variables, ensuring that the measurement
corresponded to the steady state of the failure. In order to establish this parame-
ter, it was considered that in case of a variation in the PV array conditions (e.g.,
a failure), the inverter takes a time to reach the stability of the new operation
point [Pradhan and Panda, 2020], although this time can be less than 1 s, it was
decided to leave a longer time.

Each measurement was obtained from the average of 1 min, this in order to
have a measurement that was not affected by external fluctuations, namely: a)
sudden changes in weather conditions and b) difference between the sampling
times of the real power and the variables to estimate the theoretical power.

3.7 Fault detection criteria

The IRT was based on the analysis of the images in search of hot spots using the
criteria indicated by [Moretón et al., 2015, International Energy Agency, 2014].

The VI considered the guide presented by [National Renewable Energy Lab-
oratory, 2012].

For the EA method, the literature review showed that there is no single
criterion that defines how much power loss can be considered a failure. For this
research we used the criteria proposed by [Acciani et al., 2010], which indicates
that a failure exists when the power falls by at least 4%.

Table 5 details the fault detection criteria used in the experiment.
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Table 5. Criteria used for each technique evaluated to detect the failures induced from
each treatment

Technique Criteria for fault detection

IRT
Hot spot with a delta ≥ 10 °C
PV-chain with a temperature delta 3.5 C in relation to a neighboring chain

VI
Presence of radiation attenuation on the panel due to shade
Appearance of light or heavy soiling
Burned marks or discoloration

EA Reduction of 4% or more compared to the theoretical power

3.8 Date and conditions of the experiment

The IRT and VI measurements were made between august 18th and september
2nd, 2020. EA measurements were made between September 17th and October
30th. The average ambient temperature was 30 °C, the relative humidity 60%
and the reflected temperature 22 °C.

3.9 Power normalizing

A comparison was made of the average power generated between the study sub-
jects (strings 4 and 6) and the control subject (string 2). The measurement was
made during two hours with an irradiance greater than 700 W/m2. A difference
of 0.67% and -0.59% was obtained for strings 4 and 6 respectively. These results
allowed to consider that the strings are equivalent.

4 Results and discussion

4.1 Power affect for each experimental unit

Each treatment was applied to the study subjects (strings 4 and 6) and was
compared with the control subject (string 2), with this, it was verified that all
the experimental units had an affectation of at least 4% [Acciani et al., 2010],
ie, that it met the criteria of failure. The results are shown in Table 6, these
considered the effect of power normalization calculated in section 3.9.

4.2 Results of the experiment

For each experimental unit, a discrete output variable was generated to indicate
whether or not the technique detected failure; the results are shown in Table
7. The results of the IRT and VI in the presence of soiling and partial shading
failures were taken from [Cardinale-Villalobos et al., 2020a].
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Table 6. Validation of the effect on power of each of the treatments evaluated in the
experiment

Experimental
unit

Irradiance
W/m2

Reference array
power (W)

Tested array
power (W)

Power
reduction

Fault
(Yes/no)

1 783 2148 1885 12% Yes

2 783 2148 1472 31% Yes

3 724 2126 1872 12% Yes

4 724 2126 1449 32% Yes

5 775 2528 1876 26% Yes

6 887 2883 1915 34% Yes

7 836 2671 2150 20% Yes

8 1040 3421 2541 26% Yes

9 984 3086 2593 16% Yes

10 943 3077 2066 33% Yes

11 1059 3285 2884 12% Yes

12 956 3201 2141 33% Yes

13 971 3197 2611 18% Yes

14 866 2911 2215 24% Yes

15 873 2897 2399 17% Yes

16 944 3077 2288 26% Yes

17 890 2839 2366 17% Yes

18 868 2841 2370 17% Yes

19 1041 3416 2892 15% Yes

20 793 2533 2091 17% Yes

21 782 2589 2148 61% Yes

22 958 2662 1889 34% Yes

23 887 2582 2146 61% Yes

24 1035 3045 2586 26% Yes

25 782 2601 246 18% Yes

26 892 2870 721 75% Yes

27 887 2582 2127 18% Yes

28 1079 2890 2207 24% Yes

29 1030 2904 0 100% Yes

30 1238 3226 0 100% Yes

31 1030 2904 0 100% Yes

32 1033 2814 0 100% Yes

33 907 2637 2435 7% Yes

34 949 2662 2458 8% Yes

35 1053 2832 0 100% Yes

36 996 2622 0 100% Yes

37 906 2637 2348 8% Yes

38 949 2662 2446 11% Yes

39 1027 2743 0 100% Yes

40 998 2637 0 100% Yes
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4.3 Image analysis

Each experimental unit was analyzed manually for IRT and VI. The thermo-
graphs were processed with Flir Tools 5.13 and the RGB images were analyzed
with traditional photo viewing software. Figures 11, 12 and 13 show some elec-
trical failures analyzed with IRT. By means of the VI it was not possible to
detect electrical failures.

Fig. 11. IR image analyzed for the experimental unit 37. In this one, the heating
generated in a solar panel due to the presence of a short circuit is observed.

4.4 EA analysis

Table 8 shows the detail of the measurements with the EA. It is observed that
for all types of failures, in some experimental units the failure was not detected,
this is due to the fact that the estimated power was less than it should be
under conditions without failure (experimental units 18, 21 and 33). Also, cases
were found in which the estimated power affect deviated by less than 1% from
the criteria for detecting failure (experimental units 13, 19, 20 and 34); which
shows that accuracy errors of less than 1% will affect the effectiveness of the
technique. This requires high precision in the instrumentation, in the parameters
of the mathematical model and in the processing of the information; with their
respective experimental validation.

4.5 Comparison of the three techniques

A summary of the number of faults detected by each technique during the ex-
periment is shown in Fig. 14. It can be observed that IRT was the technique that
detected the most number of failures (78%), while VI was the one that detected
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Fig. 12. IR images analyzed for experimental unit 39. String 2 (left) and string 6
(right). In this one, it can be seen that string 6 had a higher temperature than the
control subject (string 2) due to the open circuit.

Fig. 13. IR images analyzed for experimental unit 30. String 2 (left) and string 4
(right). In this case, the short circuit to earth caused the inverter to open the circuit
(electrical protection), causing an increase in the temperature of the entire string.
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Table 7. Summary of the results of the experimen. D = Detected, ND = Not detected,
S = soiling, PS = partial shading and E = electrical fault.

Experimental unit Factor Treatment IRT result VI result EA result

1 S S1 D D D

2 S S2 ND D D

3 S S1 D D D

4 S S2 ND D D

5 S S4 ND D D

6 S S6 D D D

7 S S4 D D ND

8 S S6 D D D

9 S S4 D D ND

10 S S6 ND D D

11 S S4 D D ND

12 S S6 D D D

13 S S5 ND D D

14 S S3 ND D D

15 S S5 ND D ND

16 S S3 D D D

17 S S5 D D ND

18 S S3 D D ND

19 S S5 ND D ND

20 S S3 ND D ND

21 PS PS1 D D ND

22 PS PS2 D D D

23 PS PS1 D D D

24 PS PS2 D D D

25 PS PS1 D D D

26 PS PS2 D D D

27 PS PS1 D D D

28 PS PS2 D D D

29 E E2 D ND D

30 E E2 D ND D

31 E E2 D ND D

32 E E2 D ND D

33 E E1 D ND ND

34 E E1 D ND D

35 E E3 D ND D

36 E E3 D ND D

37 E E1 D ND ND

38 E E1 D ND D

39 E E3 D ND D

40 E E3 D ND D
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Table 8. Electrical measurements for the evaluation of each treatment with the EA
technique. The last column on the right indicates the output variable of this method

Experimental
unit

Irradiance
(W/m2)

Tested array average
temperature (°C)

Tested array
power (W)

Estimated
power (W)

Power
reduction

Fault
(Yes/no)

1 783 50,4 1885 2191 14.0% Yes

2 783 52,5 1472 2167 32.1% Yes

3 724 50,5 1872 2015 7.1% Yes

4 724 52,3 1449 1996 27.4% Yes

5 775 56,9 1876 2092 10.3% Yes

6 887 57,5 1915 2407 20.5% Yes

7 836 57,8 2236 2258 1.0% No

8 1040 53,6 2541 2910 12.7% Yes

9 984 59,0 2593 2668 2.8% No

10 943 49,0 2066 2686 23.1% Yes

11 1059 57,1 2884 2914 1.0% No

12 956 51,0 2141 2697 20.6% Yes

13 971 52,0 2611 2728 4.3% Yes

14 866 49,1 2215 2454 9.7% Yes

15 873 53,0 2399 2424 1.0% No

16 944 48,9 2288 2688 14.9% Yes

17 890 57,0 2366 2423 2.3% No

18 868 58,5 2370 2339 -1.3% No

19 1041 48,9 2892 2985 3.1% No

20 793 55,5 2091 2163 3.3% No

21 782 56,5 2148 2118 -1.4% No

22 958 60,3 1889 2574 26.6% Yes

23 887 55,1 2146 2437 12.0% Yes

24 1035 59,4 2664 2808 5.1% Yes

25 782 57,8 246 2102 88.3% Yes

26 892 54,0 721 2468 70.8% Yes

27 887 54,2 2127 2449 13.2% Yes

28 1079 56,6 2207 2980 26.0% Yes

29 1030 55,0 0 2858 100.0% Yes

30 1238 59,0 0 3408 100.0% Yes

31 1030 57,0 0 2828 100.0% Yes

32 1033 58,0 0 2822 100.0% Yes

33 907 62,8 2435 2396 -1.6% No

34 949 58,2 2458 2578 4.7% Yes

35 1053 56,0 0 2913 100.0% Yes

36 996 57,0 0 2730 100.0% Yes

37 906 63,2 2348 2388 1.7% No

38 949 54,7 2446 2626 6.9% Yes

39 1027 56,0 0 2837 100.0% Yes

40 998 55,0 0 2765 100.0% Yes

Cases that were at 1% or less of the limit defined as criteria for failure detection are identified in
light blue. Cases that showed an increase in power in the presence of the fault were marked in green
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the least number (70%). These results vary from those found by [Cardinale-
Villalobos et al., 2020a], in which VI detected more failures than IRT. Therefore,
the design of the experiment will be closely related to the effectiveness found.

Analyzing the results for each type of failure: a) partial shading was mostly
detected by all techniques (more than 88% in all three techniques), b) Soiling
was detected to a minor extent by both IRT (55%) and EA (60%), and c) VI was
most effective detecting soiling (100%) and shading (100%) but did not detect
any electrical failure.

Fig. 14. Overall percentage and divided by type of failure for each treatment according
to the results of the experimen.

Considering the output variable of continuous type (1 = detected and 0 = not
detected), an analysis of the variance was made (see Fig.15). The variances were
0.191, 0 and 0.229 for soiling, partial shading and electrical faults respectively.
This indicates that the detection of soiling and electrical faults had greater vari-
ability than those of partial shadows. The high variability detecting electrical
faults is due to the fact that none of the faults generated burns or discoloration
on the solar panel, however, the variability detecting soiling indicates that more
research should be done focused on improving the effectiveness of IRT and EA
detecting soiling.

Figure 16 shows the results of soiling detection by EA, in which, it can
be seen that, all types of soiling were detected at least in a low percentage of
occasions. This indicates that the EA technique do detect the types of soiling
evaluated but with less effectiveness. The reasons why, in some cases this type of
failure was detected and in others not, requires a more detailed study specifically
on this subject. This compartment had also been identified for IRT detecting
soiling [Cardinale-Villalobos et al., 2020a].
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Fig. 15. The blue box represents the measurements obtained between quartiles Q1 and
Q3

Fig. 16. Percentage of soiling failures that were detected by the EA. S1 and S2 were
applied twice, the other four times.

The only technique that was based on qualitative criteria for the detection
of failures was the VI, this implies that its effectiveness could be affected due
to the subjectivity that could exist before other types of failures. The definition
of quantitative criteria for the VI is an area that could vary the performance of
the technique for certain types of failures.
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4.6 Statistical hypothesis testing

Using contingency tables and Fisher’s exact test, the effectiveness of the tech-
niques can be evaluated by comparing them in pairs [Jones and Schropp, 2000,
Bolboacă et al., 2011]. To determine if there is a significant difference between
the total number of failures detected by each technique, the following hypothesis
tests were defined: as follows:

H0,1 : Ni = Nj

Ha,1 : Ni 6= Nj

H0,2 : Ni = Nk

Ha,2 : Ni 6= Nk

H0,3 : Nj = Nk

Ha,3 : Nj 6= Nk

∀i 6= j 6= k

Where N is the number of identified failures, i, j and k are IRT, VI and EA
techniques respectively. Table 9 shows the p-values obtained for each hypothesis
test.

Table 9. P-value obtained for each of the hypotheses evaluated

.

Hypothesis p-value
H01 0.446
H02 0.797
H03 1

Considering a significance level α = 0.05 because no major requirement has
been identified [Ventura-León, 2017], the three null hypotheses H0,1, H0,2 and
H0,3 are accepted, that is, statistically no significant differences were found in
the number of failures detected between techniques. Each of the techniques was
also compared for the different types of failure applied, for which p-value < α
and odd ratio (OR) was obtained for the cases shown in Table 10.

From the analysis of Table 12 and Table 10, it was interpreted which method
was better than another for each type of failure; this is summarized in Table 11.
The OR coefficients shown indicate that, in addition to accepting the alternative
hypotheses for these types of failure, there is a high probability that the technique
will succeed in detecting a failure of this type compared to the other technique
[Mchugh, 2009].
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Table 10. P-value less than α and OR obtained by analyzing significant differences
for each type of failure

.

Technique 1 – Technique 2 Type of fault p-value OR

EA-VI S 0.003 27.80

EA-VI E <0.001 105*

IRT-VI S <0.001 33.87*

IRT-VI E <0.001 625

*The order of the column in the contingency table was changed
to achieve OR >1

Table 11. Significant differences in the detection of each type of failure between the
methods studied. Note: The types of failures not indicated had no significant differences.

.

Techniques Result

EA-VI
VI detects soiling better
EA detects electrical faults better

IRT-VI
VI detects soiling better
IRT detects electrical faults better

IRT- EA No significant differences were found

Table 12. Contingency table separating the factors (types of failures) of the experiment

.

Factor Technique Detected Not Detected Total

S

IRT 11 9 20
VI 20 0 20
EA 12 8 20
Total 43 17 60

PS

IRT 8 0 8
VI 8 0 8
EA 7 1 8
Total 23 1 24

E

IRT 12 0 12
VI 0 12 12
EA 10 2 12
Total 22 14 36

Total

IRT 31 9 40
VI 28 12 40
EA 29 11 40
Total 88 32 120

5 Conclusions

The results generated allowed to characterize in a quantitative way the effective-
ness of IRT, VI and EA to detect soiling, partial shading and electrical faults,
being 78%, 70% and 73% respectively. Statistical analysis determined that these
differences do not mean that one technique is generally more effective than the
others. However, analyzing each type of failure, significant differences were found
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for the VI. This was the best technique detecting soiling (100%) in comparison
to IRT (55%) and EA (60%), but it did not manage to detect any electric failure.
In addition, partial shadows were the type of fault that was mostly detected by
all the techniques, finding that none of the techniques is more effective than the
others for this failure.

When comparing these results with those found in the research done by
Cardinale-Villalobos (2020), it is identified that the calculated effectiveness de-
pends on the design of the experiment, therefore, the protocols of each technique,
the criteria for detection of failures and the treatments to be evaluated, must be
carefully selected and documented in detail to support the results found.

The determination of the effectiveness of EA detecting soiling showed that the
same treatment can be detected in some cases and not in others, therefore, this
type of failure can be analyzed in more detail using this methodology increasing
the replication of the treatments to increase the statistical power.

The results generated in this research, being of a quantitative nature, provide
objective indicators that can be used by the managers of photovoltaic installa-
tions in the choice of the most convenient failure detection method for each need,
contributing to mitigate a knowledge gap that has been detected in this area. In
addition, it contributes to improve failure detection techniques, since informa-
tion related to the strengths and limitations of each one is obtained. Finally, it
will contribute to Sustainable Development due to the greater optimization of
this renewable energy.
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General discussion 

To define the protocols of the failure detection techniques, the consulted literature shows that 

there is not a unique protocol, but one must be adapted for each particular case, for example, the 

IRT protocol depends on the characteristics of the camera, the drone, and the available software; 

in the case of the EA, it depends on the characteristics of the installation, the instrumentation and 

the model itself. These factors can have an impact on the results of each technique, due to the 

accuracy of the instrumentation. Therefore, the definition of the protocols for the implementation 

of each technique should be subjected to a rigorous analysis that should be adapted to each 

particular case. Also, it is convenient to make a cost analysis that allows finding the technique(s) 

that fit the available resources. 

The protocols tested show that, for the results produced by each technique to be reliable, specific 

requirements must be met, even ensuring that certain environmental conditions exist.  Such is 

the case of IRT, which may not be able to be used at a given moment due to a sudden decrease 

in irradiation. Therefore, to choose the most convenient failure detection method for a particular 

facility, protocols must be reviewed in detail to verify that it is possible to implement it on site. 

The literature showed that some techniques have quantitative and other qualitative criteria for the 

detection of failures, for example, the VI in its traditional application uses only qualitative criteria, 

which makes the technique subject to subjectivity. On the other hand, the quantitative criteria of 

IRT and EA in some cases do not distinguish according to the type of failure and do not make a 

distinction in the severity, this implies that failures that are close to the failure threshold can be 

discharged or accepted; aspect like these caused that the effectiveness detecting soiling was 

lower than 60% for IRT and EA. The aspects indicated suggest that work should be done in the 

creation of quantitative criteria for the VI and better quantitative criteria for the IRT and EA for 

each type of failure and not in a general way. 

The mentioned aspects allow detecting that, for future quantitative studies of failure detection 

techniques, the process of generation of each protocol and the criteria of failure detection used 

must be documented in detail, this way the results obtained will be supported and will contribute 

to the generation of better failure detection techniques. 

The scientific literature of reference allowed generating the methodology to evaluate treatments 

that represented temporary failures, which, can continue being used to generate more 

experimental research with the possibility of not damaging the panels under test. The 
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methodology could be replicated taking the treatments used as a reference for a more detailed 

analysis of each type of failure, being the soiling the failure that was detected at a lower grade, 

therefore, more experimental research should be done around it. Including treatments of 

permanent failures and apparent failures (that do not have an impact on potency) will allow making 

a further characterization of the effectiveness of each failure detection method 

The experiment results show that the effectiveness of the techniques evaluated depends on the 

types of failures evaluated and the number of treatments. For example, when comparing IRT and 

VI for soiling and partial shading failures, it was found that VI is more effective than IRT; however, 

when comparing the three techniques for the three types of failures, no technique was found to 

be more effective than the others. Therefore, future research of this type should include an 

analysis for each specific type of failure and include a characterization of the treatments 

evaluated. 

It was found that the effectiveness calculated for each technique depends on the type of failure 

and that none of the techniques had the greatest effectiveness for all the types of failures 

evaluated. This suggests that to detect the greatest number of failures in a PV installation, it is 

not enough to use only one technique, but rather, combinations of techniques must be made. 

Since VI was the most effective at detecting soiling and IRT and EA were the most effective at 

detecting electrical faults, VI should be combined with IRT or EA to achieve the highest number 

of detected faults in a PV installation. Knowing the possible combinations of techniques to 

maximize failure detection, it is possible to continue with an economic analysis to choose the 

techniques to be used. 

The results obtained represent the behavior of the techniques in similar installations and can be 

taken as a reference for use in photovoltaic systems with other characteristics. The replication 

and adaptation of this methodology in PV installations with another type of configuration (different 

numbers of panels and with parallel panel strings) is a task that must be done to continue the 

search for effectivity indicators that can be used in solar farms with a variety of configurations.   
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Global conclusions 

Based on this research, through the specific protocols used and the experiment developed in the 

PV installation under test, the following conclusions were obtained: 

1. The VI showed to be the most appropriate technique to detect soiling with effectiveness of 

100%, while the IRT and EA had an effectiveness of 55% and 60% respectively. 

2. IRT and EA proved to be the best techniques for detecting electrical faults, with effectivity of 

100% and 83% respectively, while VI did not detect any electrical fault. 

3. The effectivity of all the techniques detecting partial shadows was higher than 80%. 

Statistically, all techniques were found to be equally capable detecting this type of failure. 

4. The overall effectiveness found for IRT, VI and EA was 78%, 70% and 73%. Through 

hypothesis testing with Fisher's exact test, this indicated that this does not represent a 

significant difference, that is, none of the techniques can be categorized in general terms as 

better than the others. 

5. Regarding IRT, using quantitative criteria it was possible to detect failures objectively, however, 

45% of the failures due to soiling were not detected. In these cases, the qualitative analysis 

allowed the identification of an apparent failure. This suggests that for this technique it is 

possible to establish new quantitative criteria for soiling. 

6. To detect as many faults as possible, VI should be combined with IRT or EA; using a single 

technique, some faults will remain undetected. 

7. It was proved that it is possible to analyze other failures and other techniques taking as 

reference the methodology used in this research, which allows validating models of failure 

detection techniques that have not been yet validated or compared empirically. For this, it is 

necessary to make an exhaustive analysis of the literature to define the suitable protocols for 

each technique and each type of failure of interest. Besides, the design of the experiment is a 

stage that must be focused on obtaining impartial results, where the resources to generate the 

treatments and quantity of experimental units to be used become a critical aspect to consider. 

8. Quantitative indicators were determined based on empirical research, contributing to solve the 

problem of the lack of this information for the detection of faults in PV systems. Furthermore, 

they allow an objective and informed choice to be made about the type of technique to be used 

according to the type of failure that is considered most relevant to detect in a PV installation. 

Therefore, a contribution to sustainable development with more profitable PV systems is 

achieved over time. 
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Recommendations 

1. To do more experimental research related to the detection of soiling through IRT and EA, 

focused on the generation of new criteria that increase the effectivity of detecting this type 

of failure. 

2. To continue with the determination of the effectiveness of the techniques of failure 

detection, including experimentation with a greater number of treatments, so that it is 

possible to measure the capacity of each technique to differentiate between true positives 

and false positives. For this, treatments that do not generate a significant effect on 

potency, but are apparent failures, should be included. 

3. To improve the EA method used through more empirical research that allows improving 

the mathematical model, adapting it to the particularities of the PV array and the accuracy 

of the instrumentation used. 

4. To automate the detection of the failures of the techniques studied in this research, so that 

the subjectivity that could exist from a manual analysis is eliminated. 

 

  



 

83 

 

References 

ACESOLAR. (2019). Asociación costarricense de energía solar. http://www.acesolar.org/que-es-

generacion-distribuida/ 

Ali, Mohammed Hassan, Rabhi, Abdelhamid, Hajjaji, Ahmed El, Tina, G. M. (2016). Real Time 

Fault Detection in Photovoltaic Systems. Energy Procedia, 111, 914–923. 

Alsafasfeh, M., Abdel-Qader, I., & Bazuin, B. (2017, May). Fault detection in photovoltaic system 

using {SLIC} and thermal images. 2017 8th International Conference on Information 

Technology ({ICIT}). https://doi.org/10.1109/icitech.2017.8079925 

Appiah, A. Y., Zhang, X., Ayawli, B. B. K., & Kyeremeh, F. (2019). Review and Performance 

Evaluation of Photovoltaic Array Fault Detection and Diagnosis Techniques. International 

Journal of Photoenergy. https://doi.org/10.1155/2019/6953530 

Asamblea General de las Naciones Unidas. (2019). Naciones Unidas. 

https://www.un.org/es/ga/president/65/issues/sustdev.shtml 

Avendaño, M. (2017, November 11). La utopía de una Costa Rica carbono neutral en 2021. 

https://www.elfinancierocr.com/economia-y-politica/la-utopia-de-una-costa-rica-carbono-

neutral-en/IYM5MH2PNZCP7BOHSZ5NV7CAQM/story/ 

Chaudhary, A. S., & and D.K. Chaturvedi. (2018). Analyzing Defects of Solar Panels under 

Natural Atmospheric Conditions with Thermal Image Processing. International Journal of 

Image, Graphics and Signal Processing, 10(6), 10–21. 

https://doi.org/10.5815/ijigsp.2018.06.02 

Chen, Y H, Liang, R, Tian, Y, Wang, F. (2016). A novel fault diagnosis method of PV based-on 

power loss and I-V characteristics. Earth and Environmental Science, 40. 

https://doi.org/10.1088/1755-1315/40/1/012022 

Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., & Pavan, A. M. (2016). A novel fault 

diagnosis technique for photovoltaic systems based on artificial neural networks. Renewable 

Energy, 90, 501–512. https://doi.org/10.1016/j.renene.2016.01.036 

Evans, D. L. (1981). Simplified method for predicting photovoltaic array output. Solar Energy, 

27(6), 555–560. https://doi.org/10.1016/0038-092X(81)90051-7 

Gallardo-Saavedra, S., Hernández-Callejo, L., & Duque-Pérez, O. (2019). Quantitative failure 

rates and modes analysis in photovoltaic plants. Energy, 183, 825–836. 

https://doi.org/10.1016/j.energy.2019.06.185 

Grimaccia, F, Aghaei, M, Mussetta, M, Leva, S, Bellezza Quater, P. (2015). Planning for PV plant 

performance monitoring by means of unmanned aerial systems (UAS). International Journal 



 

84 

 

of Energy and Environmental Engineering, 6(1), 47–54. https://doi.org/10.1007/s40095-014-

0149-6 

Gutiérrez Espeleta, Edgar E. (2015). Plan Nacional de Energía 2015-2030. 

https://minae.go.cr/recursos/2015/pdf/VII-PNE.pdf 

Haney, J., & Burstein, A. (2013). PV System operations and maintenance fundamentals. 

www.solarabcs.org 

Hernández Sampieri, R., Fernández Collado, C., Baptista, L., & Del Pilar, M. (2010). Metodología 

de la investigación (Fifth). Mc Graw Hill. 

Herrera Murillo, J. (2017). Estado de la Nación en Desarrollo Humano Sostenible 2017. 

https://estadonacion.or.cr/files/biblioteca_virtual/023/Ambientales/Herrera_J_2017b.pdf 

International Renewable Energy Agency. (2017). Renewable. https://www.irena.org/-

/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf 

Javed, W., Wubulikasimu, Y., Figgis, B., & Guo, B. (2017). Characterization of dust accumulated 

on photovoltaic panels in Doha, Qatar. Solar Energy, 142, 123–135. 

https://doi.org/10.1016/j.solener.2016.11.053 

Jones, C. B., Martinez-Ramon, M., Smith, R., Carmignani, C. K., Lavrova, O., Robinson, C., & 

Stein, J. S. (2016). Automatic fault classification of photovoltaic strings based on an in situ 

IV characterization system and a Gaussian process algorithm. 2016 IEEE 43rd Photovoltaic 

Specialists Conference (PVSC), 1708–1713. https://doi.org/10.1109/PVSC.2016.7749915 

Kaplani, E. (2012). Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR 

Thermography and Digital Image Processing. International Journal of Photoenergy, 2012, 

11. https://doi.org/10.1155/2012/396792 

Kazem, H. A., & Jabar H, Y. (2016). Modelling of Daily Solar Energy System Prediction using 

Support Vector Machine for Oman. International Journal of Applied Engineering Research, 

11, 10166–10172. 

Land Instruments International. (2004). A basic guide to thermography. 

http://www.lirkorea.com/Landinstruments.net 

Website/infrared/downloads/pdf/thermography_guide.pdf 

Livera, A., Theristis, M., Makrides, G., & Georghiou, G. E. (2019). Recent advances in failure 

diagnosis techniques based on performance data analysis for grid-connected photovoltaic 

systems. Renewable Energy, 133, 126–143. https://doi.org/10.1016/j.renene.2018.09.101 

Madeti, S. R., & Singh, S. N. (2017). A comprehensive study on different types of faults and 

detection techniques for solar photovoltaic system. Solar Energy, 158, 161–185. 

https://doi.org/10.1016/j.solener.2017.08.069 



 

85 

 

Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). 

Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy 

Reviews, 59, 1307–1316. https://doi.org/10.1016/j.rser.2016.01.044 

Mäki, A., & Valkealahti, S. (2012). Power Losses in Long String and Parallel-Connected Short 

Strings of Series-Connected Silicon-Based Photovoltaic Modules Due to Partial Shading 

Conditions. {IEEE} Transactions on Energy Conversion, 27(1), 173–183. 

https://doi.org/10.1109/tec.2011.2175928 

María Fernanda, D. D. S. G., & Pérez-Ruiz. (2017). Análisis prospectivo del uso de energía solar: 

Caso Colombia. Investigación y Ciencia: De La Universidad Autónoma de Aguascalientes, 

71, 85–93. 

Mata Jiménez, G. (2019, April 26). Nuevo Complejo Solar producirá del 25 al 30% de la energía 

eléctrica del Campus Tecnológico Central. HOY EN EL TEC. 

https://www.tec.ac.cr/hoyeneltec/2019/04/26/nuevo-complejo-solar-producira-25-30-

energia-electrica-campus-tecnologico-central 

McFarland, A. (2019). U.S Energy Information Administration. 

https://www.eia.gov/todayinenergy/detail.php?id=39092 

Mekki, H., Mellit, A., & Salhi, H. (2016). Artificial neural network-based modelling and fault 

detection of partial shaded photovoltaic modules. Simulation Modelling Practice and Theory, 

67, 1–13. https://doi.org/10.1016/j.simpat.2016.05.005 

Mellit, A., Chine, W., Massi Pavan, A., & Lughi, V. (2015). Fault diagnosis in photovoltaic arrays. 

2015 International Conference on Clean Power (ICCEP). 

https://doi.org/10.1109/ICCEP.2015.7177602 

Mellit, A., Tina, G. M., & Kalogirou, S. A. (2018). Fault detection and diagnosis methods for 

photovoltaic systems: A review. Renewable & Sustainable Energy Reviews, 91, 1–17. 

https://doi.org/10.1016/j.rser.2018.03.062 

Miguel A, R. J. . L., & Williams. (2016). Energía Solar. Serie de publicaciones científicas. 

ACADEMIA NACIONAL DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES, 3(10). 

Moretón, R., Lorenzo, E., & Narvarte, L. (2015). Experimental observations on hot-spots and 

derived acceptance/rejection criteria. Solar Energy, 118, 28–40. 

https://doi.org/10.1016/j.solener.2015.05.009 

Murillo-Soto, L. D., & Meza, C. (2020a). Diagnose Algorithm and Fault Characterization for 

Photovoltaic Arrays: A Simulation Study. In Lecture Notes in Electrical Engineering (pp. 567–

582). Springer International Publishing. https://doi.org/10.1007/978-3-030-37161-6_43 

Murillo-Soto, L. D., & Meza, C. (2020b). Fault detection in solar arrays based on an efficiency 



 

86 

 

threshold. 2020 IEEE 11th Latin American Symposium on Circuits and Systems, LASCAS 

2020. https://doi.org/10.1109/LASCAS45839.2020.9069046 

National renewable energy laboratory. (2012). Development of a Visual Inspection Data 

Collection Tool for Evaluation of Fielded PV Module Condition. In NREL Technical Report 

(Issue August). https://doi.org/10.2172/1050110 

Nemet, Gregory F, O’Shaughnessy, Eric, Wiser, Ryan, Darghouth, N. (2017). Characteristics of 

low-priced solar PV systems in the U.S. Applied Energy, 187, 501–513. 

https://doi.org/10.1016/j.apenergy.2016.11.056 

Palmer Wahl Instrumentation group. (2007). The evolution of thermal imaging cameras. 

http://instrumentation.com/PDFS/EvolutionThermalImagingCameras.pdf 

Rolf Frischknecht, René Itten, Parikhit Sinha, Mariska de Wild-Scholten, Jia Zhang. (2015). Life 

Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems. http://www.iea-

pvps.org/fileadmin/dam/public/report/technical/IEA-PVPS_Task_12_LCI_LCA.pdf 

Tango, T. (2017). Repeated Measures Design with Generalized Linear Mixed Models for 

Randomized Controlled Trials (S.-C. Chow (ed.)). Taylor & Francis Group. 

Tecnológico de Costa Rica. (2017). Plan Estratégico 2017-2021. 

https://www.tec.ac.cr/sites/default/files/media/doc/plan_estrategico_2017_0.pdf 

Tsanakas, J. A., Ha, L., & Buerhop, C. (2016). Faults and infrared thermographic diagnosis in 

operating c-Si photovoltaic modules: A review of research and future challenges. Renewable 

and Sustainable Energy Reviews, 62, 695–709. https://doi.org/10.1016/j.rser.2016.04.079 

United Nations. (2015). The Millennium Development Goals Report. In United Nations. 

https://www.undp.org/content/dam/undp/library/MDG/english/UNDP_MDG_Report_2015.p

df 

Ventura, C., & Tina, G. M. (2016). Utility scale photovoltaic plant indices and models for on-line 

monitoring and fault detection purposes. Electric Power Systems Research, 136, 43–56. 

https://doi.org/10.1016/j.epsr.2016.02.006 

Watson, J. J. W., & Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability 

assessment using {GIS}-assisted multi-criteria evaluation. Landscape and Urban Planning, 

138, 20–31. https://doi.org/10.1016/j.landurbplan.2015.02.001 

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). 

Experimentation in Software Engineering. Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-642-29044-2 

Yadong Wang, Kazutaka Itako, Tsugutomo Kudoh, Keishin Koh, & Qiang Ge. (2016). Voltage-

Based Hot-Spot Detection Method for Defective Cell in Photovoltaic Module Using Projector. 



 

87 

 

Journal of Energy and Power Engineering, 10(8). https://doi.org/10.17265/1934-

8975/2016.08.005 

Zhao, Y. (2015). Fault Detection, Classification and Protection in Solar Photovoltaic Arrays (Issue 

August). http://hdl.handle.net/2047/D20195700 

 

  



 

88 

 

Annexes 

Annex A. General technical characteristics of the instrumentation 

 

Irradiance sensor 

 

Brand: TRITEC 

Model: Spektron 2010 

Voltage output: 77.23 mV at 1000 W/m2 

Accuracy: ± 5% of the annual average 

Construction: Laminated in Novaflon and EVA film. 

Degree of protection: IP65 

Dimensions: 118mm / 50 mm / 44 mm. 

 

Fig 8. Photograph of the Spektron 2010 irradiance sensor used. Source: Manufacturer's sheet. 

 

Power measurement 

 

Equipment: Inverter 

Brand: SMA. 

Model: SUNNY BOY 3.8-US 

Comunication: Ethernet. 
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Accuracy: According to ANSI C12.20 standard, they can be used for billing 

 

Measurement of ambient temperature 

Equipment: Weather station 

Brand: DAVIS 

Weather station model: Vantage Pro2 

Temperature sensor: Silicon junction diode PN 

Accuracy: 0.3 °C 

 

Cell temperature measurement 

Equipment: Contact temperature sensor. 

Brand: GAIMC 

Model DS18B20 

Measurement format: Digital 

Accuracy: ± 0.5 °C 
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Annex B. Geographical location of the site under study 

The TEC's PV installation is distributed between the technology campuses of Cartago and San 

Carlos (see Fig 9). The geographical distribution of the equipment of interest in this study is shown 

in Fig 10. 

 

 

Fig 9. Location of Central Technological Campus (Campus Central) and San Carlos Local 
Technological Campus (SC Campus). The experiment of this research was made in the SC 

Campus. Image taken from Google Earth. 
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Fig 10. Aerial photograph with the location of the parts of the PV installation in San Carlos. The 

PV strings are enclosed in a red box. Image taken and adapted from Google Earth. 
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Annex C. Technical characteristics of the PV modules 

 

Electrical characteristics of the PV module used 

 

 

 

Mechanical characteristics of the PV module used 
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Thermal characteristics of the PV module used 

 

 

 

Performance guaranteed by the manufacturer 
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Ageing loss calculation 

 

 

Considering the annual performance drop of 0.5 % from the second year and the minimum 

performance guaranteed by the manufacturer at the end of the first year, ageing losses are 

calculated with (5). 

 

𝑙𝑦 = 0.005(t − 1) + 0.025 ( 4 ) 
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