
Tecnológico de Costa Rica

Escuela de Ingenieŕıa Electrónica

Design of a power-saving strategy for a Collaborative Wireless
Sensor Network of Multi-core Embedded Systems

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in Electronics, Major in Embedded Systems

Randy Steven Céspedes Deliyore

Cartago, Setiembre 20, 2022

Declaro que el presente documento de tesis ha sido realizado enteramente por mi per-

sona, utilizando y aplicando literatura referente al tema e introduciendo conocimientos y

resultados experimentales propios.

En los casos en que he utilizado bibliograf́ıa he procedido a indicar las fuentes mediante

las respectivas citas bibliográficas. En consecuencia, asumo la responsabilidad total por

el trabajo de tesis realizado y por el contenido del presente documento.

Randy Steven Céspedes Deliyore

Cartago, Setiembre 20, 2022

Céd: 3-0463-0326

This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike

4.0 International License.

Instituto Tecnológico de Costa Rica

Escuela de Ingenieŕıa Electrónica

Maestŕıa Académica en Eletrónica

Trabajo Final de Graduación

Acta de Aprobación de Tesis

Defensa de Trabajo Final de Graduación

Requisito para obtar por el t́ıtulo de Máster en Ingenieŕıa Electrónica

Grado Académico de Magister Scientiae

El Tribunal Evaluador aprueba la defensa del Trabajo Final de Graduación denominado

Design of a power-saving strategy for a Collaborative Wireless Sensor Net-

work of Multi-core Embedded Systems, realizado por Randy Steven Céspedes

Deliyore Carné: 201054417, y hace constar que cumple con las normas establecidas

por la Unidad Interna de Posgrados de la Escuela de Ingenieŕıa Eletrónica del Instituto

Técnologico de Costa Rica.

Miembros del Tribunal Evaluador

Dr. César Garita Rodŕıguez M. Sc. Sergio Arriola Valverde

Profesor Lector Profesor Lector

M.Sc. Giannina Ort́ız Quesada M. Sc.Ańıbal Ruiz Barquero

Evaluadora Externa Profesor Asesor

Cartago, Setiembre 20, 2022

Resumen

Structural Health Monitoring (SHM) es un campo de ingenieŕıa que enfrenta el hecho de

que los sensores tienden a ser dif́ıciles de acceder e instalar, lo que hace que los nodos

de bajo consumo de enerǵıa en una red de sensores inalámbricos ayuden a facilitar su

implementación, instalación y mantenimiento. Este trabajo presenta una propuesta de

diseño para una estrategia de ahorro de enerǵıa para una red colaborativa utilizada en

SHM para aumentar la duración de la bateŕıa de los nodos y permitir futuros despliegues

con enerǵıa solar. Esta estrategia incluye; recomendaciones de perfilado de código, medi-

ciones de carga de procesador y de voltaje-corriente para un enfoque de optimización de

nivel de instrucción, implementación de manejo dinámico de potencia (DPM por sus siglás

en inglés Dynamic Power Management), escalamiento dinámico de tensión y frecuencia

(DFVS por sus siglás en inglés Dynamic Voltage and Frequency Scaling), mejoras en el

protocolo de comunicación de la red colaborativa y evaluación tecnológica de redes de gran

area de baja potencia (LPWAN por sus siglás en inglés Low Power Wide Area Network)

en forma de comunicaciones LoRa (del inglés Long Range o largo alcance en español).

Esta estrategia aumenta la autonomı́a de la bateŕıa de los nodos de la red hasta un 574,74

%, considerando tres horas y 31 minutos como ĺınea base, alcanzando hasta veintitrés

horas y 45 minutos; además, puede reducir la utilización de enerǵıa media en un 26% en

los dispositivos maestros que para este trabajo se denominan dispositivos primarios y en

un 28,58% para los dispositivos esclavos, tratados como secundarios. También redujo la

cantidad de datos a transmitir hasta un 80% de 11,72 KB a 2,34 KB por hora por nodo.

Además, se presentan algunos resultados significativos para las mejoras en utilización de

la CPU y la reducción del consumo de enerǵıa, también se identifican algunas áreas de

interés para futuras mejoras.

Palabras Clave: collaborative, DPM, DVFS, SHM, embedded, IoT, low-power, WSN

Abstract

Structural Health Monitoring (SHM) is an engineering field that faces the fact that sen-

sors tend to be arduous to access and install, making nodes of low power consumption in

a wireless sensor network aids in facilitating its deployability, installability, and maintain-

ability. This work presents a design proposal for a power-saving strategy for a collabora-

tive network used in SHM to increase the nodes’ battery life and allow future solar power

deployments. This strategy includes code profiling recommendations, CPU Load measure-

ments and voltage-current measurements for an instruction-level optimization approach,

implementation of Dynamic Power Management (DPM), Dynamic Voltage and Frequency

Scaling (DFVS), collaborative network communication protocol improvements, and evalu-

ation of Low-Power Wide Area Network (LPWAN) technology in the form of LoRa (Long

Range) communications. This strategy increases the battery autonomy of the network

nodes up to 574.74 %, considering three hours and 31 minutes as a baseline, achieving up

to twenty-three hours and 45 minutes; moreover, it can reduce the mean power utilization

by 26% in masters devices which for this work are called primary devices and 28.58% for

slaves devices, treated as the secondary ones. It also reduced the amount of the data to be

transmitted to up 80% from 11.72 KB to 2.34 KB per hour per node. Furthermore, some

significant results for CPU utilization and power consumption reduction are presented, as

well as identifying some areas of interest for future improvements.

Keywords: collaborative, DPM, DVFS, SHM, embedded, IoT, low-power, WSN

a mi hermosa familia

Agradecimientos

Quiero tomarme la libertad de dar el agradecimiento a varias personas que demostraron su

apoyo incondicional a lo largo de esta gran etapa. Sin duda mi fe, fue uno de los pilares de

mi motivación y sirvió de gúıa en los momentos dif́ıciles a lo largo de este extenso trabajo

que duro casi dos años. Quiero agradecer al MSc. Ańıbal Rúız Barquero, quien fue mi

asesor de tesis, sin duda en muchas ocasiones actuó más allá de sus responsabilidades

por su interés geniudo en que este proyecto fuera un éxito. Agradezco el tiempo que

se tomó de sus tardes, noches, fines de semana y vacaciones para ayudarme a buscar

alternativas a problemas que surgieron durante el desarrollo de la investigación y sus

muy valiosos consejos. Quiero agradecer también mis dos lectores el Dr. César Garita

Rodŕıguez y el MSc. Sergio Arriola Valverde por su apoyo durante la investigación y

su muy valiosa gúıa para hacer este trabajo relevante y transferible en el futuro. A la

MSc. Giannina Ortiz Quesada y al CIVCO por ser un apoyo incondicional a lo largo del

desarrollo de la investigación y por gran ayuda económica para la compra de hardware

y de horas de trabajo para asistentes. Quiero agradecer también al Ing. José Daniel

Montoya y al Ing. Victor Fuentes quienes colaboraron enormemente durante el desarrollo

de la investigación. Al MSc. Anibal Coto y al Dr. Johan Carvajal como coordinadores

del programa de Maestŕıa en Electrónica, quienes siempre estuvieron anuentes a colaborar

cuando fuera necesario. Al señor Ronald Valverde por asegurarse de que el servidor de

eBridge estuviera funcional.

A mi futura esposa Cynthia Isabel Taylor Herrera, quien me acompaño desde el inicio de la

loca idea de querer estudiar una maestŕıa, hasta el periodo de la culminación de esta. Sin

duda sin su apoyo emocional, sus excelentes conocimientos de LaTEX y sus inagotables

ganas de animarme en los momentos más dif́ıciles no hubiera logrado completar este tan

largo proyecto.Me gusta pensar que este es un logro de ambos. A mi madre Dully Deliyore,

quien me escuchó en los momentos dif́ıciles y con sus palabras de aliento me dio fuerzas, a

mi padre Guillermo Céspedes, y a mi padrastro Luis Duran, quienes siempre me tuvieron

en sus oraciones y me dieron porras para que siguiera adelante. A mi suegra Maŕıa del

Carmen Herrera que siempre se preocupo porque estuviera en excelentes condiciones para

poder trabajar y se aseguro de que no tuviera que gastar tiempo preparando comida. A

mi tio Jorge Deliyore por siempre apoyarme en el estudio y motivarme a querer progresar,

desde que me ayudo a poder formar parte del Colegio Cient́ıfico. A mi hermano Jaime

Palermo por siempre darme apoyo y escucharme. A mi madrina Marita Garita y a mi t́ıo

Harry Deliyore, por sus palabras de aliento y oraciones.

Quiero agradecer a National Instruments por darme apoyo económico, tiempo e inclusive

el préstamo de equipo para poder realizar una gran cantidad de experimentos y tener

mi propio setup en el laboratorio de la empresa. A mis managers durante el periodo

de estudio el señor Coamı́n Cruz, la señora Erin Bray y el señor Christian Loew quienes

fueron un incréıble apoyo para hacer que esto fuera posible. A Michael, Alberto y Marcela

de seguridad que me ayudaron a reiniciar equipo múltiples veces inclusive en la madrugada

para que pudiera continuar con los experimentos.

A mis queridos amigos Hector, Ana, Hugo, Rafa, Daniela y Nit por darme apoyo durante

este tan largo proceso y motivarme a seguir. A Hugo por ayudarme a traducir cosas del

alemán. Al Dr. Pablo Alvarado por tomarse el tiempo de trabajar en proveer un formato

de tesis en LaTEX y mis compañeros Andrés Gómez, Andrés González y Andrés Vargas

por su colaboración durante los cursos y apoyo a resolver problemas con el formato de la

documentación.

Randy Steven Céspedes Deliyore

Cartago, Setiembre 20, 2022

Contents

List of Figures iv

List of Tables ix

Nomenclature xiii

1 Introduction 1

1.1 Objectives and Document Structure . 3

2 Review of Related Literature 5

2.1 Power Consumption in Embedded Systems 5

2.1.1 Power Consumption Model . 6

2.2 Power Measurement in Embedded Systems 11

2.3 Power Saving Strategies in Embedded Systems 12

2.3.1 Dynamic Voltage and Frequency Scaling (DVFS) 14

2.4 PET-aware Scheduling Algorithms/Strategies 17

2.4.1 Leakage-aware energy minimization using dynamic voltage scaling

and cache reconfiguration in real-time systems 17

2.4.2 Energy optimization for real-time multiprocessor system-on-chip

with optimal DVFS and DPM combination 18

2.4.3 Energy-Aware Frame-Based Scheduling (EAFBFS) 18

2.4.4 Improved least loss energy density algorithm (ILLED) 19

2.4.5 Heterogeneous energy-aware real-time scheduler (HEARS) 20

2.4.6 Dynamic energy-saving scheduling algorithm for a sporadic task in

real-time embedded systems (DESSAST-RTES) 20

2.5 Comparison of PET-ware Scheduling Algorithms 21

2.6 Other Power-Saving Strategies . 22

2.6.1 Operating System Power Saving Strategies 22

2.6.2 Software Level Optimizations . 22

3 Methodology 23

3.1 Hardware and Software Update . 23

3.2 RPI3 B+ vs RPI4 B Comparison . 25

3.3 Hardware setup for experiments . 26

3.4 Code Profiling Strategy . 27

i

Contents ii

3.4.1 Reviewing Existing Profilers . 29

3.4.2 Creating a Custom Profiler . 30

3.5 Power Measurement of eBridge System . 32

3.5.1 Batteries used for testing . 34

4 Analysis of the eBridge Network 36

4.1 eBridge 2019 Node Analysis . 36

4.1.1 eBridge 2019 code Line Profiling Results 37

4.1.2 eBridge 2019 Master/Primary CPU, Events and Power Profiling . . 38

4.1.3 eBridge 2019 Slave/Secondary CPU,Events and Power Profiling . . 46

4.2 eBridge 2019 Battery Tests . 56

4.2.1 Battery test for Master/Primary 56

4.2.2 Battery test for Slave/Secondary 57

4.3 eBridge 2019 Task Interaction Analysis . 58

4.4 eBridge 2021 HW Configuration Standby Power Consumption 61

4.5 Summary of Areas of Improvement for the EBridge 2019 Network 62

5 Design 64

5.1 Software Level Optimizations . 64

5.1.1 SetDateTime Refactoring . 64

5.1.2 Cellular Network Interface Handling 65

5.1.3 Receive Thread Optimizations . 65

5.1.4 Device Class Optimizations . 66

5.2 eBridge Protocol Upgrades . 67

5.2.1 Device Configuration . 67

5.2.2 Slave/Secondary Node Message Handling 68

5.2.3 Alarm Handling . 68

5.2.4 Consolidating Reports . 69

5.3 eBridge Hardware optimizations for power saving 70

5.3.1 Use of IoT LoRa Network . 71

5.3.2 Dynamic Power Management and DVFS Proposal 74

6 Validation 78

6.1 eBridge 2021 Node Code Analysis . 78

6.1.1 eBridge 2021 Line Profiling . 78

6.1.2 eBridge 2021 Master/Primary CPU and Events Profiling 79

6.1.3 eBridge 2021 Slave/Secondary CPU and Events Profiling 85

6.2 eBridge 2021 Battery Tests . 90

6.2.1 Battery tests for Master/Primary eBridge 2021 code 90

6.2.2 Battery tests for Slave/Secondary eBridge 2021 code 95

6.3 Dynamic and Voltage and Frequency Scaling 95

6.3.1 Effects of Dynamic Frequency Scaling 97

6.3.2 CPU Voltage Changes . 97

6.4 Dynamic Power Management . 100

Contents iii

6.5 eBridge 2022 Node with LoRa Analysis . 101

6.5.1 eBridge 2022 with LoRa Line Profiling 102

6.5.2 eBridge 2022 with LoRa Master/Primary CPU and Events Profiling 103

6.5.3 eBridge 2022 with LoRa Slave/Secondary CPU and Events Profiling 106

6.6 eBridge 2022 with LoRa Battery Tests . 109

6.6.1 Battery test for Master/Primary 109

6.6.2 Battery test for Slave/Secondary 110

7 Conclusions 111

7.1 Conclusions . 111

7.1.1 eBridge 2019 network analysis Conclusions 111

7.1.2 Design Conclusions . 112

7.1.3 eBridge 2021 network analysis Conclusions 112

7.1.4 DPM and DVFS on the eBridge Network Conclusions 112

7.1.5 LoRA eBridge 2022 with LoRa Conclusions 113

7.2 Future Work . 113

Bibliography 114

List of Figures

1.1 eBridge Project Timeline. Adapted from [3]. 2

1.2 eBridge Collaborative Network concept. Adapted from [4]. 3

1.3 eBridge Sensor Node at 2019 [10], [12]. 3

1.4 eBridge Network General Architecture. Adapted from [12]. 4

2.1 Dividing a processor in Functional Units[25]. 9

2.2 Dividing a processor into Functional Units[25]. 9

2.3 Power vs execution time of a task τi [25]. 12

2.4 Power vs execution time for multiple consecutive executions of task τi [25]. 12

2.5 Dynamic Voltage Scaling (DVS). 14

2.6 Dynamic Frequency Scaling (DFS). (a) Task executing with higher CPU

Frequency. (b) Task executing with Lower CPU Frequency. 15

2.7 Idle times Ii of multiple tasks (τ1,τ2,τ3). Adapted from [27]. 18

2.8 Software and Hardware Layer in Power Consumption. Adapted from [40]. . 22

3.1 eBridge Sensor 2019 vs 2021 Nodes. Adapted from [10], [12]. 24

3.2 WaveShare SIM7600G-H 4G Hat [42]. 25

3.3 Cortex A72 (ARM v8) Processor SoC Diagram [43]. 26

3.4 BCM2711 SoC Diagram [44]. 27

3.5 BCM2837B0 SoC Diagram [45]. 28

3.6 BCM2711 SoC Diagram [45]. 28

3.7 Current Hardware Setup eBridge. 29

3.8 Task execution time vs CPU Load profiling strategy. 30

3.9 Event Logger Concept . 31

3.10 CPU Load Plot Concept. 31

3.11 Py-Spy example [51]. 32

3.12 Code Optimization Strategy. 32

3.13 Power Measurement Hardware Setup for eBridge Sensor Node. 33

3.14 PXIe-4309 Flexible Resolution PXIe Analog Input Module [55]. 33

3.15 ICR18650 4400mAh 3.7V Battery[56] . 34

3.16 MI Power Bank and Wall Charger CBQ01ZM - Capacity 5200 mAh [57] . . 35

3.17 MI Power Bank 3 Ultra Compact - Capacity 10 000 mAh [58] 35

iv

List of Figures v

4.1 CPU Load (%) for eBridge 2019 code running as master/primary sensor

node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details

in table 4.1 . 38

4.2 Tasks Gantt plot eBridge 2019 code running as master/primary sensor node

running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details of

the test in table 4.1 . 40

4.3 Tasks Gantt Zoomed plot eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+. Details of the

test in table 4.1 . 40

4.4 Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI3 B+ with

f = 1.4 GHz. Details of the test in table 4.1 41

4.5 Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI3 B+ with

f = 1.4 GHz. Details of the test in table 4.1 42

4.6 CPU Load Box (%) plot for eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz.

Details in table 4.1 . 43

4.7 CPU Load % for eBridge 2019 code running as master/primary node run-

ning in eBridge 2021 HW configuration in RPI4 B with f = 1.5 GHz. Details

of the test in table 4.2 . 43

4.8 Gantt Plot for eBridge 2019 code running as master/primary sensor node

running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details of

the test in table 4.2 . 45

4.9 Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI4 B with f

= 1.5 GHz. Details of the test in table 4.2 46

4.10 Tasks Gantt Plot vs Power (W) of eBridge 2019 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI3 B+ with

f = 1.4 GHz - I. Details of the test in table 4.1 47

4.11 Tasks Gantt Plot vs Power (W) eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz

- II. Details of the test in table 4.1 . 48

4.12 Tasks Gantt Plot vs Power (W) eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz.

Details of the test in table 4.2 . 49

4.13 CPU Load (%) eBridge 2019 code running as slave/secondary sensor node

running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details of

the test in table 4.7 . 51

4.14 Tasks Gantt Plot eBridge 2019 code running as slave/secondary node run-

ning in eBridge 2021 HW in RPI3 B+ with f = 1.4 GHz. Details of the

test in table 4.7 . 51

List of Figures vi

4.15 Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as slave/secondary

node running in eBridge 2021 HW in RPI3 B+ with f = 1.5 GHz. Details

of the test in table 4.7 . 52

4.16 CPU Load for eBridge 2019 code running as a slave/secondary node run-

ning in eBridge 2021 HW in RPI4 B with f = 1.5 GHz. Details of the test

in table 4.8 . 52

4.17 Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as a slave/secondary

node running in eBridge 2021 HW in RPI4 B with f = 1.5 GHz. Details of

the test in table 4.8 . 54

4.18 Tasks Gantt Plot vs Power (W) eBridge 2019 code running as a slave/secondary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz.

Details of the test in table 4.8 . 56

4.19 Tasks Γ = {τ0, τ2, τ3, τ4} ⃗
Cf

i,τi
, and

⃗
Ef

i,τi
Interaction Qualitative Diagram

for a master/primary Node. 58

4.20 Zoomed Gantt Plot for eBridge 2019 code running as master/primary sen-

sor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz.

Details of the test in table 4.2 . 59

4.21 Zoomed Tasks Γ = {τ0, τ3, τ4} ⃗
Cf

i,τi
, and

⃗
Ef

i,τi
Interaction Qualitative Dia-

gram for a master/primary Node with Highlighted Power 60

4.22 Zoomed Tasks Γ = {τ1, τ3, τ4} ⃗
Cf

i,τi
, and

⃗
Ef

i,τi
Interaction Qualitative Dia-

gram for a slave/secondary Node . 60

4.23 Standby Power [W] vs Time (s) for the eBridge 2021 HW configuration of

RPI3 B+ and RPI3 B. 61

5.1 eBridge Embedded Software Now UML Classes Hierarchy 67

5.2 eBridge Node Configuration Policy. 68

5.3 eBridge Messages from Slave/Secondary to Master Failure. 69

5.4 eBridge Alarm Handle Procedure Optimization. 70

5.5 eBridge Consolidating Reports Procedure. 71

5.6 eBridge Report Management. 72

5.7 Bridge Structures in Costa Rica by State - Survey 2014-2018 [3]. 73

5.8 LTE Coverage in Costa Rica [66]. 74

5.9 Wireless access geographic coverage [67]. RFID (Radio Frequency Identi-

fication), NFC (Near Field Communication). 75

5.10 Adafruit RFM95W LoRa Radio Transceiver [70]. 76

5.11 eBridge 2022 Hardware Configurations version A and B. 76

5.12 eBridge 2022 Class UML Diagram. 77

6.1 CPU Load (%) for eBridge 2021 code running as master/primary sensor

node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details

in table 6.1. 80

List of Figures vii

6.2 CPU Load Box (%) plot for eBridge 2021 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz.

Details in table 6.1 . 80

6.3 Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI3 B+ with

f = 1.4 GHz, focus on Configuration τ5,and τ6. Details of the test in table

6.1 . 81

6.4 Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI3 B+ with

f = 1.4 GHz, focus on Get Median τ4. Details of the test in table 6.1 . . . 82

6.5 Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI3 B+ with

f = 1.4 GHz. Details of the test in table 6.1 82

6.6 CPU Load (%) for eBridge 2021 code running as master/primary sensor

node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details

in table 6.2 . 84

6.7 Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI4 B with f

= 1.5 GHz, focus on Configuration τ5,and τ6. Details of the test in table 6.2 85

6.8 Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as mas-

ter/primary sensor node running in eBridge 2021 HW with RPI4 B with f

= 1.5 GHz. Details of the test in table 6.2 86

6.9 CPU Load (%) for eBridge 2021 code running as slave/secondary a sensor

node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details

in table 6.7 . 89

6.10 Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as a slave/secondary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz,

focus on Configuration τ5,and τ6. Details of the test in table 6.7 89

6.11 Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as a slave/secondary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz.

Details of the test in table 6.7 . 90

6.12 CPU Load (%) for eBridge 2021 code running as slave/secondary a sensor

node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details

in table 6.8 . 92

6.13 Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as a slave/secondary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz,

focus on Configuration τ5,and τ6. Details of the test in table 6.8 92

6.14 Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as a slave/secondary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz.

Details of the test in table 6.8 . 93

6.15 Tasks Gantt Plot vs CPU Load (%) vs CPU Freq (MHz) eBridge 2021 code

running as master/primary sensor node running in eBridge 2021 HW with

RPI3 B+ with DVFS, focused on Configuration τ5,and τ6. 96

List of Figures viii

6.16 Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz)

eBridge 2021 code running as master/primary sensor node running in

eBridge 2021 HW with RPI4 B with DVFS, focused on Configuration

τ5,and τ6 . 98

6.17 Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz)

eBridge 2021 code running as a slave/secondary sensor node running in

eBridge 2021 HW with RPI3 B with DVFS, focused on XBee Send τ1. . . . 99

6.18 Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz)

eBridge 2022 code running as a master/primary sensor node running in

eBridge 2022 HW with RPI3 B+ with DVFS and DPM. 104

6.19 Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz)

eBridge 2022 code running as a slave/secondary sensor node running in

eBridge 2022 HW with RPI4B with DVFS and DPM. 107

List of Tables

2.1 Algorithmic and Architectural Software Parameters [25] 8

2.2 Comparison Variables for PET-ware Scheduling Algorithms 21

2.3 Comparison of PET-ware Scheduling Algorithms 21

3.1 Previous vs Current eBridge Sensor Node Comparison 24

3.2 Frequency Bands Supported by SIM7600G-H 25

3.3 Profiler Comparison . 30

3.4 Summary of Batteries used for testing . 35

4.1 Measurement Summary eBridge code 2019 running as Master/Primary

Sensor node in eBridge 2021 hardware configuration on RPI3 B+ 39

4.2 Measurement Summary eBridge code 2019 running as Master/Primary

Sensor node in eBridge 2021 hardware configuration on RPI4 B 44

4.3 Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz

for RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge

2019 in eBridge 2021 HW configuration as master/primary. Test details in

tables 4.1 and 4.2 . 45

4.4 Comparison of Code CPU Load (%) statistical information of the eBridge

2019 code running on an RPI3 B+ with f = 1.4 GHz vs an RPI4 B as

Master/Primary with f = 1.5 GHz. Test details in tables 4.1 and 4.2 46

4.5 Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz

for RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge

2019 code as master/primary in eBridge 2021 HW configuration. Test

details in tables 4.1 and 4.2. 47

4.6 Power Comparison (W) eBridge 2019 code running as master/primary sen-

sor node running in eBridge 2021 HW in both RPI3 B+ and RPI4 B. Test

details in tables 4.1 and 4.2 . 48

4.7 Measurement Summary eBridge 2019 code running as Slave/Secondary

Sensor Node in eBridge 2021 hardware configuration on RPI4 B+. 50

4.8 Measurement Summary eBridge 2019 code running as Slave/Secondary

Sensor Node in eBridge 2021 hardware configuration on RPI4 B. 53

4.9 Comparison of Code CPU Load (%) statistical information of the eBridge

2019 code running as a slave/secondary node running in eBridge 2021 HW

in RPI3 B+ and RPI4 B . 53

ix

List of Tables x

4.10 Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz

for RPI4 B vectors statistical information of Γ = {τ4, τ3, τ1} of eBridge

2019 in eBridge 2021 HW configuration as slave/secondary. Test details in

tables 4.7 and 4.8 . 54

4.11 Power Comparison (W) eBridge 2019 Code RPI3 B+ vs RPI4 B running

as Slave/Secondary in eBridge 2021 HW. Test details in tables 4.7 and 4.8 55

4.12 Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz

for RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ1} of eBridge

2019 code as slave/secondary in eBridge 2021 HW configuration. Test

details in tables 4.7 and 4.8 . 55

4.13 Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2019

code as master/primary in eBridge 2021 HW configuration. 57

4.14 Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2019

code as slave/secondary in eBridge 2021 HW configuration. 63

4.15 eBridge 2021 HW Configuration in RPI3 B+ and RPI4 B Power Consump-

tion in Standby . 63

4.16 Power Comparison (W) eBridge 2021 HW Configuration on code RPI3 B+

vs RPI4 B. Test details in table 4.15. 63

6.1 Measurement Summary eBridge code 2021 running as Master/Primary

Sensor node in eBridge 2021 hardware configuration on RPI3 B+ 79

6.2 Measurement Summary eBridge code 2021 running as Master/Primary

Sensor node in eBridge 2021 hardware configuration on RPI4 B 83

6.3 Comparison of Code CPU Load (%) statistical information of the eBridge

2021 code running as a master/primary node running in eBridge 2021 HW

in RPI3 B+ and RPI4 B . 84

6.4 Power Comparison (W) eBridge 2021 Optimized code running as mas-

ter/primary sensor node running in eBridge 2021 HW in both RPI3 B+

and RPI4 B. Test details in tables 6.1 and 6.2 85

6.5 Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz

for RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge

2021 Optimized code in eBridge 2021 HW configuration as master/primary.

Test details in tables 6.1 and 6.2 . 86

6.6 Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz

for RPI4 B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge

2021 code as slave/secondary in eBridge 2021 HW configuration. Test

details in tables 6.1 and 6.2 . 87

6.7 Measurement Summary eBridge code 2021 running as Slave/Secondary

Sensor node in eBridge 2021 hardware configuration on RPI3 B+ 88

6.8 Measurement Summary eBridge code 2021 running as Slave/Secondary

Sensor node in eBridge 2021 hardware configuration on RPI4 B 91

List of Tables xi

6.9 Comparison of Code CPU Load (%) statistical information of the eBridge

2021 code running as a slave/secondary node running in eBridge 2021 HW

in RPI3 B+ and RPI4 B . 91

6.10 Power Comparison (W) eBridge 2021 Optimized code running as slave/secondary

sensor node running in eBridge 2021 HW in both RPI3 B+ and RPI4 B.

Test details in tables 6.7 and 6.8 . 93

6.11 Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz for

RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ1} of eBridge 2021

Optimized code in eBridge 2021 HW configuration as slave/secondary. Test

details in tables 6.1 and 6.2 . 94

6.12 Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz

for RPI4 B vectors’ statistical information of Γ = {τ4, τ3, τ1} of eBridge

2021 code as slave/secondary in eBridge 2021 HW configuration. Test

details in tables 6.7 and 6.8 . 94

6.13 Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2021

code as master/primary in eBridge 2021 HW configuration. 95

6.14 Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2021

code as slave/secondary in eBridge 2021 HW configuration. 95

6.15 Mean Power [W] of RPI3 B+ and RPI4 B nodes after applying DFS settings

compared to standby power . 100

6.16 Mean Power [W] of RPI3 B+ and RPI4 B nodes after applying DVS un-

dervoltage settings compared to standby power 100

6.17 Mean Power [W] of RPI3 B+ and RPI4 B nodes after applying DPM

settings compared to standby power . 102

6.18 Measurement Summary eBridge code 2022 running as Master/Primary

Sensor node in eBridge 2022 hardware configuration A on RPI3 B+ 103

6.19
⃗
Ef

i with DVFS on RPI3 B+ vectors statistical information of Γ = {τ8, τ7, τ4, τ3, τ2, τ10}
of eBridge 2022 in eBridge 2022 HW configuration as master/primary and

mean power. Test details in table 6.18. 105

6.20
⃗
Cf

i with DVFS on RPI3 B+ vectors statistical information of Γ = {τ8, τ7, τ4, τ3, τ2, τ10}
of eBridge 2022 in eBridge 2022 HW configuration as master/primary. Test

details in table 6.18. 105

6.21 Measurement Summary eBridge code 2022 running as Master/Primary

Sensor node in eBridge 2022 hardware configuration A on RPI3 B+ 106

6.22
⃗
Ef

i with DVFS on RPI4 B vectors statistical information of Γ = {τ4, τ3, τ9}
of eBridge 2022 in eBridge 2022 HW configuration as slave/secondary and

mean power. Test details in table 6.21. 108

6.23
⃗
Ef

i with DVFS and DPM in PI3 B+vectors’ statistical information of

Γ = {τ4, τ3, τ1} of eBridge 2021 Optimized code in eBridge 2021 HW con-

figuration as slave/secondary. Test details in tables 6.1 and 6.2 108

6.24 Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2022

code as master/primary in eBridge 2022 HW configuration. 109

List of Tables xii

6.25 Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2022

code as slave/secondary in eBridge 2022 HW configuration. 110

Nomenclature

Abbreviations
ACPI Advance Configuration and Power Management Interface

ALU Arithmetic Logic Unit

ARM Asynchrounous RISC Machine

CCD Current Density Difference

CIVCO in Spanish acronym Centro de Investigación en Vivienda y Construcción or

Housing and Construction Investigation Center in English) of

CMOS Complementary Metal Oxide Semiconductor

CONAVI in Spanish Consejo National de Vialidad or National Road Council in English

CPU Central Processing Unit

DCR Dynamic Cache Reconfiguration

DDR Double Data Rate Synchronous

DED Dynamic Energy Dissipation

DESSASTRTES Dynamic energy-saving scheduling algorithm for a sporadic task in real-

time embedded systems

DFS Dynamic Frequency Scaling

DM Data Placement in Memory

DPM Dynamic Power Management

DVFS Dynamic Voltage and Frequency Scaling

EAFBFS Energy-Aware Frame-Based Scheduling

EDF Earliest Deadline First

EMPIOT nergy Measurement Platform Internet of Things

FLPA Functional Level Power Analysis

GPRS General Packet Radio Service

HEARS Heterogeneous energy-aware real-time scheduler

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ILLED Least Loss Energy Density

IoT Internet of Things

LoRa Long Range

LTE Long Term Evolution

MILP Mixed-Interger linear programming

MM Memory Mode

xiii

Nomenclature xiv

MOPT in Spanish acronym Ministerio de Obras Públicas y Transportes or Trans-

portation and Public Works Ministry in English

OS Operating System

PET Power-Energy-Temperature

PM Power Management

PXIe PCI eXtensions for Instrumentation

QMI Qualcomm MSM interface

RPI Raspberry Pi Embedded Board

RTOS Real-Time Operating System

SED Static Energy Dissipation

SHM Structural Health Monitoring

SoC System on Chip

TTS Threshold Timeout/Sleep Algorithm

WiFi Wireless Fidelity

WSN Wireless Sensors Network

Chapter 1

Introduction

A good quality road infrastructure is crucial for boosting economic growth and poverty

reduction in developing countries like Costa Rica, and bridges are one of the most essential

components of it. Studies have proven a direct link between improving access to facilities,

goods, job opportunities, health services, schools, and essential social services in increasing

a country’s human capital [1], which translates into poverty alleviation and a general

improvement in the population quality of life.

Costa Rica has a national problem regarding the maintenance and renovation of road

infrastructure, and bridges have been particularly affected by this. The country did not

detail all its bridges; due to that, the CONAVI (by its acronym in Spanish Consejo

National de Vialidad or National Road Council in English) worked with Costa Rica TEC

from the period 2014-2018 to create a nationwide survey of bridges [2].

The survey mentioned above covered a total of 1 670 bridges out of which 37% were

in a deficient conditions, 60% regular, and just 3% in optimal. A vital aspect of the

study is that the survey did not cover rural areas and that out of the 47 905 km of roads

nationwide, only 18% correspond to urban regions [3].

Structural Health Monitoring (SHM) is an emergent field of civil engineering that has

the potential to perform a continuous evaluation of the security and structural integrity

of a variety of infrastructures. The main objective of SHM is to know the structure’s

condition that empowers different teams to perform condition-based monitoring to help

prevent catastrophic failures and prolong its life [4].

An effort from a multidisciplinary team of engineers from different schools of the Costa

Rica TEC led by CIVCO (by its Spanish acronym Centro de Investigación en Vivienda y

Construcción or Housing and Construction Investigation Center in English) of the school

of Construction Engineering of Costa Rica TEC started the eBridge project in 2011 as

part of the eScience investigation program. The group’s primary focus is to provide

innovative and low-cost SHM applications in Costa Rica. Some of the governmental

groups that can benefit from this work are the National Emergency Commission (CNE

by its Spanish acronym Comisión Nacional de Emergencias), the Costa Rican central

1

1 Introduction 2

government, CONAVI, and the Transportation and Public Works Ministry (MOPT by

its Spanish Acronym Ministerio de Obras Públicas y Transportes) [5]. There are several

rural communities in Costa Rica where the only road connection is a bridge, and having

this structure damaged could significantly affect the quality of life of its population [4].

The project is divided into four stages named eBridge 1.0 (2011), 2.0 (2013), 3.0 (2016)

and extension (2019). These and its effort are summarized in figure 1.1. Several multiple

publications have been done since the investigation group started 2011 [2], [5]–[13]. In

2015, the group started putting together a proposal for a prototype [7], which was matured

over the years on publications like [11] in which the variable of interest was structural

vibration, and [10] in which the level of water below the bridge was the main point of

interest. The process culminated with the development of a collaborative Wireless Sensor

Network (WSN) in [12].

Figure 1.1: eBridge Project Timeline. Adapted from [3].

A collaborative network of sensors consists of a network in which the different sensors

collaborate by sharing data and making joined decisions, in this case with the focus of

helping prevent natural disasters by measuring the water level below the bridge. An

example of the concept eBridge collaborative network can be seen in figure 1.2. By

having multiple sensors in a single bridge, it is possible to ensure that other sensors’

measurements are valid, and it is possible to increase the confidence behind water level

reports. Also, it is possible to communicate multiple bridge networks across rivers, so

if a disaster is detected on one bridge, the data can be transferred to other networks

downriver. Aside from water level, the eBridge network is prepared to handle different

measurements like structural vibration and deformation, temperature, etc. [12].

The eBridge network requires two types of wireless communication, one that allows sensors

within the same network to talk and another that allows the network to communicate with

the server. By the work done in [10], it was decided that the nodes would communicate

with each other using the XBee S2C, device which uses the DigiMesh proprietary 2.4

GHz XBee 802.15.4 communication protocol, which can be used up to a distance of 1 200

1 Introduction 3

Figure 1.2: eBridge Collaborative Network concept. Adapted from [4].

m outdoors [14]. The cellular network uses General Packet Radio Service (GPRS) for

device-server communication. The overall sensor node architecture can be seen in figure

1.3, and the general eBridge Network architecture in figure 1.4.

Figure 1.3: eBridge Sensor Node at 2019 [10], [12].

As mentioned in [12], the eBridge network, by the end of 2019, could only have 1 hour

and 45 minutes of power autonomy when working with a battery of 4 400 mAh. Due

to this is not practically possible to deploy the system on a large scale without human

interaction. Due to this, the goal of this work would focus on creating a power-saving

strategy for collaborative wireless sensor networks of multi-core embedded systems that

translate into a higher power autonomy for the eBridge network.

1.1 Objectives and Document Structure

The project’s general objective is to increase the energetic autonomy of the eBridge net-

work from around two hours with a 4 400 mAh battery to twelve hours using a 5 200

mAh battery to expand its field deployment feasibility. The project’s first stage was to

1 Introduction 4

Figure 1.4: eBridge Network General Architecture. Adapted from [12].

make improvements over the existing network to improve existing hardware and increase

the eBridge application performance. Once the application performance was improved up

to its practical level, four specific objectives were the focus of this work.

First, accurately measure the power consumption of the eBridge network by using a task-

level abstraction model on 5 200 mAh and 10 000 mAh batteries. Secondly, create a

task execution model of the eBridge network for both primary and secondary systems

with Raspberry 4B and Raspberry 3B + systems. Third, Measure task-level CPU load

for primary and secondary systems with 5 200 mAh and 10 000 mAh batteries. Fourth,

measure task-level current peak demand using a High-Resolution Voltage Acquisition

board for both primary and secondary devices using 5 200 mAh and 10 000 mAh batteries.

Finally, based on the results from the analysis points above, a strategy involving Dynamic

Power Management (DPM) and Dynamic Voltage and Frequency Scaling (DVFS).

This document is divided in the following way, the next chapter 2 includes the theoretical

fundamentals of the development of this thesis work; in chapter 3, there is a detailed

explanation of the proposed methodology to evaluate the eBridge network, in chapter 4

the results and analysis of the eBridge 2019 network, in 5 is possible to find the proposed

plan for the eBridge 2021 and 2022 network, in 6 is the validation of the proposed design,

and finally, in chapter 7 the conclusions of this thesis work are presented.

Chapter 2

Review of Related Literature

This chapter covers the study of related literature around the area of power consumption

in embedded systems in section 2.1, how to perform power measurements in 2.2, and the

different state-of-the-art power-saving strategies for embedded systems in 2.3, state of

the art power-energy-temperature aware scheduling algorithms and strategies in 2.4, and

finally other power-saving strategies in 2.6.

2.1 Power Consumption in Embedded Systems

With the increased use of multi-core battery-based embedded systems in IoT applications,

there has been a need to ensure that these systems have enough power to complete their

respective tasks. Estimating the energy consumption on an embedded system is not a

trivial matter and is commonly an essential aspect of reducing it. There are three levels

of abstraction from which power consumption can be analyzed. The first of these levels

is the Circuit Level : The total energy or power consumption of a digital Complementary

Metal Oxide Semiconductor (CMOS) circuit consists of two components, namely, static

energy dissipation (SED) and dynamic energy dissipation (DED). SED occurs when the

circuit is not operative, meaning that the CMOS is not switching, and there is a steady

input that could be either high or low. A few years ago, this was considered insignificant,

but as transistors become smaller and faster, it starts having more relevance [15].

The second abstraction level is the Functional-Level. This approach estimates energy

consumption by analyzing the energy consumption of functional units on the processor

[15]. A functional unit is a part of a processor that performs data processing operations

or calculations, such as arithmetic logic units, multipliers, or those in charge of accessing

memory or registers. An example is a unit in charge of accessing the cache memory, which

is the processor’s fastest and smallest on-chip memory. The cache is regarded as one of

the greatest energy consumers on a processor. It is estimated that 43% of total energy

consumption is used within these operations [15]. The parameters for the energy model

of the functional levels are the access rate of the on-chip memory, the clock frequency,

5

2 Review of Related Literature 6

and the degree of parallelism. In [16], the energy consumption model of a multi-core

embedded system with a hierarchy of shared memories is explored, being the L1 memory

independent of each processor and the L2 shared between the cores.

A processor has different operating modes or states, in which some of its functional units

can be on or off. These could be classified as sleep mode, idle mode, and active mode.

Sleep mode refers to the state in which the system intentionally turns off a processor to

save energy. Idle mode is when a processor is not actively working and thus is in a steady

state, causing SED. Finally, active mode is when the processor executes a task. Keeping

the processor idle for a long time could significantly impact a system’s power budget.

However, it is also described how turning off the processor by sending it to sleep mode

is not always a good idea due to the amount of energy needed to start the system again

[17].

The third level of abstraction is the: Instruction-Level. In the work done by [15], it is

concluded that the number of instructions is proportional to the energy consumption in

the processors. There is a direct relationship between the cycle counts and the energy

consumption in processors, these counts are very hard to read due to pipeline stalls, which

can be caused by faulty branch prediction, cache miss-hit, and pipeline hazards will lead

to spending more clock cycles to complete a task in a processor.

Multiple authors have worked on creating task scheduling algorithms based on two ap-

proaches: Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Man-

agement (DPM). DVFS is described as slowing down the central processing unit (CPU)

frequency to reduce the operating voltage and, consequently, the power consumption.

DPM refers to how processors can be put in sleep mode to save power when the load is

low [18]. As is seen in the work done by [16], [18]–[21], a combination of both approaches

are commonly used.

The main focus of this work is to provide a review of existing Power-Energy-Temperature

(PET) task scheduling algorithms, as described in the review done by [22], using a com-

bination of both DVFS and DPM on multi-core embedded systems for reducing energy

consumption.

2.1.1 Power Consumption Model

As mentioned above, estimating the power consumption of an embedded system can be

approached from multiple levels of abstraction. In this section, each one of the abstraction

models will be expanded. It is essential to consider that it is possible to find studies

performed on homogeneous multi-core processors, in which all the cores are of the same

type, and heterogeneous multi-core processors, in which they are not.

2 Review of Related Literature 7

Power vs Energy

This paper’s key factor is understanding the difference between power and energy. Power

is the rate at which the energy, measured in joules (J), is used (time (s)). This is described

in equation 2.1.

P =
E

ti
(2.1)

From equation 2.1, equation 2.2 can be deducted.

E = P ṫi (2.2)

Circuit Model

Multiple authors like [15], [17], [18], [23], [24] refer to the circuit level model as the

combination of both the SED and DED models. This combination results in equation

2.3.

Etotal = SED +DED (2.3)

Being SED Static Energy Dissipation and DED Dynamic Energy Dissipation. The SED

can be expressed in terms of the voltage supply of the processor Vdd, and the total leakage

current Ileakage [15], as is shown in equation 2.4. In the work done by [23], it was concluded

that the SED represents around 5% of the total DED.

SEDtotal = Ileakage · Vdd (2.4)

The DED portion depends on two factors, first the DEDswitching, which is the dissipated

energy by the switching of the CMOS circuit, and secondly DEDshort−circuit. This is

described in equation 2.5.

DEDtotal = DEDswitching +DEDshort−circuit (2.5)

The DEDshort−circuit depends of the short-circuit current, the clock frequency of the

processorf , and the voltage supply of the processor Vdd (equation 2.6). On the other

hand the DEDswitching, depends of f , the effective switching capacitance Cef , and Vdd

(equation 2.7).

DEDshort−circuit = Ishort−circuit · f · Vdd (2.6)

2 Review of Related Literature 8

DEDswitching = Cef · f · Vdd
2 (2.7)

By combining equations 2.4, 2.5, 2.6, and 2.7, with an activity factor k, which has a value

of 0 if the processor is not active or a value of 1 otherwise, it is possible to come with the

power model shown in equation 2.8.

Ptotal = k · [Ishort−circuit · f · Vdd + Cef · f · Vdd
2] + Ileakage · Vdd (2.8)

Functional Level

The functional level of abstraction described by [15] is a model used since 2000 for authors

like [25]. This model divides the processor into functional units ; an example of this can be

seen in figure 2.1. Each one of these functional units could be either a cluster of arithmetic

logic units (ALUs), multipliers, or register banks that could be activated when certain

operations occur. Laurent [25] refers to this model as Functional Level Power Analysis

(FLPA), which depends on two types of parameters. First, the algorithmic parameter

values depend on the executed algorithm itself, and the second ones are called architectural

parameters, which depend on the processor configuration settled by its designer. Some of

these parameters can be found in table 2.1.

Table 2.1: Algorithmic and Architectural Software Parameters [25]

Software Parameters

Algorithmic

Name Description

α Parallelism rate

β Processing unit rate

γ Cache miss rate

τ External memory access rate

ϵ DMA access rate

Architectural

Name Description

W Data width transferred by the DMA

F Clock frequency in MHz

MM Memory mode

DM Data placement in memory

PM Power management (units in sleep mode)

Any time a job is performed by the processor, the use of this model help to understand

which of these functional units activate, as shown in figure 2.2. Knowing which of these

functional units are active can be used to estimate power consumption.

2 Review of Related Literature 9

As described by both authors [15], [25], the main drawback of this method is that it is

not possible to make power consumption estimations of processors whose architecture is

unknown. Also, creating the power model itself can take considerable effort, and if the

architecture of the processor or the processor itself is changed in a project, this process

would have to be repeated.

Figure 2.1: Dividing a processor in Functional Units[25].

Figure 2.2: Dividing a processor into Functional Units[25].

2 Review of Related Literature 10

The investigation done by [26] about a custom SED model was later expanded by [27].

This model uses processor-specific characteristics like the ones described by both [15], [25].

In the work done in this paper, this model will be explored. Both Laurent and Enging

identified 15 different variables which can be used to estimate the power consumption for

the 70 nm technology they used during their investigation. Also, they explored the energy

dissipation caused by accessing cache memory Eccache, that can be divided into dynamic

Ecdyncache, and static Ecstacache power consumption. This approach is described by equation

2.9.

Eccache = Ecdyncache + Ecstacache (2.9)

The dynamic energy dissipation by accessing cache memory depends on three variables

[26]: (1) the number of cache access operations Nca, (2) the number of cache misses Ncm,

and (3) the number of clock cycles involved in a given operation. The authors [26], [27],

used a static energy dissipation value for each one of the cache memory success access

operations. This energy dissipation is denoted by Eaccess, and the energy dissipated by

every memory miss operation is represented by Emiss. This is summarized in equation

2.10.

Ecstacache = NcaĖaccess +NcmĖmiss (2.10)

Instruction Level

The instruction level model works under the assumption that a real-time application has a

set of independent frame-based tasks represented as Γ = {τ1, τ2, ..., τn}, where Γ represents

a real-time application, and τi represents a task within that application [28]. There are

three potential approaches for estimating the power consumption of a given task. First,

a linear estimation like the one used by [28] assumes that each task can be defined by a

set of homogeneous clock cycles; these cycles are represented by ci. The linear estimation

method also considers the frequency fi at which the task is executed. The relationship

between ci and fi is expressed in equation 2.11.

etime =
ci
fi

(2.11)

Secondly, the model proposed by [29] takes into consideration each task’s worst execution

time WCi at a given frequency fi to calculate that task DED, as is shown in equation

2.12.

DEDtask(τi) = Cef · fi · Vdd
2 ·WCi (2.12)

The third approach can be found in the work done by [24]; this model considers heteroge-

neous multi-core processors. In this model each task τi can be characterized by four differ-

2 Review of Related Literature 11

ent parameters
〈
Di, Ti, C⃗i,E⃗i

〉
, where Di is the relative deadline of the task, Ti is the min-

imum time between to consecutive executions of τi, C⃗m
i =

(
C⃗1

i , C⃗
2
i , . . . , C⃗

M
i

)
is the vector

of execution profiles of τi on a M set of different cores. Finally, E⃗m
i =

(
E⃗1

i , E⃗
2
i , . . . , E⃗

M
i

)
is the vector of energy profiles associated to each core in C⃗i. The advantage of this

model is that it can be combined with the model used by [29], which takes into con-

sideration the worst execution to time WCi at a frequency fi for each one of the cores.

It is possible to build a vector C⃗m
i with all the WCi if task τi, resulting in C⃗m

i,j (with

j = 1,2, . . . ,WCi). Similarly, it is possible to define a vector with the energy dissipation

E⃗m
i,j (with j = 1,2, . . . ,WCi), related to each element in C⃗m

i,j.

2.2 Power Measurement in Embedded Systems

In this section, several power measurement strategies for Embedded Systems will be cov-

ered. Recent works like [30] have focused on exploring the complexity and breadth of

power measurement techniques for IoT applications based on embedded systems. One of

the common trends in this area is creating a customize technique based on the type of

embedded system and IoT application. As mentioned in section 1, the eBridge network

uses the Raspberry PI 3B+ platform as its controller.

Based on the results of the IoT developer survey from the Eclipse Foundation [31], 43 % of

IoT applications use Linux as their OS, 35 % use FreeRTOS, and 31 % use Windows. Also,

51 % of systems use HTTP/HTTPS as their main communication protocol. However,

only 37 % of devices use cellular ((LTE, 4G, 5G, etc.) as their main source of connectivity.

This means that the eBridge network follows common development trends for IoT devices.

The power measurement system for IoT applications tends to have very demanding re-

quirements like high acquisition rates of up to 40 kHz, high dynamic range to be able to

take measurements as low as 1 µA o up to several hundred mA, high resolution of up to 16

bits or better, multiple measurement channels, various trigger modes, local data storage,

and most importantly a low-cost [23]. Most embedded systems lack a native solution to

measure their power consumption, and not all systems have a software-based approach

to model it accurately. Also, IoT networks tend to escalate to thousands of devices, so

solutions like low-cost watt-meter tend to be impractical due to the significant cost of

deploying it to the entire fleet [32].

A challenge in accurately measuring power for this type of application is that a whole IoT

typically consists of the main controller and several peripheral devices. Most works focus

on accurate measurements of the controller itself like [32], which focuses on a prelimi-

nary study of the impact of software on Raspberry Pi devices by creating a very accurate

power consumption software estimation model with errors as low as 1.25%. State-of-the-

art power measurement strategies like Energy Measurement Platform Internet of Things

(EMPIOT) [30], and more recently [33]. However, these approaches require custom cir-

2 Review of Related Literature 12

cuitry.

2.3 Power Saving Strategies in Embedded Systems

It is possible to come up with a graphical representation of the power consumption of a

given task τi like the one shown in figure 2.3 for a homogeneous multi-core architecture.

Also in figure 2.4 is possible to observe the execution time for consecutive executions of

a task. It is important to consider that a task’s execution time can change.

Figure 2.3: Power vs execution time of a task τi [25].

Figure 2.4: Power vs execution time for multiple consecutive executions of task τi [25].

Dynamic Power Management (DPM)

As described in [18], it is possible for the Operating System (OS) to turn off some of the

functional units of a processor when the load is low; having multiple sleep modes in a

2 Review of Related Literature 13

processor can be beneficial. A user can control these characteristics by using an Advance

Configuration and Power Management Interface (ACPI). In the work done by [17], [34],

it is described how there is a considerable amount of energy dissipation associated with

waking up a processor from a sleep state; this energy dissipation can be referred to as E0.

In the investigation done by [17], [34], it is proposed that it is worth sending a processor

to sleep only if the energy dissipation of keeping the processor in idle mode is higher

than the energy dissipation caused by changing its operating state from the sleep mode

to active mode. This is generally referred to as the break-even time in equation 2.13.

t0 =
E0

Pidle

(2.13)

Where Pidle is the power consumption of a processor in idle mode.

In the work done by [34], it was determined that embedded systems have the characteristic

of dissipating different amounts of energy when they wake up from different low-power

dissipation states. The power consumed by the field-deployed embedded systems, which is

hard to get a continuous energy supply, was evaluated. An algorithm focused on searching

for the correct sleep policy for a processor based on its function was developed to overcome

this challenge. This algorithm will be explored in more detail in section 2.4.

DPM can be classified into three subcategories [35]: (1) Threshold Timeout/Sleep Algo-

rithm (TTS), (2) Predictive DPM, and (3) Stochastic Method.

Threshold Timeout/Sleep Algorithm (TTS)

This DPM strategy was investigated by the work done by [34]. The main goal is to find

the ideal wait time that the system should wait before sending the processor to sleep

mode. This threshold time needs to be calculated considering that the system needs to

use less energy to sleep and then return to an active state than staying in idle mode until

the next task arrives.

Predictive DPM

The main goal of the predictive DPM strategy is to estimate the combined execution time

of a series of tasks (τ1, τ1, . . . , τn), assuming that the execution time of each task could be

random. Then based on this calculation, the system needs to calculate the optimal next

processor idle time Tidle.

The main challenge of this method is that it requires a lot of historical data from the

possible execution times for each one of the tasks [35]; also, it requires the system to run

calculations on the fly to determine the right moment to send the processor into sleep

mode causing the processor’s load to increase.

2 Review of Related Literature 14

Stochastic Method

The defined stochastic methodology as an analysis procedure that depends on the Markov

Decision Process is defined in [35]. This method is not used often due to the complexity

of the analysis needed for its implementation.

2.3.1 Dynamic Voltage and Frequency Scaling (DVFS)

The Dynamic Voltage and Frequency Scaling (DVFS) is explored by multiple authors

[16], [18]–[22], [24], [27], [36]–[38]. This technique is used to control an embedded system

process performance, temperature, and energy consumption. Most mobile devices are

equipped with processors that include firmware that allows the use of DVFS. This tech-

nique allows us to slow down a central processing unit’s frequency and operating voltage

(CPU). This results in a power consumption reduction[18]. As it is mentioned by both

[16], [38], DVFS was introduced as a flexible computing technology that allows power

saving on systems that are operating in energy-limited environments and with non-static

workloads.

Systems with non-static workloads have the possibility of executing sporadic tasks, which,

as indicated by their name, can execute at any time. Predicting these kinds of processing

workloads is difficult. In figure 2.5, it is possible to observe how the power changes

depending on different types of tasks; the red line represents the amount of power supplied

to the processor. The process of changing a processor supply voltage is known as Dynamic

Voltage Scaling (DVS).

Figure 2.5: Dynamic Voltage Scaling (DVS).

Equation 2.7 provides a mathematical representation of a processor’s total dynamic energy

dissipation, which depends on the frequency. Since it is possible to use Dynamic Frequency

Scaling (DFS) to reduce energy dissipation for a task by changing the frequency at which

is executed. This is shown in figure 2.6 (a) and (b). Factive represents the frequency at

which a task τi is executed, Di its time constrain, Texecution its execution time, and Tmissed

the time by which the Di was missed.

2 Review of Related Literature 15

Figure 2.6: Dynamic Frequency Scaling (DFS). (a) Task executing with higher CPU Fre-

quency. (b) Task executing with Lower CPU Frequency.

DVFS is the combination of applying the DVS and the DFS techniques in a processor.

There are two main types of DVFS based on the work done by [18]: online and offline.

The offline technique requires specific knowledge of the application and its tasks; the

abstraction level commonly used to estimate power consumption is the instruction level

model described previously. The first step for implementing the DFVS offline technique is

to find what is known as the best execution frequency for each task, which is selected based

on two main criteria: the first is that the selected frequency allows the task completion

within its time constraints, and secondly that there is a considerable power consumption

reduction.

It is essential to analyze the trade-off of lowering the frequency of a processor since this

commonly increases the execution time of each task providing a chance of missing its

deadline; on the other hand, it is possible to execute a job faster and use DPM to send

the CPU to sleep mode. The DVFS online approach can be classified into two sub-types:

reactive and proactive. In the proactive methodology, the Operating System (OS) tries to

predict a processor’s workload, and then DVFS is applied based on that prediction. On

the contrary, in the reactive methodology, the workload is measured, and then the DVFS

policy that reduces power consumption to the minimum is applied. The reactive approach

has proven more efficient; however, defining the right policy requires a proper study of

each system’s workload types and operating modes. Somehow some other authors have

used machine learning, specifically the Reinforced Learning (RL) technique, to overcome

this challenge [18].

2 Review of Related Literature 16

The use of DVFS does not always lead to power saving [22]. However, in some cases,

when it is possible to define the right policy to apply DVFS, some authors have been able

to reduce energy consumption by over 40%. The work done by [16] talked about how it

is more complex to apply DVFS techniques in multi-core systems; one of the reasons is

that each core can handle different workloads. Since the right DVFS policy depends on

the workload, the user commonly needs to define one for each core. A major challenge in

defining these policies for multi-core systems is that there could be scenarios where a task

can move between cores. This adds another level of complexity because the task could be

moving between what is known as frequency domains, whose execution time could change.

We would explore this more in section 2.4

Also, it is possible to classify DVFS policies into two more subcategories [27], [39]: (1)

intratask and (2) intertask.

Intratask DVFS

Intratask DVFS technique is defined as the methodology in which the processor’s frequen-

cies can be changed while executing a task. This approach allows the system to change

its processor frequency during different stages of the execution of task τi [27]. If a section

of code heavily utilizes memory, the processor may stall while waiting for the memory

requests to complete. The processor frequency can be lower in this bottleneck situation,

reducing the DED [39].

This methodology adds a new dimension of the complexity to the DFVS; the main focus

of the user should be to answer these two questions: (1) when should the frequency be

adjusted?, and (2) what is the right frequency value? The first question is the trickiest one

to respond to and commonly is necessary to find at which program phase is best to make

the frequency adjustment. A program phase is defined as a window of execution time

within a program in which the program’s characteristics are homogeneous [39]. It was

concluded that during a specific program phase, there is only one optimal clock frequency.

In a Real-Time program, there could be a large number of these phases, and one of the

significant challenges of implementing the intratask DVFS technique is that each one of

these phases has to be experimentally defined.

Intratask DVFS

This methodology allows us to change the processor frequency at the intertask boundaries.

Meaning that each task τi is taken as a singular execution time window.

2 Review of Related Literature 17

2.4 PET-aware Scheduling Algorithms/Strategies

In this section, several Power-Energy-Temperature aware scheduling algorithms will be

described in more detail to be later compared in section 2.5.

2.4.1 Leakage-aware energy minimization using dynamic volt-

age scaling and cache reconfiguration in real-time systems

The DVS and Dynamic Cache Reconfiguration (DCR) techniques are combined in a sys-

tem aware of its leakage power (SED). DCR is a technique that allows the configuration of

the cache memory parameters at run-time so that it is possible to save energy from cache

memory accessing operations [26]. As described above, these operations can represent up

to 43 % of the total DED of an embedded system [16].

This strategy is focused on three main actions: (1) the estimation of the processor’s critical

speed, (2) the real-time scaling and reconfiguration selection, and (3) what is known as

task procrastination. Each one of these will be addressed in the subsections below.

Estimation of Critical Speed

A critical speed is the point where the speed of a processor can no longer be slowed down.

Otherwise, the use of DVS would not result in a reduction in energy consumption. Also,

it was found that the use of the DCR technique has a significant impact on finding the

critical speed of a system and consequently reducing that system’s energy consumption

[26].

Real-Time Scaling and Reconfiguration Selection

A configuration point (vj,ck) is defined as the combination of the use of the DVS (vj), and

DCR (ck) techniques. Also, it is indicated that is possible to build a profile table, which

contains all the possible configuration points (vj,ck) for a processor. It is important to

take into consideration that all the (vj) points that are below the critical speed value are

eliminated. Also, any configuration point which results in a smaller energy consumption

reduction than other points is not included in the analysis [26].

Task procrastination

A modified version of the Earliest Deadline First (EDF) scheduling algorithm focuses on

reducing a processor’s busy/idle cycles as much as possible. As was described above, there

is an overhead in waking up a processor from a sleep state; thus, having more significant

idle times Tidle for a processor is usually desired [26].

2 Review of Related Literature 18

2.4.2 Energy optimization for real-time multiprocessor system-

on-chip with optimal DVFS and DPM combination

The main goal of this technique is to model idle time intervals between multiple processors

in a multi-core architecture. The purpose of this technique is to optimize the combined

use of the DVFS and the DPM techniques simultaneously. The authors proposed a

mixed-integer linear programming (MILP) approach for integrating both methods. This

technique’s main contribution to state-of-the-art was the definition of a way to model

processors’ idle intervals tidle, which was not possible before this investigation. This

innovation allows to integrate of the idle times within the scheduling logic of a processor

and helped them to achieve a 9.1 % energy-saving in comparison to applying the DVFS,

and the DPM techniques separately [27].

One of the main challenges faced during the definition of this methodology was to be able

to determine the idle intervals tidle of a given task. This idle time is defined by the closest

task to the one under analysis. The example in figure 2.7, the idle interval I1 of a task τ1
is determined by its closets task, which in this case is τ3. I2 is determined by τ3, and I3
and I4 are determined by the end of the Hy-period, which is the name the author gave to

the execution window under study [27].

Figure 2.7: Idle times Ii of multiple tasks (τ1,τ2,τ3). Adapted from [27].

2.4.3 Energy-Aware Frame-Based Scheduling (EAFBFS)

A homogeneous multi-core scheduling strategy for hard real-time systems called Energy-

Aware Frame-Based Scheduling (EAFBFS) was proposed in [20]. This technique incorpo-

rates DVFS within the processor scheduling logic, intending to make the scheduling logic

energy-aware. The authors used a semi-partitioning strategy with a two-level hierarchical

2 Review of Related Literature 19

scheduling scheme. The extreme level of this scheme divides time into frames or execu-

tion windows; the boundaries of these windows are defined by the arrival and departure

of tasks. Based on the results found by the authors, this methodology helped restrict task

migrations to other cores and what is known as preemption overheads. These preemption

overheads are caused when a given task τ1 is executing, and it is stopped by another task

τ2, so this one can execute. On the other hand, the inner level of the scheduling scheme

is in charge of supervising tasks executed within the time frames described above.

The EAFBFS framework tries to allocate processor resources to a set of tasks so that

independent cores can be operated at their specific critical speeds while the system ensures

the fairness in the execution rates of all tasks consistently above a defined tolerance. The

frequency allocation and mapping module or FAM is in charge of executing each frame’s

end. The FAM is part of the outer level scheduling scheme, while on the inner level, there

is an ERFair (Early Release Fair) scheduler for each independent core. It is essential to

mention that the ERFair schedule is considered the first known optimal real-time scheduler

[20].

2.4.4 Improved least loss energy density algorithm (ILLED)

In energy-saving results, the ILLED algorithm outperforms other algorithms, like the

MaxMin (MM) or the Least Loss Energy Density (LLED) algorithms. The ILLED task-to-

core scheduling allocation algorithm was defined for heterogeneous multi-core platforms.

It is composed of two phases: (1) the scheduler allocates the tasks to the different cores,

each one of these tasks has an ideal execution frequency known by the scheduler, and it

is possible to group tasks with similar execution frequencies. (2) The second scheduling

phase refines the allocation performed by the first phase to achieve better sleep states that

reduce DED. This could be achieved either by temporally increasing the frequency of a

core to accumulate extra idle time or by collating tasks so that better sleep times could

be achieved [24].

This methodology aims to identify the behavior of each task running at different fre-

quencies in different cores; this information is later used to improve task allocation and

scheduling. Doing this process helps to find what is known as a favorite core, which is the

core at which a task can be assigned that will result in minimizing energy consumption,

and that could help group tasks execute at similar frequencies. This can help to reduce

the unnecessary overhead caused by switching core frequencies. The energy density of

each task is computed on different cores, then the density difference of each task in their

preferred core is computed. Finally, these density differences are stored in what is known

as a current density difference set or CCD. The CCD is used at task allocation time, and

it helps to define where to assign each task, trying to keep the lowest density difference

possible, which results in the maximum energy-saving scenario.

In summary, this algorithm takes into consideration three variables: (1) independent core

frequency set-points, (2) task energy consumption, and (3) special core sleep state that

2 Review of Related Literature 20

result in reducing DED.

2.4.5 Heterogeneous energy-aware real-time scheduler (HEARS)

HEARS’s heuristic strategy addresses the lack of an energy-aware scheduling algorithm

that allows task migrations between the cores of a heterogeneous multi-core system. The

goal behind migrating these tasks is to lower resource utilization by distributing the load

and consequently reducing the frequency at which a processor needs to operate to comply

with its tasks’ deadlines [21]. This scheme is different than the one presented in ILLED

[24], in which a task cannot migrate between cores. While the HEARS algorithm is

performing these task-to-core allocations, not only the energy demand is considered, but

also the current operating frequencies of each one of the cores are taken into consideration.

This helps avoid unnecessarily changing frequencies and prevents affecting the system’s

overall energy consumption.

The HEARS algorithm proposes a two-level hierarchy scheduling scheme. On the first

level, the algorithm applies what is known as deadline partitioning, which is used to

compute an ideal execution frame. This execution frame is the same concept described

above, the same that was presented by [24] in his work. The second level of the scheduling

scheme is applied within each execution frame, and tasks are scheduled to available cores,

such that each task receives its appropriate execution share and the operating frequencies

of the cores are scaled appropriately [21]. Something important is a task cannot be fully

allocated to a single core, meaning that the concept of favorite core does not exist.

2.4.6 Dynamic energy-saving scheduling algorithm for a spo-

radic task in real-time embedded systems (DESSAST-

RTES)

An efficient DVS algorithm that largely depends on acquiring more slack time from both

high and low-priority tasks was proposed in [17]. Then the algorithm takes the benefit of

the slack time to scale the processor’s supply voltage down to reduce both DED and SED.

This scheme considers the difference between actual execution time and WCET, so using

a DFS methodology at the intertask level guarantees that all tasks meet their respective

deadlines. As was described above, the concept of critical speed, which is used to reduce

the SED when the processor is idle for a long time, was introduced by [17].

DESSAST-RTES assumes that there are two main queues for tasks in an embedded

real-time system: (1) the wait-queue Wq, which contains tasks that have been already

completed, and (2) the Ready-queue Rq, which contains the ones ready to execute. To

reclaim as much slack time as possible, it is assumed that all tasks are initialized on Wq,

then if a task is activated is moved to Rq. In case the running task is preempted by a

higher-priority task is sent back to Rq.

2 Review of Related Literature 21

It is possible to gain slack time from three sources: (1) when higher-priority tasks are

completed earlier than their respective WCET, this remaining time can be used by other

tasks τx, (2) when τx is activated, and it has remaining time, and (3) when running lower-

priority tasks instances are preempted by higher-priority ones, τx can use the slack time

from the lower priority task τL.

2.5 Comparison of PET-ware Scheduling Algorithms

As seen in section 2.4, the PET-ware scheduling algorithms have approached the energy-

saving paradigm from multiple angles, thus making them difficult to compare. The vari-

ables on table 2.2 are define to help this process. Even though multiple authors mention

their respective energy-saving achievements, it is hard to compare them since all have

used different algorithms to benchmark their respective solutions. Recently, a model for

benchmarking these algorithms on general-purpose multi-core processors is commonly

different from those used in embedded systems, as defined by [22].

Table 2.2: Comparison Variables for PET-ware Scheduling Algorithms

PET-aware scheduling algorithms comparing variables

Variable name Abbreviation

Improved Memory Access Techniques IMAT

Dynamic Voltage and Frequency Scaling DVFS

DVFS (Online or Offline) OO

Type of DVFS (Intertask or Intratask) DVFS - Type

Dynamic Power Management DPM

Type of DPM (TTS, Predictive, Stochastic) DPM -Type

Core Migration CM

Core Architecture (Homogeneous or Heterogeneous) CA

Favorite Core Scheme FCS

The algorithm comparison is made in table 2.3.

Algorithm IMAT DVFS OO DVFS - Type DPM DPM - Type CM CA FCS

[26] Yes Yes Offline Intertask Yes TTS N.M N.M No

[27] No Yes Online Intertask Yes Predictive N.M N.M No

[20] No Yes Online Intertask No Predictive Restricted Homogenous No

[24] No Yes Online Intertask Yes TTS Not allowed Heterogenous X

[21] No Yes Online Intertask No N.A Allowed Heterogenous Not Allowed

[17] No Yes Online Intratask Yes Predictive N.M N.M No

Table 2.3: Comparison of PET-ware Scheduling Algorithms

As can be seen, not many authors have worked with Intratask DVFS schemes in combi-

nation with a predictive DPM strategy.

2 Review of Related Literature 22

2.6 Other Power-Saving Strategies

2.6.1 Operating System Power Saving Strategies

There are two types of OS-level optimizations, which are application-specific and general

optimizations. The first is a group meant to modify the OS based on an application

resource utilization, which translates into power consumption. The second group refers to

OS-level modifications; however, it commonly requires a deep knowledge of the OS boot-

up process, which is not common among developers [30]. These types of optimizations

are hard to keep up to date due to constant OS and application updates, due to this work

would focus on Software Level Optimizations, which are covered in section 2.6.2.

2.6.2 Software Level Optimizations

Many studies have shown that different instruction sets, source code structures, algo-

rithms, and software architecture directly impact energy consumption due to their direct

impact on the hardware. All the previous aspects could represent up to 80% of the power

consumption [40]. This complies which what is described in section 2.1.1 and can be seen

in figure 2.8. For more details on the hardware layer, refer to section 2.1.1.

Figure 2.8: Software and Hardware Layer in Power Consumption. Adapted from [40].

This optimization requires deep knowledge of the application and good resource profiling

techniques. To provide meaningful power-saving software optimizations, measuring the

application’s CPU, memory, storage, and network utilization is essential. The methodol-

ogy for evaluating the eBridge network is described in chapter 3. This work proposes a

multi-embedded system instruction-level CPU load and power analysis that considers the

multiple nodes part of a WSN for SHM, which requires the creation of a custom software

profiler.

Chapter 3

Methodology

This chapter describes the proposed solution to create the power-saving strategy for the

eBridge collaborative network, all software/hardware modifications, experiments and re-

sults, and the overall power-saving strategy. This section is organized in the following

way: in section 3.1 the process of updating the hardware and software of the eBridge

network in area 3.3 there is a description of the hardware setup used for the analysis of

the eBridge 2019, in section 3.4 there is a description of the code profiling strategy and

the tools used and created for this purpose. And finally, in area 3.5, there is a descrip-

tion of the procedure and tools used to perform an instruction-level power analysis of the

network.

3.1 Hardware and Software Update

As it can be seen in figure 1.3 in chapter 1 the eBridge 2019 sensor node was designed

using a Raspberry Pi (RPI) 3B+ and Python2.7. The Raspberry3 B+ system would be

in production up to January of 2026 [41]. By the time this thesis work was started in

2020, the newest Raspberry PI system on the market was model 4B, so it was critical

to evaluate the performance of the eBridge sensor node in this model. Aside from the

RPI model upgrade, other aspects of the sensor node were updated, like the cellular

communication board; the main goal was to allow the system to connect to the 3G and

4G cellular networks. The previously used SIM900-based communication module was

replaced by one using a SIM7600G-H due to its connectivity to all LTE Cat-4 networks

globally. Also, Costa Rica no longer has a GPRS network. A summary of these can be

seen in table 3.1 and in figure 3.1.

The WaveShare SIM7600G-H 4G Hat was selected as the new communication board for

the eBridge 2021 sensor node [42]. The module can be seen in figure 3.2. Some of the

features of why the board was selected are:

• Allow the use of Qualcomm MSM Interface (QMI) library, which allows a higher

23

3 Methodology 24

Table 3.1: Previous vs Current eBridge Sensor Node Comparison

Component Previous Model Actual Model

Node Name 2019 hardware configuration 2021 hardware configuration

Controller

RaspberryPI 3 B+

CPU: 1.4 GHz QuadCore Cortex A53 (ARMV7)

RAM: 1 GB LPDDR2

RaspberryPI 4 B

CPU: 1.5 GHz QuadCore Cortex A72 (ARM v8)

RAM: 4GB LPDDR4

Cellular Communications Card
SIM900

Network: GSM ∼2G

SIM7600G-H

Network: 3G and (LTE) 4G

Sensor

Ultrasonic Sensor ->Range up to 10m

SRF08 ->I2C

Consumption: ∼15 mA Acquiring ∼3mA standby

Ultrasonic Sensor ->Range up to 4 m

SRF05 ->Digital I/O

Consumption: ∼15 mA Acquiring ∼2mA standby

XBee XBee-Pro S2C DigiMesh XBee-Pro S2C DigiMesh

Figure 3.1: eBridge Sensor 2019 vs 2021 Nodes. Adapted from [10], [12].

level of abstraction compared to the AT commands, which is the common API for

cellular communication boards.

• Provides an easy method to check the signal strength of the cellular connection.

• Board has a low-power mode that would allow turning off cellular communication

to save power.

• Capabilities of Interfacing with cellular networks in table 3.2.

Using the WaveShare SIM7600G-H 4G Hat, the eBridge Network can be deployed globally

whenever there is 2G, 3G, and 4G coverage. Also, the board includes the possibility of

using GPS to locate the nodes; this could be used to create maps of eBridge nodes’

locations and alarm locations.

3 Methodology 25

Figure 3.2: WaveShare SIM7600G-H 4G Hat [42].

Table 3.2: Frequency Bands Supported by SIM7600G-H

Frequency Bands supported by SIM7600G-H

LTE Cat-4

LTE-FDD: B1/B2/B3/B4/B5/B7/B8/B12/B13/B18/B19/

B20/B25/B26/B28/B66

LTE-TDD: B34/B38/B39/B40/B41

3G UMTS/HSDPA/HSPA+: B1/B2/B4/B5/B6/B8/B19

2G GSM/GPRS/EDGE: 850/900/1800/1900 MHz

3.2 RPI3 B+ vs RPI4 B Comparison

In this section, there will be a comparison of the SoC BCM2711 used in RPI4 B and

the Broadcom BCM2837B0 SoC in RPI3 B+. The BCM2711 SoC architecture is a con-

siderable improvement from previous models as it includes a faster GPU that allows the

use of up to 4K video, a direct PCIe connection with the USB 2 and 3 ports; a native

Ethernet controller, and the capability of using up to 8 GB of RAM. It also includes an

independent L1 cache and a shared L2 cache. Details of these can be seen in figure 3.3.

When further looking at how the A72 is integrated into the BCM2711, it is possible to

get to a diagram like the one in figure 3.4.

In the work done by [45], there is a comparison of the BCM2711 and BCM2837B0 SoC

that can be seen in figures 3.5 and 3.6. The communication bandwidth of the SoC is

increased by a factor of three compared to previous SoC versions. Also, the change in

the BCM2711 allows a considerable improvement in the access to memory by changing

from a maximum of 1 GB DDR2 memory in the BCM2837B0 to up to 8GB DDR4. All

of these factors improve the performance as seen in [46]; however, they also increase the

power consumption.

3 Methodology 26

Figure 3.3: Cortex A72 (ARM v8) Processor SoC Diagram [43].

3.3 Hardware setup for experiments

The hardware setup in figure 3.7 was installed to run the test for the purpose of this work.

Three bridges were configured; bridge number one has two sensor nodes with cellular and

XBee communication, and bridges two and three only have one sensor node each, with

cellular communication. Out of the four devices, there are two RPI model 3B+ and two

3 Methodology 27

New or Improved ComponentsOld Components kept

CPU CPU CPU CPU

L1 L1 L1 L1
L2-Cache 1 MB

MMU
ARM/VC MMU

4x ARM Cortex-72

MMU

3D-GPU

 (VC6)

L2-Cache:

128 kByte

LPDDR4-

SDRAM-

Controller

H.265 VP9 H.264 JPEG Camera

CSI

Display

Engine

CSI

HDMI 2.0

HDMI 2.0

Mailbox

(VCHIQ) VPU DMA ISP

VideoCore VI (VC6)

AMBA/AXI-Bus

PCIe

2.0 x1

GigE Ethernet

MAC DMA USB

2.0 Timer 2x

SDIO

5x

UART

5x

SPI

7x

I2C

AUX
2x SPI

Mini-UART

SDIO

Legacy

PCM/

I2S

4x

PWM

GPIO-Multiplexer

DPI

Composite

AudioGPIO InterfaceSPI-EEPROM

(512 kB)

SPI-EEPROM

(512 kB)

WLAN+

Bluetooth

(CYW43455)

USB-C

OTG

Ethernet

(BCM54213PE)

USB 3.0

VIA

VL805

RJ452x

USB 3.0

2x

USB 2.0

Broadcom BCM2177

The System on Chip does not only combine 4 CPU Cores with a GPU, but also a lot of interface
controllers.

Heart of RaspberryPI: Broadcom BCM2177

Figure 3.4: BCM2711 SoC Diagram [44].

model 4B. The goal of having the two old RPI is to measure the effectiveness of the

power-saving strategy on the same plant used by [4]. Also, since the RPI3 B+ is going

EOL (End of Life) in January of 2023 based on [47], it is critical to evaluate the power

performance of the eBridge network in an RPI4 B system.

The 2021 hardware configuration described in table 3.1 is done both in RPI3 B+

and RPI4 B systems. The goal is to compare is power performance of both units with

the SIM7600G-H node and will be named eBridge 2021 HW, where HW stands for

hardware.

3.4 Code Profiling Strategy

This section will cover the code profiling strategy for the eBridge code. As mentioned

in section 2.6.2, measuring CPU, memory, disk, and the device network utilization, the

initial strategy would be to focus on the CPU. A good understanding of CPU utilization

is a crucial component of DPM and DVFS techniques.

3 Methodology 28

Figure 3.5: BCM2837B0 SoC Diagram [45].

Figure 3.6: BCM2711 SoC Diagram [45].

3 Methodology 29

Figure 3.7: Current Hardware Setup eBridge.

3.4.1 Reviewing Existing Profilers

As described in figure 3.1, the 2021 model of the eBridge code was updated from Python

2.7 to Python 3.7, the newest version natively compatible with Raspbian Lite. The first

step of the process was to investigate code profiling tools available to Linux distributions.

Some of the desired features for a profiler were:

• Ability to profile at least CPU and other features like memory, disk, network, and

peripheral usage over a long period of time.

• Logging capabilities, it is desired that the system can log the data in easily consumed

file formats like CSV (comma separated value) or tab-delimited.

• Low CPU utilization. It is desired that the profiler has a low resource utilization.

• Low code execution time impact. It is desired that the profiler does not slow the

code more than 10-15%.

• Support for the A53 and A72 ARMV7 CPUs.

• Line profiling is a desired feature since it would allow having a better idea of the

impact of individual functions.

Table 3.3 summarizes the reviewed profilers. Based on these results, a custom profiler

based on the combination of several profiling tools is created. Existing profilers do not

3 Methodology 30

include the possibility of getting instruction level measurements for multiple variables of

interest like CPU Load, Memory, Disk, etc. The new profiler is capable of this. The

profiler also includes several tools that allow its users to plot and analyze the captured

data in an easy and graphical way. These tools can be reused by other teams performing

a similar analysis on other systems.

Table 3.3: Profiler Comparison

Profiler Logging File Format Impact ARMV7
Profiling Feature

CPU Memory Disk Network Peripherals Voltage Frequency Idle Line

bcmstat [48] No Undetermined X X X X X X X X X

psutil [49] Yes Yes Low X X X X X X X X X

top [50] No Low X X X X

Py-Spy [51] Yes Yes Low X X

Scalene [52] Yes No Low X X X X X

Figure 3.8: Task execution time vs CPU Load profiling strategy.

3.4.2 Creating a Custom Profiler

This section describes creating a custom profiler based on several existing tools. As it

was mentioned in section 3.4.1, the selected tools were py-spy and psutil. Using these

libraries, the Python time [53] library would be used to track the start and stop time of

the eBridge code main functions to create a Gantt diagram. A conceptual representation

of this can be seen in figure 3.9, and it was named the Event Logger.

After creating the Gantt diagram of the eBridge code main functions, the goal is to map

this information against CPU load information. A concept of this can be seen in figure

3.8. This information would be critical to creating a task execution model of the code.

Another desired feature is to map the load of the four cores on the A53 and A71 ARMV7

to create a plot like the one in figure 3.10.

3 Methodology 31

Figure 3.9: Event Logger Concept

Figure 3.10: CPU Load Plot Concept.

Also, in parallel, the goal would be to use py-spy to identify what functions the code

spends more time on. An example of the py-spy output can be seen in figure 3.11. This

information would focus on the code refactoring efforts, following the process in figure

3.12. Since the eBridge application does not have Real-Time requirements, the same

approach as the one used by [24] is used, where the relative deadline Di is equal to Ti,

which is the minimum time between executions of a task τi.

The code execution information that is returned by the Event Logger is used to build the

vector C⃗m
i =

(
C⃗1

i , C⃗
2
i , . . . , C⃗

M
i

)
of execution profiles described in section 2.1.1. However,

since the eBridge code is Python-based and thus depends on the Python GIL (Global

Interpreter Lock) [54] is not possible to get the details of tasks execution for specific

cores. Due to this, the execution profiles for a given task (τi) will be represented as

3 Methodology 32

Figure 3.11: Py-Spy example [51].

Figure 3.12: Code Optimization Strategy.

⃗
Cf

i =
(
C1

i , C
2
i , . . . , C

F
i

)
. Also, each CF

i = (C1, C2, . . . , Cn) vector, which is the group of

execution times at a frequency F .

3.5 Power Measurement of eBridge System

To measure the power of the eBridge sensor node, it was decided to use the configuration in

figure 3.13, using a shunt resistor and High-Resolution Voltage Acquisition board with the

features described in section 2.2. The selected board was the PXIe-4309 from National

Instruments [55], which can be seen in figure 3.14. The shunt resistor shown in figure 3.13

is a 75 mV /100A or 0.75 mΩ. Some of the characteristics of the PXIe board are shown

below:

• Anti-Alias filter.

3 Methodology 33

• 18-bit 28-bit Resolution in voltage ranges ±0.1 V, ±1.0 V, ±10.0 V, and ±15.0 V.

• Up to 2 M S/s sample rate.

• Resolution of 9.6 µVpk−pk for ±10.0 V range.

Figure 3.13: Power Measurement Hardware Setup for eBridge Sensor Node.

Figure 3.14: PXIe-4309 Flexible Resolution PXIe Analog Input Module [55].

The four voltage values captured by the PXIe-4309 board Ch0, Ch1, Ch2, and Ch3

channels, which are the Vsup and Vshunt voltages for both the RPI 3B+ and the RPI

4B respectively. The Vshunt value is used with the 0.75 mΩ resistance with Ohm law to

3 Methodology 34

calculate the current using the equation Ishunt = Vshunt/Rshunt. These values are then

used to compute the node power using equation Pnode = Vsup · Ishunt.

Following the same logic in section 3.4.2, the vector of energy consumption for a given task

(τi) will be represented as
−→
Ef

i =
(
E1

i , E
2
i , . . . , E

F
i

)
, with f as the frequency configuration

for the RPI cores. Each EF
i = (E1, E2, . . . , Em), which is the group of power consumption

of a task (τi) at a frequency F . The nomenclature use in this document to represent the
−→
CF

i ,
−→
Ef

i vectors of different tasks τi is going to be
−−→
Cf

i,τi
for the execution profiles, and

−−→
Ef

i,τi

for energy consumption.

In the next section 3.5.1 there will be a description of the Lithium-ion batteries used to

test the eBridge network.

3.5.1 Batteries used for testing

This section includes a description of the batteries used for testing. At the end of the

work done by [4], the eBridge 2019 node was tested using a Lithium-ion battery model

ICR18650 4400mAh 3.7V [56] in figure 3.15. When testing this battery with the 2021

eBridge HW configuration using both RPI3 B+ and RPI4, it was possible to observe how

the battery could not provide both powers when initiating an LTE connection, which

caused the unit to reboot itself.

Figure 3.15: ICR18650 4400mAh 3.7V Battery[56]

When investigating the local market for batteries with similar charges, it was possible

to find the MI Power Bank and Wall Charger CBQ01ZM with a capacity of 5200 mAh

[57] in figure 3.16, which has the benefit that it can be easily recharged with external

hardware by just connecting it to the 120 VAC power outlet. Also, it was decided to use

the MI Power Bank 3 Ultra Compact 10 000 mAh battery to test the system with a larger

battery capacity.

In table 3.4, there is a summary of the battery systems used in this work. There is a total

of four 10 000 mAh and four 5 200 mAh four batteries; for simplicity, it will be named 10

000 mAh - [ID], where ID could have values from one to four. For example, 10 000 mAh

- 3. The same nomenclature will be used for the 5 200 mAh batteries, for example, 5 200

3 Methodology 35

Figure 3.16: MI Power Bank and Wall Charger CBQ01ZM - Capacity 5200 mAh [57]

Figure 3.17: MI Power Bank 3 Ultra Compact - Capacity 10 000 mAh [58]

mAh - 4.

Table 3.4: Summary of Batteries used for testing

Battery Capacity (mAh) Technology Output Quantity

Mi Power Bank and

Wall Charger 5200 (18 Wh) Lithium-Ion 5 V / 2.4 A 4

Mi Power Bank 3

Ultra Compact 10000 (37 Wh) Lithium-Ion 5V / 2.4 A 4

Chapter 4

Analysis of the eBridge Network

The first part of this chapter includes the results of applying the methodology described in

chapter 3 over the eBridge 2019 network. Section 4.1 describes the line profiling, code

profiling for master/primary and slave/secondary nodes in subsections 4.1.2 and 4.1.3

respectively. Section 4.2, includes the battery tests results for master/primary nodes in

subsection 4.2.1, and the ones for slave/secondary nodes in subsection 4.2.2. There is a

task interaction analysis for both types of nodes in section 4.3, and finally, in section 4.4,

there is a detailed description of the Standby power consumption of the eBridge 2021 HW

configuration on both RPI3 B+ and RPI4 B nodes.

As was described in the chapter 1, the eBridge network has multiple communications

requirements for both inter-node and node-to-server communications. Additionally, the

network can easily interface with different sensors and other peripheral devices through

SPI, I2C, UART, USB, etc., while maintaining low power consumption. These charac-

teristics are compatible with SoC-based embedded devices like the RPI3 B+ and RPI4

B systems. Also, these units have a Debian-based Linux environment compatible with

multiple software tools and programming languages.

4.1 eBridge 2019 Node Analysis

The Initial results of the eBridge 2019 code are covered in this section; the line profiling

results are in subsection 4.1.1, and the detailed results of the CPU and Events profiling

to both master/primary and slave/secondary nodes in subsections 4.1.2, and 4.1.3. This

analysis is performed using the hardware setup described in figure 3.7 and section 3.3.

An assessment of the CPU profiling results using psutil with a constant power supply for

both master/primary and slave/secondary nodes are covered in this section. The results

for the line profiling can be observed in section 4.1.1, the results of the the profiling for

a Master/Primary 2019 eBridge node can be seen in the section 4.1.2, and the ones for

a Slave/Secondary node in section in 4.1.3. For the purpose of this chapter, the original

eBridge code done by [4] is referred to as eBride 2019 code, and the new implementation

36

4 Analysis of the eBridge Network 37

is referred to as eBridge 2021 code. In the next section 4.1.2 the line profiling results

for the eBridge 2019 code running on both RPI3 B+ and RPI4 B nodes is detailed.

4.1.1 eBridge 2019 code Line Profiling Results

The line profiling of the eBridge 2019 code done by the end of [4] was performed in

RPI3B+ and RPI4 B nodes with and without XBee communication for over 200 hours,

using the line profiling tool called py-spy. Some of the most extended tests took up to

38 hours. The results of the line profiling help identify the following functions as a focal

point. These functions of interest would be named as τi following the instruction level

approach described in section 2.1.1. These functions are described below:

• XBee Received - ID 0 (τ0): Used by a master/primary node to receive measure-

ment reports from all of the slave/secondary nodes connected to it.

• XBee Send - ID 1 (τ1): Send all of the measurement reports stored in the memory

of a slave/secondary node to a master/primary node.

• Upload to Server - ID 2 (τ2): This function allows the main system to upload

the measurement reports generated by the master/primary node itself and all of the

slave/secondary nodes connected to it, to the server.

• Generate Report - ID 3 (τ3): Generates a report out of the measurements per-

formed by the node. This function uses the results from the Get Median - ID

4 (τ4) function, and it performs an evaluation of the alert level and the collabora-

tive network’s overall alarm level. These reports are stored in the node’s internal

memory until the node is ready to upload the data to the server in the case of a

master/primary node or send over XBee in the case of a slave/secondary node.

• Get Median - ID 4 (τ4): This operation englobes the distance measurements and

gets the average value of a series of measurements. For example, in the case of water

level, at least 10 measurements are taken and then average each time this function

is called. This value is used by the Generate Report - ID 3 (τ3) to generate

reports.

Also, several threads were identified as focus points:

• SetDateTime: This thread is in charge of keeping the time of the node; this time

is used by the functions above to decide when to perform actions. This thread is

highly CPU intensive.

• Recibir (Receive in English): This thread is in charge of receiving XBee mes-

sages, and it is only launched on master/primary nodes.

4 Analysis of the eBridge Network 38

• Device.Run: This is the main thread for the eBridge 2019 code, which is part

of the Device class defined in [4]. This thread controls the data acquisition, report

generation, and data uploading to the server through the LTE network. Also, is in

charge of communicating with the receive thread to process incoming reports from

slave/secondary nodes, process alarms, and upload data to the server.

The analysis and optimizations focus on the functions above using the implement Event

Logger described in figure 3.9. With these results the list of tasks Γ = {τ0, τ1, τ2, τ3, τ4}
is defined and would be used through the course of the document

4.1.2 eBridge 2019 Master/Primary CPU, Events and Power

Profiling

In this section, you can find the results of the code profiling for primary node algorithms

running on RPI 3B+ and RPI4. The details of the tests executed on the eBridge 2019

network running as master/primary can be seen in tables 4.1 and 4.2.

Figure 4.1: CPU Load (%) for eBridge 2019 code running as master/primary sensor node

running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details in table

4.1

As shown in figure 4.1, at least one of the CPUs of the system is at 100% utilization.

When doing a more in-depth analysis of the statistical data for the CPUs behavior, it is

possible to see the results in table 4.4. The Core 1 has a mean CPU load of 66.34 %

with a standard deviation(σ) of 47.08 % while the other cores had a mean value in less

than 20 % for an RPI3 B+ node. To better understand CPU Load behavior the box plot

in figure 4.6. This behavior is expected for a multi-threaded code like the eBridge 2019

code due to the Python GIL [54].

4 Analysis of the eBridge Network 39

Table 4.1: Measurement Summary eBridge code 2019 running as Master/Primary Sen-

sor node in eBridge 2021 hardware configuration on RPI3 B+

CPU and Events Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI3 B+

Controller Raspberry PI 3 B+

Device ID RPI3-2

Code Running eBridge 2019 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Master/Primary

Total Test Duration 1 hour 12 minutes and 6 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples by CPU Core 4296 samples

CPU Frequency applied to all cores(f) 1.4 GHz

Power Measurement Summary

Power Source CanaKit RPI3 B+ 5V 2.5A [59]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 8 652 000

When analyzing the distribution of the tasks over time, it is possible to obverse how

several tasks overlap their execution, and in some cases, some of these tasks have longer

execution times, as can be seen in figure 4.2, particularly it can be seen how both the Get

Median ID: 4 (τ4) and XBee Received ID:0 (τ0) functions were taking an abnormal

time to execute. When further analyzing these functions and checking the CPU load

during this event, it was possible to get the behavior seen in figure 4.4. It is possible to

see how at the time of these stalling event the CPU Load lowers down to 0%, in figures

4.3, and 4.5 there are zoomed views of this behavior.

This stalling behavior was caused due to shared resources among the measurement

thread of which the Get Median ID: 4 (τ4) function is part, and the receiving data

thread XBee Received ID:0 (τ0) is part of. The specific shared resource is a Python

queue object named as requestQueue that was used to store measurements in the Pri-

mary/Master system from its own and Secondary/Slave systems sensors. In the way the

eBridge network was implemented at the end of the work done by [4], it was possible

4 Analysis of the eBridge Network 40

Figure 4.2: Tasks Gantt plot eBridge 2019 code running as master/primary sensor node run-

ning in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details of the test in

table 4.1

Figure 4.3: Tasks Gantt Zoomed plot eBridge 2019 code running as master/primary sensor

node running in eBridge 2021 HW with RPI3 B+. Details of the test in table 4.1

4 Analysis of the eBridge Network 41

Figure 4.4: Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details

of the test in table 4.1

to configure the measurement and the sending message frequencies. For both the

master/primary slave/secondary nodes, the measurement frequency indicates how often

a serious of measurements is performed on a specific node.

For example, for the test detailed in table 4.1, the measurement frequency is one minute,

this means that the node performs a series of consecutive measurements, in this particular

case 10, and it would get the average value of these measurements once every minute.

This means the measurement value would be used to build a report that would be stored

in the requestQueue object. In the case of the sending message frequency, the behavior

changes depending on the type of node; for the master/primary node, this controls how

often the node uploads the data to the server, while for a slave/secondary node, this

controls how often this node sends its reports to the master/primary node.

One of the aspects of the eBridge network is that in a primary/master node, there is no

awareness of when a slave/secondary node sends messages. For example, when the test

described in table 4.1 was executed while the one in table 4.8 was also running on a node

configured as a slave/secondary system as part of the same bridge and network. The

relationship between both tests is discussed in section 4.1.3.

To evaluate the eBridge 2019 code done by [4] in a RPI4 B system, the test described

in table 4.2 was performed. This test included the same type of configuration as the one

in table 4.1, but the slave/secondary system had a different configuration, which can be

4 Analysis of the eBridge Network 42

Figure 4.5: Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details

of the test in table 4.1

seen in table 4.7. The CPU Load (%) plot is shown in figure 4.7.

As it could be observed in figure 4.8 the stalling issue between the XBee Received

ID:0 and the Get Median ID:4 tasks is not present in the RPI4 B node, in contrast

to the RPI3 B+ node. When further exploring the difference between the code execution

between the two nodes, an analysis of the vector
⃗
Cf

i is performed on both RPI3 B+ and

RPI4 B nodes running as master/primary. These results can be observed on table 4.3, it

can be seeing how there is a mean faster execution time of the
⃗
Cf

i on the RPI4 B node

for the XBee Received ID:0 (τ0) and the Get Median ID:4 (τ4) in comparison to the

RPI3 B+.

In the specific case, the XBee Received ID:0 has a mean execution time of 5.0689 s

for an RPI3 B+ node, while for an RPI4 B system, the mean execution time is 0.1379 s,

which is a 97.28 % smaller. This is because the A72 processor in the RPI4 B has higher

processing power than the A53 in the RPI3 B+ as demonstrated in [61]. As described

in section 3.2 the RPI4 B node, aside from higher processing power, also includes more

communications controllers inside of the BCM2711 Broadcom SoC, in comparison to the

RPI3 B+.

4 Analysis of the eBridge Network 43

Core_0 Core_1 Core_2 Core_3
Core ID

0

20

40

60

80

100

CP
U

Lo
ad

(%
)

CPU Loads Box Plot

Figure 4.6: CPU Load Box (%) plot for eBridge 2019 code running as master/primary sensor

node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details in

table 4.1

Figure 4.7: CPU Load % for eBridge 2019 code running as master/primary node running in

eBridge 2021 HW configuration in RPI4 B with f = 1.5 GHz. Details of the test

in table 4.2

In figure 4.9 it can be observed that even though there is overlapping of the XBee

Received ID:0 (τ0) and the Get Median ID:4 (τ4) functions there is no change on

the CPU behavior of the eBridge 2019 code running on a RPI4 B as a master/primary

4 Analysis of the eBridge Network 44

Table 4.2: Measurement Summary eBridge code 2019 running as Master/Primary Sen-

sor node in eBridge 2021 hardware configuration on RPI4 B

Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI4 B

Controller Raspberry PI 4 B

Device ID RPI4-2

Code Running eBridge 2019 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Master/Primary

Total Test Duration 1 hour 19 minutes and 45 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples for Plot 4773 samples

CPU Frequency applied to all cores(f) 1.5 GHz

Power Measurement Summary

Power Source CanaKit RPI4 B 5V 3.5A [60]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 9 570 000

system. In the next section 4.1.3 an analysis of the eBridge 2019 code running on both

RPI3 B+ and RPI4 systems working as slaves/secondary units is detailed. The results of

these experiments allow an understanding of the difference between master/primary and

slave/secondary nodes in CPU utilization, power consumption, and tasks’ executions.

A review of the power information for RPI3 B+ and RPI4 B nodes running as mas-

ter/primary. It is possible to obtain figures 4.10 and 4.11 for RPI3 B+; and figure 4.12

for RPI4. It can be observed that the stalling behavior in the RPI3 B+ node causes

a power spike, while it is not present in the RPI4 B node. This is further addressed in

section 4.3.

When doing a comparison of the
⃗
Ef

i vector for an RPI3 B+ and RPI4 B in table 4.5, it is

observable how the power can reach up to 4.4834 W on the RPI3 B+ during the stalling

event for τ4, while for RPI4 B there is a spike of 5.8934 W, which is 31.45 % higher. A

similar pattern can be seen in table 4.6 where the average power of RPI4 B of 4.5788 W

is 20.82 % higher than the RPI3B + average power of 3.7897 W.

4 Analysis of the eBridge Network 45

Figure 4.8: Gantt Plot for eBridge 2019 code running as master/primary sensor node running

in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details of the test in table

4.2

Table 4.3: Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz for

RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge 2019

in eBridge 2021 HW configuration as master/primary. Test details in tables

4.1 and 4.2

Execution Time (s)

Task ID τ4 τ3 τ2 τ0
Running on RPI3 B+ node

n 26 25 32 24

Mean 10.2114 0.0059 0.1454 5.0689

Std 0.0815 0.0056 0.0522 5.1774

Min 10.1304 0.0006 0.1079 0.0003

Max 10.2975 0.0161 0.2695 10.1485

Running on RPI4 B node

n 109 108 135 60

Mean 0.1379 0.0132 0.0551 0.0275

Std 0.0579 0.0096 0.0049 0.0271

Min 0.0501 0.0005 0.0523 0.0003

Max 0.2167 0.0229 0.0726 0.0551

4 Analysis of the eBridge Network 46

Figure 4.9: Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details

of the test in table 4.2

4.1.3 eBridge 2019 Slave/Secondary CPU,Events and Power Pro-

filing

A similar study is done for a slave/secondary system with both an RPI3 B+ and an RPI4

B to evaluate the performance differences between running the eBridge 2019 code as a

Table 4.4: Comparison of Code CPU Load (%) statistical information of the eBridge

2019 code running on an RPI3 B+ with f = 1.4 GHz vs an RPI4 B as

Master/Primary with f = 1.5 GHz. Test details in tables 4.1 and 4.2

CPU Load (%)

Core 1 2 3 4

Code running on RPI3 B+

Number of samples per core = 4296

Mean 1.30 66.34 13.29 17.43

Std 5.59 47.08 33.48 37.78

Code running on RPI4 B

Number of samples per core = 4773

Mean 1.09 99.00 0.77 0.43

Std 2.75 9.08 5.77 6.30

4 Analysis of the eBridge Network 47

Figure 4.10: Tasks Gantt Plot vs Power (W) of eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz - I.

Details of the test in table 4.1

Table 4.5: Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz for

RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge 2019

code as master/primary in eBridge 2021 HW configuration. Test details in

tables 4.1 and 4.2.

Power [W]

Task ID τ4 τ3 τ2 τ0
Code running on RPI3 B+

n 3 049 705 1 823 178 1 042 711 1 250 461

Mean 3.7892 3.8020 3.8023 3.7431

Std 0.2688 0.2512 0.3820 0.25610

Min 2.503 2.541 2.510 2.521

Max 4.4834 4.5405 4.1800 4.5402

Code running on RPI4 B

n 3 046 161 3 000 765 729 017 424 057

Mean 4.5737 4.5857 4.5863 4.5935

Std 0.0791 0.0619 0.0622 0.0565

Min 3.7586 4.0994 4.1133 4.1494

Max 5.8934 5.2218 5.1678 5.1830

4 Analysis of the eBridge Network 48

Table 4.6: Power Comparison (W) eBridge 2019 code running as master/primary sensor

node running in eBridge 2021 HW in both RPI3 B+ and RPI4 B. Test details

in tables 4.1 and 4.2

Power [W]

Node RPI3 B+ RPI4 B

n 8 652 00 9 570 000

Mean 3.7897 4.5788

Std 0.2719 0.0698

Min 2.587 3.5161

Max 4.5405 5.8934

slave/secondary to build the vector
⃗
Cf

i . The details of these test can be seen in tables 4.7

and 4.8. These experiments had the same type of configuration as the experiments run

in section 4.1.2.

The CPU Load (%) of a slave/secondary node running in an RPI3 B+ system can be

seen in figure 4.13, while the one of a RPI4 B is shown in figure 4.16. In table 4.9 there

is a comparison of the statistical data of the CPU Load (%) for both types of nodes. It

is possible to see how, on an RPI3 B+ node, the load is distributed among Core 2 and

Figure 4.11: Tasks Gantt Plot vs Power (W) eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz - II.

Details of the test in table 4.1

4 Analysis of the eBridge Network 49

Core 3; on the RPI4 B system, the mean load value of Core 2 is 99.50 %.

In figure 4.14 there is a zoomed view of the Gantt Plot of a the slave/secondary node

running the eBridge 2019 code in the eBridge 2021 HW configuration in a RPI3 B+ unit,

the test details can be seen in table 4.7. In this figure, it is possible to see the flow of

execution of tasks Γ = {τ1, τ3, τ4}, in which the data is acquired, then the report is gener-

ated, and finally it is sent through the XBee communication board to the master/primary

system. There are five instances of the XBee Send ID:1 τ1 task in the figure4.14, due

to the unit configuration of doing a measurement per minute and then, after five minutes

sending the data to the master/primary node as detailed in table 4.7.

Figure 4.15 shows how whenever the Get Median ID:4 τ4 task execution is followed by

an execution of task Generate Report ID:3 τ3 or XBee Send ID:1 τ1, a part of the

CPU load migrates briefly from one core to the other causing a reduction on one of the

cores and an increase in another. In figure 4.13, it is possible to see how this behavior

is repeated through the code execution and how it causes the full load in some cases to

change from one core to another. The same behavior can be observed in the RPI4 B

system in figure 4.16, where in an RPI3 B+ node, the CPU load is distributed in multiple

cores, while in an RPI4 B unit, it falls in a single node.

In table 4.10 it is possible to see how the tasks XBee Send ID: 1(τ1) and Get Media

ID: 4(τ4) have a higher execution time in a RPI3 B+ system than a RPI4 one. In the

Figure 4.12: Tasks Gantt Plot vs Power (W) eBridge 2019 code running as master/primary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details

of the test in table 4.2

4 Analysis of the eBridge Network 50

Table 4.7: Measurement Summary eBridge 2019 code running as Slave/Secondary Sen-

sor Node in eBridge 2021 hardware configuration on RPI4 B+.

Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI3 B+

Controller Raspberry PI3 B+

Device ID RPI3-2

Code Running eBridge 2019 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Slave/Secondary

Total Test Duration 1 hour 29 minutes and 24 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples for CPU 5364 samples

CPU Frequency applied to all cores(f) 1.4 GHz

Power Measurement Summary

Power Source CanaKit RPI3 B+ 5V 2.5A [59]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 10 728 000

case of (τ1), the mean execution time on an RPI3 B+ is 0.6670 s compared to the one

in the RPI4 B node of 0.2219 s, which is decreased by 66.73 %. For the case of τ3 and

τ1 the execution times, there is no noticeable change. As it is mentioned 4.1.1, the Get

Median ID:4 τ4 is the function in charge of taking 10 consecutive measurements and then

performing an average calculation, which requires higher processing power in comparison

to the other tasks of interested.

A similar trend can be seen in table 4.11 in which the mean power consumption of a

slave/secondary node is 21.52% higher in an RPI4 B node with a value of 4.8200 W,

while in an RPI3 B+ node is 3.9663 W. With a more in-depth analysis by obtaining the

vector
⃗
Ef

i with f = 1.5 GHz statistical information in table 4.12 it is possible to observe

how the mean power for every of the tasks Γ = {τ4, τ3, τ1} is 21.55 %, 21.27 %, and 22.43

% higher respectively in a RPI4 B node than in a RPI3 B+.

4 Analysis of the eBridge Network 51

Figure 4.13: CPU Load (%) eBridge 2019 code running as slave/secondary sensor node running

in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details of the test in table

4.7

Figure 4.14: Tasks Gantt Plot eBridge 2019 code running as slave/secondary node running in

eBridge 2021 HW in RPI3 B+ with f = 1.4 GHz. Details of the test in table 4.7

When comparing the data in tables 4.6 and 4.11, it can be observed how for the eBridge

2019 nodes the mean power consumption is 20.82 % higher for a master/primary node

in a eBridge 2021 HW configuration in RPI4 B node versus a RPI3 B+, while for a

slave/secondary unit is 21.52 % higher as well in RPI B versus RPI3 B+. This can be

4 Analysis of the eBridge Network 52

Figure 4.15: Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as slave/secondary

node running in eBridge 2021 HW in RPI3 B+ with f = 1.5 GHz. Details of the

test in table 4.7

Figure 4.16: CPU Load for eBridge 2019 code running as a slave/secondary node running in

eBridge 2021 HW in RPI4 B with f = 1.5 GHz. Details of the test in table 4.8

contrast with the results seeing in tables 4.5 and 4.12, specifically comparing the average

power consumption for tasks XBee Received ID: 0 (τ0), a XBee Send ID: 1 (τ1)

4 Analysis of the eBridge Network 53

Table 4.8: Measurement Summary eBridge 2019 code running as Slave/Secondary Sen-

sor Node in eBridge 2021 hardware configuration on RPI4 B.

CPU and Events Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI4 B

Controller Raspberry PI 4 B

Device ID RPI4-2

Code Running eBridge 2019 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Slave/Secondary

Total Test Duration 1 hour 02 minutes and 03 seconds

System Configuration
Message Frequency: 10 min

Measurement Frequency: 5 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples for Plot 3713 samples

CPU Frequency applied to all cores(f) 1.5 GHz

Power Measurement Summary

Power Source CanaKit RPI4 B 5V 3.5A [60]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 7 426 000

Table 4.9: Comparison of Code CPU Load (%) statistical information of the eBridge

2019 code running as a slave/secondary node running in eBridge 2021 HW

in RPI3 B+ and RPI4 B

CPU Load (%)

Core 1 2 3 4

Code running on RPI3 B+

Number of samples per core = 5364

Mean 5.23 67.41 19.78 8.92

Std 18.77 46.23 39.63 27.30

Code running on RPI4 B

Number of samples per core = 3713

Mean 0.55 99.50 0.28 0.01

Std 4.64 5.55 1.41 0.18

4 Analysis of the eBridge Network 54

Figure 4.17: Tasks Gantt Plot vs CPU Load (%) eBridge 2019 code running as a

slave/secondary node running in eBridge 2021 HW in RPI4 B with f = 1.5 GHz.

Details of the test in table 4.8

Table 4.10: Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz

for RPI4 B vectors statistical information of Γ = {τ4, τ3, τ1} of eBridge 2019

in eBridge 2021 HW configuration as slave/secondary. Test details in tables

4.7 and 4.8

Execution Time (s)

Task ID τ4 τ3 τ1
Running on RPI3 B+ node

n 61 60 60

Mean 0.6670 0.0109 0.3479

Std 0.2735 0.0021 0.0191

Min 0.1914 0.0008 0.3086

Max 0.8560 0.1281 0.4082

Running on RPI4 B node

n 88 87 85

Mean 0.2219 0.0103 0.3395

Std 0.0070 0.0007 0.0100

Min 0.2084 0.0053 0.3197

Max 0.2341 0.0105 0.3783

4 Analysis of the eBridge Network 55

Table 4.11: Power Comparison (W) eBridge 2019 Code RPI3 B+ vs RPI4 B running as

Slave/Secondary in eBridge 2021 HW. Test details in tables 4.7 and 4.8

Power [W]

Node RPI3 B+ RPI4 B

n 10 728 000 7 426 000

Mean 3.9663 4.8200

Std 0.1323 0.0999

Min 2.5023 3.7104

Max 4.6704 7.4968

Table 4.12: Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz

for RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ1} of eBridge 2019

code as slave/secondary in eBridge 2021 HW configuration. Test details in

tables 4.7 and 4.8

Power [W]

Task ID τ4 τ3 τ1
Code running on RPI3 B+

n 3 991 629 3 361 668 860 160

Mean 3.9619 3.9739 3.9568

Std 0.1426 0.1279 0.1157

Min 2.5023 2.6945 2.6856

Max 4.3579 4.6907 4.2341

Code running on RPI4 B

n 3 585 176 3 115 916 543 681

Mean 4.8156 4.8193 4.8442

Std 0.1114 0.0898 0.0744

Min 3.7104 4.0856 4.6535

Max 7.4968 7.2735 5.6917

in which in average for an RPI3 B+ node sending a message is 5.71 % higher than

receiving a message, and for a RPI4 B node is 5.46 % higher. This complies with the

XBee specifications [14], which states that the transmit current is 33 mA compared to

the idle current of 28 mA.

The tables 4.6 and 4.11 make it possible to see that the highest power peak on both

RPI3 B+ and RPI4 B nodes running as both master/primary in the eBridge 2019 HW

configuration happens during the execution of theGet Median ID:4 τ4 task, with a value

of 4.4834 W for RPI 3 B+, and 5.8934 W for RPI4 B. In the case of slave/secondary, the

peak value for RPI3 B+ is 4.3579 W, and for an RPI4 B, the node is 7.4968 W, which

corresponds with the data in table 4.11. In figure 4.18, it can be regarded that there are

no noticeable power spikes during any of the execution of the tasks.

4 Analysis of the eBridge Network 56

In the next section 4.2 a study of the battery performance of the eBridge 2019 code is

shown.

4.2 eBridge 2019 Battery Tests

To evaluate the initial autonomy of the eBridge 2019 network, several battery tests are

done in both RPI3 B+ and RPI4 B nodes with the 5 200 mAh and 10 000 mAh batteries

mentioned in the section 3.5.1. These results can be seen in tables 4.13, and 4.14. Each

configuration was tested twice using both types of batteries, 5 200 mAh, and 10 000 mAh.

4.2.1 Battery test for Master/Primary

For the case of master/primary nodes it can be seen how the total run time data corre-

sponds with the overall power consumption data in table 4.6, mentioned in the previous

section 4.1.2 is 20.82 % higher in a RPI4B vs a RPI3 B+ node. The total run times

with the 5 200 mAh batteries for the RPI3B + nodes as master/primary are 2 hours, 15

minutes, 33 seconds, and 2 hours, 18 minutes, and 45 seconds. These values are 20.08 %

and 20.7 % higher in comparison to the ones for the RPI4 B node. For the case of the

Figure 4.18: Tasks Gantt Plot vs Power (W) eBridge 2019 code running as a slave/secondary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details

of the test in table 4.8

4 Analysis of the eBridge Network 57

10 000 mAh, there is a similar behavior, in which the run times are 3 hours, 31 minutes,

and 12 seconds; and 3 hours, 28 minutes, and 31 seconds; which are 21.08 %, and 22.19

% higher in comparison to the RPI4 B.

Table 4.13: Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2019

code as master/primary in eBridge 2021 HW configuration.

Type of Configuration:
Measurement Frequency = 1 min

Message Frequency = 5 min

Device ID Battery ID
Total Run Time

[HH:MM:SS]

RPI3-2 5 200 mAh - 1 02:15:33

RPI3-2 5 200 mAh -2 02:18:45

RPI3-2 10 000 mAh -1 03:31:12

RPI3-2 10 000 mAh -2 03:28:31

RPI4-2 5 200 mAh - 3 01:48:36

RPI4-2 5 200 mAh - 4 01:50:02

RPI4-2 10 000 mAh -3 03:21:28

RPI4-2 10 000 mAh -4 03:23:12

4.2.2 Battery test for Slave/Secondary

For the case of the slave/secondary node, the total power is 21.52 % higher on an RPI4 B

node vs an RPI3 B+. The same as with the master/primary node, the time total run times

with the 5200 mAh batteries are 17.75 % and 14.04 % higher for the RPI3 B+ respectively,

compared to the run times for the RPI4 B node. These results are compatible with the

battery tests performed by [4], which had a total run time of two hours for master/primary

and slave/secondary nodes with the eBridge 2019 HW configuration with the ICR18650

4400mAh 3.7V battery for both master/primary and slave/secondary nodes. The next

section 4.3 covers an analysis of the Γ = {τ0, τ1, τ2, τ3, τ4} tasks interactions. A good

understanding of the relationship between these tasks for both the master/primary and

slave/secondary nodes is crucial to finding areas of improvement for resource utilization

and power consumption. Also, it allows a better understanding of the interaction between

nodes; for example, it helps understand slave/secondary nodes in master/primary ones.

4 Analysis of the eBridge Network 58

4.3 eBridge 2019 Task Interaction Analysis

This sections covers an analysis of the Γ = {τ0, τ1, τ2, τ3, τ4} tasks interactions. In fig-

ure 4.19 there is a qualitative representation of the interactions of the tasks for a mas-

ter/primary node, which is the more complex one. As it is possible to see in the qualitative

diagram, there is a possibility of having tasks executed simultaneously. For example, the

stalling behavior that could be see in figures 4.4, 4.5, 4.10, and 4.11, it is caused due to

the RequestsQueue, which as it is mention in section 4.1.1 it is use by several functions

and threads, this queue is used by the Device main thread to store reports generated

every time there is a measurement, it is also used by receive thread whenever the unit

receives XBee messages. Even though it looks complex, the diagram in the figure 4.19

could happen in the master/primary node with only one slave/secondary unit connected

to it.

Figure 4.19: Tasks Γ = {τ0, τ2, τ3, τ4}
⃗

Cf
i,τi

, and
⃗

Ef
i,τi

Interaction Qualitative Diagram for a

master/primary Node.

In figure 4.20 there is a zoomed view of the Gantt diagram in figure 4.8 where it can be

observe how the master/primary node uploads 14 messages to the eBridge Server. This

behavior was seen on the bridge where both the master/primary and slave/secondary

nodes had a measurement frequency of one minute and a message frequency of five min-

utes. Depending on the number of nodes per bridge, this could significantly increase the

resource utilization in a master/primary node, increasing both CPU and power consump-

tion and thus reducing battery life. In a scenario of a bridge with one master/primary

node and four slave/secondary nodes, a measurement frequency of one minute and a

message frequency of one hour, there could be up to 300 messages per hour.

When building the
⃗

Cf
i,τi

and
⃗

Ef
i,τi

vectors for the tasks in figure 4.19 assuming a F = 1.5

4 Analysis of the eBridge Network 59

GHz the scenario looks like this:

Tasks Execution Times:

• CF
i,τ0

= (C1,τ0 , C2,τ0 , C3,τ0 , C4,τ0 , C5,τ0 . . . , Cn,τ0)

• CF
i,τ2

= (C1,τ2 , C2,τ2 , C3,τ2 , C4,τ2 , C5,τ2 . . . , Cn,τ2)

• CF
i,τ3

= (C1,τ3 , C2,τ3 , . . . , Cn,τ4)

• CF
i,τ4

= (C1,τ4 , C2,τ4 , . . . , Cn,τ4)

Power Consumption:

• EF
i,τ0

= (E1,τ0 , E2,τ0 , E3,τ0 , E4,τ0 , E5,τ0 . . . , En,τ0)

• EF
i,τ2

= (E1,τ2 , E2,τ2 , E3,τ2 , E4,τ2 , E5,τ2 . . . , En,τ2)

• EF
i,τ3

= (E1,τ3 , E2,τ3 , . . . , Cn,τ4)

• EF
i,τ4

= (E1,τ4 , E2,τ4 , . . . , Cn,τ4)

Figure 4.20: Zoomed Gantt Plot for eBridge 2019 code running as master/primary sensor node

running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details of the test

in table 4.2

One of the limitations of this approach is that in cases where the functions overlap, just

like when the stalling behavior happens in figure 4.11. A qualitative representation of

4 Analysis of the eBridge Network 60

a power measurement of this type of interaction can be seen in figure 4.21, which is a

zoomed area out of figure 4.19, close to the x+1 minute. For a slave/secondary node, the

scenario is simpler than the one from a master/primary node; in figure 4.22, it is possible

to see how there is no task overlap.

Figure 4.21: Zoomed Tasks Γ = {τ0, τ3, τ4}
⃗

Cf
i,τi

, and
⃗

Ef
i,τi

Interaction Qualitative Diagram

for a master/primary Node with Highlighted Power

Figure 4.22: Zoomed Tasks Γ = {τ1, τ3, τ4}
⃗

Cf
i,τi

, and
⃗

Ef
i,τi

Interaction Qualitative Diagram

for a slave/secondary Node

4 Analysis of the eBridge Network 61

In the next section 4.4 there is a description of the eBridge 2021 HW configuration.

4.4 eBridge 2021 HW Configuration Standby Power

Consumption

To have a baseline of the eBridge 2021 HW configuration’s power consumption without

executing code, the experiment described in table 4.15 was conducted. The results are

plotted in figure 4.23, and the statistical summary of the test can be seen in table 4.16.

When comparing this data with the one in table 4.6, it can be validated that the mean

power consumption of the master/primary node in an RPI3 B+ node of 3.7897 W is 24.65

% higher than the standby power consumption of 3.0402 W. In comparison, for an RPI4

B node, the mean value of 4.5788 W is 49.53 % higher than the standby power of 3.0622

W.

It is possible to confirm that the slave/secondary nodes have similar behavior, in which

for the RPI3 B+, the mean power consumption of 3.9663 W is 30.46 % higher than the

standby consumption, and for the RPI4 B is 57.4 % higher as well with a value of 4.82 W.

The standby power for both nodes is similar, with mean values around 3 W. In the next

chapter 5, there is a description of the proposed optimizations for the eBridge network.

Figure 4.23: Standby Power [W] vs Time (s) for the eBridge 2021 HW configuration of RPI3

B+ and RPI3 B.

4 Analysis of the eBridge Network 62

4.5 Summary of Areas of Improvement for the EBridge

2019 Network

This section includes a summary of the areas of improvement discovered for the eBridge

2019 Network. These areas fall under three categories:

1. Software: Some areas of improvement identified are around the system time track-

ing for the execution of critical tasks like taking measurements, sending data to

master/primary devices, or uploading data to the server. Also, the eBridge 2019

code did not include any management of the cellular network interface because the

communication with the APN network was only done once at the beginning of the

code execution while having DPM techniques could improve power consumption.

Finally, managing shared resources among the eBridge 2019 code is critical for pre-

venting stalling behaviors, like the one caused by the RequestQueue FIFO.

2. Protocol Upgrades: Some areas of improvement for the eBridge network protocols

are node configuration, message handling on slave/secondary nodes, alarm handling

on both master/primary and slave/secondary nodes, and the overall number of

messages being transmitted between nodes or upload to the server.

3. Hardware Optimizations: One of the hardware areas of improvement identified is

the relatively high power consumption of the XBee communication board compared

to other state-of-the-art communication technologies. Also, taking advantage of

DPM and DVFS techniques could be an area of improvement.

In the next chapter 5, there is a description of the proposed optimizations for the eBridge

network.

4 Analysis of the eBridge Network 63

Table 4.14: Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2019

code as slave/secondary in eBridge 2021 HW configuration.

Type of Configuration:
Measurement Frequency = 1 min

Message Frequency = 5 min

Device ID Battery ID
Total Run Time

[HH:MM:SS]

RPI3-2 5 200 mAh - 1 01:54:33

RPI3-2 5 200 mAh -2 01:49:16

RPI3-2 10 000 mAh -3 03:09:35

RPI3-2 10 000 mAh -4 03:11:02

RPI4-2 5 200 mAh - 3 01:37:17

RPI4-2 5 200 mAh - 4 01:35:49

RPI4-2 10 000 mAh -1 02:54:26

RPI4-2 10 000 mAh -2 02:50:39

Table 4.15: eBridge 2021 HW Configuration in RPI3 B+ and RPI4 B Power Consump-

tion in Standby

Hardware Configurations

Hardware Configuration I eBridge 2021 HW with RPI4 B

Hardware Configuration II eBridge 2021 HW with RPI3 B+

Power Measurement Summary

Power Source RPI4 B CanaKit RPI4 B 5V 3.5A [60]

Power Source RPI3 B+ CanaKit RPI4 B+ 5V 2.5A [59]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 4

Total Test Duration 6 minutes

Number of Samples per Second (S/s) 20 000

Total number of samples per channel 7 200 000

Table 4.16: Power Comparison (W) eBridge 2021 HW Configuration on code RPI3 B+

vs RPI4 B. Test details in table 4.15.

Power [W]

Node RPI3 B+ RPI4 B

n 7 200 000 7 200 000

Mean 3.0402 3.0622

Std 0.0101 0.0092

Min 2.3472 2.9965

Max 3.4940 3.7532

Chapter 5

Design

This chapter covers the code optimizations over the 2019 version of the eBridge network to

reduce CPU utilization and power consumption. As mentioned in section 2.6.2, software

allocates up to 80 % of the power consumption of a system. In section 5.1 there is a

detailed description of the software level optimizations done to the Python eBridge 2019

code, then there is a description of the communication protocol changes performed to

the eBridge network to reduce power consumption in section 5.2, and finally, in 5.3 there

would be details of hardware level optimizations proposed for the eBridge system.

5.1 Software Level Optimizations

This section explains the software changes implemented to improve the eBridge 2019 code,

reduce CPU utilization, reduce power consumption, do shared resources arbitration, and

improve code readability and maintainability.

5.1.1 SetDateTime Refactoring

As it was mentioned in section 4.1.1 there were three threads of interest in the code:

SetDateTime, Receive, and Device.Run. As the first step, the code was refactored

to remove the SetDateTime thread and change it for a function that allows the system

to initialize the OS clock once the node has connected to the LTE network through the use

of the Raspbian timedatectl utility to communicate with the Linux Systemd Service

manager to update time and date settings. Since neither the RPI 3B+ nor the RPI4

B does not have an RTC (Real Time Clock), it is important to update system time

periodically. It was not possible to find information on how much the RPI3 B+ or RPI4

B clock is expected to drift, and it is part of the future work recommendations for the

eBridge Network.

64

5 Design 65

5.1.2 Cellular Network Interface Handling

Implementation of a cellular interface management class named Cell Connection. This

class allows the eBridge 2021 code to instantiate an object to control the cellular interface;

it includes the following capabilities:

• Start a Cell Connection: This method allows the eBridge 2021 node to use the

qmicli [62] library that allows communication with devices that use the Qualcomm

MSM Interface (QMI) protocol, which is used by the LTE cellular interface board

from WaveShare. This function performs several operations:

1. Starts the wwan0 network interface on the RPI node using raw ip protocol.

2. Brings the Wave-Share LTE board to online mode. By default, this board is

initialized as Low-Power when powered on.

3. Connects to the APN network, in the case of the eBridge Network, it is con-

necting to the Kolbi3g network taking advantage of the Mobile Devices Geo-

localization cellular plans [63].

4. Establish a DHCP (Dynamic Host Configuration Protocol) client connection to

the Kolbi3g APN through udhcpc, a small open source program recommended

for embedded systems running embedded Linux [64].

• Stop a Cell Connection: Brings the cellular interface board to low-power mode

and turns off the wwan0 Linux network interface. As described in section 5.3, there

are several aspects to the power consumption of the cellular interface, which allow

saving both the standby power consumption and the RPI OS-related consumption

to keep the wwan0 interface alive. Bringing the wwan0 interface down also brings

down the whole USB controller.

• Cell to Low Power: Allows the to put the cellular interface board into low power

mode.

• Get Cell Status: Gets the cellular connection status of the Kolbi3g APN.

• Get IPv4 IP address: This method allows the system to identify its IPv4 ad-

dresses, and it lets the user know if there is a wwan0 network on.

5.1.3 Receive Thread Optimizations

The receive thread is the one that allows a master/primary node to receive messages from

the slave/secondary node through the use of the XBee S2C communication board [14].

The thread in the eBridge 2019 code had a high polling rate of up to 0.5 seconds to check

for newly received messages. This is unnecessary since the device can buffer incoming

messages from several devices; the library already includes a software interruption that

5 Design 66

allows the communication node to store messages in memory while the program reads

them. A class named XBeeNode is created to manage the XBee communication. This

class includes the following capabilities:

• Find XBee Device: This method allows the eBridge node to automatically detect

the XBee S2C communication board.

• Get XBee MAC Address: This method allows the eBridge node to get the

XBee S2C communication board MAC address. This feature was not present in

the eBridge 2019 network and caused major scalability issues since the user had to

configure it from the eBridge server manually.

• XBee Start: This method allows the eBridge node to start the XBee S2C unit as

either master/primary or secondary/slave. It allows the node to acquire an alias or

node id that facilitates communication. This alias could be the same eBridge Node

ID.

• XBee Send: Allows to send data to another node specified by the user. This

method uses the get network method.

• Get Network: This method is used by the XBee Send method to find the alias of

the receiver node. An error is returned to the user if the alias is not found.

• XBee Receive: Allows the node to receive data from other nodes.

5.1.4 Device Class Optimizations

As it is mentioned in section 4.1.1, the Device.Run class is the main part of the program

of the eBridge node. As part of the optimizations, several parts of the code were refactored

to contain both the receive and run threads to be part of the class. Additionally, each

sensor on the system would be part of the class named Sensor, of which a class named

Ultrasonic Sensor was generated. A diagram of the new software hierarchy can be seen

in figure 5.1. Also, it can also be observed how the Cell Interface class is instantiated

inside the Device class.

Properly managing shared resources is key to ensuring race conditions like the ones

causing stalling behavior described in section 4.1.2. Even though queues are usually

used to communicate asynchronous processes, they include locks to block completing

threads temporarily [65]. To solve this issue it was decided to use the put nowait()

and get nowait() methods to prevent the locking behavior. However, it is important

to ensure the code includes error handling to handle Timeout exceptions and it is rec-

ommended to make use of the queue.empty() and queue.qsize() methods to monitor

queue status.

5 Design 67

Figure 5.1: eBridge Embedded Software Now UML Classes Hierarchy

5.2 eBridge Protocol Upgrades

Based on the results in section 4.3, it was decided to perform modifications to the eBridge

protocol proposed by the end of the work done by [4]. Four protocol changes are presented

for the eBridge 2021 sensor node:

5.2.1 Device Configuration

Several changes have been made to the device configuration procedures of the eBridge

2019 code.

Nodes are configurable through the use of the .ini configuration file. This includes infor-

mation about the node’s desired ID, sensors to be configured in their respective I/O lines,

server IP address, and service port for Restful communication. This allows the node to

be quickly commissioned.

Depending on the node type of configuration, the unit could decide to turn on or off

different hardware peripherals to save power. For example, in the case of a master/primary

node, the cellular connection needs to be active to send emergency messages as soon as

possible, so the cellular interface is set to low power. This reduces power consumption

5 Design 68

without renegotiating an IP address with the APN network. Cellular communication

retrieves the device configuration for a slave/secondary node. In case the communication

with the master/primary node is lost, both the cellular board and the OS wwan0 network

interface are turned off to save power. This can be seen in figure 5.2.

Figure 5.2: eBridge Node Configuration Policy.

5.2.2 Slave/Secondary Node Message Handling

As part of the improvement for the slave/secondary nodes, now the node is capable of

detecting if there is a failure in the communication with the master/primary system; in

case this happens, the node is capable of retrying up to ten times to send a message, and

in case it still is unable to contact it the system would turn on its USB interface, bring up

the wwano interface and bring up the cellular communication as an alternative method

of ensuring a message reaches the server. Finally, when the message has been successfully

received by the server, the cellular board and USB port are powered down again. This

could be seen in figure 5.3.

5.2.3 Alarm Handling

Depending on the message frequency configuration on both primary and secondary nodes,

sending an urgent message to the server could take a long time. For example, if a sec-

5 Design 69

Figure 5.3: eBridge Messages from Slave/Secondary to Master Failure.

ondary node has a measurement frequency of one minute and a message frequency of 60

minutes, and a yellow level alarm is triggered at minute 37, the message would be sent

up until the device reaches 60 minutes of message time. The policy was changed, and

in cases, there is any type of alarm green, yellow, or red, the message would be sent

as soon as possible from a slave/secondary node to the master/primary one. If there is

no communication with the master/primary node, the procedure described in the bul-

let named Slave/Secondary Node Message Handling is used. The new paradigm

can be seen in figure 5.4; if there is no alarm, the node stores all the messages in the

RequestQueue to later be sent at the configured time.

5.2.4 Consolidating Reports

As mentioned in section 4.1.3, sending a message is 5.71 % higher than receiving a message

for RPI3 B+, and for an RPI4 B node is 5.46 % higher. This is key to reducing the number

of reports sent from slave/secondary nodes to master/primary ones and the reports sent to

the eBridge Server. A new function named Consolidate Reports is part of the eBridge

Device class, as shown in figure 5.1, which is in charge of consolidating reports at the

local node to send them either to the master/primary node or the server. Due to the new

alarm handling policy described above, the reports in the RequestQueue have no alarm

5 Design 70

Figure 5.4: eBridge Alarm Handle Procedure Optimization.

level, and the process can be seen in figure 5.5. From the perspective of the secondary

node, the procedure generates a single report with the average measurement value of all

the sensor reads; when this procedure is executed in a master/primary node, the function

consolidates reports by bridge and by the device. A summary of this can be seen in figure

5.6.

5.3 eBridge Hardware optimizations for power sav-

ing

In this section, there is a discussion of the hardware optimizations focused on the reduction

of power consumption.

5 Design 71

Figure 5.5: eBridge Consolidating Reports Procedure.

5.3.1 Use of IoT LoRa Network

When reviewing the power analysis and study done to the eBridge network in section

4.1, it was necessary to look for alternatives for two communication mechanisms used to

communicate with other nodes and the server. One of the critical aspects of this type

of study is a good understanding of where the bridges are located in the Costa Rica

landscape. This can be seen in figure 5.7, where it is possible to see the results of the

bridge survey in [3] when compared with the cellular coverage map of Costa Rica in figure

5.8 it can be observed that Cellular network provides coverage for the mast majority of

regions within the country.

As mentioned in work done by [67] IoT devices like the eBridge node require energy-

efficient communication mechanisms to deploy scalable networks. Technologies like 2G,

4G, and 4G are designed primarily for large coverage applications involving voice, video,

5 Design 72

Figure 5.6: eBridge Report Management.

and high data transmissions. However, these usually do not meet the performance metrics

for sensor applications, especially regarding power consumption. Technologies like LoRa®

(short for Long Range) is Semtech’s radio modulation technology of low-power, wide area

networks [68]. LoRa® is part of the LPWAN (Low Power Wide Area Network), which

proposes a suitable replacement for 2G, 3G, and 4G technologies. As shown in figure

5.9, LoRaWan (LoRa Wide Area Network) is implementing Semtech’s radio modulation

technology for Wide Area Networks.

Unfortunately, in Costa Rica, there is still not enough coverage of any of the Low Power

WAN technologies described in figure 5.9. Companies like The Things Network have

already installed 3 LoRaWAN gateways in San José [69], and it is possible that in the fu-

ture, it could be possible to replace the WaveShare 4G HAT and the XBee communication

board for a single LoRaWAN communication board. Changing the XBee S2C communi-

cation board by an Adafruit RFM95W LoRa Radio Transceiver [70] in figure 5.10 allows

5 Design 73

Figure 5.7: Bridge Structures in Costa Rica by State - Survey 2014-2018 [3].

a considerable power-saving since it uses UART communication with the GPIO ports of

the RPI system. It would enable DPM management by turning off the USB ports of the

RPI; the energetic impact is explored in the chapter 6.

In figure 5.11 there is a diagram of the proposed eBridge node 2022, which is referred

to as the eBridge 2022 HW configuration. As shown, there are two versions of the

configuration, version A keeps a USB connection with the WaveShare 4G HAT and is

meant to work on master/primary devices, while version B has a UART connection.

Since the primary/primary device would require more bandwidth to communicate with

the eBridge server than the slave device.

To control the RFM9X module to the eBridge node, a class named RFM9X is created,

allowing sending and receiving messages. Additionally, since the module does not include a

native way to verify if a message is received, functions to request and send an acknowledge

message are implemented. To allow reconfiguration, the eBridge Device class can now

be configured to use either XBee or LoRa communication with the use of the configuration

file flag named Communication Type, which could take the value of XBee or RFM9X.

The new class diagram can be seen in figure 5.12.

5 Design 74

Figure 5.8: LTE Coverage in Costa Rica [66].

5.3.2 Dynamic Power Management and DVFS Proposal

This section describes the different hardware modules to apply the DPM approach to

save power. The RPI hardware provides the flexibility of powering down several hardware

modules. The goal is to measure the impact of completely powering down the ones that

would not be used and dynamically powering on and off the ones that do not require

continuous on. The modules to power down are:

• RPI WiFi interface.

• RPI Bluetooth interface.

• RPI Ethernet ports.

• RPI LEDS includes the two Ethernet interface LEDs, the trigger, and the power

LED.

• RPI HDMI interface.

5 Design 75

Figure 5.9: Wireless access geographic coverage [67]. RFID (Radio Frequency Identification),

NFC (Near Field Communication).

• RPI USB Interface for slave/secondary units. For the master, it would be dynami-

cally managed as needed.

RPI3 B+ allows manual voltage and frequency scaling on its ARM53 V7 CPU, while the

RPI4 B unit allows dynamic voltage and frequency scaling on its ARM72 V8 CPU. As

part of this research, the goal is to test the impact of lowering the frequency and voltage

on the total power consumption of the eBridge node. DVFS can be enabled in the RPI3

B+ and the RPI4 B nodes by using the dvfs flag on the /boot/config.exe file of the

RaspberryPI OS [71]. In the next chapter 6 there are detailed results of the tests proposed

in this chapter.

5 Design 76

Figure 5.10: Adafruit RFM95W LoRa Radio Transceiver [70].

Figure 5.11: eBridge 2022 Hardware Configurations version A and B.

5 Design 77

Figure 5.12: eBridge 2022 Class UML Diagram.

Chapter 6

Validation

In this chapter, there is a detailed description of the results of implementing the design

recommendations explained in chapter 5. In section 6.1, there is a summary of the new

tasks identified to perform line profiling for the 2021 and 2022 eBridge codes. The eBridge

2021 code is the code with XBee communication, and the eBridge 2022 is the one with the

LoRa communication. The DVFS results can be found in section 6.3, and the results for

the eBridge 2022 implementation with LoRa for both master/primary and slave/secondary

are described in section 6.5.

6.1 eBridge 2021 Node Code Analysis

In section 6.1.2 it is possible to observe the profiling results for the eBridge 2021 Optimized

code for master/primary nodes with XBee communication and in section 6.1.3 the ones

for slave/secondary nodes. The results of the battery tests for the eBridge 2021 optimized

code for with XBee can be observed in section 6.2, the ones for master/primary can be

found in subsection 6.2.1, and for slave/secondary in 6.2.2.

6.1.1 eBridge 2021 Line Profiling

The same strategy followed in section 4.1.1 was applied to the optimized eBridge 2021

code described in the previous chapter 5. Some additional functions of interest were

added:

• Get Configuration - ID 5 (τ5): Used by both types of nodes to retrieve a config-

uration from the eBridge Server.

• Configure - ID 6 (τ6): Allows a node to configure itself, initiate the Sensor,

Cell Interface, and XBeeNode or RFM9X classes.

78

6 Validation 79

• Start Cell Connection - ID 7 (τ7): As described in subsection 5.1.2 of chapter

5, it is used to start a cellular connection.

• Stop Cell Connection - ID 8 (τ8): Used to stop the cell connection.

6.1.2 eBridge 2021 Master/Primary CPU and Events Profiling

This section describes the tests performed on RPI3 B+ and RPI4 B nodes running the

eBridge 2021 code, which is the optimized version of the eBridge 2019 code. In the table

6.1, there is a summary of the experiment ran on RPI 3B+. The results for CPU Load can

be seen in figures 6.1, and 6.2 from which it can be concluded that there is a considerably

lower CPU utilization compared to the original code, the highest CPU value is 26 %. The

specific values are discussed further in this section.

Table 6.1: Measurement Summary eBridge code 2021 running as Master/Primary Sen-

sor node in eBridge 2021 hardware configuration on RPI3 B+

CPU and Events Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI3 B+

Controller Raspberry PI 3 B+

Device ID RPI3-2

Code Running eBridge 2021 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Master/Primary

Total Test Duration 1 hour 7 minutes and 6 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples by CPU Core 4026 samples

CPU Frequency applied to all cores(f) 1.4 GHz

Power Measurement Summary

Power Source CanaKit RPI3 B+ 5V 2.5A [59]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 8 114 000

Two significant events in which the eBridge 2021 code increased CPU utilization were

6 Validation 80

Figure 6.1: CPU Load (%) for eBridge 2021 code running as master/primary sensor node

running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details in table

6.1.

Core_0 Core_1 Core_2 Core_3
Core ID

0

5

10

15

20

25

CP
U

Lo
ad

(%
)

CPU Loads Box Plot

Figure 6.2: CPU Load Box (%) plot for eBridge 2021 code running as master/primary sensor

node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details in

table 6.1

identified. The first is the configuration stage, which can be observed in figure 6.3, where

the CPU utilization briefly goes over 20 %. The other event is the execution of the tasks

Get Median ID: 4τ4 and Generate Report ID: 3τ3, this can be seen in figure 6.4,

6 Validation 81

where the CPU reaches its maximum utilization of 26 %. The configuration stage ideally

does not have to be executed regularly in normal deployment circumstances so it can

be neglected. When reviewing the power utilization for the RPI3 B+ in figure 6.5, it is

possible to see that there are no noticeable power spikes, and the power plot stays stable

around a value between 2.8 W and 3.2 W. Also, there are no stalling behaviors during the

execution of the XBee Receive - ID:0 τ0 task, so the changes described in subsection

5.1.4 to the RequestQueue object to prevent thread locking worked on RPI3 B+ nodes.

Figure 6.3: Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz, focus

on Configuration τ5,and τ6. Details of the test in table 6.1

The summary of the test performed on an RPI4 B node running the eBridge 2021 opti-

mized code as master/primary can be observed in table 6.2. The CPU Load % results can

be seen in figure 6.6, in which it is possible to observe that there is a 10 % power spike

during the initialization of the node, that later when reviewing the Gantt Plot in figure

6.7, it is possible to see that it corresponds to the configuration stage where the Get

Configuration ID:5τ5, and Configure ID:6τ6 tasks execute. However, it is possible to

see how the CPU Load spike during the execution of the tasks Get Median ID: 4τ4 and

Generate Report ID: 3τ3 is not present in the RPI4 B node.

The power plot for the PPI4 B node running as master/primary in figure 6.8 presents a

similar behavior to the one in figure 6.5 for the RPI3 B+, where there are no noticeable

power spikes during the execution of the code. When comparing the power data for both

types of RPI devices running as master, it is possible to build table 6.4, in which it is

possible to see that the mean power for RPI3 B+ of 3.0848 W that is 18.6 smaller than

6 Validation 82

Figure 6.4: Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz, focus

on Get Median τ4. Details of the test in table 6.1

Figure 6.5: Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as master/primary

sensor node running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details

of the test in table 6.1

6 Validation 83

Table 6.2: Measurement Summary eBridge code 2021 running as Master/Primary Sen-

sor node in eBridge 2021 hardware configuration on RPI4 B

CPU and Events Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI4 B

Controller Raspberry PI 4 B

Device ID RPI4-2

Code Running eBridge 2021 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Master/Primary

Total Test Duration 1 hour 7 minutes and 19 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples by CPU Core 4039 samples

CPU Frequency applied to all cores(f) 1.4 GHz

Power Measurement Summary

Power Source CanaKit RPI4 B 5V 3.5A [60]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 8 078 000

the 3.9797 W mean value for the eBridge 2019 code. Also, this value is only 1.45 % of

the standby mean power value for the PRI3 B+ of 3.0402 W described in section 4.4.

For the RPI4 B node, the mean power value of the optimized code is 3.3781 W, which is

26.22 % smaller than the 4.5788 W for the eBridge 2019 code, and just 10.3 % higher than

the standby power. This reduction in power utilization is directly related to the decrease

in CPU Load for both the RPI3 B+ and RPI4 B nodes that can be seen in table 6.3. The

mean CPU load % for both types of nodes is less than one percent. The
⃗
Cf

i statistical

information for both the RPI3 B+ and the RPI4 B running as master/primary can be

found in table 6.5, it can be noticed how the time scale had to be changed from seconds

(s) to milliseconds (ms), compared to the data in section 4.1.2 for the 2019 eBridge code.

It can be observed that the execution times are considerably lower with a lower better

CPU utilization.

6 Validation 84

Figure 6.6: CPU Load (%) for eBridge 2021 code running as master/primary sensor node

running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details in table 6.2

Table 6.3: Comparison of Code CPU Load (%) statistical information of the eBridge

2021 code running as a master/primary node running in eBridge 2021 HW

in RPI3 B+ and RPI4 B

CPU Load (%)

Core 1 2 3 4

Code running on RPI3 B+

Number of samples per core = 4026

Mean 0.45 0.61 0.07 0.09

Std 0.97 0.51 0.43 1.62

Code running on RPI4 B

Number of samples per core = 4039

Mean 0.26 0.01 0.02 0.23

Std 0.6033 0.4249 0.23 0.34

The data of the
⃗
Ef

i vector for both RPI3 B+ and RPI4 B nodes running as master/primary

is summarized in table 6.6, where is possible to see that in average the most power

expensive task is XBee Received ID:0τ0 task, with an average value of 3.4452 W for

RPI3 B+ and 3.7311 W for RPI4 B, which are 11.68 % and 10.45 % higher respectively

compared to the mean power values for their respective type of node. A summary of the

tests results of the eBridge 2021 code running as slave/secondary can be seen in the next

section 6.1.3.

6 Validation 85

Figure 6.7: Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as master/primary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz, focus

on Configuration τ5,and τ6. Details of the test in table 6.2

Table 6.4: Power Comparison (W) eBridge 2021 Optimized code running as mas-

ter/primary sensor node running in eBridge 2021 HW in both RPI3 B+

and RPI4 B. Test details in tables 6.1 and 6.2

Power [W]

Node RPI3 B+ RPI4 B

n 8 114 000 8 078 000

Mean 3.0848 3.3781

Std 0.076 0.061

Min 2.1064 2.7873

Max 3.3155 4.1480

6.1.3 eBridge 2021 Slave/Secondary CPU and Events Profiling

A detailed description of the results for slave/secondary nodes running the eBridge 2021

optimized code with XBee communication can be found in this section. The details of

the test performed in RPI3 B+ and RPI4 B nodes can be observed in tables 6.7, and

6.8 respectively. Both tests were run with the same type of configuration as the tests for

master devices in section 6.1.2.

6 Validation 86

Figure 6.8: Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as master/primary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details

of the test in table 6.2

Table 6.5: Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz for

RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge 2021

Optimized code in eBridge 2021 HW configuration as master/primary. Test

details in tables 6.1 and 6.2

Execution Time (ms)

Task ID τ4 τ3 τ2 τ0
Running on RPI3 B+ node

n 94 93 32 62

Mean 3.284 0.996 35.543 4.901

Std 0.390 0.126 3.625 6.965

Min 2.615 0.919 24.754 0.443

Max 5.395 1.598 40.087 50.195

Running on RPI4 B node

n 107 107 37 72

Mean 2.054 0.658 20.82 26.59

Std 0.431 0.172 4.080 24.35

Min 1.564 0.582 17.26 0.265

Max 5.556 1.936 41.50 85.62

6 Validation 87

In figures 6.9, and 6.10, it is possible to notice a similar behavior as the one for RPI3

B+ master nodes running the eBridge 2021 code where there is a CPU spoke during

the execution of the configuration stage where the Get Configuration ID:5 τ5, and

Configure ID:6 τ6 tasks execute. The same happens when the tasks Get Median ID:

4τ4 and Generate Report ID: 3 τ3 execute. It can be noted how the XBee Send ID:1

τ1 task does not impact the CPU utilization.

The power plot for the RPI3B + node running the eBridge 2021 optimized plot can be

observed in figure 6.11, where it is possible to see that the only noticeable change in power

is after the execution of the configuration stage, where the power stays around 2.6 W for

a few seconds. This behavior would be further addressed in section 6.3.

The details of the test performed over the RPI4 B node with the eBridge 2021 optimized

code are in table 6.8. The CPU Load results in figure 6.12, show how the CPU load does

not go over 12 %. When further analyzing this against the task execution, it is possible

to see the results in figure 6.13, where it can be observed that there is also a CPU spike

during the configuration phase, the same as for the RPI3 B running as slave/secondary

and for both nodes running as master/primary. The
⃗
Cf

i statistical information for both

the RPI3 B+ and the RPI4 B were very similar, and this does not provide additional or

relevant information for discussion.

The power plot information of the eBridge 2021 code running as slave/secondary in RPI4

B is present in figure 6.14 has a similar trend as the other power plots for the optimized

code like figures 6.11, 6.5, and 6.8, in which is not possible to see any relevant power spikes

Table 6.6: Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz for

RPI4 B vectors’ statistical information of Γ = {τ4, τ3, τ2, τ0} of eBridge 2021

code as slave/secondary in eBridge 2021 HW configuration. Test details in

tables 6.1 and 6.2

Power [W]

Task ID τ4 τ3 τ2 τ0
Code running on RPI3 B+

n 2 159 792 2 479 784 1 702 104 1 755 856

Mean 3.0758 3.0862 3.0859 3.4452

Std 0.082 0.0778 0.0716 0.0824

Min 2.5005 2.5007 2.5059 2.5005

Max 3.2817 3.3155 3.2811 3.6456

Code running on RPI4 B

n 2 899 872 2 307 032 1 978 000 1 371 864

Mean 3.3721 3.3753 3.6571 3.7311

Std 0.0685 0.0561 0.0538 0.0465

Min 2.8154 2.9744 2.9485 3.0063

Max 3.8935 3.9734 3.923 4.0228

6 Validation 88

Table 6.7: Measurement Summary eBridge code 2021 running as Slave/Secondary Sen-

sor node in eBridge 2021 hardware configuration on RPI3 B+

CPU and Events Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI3 B+

Controller Raspberry PI 3 B+

Device ID RPI3-2

Code Running eBridge 2021 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Slave/Secondary

Total Test Duration 1 hour 17 minutes and 6 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples by CPU Core 4626 samples

CPU Frequency applied to all cores(f) 1.4 GHz

Power Measurement Summary

Power Source CanaKit RPI3 B+ 5V 2.5A [59]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 9 252 000

during the execution of any of the tasks. However, when viewing the data in table 6.10,

of slave/secondary nodes running the optimized code, it can be noted the mean power of

3.0768 W for an RPI3 B+ is 22.43 % smaller than the 3.09663 W of the eBridge 2019

code, for RPI4 B the 3.4224 W is 29 % smaller than the previous value of 4.82 W.

The statistical summary of the
⃗
Ef

i vectors for both RPI3 B+ and RPI4 B nodes as

slave/secondary with the eBridge 2021 optimized code is presented in table 6.12. The

improvements on average power for the Get Median ID:4 τ4, Generate Report ID:3

τ3, and XBee Send ID:1 τ1 tasks, are of 22.32 %, 22.17 %, and 22.43 % respectively.

When analyzing the vector of task execution’s
⃗
Cf

i for the slave/secondary eBridge 2021

optimize code in both RPI3 B+ and RPI4 B nodes, it is possible to come with the summary

in table 6.11, where the data is very similar to the one for the master/primary node in

table 6.5. Overall the execution time of the tasks Get Median ID:4 τ4, Generate

Report ID:3 τ3 was reduced, while the one for XBee Send ID:1 τ1 was increased. This

was done to help reduce the CPU utilization of the slave/secondary node. In the next

6 Validation 89

Figure 6.9: CPU Load (%) for eBridge 2021 code running as slave/secondary a sensor node

running in eBridge 2021 HW with RPI3 B+ with f = 1.4 GHz. Details in table

6.7

Figure 6.10: Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as a

slave/secondary sensor node running in eBridge 2021 HW with RPI3 B+ with f

= 1.4 GHz, focus on Configuration τ5,and τ6. Details of the test in table 6.7

section 6.2 there is a detailed description of the battery test results performed on the

eBridge 2021 code.

6 Validation 90

6.2 eBridge 2021 Battery Tests

This section aims to measure the impact of the code improvements described in chapter

5 done on the eBridge 2019 code. The tests were done using the same 5200 mAh and 10

000 mAh batteries mentioned in section 3.5.1, which were used to test the eBridge 2019

code. The results for master/primary nodes can be found in subsection 6.2.1, and the

ones for slave/secondary ones in subsection 6.2.2.

6.2.1 Battery tests for Master/Primary eBridge 2021 code

Initial battery test results in table 6.13 for master/primary nodes allow an improvement

of 226.87 % with a 5 200 mAh from two hours, 15 minutes, and 33 seconds to seven hours,

23 minutes, and four seconds for an RPI3 B+ with the eBridge 2021 HW configuration,

after using the eBridge 2021 optimized code. In the case of the 10 000 mAh battery, the

improvement is 316.67 % from three hours, 31 minutes, and 12 seconds to 14 hours, 40

Figure 6.11: Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as a slave/secondary

sensor node running in eBridge 2021 HWwith RPI3 B+ with f = 1.4 GHz. Details

of the test in table 6.7

6 Validation 91

Table 6.8: Measurement Summary eBridge code 2021 running as Slave/Secondary Sen-

sor node in eBridge 2021 hardware configuration on RPI4 B

CPU and Events Measurement Summary

Hardware Configuration eBridge 2021 HW with RPI4 B

Controller Raspberry PI 4 B

Device ID RPI4-2

Code Running eBridge 2021 code

Cellular Communications Board SIM7600G-H

XBee Board S2C DigiMesh

Type of the Device Slave/Secondary

Total Test Duration 1 hour 7 minutes and 37 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples by CPU Core 4057 samples

CPU Frequency applied to all cores(f) 1.4 GHz

Power Measurement Summary

Power Source CanaKit RPI4 B 5V 3.5A [60]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 8 114 000

Table 6.9: Comparison of Code CPU Load (%) statistical information of the eBridge

2021 code running as a slave/secondary node running in eBridge 2021 HW

in RPI3 B+ and RPI4 B

CPU Load (%)

Core 1 2 3 4

Code running on RPI3 B+

Number of samples per core = 4626

Mean 0.75 0.04 0.39 0.02

Std 1.10 0.37 0.54 0.15

Code running on RPI4 B

Number of samples per core = 4057

Mean 0.26 0.01 0.02 0.23

Std 0.59 0.19 0.14 0.44

6 Validation 92

Figure 6.12: CPU Load (%) for eBridge 2021 code running as slave/secondary a sensor node

running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details in table 6.8

Figure 6.13: Tasks Gantt Plot vs CPU Load (%) eBridge 2021 code running as a

slave/secondary sensor node running in eBridge 2021 HW with RPI4 B with

f = 1.5 GHz, focus on Configuration τ5,and τ6. Details of the test in table 6.8

minutes, and one second. For the case of the RPI4 B node, the improvement for a 5

200 mAh battery is 218.19 % from one hour, 48 minutes, and 36 seconds to five hours,

6 Validation 93

Figure 6.14: Tasks Gantt Plot vs Power (W) of eBridge 2021 code running as a slave/secondary

sensor node running in eBridge 2021 HW with RPI4 B with f = 1.5 GHz. Details

of the test in table 6.8

Table 6.10: Power Comparison (W) eBridge 2021 Optimized code running as

slave/secondary sensor node running in eBridge 2021 HW in both RPI3

B+ and RPI4 B. Test details in tables 6.7 and 6.8

Power [W]

Node RPI3 B+ RPI4 B

n 9 252 000 8 114 000

Mean 3.0768 3.4224

Std 0.070 0.028

Min 2.1221 2.7939

Max 3.2998 4.1431

45 minutes, and 33 seconds. On the other hand, with a battery of 10 000 mAh the

improvement is 228.13 % from three hours, 21 minutes, and 28 seconds to eleven hours,

one minute, and four seconds.

6 Validation 94

Table 6.11: Comparison of
⃗
Cf

i with f=1.4 GHz for RPI3 B+, and
⃗
Cf

i with f=1.5 GHz

for RPI 4B vectors’ statistical information of Γ = {τ4, τ3, τ1} of eBridge 2021

Optimized code in eBridge 2021 HW configuration as slave/secondary. Test

details in tables 6.1 and 6.2

Execution Time (ms)

Task ID τ4 τ3 τ1
Running on RPI3 B+ node

n 71 70 36

Mean 2.881 0.955 1791

Std 0.310 0.183 0.868

Min 2.567 0.805 1790.7

Max 3.672 1.855 1.7925

Running on RPI4 B node

n 61 60 31

Mean 2.033 0.667 1791

Std 0.339 0.114 0.395

Min 1.118 0.575 1789

Max 3.243 0.938 1792

Table 6.12: Comparison of
⃗
Ef

i with f=1.4 GHz for RPI3 B+, and
⃗
Ef

i with f=1.5 GHz

for RPI4 B vectors’ statistical information of Γ = {τ4, τ3, τ1} of eBridge 2021
code as slave/secondary in eBridge 2021 HW configuration. Test details in

tables 6.7 and 6.8

Power [W]

Task ID τ4 τ3 τ1
Code running on RPI3 B+

n 3 646 320 3 187 740 2 447 744

Mean 3.0775 3.0906 3.1811

Std 0.075 0.0600 0.0622

Min 2.500 2.5021 3.0874

Max 3.2831 3.2811 3.2757

Code running on RPI4 B

n 2 830 992 3 173 784 2 106 872

Mean 3.4215 3.3516 3.6115

Std 0.073 0.0598 0.056

Min 2.8056 2.9874 3.0239

Max 3.8958 3.9515 3.9027

6 Validation 95

Table 6.13: Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2021

code as master/primary in eBridge 2021 HW configuration.

Type of Configuration:
Measurement Frequency = 1 min

Message Frequency = 5 min

Device ID Battery ID
Total Run Time

[HH:MM:SS]

RPI3-2 5 200 mAh - 1 07:23:04

RPI3-2 10 000 mAh -1 14:40:01

RPI4-2 5 200 mAh - 3 05:45:33

RPI4-2 10 000 mAh -3 11:01:04

6.2.2 Battery tests for Slave/Secondary eBridge 2021 code

The battery tests results for slave/secondary nodes are detailed in table 6.14. The im-

provement for RPI3 B+ is 225 % with a battery of 5 200 mAh, from one hour, 54 minutes,

and 33 seconds to six hours, 12 minutes, and 17 seconds. With a battery of 10 000 mAh,

the enhancement is 321.83 % from three hours, 31 minutes, and 12 seconds to 13 hours,

19 minutes, and 43 seconds. In the next section 6.3, there is a description of the DFVS

technique applied to the eBridge Network.

Table 6.14: Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2021

code as slave/secondary in eBridge 2021 HW configuration.

Type of Configuration:
Measurement Frequency = 1 min

Message Frequency = 5 min

Device ID Battery ID
Total Run Time

[HH:MM:SS]

RPI3-2 5 200 mAh - 1 06:12:17

RPI3-2 10 000 mAh -1 13:19:43

RPI4-2 5 200 mAh - 3 05:22:29

RPI4-2 10 000 mAh -3 10:12:04

6.3 Dynamic and Voltage and Frequency Scaling

As described in [71], the RPI4 firmware includes the possibility of executing DVFS in

the Broadcom BCM2711 SoC compared to the Broadcom BCM2837B0 SoC based on the

documentation at [72]. However, the experiments performed on both RPI3 B+ and RPI4

B proved that both SoC could do DVFS. It was possible to observe in figure 6.15 how

the Raspberry PI OS CPU governor can change the frequency of the minimum default

6 Validation 96

setpoint to the maximum and return to the minimum in the second form of an RPI 3B+

running as master/primary during the configuration time of the node. This same behavior

can be seen in all of the nodes during the configuration section and during the execution

of other functions like Get Median ID:4 τ4, and Generate Report ID:3 τ3.

Figure 6.15: Tasks Gantt Plot vs CPU Load (%) vs CPU Freq (MHz) eBridge 2021 code

running as master/primary sensor node running in eBridge 2021 HW with RPI3

B+ with DVFS, focused on Configuration τ5,and τ6.

In figure 6.15 the CPU Load (%) does not go over 20 % for the configuration, and 12 % on

the data acquiring and report generation events. However, the CPU governor stills bring

the frequency to the top value of 1.4 GHz for an RPI3 B+ node. The same behavior can

be observed in figure 6.16 for a master/primary code running the eBridge 2021 optimized

code in an RPI4 B node; however, this time the frequency goes up to 1.5 GHz. In the

following subsection 6.3.1 there is a detailed explanation of the effects of performing DFS

on the eBridge Code.

6 Validation 97

6.3.1 Effects of Dynamic Frequency Scaling

This section covers the effects of DFS on the eBridge 2021 optimized code in both RPI3

B+ and RPI4 B nodes. In figure 6.16, it is possible to see the effect of the DFS in the

power consumption during the configuration event. There are two power spikes in the

plot, one of around 3.5 W that is aligned with the frequency shift from 600 MHz to

1.5 GHz, and another one of around 4 W that happens right after the first execution of

the Get Median ID:4τ4 function. This 4W spike is caused due to the launch of the

Device.Run() and the Receive threads described in section 4.1.1. After this is possible

to see how the power stabilizes around 3.3 W, which is the average power consumption

of the master/primary node running the eBridge 2021 optimized code as shown in table

6.4. For the RPI3 B+, it is possible to set frequencies from 600 MHz to 1.4 GHz. It is

also possible to reduce this value even further, but it can cause instability. The lowest it

was possible to run the eBridge 2021 Optimized code was 400 MHz. In the case of the

RPI4 B, typical frequency values go from 600 MHz to 1.5 GHz. In the case of RPI4 B, it

was also possible to test the eBridge 2021 optimized with frequencies down to 400 MHz.

As shown in table 6.15, the standby means power value is -5.61 % for an RPI3 B+ and

-4 % for an RPI4 B compared to the default standby mean power. In the next section

6.3.2, the effects of doing CPU voltage changes can be seen.

A similar behavior can be seen in slave/secondary nodes when executing the XBee Send

ID:1 τ1 function in a RPI3 B+. As it is shown in figure 6.17, where after having the

frequency shift from 1.4 GHz to 600 MHz, there is a small power drop to around 2.9 W.as

it would be further discussed in section 6.1, it is hard to notice the effect of DFS when

having low CPU utilization. In the next section 6.3.2, the effects of changing the voltage

of the Cortex-A53 and Cortex-A72 for the RPI3 B+ and RPI4 B are explored.

6.3.2 CPU Voltage Changes

As it was mentioned in section 5.3.2, the DVFS scaling of the RPI nodes can be enabled

by using the dvfs flag on the /boot/config.txt file. When using a value of dvfs=1,

it is possible to enable the undervoltage feature of the RPI’s Broadcom SoCs. Changing

the Cortex-A53 and Cortex-A72 core voltages is to use the overvoltage, which could

take values from -16 to 8 [71]; these represent voltage values from 0.8 V to 1.4 V with

increments of 0.025 V. Applying the undervoltage settings to RPI3 B+ and RPI4 B

nodes compared to the node standby power mean power can be seen in table 6.16. It

can be observed that the maximum mean power reduction can be obtained with the -16

undervoltage setting for the RPI3 B+ and -12 for the RPI4 B node. With these settings

of -16, for the RPI3 B+ and -12 for the RPI4 B, on the overclock variable it is possible

obtain a -6.48 % reduction for RPI3 B+, and a -7.62 % for RPI4 B. In the next section

6.4 the details of applying the DPM technique on the eBridge are explored.

6 Validation 98

Figure 6.16: Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz) eBridge

2021 code running as master/primary sensor node running in eBridge 2021 HW

with RPI4 B with DVFS, focused on Configuration τ5,and τ6

6 Validation 99

Figure 6.17: Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz) eBridge

2021 code running as a slave/secondary sensor node running in eBridge 2021 HW

with RPI3 B with DVFS, focused on XBee Send τ1.

6 Validation 100

Table 6.15: Mean Power [W] of RPI3 B+ and RPI4 B nodes after applying DFS settings

compared to standby power

Total Test Run Time (s) 60

Device for Test PXI-4309

Sampling Rate (S/s) 20 000

Frequency Settings
Mean Power [W]

RPI3 B+
Change (%)

vs Standby
RPI4 B

Change (%)

vs Standby

Default Settings

n = 7 200 000

1.4 GHz for RPI3 B+

1.5 GHz for RPI4 B

3.0402 - 3.0622 -

600 MHz

n = 1 220 000
2.8765 -5.38 2.9487 -3.71

400 MHz

n = 1 220 000
2.8695 -5.61 2.9397 -4

Table 6.16: Mean Power [W] of RPI3 B+ and RPI4 B nodes after applying DVS under-

voltage settings compared to standby power

Total Test Run Time (s) 60

Device for Test PXI-4309

Sampling Rate (S/s) 20 000

CPU Voltage Setting

[-16,8]

Mean Power [W]

RPI3 B+
Change (%)

vs Standby
RPI4 B

Change (%)

vs Standby

Default Settings

n = 7 200 000
3.0402 - 3.0622 -

-2

n = 1 220 000
2.9423 - 3.22 2.9455 -3.81

-4

n = 1 220 000
2.9072 -4.37 2.8700 -6.28

-8

n = 1 520 000
2.881 -5.24 2.8852 -5.78

-12

n = 1 460 000
2.8432 - 6.48 2.8290 -7.62

-16

n = 1 240 000
2.8403 -6.58 2.8457 -7.19

6.4 Dynamic Power Management

As described in section 5.3.2, several hardware components of the RPI nodes were turned

off to save power. This section describes of the effects these actions had on the system’s

6 Validation 101

standby power. These settings could be easily controllable from the eBridge code if

necessary. However, in the current implementation, all of these hardware modules are

powered down, except for the USB interface, which is handled by the Cell Interface

class.

• RPI WiFi interface: The RPI3 B+ and RPI4 B WiFi chips can be powered down

using the dtoverlay=pi3-disable-wifi flag on the /boot/config.txt file.

• RPI Bluetooth interface: It can also be turned off for both nodes using the

dtoverlay=pi3-disable-bt flag on the /boot/config.txt file as well.

• RPI Ethernet ports: The network interfaces of the RPI can be turned off with the

command sudo ifconfig [interface name] down. This is used by theCell Interface

class to turn on and off the wwan0 interface used by the LTE communication board.

• RPI LEDS: A total of six LEDs, including the two Ethernet interface LEDs, the

trigger, and the power LED. These can be turned off from the /boot/config.txt file

with the following flags: eth led0, eth led1, act led trigger, act led activelow,

pwr led trigger, and pwr led activelow.

• RPI HDMI interface: Using the command sudo tvservice –off.

• RPI USB Interface: It can be turned down with command echo [interface

number] — sudo tee /sys/bus/usb/drivers/usb/unbind.

The effects on the mean power value for both RPI3 B+ and RPI4 B nodes can be seen

in table 6.17; with all the DPM settings applied, it was possible to obtain a reduction of

14.01 % mean standby power for the RPI3B+, and one of 14.95 for the RPI4B node. Out

off these settings, the powering down of the USB interface was the one that caused the

most significant reduction; for both nodes, it was over a 12 % reduction in mean power.

In the next section 6.5, there is a detailed description of the eBridge 2022 implementation

with the LoRa communication board, its impact on CPU Load, and power consumption

for both master/primary and slave/secondary nodes. This data is also compared to the

performance of the eBridge 2021 optimized code with the XBee communication board.

6.5 eBridge 2022 Node with LoRa Analysis

This section covers the experiments conducted on the eBridge 2022 version A and B

HW configurations on both RPI3 B+ and RPI4 B nodes running as master/primary and

slave/secondary. In the first subsection 6.5.1, there is a description of the additional

functions to monitor on the eBridge 2022 code, in 6.5.2 is possible to find the results for

a master/primary node, and finally in 6.5.3 the ones for slave/secondary.

6 Validation 102

6.5.1 eBridge 2022 with LoRa Line Profiling

Aside from the functions previously monitored for the eBridge 2019 and the 2021 Opti-

mized code, it was also important to profile the functions below:

• RFM9X Send ID:9 τ10: This function is responsible for sending the eBridge

reports from slave/secondary nodes to the master/primary node using the RFM95W

LoRa module.

• RFM9X Received ID:10 τ9: This function is in charge of receiving messages

from a master/primary node over the LoRa RFM95W module in a slave/secondary

node.

The CPU and Events profiling results for a master/primary node are discussed in the

following subsection.

Table 6.17: Mean Power [W] of RPI3 B+ and RPI4 B nodes after applying DPM settings

compared to standby power

Total Test Run Time (s) 60

Device for Test PXI-4309

Sampling Rate (S/s) 20 000

DPM Setting

[-16,8]

Mean Power [W]

RPI3 B+
Change (%)

vs Standby
RPI4 B

Change (%)

vs Standby

Default Settings

n = 7 200 000
3.0402 - 3.0622 -

WiFi and Bluetooth Interfaces

n = 1 260 000
3.0362 -0.13 2.8585 -6.65

wwan0

n = 7 200 000
2.9902 -1.64 3.0477 -0.47

LEDs

n = 1 280 000
2.8447 -6.43 2.8694 -6.3

HDMI

n = 1 460 000
2.9747 -2.15 2.9598 -3.34

USB Interface

n = 7 200 000
2.6632 -12.4 2.6959 -11.96

All Settings

n = 1 320 000
2.6142 -14.01 2.6043 -14.95

6 Validation 103

6.5.2 eBridge 2022 with LoRaMaster/Primary CPU and Events

Profiling

The details of the tests performed for eBridge 2022 master/primary nodes on PRI3B+

can be found in the table 6.18. The 2022 HW configuration for the master/primary node

with the RFM9X LoRa module is used for this test. The total test time was two hours,

and it implemented DFVS with a maximum frequency of 1.4 GHz and a minimum of 600

MHz. Also, it included the DPM techniques shown in section 6.4.

Table 6.18: Measurement Summary eBridge code 2022 running as Master/Primary Sen-

sor node in eBridge 2022 hardware configuration A on RPI3 B+

CPU and Events Measurement Summary

Hardware Configuration eBridge 2022 HW A with RPI3 B+

Controller Raspberry PI 3 B+

Device ID RPI3-2

Code Running eBridge 2022 code

Cellular Communications Board SIM7600G-H

LoRa Board RFM95W

Type of the Device Master/Primary

Total Test Duration 2 hours and 42 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples by CPU Core 7196 samples

CPU Frequency applied to all cores(f) DVFS enabled

Power Measurement Summary

Power Source CanaKit RPI3 B+ 5V 2.5A [59]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 14 392 000

Figure 6.18 it is possible to see the relationship of the Task Gantt plot, the CPU Load (%),

the Power, and the CPU Frequency in MHz for the RPI3 B+ running as master/primary

with the 2022 eBridge code. It is possible to see how every time there is a Frequency

change; it causes and power spike that could go up to 3.5 W.

When further reviewing the power values for the Γ = {τ8, τ7, τ4, τ3, τ2, τ10} tasks it is

possible to come up with the
⃗
Ef

i vector’s statistical information in table 6.19. From these

6 Validation 104

Figure 6.18: Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz) eBridge

2022 code running as a master/primary sensor node running in eBridge 2022 HW

with RPI3 B+ with DVFS and DPM.

data, the highest power spike is generated by the Get Median ID:4 τ4 task with a

value of 3.9108 W. Also, it can be observed how the mean power of 2.8503 W of the task

6 Validation 105

RFM9X Receive ID:10 τ10 is 23.85 % smaller than the one for XBee Received ID:0

τ0 of 3.7431 W. The mean power of this configuration of 2.8297 W is 25.33 % smaller than

the 3.7897 W of the eBridge 2019 code and 8.27 % smaller than the 3.0848 W of the 2021

Optimized code with XBee.

Table 6.19:
⃗
Ef

i with DVFS on RPI3 B+ vectors statistical information of Γ =

{τ8, τ7, τ4, τ3, τ2, τ10} of eBridge 2022 in eBridge 2022 HW configuration as

master/primary and mean power. Test details in table 6.18.

Power [W]

Task ID τ8 τ7 τ4 τ3 τ2 τ10 Power

n 249 496 181 576 1 498 160 1 533 760 93 000 65 504 14 392 000

Mean 2.8283 2.8537 2.8295 2.8271 2.8190 2.8503 2.8297

Std 0.1194 0.1324 0.1130 0.1148 0.1055 0.1303 0.1155

Min 2.5608 2.3649 2.5314 2.5420 2.5764 2.6532 2.3588

Max 3.7603 3.5845 3.9108 3.7498 3.6913 3.3988 3.9902

The
⃗
Cf

i vector statistical information on table 6.20, shows the average execution time of

the tasks of interest for the 2022 eBridge code with LoRa. From the perspective of the

master/primary node, receiving LoRa messages takes less time than receiving from the

XBee DigiMesh board. The average execution time of task RFM9X Receive ID:10 τ10
is 4.1 ms, while for XBee Receive ID:0 τ0 the mean execution code for the optimized

code is of 4.9 ms, however the maximum execution time for τ10 is 10.22 ms, while for τ0
is 50.20 ms.

Table 6.20:
⃗
Cf

i with DVFS on RPI3 B+ vectors statistical information of Γ =

{τ8, τ7, τ4, τ3, τ2, τ10} of eBridge 2022 in eBridge 2022 HW configuration as

master/primary. Test details in table 6.18.

Execution Time (s)

Task ID τ8 τ7 τ4 τ3 τ2 τ10
n 49 49 117 116 48 48

Mean 0.2263 0.2229 0.0036 0.1089 0.0395 0.0041

Std 0.0051 0.0328 0.0011 0.2065 0.0053 0.0041

Min 0.2227 0.1212 0.0026 0.0008 0.0231 0.0004

Max 2.2482 0.2428 0.0095 0.5434 0.0499 0.01022

In the next subsection 6.5.3 the results of the eBridge 2022 code running in RPI4B as

slave/secondary node is discussed.

6 Validation 106

6.5.3 eBridge 2022 with LoRa Slave/Secondary CPU and Events

Profiling

This section includes the results of the test described in table 6.21, which runs the eBridge

2022 code with a LoRa communication node in an RPI4 B node with the 2022 HW

configuration for slave/secondary systems. This test ran for 2 hours and 47 seconds with

the DPM setting described in section 6.4. Also, the node had DVFS enabled with a range

of frequencies from 600 MHz to 1.5 GHz.

Table 6.21: Measurement Summary eBridge code 2022 running as Master/Primary Sen-

sor node in eBridge 2022 hardware configuration A on RPI3 B+

CPU and Events Measurement Summary

Hardware Configuration eBridge 2022 HW A with RPI4 B

Controller Raspberry PI 4 B

Device ID RPI4-2

Code Running eBridge 2022 code

Cellular Communications Board SIM7600G-H

LoRa Board RFM95W

Type of the Device Slave/Secondary

Total Test Duration 2 hours and 42 seconds

System Configuration
Message Frequency: 5 min

Measurement Frequency: 1 min

Number of Cores 4

Number of Samples per second per CPU (S/s) 1

Number of Samples by CPU Core 7208 samples

CPU Frequency applied to all cores(f) DVFS enabled

Power Measurement Summary

Power Source CanaKit RPI3 B+ 5V 3.5A [60]

Instrument PXIe-4309

Shunt Resistor 75mV/100A (0.075 mΩ)

Number of Channels 2

Channel names and IDs
Power Supply Voltage: Vsup

Shunt Resistor Voltage: Vshunt

Number of Samples per Second (S/s) 2000

Total number of samples per channel 14 416 000

Figure 6.19 shows the relationship between the Gantt Plot of tasks execution, the CPU

Load (%), the power consumption, and the Core Frequency in MHz for the 2022 code

running in RPI4 B as a slave/secondary. From this plot is possible to see how on every

execution of the RFM9X Send ID:9 τ9, there is a transient increase of CPU load up

to 100 % utilization, and as a consequence, a frequency change to 1.5 GHz. One of the

challenges of using the RFM95W LoRa communications module could be retrying to send

6 Validation 107

the messages if it does not get confirmation from the receptor node, as seen in the last

execution of the τ9 task in the figure.

Figure 6.19: Tasks Gantt Plot vs CPU Load (%) vs Power [W] vs CPU Freq (MHz) eBridge

2022 code running as a slave/secondary sensor node running in eBridge 2022 HW

with RPI4B with DVFS and DPM.

6 Validation 108

The data in table 6.22 there is a summary of
⃗
Ef

i vector’s statistical data for Γ = {τ4, τ3, τ9}
tasks in slave/secondary node running in a RPI4 B node. It is possible to observe how

sending LoRa messages is 6.4 % energetically cheaper than sending XBee messages; the

mean power value for RFM9X Send ID:9 is 3.4270, while the one for XBee Received

ID:1 τ1 is 3.6615 W. The Start Cell Connection - ID 7 and Stop Cell Connection - ID 8

are not analyzed since they are executed only once during the node initialization.

Table 6.22:
⃗
Ef

i with DVFS on RPI4 B vectors statistical information of Γ = {τ4, τ3, τ9}
of eBridge 2022 in eBridge 2022 HW configuration as slave/secondary and

mean power. Test details in table 6.21.

Power [W]

Task ID τ4 τ3 τ9 Power

n 1 433 496 1 455 744 716 192 14 416 000

Mean 3.6709 3.6728 3.6778 3.172

Std 0.0816 0.0786 0.0727 0.0075

Min 2.4999 2.6734 2.6828 2.2010

Max 3.8006 3.7900 3.7963 3.5577

The statistical data of the execution profiles for tasks Γ = {τ4, τ3, τ1} can be seen in

table 6.23. It is possible to see how the slave/secondary node takes a long time of up

to 64 s to send a LoRa message compared to the 0.3395 s execution time of the XBee

Receive ID:0 τ0. Looking for a way to improve the LoRa communication could be useful

in reducing the mean CPU Load of the node.

Table 6.23:
⃗
Ef

i with DVFS and DPM in PI3 B+vectors’ statistical information of

Γ = {τ4, τ3, τ1} of eBridge 2021 Optimized code in eBridge 2021 HW con-

figuration as slave/secondary. Test details in tables 6.1 and 6.2

Execution Time (s)

Task ID τ4 τ3 τ9
n 88 87 37

Mean 0.0020 10.510 37.00

Std 0.0003 23.583 53.76

Min 0.0016 0.0005 3.30

Max 0.0033 64.03 64.35

6 Validation 109

The mean power for the slave/secondary 2022 code with LoRa of 3.172 W is 7.89 %

smaller than the 3.4224 W for the optimized code in an RPI4 B node. The following

section summarizes the battery tests conducted on the eBridge 2022 code and 2022 HW

configuration with the RFM9X LoRa communication board.

6.6 eBridge 2022 with LoRa Battery Tests

The eBridge 2022 network was tested using 5 200 mAh, and 10 000 mAh batteries on

both RPI3 B+ and RPI4 B nodes; these batteries are described in subsection 3.5.1. These

results can be seen in tables 6.24, and 6.25.

6.6.1 Battery test for Master/Primary

This section covers the battery tests performed on master/primary nodes using the

RFM9X LoRa module in RPI3 B+ and PRI4 B nodes; the results are shown in table

6.24. It is possible to see a time improvement of 500 % using a 5 200 mAh battery from

the 2019 eBridge code running in the 2021 HW configuration in an RPI3 B+; the time

improved from 2 hours, 15 minutes, and 33 seconds to 13 hours, 33 minutes, and 30 sec-

onds. For the battery of 10 000 mAh, the improvement was 574.74 % from three hours,

31 minutes, and 12 seconds to 23 hours, 45 minutes, and 3 seconds. For an RPI4 B with

a battery of 5 200 mAh, the improvement was 281.69 % from one hour, 50 minutes and

two seconds to six hours, 59 minutes, and 59 seconds. In the case of the 10 000 mAh, the

enhancement was 347.94 % from three hours, 23 minutes, and 12 seconds to 15 hours, ten

minutes, and 13 seconds.

Table 6.24: Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2022

code as master/primary in eBridge 2022 HW configuration.

Type of Configuration:
Measurement Frequency = 1 min

Message Frequency = 5 min

Device ID Battery ID
Total Run Time

[HH:MM:SS]

RPI3-2 5 200 mAh - 1 13:33:30

RPI3-2 10 000 mAh -1 23:45:03

RPI4-2 5 200 mAh - 3 06:59:59

RPI4-2 10 000 mAh -3 15:10:13

6 Validation 110

6.6.2 Battery test for Slave/Secondary

The battery tests results for the slave/secondary node using LoRa with the eBridge 2022

HW configuration in both RPI3 B+ and RPI4 can be seen in table 6.25. The battery life

improvement for a slave in RPI3 B+ was 557.67 % with a battery of 5 200 mAh from one

hour, 54 minutes, and 33 seconds to 12 hours, 33 minutes, and 22 seconds. For a battery

of 10 0000 mAh, the enhancement was 586 % from three hours, eleven minutes, and two

seconds to 21 hours, 50 minutes, and 34 seconds. For an RPI4 B node, it was 306.6 %

from one hour, 37 minutes, 17 seconds to six hours, 35 minutes, and 33 seconds with a

battery of 5 200 mAh, with a battery of 10 000 mAh, the total run time improved 414.86

% from two hours, 54 minutes, and 26 seconds to 14 hours, 58 minutes, and five seconds.

Table 6.25: Battery tests run time results on RPI3 B+ and RPI4 B of the eBridge 2022

code as slave/secondary in eBridge 2022 HW configuration.

Type of Configuration:
Measurement Frequency = 1 min

Message Frequency = 5 min

Device ID Battery ID
Total Run Time

[HH:MM:SS]

RPI3-2 5 200 mAh - 1 12:33:22

RPI3-2 10 000 mAh -1 21:50:34

RPI4-2 5 200 mAh - 3 06:35:33

RPI4-2 10 000 mAh -3 12:19:21

RPI4-2 10 000 mAh -2 14:58:05

In the next chapter 7 the conclusions of this thesis work are presented.

Chapter 7

Conclusions

This chapter is focused on presenting the main conclusions of the performed investigation,

which was aimed at complying with the objectives described in chapter 1. This is divided

into section 7.1 with the conclusions, and in section 7.2 future work is covered.

7.1 Conclusions

The battery life autonomy using a 5200 mAh improved from 2 hours, 15 minutes, and 33

seconds to 13 hours, 33 minutes, and 30 seconds using an RPI3 B+ node and the updated

2022 HW configuration in a master/primary device, and for a slave/secondary node the

time improved from one hour, 49 minutes, and 16 seconds to 12 hours, 33 minutes and

22 seconds, thus complying with the general thesis objective.

7.1.1 eBridge 2019 network analysis Conclusions

The mean power of the eBridge 2019 code running as master/primary of 3.7897 W is

24.65 % higher than the standby power for an RPI3 B+ node of 3.0402 W. The one for

an RPI4 B node of 4.5788 W is 49.53 % higher than the mean standby power of 3.0622

%. This means that for the same code and peripherals, the RPI4 B node consumes 20.82

% under the same stress conditions, while the standby power of RPI4 B is only 0.72 %

while in standby. This is directly reflected in the battery life of both nodes in which the

RPI3 B+ has 20.08 % and 20.07 % higher run time with a battery of 5 200 mAh, and

a 21.08 % and 22.19 % with 10 000 mAh batteries than the RPI4B while running as

master/primary. For a slave secondary node, the power consumption of RPI4 B nodes is

21.52 % higher.

111

7 Conclusions 112

7.1.2 Design Conclusions

Improving the eBridge Alarm Handling and Messaging protocols was key to reducing

the power consumption of a slave/secondary system. The protocol changes reduced the

messages per hour from 60 to 12 per node in case of no alarms for a measurement frequency

of one minute and message frequency of five minutes. Based on [4], the size of each

report is 200 bytes; this allowed a reduction in the data sent from a slave/secondary

node to a master/primary of 80% from 11.72 KB to 2.34 KB per hour per node. Also,

it reduced the number of letters to the eBridge server for a single configuration with one

master/primary device and single slave/secondary device, and the same frequencies as

before from 120 reports to 24. It was deducted that sending messages over XBee was 5.71

% more expensive energetically than receiving messages for an RPI3 B+ and 5.46 % for

an RPI4 B node. Based on [73], the cost per KB is 1.95 CRC (Costa Rican Colones);

this means a reduction of LTE cost from 45.7 CRC to 9.126 CRC per hour, which could

represent up to 26 605.4 CRC per month.

7.1.3 eBridge 2021 network analysis Conclusions

Using an Instruction-Level power analysis allows for identifying focus areas in the soft-

ware that enables the programmer to have a more significant impact on resource utiliza-

tion; creating a task interaction model from this approach was vital in identifying areas

of improvement. By performing software optimizations in the specified code modules, it

was possible to improve mean power consumption by 18.6 % and 26 % for RPI3 B+ and

RPI4, respectively, from values of 3.797 W to 3.0848 W and from 4.5788 W to 3.3781

W while running as master/primary. For a slave/secondary node, the improvement on

RPI3 B+ was 23.01 % from 3.9663 W to 3.0768 W, and for RPI4 B was 28.58 % from

4.8200 W to 3.4224 W. Also, it was possible to reduce the maximum power spike on a

slave/secondary system from a max of 7.5 W to 4.1431 W, which is a 41.16 % reduction.

7.1.4 DPM and DVFS on the eBridge Network Conclusions

The combination of DPM strategies on the RPI3 B+ and the RPI4 B node reduced the

mean standby power of both nodes by 14.01 % and 14.95 %, respectively. The standby

power for RPI3 B+ improved from 3.0402 W to 2.6142 with all the eBridge peripherals

connected.

Applying Undervoltage settings to the Cortex-A53 on the RPI3 B+ and the Cortex-A72

on the RPI4 B with a value of -8 [1.0 V per Core] allows the standby power to be reduced

by 5.24 % for RPI3 B+ and 5.78 & RPI4 B. This was the lowest setting in which it was

possible to run the eBridge 2021 optimized code and the eBridge 2022 code with LoRa.

This was combined with DVFS scaling allowing the CPU to lower its frequencies to 600

MHz while on standby.

7 Conclusions 113

7.1.5 LoRA eBridge 2022 with LoRa Conclusions

Implementing the LoRa RFM95W communication board on the eBrdige 2021 Optimized

code allowed to reduce the mean power from Optimized code by 8.27 % for master/primary

nodes from 3.0848 W to 2.8297 for RPI3 B+. This represents an improvement of 23.85

% compared to the eBridge 2019 code. For slave/secondary, the mean power was reduced

by 7.89 % with the 2022 code with LoRa compared to the 2021 optimized code. This

allowed an improvement in battery life by 500 % using a 5 200 mAh battery from the 2019

eBridge code running in the 2021 HW configuration in an RPI3 B+; the time improved

from 2 hours, 15 minutes, and 33 seconds to 13 hours, 33 minutes, and 30 seconds. For

the battery of 10 000 mAh, the improvement was 574.74 % from three hours, 31 minutes,

and 12 seconds to 23 hours, 45 minutes, and 3 seconds. For an RPI4 B with a battery of 5

200 mAh, the improvement was 281.69 % from one hour, 50 minutes, and two seconds to

six hours, 59 minutes, and 59 seconds. In the case of the 10 000 mAh, the enhancement

was 347.94 % from three hours, 23 minutes, and 12 seconds to 15 hours, ten minutes, and

13 seconds.

7.2 Future Work

This section covers some suggestions for future work.

• Move the node to 10 000 mAh hour batteries; this would increase the battery life of

the eBridge node up to almost 24 hours using RPI3 B+ nodes and leave room for

expandability.

• Consider the possibility of moving away from using the LTE network for a Lo-

RaWAN solution when more gateways are available.

• Work on looking for alternative LoRa communication boards that may require less

CPU utilization.

• Implement a power solution with a solar panel to facilitate the nodes’ deployability.

• Move to a more minor embedded system. A suitable replacement now that the

eBridge for the RPI3 B+ and RPI4 B is the RaspberryPi Pico, which uses the

RP2040 SoC [74] in combination with the SIM7080G Narrow Band IoT module from

Waveshare [75], which works over the LTE network. This would have a total cost of

under 50 USD and is compatible with MicroPython [76], a programming language

highly compatible with Python3, making it easy to learn for new programmers.

Bibliography

[1] B. Seetanah, S. Ramessur, and S. Rojid, “Does Infrastructure Alleviates Poverty in

Developing Countries,” International Journal of Applied Econometrics and Quan-

titative Studies, vol. 9, no. 2, 2009, issn: 1988-0081 (cit. on p. 1).

[2] G. Ortiz, “eBridge: Predicción remota de fallas en puentes,” Investiga TEC, pp. 10–

11, 2012 (cit. on pp. 1, 2).

[3] Tecnológico De Costa Rica, “Inventario de puentes en rutas nacionales de Costa Rica

2014-201,” Tech. Rep. 506, 2019. [Online]. Available: https://www.tec.ac.cr/

sites/default/files/media/doc/informe_final_inventario_y_evaluacion_

puentes_-_2014-2018.pdf (cit. on pp. 1, 2, 71, 73).

[4] A. Ruiz, “Diseño de redes de sensores colaborativas para monitorización de salud

estructural de puentes,” M.S. thesis, Tecnológico de Costa Rica (TEC), 2019. [On-

line]. Available: https://repositoriotec.tec.ac.cr/handle/2238/10700 (cit.

on pp. 1–3, 27, 34, 36–39, 41, 57, 67, 112).

[5] C. Garita and G. Ortiz, “Integrando Información Estregégica para Monitoreo de

Puentes Nacionales.pdf,” in III Jornadas Costarricenses de Investigación en Com-

putación e Informática JoCICI, Cartago, 2019. doi: https://doi.org/10.18845/

mct.v0i0.4529. [Online]. Available: https://revistas.tec.ac.cr/index.php/

memorias/article/view/4529 (cit. on p. 2).

[6] C. Garita, “Vista de Enfoques de integración de información para sistemas de mon-

itoreo de salud estructural de puentes.pdf,” Tecnoloǵıa en Marcha, pp. 96–107, 2015

(cit. on p. 2).

[7] A. Obando and C. Garita, “Diseño general de una red inalámbrica para monitoreo

de salud de puentes,” San Salvador, El Salvador, Sep. 2015. [Online]. Available:

https://www.researchgate.net/publication/282295016_Diseno_General_

de_una_Red_Inalambrica_para_Monitoreo_de_Salud_de_Puentes (cit. on p. 2).

[8] F. Picado-Alvarado and G. Ortiz-Quesada, “Desarrollo de un modelo de confiabili-

dad para el análisis del desempeño de puentes. Un caso de estudio en Costa Rica,”

Revista Tecnoloǵıa en Marcha, vol. 30, no. 1, p. 79, 2017, issn: 0379-3982. doi:

10.18845/tm.v30i1.3087 (cit. on p. 2).

[9] G. Ortiz and J. Mora, “Requirements Analysis for a National Bridge Monitoring

System,” Revista Tecnoloǵıa en Marcha, vol. 31, no. 4, pp. 63–72, 2018 (cit. on p. 2).

114

Bibliography 115

[10] M. C. Abarca, A. R. Barquero, C. Garita, and G. Ortiz, “Preliminary design of a

low-cost water level monitoring system for bridges,” Proceedings of the 2018 IEEE

38th Central America and Panama Convention, CONCAPAN 2018, 2018. doi: 10.

1109/CONCAPAN.2018.8596666 (cit. on pp. 2, 3, 24).

[11] M. Gutiérrez and C. Garita, “Prototype development of a wireless embedded system

for bridge monitoring,” 2017 IEEE 37th Central America and Panama Convention,

CONCAPAN 2017, vol. 2018-January, pp. 1–6, 2018. doi: 10.1109/CONCAPAN.

2017.8278482 (cit. on p. 2).

[12] A. Ruiz-Barquero, C. Garita, and G. Ortiz, “Collaborative Sensors Networks for

Structural Health Monitoring of Bridges in Costa Rica,” in XLVI Latin American

Computing Conference (CLEI), 2021, pp. 417–426, isbn: 9781665415606. doi: 10.

1109/clei52000.2020.00055 (cit. on pp. 2–4, 24).

[13] G. Ortiz-quesada and C. Garita-rodŕıguez, “Priorización de intervenciones en puentes

utilizando indicadores Indicators for Bridge Actions Prioritization,” vol. 34, pp. 134–

142, 2021 (cit. on p. 2).

[14] Digi, Digi xbee® 802.15.4, Accessed on 2021-7-25, 2021. [Online]. Available: https:

//www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-

ghz-rf-modules/xbee-802-15-4#specifications (cit. on pp. 3, 55, 65).

[15] M. Engin, “Energy Efficiency of Embedded Controllers,” 2019 8th Mediterranean

Conference on Embedded Computing, MECO 2019 - Proceedings, no. June, pp. 1–4,

2019. doi: 10.1109/MECO.2019.8760289 (cit. on pp. 5–10).

[16] J. Boudjadar, “An efficient energy-driven scheduling of DVFS-multicore systems

with a hierarchy of shared memories,” Proceedings - 2017 IEEE/ACM 21st Inter-

national Symposium on Distributed Simulation and Real-Time Applications, DS-RT

2017, vol. 2017-Janua, pp. 1–8, 2017. doi: 10.1109/DISTRA.2017.8167661 (cit. on

pp. 6, 14, 16, 17).

[17] C. Deng, R. Guo, H. Wang, and A. Peng, “A dynamic power management algo-

rithm for sporadic tasks in real-time embedded systems,” Proceedings - 15th IEEE

International Conference on Trust, Security and Privacy in Computing and Com-

munications, 10th IEEE International Conference on Big Data Science and Engi-

neering and 14th IEEE International Symposium on Parallel and Distributed Proce,

pp. 2073–2078, 2016. doi: 10.1109/TrustCom.2016.0318 (cit. on pp. 6, 7, 13, 20,

21).

[18] S. A. Carvalho, D. C. Cunha, and A. G. Silva-Filho, “Autonomous Power Manage-

ment for Embedded Systems Using a Non-linear Power Predictor,” Proceedings -

20th Euromicro Conference on Digital System Design, DSD 2017, pp. 22–29, 2017.

doi: 10.1109/DSD.2017.68 (cit. on pp. 6, 7, 12, 14, 15).

Bibliography 116

[19] K. M. Cho, C. H. Liang, J. Y. Huang, and C. S. Yang, “Design and implementation

of a general purpose power-saving scheduling algorithm for embedded systems,”

2011 IEEE International Conference on Signal Processing, Communications and

Computing, ICSPCC 2011, pp. 1–5, 2011. doi: 10.1109/ICSPCC.2011.6061645

(cit. on pp. 6, 14).

[20] S. Moulik, A. Sarkar, and H. K. Kapoor, “Energy aware frame based fair schedul-

ing,” Sustainable Computing: Informatics and Systems, vol. 18, pp. 66–77, 2018,

issn: 22105379. doi: 10.1016/j.suscom.2018.03.003. [Online]. Available: https:

//doi.org/10.1016/j.suscom.2018.03.003 (cit. on pp. 6, 14, 18, 19, 21).

[21] S. Moulik, R. Chaudhary, and Z. Das, “HEARS: A heterogeneous energy-aware

real-time scheduler,” Microprocessors and Microsystems, vol. 72, p. 102 939, 2020.

doi: 10.1016/j.micpro.2019.102939. [Online]. Available: https://doi.org/10.

1016/j.micpro.2019.102939 (cit. on pp. 6, 14, 20, 21).

[22] I. Ahmad, H. F. Sheikh, and A. Aved, “Benchmarking the task scheduling algo-

rithms for performance, energy, and temperature optimization,” Sustainable Com-

puting: Informatics and Systems, vol. 25, p. 100 339, 2020, issn: 22105379. doi:

10.1016/j.suscom.2019.07.002. [Online]. Available: https://doi.org/10.

1016/j.suscom.2019.07.002 (cit. on pp. 6, 14, 16, 21).

[23] A. Potsch, A. Berger, and A. Springer, “Efficient analysis of power consumption be-

haviour of embedded wireless IoT systems,” I2MTC 2017 - 2017 IEEE International

Instrumentation and Measurement Technology Conference, Proceedings, pp. 1–5,

2017. doi: 10.1109/I2MTC.2017.7969658 (cit. on pp. 7, 11).

[24] M. A. Awan, P. M. Yomsi, G. Nelissen, and S. M. Petters, “Energy-aware task

mapping onto heterogeneous platforms using DVFS and sleep states,” Real-Time

Systems, vol. 52, no. 4, pp. 450–485, 2016, issn: 15731383. doi: 10.1007/s11241-

015-9236-x (cit. on pp. 7, 10, 14, 19–21, 31).

[25] J. Laurent, N. Julien, E. Senn, and E. Martin, “Functional level power analysis:

An efficient approach for modeling the power consumption of complex processors,”

Proceedings - Design, Automation and Test in Europe Conference and Exhibition,

vol. 1, pp. 666–667, 2004. doi: 10.1109/DATE.2004.1268921 (cit. on pp. 8–10, 12).

[26] W. Wang and P. Mishra, “Leakage-aware energy minimization using dynamic volt-

age scaling and cache reconfiguration in real-time systems,” Proceedings of the IEEE

International Conference on VLSI Design, pp. 357–362, 2010, issn: 10639667. doi:

10.1109/VLSI.Design.2010.22 (cit. on pp. 10, 17, 21).

[27] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time multiprocessor

system-on-chip with optimal DVFS and DPM combination,” ACM Transactions on

Embedded Computing Systems, vol. 13, no. 3s, 2014. doi: 10.1145/2567935 (cit. on

pp. 10, 14, 16, 18, 21).

Bibliography 117

[28] S. Z. Sheikh and M. A. Pasha, “An improved model for system-level energy min-

imization on real-time systems,” Proceedings - IEEE Computer Society’s Annual

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, MASCOTS, vol. 2019-October, pp. 276–282, 2019,

issn: 15267539. doi: 10.1109/MASCOTS.2019.00039 (cit. on p. 10).

[29] X. Piao, H. Kim, Y. Cho, et al., “Energy consumption optimization in real-time em-

bedded systems,” Proceedings - 2009 International Conference on Embedded Soft-

ware and Systems, ICESS 2009, pp. 281–287, 2009. doi: 10.1109/ICESS.2009.43

(cit. on pp. 10, 11).

[30] I. Amirtharaj, “Energy Measurement and Profiling of Internet of Things Devices,”

Computer Engineering Master’s Theses, Santa Clara University, 2018. [Online].

Available: https://scholarcommons.scu.edu/cseng_mstr/5 (cit. on pp. 11,

22).

[31] Eclipse Foundation, “2020 IoT Developer Survey Key Findings,” no. October, p. 31,

2020. [Online]. Available: https://f.hubspotusercontent10.net/hubfs/5413615/

2020%20IoT%C2%A0Developer%20Survey%20Report.pdf (cit. on p. 11).

[32] K. Kesrouani, H. Kanso, and A. Noureddine, “A Preliminary Study of the En-

ergy Impact of Software in Raspberry Pi devices,” Proceedings of the Workshop

on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE,

vol. 2020-September, pp. 231–234, 2020, issn: 15244547. doi: 10.1109/WETICE49692.

2020.00052 (cit. on p. 11).

[33] “Accurate Power Consumption Evaluation for Peripherals in Ultra Low-Power em-

bedded systems,” GIoTS 2020 - Global Internet of Things Summit, Proceedings,

pp. 3–8, 2020 (cit. on p. 11).

[34] C. Hou, Q. Zhao, and S. Member, “A New Optimal Algorithm for Energy Saving

Embedded in Embedded System With Multiple Sleep Modes,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 2, pp. 706–719, 2016.

doi: 10.1109/TVLSI.2015.2414827 (cit. on p. 13).

[35] X. Zhang, L. Song, H. Sun, and G. Ye, “A user-configured low power optimizing

mechanism on embedded system,” Proceedings - 2013 International Conference on

Computer Sciences and Applications, CSA 2013, pp. 769–774, 2013. doi: 10.1109/

CSA.2013.184 (cit. on pp. 13, 14).

[36] M. Jafari-Nodoushan and A. Ejlali, “An optimal analytical solution for maximiz-

ing expected battery lifetime using the calculus of variations,” Integration, vol. 71,

no. June 2019, pp. 86–94, 2020. doi: 10.1016/j.vlsi.2019.11.002. [Online].

Available: https://doi.org/10.1016/j.vlsi.2019.11.002 (cit. on p. 14).

[37] U. U. Tariq, H. Ali, L. Liu, J. Panneerselvam, and X. Zhai, “Energy-efficient Static

Task Scheduling on VFI-based NoC-HMPSoCs for Intelligent Edge Devices in Cyber-

physical Systems,”ACM Transactions on Intelligent Systems and Technology, vol. 10,

no. 6, pp. 1–23, 2019, issn: 21576912. doi: 10.1145/3336121 (cit. on p. 14).

Bibliography 118

[38] A. Toma, S. Pagani, J. J. Chen, W. Karl, and J. Henkel, “An Energy-Efficient

Middleware for Computation Offloading in Real-Time Embedded Systems,” Pro-

ceedings - 2016 IEEE 22nd International Conference on Embedded and Real-Time

Computing Systems and Applications, RTCSA 2016, pp. 228–237, 2016. doi: 10.

1109/RTCSA.2016.50 (cit. on p. 14).

[39] J. Peraza, A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely, PMaC’s green

queue: a framework for selecting energy optimal DVFS configurations in large scale

MPI applications, 2016. doi: 10.1002/cpe.3184 (cit. on p. 16).

[40] G. Luo, B. Guo, Y. Shen, H. Y. Liao, and L. Ren, “Analysis and optimization of

embedded software energy consumption on the source code and algorithm level,”

Proceedings of the 2009 4th International Conference on Embedded and Multimedia

Computing, EM-Com 2009, vol. 1, pp. 3–7, 2009. doi: 10.1109/EM-COM.2009.

5402965 (cit. on p. 22).

[41] R. P. Foundation, Raspberry pi 4 model b specifications, Accessed on 2021-8-1, 2021.

[Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-4-

model-b/specifications/ (cit. on p. 23).

[42] ——, Sim7600g-h 4g hat for raspberry pi, lte cat-4 4g / 3g / 2g support, gnss

positioning, global band, Accessed on 2021-8-1, 2021. [Online]. Available: https:

//www.waveshare.com/sim7600g-h-4g-hat.htm (cit. on pp. 23, 25).

[43] P. J. Drongowski, Raspberry pi 4 arm cortex-a72 processor, Accessed on 2022-7-04,

2020. [Online]. Available: http://sandsoftwaresound.net/raspberry-pi-4-

arm-cortex-a72-processor/ (cit. on p. 26).

[44] C. Windeck, Raspberry pi 4 model b: Blockschaltbild des broadcom bcm2711, Ac-

cessed on 2022-7-15, 2022. [Online]. Available: https : / / www . heise . de / ct /

artikel/Raspberry-Pi-4-Model-B-Blockschaltbild-des-Broadcom-BCM2711-

4514399.html?affiliateId=17957 (cit. on p. 27).

[45] Sci-Pi, Pi 4 soc, Accessed on 2022-7-15, 2022. [Online]. Available: https://www.

sci-pi.org.uk/arch/soc.html (cit. on pp. 25, 28).

[46] L. Hattersley, Raspberry pi 4 vs raspberry pi 3b+, Accessed on 2021-10-22, 2019.

[Online]. Available: https://magpi.raspberrypi.com/articles/raspberry-pi-

4-vs-raspberry-pi-3b-plus (cit. on p. 25).

[47] N. Heath, Raspberry pi 3 b+: Co-creator eben upton reveals all about the new board,

Accessed on 2022-4-05, 2018. [Online]. Available: https://www.techrepublic.

com/article/raspberry-pi-3-b-co-creator-eben-upton-reveals-all-

about-the-new-board (cit. on p. 27).

[48] MilhouseVH, Bcmstat, Accessed on 2021-2-6, 2020. [Online]. Available: https://

github.com/MilhouseVH/bcmstat (cit. on p. 30).

[49] G. Rodola, Cross-platform lib for process and system monitoring in python - psu-

til 5.8.0. Accessed on 2021-2-7, 2020. [Online]. Available: https://pypi.org/

project/psutil/ (cit. on p. 30).

Bibliography 119

[50] J. C. Warner, Top, Accessed on 2021-2-8. [Online]. Available: https://linux.die.

net/man/1/top (cit. on p. 30).

[51] B. Frederickson, Py-spy, Accessed on 2021-2-7, 2021. [Online]. Available: https:

//github.com/benfred/py-spy (cit. on pp. 30, 32).

[52] E. Berger, Scalene: A high-performance cpu and memory profiler for python, Ac-

cessed on 2021-2-6, 2021. [Online]. Available: https : / / pypi . org / project /

scalene/0.9.16/ (cit. on p. 30).

[53] P. S. Foundation, Time access and conversions, Accessed on 2021-3-5. [Online].

Available: https://docs.python.org/3/library/time.html (cit. on p. 30).

[54] A. Ajitsaria, What is the python global interpreter lock (gil)? Accessed on 2021-6-18,

2021. [Online]. Available: https://realpython.com/python-gil/ (cit. on pp. 31,

38).

[55] N. Instruments, Pxie-4309 - specifications, Accessed on 2022-7-5, 2022. [Online].

Available: https://www.ni.com/docs/en- US/bundle/pxie- 4309- specs/

resource/377030a.pdf (cit. on pp. 32, 33).

[56] M. Jungman, Polymer li-ion battery technology specification - model icr18650 4400mah

3.7v, Accessed on 2020-9-22, 2014. [Online]. Available: https://cdn-shop.adafruit.

com/product-files/354/C449_-_ICR18650_4400mAh_3.7V_with_PCM_20140728_

APPROVED_8.18.pdf (cit. on p. 34).

[57] M. S. CR, Mi power bank and wall charger 5200 mah, Accessed on 2022-6-30, 2022.

[Online]. Available: https://mistorecr.com/producto/mi-power-bank-and-

wall-charger-5200-mah/ (cit. on pp. 34, 35).

[58] ——, Mi power bank 3 ultra compact 10000 mah, Accessed on 2022-6-30, 2022.

[Online]. Available: https://mistorecr.com/producto/mi- power- bank- 3-

ultra-compact-10000mah/ (cit. on p. 35).

[59] CanaKit, Raspberry pi 3 model b+ starter kit, Accessed on 2020-12-10, 2020. [On-

line]. Available: https://www.canakit.com/raspberry-pi-3-model-b-plus-

starter-kit.html (cit. on pp. 39, 50, 63, 79, 88, 103).

[60] ——, Raspberry pi 4 model b starter kit, Accessed on 2020-12-10, 2020. [Online].

Available: https://www.canakit.com/raspberry- pi- 4- starter- kit.html

(cit. on pp. 44, 53, 63, 83, 91, 106).

[61] R. Zwetsloot, Raspberry pi 4 specs and benchmarks, Accessed on 2022-5-17, 2019.

[Online]. Available: https://magpi.raspberrypi.com/articles/raspberry-pi-

4-specs-benchmarks (cit. on p. 42).

[62] freedesktop.org, What is libqmi? Accessed on 2020-8-13, 2017. [Online]. Available:

https://www.freedesktop.org/wiki/Software/libqmi/ (cit. on p. 65).

[63] Kolbi, Planes de dispositivos, Accessed on 2020-2-3, 2017. [Online]. Available: https:

//www.kolbi.cr/wps/portal/kolbi_dev/negocios/pymes/conectividad/

planes-kolbi-dispositivos (cit. on p. 65).

Bibliography 120

[64] K. Yaghmour, J. Masters, and G. Ben, Building Embedded Linux Systems, 2nd

Edition, Second. USA: O’Reilly, Associates, Inc., 2008, isbn: 9780596529680 (cit.

on p. 65).

[65] Python.org,A synchronized queue class, https://docs.python.org/3/library/queue.html,

Accessed on 2021-2-23, 2021 (cit. on p. 66).

[66] S. de Telecomunicaciones SUTEL, 3g and 4g coverage costa rica by carrier, Accessed

on 2021-2-23, 2021. [Online]. Available: https://mapas.sutel.go.cr/ (cit. on

p. 74).

[67] B. S. Chaudhari, M. Zennaro, and S. Borkar, “LPWAN technologies: Emerging ap-

plication characteristics, requirements, and design considerations,” Future Internet,

vol. 12, no. 3, 2020, issn: 19995903. doi: 10.3390/fi12030046 (cit. on pp. 71, 75).

[68] L. D. Portal, Getting started with lora - what is lora? Accessed on 2022-3-14, 2022.

[Online]. Available: https : / / lora - developers . semtech . com / learn / get -

started/what-is-lora (cit. on p. 72).

[69] M. Vargas, The things network san josé, costa rica, Accessed on 2022-5-27, 2022.

[Online]. Available: https://www.thethingsnetwork.org/community/sanjose/

(cit. on p. 72).

[70] Adafruit, Adafruit rfm95w lora radio transceiver breakout - 868 or 915 mhz - ra-

diofruit, Accessed on 2022-6-02, 2022. [Online]. Available: https://www.adafruit.

com/product/3072 (cit. on pp. 72, 76).

[71] R. P. Ltd, Raspberrypi documentation - frequency managment and thermal control,

Accessed on 2022-6-12, 2022. [Online]. Available: https://www.raspberrypi.com/

documentation/computers/raspberry-pi.html#frequency-management-and-

thermal-control (cit. on pp. 75, 95, 97).

[72] ——, Raspberrypi documentation - processors, Accessed on 2022-6-12, 2022. [On-

line]. Available: https://www.raspberrypi.com/documentation/computers/

processors.html (cit. on p. 95).

[73] Kolbi, Precios de internet móvil como valor agregado, Accessed on 2022-8-3, 2022.

[Online]. Available: https://www.kolbi.cr/wps/portal/kolbidev/personas/

postpago/informacion-postpago/tarifas-postpago (cit. on p. 112).

[74] J. Adams, Raspberry pi rp2040: Our microcontroller for the masses, Accessed on

2022-8-15, 2021. [Online]. Available: https://www.arm.com/blogs/blueprint/

raspberry-pi-rp2040 (cit. on p. 113).

[75] Waveshare, Sim7080g nb-iot / cat-m(emtc) / gnss module for raspberry pi pico,

global band support, Accessed on 2022-8-15, 2022. [Online]. Available: https://

www.waveshare.com/Pico-SIM7080G-Cat-M-NB-IoT.htm (cit. on p. 113).

[76] MicroPython,Micro python, Accessed on 2022-8-15, 2022. [Online]. Available: https:

//micropython.org/ (cit. on p. 113).

		2022-09-21T13:49:21-0600
	ANIBAL IGNACIO RUIZ BARQUERO (FIRMA)

	

		2022-09-21T14:34:17-0600
	CESAR ORLANDO GARITA RODRIGUEZ (FIRMA)

		2022-09-21T16:37:56-0600
	GIANNINA ORTIZ QUESADA (FIRMA)

		2022-09-21T21:38:53-0600
	SERGIO ALBERTO ARRIOLA VALVERDE (FIRMA)

