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Abstract: Palm oil has become one of the most consumed vegetable oils in the world, and it is a
key element in profitable global value chains. In Costa Rica, oil palm cultivation is one of the three
crops with the largest occupied agricultural area. The objective of this study was to explain and
predict yield in safe time lags for production management by using free-access satellite images. To
this end, machine learning methods were performed to a 20-year data set of an oil palm plantation
located in the Central Pacific Region of Costa Rica and the corresponding vegetation indices obtained
from LANDSAT satellite images. Since the best correlations corresponded to a one-year time lag, the
predictive models Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO),
Extreme Gradient Boosting (XGBoost), Recursive Partitioning and Regression Trees (RPART), and
Neural Network (NN) were built for a Time-lag 1. These models were applied to all genetic material
and to the predominant variety (AVROS) separately. While NN showed the best performance for
multispecies information (r2 = 0.8139, NSE = 0.8131, RMSE = 0.3437, MAE = 0.2605), RF showed a
better fit for AVROS (r2 = 0.8214, NSE = 0.8020, RMSE = 0.3452, MAE = 0.2669). The most relevant
vegetation indices (NDMI, MSI) are related to water in the plant. The study also determined that
data distribution must be considered for the prediction and evaluation of the oil palm yield in the
area under study. The estimation methods of this study provide information on the identification
of important variables (NDMI) to characterize palm oil yield. Additionally, it generates a scenario
with acceptable uncertainties on the yield forecast one year in advance. This information is of direct
interest to the oil palm industry.
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1. Introduction

Palm oil has become one of the most consumed vegetable oils in the world due to the
better extraction performance of its oil as compared to other types of oil-bearing crops such
as soybeans, rapeseed or sunflower [1]. Palm oil is also a key element for profitable global
value chains [2]. In Costa Rica, oil palm crops are one of the three crops with the largest
occupied agricultural area. The forecasting prior to the harvest of the fresh fruit bunch is an
important means to evaluate total production, which, in turn, provides useful information
for the decision making related to storage, distribution, and marketing budget [3,4].

The use of empirical methods when estimating yield quantity and predicting crop
production and loss leads to errors related to human factors [5]. In order to tackle the
deficiencies of these methods, appropriate monthly yield forecast by means of artificial
intelligence models have been created. These models describe the quantitative relation
between meteorological variables with time lags and information related to the fresh fruit
bunch, considering the yield of young-mature oil palm for the first six years of harvest [6].
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On the other hand, being perennial trees, oil palms have a canopy structure more
similar to a forest than to other agricultural crops. Therefore, remote sensing of this crop
can be based on aerial or satellite images [4,6,7]. Rodríguez et al. [4] have shown that
crop density estimation by sub-pixels is feasible. In agricultural applications in particular,
density maps allow a more advanced analysis than that of crop land coverage binary maps.
This is important for oil palm plantations, where the distance between trees is known to
correlate with production yield.

To overcome the limitations of the monitoring images obtained, multiple spectral
bands were used in modeling the colors, estimating vegetation indices (VIs), or in doing
a spectral mixture analysis (SMA) [7]. Observational data based on spectral reflectance
has been widely used to monitor crop conditions and estimate their yield [8]. The bank of
information per pixel and the information from the crops allow the creation of correlations
from algorithms that facilitate the analysis of the data. Khanal et al. [9] recommend
evaluating various machine learning algorithms to improve the precision of the prediction
estimates as well as the evaluation of soil parameters and crops yield. This is done by
using data division relations for the training and validation of the model with a 7:3 or
8:2 ratio [10–13]. Amirruddin et al. [13] state that using machine learning techniques to
manage data is a promising field for the evaluation of oil palm crops since it reduces costs,
time, and intensive work for the wide plantation areas.

Since the LANDSAT satellite was launched into orbit in 1972, free-access multispectral
satellite images are available for the region. The LANDSAT images provide information
of up to 11 wavelengths (bands), with resolutions of between 15 m and 100 m, which are
acceptable ranges due to the fact that the management areas for oil palm cultivation in
Costa Rica exceed four hectares [14]. Due to the climatic variability of the Central Pacific
region of Costa Rica, it is important to find relationships between images multispectrality,
yield, climatic and edaphic conditions, and the age of the crop. This allows explaining and
predicting production in safe time lags for the management of production.

The objective of this work was to generate a tool that facilitates the prediction of
crop yield. To this end, several statistical models were designed to estimate the annual
production of the oil palm crop by means of the vegetation and humidity indices generated
from the Landsat 5, 7 and 8 images in the Central Pacific of Costa Rica and the time lag
with better correlation between index and crop yield.

2. Materials and Methods

The study was carried out with the information of an oil palm crop from an agribusi-
ness located in the Central Pacific of Costa Rica (Figure 1). The crop has a 9 × 9 m field
spacing between plants. The analyzed plantation consisted mainly of the AVROS variety (40%),
EKONA (21%), and others in the process of being replaced by AVROS (39%). One hun-
dred and three productive units (103 PU) were considered, with information of between
16 and 20 years of cultivation on genetic variety, crop yield (t/ha) and year of sowing. Such
variables were averaged monthly for each year and the best correlation was identified for
time lags of one, two, three or four years.

For the productive units considered, the images Landsat 5, 7 and 8 Collection 1 Tier
1 calibrated top-of-atmosphere (TOA) reflectance [15] corresponding to a period between
January 1996 and December 2016 were obtained, in the ranges described in Table 1. Data
management was done through a Java Script code on Google Earth Engine (GEE). The
code cyclically generates 12 indices of both vegetation and humidity for each image of the
collection (Table 2), allowing to correlate the spectral information of the images with the
biophysical properties of the vegetation cover [16]. This generates a new 20 year-history
collection with an inter-annual resolution for each of the indices used. As input, the tool
requires information of the geometry of each one of the 103 PUs, which constitute the
minimum information unit used about production. From the layers of indices and the
delimited areas, a statistical description of the behavior of the index is generated in each
PU for each date of image capture. The information consists of minimum and maximum
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values, quartiles 25th and 75th, means, medians and standard deviations. The information
is ordered chronologically in a file for each PU with a total of 84 variables. For the selection
of the photographs used, there was no discrimination within the range of dates established
by any parameter, so that the models generated were in charge of assigning greater or lesser
weights to each variable when using the values of maximum, minimum, percentiles and
standard deviation of the vegetation index within the PUs.

Figure 1. Location of the oil palm plantation under study.

Table 1. The standard spectral bands of the optical range of the images used in this study.

Bands
Wavelength (µm)

Landsat 5 Landsat 7 Landsat 8

1 (BLUE) 0.45–0.52 0.441–0.514

2 (BLUE) 0.442–0.5120

2 (GREEN) 0.52–0.60 0.519–0.601

3 (GREEN) 0.533–0.590

3 (RED) 0.63–0.69 0.631–0.692

4 (RED) 0.636–0.673

4 (NIR) 0.76–0.90 0.772–0.898

5 (NIR) 0.851–0.879

5 (SWIR) 1.55–1.75 1.547–1.749

6 (SWIR) 1.566–1.651

RStudio (2018) was used to merge information about the crops yield with the vegeta-
tion and humidity indices. The process consisted of changing the time scale from monthly
data to annual averages, eliminating the missing data, and overlapping the data of indices
with time lags of one, two, three and four years (time lags = 1, 2, 3 and 4 years) with respect
to the series of performance data.

In selecting the time lag to work with, the individual correlation was determined
for each index considering the performance of each of the proposed time lags. The time
lag with the best correlation was used to build the AI models. The models used were
Random Forest (RF), XGBoost algorithm (XGBoost), LASSO regression (LASSO), Recursive
Partitioning and Regression Trees (RPART), and Neural Network (NN); the packages
used were randomForest, xgb.train, glmnet, rpart and neuralnet, respectively, to which
subroutines were generated in RStudio. The configuration settings of the proposed models
are in Table 3.
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Table 2. Multispectral indices from spectral channels using the Landsat 5, Landsat 7 and Landsat 8
collections.

Variable Index Equation Source

Vegetation ARVI (NIR − (2·RED) + BLUE)/(NIR + (2·RED) + BLUE) [17]

Vegetation AVI [NIR · (1 − RED) · (NIR − RED)]1/3 [18]

Vegetation EVI 2.5 · (NIR − RED)/(NIR + 6·RED − 7.5·BLUE + 1) [19]

Vegetation GCI (NIR/GREEN) − 1 [17]

Vegetation GNDVI (NIR − GREEN)/(NIR + GREEN) [19]

Vegetation NDVI (NIR − RED)/(NIR + RED) [19]

Vegetation NPCRI (RED − BLUE)/(RED + BLUE) [18]

Vegetation SAVI 1.5 · (NIR − RED)/(NIR + RED + 0.5) [19]

Vegetation SIPI (NIR − BLUE)/(NIR + BLUE) [19]

Water MSI (SWIR/NIR) [20]

Water NDMI (NIR − SWIR)/(NIR + SWIR) [20]

Water NDWI (GREEN − NIR)/(GREEN + NIR) [20]

Table 3. Parameters used in the configuration of the proposed models.

Model Parameters Description Source

LASSO
alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1

[21]
lambda Regularization hyperparameter

RF
ntree Number of trees to grow

[22]
mtry Number of variables randomly sampled as candidates at each split

XGBoost

max.depth Maximum depth of a tree

[23]
nrounds The number of decision trees in the final model

nthread Number of parallel threads used to run XGBoost

objective Specify the learning task and the corresponding learning objective

RPART

minsplit The minimum number of observations that must exist in a node in order for a split to
be attempted.

[24]minbucket The minimum number of observations in any terminal node

cp Complexity parameter

NN

threshold A numeric value specifying the threshold for the partial derivatives of the error function
as stopping criteria

[25]stepmax The maximum steps for the training of the neural network

algorithm A string containing the algorithm type to calculate the neural network

As seen in Figure 2, the dependent variable was the performance with a time lag of
one year and the predictor variables were the vegetation and humidity indices. The set was
then randomly divided into the training (Data Training) and validation (Data Test) stages
in a 7:3 ratio. The Data Test was further subdivided into two series of information. The
first consisted of data from all varieties of oil palm (genetic material) produced in the time
interval under study, however, the second consisted of the information from the AVROS
palm variety, given that it is the predominant genetic material.
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Figure 2. Methodological diagram of the analysis of the information and model’s sensitivity.

The evaluation of the models was carried out by applying the efficiency coefficient
of the Nash–Sutcliffe model (NSE) (Equation (1)), the root mean square error (RMSE)
(Equation (2)), the mean absolute error coefficient (MAE) (Equation (3)), and the coefficient
of determination (r2) (Equation (4)).
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i
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where n is the amount of data available for the study, yobs
i corresponds to the information

on the crop yield obtained for the interval under study, yobs is the average of the crop
yield obtained for the interval under study, ysim

i is the simulated crop yield, and ysim is the
average simulated crop yield.

The best model for each of the data series used in the validation process (AVROS
and Multi Species) was determined by comparing the values of the efficiency and error
coefficients obtained for each model (RF, LASSO, XGBoost, RPART, NN). For the best
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qualified model according to the data series of the data test, the importance of the vegetation
and humidity indices was determined, following the procedure described below.

2.1. Variable Importance Random Forest Model

In determining the importance of the variables for the Random Forest model, the Mean
Decrease Gini (IG(θ)) method was used, as shown in Equation (5). The Mean Decrease Gini
is a measure that dimensions the importance of the variables based on the Gini impurity
index (i(τ)) used to calculate the divisions of the trees. A loss function (mse) is used where,
by comparison, it is established that the most useful variables achieve greater increases in
the purity of the nodes [26].

IG(θ) = ∑T ∑τ
∆iθ(τ, T) (5)

where, considering all the variables (θ) used in each node (τ) within the trees (T) of the Random
Forest model, the number of optimal divisions is established, from which the decrease in the
Gini impurity ∆iθ(τ, T) is calculated, which is registered and accumulated for each node τ of
each tree (T) of the Random Forest model individually for each of the variables (θ).

2.2. Variable Importance Neural Network Model

To determine the importance of the variables of the Neural Network model, Garson’s
algorithm method [27] was used. This identifies the relative importance of the independent
variables in a NN by deconstructing the weights assigned by the model, according to the
Equation (6). The relative importance of an independent variable in response to the dependent
variable is identified by locating all connections through the weighting of the nodes of interest.
This procedure is repeated for all the independent variables used in the model [28].

CRik =
∑L

j=1

(
wij

∑N
r=1 wrj

vjk

)
∑N

i=1

(
∑L

j=1

(
wij

∑N
r=1 wrj

vjk

)) (6)

where, CRik represents the percentage of influence of each input independent variable i on
the output dependent variable ∑N

r=1 wrj, being the sum of the weights that connect the input
layer i and the neuron j; N corresponds to the total of input variables; L corresponds to the
total of the hidden layer; vjk that corresponds to the weights of the connection between the
input neuron j and the input vector k.

The information on the yield of the oil palm fruit production used has a normal
behavior (Figure 3).

Figure 3. Characterization of the production behavior of oil palm.
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3. Results

The analysis of the yield of the 103 PUs used in the creation of the models determined
that, between month 0 and 84, there is a growth in yield of 0.26 t/ha per year. Thereafter,
a constant production is relatively maintained up to approximately year 20 of the crop,
where the most frequent production value is 1.92 t/ha per month (Figure 3).

3.1. Correlations between Vegetation and Humidity Indices for Different Time Lags

Figure 4 shows the value of the correlation coefficient for Time-lags of one, two, three
and four years. The 15 vegetation indices with the highest absolute correlations with
crop yield were selected. Positive values indicate that the higher the index value, the
better the plantation yield and, on the contrary, indices that show water stress (MSI) [29]
or the identification of senescence in the plantation (NPCRI) [30] will have a inversely
proportional relationship.

Figure 4. Crop yield correlation coefficients with the variables generated for time lags of one, two,
three and four years.

Moisture-related indices (NDMI, MSI), either by amount of water or by plant stress,
show the highest correlations with yield for lags of one and two years (Lag-time 1 and
Lag-time 2). After the three-year delay time (Time Lag-3), humidity is not significant in the
analysis, and the vegetation indices relative to chlorophyllous activity (EVI, GCI, NPCRI)
show the best yield relations.

The correlation values of the indices relative to chlorophyllous activity does not show
variation in any of the delay times studied (Figure 4). In any case, the highest value reached
is r = 0.63 for a lag of three years.

The best correlations were obtained for the Time-Lag of one year, as its first
six variables present values above r = 0.70, while the lags from two to four years do
not exceed r = 0.63. Therefore, the prediction models were built for a Time-lag 1.

3.2. Coefficients of Crop Production Prediction Models

Machine learning models were built according to the RF, LASSO, XGBoost, RPART
and NN structures. Table 4 shows the results obtained in the calibration of the models.
For the Values NSE and r2, acceptability ranges according to [31] were followed; whereas
for RMSE and MAE, the average production yield (1.92 t/ha) was used. A 10% error was
considered acceptable, and more than 40% unsatisfactory. For the RF model, three different
values according to the number of trees (ntree) were tested: 5000, 15,000 and 10,000. The
best performance according to the statistical evaluation coefficients used was obtained for
ntree = 10,000.
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Table 4. Calibration evaluation coefficients for the models used.

Model Variable/Value NSE RMSE MAE
LASSO lambda = 0.0037 0.7701 0.3487 0.2679

stepmax = 1 × 106 Algorithm did not converge
stepmax = 1 × 106 Algorithm did not convergeNeural Network (NN)
stepmax = 1 × 107 0.7947 0.3925 0.2514

ntree = 5000 0.9519 0.1668 0.1282
ntree = 10,000 0.9527 0.1655 0.1266Random Forest (RF)
ntree = 15,000 0.9518 0.167 0.1279

5 0.6652 0.4207 0.3217
10 0.6652 0.4207 0.3218
50 0.6652 0.4207 0.3218
100 0.6652 0.4207 0.3217
500 0.5495 0.488 0.3765

Minsplit =

1000 0.4133 0.557 0.4364
0.01 0.6652 0.4207 0.3218

0.001 0.8875 0.2438 0.1876

Recursive Partitioning and
Regression Trees (RPART)

Complexity parameter
(cp) = minsplit = 10

0.0001 0.9322 0.1894 0.1324
max.depth = 1 0.6777 0.4127 0.3180
max.depth = 2 0.8230 0.3059 0.2322
max.depth = 3 0.9034 0.2259 0.1727
max.depth = 4 0.9567 0.1512 0.1147

XGBoost

max.depth = 5 over fitting

The LASSO linear regression method (glmnet package) was included in the analysis
as a reference method. The lambda that generated the lowest MSE was used to calibrate it
(λ = 0.0037).

For RPART, the minsplit parameter was used first to improve performance. The
minsplit values 5, 10, 50, 100, 500 and 1000 were tested, and Minsplit = 10 was selected. The
model fit continued with the variable complexity parameter (cp) for values of 0.01, 0.001
and 0.0001, being the latter the one used. In the NN model, a stepmax of 1 × 107 was used
as it presented convergence problems for lower values (Figure 4).

3.3. Calibration (Training) and Validation (Test) of Prediction Models for Crop Production

As seen in Figure 5, the five models generated have a satisfactory performance for the
training, with values of r2 ≥ 0.7900, NSE ≥ 0.7900 and RMSE ≤ 0.3300 t/ha. The best model in
the training was XGBoost with r2 = 0.9597, NSE = 0.9567 and RMSE = 0.1513 t/ha, followed by
RF with a slightly lower performance. RPART presented atypical residue values higher than
XGBoost and RF (Figure 6), which generates an increase in RMSE = 0.1894 t/ha. Nevertheless,
these atypical data in the residues are present in yields between 1–2 t/ha, where the model
tends to overestimate palm production in some dispersed points. Its performance, however,
improves for values higher than 2 t/ha. Since the average production of the time interval
of the crop under study is 1.92 t/ha, the RPART model can be used with a 98% confidence
for estimated values greater than the average. The LASSO and NN models presented a
variation in the residues greater than RF, XGBoost and RPART, which generated an RMSE
higher than 0.3200 t/ha, 59% more than RF, XGBoost and RPART. The LASSO reference
model obtained acceptable coefficients of NSE = 0.7701, r2 = 0.7702 during the training
process, however the performance was slightly lower than the average of the other machine
learning methods. The LASSO model generated coefficient values of RMSE = 0.3487 t/ha,
MAE = 0.2679 t/ha that are within the range considered acceptable, yet these errors are
higher than the average errors of the best performing machine learning models
(RF, XGBoost).
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Figure 5. Comparison of observed performance with simulated performance in the calibration and
validation processes.

Figure 6. Residual distribution of the models in the calibration and validation processes. The dots
indicate the value of the RMSE.

For validation the data set consisted of information from multiple palm species includ-
ing all the genetic materials used in the cultivation between 1996 and 2016 (Multi-species
Test). In this stage, the evaluation coefficients of the models decreased, presenting val-
ues of r2 between 0.6400–0.8300, NSE between 0.6100–0.8100, and the RMSE between
0.3400–0.5000 t/ha. In descending order of the evaluation coefficients, the best model was
NN, followed by LASSO, RF, XGBoost and RPART. RPART presented a higher error than
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(RMSE = 0.4961 t/ha) the other models, thus, it is the least recommended model to estimate
yield from information that considers multiple species (genetic material).

For the validation based on the information of the crop yield of the AVROS species
(24.9% of the total data), the models behaved similarly to the multi-species test, present-
ing r2 values between 0.7600–0.8100, NSE between 0.6800–0.8000 and RMSE between
0.3400–0.4400 t/ha. However, following the same ordering criterion of the calibration
models, the best model was RF, followed by XGBoost, RPART, LASSO and NN. Conse-
quently, NN is the least recommended model when using only the information of the
predominant genetic material (AVROS). The selection of the model is influenced by the
variability of the genetic material used in planting, as this alters the performance of the
machine learning techniques.

3.4. Importance of Vegetation Indices Variables in Crop Prediction

Based on the evaluation coefficients of the models in both training and validation
together with residue behavior, it is determined that the NN model has the best performance
for the multispecies Test, while for the AVROS species test, the RF model shows the best fit.
When performing the analysis of the variables of the most important vegetation indices
(VIs) to predict from these two models (Figure 7), the median of the NDMI (NDMI_median)
stands out as the most important variable for both models.

Figure 7. Coefficients of the relative importance of the variables used in the two best models.

4. Discussion

The most important VIs obtained from the Landsat 5, 7 and 8 satellite images are
related to water in the plant. The 75th and 25th percentiles of these VIs improve the
performance of the models compared to other studies where they were not considered
(Table 5). In the two best models NN (multispecies Test) y RF (AVROS species test) of the
fifteen most important variables, six correspond to the percentiles of the VIs (25th and
75th quartiles); that is, the distribution of the available information on the VIs of each
PU impacts the performance of the models significantly and they should be considered
together with the mean values of the VIs in predicting and evaluating oil palm production.

Table 5. Previous research works on oil palm crop yield prediction.

Method Variables Coefficient Source

Artificial Neural Network NDVI r2 = 0.5100 [32]

Genetic algorithm Historical yield data, cropland information, climatic
information, air pollutants

r2 = 0.9400
RMSE = 0.1500 t/ha

[33]

Artificial Neural Network Climatic information MAE = 0.5300 t/ha
RMSE = 0.6800 t/ha [34]

Long short-term memory (LSTM) Historical yield data MAPE = 2.7100% [35]
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The study by Hilal et al. [33] obtained a better performance than in this study (the
difference in RMSE is 0.1950 t/ha); however, the data of the model proposed in this study
were obtained from satellite images and did not require additional data measured on site,
which reduces its difficulty of application.

In the prediction of the performance that considered the totality of the genetic material,
the distribution of the residues in the validation stage shows an average value near zero
(mean = 0.0300 t/ha) and a homogeneous distribution with a higher concentration between
quartiles 25th and 75th, for the NN, RF and XGBoost models. On the other hand, when
considering only the variety AVROS, the mean of the residues during validation is less
than zero in all the models. Thus, the distribution of the residues for AVROS species test
losses homogeneity compared to the Multi Specie Test, which will cause the crop yield to
be underestimated in the prediction. Due to this, the NN model for the Multi-specie Test
would not differentiate the significance of some variables.

In predicting the production behavior of the oil palm crop with any genetic material
by means of machine learning techniques (RF, RPART, LASSO, XGBoost and NN) and veg-
etation indices variables obtained from Landsat 6, 7 and 8 satellite images, the appropriate
time lag is 1 year. The NN model is the one with the best performance for crop information
considering multiple genetic planting materials. However, NN is the least recommended
model when using only the predominant genetic material information. When considering
the predominant genetic material (AVROS), the RF model shows the best performance.
On the other hand, RPART presented a higher error than (RMSE = 0.4961 t/ha) the other
models, and thus, it is the least recommended to estimate yield from information that
considers multiple species.

Our results show that the variability of the genetic material used in planting influences
the selection of the model. This is due to performances of machine learning techniques dif-
fering based on genetic variability. The vegetation indices related to water in the plant [36]
and the data, corresponding to the average and the 25th and 75th percentiles, are the vari-
ables that have the greatest influence on the performance of the proposed prediction models.
In the best models (NN and RF), six of the fifteen most important variables correspond
to percentile vegetation indices (25th and 75th quartiles). This shows that contemplating
the distribution of the data within the PUs significantly improves the performance of the
models. As a result of this, they must be considered in the prediction and evaluation of oil
palm production in the study area.

5. Conclusions

The strongest correlations between oil palm yield and VIs were obtained for a lag
period of one year. The machine learning methods used to estimate oil palm crop yields as
a function of VIs one year in advance showed satisfactory performance. The RF model was
the best qualified for predicting oil palm cultivation of the AVROS species (MAE = 0.2669 t/ha,
RMSE = 0.3452 t/ha, NSE = 0.8020, r2 = 0.8214), while the NN model was the best when the
plantation has multiple species (MAE = 0.2605, RMSE = 0.3437, NSE = 0.8131, r2 = 0.8139).
The Normalized Difference Moisture Index (NDMI) is the most relevant variable in the
prediction of oil palm cultivation among a total of 12 VIs used, regardless of the type of
species under study [37]. The estimation methods of this study can provide information on
the identification variables (NDMI) to characterize palm oil yield. Furthermore, it generates
a scenario with acceptable uncertainties on the yield forecast one year in advance, which is
of direct interest to the palm oil industry.
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