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Abstract

The robotic systems are becoming more and more complex and the traditional
control law theories lose robustness, increasing the difficulty with which the robot
can be controlled to interact with the environment around it. The objective of this
research work is the study of complex nonlinear systems with the particularity of
having flexible joints and rigid links. Such flexibility causes an interesting behavior
in the robotic systems because duplicates the number of variables involved in the
control task.

Several studies have been carried out in the research of flexible robots, however
most of them use the classical Euler-Lagrange framework to describe the mechanical
systems. This work has been focused on the implementation of nonlinear controllers
within the port-Hamiltonian framework, and the singular perturbation multi-scale
systems theory.

In this sense, the mathematical description of two different control laws proposed
by Jardón-Kojakhmetov et al. (2017) and Reyes-Báez et al. (2016) are presented and
adapted to the physical plant of the two degrees of freedom Quanser robotic arm.
Moreover, the equations of the proposed port-Hamiltonian controllers have been
implemented into a simulation to test the validity of the control laws for the rigid and
the flexible configuration of the robot. Finally, the controllers have been implemented
into the physical plant of the robotic arm to validate experimentally the proposed
mathematical control theory.

The experimental implementation of the proposed port-Hamiltonian controllers
showed an improvement in the control of the position error for the rigid and the
flexible configuration in comparison with a benchmark controller proposed by the
manufacturer of the robotic arm, with an error rate for the RMS value of the signal
lower than 1.2% of the RMS value of the desired trajectory. Further studies and
experimental tests should be aimed to the implementation of port-Hamiltonian
controllers to achieve an even lower error rate.

Keywords: mechanical system, nonlinear control, port-Hamiltonian systems,
robotics, singular perturbation, slow-fast systems.
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Chapter 1

Introduction.

This chapter introduces the reader to the context of the research in which the state
of the art in the study of flexible robotics have been analyzed. Furthermore, the
definition of the problem have been stated, including the problem synthesis, the
solution approach and the objectives of the project.

1.1 Context.

Robotics is one of the major industrial and research areas at the present day, due
to its characteristic of being highly multidisciplinary. Robotic systems involve
mechanical, electronic and computational aspects to meet the required needs. These
needs are progressively demanding better performance and control of the robotic
systems, increasing the complexity of the robot, hindering their interaction with the
environment, as it is stated in Feliu (2006).

According to Canudas de Vit et al. (1996), a flexible robot is one in which some
components have some range of flexibility, the ability to deform elastically upon
the application of a force or torque. This flexibility can occur in both joints and
links of the robot. Specifically, the flexibility of joints appears as a result of torsion
in elements connecting the motors with the links and it has a rotational nature,
resulting in oscillating angle variations, as stated in Feliu (2006).

There is currently a great interest within the scientific community in the research
of flexible robots, mainly motivated by the need of the aerospace industry to build
robots that fit in a better way to various environmental conditions. As stated in
Feliu (2006), these systems have a high complexity, because they are multivariable
systems, highly nonlinear, with distributed parameters and are time-dependent.
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One of the complications that these conditions cause to the robot are the undesirables
oscillations at the end of the robot, hardly damped, causing problems when using
the end effector.

Traditionally the flexibility in robotic systems has been considered as an un-
wanted effect. However for robotic systems that require certain materials, very
large sizes or high accuracy, Canudas de Vit et al. (1996) proposes that the flexibil-
ity not only must be taken into account as an undesirable phenomenon, but also
mathematical models must be established to have better control over these features.

1.2 Definition of the problem.

1.2.1 Overview.

Most studies in the field of flexible robotics are based in the classical model of the
Euler-Lagrange equation, as is shown in Canudas de Vit et al. (1996), de Luca (2014)
and Spong (2014). This method presents problems because the quantities involved
have no physical interpretation, increasing the difficulty in implementing controllers.

In the other hand, when being dimensioned, flexible robots present the difficulty
that its models are at least twice more complex than rigid systems, complicating
their study. The theory of singularly perturbed systems was developed to address
the analysis of these systems, providing techniques for reducing the mathematical
model of flexible robots in Kokotovic et al. (1986), Kokotovic (1984) and Kokotovic
et al. (1976) . However this theory individually is not enough to establish a decisive
mathematical model for a flexible system.

Given this difficulty, a new approach based on shaping the energy of the system
has arisen. This new paradigm is called: port-controlled Hamiltonian systems. Van
Der Schaft and Maschke (2003) mentions that it is not until recently that researchers
managed to integrate singularly perturbed systems with port-controlled Hamilto-
nian systems. Such integration would ease greatly the analysis of mathematical
models for flexible robots.

1.2.2 Problem synthesis.

Creation of better controllers for a robotic arm with a flexible joint and a rigid link.
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1.3 Solution Approach.

It is intended to use the method of port-Hamiltonian systems to the study of flexible
robots, specifically robots with flexible joints and rigid links. There have been a few
studies with rigid robots using this method which resulted in a significant success,
yet still there are no formal results for the study of flexible robots.

As already mentioned, in Van Der Schaft and Maschke (2003) analysis of port-
controlled Hamiltonian systems and singularly perturbed systems is integrated. The
study states that under certain assumptions and conditions the same drivers can be
used for both rigid robots and flexible robots. Besides, unlike the Euler-Lagrange
approach, the reduction method of port-controlled Hamiltonian systems preserves
the structure of the initial mathematical model.

1.4 Objectives.

1.4.1 General Objective.

Develop nonlinear controllers for a two degrees of freedom robot with a flexible
joint and rigid links, based in the port Hamiltonian-approach.

1.4.2 Specific Objectives.

• Simulation of the slow PH controllers for the rigid configuration, with a settling
time of 1s.

• Simulation of the multi-scale PH controllers for the flexible configuration, with
a settling time of 2s.

• Implementation of the slow PH controller in the Quanser robotic arm with the
rigid configuration, with a maximum error of 0.1◦.

• Implementation of the multi-scale PH controller in the Quanser robotic arm
with the flexible configuration, with a maximum error of 0.5◦.
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1.5 Synopsis.

This document is divided into seven different chapters as well as four appendices.
The sequence of the chapters, besides being quite rational, reflects the development
of the work carried out to give a solution to the targeted problem.

Chapter 1 corresponds to the present chapter, the Introduction of the project
detailing the context in which the research has been carried out, the state of the art,
the problem we are trying to solve, the strategy used in order to give a solution, the
objectives of the research and finally the present section detailing the structure of
the document.

Chapter 2 sums up the basic theory necessary to understand the mathematics
and the physics involved in the problem, including the nonlinear systems theory,
the Lyapunov stability, the PH mathematical theory and the singular perturbation
methods.

Chapter 3 covers the mathematical description for the rigid and flexible configu-
ration of the two degrees of freedom (2DoF) Quanser manipulator robot, as well as
the mathematical framework for the proposed PH controllers.

Chapter 4 addresses the implementation of the proposed controllers into the rigid
and flexible mathematical model of the 2DoF Quanser manipulator robot, including
the explicit equations used to achieve the simulations presented in the chapter.

Chapter 5 presents the results obtained after the implementation of the proposed
controllers into the physical plant of the 2DoF Quanser manipulator robot including
the rigid and the flexible configuration.

Chapter 6 focuses in the analysis of the data obtained in Chapter 4 and 5, com-
paring the different results obtained for the PH controllers as well as the controller
proposed by the manufacturers of the 2DoF Quanser manipulator robot, having as
reference the theoretical background and previous work carried out by researchers.

Finally, Chapter 7 corresponds to the final conclusions obtained after all the work
realized in the research.

The Appendices included in this document are the 2DoF Quanser manipulator
robot information, the Simulink diagrams implemented in the robot, the matlab code
used in order to achieve the results and finally some mechanical changes proposed
for the physical plant.
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Theoretical framework.

This chapter is an abridgment of the theoretical concepts necessary to understand the
mathematical framework developed throughout this document. For this purpose,
an overall description of the nonlinear system behavior is presented, as well as
the Lyapunov theory necessary to the study of the stability in nonlinear systems.
Furthermore, the theory for the mathematical description of mechanical systems in
Euler-Lagrange (EL) variables and in Port-Hamiltonian (PH) variables is covered,
with emphasis in the PH structure which has been used throughout the document.
Finally, the mathematical concepts such as multi-scale systems, contraction methods
and singular-perturbation methods are presented in order to ease the understanding
of the proposed control laws.

2.1 Nonlinear systems behavior.

As it is stated in Slotine and Li (1991), every physical system is inherently nonlinear.
In fact, linear systems are described as a special kind of nonlinear system, in which
the operational range of the control system is small, or the nonlinearities can be
despised because of the simplicity of the model. However, certain nonlinear system
can not be analyzed due to the difference in the response to the external inputs
compared to linear systems.

There are several typical behaviors of a nonlinear system as detailed in Slotine
and Li (1991), such as:

• Multiple equilibrium points: According to the initial conditions, a nonlinear
system may stabilize around different equilibrium points, understanding them
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as points where the system can stay without changing the current state until
an external perturbation is applied.

• Limit cycles: Sometimes the response of a system without external pertur-
bations are oscillations of fixed amplitude. Contrary to linear systems these
oscillations are not affected by changes in the initial conditions or the parame-
ters of the system.

• Bifurcations: As the parameters of the system are changed, sometimes the
equilibrium point change as well. In fact, the number of equilibrium points
or even the presence of a limit cycle can be determined by changes in the
parameters of the system.

• Chaos: Nonlinear systems are highly sensitive to it’s initial conditions, so the
behavior of the system can’t be predicted with certainty even with an exact
model of the system.

The dynamics of a nonlinear system can be described by a set of nonlinear
differential equations in the form of

ẋ = f (x, t), (2.1)

with f as a nx1 nonlinear vector function and x as a nx1 state vector. The most used
equations to describe the dynamics of a nonlinear system are the Euler-Lagrange
equations as in Canudas de Vit et al. (1996), de Luca (2014) and Spong (2014), and
the Hamiltonian equations as in Van Der Schaft and Maschke (2003).

An important consideration about nonlinear system’s is the dependence on the
variable time t. A nonlinear vector function f is considered autonomous if the
function is independent respect to time. On the other hand, a nonlinear function
with the variable t among it’s parameters will be classified as non-autonomous.

2.2 Description of a mechanical system.

As it is stated in Ortega et al. (1998), a classical physical system is described by a set
of quantities called coordinates. For example, the position of a single mass particle
in space can be described in terms of a set of three dimensional vector of quantities
relative to some reference point, usually the vector [x,y,z] in a Cartesian coordinate
system.
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Furthermore, Ortega et al. (1998) states that "the dynamic motion of a physical
holonomic system with n degrees of freedom can be completely described by a set of
independent coordinates q1(t), ...,qn(t) establishing the configuration of the system
as a function of time, and a set of n dynamic variables, given either as generalized
velocities q̇1(t), ..., q̇n(t) or generalized momenta p1(t), ..., pn(t).

To summarize the above, a classical mechanical system with n degrees of free-
dom can be described in terms of n coordinates and n velocities/momenta. The n
coordinates are called the configuration state of the system, and the space formed by
the coordinates and the velocities/momenta is called the the 2n dimensional phase
space of the system.

2.2.1 Euler-Lagrange equations.

The derivation of the Euler-Lagrange (EL) equations can be found in Shapiro
(2003) as a simple change of coordinates in an unconstrained system. As stated
in Canudas de Vit et al. (1996), since the joint variables qi for a robot are a set
of generalized coordinates the dynamic model can be derived by the Lagrangian
equations:

d
dt

∂L(q, q̇)
∂q̇i

− ∂L(q, q̇)
∂qi

= τi(q, q̇), (2.2)

where
L(q, q̇) = T(q, q̇)− U(q, q̇), (2.3)

is the Lagrangian parameter, which is the difference between the kinetic energy an
the potential energy of the system, and τi corresponds to the generalized force at
joint i. According to the nature of the joint τi can be a torque or a force, if the joint is
revolute or prismatic respectively.

In a classical mechanic system, there can be many origins for the potential energy,
such as

Ugravitational = mgh, (2.4)

Uinv.distance = C1/r, (2.5)

Uspring =
1
2

K(∆q)2, (2.6)

where m is the mass, g is the gravitational force, h is the height, r is a distance, C1 is
a constant, K is the spring coefficient and ∆q is the elongation of the spring.
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Furthermore, the kinetic energy of a classical mechanical system is in general
described by

T(q, q̇) =
1
2

mq̇i
2. (2.7)

If the motion involves more than one dimension, all the component of the velocities
must be taken into account.

2.2.2 Legendre Transform.

The Legendre transformation is an involutive transformation which takes a function
f (x,y) to a different function g(x,y), as stated in Shapiro (2003) and Arnold (1989).
In classical mechanics it is used to get the derivative of the Hamiltonian H(qi, pi)

from the Lagrangian L(qi, q̇i). Considering a function f (x,y) with a derivative of the
form

d f =
∂ f
∂x

dx +
∂ f
∂y

dy, (2.8)

another function g(x,y) = ux − f (x,y) can be defined in terms of x, y and u, as in
Arnold (1989). The derivative of g has the form

dg = udx + xdu − ∂ f
∂x

dx − ∂ f
∂y

dy. (2.9)

Moreover, assuming u as a function in terms of x and y of the form

u(x,y) =
∂ f
∂x

, (2.10)

thus, (2.9) can be rewritten as

dg = xdu − ∂ f
∂y

dy. (2.11)

Now, we have a function g in terms of u and y from another equation f in terms
of x and y. Then, (2.4) can be solved for x in terms of u and y, to get x = x(u,y).
With this expression, an explicit function g(u,y) can be found from (2.11):

g(u,y) = ux(u,y)− f (x(u,y),y). (2.12)

As stated in Arnold (1989), an important consideration regarding the Legendre
transformation is that no information was lost. In fact, a property detailed in Arnold
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(1989) states that if under the Legendre transformation f is taken to g, then the
Legendre transformation of g will again be f . This property is called the Involutivity
of the Legendre transformation:

∂g
∂u

∣∣∣
y
= x(u,y), (2.13)

∂g
∂y

∣∣∣
u
=

∂ f
∂y

. (2.14)

The importance of such property in the context of this documents is that every
classical mechanical system described in EL equations can be transformed into port-
Hamiltonian (PH) equations, and every classical mechanical system described in PH
equations can be transformed into EL equations.

2.2.3 Hamiltonian equations.

The Lagrangian equations described a classical mechanical system in terms of a 2n
phase space with parameters [qi, q̇i]

⊤. However, Ortega et al. (1998) assures that
even when the system can indeed be analyzed and described by these variables,
they are not ideal to describe the phase space.

For this reason, a change of variables is then proposed in Ortega et al. (1998),
describing the system in terms of a 2n phase space with parameters [qi, pi]

⊤. Instead
of using the generalized velocities, the system will be described in terms of the
generalized momenta. Thus, a relation between pi and q̇i is given by definition as

pi =
∂L(q, q̇)

∂q̇i
, (2.15)

which corresponds to a term in (2.2). Solving for ṗi we have

ṗi =
∂L(q, q̇)

∂qi
. (2.16)

Now, the passage from the velocities to the momenta have been described in Lan-
dau and Lifshitz (1969) as a Legendre’s transformation. Landau and Lifshitz (1969)
states that the total differential of the Lagrangian as a function of the coordinates
and velocities is

dL(q, q̇) = ∑
i

∂L(q, q̇)
∂qi

dqi + ∑
i

∂L(q, q̇)
∂q̇i

dq̇i. (2.17)
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Replacing (2.15) and (2.16) in (2.17), the equation above can be rewritten as

dL(q, q̇) = ∑
i

ṗidqi + ∑
i

pidq̇i. (2.18)

Moreover, through algebra, the second term of (2.18) can be expressed as

∑
i

pidq̇i = d(∑
i

piq̇i)− ∑
i

q̇idpi. (2.19)

Hence, (2.18) can be rewritten as

d(∑
i

piq̇i − L(q, q̇)) = −∑
i

ṗidqi + ∑
i

q̇idpi. (2.20)

Now, Landau and Lifshitz (1969) defines the argument of the differential in 2.20
as the energy of the system, expressed in term of the coordinates and the momenta.
This energy is also called the Hamiltonian of the system, which can be described as

H(p,q) = ∑
i

piq̇i − L(q, q̇), (2.21)

From 2.20 we obtain also the differential of the Hamiltonian

dH(p,q) = −∑
i

ṗidqi + ∑
i

q̇idpi, (2.22)

from where we have

q̇i =
∂H(p,q)

∂pi
, (2.23)

ṗi =
−∂H(p,q)

∂qi
. (2.24)

These are the Hamilton’s equations of motion in terms of qi and pi. A classical
mechanical system can be described with the Hamilton’s equations as well as the
Lagrangian equations. However, the 2n first order differential equations from the
Hamiltonian approach replaces the n second order differential equations from the
Lagrangian approach. As it is stated in Landau and Lifshitz (1969), for solving
problems this change of variables is not particularly helpful, but conceptually is very
useful.
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2.3 Stability of nonlinear systems.

Intuitively, Slotine and Li (1991) defines the concept of stability as a "well-behavedness
around a certain point". Even though this definition gets close to the practical mean-
ing of stability of linear systems, the complexity of the nonlinear systems described
in Section 2.1 deserves a better theoretical framework. In this section, the basic
concepts regarding the Lyapunov theory have been summarized. For this purpose,
the same notation as in Slotine and Li (1991) have been used.

Let BR denote a spherical region defined as ∥x∥ < R in state-space, and SR the
sphere itself.

2.3.1 Lyapunov stability.

In Slotine and Li (1991) the stability is formally defined by the following definition:
The equilibrium state x = 0 is said to be stable if, for any R > 0 there exists r > 0,
such that if ∥x(0)∥ < r then ∥x(t)∥ < R for all t ≥ 0. Otherwise, the equilibrium
point is unstable.

Mathematically, the former definition can be described as

∀R > 0,∃r > 0,∥x(0)∥ < r ⇒ ∀t ≥ 0,∥x(t)∥ < R. (2.25)

Basically, (2.25) establishes that the system trajectory can be kept inside an arbitrary
ball BR of radius R if a value r(R) is found such that the initial position of the system
x(0) is a value within the radius of a ball Br of radius r. See Figure 2.1. In fewer
words, stability in the sense of Lyapunov can be achieved if the system is started
near the desired equilibrium point.

An important consideration of stability is that in nonlinear systems there is no
such thing as stability of the system, at least in the same sense as in linear systems,
because as stated in Section 2.1 a nonlinear system can have multiple equilibrium
points.

In the other hand, Slotine and Li (1991) states that an equilibrium point is unstable
if there exists some ball BR such that for every r > 0 no matter how close to the origin
the system position is started, there is always a possibility that the system trajectory
escapes the range of the ball BR. See Figure 2.1 for a better understanding.
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Figure 2.1 Concepts of Stability: (1) asymptotically stable, (2) marginally stable and
(3) unstable

2.3.2 Asymptotic stability and exponential stability.

In Slotine and Li (1991) the asymptotic stability is formally defined by the following
definition: An equilibrium point is asymptotically stable if it is stable, and there
exists some r > 0 such that ∥x(0)∥ < r implies that ∥x(t)∥ → 0 as t → ∞.

Under this definition, an equilibrium point which is asymptotically stable not
only keeps the system trajectory within the margins of the ball BR, but also assures
that the system trajectory eventually will converge to the equilibrium point. In this
case, Slotine and Li (1991) calls the ball BR the domain of attraction of the equilibrium
point. An equilibrium point which is stable but not asymptotically stable is called
marginally stable. See Figure 2.1 for more details.

In Slotine and Li (1991) the exponential stability is formally defined by the
following definition: An equilibrium point is exponentially stable if there exist two
strictly positive numbers α and λ such that

∀t > 0,∥x(t)∥ ≤ α∥x(0)∥e−λt, (2.26)

in some ball Br around the origin. In this sense, (2.26) means that the state vector x
of a system exponentially stable converges to the equilibrium point faster than an
exponential function. The importance of exponentially stabilized systems lies in the
need to assure the convergence of a system in a determined time, as it is exemplified
in Slotine and Li (1991).
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Figure 2.2 Nonlinear mass-damper-spring system

2.3.3 Lyapunov’s direct method.

Lyapunov proposed this method based in the observation of the physics behavior of
classical mechanical systems: as stated in Slotine and Li (1991), if the total energy of
a mechanical system is continuously dissipated, then the system must eventually
settle down to an equilibrium point.

To demonstrate the former statement, Slotine and Li (1991) proposes the example
of the nonlinear mass-damper-spring depicted in Figure 2.2. It consists of a mass
attached to a spring and a damper. If a force fin is applied, the cart will move in the
x axis. The dynamic equation for this system is

mẍ + bẋ|ẋ|+ k0x + k1x3 = 0, (2.27)

with bẋ|ẋ| as the nonlinear damping and k0x + k1x3 as the nonlinear spring. The
spring will remain in it’s natural position until an external force is applied to the
mass, pulling away the spring from it’s natural position. The result will be the
motion of the system.

Now, It is known that the total energy of the system is given by the sum of the
potential and the kinetic energy of the system:

V(x) =
1
2

mv̇2 +
∫ x

0
(k0x + k1x3)dx =

1
2

mv̇2 +
1
2

k0ẋ2 +
1
4

k1ẋ4. (2.28)

Then, some relations are established in Slotine and Li (1991) in order to link together
the concepts of stability and mechanical energy:

• Zero energy is achieved in the equilibrium point of the system, that is (x =

0, ẋ = 0).

• For the system to achieve the asymptotic stability, the mechanical energy must
be equal to zero.
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• Instability will occur as the mechanical energy grows.

Thus, Slotine and Li (1991) establishes that the scalar value of the system’s
energy indirectly describes the current status of the state vector, and that the stability
properties can be analyzed based on variations in the mechanical energy. The rate of
energy variation is defined by

V̇(x) = mẋẍ + (k0x + k1x3)ẋ = ẋ(−bẋ|ẋ|) = b|ẋ|3, (2.29)

by which can be determined that the mechanical energy of the system will be
continuously dissipated by the damper, until the position and velocity are equal
to zero, that is until the system gets to the equilibrium point, proving the initial
statement of this chapter.

As described in Slotine and Li (1991), the energy function V(x) has two properties:
Is strictly positive unless x and ẋ are zero (positive definite function); and the
function is monotonically decreasing if the variables vary according to the dynamics
of the system, that is if a function V(x) is positive definite with continuous partial
derivatives, and if it’s time derivative along any trajectory is negative semi-definite
(Lyapunov function).

2.4 Singular Perturbation Methods.

This sections describes the basic theory involving the singular perturbation methods,
as detailed in Kokotovic et al. (1986). Having a classical mechanical system described
by a set of dynamic equations, in which the derivatives of some of the states are
multiplied by a small positive scalar ϵ, the singular perturbation model is described
by

ẋ = f (x,z,ϵ, t), x ∈ Rn, (2.30)

ϵż = g(x,z,ϵ, t), z ∈ Rn, (2.31)

where f and g are functions with sufficient continuous differentiable functions with
respect to the arguments x, z, ϵ and t. The small ϵ parameter is the representation of
some other small parameters which are neglected in the model.
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Furthermore, Kokotovic et al. (1986) assures that the model described by (2.30)
and (2.31) is one of the first steps necessary to the model order reduction of a more
complex system, as have been done in Jardón-Kojakhmetov et al. (2017).

2.4.1 Slow-fast systems.

As it is briefly described in Jardón-Kojakhmetov et al. (2017) and detailed in Koko-
tovic et al. (1986), a slow-fast system is a singular perturbation model with dynamic
equations in the form of (2.30) and (2.31). The presence of the parameter ϵ means
that the variable z evolves faster than the variable x. In that sense, x is called the
slow variable while z is called the fast variable.

The existence of a slow and a fast variable implies that there is a different time
scale for each variable. Defining t as the time for the slow variable and τ as the
time for the fast variable, the relation between the variables can be expressed as in
Jardón-Kojakhmetov et al. (2017) as

τ =
t
ϵ

. (2.32)

Thus, (2.30) and (2.31) can be rewritten as

x′ = ϵ f (x,z,ϵ,τ), x ∈ Rn, (2.33)

z′ = g(x,z,ϵ,τ), z ∈ Rn, (2.34)

with the x′ and z′ as the derivatives of each variable with respect to the re-scaled
time variable τ, For the analysis of the system, an useful method to study the slow
and fast subsystems separately is to analyze the system when ϵ → 0 which yields
the differential algebraic equations (slow subsystem)

ẋ = f (x,z,0, t), x ∈ Rn, (2.35)

0 = g(x,z,0, t), z ∈ Rn, (2.36)

and the layer equation (fast subsystem)
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0 = ϵ f (x,z,0,τ), x ∈ Rn, (2.37)

z′ = g(x,z,0,τ), z ∈ Rn. (2.38)

As a final remark, it is important to notice that while both subsystems have
different time scales, the variables of each one have a different behavior. For instance,
in the analysis of the slow sub-system the fast variables are neglected due to the
result of the limit of ϵ → 0. In Jardón-Kojakhmetov et al. (2017), the result of such
limit implies that the slow sub-system for the flexible configuration of the Quanser
robot is not other but the rigid configuration of the same robot, as proposed in Dirksz
(2011). Finally, for the analysis of the fast subsystem, the difference in the time scales
means that the slow-variables are taken as constant values, leaving the description
of the sub-system in terms of the fast variables.

2.5 Chapter 2 concluding remarks.

In this chapter the basic theory necessary to understand the mathematical framework
for the compliance with the proposed objectives has been summarized. The basic
equation to describe a nonlinear system can be found in (2.1) as well as the basic
concepts regarding the nonlinear systems. Furthermore, the equations necessary to
describe a classical mechanical system in terms of position and velocity within the
Lagrangian framework are shown in (2.2) and (2.3). The mathematical methods to
transform the EL equations into PH equations can be found in (2.11) and (2.12), and
the proper PH equations are introduced in (2.23) and (2.24).

Moreover, the definition of stability in the sense of Lyapunov has been described
by (2.25) and the different kinds of stability of nonlinear systems can be found in
Figure 2.1. Finally, the singular perturbation equations are described in (2.30) and
(2.31), while the slow-fast system equations have been described by (2.35), (2.36),
(2.37) and (2.38).

Next, the theory introduced in this chapter is used in order to described mathe-
matically the 2DoF Quanser robot model, as well as for the design of the proposed
PH controllers.



Chapter 3

Mathematical design.

This chapter details the mathematical description of the system in terms of port-
Hamiltonian variables, following closely the description of the system approached in
Dirksz (2011) and designed in Dirksz and Scherpen (2013). Furthermore, it expands
the description of the system for the flexible configuration, based in the theory
proposed by Jardón-Kojakhmetov et al. (2017).

Here, the mathematical description of the control laws used for the research have
been introduced. For the linear-quadratic regulator (LQR) controller proposed by
Quanser the controller design follows the description in Quanser (2006), for the
Reyes-Báez et al. controller the design follows the mathematical description in
Reyes-Báez et al. (2016) and for the Dirksz and Scherpen (2013) controller the design
follows the description in Jardón-Kojakhmetov et al. (2017).

3.1 Experimental setup.

The experimental setup consists of two DC motors, each driving a two bar-serial link.
The primary link is coupled to the first drive by means of a flexible joint and carries
at it’s end the second harmonic drive, to which the second rigid link is attached. The
flexible joint can be jammed in order to assure a rigid joint.

The manipulator has links with lengths li, angles θi, mass mi, distance to the
center of the mass ri and moment of inertia Ii with i = 1,2. As the system works
in the horizontal plane, the gravitational forces are neglected. Finally, The joints
have been defined as J1 and J2, the position of the links as qi and the position of the
motor as qmi. Figure 3.1 shows the diagram for the model and Figure 3.2 shows the
physical plant.



18 Mathematical design.

Figure 3.1 2DoF Quanser manipulator schematic

Figure 3.2 2DoF Quanser manipulator physical plant

3.2 Mathematical description of the model.

In this section the mathematical description of the 2DoF Quanser manipulator
robot is presented. For the rigid configuration, the description follows closely the
mathematical proposal of Dirksz (2011), while for the flexible configuration the
theory of Spong (1990) and the work of Jardón-Kojakhmetov et al. (2017) have been
used in order to create the model.
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3.2.1 Port-Hamiltonian rigid model.

The Hamiltonian is defined according to the kinetic and potential energy as in
(2.3) and (2.21). Due to the lack of springs and that the manipulator moves in the
horizontal plane, as has been stated in Dirksz (2011), the Hamiltonian for the rigid
configuration of the 2DoF Quanser manipulator robot can be defined only by its
kinetic energy as

H(q, p) =
1
2

p⊤M(q)−1p, (3.1)

with q = (q1,q2)
⊤ ϵ Rn the vector joint angles and p = M(q)q̇ the angular momenta.

For an easier interpretation of the inertia matrix M(q), the inner parameters are
defined as

a1 = m1r21 + m2l21 + I1, (3.2)

a2 = m2r22 + I2, (3.3)

b = m21r2, (3.4)

thus the mass-inertia matrix is given by

M(q) =

[
a1 + a2 + 2bcosθ2 a2 + bcosθ2

a2 + 2bcosθ2 a2

]
. (3.5)

Furthermore, the system can be described in the PH structure in terms of the
coordinates and the momenta. The system belongs to the classical mechanical
systems as expanded in Van Der Schaft (2000), therefore it can be described as

[
q̇
ṗ

]
=

[
0 I
−I −D(q, p)

]
∂H(q, p)

∂q
∂H(q, p)

∂p

+

[
0

B(q)

]
u, (3.6)

where we assume that the system is fully actuated, that being u ϵ Rm, m = n, n →
order of the system. The input matrix B(q) can be taken equal to the identity matrix
as

B(q) = B =

[
1 0
0 1

]
, (3.7)
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and defining the damping matrix as

D(q, p) =

[
d1 0
0 d2

]
, (3.8)

with d1, d2 positive constants. Finally, the control input is given by u ϵ Rn with
(u1,u2).

3.2.2 Port-Hamiltonian flexible model.

For the flexible configuration, the mathematical expression for the Hamiltonian must
be expanded in order to include not only the kinetic energy of the system, but also
the potential energy stored in the springs, as in Jardón-Kojakhmetov et al. (2017).
The basic structure of the Hamiltonian is defined as

H(q, p) =
1
2

p⊤M(q)−1p + V(q), (3.9)

where V(q) is the potential energy of the system defined as

V(q) = ρg(q) + ρs(q), (3.10)

being ρg(q) the potential energy due to gravity and ρs(q) the potential energy due
to the stiffness of the springs. The articulations move in the horizontal plane which
means that the gravity force is neglected. The potential energy due to the stiffness is
given by

ρs(q) =
1
2
(q − qm)

⊤K(q − qm), (3.11)

where qm = [qm1,qm2]
⊤ ϵ Rn is the angular position of the motors and K = diag(K1, K2)

ϵ Rnxn is a symmetric positive definite matrix of the stiffness coefficients for J1 and
J2. Quanser (2006) defines Ki as

Ki = 2Krridi, (3.12)

where Kr is the stiffness constant of the springs, ri the radius from the joint axis
of rotation to the outer hole and di the distance from the joint centerline to the
outer hole. As stated in Jardón-Kojakhmetov et al. (2017) and Spong (1990), the
torsional stiffness values shall be very high in comparison with the other parameters
of the system, that is when the joints are almost rigid. The parameters used in the
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Table 3.1 Torsional stiffness parameters

Joint Spring rate (N/m) di (m) ri (m)
J1 610 0.0976 0.08636
J1 440 0.07366 0.08556
J1 1000 0.07366 0.08556
J1 1440 0.06096 0.07991
J1 2875 0.06096 0.07991
J2 420 0.0976 0.08636
J2 420 0.07366 0.08556
J2 480 0.07366 0.08556
J2 1200 0.07366 0.08556
J2 232 0.06096 0.07991

experimental setup are specified in Table 3.1. Experimental tests required a higher
stiffness constant for J1 than for J2 due to the higher moment of inertia experienced
by J1 which provoked bigger oscillations in the articulation, as was proved in the
experimental results.

Now, replacing (3.11) in (3.9) the Hamiltonian is given by

H(q, p) =
1
2

p⊤M(q)−1p +
1
2
(q − qm)

⊤K(q − qm), (3.13)

therefore, a set of 2n Hamiltonian differential equations are needed in order to
describe the system (with n = 4 due to the position variables for the links and the
motors) is


q̇
˙qm

ṗ
ṗm

 =

[
04x4 I4x4

−I4x4 −D4x4(q, p)

]


∂H(q, p,qm, pm)

∂q
∂H(q, p,qm, pm)

∂qm

∂H(q, p,qm, pm)

∂p
∂H(q, p,qm, pm)

∂pm


+


0
0
0

B(q)

u. (3.14)

Then, as proposed by Spong (1990) and replicated by Jardón-Kojakhmetov et al.
(2017), to achieve a singular perturbation slow-fast structure with the form of (2.30)
and (2.31), let us define new coordinates as (q,ϵz) = (q,q − qm) where ϵ is a small
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positive scalar which represents all the small parameters to be neglected, as is stated
in Kokotovic et al. (1986). Thus the new generalized coordinates are

qϵ = (q,z)⊤, (3.15)

which gives place to the basic PH structure of the system


q̇
ż
ṗ
γ̇

 =

[
04x4 I4x4

−I4x4 −D4x4(q, p)

]


∂H(q, p,qm, pm)

∂q
∂H(q, p,qm, pm)

∂z
∂H(q, p,qm, pm)

∂p
∂H(q, p,qm, pm)

∂γ


+


0
0
0

B(q, p)

u. (3.16)

Hence, the expanded system has a slow-fast structure described in terms of the PH
variables, therefore, the control input u shall be defined as well as a PH structure
with a suitable system error.

3.3 Control design.

This section expands the mathematical description of the control laws used for
the research. For the Linear Quadratic Regulator (LQR) controller proposed by
Quanser the controller design follows the description in Quanser’s reference manual.
Furthermore, for the Reyes-Báez et al. controller the design follows the mathematical
description in Reyes-Báez et al. (2016), while for the Dirksz and Scherpen controller
the design follows the description in Jardón-Kojakhmetov et al. (2017).

3.3.1 LQR controller.

This controller has been proposed by Quanser, the manufacturer of the 2DoF ma-
nipulator, therefore has been used for benchmarking the results of the proposed
Hamiltonian controllers. The LQR (Linear Quadratic Regulator) controller have
been designed following the Lagrange’s method.

Quanser defines the subsystem of the first articulation including the motor, the
joint and the link as the first stage of the manipulator. The system’s state vector for
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the first stage is defined as

X1 =
[
q1(t) q1m(t) q̇1(t) q̇1m(t)

]⊤
, (3.17)

and the system input U1 is the current Im1 applied to the first motor

U1 = Im1. (3.18)

The dynamic representation of the system is then given by

∂X1

∂t
= A1X1 + B1U1, (3.19)

where the matrices A1 and B1 have been defined as

A1 =



0 0 1 0
0 0 0 1

−Ks1

J11

Ks1

J11
−B11

J11
0

Ks1

J12
−Ks1

J12
0 −B12

J12


, (3.20)

B1 =

[
0 0

Kt1

J11
0
]⊤

, (3.21)

where Ks1 is the first flexible joint torsional stiffness constant, J11 is the first flexible
joint actuated transition equivalent moment of inertia, J12 is the first flexible joint
actuated transition equivalent viscous damping coefficient, B11 the first flexible joint
actuated transition equivalent viscous damping coefficient and B12 is the first flexible
joint load transition equivalent moment of inertia.

Besides, for the control action of the stage 1 system position, a state-feedback
controller is implemented as

Im1 = −K1X1 (3.22)

where K1 in a gain vector calculated by the LQR tuning algorithm provided by
Quanser. By default, the tuning algorithm return the the parameters

K1 =
[
76.57 81.55 2.86 23.02

]
.
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Quanser defines the subsystem of the second articulation including the motor,
the joint and the link as the second stage of the manipulator. The system’s state
vector for the second stage is defined as

X2 =
[
q2(t) q2m(t) q̇2(t) q̇2m(t)

]⊤
, (3.23)

and the system input U2 is the current Im2 applied to the second motor

U2 = Im2. (3.24)

The dynamic representation of the system is given by

∂X2

∂t
= A2X2 + B2U2, (3.25)

where the matrices A2 and B2 have been defined as

A2 =



0 0 1 0
0 0 0 1

−Ks2

J21

Ks2

J21
−B21

J21
0

Ks2

J22
−Ks2

J22
0 −B22

J22


, (3.26)

B2 =

[
0 0

Kt2

J21
0
]⊤

, (3.27)

where Ks2 is the first flexible joint torsional stiffness constant, J21 is the first flexible
joint actuated transition equivalent moment of inertia, J22 is the first flexible joint
actuated transition equivalent viscous damping coefficient, B21 the first flexible joint
actuated transition equivalent viscous damping coefficient and B22 is the first flexible
joint load transition equivalent moment of inertia.

Likewise, for the control action of the stage 2 system position, a state-feedback
controller is implemented as

Im2 = −K2X2, (3.28)

where K2 in a gain vector calculated by the LQR tuning algorithm provided by
Quanser. By default, the tuning algorithm return the the parameters

K2 =
[
47.95 −7.13 0.67 2.90

]
.
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As a final remark, this controller has been proposed directly by the manufacturers
of the 2DoF Quanser manipulator and while it is a simple LQR controller, it has
proved to accomplish the control task for both the rigid and the flexible configuration.

3.3.2 Reyes-Báez et al. multi-scale controller.

This section follows the mathematical theory for the design of the control law for
a multi-scale controller using the contraction based control method for the slow
system and the controller proposed by Spong (1990) as the fast controller.

As it is stated in Reyes-Báez et al. (2016), the proposed controller preserves the
structure of a Hamiltonian system combining the techniques of transient exponen-
tial stability described in Andrieu et al. (2016) and the sliding-manifold approach
described in Ghorbel and Spong (2016).The idea is to create a contraction-based
control law where an invariant manifold becomes attractive and another control
law which ensures that on that invariant manifold, the trajectory follows the desired
movement.

As in Spong (1990), new coordinates for the system are proposed as (q1,ϵz) =
(q1,q1 − q2) in order to achieve a singular perturbation slow-fast model. New
generalized coordinates have been defined as qϵ = (q1,z). As the system parameters
are doubled, the inertia matrix also must be expanded as in Reyes-Báez et al. (2017),
in the form of

Mϵ =

[
Ml(q1) 0

0 I

]
, (3.29)

where I is the inertia associated with the motors. This means that the generalized
momenta pϵ is then defined as pϵ = Mϵ(qϵ)q̇ϵ.

Reyes-Báez et al. slow controller.

This section follows the mathematical description for the trajectory tracking control
described in Reyes-Báez et al. (2016). To solve the control problem for the system it
is necessary to create an error system for the port-Hamiltonian system.

Considering a twice differentiable desired trajectory Xd(t) = [qd(t), pd(t)]⊤, with
pd(t) = M(qd(t))q̇d(t) and the change of coordinates

x̃ :=

[
q̃
σ

]
=

[
q − qd(t)
p − pr(t)

]
, (3.30)
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and the dynamics of q̃ are

˙̃q = M−1(q̃ + qd)p − M−1(qd)pd, (3.31)

where M−1(qd) is the inertia matrix evaluated in q = qd. From (3.30) it is clear that
p = σ + pr is a control input for (3.31) with σ as a new state and pr as a stabilizing
term. With the definitions

pr = pdσ − Λq̃, (3.32)

pdσ = Mdq̇d, (3.33)

and Λ as a Hurwitz matrix, and the substitution of p in (3.31), the results in the
position error dynamics are given by

˙̃q = M−1(σ − Λq̃), (3.34)

with σ as input. When σ = 0 in (3.34), the error signal q̃ = 0 is asymptotically stable,
due to the fact that −M−1Λ is a Hurwitz matrix. The above implies that q → qd as
t → ∞, and that pr → pd as t → ∞. The dynamics for σ is σ̇ = ṗ − ṗr according to the
change of coordinates in (3.30). Thus, the error system dynamics are given by

˙̃q = M−1(σ − Λq̃) (3.35)

σ̇ = −
[

∂H
∂q

(x) + D(q)
∂H
∂p

(x)− G(q)Us + ṗr

]
. (3.36)

where Us is the slow controller for the multi-scale system, proposed by Reyes-Báez
et al. (2016) with the dynamics

UsR = ueq − uat, (3.37)

ueq = ṗr +
∂H
∂q

(q, pr) + D(q)
∂H
∂p

(q, pr), (3.38)

uat = −Kd
∂H
∂p

(q,σ)− M−1(q)Λq̃ +
∂

∂q
(pr

⊤M−1(q)σ), (3.39)

where Kd fulfills

D(q) + Kd +
1
2

In −
1
4
(M−1 + M) > 0, (3.40)
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and the derivative of pr is

pr = pdσ − Λq̃, (3.41)

pr = Mdq̇d − Λq̃, (3.42)

ṗr = Ṁdq̇d + Mdq̈d − Λ(q̇ − q̇d). (3.43)

Spong fast Controller.

In Spong (1990) the author proposes a very simple control law for the fast controller
in the form of

U fS = Kv(q̇ − ˙qm). (3.44)

The validity of such controller is based in the proportionality of 3.54 with z, thus
becoming valid for the fast feedback term. The obvious advantage of such controller
is the simplicity and the easiness to implement.

3.3.3 Jardón-Kojakhmetov et al. multi-scale controller.

This section follows the mathematical description of the multi-scale trajectory track-
ing control described in Jardón-Kojakhmetov et al. (2017). The author uses the slow
controller proposed by Dirksz and Scherpen (2013) and furthermore proposes a fast
controller with the same structure, as well as the multi-scale system linking the two
subsystems. To solve the control problem, the author derives a PH model using a
coordinate transformation.

The idea is to establish a control law for trajectory tracking using only position
measurements. For this task, and as stated in Dirksz and Scherpen (2013), a dynamic
feedback and a Coriolis matrix are applied without using the reference velocities
instead of the actual velocities of the system.

As in Spong (1990), new coordinates for the system are proposed as (q1,ϵz) =
(q1,q1 − q2). Likewise, new generalized coordinates have been defined as qϵ = (q1,z).
As the system parameters are doubled, the inertia matrix also must be expanded as
in Jardón-Kojakhmetov et al. (2017) in the form of

Mϵ =

[
Ml(q1) + I −ϵI

ϵI ϵ2 I

]
, (3.45)

which means that the generalized momenta pϵ is then defined as pϵ = Mϵ(qϵ)q̇ϵ.
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Furthermore, a canonical transformation is then carried out in order to transform
the PH system with a non-constant inertia matrix to a PH system with a constant
inertia matrix. The change of coordinates for the canonical transformation is given
by [

q̄ϵ

p̄ϵ

]
=

[
qϵ

T̄ϵ(q̄ϵ)⊤ ˙̄qϵ

]
, (3.46)

where the matrix T̄ϵ(q̄ϵ)ϵR2x2 is lower triangular and defined by Mϵ = T̄ϵ(q̄ϵ)T̄ϵ(q̄ϵ)⊤.
Finally, the transformed structure of the PH system is expressed as

[
q̄ϵ

p̄ϵ

]
=

[
0nxn T̄ϵ(q̄ϵ)−⊤

−T̄ϵ(q̄ϵ)−1 J̄ϵ(q̄ϵ)− D̄ϵ(q̄ϵ)

]
∂H̄(q̄ϵ, p̄ϵ)

∂q̄ϵ
∂H̄(q̄ϵ, p̄ϵ)

∂ p̄ϵ

+

[
0nxn

G(q̄ϵ, p̄ϵ)

]
ū. (3.47)

Dirksz and Scherpen (2013) slow controller.

This section follows the mathematical description for the trajectory tracking control
described in Dirksz (2011). To solve the control problem for the system it is necessary
to create an error system for the port-Hamiltonian system, by the transformation

q̄ = q − qd(t), (3.48)

p̄ = p − M(q)q̇d(t), (3.49)

Moreover, the controller dynamics proposed by Dirksz (2011) are

q̇c = K−1
d Kc(q̄ − qc), (3.50)

v = q̄ − qc, (3.51)

in addition with the control input for the torque in the articulations

UsD = M(q)q̈d +
∂(M(q)q̇)

∂q
q̇ − 1

2
∂q̇⊤M(q)q̇

∂q
− Kpq̄ − Kcv (3.52)

where Kd = diag(Kd1, Kd2) ϵ Rnxn, Kc = diag(Kc1, Kc2) ϵ Rnxn and Kp = diag(Kp1, Kp2)

ϵ Rnxn are positive definite diagonal matrices.
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Jardón-Kojakhmetov et al. fast controller.

In Jardón-Kojakhmetov et al. (2017) a controller with the same structure of a PH
controller is proposed, which has the system dynamics

U f J = −Lpz − Lc(z − zc), (3.53)

with the controller dynamics

żc = L−1
d Lc(z − zc), (3.54)

where Ld = diag(Ld1, Ld2) ϵ Rnxn, Lc = diag(Lc1, Lc2) ϵ Rnxn and Lp = diag(Lp1, Lp2)

ϵ Rnxn are positive definite diagonal matrices.

3.4 Chapter 3 concluding remarks.

This chapter described the mathematical description of the Quanser 2DoF manipula-
tor robot for the rigid model and the flexible model. Both configurations have been
described in a port-Hamiltonian structure as in (3.6) for the rigid model as well as in
the (3.16) for the flexible configuration.

Furthermore, the mathematical design of the controllers for the 2DoF Quanser
manipulator robot have been described. First, (3.22) and (3.28) describe the model
for the LQR controller proposed by Quanser. Furthermore, (3.37), (3.38) and (3.39)
describe the dynamics for the control input for the Reyes-Báez et al. controller,
while (3.54) describes the dynamics for the Spong fast controller. Moreover, (3.52)
describes the dynamics for the Dirksz and Scherpen slow controller and finally, (3.53)
describes the dynamics for Jardón-Kojakhmetov et al. fast controller.

Next, the controllers proposed in this chapter have been simulated in order to
test the performance of the control law according to the mathematical description of
the 2DoF Quanser manipulator robot. The explicit description of the PH controllers
proposed in this chapter and necessary to the simulations can be found in the next
chapter.





Chapter 4

Simulations.

In this chapter, the two proposed PH controllers have been simulated in order to
prove the validity of the control law. For this, a Matlab code have been implemented
to simulate the behavior of the 2DoF Quanser manipulator robot, and the explicit
equations described in the previous chapter are provided. Similar experiments have
been carried out in Jardón-Kojakhmetov et al. (2017) for the Quanser manipulator
and in Reyes-Báez et al. (2016) for a 3DoF Scara manipulator robot.

4.1 Explicit description of the controllers.

In this section the equations theoretically described in Chapter 3 have been devel-
oped in order to get the explicit description for each controller for the rigid and
flexible configuration of the 2DoF Quanser manipulator robot. The expressions
presented here have been achieved by the Matlab implementation of the system,
and are provided to ease the future analysis of such controllers.

4.1.1 Rigid model explicit description.

In Dirksz (2011) a set of simulations have been carried out in order to prove the
response of the manipulator implementing a controller using only position measure-
ments, while in van Logtestijn (2010) the same controllers have been implemented
in order to experimentally test the response of the system. Even tough the system
parameters used in both documents are slightly different, up to the author experi-
ence the parameters used by van Logtestijn (2010) are closer to the actual parameters
of the physical plant. Hence, Table 4.1 shows the system parameters as proposed by
van Logtestijn (2010).
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Table 4.1 Parameters values for the 2DoF Quanser manipulator

Parameter Value Parameter Value
m1 1.9585 r1 0.2
m2 0.1504 r2 0.25
I1 0.23041858 l1 0.343
I2 0.010724 l2 0.275

According to the parameters in Table 4.1, the explicit description for the inertia
matrix given in (3.5) is

M(q) =

[
0.0257936cos(q2) + 0.346577 0.0128968cos(q2) + 0.020124
0.0128968cos(q2) + 0.020124 0.020124

]
, (4.1)

M(q) =

[
M11 M12

M21 M22

]
. (4.2)

With such explicit description of the inertia matrix, the Hamiltonian given by (3.1)
for the rigid model is described in terms of

H(q, p) = p1

(
M11p1

2
+

M21p2

2

)
+ p2

(
M12p1

2
+

M22p2

2

)
, (4.3)

and the derivatives for the Hamiltonian in (4.3) are given by

∂H(q, p)
∂q1

= 0, (4.4)

∂H(q, p)
∂q2

= p1

 p1
∂M11

∂q2

2
+

p2
∂M21

∂q2

2

+ p2

 p1
∂M12

∂q2

2
+

p2
∂M22

∂q2

2

 , (4.5)

∂H(q, p)
∂p1

= p1M11 +
p2M12

2
+

p2M21
2

, (4.6)

∂H(q, p)
∂p2

= p2M22 +
p1M21

2
+

p1M12
2

. (4.7)

With the derivatives of the Hamiltonian in (4.4), (4.5), (4.6) and (4.7) and the explicit
inertia matrix in (4.1) the rigid model for the 2DoF Quanser robot can be represented
in terms of PH variables, according to the structure proposed in (3.6).
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4.1.2 Flexible model explicit description.

For the flexible configuration several changes in the mathematical model are made
in order to control the displacement between the links and the motor positions, as
was stated in Chapter 3.

In Reyes-Báez et al. (2017) as well as in Jardón-Kojakhmetov et al. (2017) an ex-
panded inertia matrix is presented, as it is proposed in (3.29) and (3.45) respectively.
For the Reyes-Báez et al. multi-scale controller, the expanded inertia matrix (3.29)
has been described by

ME1 =


M11 M12 0 0
M21 M22 0 0

0 0 In1 0
0 0 0 In2,

 , (4.8)

with M11, M12, M21 and M22 the same parameters described for the inertia matrix of
the rigid model in (4.1) and (4.2), and In1 and In2 the inertia associated to the motors.
For the Jardón-Kojakhmetov et al. multi-scale controller, the expanded inertia matrix
(3.45) has been described by

Mϵ1 =


In1 + M11 M12 −ϵIn1 0

M21 In2 + M22 0 −ϵIn2

−ϵIn1 0 ϵ2 In1 0
0 −ϵIn2 0 ϵ2 In2,

 , (4.9)

with ϵ as the small parameter for the slow-fast structure.
The Hamiltonian changes too, in order to add not only the kinetic energy, but

also the potential energy stored in the springs as it is proposed in (3.9). With this,
the explicit description for the Hamiltonian is

H(q, p,z, pz) =
K1ϵ2z2

1
2

+
K2ϵ2z2

2
2

+
p2

1
2

+
p2

2
2

+
p2

z1
2

+
p2

z2
2

, (4.10)

and the derivatives of the Hamiltonian in (4.10) are given by

∂H(q, p,z, pz)

∂q1
=

K1(2q1 − 2qm1)

2
, (4.11)

∂H(q, p,z, pz)

∂q2
=

K2(2q2 − 2qm2)

2
, (4.12)
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∂H(q, p,z, pz)

∂z1
= E2K1z1, (4.13)

∂H(q, p,z, pz)

∂z2
= E2K2z2, (4.14)

∂H(q, p,z, pz)

∂p1
= p1 +

2p1 − 2pm1

2E2 , (4.15)

∂H(q, p,z, pz)

∂p2
= p2 +

2p2 − 2pm2

2E2 , (4.16)

∂H(q, p,z, pz)

∂pz1
= pz1, (4.17)

∂H(q, p,z, pz)

∂pz2
= pz2. (4.18)

With the derivatives of the Hamiltonian in (4.11), (4.12), (4.13), (4.14), (4.15), (4.16),
(4.17) and (4.18) and the inertia matrix given by (4.8) and (4.9), the flexible model
for the 2DoF Quanser robot can be represented in term of PH variables, with the
proposed structure in (3.14).

4.1.3 Reyes-Báez et al. multi-scale controller explicit description.

In this section the equations theoretically proposed in Reyes-Báez et al. (2016) and
Spong (1990) and described in Chapter 3 have been developed in order to get the
explicit description for the Reyes-Báez et al. multi-scale controller.

First, a suitable system error is proposed in (3.30) with the position error de-
scribed by

q̃ =

[
q1 − qd1

q2 − qd2

]
=

[
q1 − 0.1667(π sin(0.2t))
q2 − 0.1667(π sin(0.4t))

]
. (4.19)

Moreover, for the momenta error in (3.30) the parameter pr defined in (3.33) is
described by

pr =

[
q̇d1M11 + q̇d2M12 − Λ1q̃1

q̇d1M21 + q̇d2M22 − Λ2q̃2

]
. (4.20)

Now, for the description of the first component of the Reyes-Báez et al. slow
controller as defined in (3.38) the last two parameters are the same derivatives of
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the Hamiltonian described in (4.4), (4.5), (4.6) and (4.7), while the first parameter
needed is given by

ṗr =

q̇d1
∂M11

∂t
+ q̇d2

∂M12

∂t
+ q̈d1M11 + q̈d2M12 − Λ1(q̇1 − q̇d1)

q̇d1
∂M21

∂t
+ q̇d2

∂M22

∂t
+ q̈d1M21 + q̈d2M22 − Λ2(q̇2 − q̇d2)

 . (4.21)

Furthermore, for the second component of the slow controller as defined in (3.39)
the first term is also defined by the derivatives of the Hamiltonian in in (4.6) and
(4.7). For the second term, the explicit description corresponds to

M−1(q)Λq̃ =


L1q̃1M22 − L2q̃2M12

M11M22 − M12M21
L2q̃2M11 − L1q̃1M21

M11M22 − M12M21

 , (4.22)

and for the final term, the explicit description is given by

∂

∂q
(pr

⊤M−1(q)σ) =
∂

∂q

((
pr1M22 − pr2M21

M11M22 − M12M21

)
σ1 −

(
pr1M12 − pr2M11

M11M22 − M12M21

)
σ2

)
.

(4.23)
Finally, the explicit description for the Spong fast controller in (3.54) is

U fS =

[
kv1(q̇1 − q̇m1)

kv2(q̇2 − q̇m2)

]
. (4.24)

The explicit description for this controller is computed using the software Matlab to
achieve the results presented in this chapter.

4.1.4 Jardón-Kojakhmetov et al. multi-scale controller explicit de-
scription.

In this section the equations theoretically proposed in Dirksz and Scherpen (2013)
and described in Chapter 3 have been developed in order to get the explicit descrip-
tion for the Dirksz and Scherpen controller. First, a suitable error system is proposed.
As well as for the Reyes-Báez et al. controller, the position error is defined by (4.19).

Recalling the structure of the proposed slow controller in (3.52), the control input
is formed by five different terms. The explicit description for each term is described
by
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M(q)q̈d =

[
q̈d1M11 + q̈d2M12

q̈d1M21 + q̈d2M22

]
, (4.25)

∂(M(q)q̇)
∂q

q̇ =


∂(M11q̇d1 + M12q̇d2)

∂q1
q̇d1 +

∂(M11q̇d1 + M12q̇d2)

∂q2
q̇d2

∂(M12q̇d1 + M22q̇d2)

∂q1
q̇d1 +

∂(M21q̇d1 + M22q̇d2)

∂q2
q̇d2

 , (4.26)

∂q̇⊤M(q)q̇
∂q

=


∂(q̇d1(M11q̇d1 + M21q̇d2) + q̇d2(M12q̇d1 + M22q̇d2))

∂q1
∂(q̇d1(M11q̇d1 + M21q̇d2) + q̇d2(M12q̇d1 + M22q̇d2))

∂q2

 , (4.27)

Kpq̄ =

[
Kp1(q1 − qd1)

Kp2(q2 − qd2)

]
, (4.28)

Kcv =

[
Kc1(q1 − qd1 − qc1)

Kc2(q2 − qd2 − qc2)

]
, (4.29)

and the explicit dynamics for the slow controller in (3.51) are

q̇c1 =


Kc1(q1 − qd1 − qc1)

Kd1
Kc2(q2 − qd2 − qc2)

Kd2

 . (4.30)

Now, for the Jardón-Kojakhmetov et al. fast controller in (3.53), the explicit
description is given by

U f J =

[
Lc1(zc1 − z1)− Lp1z1

Lc2(zc2 − z2)− Lp2z2

]
, (4.31)

while for the explicit dynamic for the fast controller in (3.54) is

żc =


Lc1(z1 − zc1)

Ld1
Lc2(z2 − zc2)

Ld2

 . (4.32)

The explicit description for this controller is computed using the software Matlab to
achieve the results presented in this chapter.
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Table 4.2 Reyes-Báez et al. controller parameters

Parameter Value
Kd1 -20
Kd2 -2.8
Λ1 35
Λ2 3.1

4.2 Rigid model simulations.

In this section the proposed PH controllers have been simulated to test the response
of the system with the rigid configuration. For this, the desired position have been
set to follow a sinusoidal wave (trajectory tracking simulation), and the theoretical
equations of Chapter 3 have been implemented in the explicit form presented in
Section 4.1 to achieve the results. Similar experiments for the rigid configuration
have been carried out in Dirksz (2011) and Reyes-Báez et al. (2016). The explicit
description of this controller can be found in Section 4.1.

4.2.1 Reyes-Báez et al. controller.

In this section the Reyes-Báez et al. controller has been simulated to test the validity
of the proposed control law. Recalling Chapter 3 for the rigid configuration the
system has a PH structure described in (3.6), while the Dirksz and Scherpen slow
controller has been described in (3.37), (3.38) and (3.39). For the explicit description
of the rigid model we recall the derivatives of the Hamiltonian in (4.4), (4.5), (4.6)
and (4.7), while for the controller explicit description we recall (4.21) and (4.23).

While the system parameters are given by Table 4.1, there is no method to
calculate the values for Kd and Λ for the controller. In Dirksz (2011) and van
Logtestijn (2010) a systematic trial-and-error procedure is used in order to find the
optimal values. In that sense, the proposed parameters used for this simulations are
given by Table 4.2.

For the tracking control, a twice differentiable trajectory in the form of qd =
csin(ωt) is chosen, with parameters c1 = 30◦ and w1 = 0.2 for J1 and c2 = 30◦ and
w1 = 0.4 for J2. Furthermore, all the initial parameters were set to zero, this is [q1, q2,
p1, p2] = [0 0 0 0].
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Figure 4.1 Trajectory tracking simulation, rigid configuration, Reyes-Báez et al.
controller: (a) Position for J1. (b) Position for J2.

0 0.2 0.4 0.6 0.8 1

time (s)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

(a)

0 0.2 0.4 0.6 0.8 1

time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

(b)

Figure 4.2 Position error, trajectory tracking simulation, rigid configuration, Reyes-
Báez et al. controller: (a) Position error for J1. (b) Position error for J2.
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Figure 4.3 Control signal, trajectory tracking simulation, rigid configuration, Reyes-
Báez et al. controller: (a) Control signal for J1. (b) Control Signal for J2.
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Table 4.3 Dirksz and Scherpen controller parameters

Parameter Value
Kp1 5000
Kp2 600
Kc1 3000
Kc2 400
Kd1 3
Kd2 3

The results of the simulations are shown in Figures 4.1, 4.2 and 4.3. The position
error of the articulations is able to converge to zero in less than 0.2s in both articula-
tions, without any visible overshoot as can be seen in Figure 4.2, while the energy
used by the controller to stabilize the system is very low as is shown in Figure 4.3.

4.2.2 Dirksz and Scherpen controller.

In this section the Dirksz and Scherpen controller has been simulated to test the
validity of the proposed control law. Recalling Chapter 3 for the rigid configuration
the system has a PH structure described in (3.6), while the Dirksz and Scherpen slow
controller has been described in (3.52). For the explicit description of the rigid model
we recall the derivatives of the Hamiltonian in (4.4), (4.5), (4.6) and (4.7), while for
the explicit description of the controller we recall (4.25), (4.26), (4.27), (4.28) and
(4.29).

Once again, a systematic trial-and-error procedure is used in order to find the
optimal values for the controllers. In that sense, the proposed parameters used for
this simulations are given by Table 4.3

As in the previous simulation, for the tracking control, a twice differentiable
trajectory in the form of qd = csin(ωt) is chosen, with parameters c1 = 30◦ and
w1 = 0.2 for J1 and c2 = 30◦ and w1 = 0.4 for J2. Furthermore, all the initial parameters
were set to zero, this is [q1, q2, p1, p2, qc1, qc2] = [0 0 0 0 0 0].

The results of the simulations are shown in Figures 4.4, 4.5 and 4.6. This controller
have a bigger settling time, and bigger oscillations in the transient state than the
Reyes-Báez et al. (2016) controller. The position error of the articulations is able to
converge to zero without oscillations approximately at 1s in both articulations as
can be seen in Figure 4.5, while the energy used by the controller follows the same
pattern as it is shown in Figure 4.6.
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Figure 4.4 Trajectory tracking simulation, rigid configuration, Dirksz and Scherpen
controller: (a) Position for J1. (b) Position for J2.

0 0.2 0.4 0.6 0.8 1

time (s)

-0.1

-0.05

0

0.05

0.1

(a)

0 0.2 0.4 0.6 0.8 1

time (s)

-0.1

-0.05

0

0.05

0.1

(b)

Figure 4.5 Position error, trajectory tracking simulation, rigid configuration, Dirksz
and Scherpen controller: (a) Position error for J1. (b) Position error for J2.
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Figure 4.6 Control signal, trajectory tracking simulation, rigid configuration, Dirksz
and Scherpen controller: (a) Control signal for J1. (b) Control Signal for J2.
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Table 4.4 Jardón-Kojakhmetov et al. multi-scale controller parameters

Slow parameter Value
Kd1 -5.5
Kd2 -1
Λ1 50
Λ2 5
Kv1 -14
Kv2 -16

4.3 Flexible model simulations.

In this section the proposed PH controllers have been simulated to test the response
of the system with the flexible configuration. For this, the desired position have been
set to follow a sinusoidal wave (trajectory tracking simulation). Similar experiments
for the flexible configuration have been carried out in Jardón-Kojakhmetov et al.
(2017).

4.3.1 Reyes-Báez et al. multi-scale controller.

In this section the Reyes-Báez et al. controller has been simulated to test the validity
of the proposed control law. Recalling Chapter 3 for the flexible configuration the
system has a PH structure described in (3.16). Moreover, the Reyes-Báez et al. slow
controller has been described in (3.37), (3.38) and (3.39), while the fast controller has
been proposed in (3.54). For the explicit description of the rigid model we recall
the derivatives of the Hamiltonian in (4.11), (4.12), (4.13), (4.15), (4.16), (4.17) and
(4.18) and the expanded inertia matrix in (4.8) while for the explicit description of
the controller we recall (4.21), (4.23) and (4.24).

Like for the rigid configuration there is no method to calculate the values for Kv,
Kd and Λ for the controller, thus the same systematic trial-and-error procedure is
used in order to find the optimal values. Then, the system parameters are given by
Table 4.1 while the proposed parameters used for this controller are given by Table
A.1.

For the tracking control, a twice differentiable trajectory in the form of qd =
csin(ωt) is chosen, with parameters c1 = 30◦ and w1 = 0.2 for J1 and c2 = 30◦ and
w1 = 0.4 for J2. Furthermore, all the initial parameters were set to zero, this is [q1, q2,
z1, z2, p1, p2, pz1, pz2] = [0 0 0 0 0 0 0 0].
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Figure 4.7 Trajectory tracking simulation, flexible configuration, Reyes-Báez et al.
multi-scale controller: (a) Position for J1. (b) Position for J2.
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Figure 4.8 Position error, trajectory tracking simulation, flexible configuration, Reyes-
Báez et al. multi-scale controller: (a) Position error for J1. (b) Position error for
J2.

As can be seen in Figure 4.8, the position error for the flexible model has roughly
the same behavior with a fast settling time as in the rigid configuration. However,
the position error is not able to converge completely to zero after that first fast slope
and presents an important difference which is eliminated until six seconds had
passed. On the other hand, Figure 4.9 shows a flexible error that can be dismissed
due to the low magnitude of the signal, insignificant in comparison with the position
error in Figure 4.8. Finally, Figures 4.10 and 4.11 shows the energy used by both
the slow and the fast controllers. For the last, the magnitude of the energy used is
a considerably lower than the energy used by the slow controller, due to the low
flexible error.
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Figure 4.9 Flexible error, trajectory tracking simulation, flexible configuration, Reyes-
Báez et al. multi-scale controller: (a) Position error for J1. (b) Position error for
J2.
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Figure 4.10 Control signal, trajectory tracking simulation, flexible configuration,
Reyes-Báez et al. slow controller: (a) Control signal for J1. (b) Control signal for J2.

4.3.2 Jardón-Kojakhmetov et al. multi-scale controller.

In this section the Jardón-Kojakhmetov et al. controller has been simulated to
test the validity of the proposed control law. Recalling Chapter 3 for the flexible
configuration the system has a PH structure described in (3.16). Moreover, the Dirksz
and Scherpen slow controller has been presented in (3.52) while the fast controller
has been described in (3.53). For the explicit description of the rigid model we recall
the derivatives of the Hamiltonian in (4.11), (4.12), (4.13), (4.15), (4.16), (4.17) and
(4.18) and the expanded inertia matrix in (4.9) while for the explicit description of
the controller we recall (4.25), (4.26), (4.27), (4.28), (4.29) and (4.31).
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Figure 4.11 Control signal, trajectory tracking simulation, flexible configuration,
Spong fast controller: (a) Control signal J1. (b) Control signal J2.

Like for the rigid configuration there is no method to calculate the values for
Kd, Kp, Kc, Ld, Lp and Lc for the controller, thus the same systematic trial-and-error
procedure is used in order to find the optimal values. Hence, the system parameters
are given by Table 4.1 while the proposed parameters used for this controller are
given by Table A.1.

For the tracking control, a twice differentiable trajectory in the form of qd =
csin(ωt) is chosen, with parameters c1 = 30◦ and w1 = 0.2 for J1 and c2 = 30◦ and
w1 = 0.4 for J2. Furthermore, all the initial parameters were set to zero, this is [q1, q2,
z1, z2, p1, p2, pz1, pz2, qc1, qc2, zc1, zc2] = [0 0 0 0 0 0 0 0 0 0 0 0].

As can be seen in Figure 4.13, according to the parameters used the settling time
for the Dirksz and Scherpen (2013) slow controller is bigger in comparison with the
simulations for the same experiment for the rigid configuration, increasing thrice
it’s value. Besides, it keeps the same behavior for the transient state for the position
error. Furthermore, Figure 4.14 shows the flexible error of the joint, converging

Table 4.5 Jardón-Kojakhmetov et al. multi-scale controller parameters

Slow parameter Value Fast parameter Value
Kp1 300 Lp1 200
Kp2 200 Lp2 100
Kc1 100 Lc1 300
Kc2 100 Lc2 300
Kd1 3 Ld1 3
Kd2 3 Ld2 3
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Figure 4.12 Trajectory tracking simulation, flexible configuration, Jardón-
Kojakhmetov et al. multi-scale controller: (a) Position for J1. (b) Position for J2.
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Figure 4.13 Position error, trajectory tracking simulation, flexible configuration,
Jardón-Kojakhmetov et al. multi-scale controller: (a) Position error for J1. (b) Position
error for J2.

to zero after small oscillations that can be despised due to the proportionality in
comparison with the position error in Figure 4.13. Finally, Figures 4.15 and 4.16
shows the energy used by both the slow and the fast controllers, which are similar in
their magnitude, due to the fact that both controllers have the same passivity-based
PH structure.
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Figure 4.14 Flexible error, trajectory tracking simulation, flexible configuration,
Jardón-Kojakhmetov et al. controller: (a) J1 Position error. (b) J2 Position error for.
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Figure 4.15 Control signal, trajectory tracking simulation, flexible configuration,
Dirksz and Scherpen slow controller: (a) J1 Control signal for. (b) J2 Control signal
for.

0 1 2 3 4 5 6

time (s)

-1

-0.5

0

0.5

1
10-15

(a)

0 1 2 3 4 5 6

time (s)

-2

-1

0

1

2

3
10-15

(b)

Figure 4.16 Control signal, trajectory tracking simulation, flexible configuration,
Jardón-Kojakhmetov et al. fast controller: (a) Control signal J1. (b) Control signal J2.
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4.4 Chapter 4 concluding remarks.

The theoretical equations defined in Chapter 3 have been developed and expanded
in Section 4.1 in order to adjust them to the 2DoF Quanser model, using the system
parameters provided by van Logtestijn (2010) and the explicit equations achieved
after the implementation of the controllers in the software Matlab.

In Section 4.2, recalling the PH structure for the rigid system in (3.6) and the
explicit description of the system in Section 4.1, the Reyes-Báez et al. controller
in (3.37), (3.38) and (3.39) and the Dirksz and Scherpen controller in (3.52) have
been simulated using the software Matlab. The results are similar to the simulations
already performed in Reyes-Báez et al. (2016) for the first and in Jardón-Kojakhmetov
et al. (2017) and van Logtestijn (2010) for the second PH controller, which proves
that the control law should be able to stabilize the movement of the system.

In Section 4.3, recalling the PH structure for the rigid system in (3.16) and the
explicit description of the system in Section 4.1, the multi-scale controller formed by
the Reyes-Báez et al. slow controller in (3.37), (3.38) and (3.39) and the Spong fast
controller in (3.54), and the multi-scale controller formed by Dirksz and Scherpen
controller in (3.52) and the Jardón-Kojakhmetov et al. fast controller in (3.53), have
been simulated using the software Matlab. For the second controller the results are
similar to those presented in Jardón-Kojakhmetov et al. (2017) , which proves that
the control law should be able to stabilize the movement of the system.

Next, using the explicit description of the equations presented in this chapter, the
results of the implementation of the controller in th physical plant are presented.





Chapter 5

Experimental results.

This chapter shows the results obtained after the implementation of the different
controllers for both, the rigid model and the flexible model. Before starting the
experiment, the different controllers have to be implemented trough a a real-time
control interface using Simulink. The software actuates the robot and reads the
encoder’s position measurements for the joints. The Simulink diagram for the pro-
posed controllers can be seen in Appendix B. There are no sensors for the momenta,
so a derivative filter is used to calculate the velocity and therefore the momenta.

There are some restrictions regarding the input given to the robot, as the maxi-
mum voltage and current for the motors. As can be seen in the robot specifications
in Appendix A, the maximal electrical current for the motor #1 and motor #2 are
0.944A and 1.21A respectively. Furthermore, the current input IR supplied to the
motor obeys

IR =
τ

KτGR
, (5.1)

where τ is the desired toque, Kτ is the torque constants and GR is the gear ratio for
the motor. The last two parameters can be found in Appendix A.

5.1 Rigid model.

In this section, the trajectory tracking controller for the 2R planar manipulator is
tested in order to prove the performance of the proposed control law for a rigid robot.
Two different experiments have been carried out in order to test the performance of
the control law: the movement of the joints to a fixed position and the movement
following a time-variant trajectory.
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The joints for the manipulator were mechanically jammed in order to neglect
the effects caused by the springs. However, a small difference between the position
of the link and the position of the motor exists. For experimental purposes let us
assume an ideal rigid model, that is q = qm. Therefore, the position measured by the
motor encoder will be used for the position of the links.

Recalling Chapter 3 for the rigid configuration the system has a PH structure
described in (3.6) with the explicit equations for the derivatives of the Hamiltonian
in (4.4), (4.5), (4.6) and (4.7). For the Reyes-Báez et al. controller described in (3.37),
(3.38) and (3.39), the explicit equations can be found in (4.21) and (4.23), while for
the Dirksz and Scherpen controller described in (3.52), the explicit equations can be
found in (4.25), (4.26), (4.27), (4.28) and (4.29).

5.1.1 Set-point experiment.

For this test, both joints were set to a fixed position of 30◦ for J1 and -30◦ for
J2. To avoid damages due to high peaks of current, the change of position have
been set to follow a smooth trajectory using a sigmoid block function in Simulink.
Now, for the Reyes-Báez et al. (2016) controller the parameters used have been set
as Kd = diag(−20,−2.6) and λ = diag(35,3.1), while for the Dirksz and Scherpen
controller the parameters used have been set as Kd = diag(3,3), Kc = diag(300,40)
and Kp = diag(300,50). The trajectory measured by the sensors in each articulations
can be seen in Figure 5.2.
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Figure 5.1 Set-point experiment, rigid configuration: (a) Position trajectory for J1. (b)
Position trajectory for J2
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Figure 5.2 Position error comparison for J1, set-point experiment, rigid configuration:
LQR (blue), Reyes-Báez et al. (orange) and Dirksz and Scherpen (yellow).
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Figure 5.3 Position error for J1, set-point experiment, rigid configuration: (a) LQR.
(b) Reyes-Báez et al.. (c) Dirksz and Scherpen.

Figures 5.2 and 5.3 show the position error for J1. Both port-Hamiltonian con-
trollers prove to have a better performance in the position error than the LQR
controller proposed by Quanser. The position error for the Reyes-Báez et al. con-
troller have a lower accuracy in comparison with Dirksz and Scherpen controller,
while the transient behavior is similar in both controllers with an overshoot of 0.05◦.
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Figure 5.4 Position error comparison for J2, set-point experiment, rigid configuration:
LQR (blue), Reyes-Báez et al. (orange) and Dirksz and Scherpen (yellow).
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Figure 5.5 Position error for J2, set-point experiment, rigid configuration: (a) LQR.
(b) Reyes-Báez et al.. (c) Dirksz and Scherpen.

Figures 5.4 and 5.5 shows the position error for J2. Like the results for J1, both
port-Hamiltonian controllers prove to have a better performance in the position
error than the LQR controller proposed by Quanser. Once again, the position error
for the Reyes-Báez et al. controller has a lower accuracy in comparison with Jardón-
Kojakhmetov et al. controller. However, unlike the results for J1 the transient
behavior is slightly better for the Dirksz and Scherpen controller.
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Figure 5.6 Control signal, set-point experiment, rigid configuration: (a) Reyes-Báez
et al. controller for J1. (b) Dirksz and Scherpen controller for J1. (c) Reyes-Báez et al.
controller for J2. (d) Dirksz and Scherpen controller for J2

Finally, Figure 5.6 shows the control signal created by the controller for J1 and
J2, which converges at zero after the control action has stabilized the position error.
As can be seen, the energy necessary to control the position for the manipulator is
similar for both port-Hamiltonian controllers for J1 and J2.
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5.1.2 Trajectory tracking experiment.

For this test, both joints were set to follow a sinusoidal trajectory described by the
equations c1sin(w1t) and c2sin(w2t) respectively. Then, for J2, the frequency of the
movement were set to be twice as fast as the frequency for J1. The amplitude of the
movements was set to 30◦. For the Reyes-Báez et al. (2016) controller the parameters
used have been set as Kd = diag(−20,−2.8) and λ = diag(35,3.1), while for the
Dirksz and Scherpen controller the parameters used have been set as Kd = diag(3,3),
Kc = diag(300,40) and Kp = diag(500,60). The trajectory measured by the sensors
can be seen in Figure 5.7.
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Figure 5.7 Trajectory tracking experiment, rigid configuration: (a) Position trajectory
for J1. (b) Position trajectory for J2
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Figure 5.8 Position error comparison for J1, trajectory tracking experiment, rigid
configuration: LQR (blue), Reyes-Báez et al. (orange) and Dirksz and Scherpen
(yellow).
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Figure 5.9 Position error for J1, trajectory tracking experiment, rigid configuration:
(a) LQR. (b) Reyes-Báez et al.. (c) Dirksz and Scherpen.

Figures 5.8 and 5.9 show the position error for J1. The graphics shows that for a
trajectory tracking the Dirksz and Scherpen controller also has a better performance
than the Reyes-Báez et al. controller. The LQR proposed by the manufacturer
shows to be very inaccurate in comparison with both Hamiltonian controllers. The
maximum error for the Dirksz and Scherpen controller is 0.03◦ which is almost ten
times lower than the error for the LQR controller.
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Figure 5.10 Position error comparison for J2, trajectory tracking experiment, rigid
configuration: LQR (blue), Reyes-Báez et al. (orange) and Dirksz and Scherpen
(yellow).
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Figure 5.11 Position error for J2, trajectory tracking experiment, rigid configuration:
(a) LQR. (b) Reyes-Báez et al.. (c) Dirksz and Scherpen.

Figures 5.10 and 5.11 show the position error for J2. As expected, the same
behavior that showed Figure 5.8 for J1 applies for J2. The Dirksz and Scherpen con-
troller has a better performance than the other two controllers. For J2 the difference
between the two port-Hamiltonian controllers increases, as the error in Reyes-Báez
et al. controller is more important than in the articulation J1.
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Figure 5.12 Control signal, trajectory tracking experiment, rigid configuration: (a)
Reyes-Báez et al. controller for J1. (b) Dirksz and Scherpen controller for J1. (c)
Reyes-Báez et al. controller for J2. (d) Dirksz and Scherpen controller for J2

Finally, Figure 5.12 shows the control signal created by the controller for both, J1

and J2, which converges at zero after the control action has stabilized the position
error. Like the previous experiment, it is interesting to remark that even tough the
Dirksz and Scherpen controller was able to achieve a better performance, it does not
require more energy to accomplish the stabilization of the joints.
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5.2 Flexible model.

In this section, the trajectory tracking controller for the 2R planar manipulator is
tested in order to prove the performance of the proposed Hamiltonian control law
as a multi-scale system. Two different experiments have been carried out in order to
test the performance of the controllers: the movement of the joints to a fixed position
and the movement following a time-variant trajectory.

Recalling Chapter 3 for the flexible configuration the system has a PH structure
described in (3.16) with the explicit equations for the derivatives of the Hamiltonian
in (4.11), (4.12), (4.13), (4.15), (4.16), (4.17) and (4.18). Moreover, for the Reyes-Báez
et al. multi-scale system described in (3.37), (3.38), (3.39) and 3.54, the explicit
equations can be found in (4.21), (4.23) and (4.24) alongside the explicit inertia
matrix in (4.8). Furthermore, for the Jardón-Kojakhmetov et al. multi-scale system
described in (3.52) and 3.53, the explicit equations can be found in (4.25), (4.26),
(4.27), (4.28), (4.29) and (4.31) alongside the explicit inertia matrix given by (4.9).

5.2.1 Set-point experiment.

For this test, both joints were set to a fixed position of 30◦. For the Reyes-Báez et al.
(2016) multi-scale controller the parameters used have been set as Kd = diag(−5,−1),
λ = diag(50,5), Kv = diag(−14,−16) and ϵ = 0.3, while for the Jardón-Kojakhmetov
et al. multi-scale controller the parameters used have been set as Kd = diag(3,3),
Kc = diag(100,100), Kp = diag(300,200), Ld = diag(3,3), Lc = diag(300,300) and
Lp = diag(200,100) and ϵ = 0.03. The trajectory measured by the sensors in each
articulations can be seen in Figure 5.13.
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Figure 5.13 Set-point experiment, flexible configuration: (a) Position trajectory for J1.
(b) Position trajectory for J2
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Figure 5.14 Position error comparison for J1, set-point experiment, flexible configura-
tion: Partial-state feedback LQR (blue), Full state feedback LQR (orange) Reyes-Báez
et al. slow controller (yellow) and Jardón-Kojakhmetov et al. slow controller (pur-
ple).
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Figure 5.15 Position error for J1, set-point experiment, flexible configuration: (a)
Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Reyes-Báez et al. slow
controller. (d) Jardón-Kojakhmetov et al. slow controller

Figures 5.14 and 5.15 show the position error for J1. The smoother transient
behavior is generated by the LQR Full-State Feedback controller, however the Jardón-
Kojakhmetov et al. controller experiences a lower error and a similar settling time.
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Figure 5.16 Position error comparison for J2, set-point experiment, flexible configura-
tion: Partial-state feedback LQR (blue), Full-state feedback LQR (orange) Reyes-Báez
et al. slow controller (yellow) and Jardón-Kojakhmetov et al. slow controller (pur-
ple).
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Figure 5.17 Position error for J2, set-point experiment, flexible configuration: (a)
Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Reyes-Báez et al. slow
controller. (d) Jardón-Kojakhmetov et al. slow controller.

Figures 5.16 and 5.17 shows the position error for J2. Jardón-Kojakhmetov et al.
controller has the best behavior with a lower settling time, only comparable with
the settling time for the Full-state feedback LQR controller.
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Figure 5.18 Flexible error comparison for J1, set-point experiment, flexible configura-
tion: Partial-state feedback LQR (blue), Full-state feedback LQR (orange) Spong fast
controller (yellow) and Jardón-Kojakhmetov et al. fast controller (purple).
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Figure 5.19 Flexible error for J1, set-point experiment, flexible configuration: (a)
Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Spong fast controller. (d)
Jardón-Kojakhmetov et al. fast controller

Figures 5.18 and 5.19 shows the flexible error for J1. As expected, the worst
behavior is produced by the LQR Partial-State Feedback controller, as it does not
take into account the displacement between motor position and link position. On
the other hand, the Jardón-Kojakhmetov et al. fast controller proves to be able to
damp the oscillations faster than any other controller.
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Figure 5.20 Flexible error comparison for J2, set-point experiment, flexible configura-
tion: Partial-state feedback LQR (blue), Full-state feedback LQR (orange) Spong fast
controller (yellow) and Jardón-Kojakhmetov et al. fast controller (purple).
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Figure 5.21 Flexible error for J2, set-point experiment, flexible configuration: (a)
Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Spong fast controller. (d)
Jardón-Kojakhmetov et al. fast controller

Figures 5.20 and 5.21 show the flexible error for J2. The Jardón-Kojakhmetov
et al. (2017) fast controller proves to be able to damp the oscillations faster than any
other controller at 2s while the response of both the LQR controllers are not able to
properly stabilize the difference in the position of the link.
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Figure 5.22 Control signal, set-point experiment, flexible configuration: (a) Reyes-
Báez et al. multi-scale controller for J1. (b) Jardón-Kojakhmetov et al. multi-scale
controller for J1. (c) Reyes-Báez et al. multi-scale controller for J2. (d) Jardón-
Kojakhmetov et al. multi-scale controller for J2

Figure 5.22 shows the control signal created by the controller for both, J1 and J2,
which converges at zero after the control action has stabilized the position error.
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5.2.2 Trajectory tracking experiment.

For this test, both joints were set to follow a sinusoidal trajectory described by
the equations c1sin(w1t) and c2sin(w2t) respectively. For J2, the frequency of the
movement were set to be twice as fast as the frequency for J1. The amplitude of the
movements was set to 30◦. For the Reyes-Báez et al. (2016) multi-scale controller
the parameters used have been set as Kd = diag(−5,−1), λ = diag(50,5), Kv =

diag(−14,−16) and ϵ = 0.3, while for the Jardón-Kojakhmetov et al. multi-scale
controller the parameters used have been set as Kd = diag(3,3), Kc = diag(100,100),
Kp = diag(300,200), Ld = diag(3,3), Lc = diag(300,300) and Lp = diag(200,100) and
ϵ = 0.03. The trajectory followed can be seen in Figure 5.23.
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Figure 5.23 trajectory tracking experiment experiment, flexible configuration: (a)
Position trajectory for J1. (b) Position trajectory for J2
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Figure 5.24 Position error comparison for J1, trajectory tracking experiment, flexible
configuration: Partial-state feedback LQR (blue), Full-state feedback LQR (orange)
Reyes-Báez et al. slow controller (yellow) and Jardón-Kojakhmetov et al. slow
controller (purple).
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Figure 5.25 Position error for J1, trajectory tracking experiment, flexible configuration:
(a) Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Reyes-Báez et al. slow
controller. (d) Jardón-Kojakhmetov et al. slow controller

Figures 5.24 and 5.25 show the position error for the Joint 1, where the full-state
feedback prove to be inefficient for trajectory tracking movement. On the other hand
both the Reyes-Báez et al. and the Jardón-Kojakhmetov et al. controller prove to
have a better stability for trajectory tracking.
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Figure 5.26 Position error comparison for J2, trajectory tracking experiment, flexible
configuration: Partial-state feedback LQR (blue), Full-state feedback LQR (orange)
Reyes-Báez et al. slow controller (yellow) and Jardón-Kojakhmetov et al. slow
controller (purple).
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Figure 5.27 Position error for J2, trajectory tracking experiment, flexible configuration:
(a) Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Reyes-Báez et al. slow
controller. (d) Jardón-Kojakhmetov et al. slow controller

Figures 5.26 and 5.27 show the position error for the Joint 2, where The Full-State
feedback controller has a higher position error in comparison to the rest of the
controllers, while both PH systems have similar performance..
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Figure 5.28 Flexible error comparison for J1, trajectory tracking experiment, flexible
configuration: Partial-state feedback LQR (blue), Full-state feedback LQR (orange)
Spong fast controller (yellow) and Jardón-Kojakhmetov et al. fast controller (purple).
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Figure 5.29 Flexible error for J1, trajectory tracking experiment, flexible configuration:
(a) Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Spong fast controller.
(d) Jardón-Kojakhmetov et al. fast controller

Figures 5.28 and 5.29 show the flexible error for the Joint 1. As can be seen, the
flexible error for the Jardón-Kojakhmetov et al. fast controller struggles to stabilize
at first but has a lower error later on in comparison with the other controllers.
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Figure 5.30 Flexible error comparison for J2, trajectory tracking experiment, flexible
configuration: Partial-state feedback LQR (blue), Full-state feedback LQR (orange)
Spong fast controller (yellow) and Jardón-Kojakhmetov et al. fast controller (purple).

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.5

0

0.5

1

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.4

-0.2

0

0.2

0.4

0.6

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.5

0

0.5

1

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.4

-0.2

0

0.2

0.4

(d)

Figure 5.31 Flexible error for J2, trajectory tracking experiment, flexible configuration:
(a) Partial-state feedback LQR. (b) Full-state feedback LQR. (c) Spong fast controller.
(d) Jardón-Kojakhmetov et al. fast controller.

Figures 5.30 and 5.31 show the flexible error for the Joint 2. As can be seen, the
Spong fast controller experiences chaotic oscillations in two different occasions, but
the controller managed to stabilize them. The best performance with respect to the
error is experienced by the Jardón-Kojakhmetov et al. fast controller.
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Figure 5.32 Control signal, trajectory tracking experiment, flexible configuration:
(a) Reyes-Báez et al. multi-scale controller for J1. (b) Jardón-Kojakhmetov et al.
multi-scale controller for J1. (c) Reyes-Báez et al. multi-scale controller for J2. (d)
Jardón-Kojakhmetov et al. multi-scale controller for J2.

Figure 5.32 shows the control signal for J1 and J2. As can be seen, both controllers
demand roughly the same energy for the control action with a similar response.
Under these circumstances the the energy used is not a determining factor when
choosing between the two controllers.
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5.3 Chapter 5 concluding remarks.

This chapter presented the graphics for the experimental results for the rigid and the
flexible configuration. For the set-point experiment with the rigid configuration, the
comparison between the graphics of the position error can be seen in Figures 5.2 and
5.4. Furthermore, for the trajectory-tracking experiment with the rigid configuration,
the comparison between the results for the position error can be seen in Figures 5.8
and 5.10.

Now, for the set-point experiment with the flexible configuration, the comparison
between the graphics of the position error can be seen in Figures 5.14 and 5.16, while
the comparison between the graphics of the flexible error can be seen in Figures
5.18 and 5.20. Likewise, for the trajectory-tracking experiment with the flexible
configuration, the comparison between the graphics of the position error can be seen
in Figures 5.24 and 5.26, while the comparison between the graphics of the flexible
error can be seen in Figures 5.28 and 5.30.

Next, the discussion of the experimental results and the simulations regarding
the performance of the controllers is presented in order to verify compliance with
the objectives.



Chapter 6

Discussion.

In this section the results achieved by the simulations in Chapter 4 and the exper-
imental implementation of the controllers in Chapter 5 is analyzed with the aim
of thoroughly understand their behavior. As has been the custom throughout the
document, the analysis has taken place separately for the rigid configuration as well
as for the flexible configuration.

6.1 Rigid configuration analysis.

While for the Reyes-Báez et al. controller the simulations gave rise to graphics
with the same behavior as former experiments carried out with the controller as in
Reyes-Báez et al. (2016), the simulations for Dirksz and Scherpen yielded graphics
with a different response as the previous work in Dirksz (2011). This is due to
the parameters used for the controller in both simulations: while the parameters
used in Dirksz (2011) have been able to stabilize the system with lower transient
oscillations, once implemented in the physical system the controller was not able
to follow the desired trajectory. On the other hand, the parameters used in this
document succeeded in the control task, as proven by the results shown in Figures
5.3 and 5.5.

Comparing the results of the simulation for Reyes-Báez et al. controller and
Dirksz and Scherpen (2013) controller, as well as the results obtained by other
experiments (see Reyes-Báez et al. (2016) and Dirksz (2011)), the first controller is
able to stabilize faster than the second, as well as having lower oscillations in the
transient state. The later can be explained by the way both controllers have been
designed: while the Reyes-Báez et al. controller uses both position and velocities to
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accomplish the control action, the Dirksz and Scherpen controller limits itself to the
use of only position measurements.

As for the experimental results, the first test performed for the rigid configuration
was the set-point experiment, which has been performed to analyze the accuracy in
the steady state and the speed with which the system error converges to zero. As
expected, Figures 5.2 and 5.3 show that the response obtained by the LQR controller
has a higher error than both the PH-controllers. Even tough the results for the PH
controllers are similar, the Dirksz and Scherpen (2013) controller appears to have a
better performance than the Reyes-Báez et al. (2016) controller.

For the trajectory tracking experiment, the results obtained follow the same
behavior as the set-point experiment. The LQR controller is not able to minimize
the position error, while both PH controllers have been able to reduce it at least ten
times. One of the most important observations regarding the trajectory tracking
experiment is that even tough in the simulations exposed in Figures 4.2 and 4.5
the position error converges to zero, none of the controllers implemented is able to
achieve the same results experimentally. This can be caused by several reasons like:

• Parameters uncertainties in M(q) which causes the system to have a different
behavior in the simulations.

• Internal friction could provoke a damping effect which increases the response
time. Also, ignoring the internal damping effect forces the controller to exceed
the energy truly necessary to stabilize the system.

• Hysteresis in the motor could cause a lag in the response, and a range of posi-
tion error in which the energy supplied is not enough to start the movement.

• The simulations ignore the parameters necessary to transform the desired
torque into the input current, such as the gear ratio, the maximum current
input and the torque constants of the motor.

Another side effect of the difference in the position error in comparison to the
simulations is the energy needed to stabilize the system. While for the simulations
the energy values was in the order of 10−3, the experimental results are considerably
higher. Comparing the experimental results, the energy used by each controller
is roughly the same for similar results, which means that the energy necessary to
achieve the control task is not a factor to determine which controller to use.

Using statistics methods to compare the results for the trajectory tracking of the
rigid robot, an algorithm to calculate the l2 norm (the square root of the sum of the
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Table 6.1 l2 norm for the position error, trajectory tracking for the rigid model

Controller l2 norm
J1 J2

Quanser LQR 51.1230 67.4221
Reyes-Báez et al. 8.1541 14.1194

Dirksz and Scherpen 2.9949 4.2283

absolute values squared) was used to compare the position error for each controllers,
the results are exposed in Table 6.1. Unlike in the simulations, the results for the
position error for the Dirksz and Scherpen controller have better performance than
the results for Reyes-Báez et al.. As has been stated, the second controller uses
both the position and the velocity of the system, which is a problem with the 2DoF
Quanser manipulator robot as it only has position sensors. The velocity of the system
is calculated with a derivative filter which is not an ideal measurement method,
causing a lot of undesired oscillations and uncertainties. That’s why a controller
with only position measurements as the proposed by Dirksz and Scherpen is far
better suited to the task.

The same results regarding the performance of the controllers have been achieved
with the analysis of the RMS value of each signal, as can be seen in Table 6.2. In this
table, the RMS values calculated for each controller are shown, as well as the rate
error obtained after the comparison of the RMS value of the position error with the
RMS value of the desired trajectory (experimentally, with a sinusoidal wave with an
amplitude of 30◦ should be around the theoretical value of 21.21◦). As can be seen,
the error rate for the LQR controller is considerably bigger in comparison with the
error rate achieved by the proposed PH controllers.

Table 6.2 RMS analysis for the position error, trajectory tracking for the rigid model

Controller RMS (◦) Error rate (%)
J1 J2 J1 J2

Quanser LQR 0.2286 0.3015 1.1032 1.4348
Reyes-Báez et al. 0.0172 0.0438 0.0832 0.2085

Dirksz and Scherpen 0.0134 0.0189 0.0646 0.0900
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6.2 Flexible configuration analysis.

Unlike for the rigid configuration experiments which have been developed in van
Logtestijn (2010) (at least for the Dirksz and Scherpen controller), there is not a single
study for the experimental implementation of PH controllers in a flexible robot.
Thus the analysis of the results obtained for the flexible configuration can not be
compared with some previous work.

However, for the simulations of the flexible configuration and the expanded
mechanical system there exist previous work as in Jardón-Kojakhmetov et al. (2017)
and the Reyes-Báez et al. (2017) for the respective multi-scale controllers. Once
again, the same behavior as for the rigid configuration appeared: The Reyes-Báez
et al. yielded similar results as those obtained by the author, while for the Jardón-
Kojakhmetov et al. resulted in different graphics as those obtained in the previous
work of van Logtestijn (2010) and Jardón-Kojakhmetov et al. (2017) due to the
difference in the parameters, as has already been explained in the previous section.

Now, comparing the results of the simulations between the Reyes-Báez et al.
multi-scale controller and the Jardón-Kojakhmetov et al. multi-scale controller, we
can observe the same general behavior as for the rigid configuration. The Reyes-
Báez et al. multi-scale controller is able to stabilize the error faster than the Jardón-
Kojakhmetov et al. multi-scale controller, having lower oscillations in the transient
state. Besides, the flexible error for both cases is minimum and can be despised in
comparison with the position error.

As for the experimental results, and like for the rigid configuration, the first test
performed was the set-point experiment to analyze the accuracy in the steady state
and the speed with which the position error and the flexible error converge to zero.
Figures 5.15 and 5.17 show that the response obtained by the Partial state feedback
LQR controller is highly inaccurate because of the oscillations due to the flexible joint,
while the full-state feedback LQR controller solves the oscillations but increases the
overshoot of the error. Now for the PH controllers, the Reyes-Báez et al. multi-scale
controller is not able to damp the oscillations, unlike the Jardón-Kojakhmetov et al.
multi-scale controller which seems to have the best response. This improvement
in the convergence of the error because of the better control of the flexible error for
the Jardón-Kojakhmetov et al. controller, as can be seen in Figures 5.19 and 5.21.
The fast controller has an structure designed following the same model as the slow
controller, unlike the Spong fast controller which has just a proportional gain.
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Now for the trajectory tracking experiment, Figures 5.25 and 5.27 show that the
partial-state feedback is not able to minimize the flexible error due to the springs in
the joints, while the full-state feedback LQR controller shows an improvement in the
response of the system in comparison with the set-point experiment. Moreover, the
proposed PH controllers are able to minimize the error even more than the full-state
LQR controller. For the flexible error in Figures 5.29 and 5.31, the same behavior
as for the set-point experiment was observed: the Jardón-Kojakhmetov et al. fast
controller was able to damp completely the oscillations after 2 seconds, unlike the
Spong fast controller and the full-state feedback LQR controller which had both a
slower response. It is important to notice that like for the rigid model configuration
the trajectory tracking graphics are different in comparison with the simulations
for the flexible configuration in Figures 4.8 and 4.13 The position error is not able
to converge completely to zero as in the simulations and the flexible error is not
little enough to be despised. In the last section several reasons for the difference
between the simulations and the experimental results have been given, however for
the flexible configuration there exist more reasons like:

• The increase in the number of variables of the system multiplies the uncertain-
ties related to the parameters of the system. Besides, new parameters like the
spring coefficient are needed for the flexible configuration.

• The sensor for the position of the links does not have enough precision as it
would be desired. The change in the position of the link is measured with the
change of resistance of a potentiometer, unlike the position of the motor which
is read with an encoder.

• The shaft of the potentiometer used to measure the link position is coupled to
the motor by means of friction, however the friction coefficient of the materials
is not enough as to ensure the absence of some sliding effects.

Regarding the energy used by the system, the amount of energy necessary to
stabilize the system for the experimental implementation is higher in comparison
with the simulations, due to the fact that the position error and the flexible error are
considerably bigger. Comparing the experimental results, the energy used by each
controller is roughly the same for similar results, which means that the energy is not
a factor to determine which controller to use.

Using statistics methods to compare the results for the trajectory tracking of the
flexible configuration, and like it has already been performed for the rigid model,
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Table 6.3 l2 norm for the position error, trajectory tracking for the rigid model

Controller l2 norm
J1 J2

Partial-state feedback LQR 164.7326 232.8625
Full-state feedback LQR 61.9786 90.8298

Reyes-Báez et al. 42.6991 56.4968
Dirksz and Scherpen 35.8799 46.9208

an algorithm to calculate the l2 norm of the position and the flexible error was
used and the results are exposed in Table 6.3. As was observed in the graphics, the
Jardón-Kojakhmetov et al. multi-scale controller have a better performance than the
Reyes-Báez et al. multi-scale controller.

The same results regarding the performance of the controllers have been achieved
with the analysis of the RMS value of each error signal, as can be seen in Table 6.4.
In this table, the RMS values calculated for each controller as shown as well as the
rate error obtained after the comparison of the RMS value of the position error with
the RMS value of the desired trajectory.

6.3 Chapter 6 concluding remarks.

The validity of the proposed PH control law’s is validated by the simulation shown
in Chapter 4. Even tough in previous work as Dirksz and Scherpen (2013) and Reyes-
Báez et al. (2016) the graphics are quite different to the ones achieved during this
work, the parameters used have proven to be far more efficient for the experimental
tests.

According to the set-point experiment, the proposed PH controllers are far better
suited for the task of stabilization of the position error than the benchmark LQR

Table 6.4 RMS analysis for the position error, trajectory tracking for the rigid model

Controller RMS (◦) Error rate (%)
J1 J2 J1 J2

Partial-state feedback LQR 0.7367 1.0414 3.4734 4.9099
Full-state feedback LQR 0.2772 0.4062 1.3068 1.9151

Reyes-Báez et al. 0.1910 0.2527 0.9003 1.1912
Jardón-Kojakhmetov et al. 0.1605 0.2098 0.7565 0.9893
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controller proposed by Quanser, which was evident because of the absence of an
overshoot in the graphics. Moreover, for the trajectory tracking experiment on the
rigid configuration, both PH controllers have been able to stabilize the system with
an error lower than 0.1◦ as was established by the objectives of the research, with
the Dirksz and Scherpen as the best controller for the task, followed closely by the
Reyes-Báez et al. controller. The last statement can be attributed to the structure
in the design of the last, regarding the unavailability of velocity measures on the
physical plant. The performance of the controller has been analyzed using l2 norm
of the signals as well as the analysis of the RMS values of the position error.

Now, for the set-pint experiment on the flexible configuration, the need for better
controllers to damp the oscillations caused by the spring was evident, as only the
Jardón-Kojakhmetov et al. fast controller has been able to stabilize the system with a
low settling time. Furthermore, for the trajectory tracking experiment on the flexible
configuration both PH controllers have been able to stabilize the system with an
error lower than 0.5◦ as was established by the objectives of the research. The best
performance in the control of the position error and the flexible error of the expanded
system has been achieved by the Jardón-Kojakhmetov et al. multi-scale controller.
Once again, the performance of the controller has been analyzed using l2 norm of
the signals as well as the analysis of the RMS values of the position error.

Next, and according to the discussion carried out on this chapter, the conclusions
drawn for this work are presented, as well as the recommendations for the future
work on the study of nonlinear flexible robots.





Chapter 7

Conclusion and recommendations.

In this chapter the conclusions for the research are presented, according to the
results achieved in Chapters 4 and 5 and the discussion in Chapter 6. Furthermore,
the recommendations for the research in nonlinear controllers for flexible robots is
proposed in order to guide the future work.

7.1 Conclusions.

The mathematical theory for PH controllers in Jardón-Kojakhmetov et al. (2017),
Dirksz and Scherpen (2013) and Reyes-Báez et al. (2016) has been adapted to the
2DoF Quanser Model for the rigid configuration and expanded for the flexible
configuration. Besides, the mathematical description of the Quanser manipulator
have been summarized in order to ease the future work with the physical plant.

Moreover, the mathematical model for the 2DoF Quanser manipulator robot and
the proposed PH controllers have been simulated in order to test the performance of
the proposed controllers for both the rigid and the flexible configuration. Even tough
in both cases the desired settling time has been satisfied, the Dirksz and Scherpen
controller presented the best performance due to the robot characteristics as has
been discussed in the previous chapter.

Furthermore and considerably the main contribution of this research consists in
the experimental tests performed after the physical implementation of the proposed
PH controllers in the 2DoF Quanser manipulator robot. Until the date of publica-
tion of this research, there is not a single similar experiment performed with PH
controllers for a flexible robot. For the Reyes-Báez et al. rigid controller it is the
first time that results are achieved after the experimental implementation of the
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controller and the graphics showed in this document will be presented in several
conferences in European universities. For the Dirksz and Scherpen (2013) rigid
controller, the experimental results achieved by this research are far superior to the
previous work carried out in van Logtestijn (2010) in terms of position error. For the
flexible configuration, both PH controllers have been physically implemented for
the first time and the parameters established in the objectives have been fulfilled,
with the Jardón-Kojakhmetov et al. multi-scale controller showing the best system
response, as has been discussed in the previous section.

7.2 Recommendations.

The job realized and summarized in this document is just one more step within a
bigger project for the research group of the Discrete Technology and Production
Automation department.

For the Reyes-Báez et al. multi-scale controller, the fast system have been taken
from Spong (1990) and for that reason the control of the flexible error is not as optimal
as in the Jardón-Kojakhmetov et al. multi-scale controller. A new publication
regarding the control of flexible robots using the contraction methods theory is
currently being developed in order to achieve a more detailed expanded control
law. For future work, the Spong fast controller could be substituted by the new fast
controller proposed by Reyes-Báez et al. (2017).

Furthermore, even when the proposed PH controllers have been able to achieve
better results than the LQR controller proposed by Quanser, the mathematical model
used by the second is more accurate because it considers several values which the
mathematical model described in this document ignores, such as the internal friction
of the motors. A new mathematical model for the physical plant could help to
improve the response of the system.

Moreover, the parameters used by the proposed PH controllers have been
achieved by a systematic trial-and-error procedure, while the LQR controller applies
a tunning software to achieve the best possible results. The development of a tun-
ning algorithm for the PH controllers could help to improve the performance of the
controllers.

Finally, following the schedule of the Discrete Technology and Production Au-
tomation department, after a few more experiments and new controllers are tested
in the 2DoF Quanser manipulator robot, the next step is to develop nonlinear PH
controllers for a robotic arm with rigid joints and flexible articulations.
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Appendix A

Robot Specifications.

Table A.1 2DoF Quanser robot parameters

Symbol Description Value Units

J1 Moment of inertia of link 1 0.23041858 Kgm2

J2 Moment of inertia of link 2 0.010724 Kgm2

l1 Length to center of mass of link 1 0.343 m
l2 Length to center of mass of link 2 0.267 m

m1 Mass at the end of link 1 1.9585 Kg
m2 Mass at the end of link 2 0.1504 Kg

Torque constant motor 1 0.119 Nm/A
Torque constant motor 2 0.0234 Nm/A

Maximum continuous current motor 1 0.944 A
Maximum continuous current motor 2 1.21 A

Gear ratio harmonic drive 1 100
Gear ratio harmonic drive 2 50

2DoF Flexible link total length 0.610 m
Lenghth link 1 0.343 m
Lenghth link 2 0.267 m

lines per revolution 1024





Appendix B

Simulink diagrams.
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Appendix C

Matlab code.

C.1 Reyes-Báez et al. controller for the rigid model.

1 % Rigid model simulation, Reyes-Baez et al. controller
2 clear;close all;clc;
3

4 % Define the variables
5 syms q1 q2 p1 p2 dq1 dq2 real
6 syms d1 d2 u1 u2 real
7 syms t real
8 syms qc1 qc2 real
9 syms Q1 Q2 real

10

11 % Define the constants
12 m1 = 1.9585;
13 m2 = 0.1504;
14 I1 = 0.23041858;
15 I2 = 0.010724;
16 r1 = 0.2;
17 r2 = 0.25;
18 l1 = 0.343;
19 l2 = 0.267;
20 c1 = 30*(pi/180);
21 c2 = 30*(pi/180);
22 w1 = 0.2;
23 w2 = 0.4;
24 d1 = 0.5;
25 d2 = 0.1;

Figure C.1 Matlab code for Reyes-Báez et al. controller, rigid configuration, part 1.



90 Matlab code.

1 Im1 = 0.1;
2 Im2 = 0.1;
3

4 % Defining variable vectors
5 p = [p1 ; p2];
6 q = [q1 ; q2];
7

8 % Defining Mass-Inertia Matrix
9 a1 = m1*r1^2 + m2*l1^2 + I1;

10 a2 = m2*r2^2 + I2;
11 b = m2*l1*r2;
12

13 M = [a1+a2+2*b*cos(q2) a2+b*cos(q2);a2+b*cos(q2) a2];
14

15 % Define the Hamiltonian
16 H=simplify(0.5*[p1 p2]*(M^(-1))*[p1;p2]);
17

18 % Matrices
19 B = [1 0; 0 1];
20 D = [d1 0; 0 d2];
21 U=[u1; u2];
22 I = eye(2);
23 O = zeros(2);
24

25 % Full system in Hamiltonian
26 Eq=simplify([O I; -I ...

-D]*[diff(H,q1);diff(H,q2);diff(H,p1);diff(H,p2)]+[O;B]*U);
27

28 % ********************* Controller approach ****************/
29 % Define desired trajectory
30 q1d = c1*sin(w1*t);
31 q2d = c2*sin(w2*t);
32 qd = [q1d; q2d];
33

34 dq1d = diff(q1d,t);
35 dq2d = diff(q2d,t);
36 dqd = [dq1d; dq2d];
37

38 Ddq1d = diff(dq1d,t);
39 Ddq2d = diff(dq2d,t);
40 Ddqd = [Ddq1d; Ddq2d];
41

42 % Change of variables
43 M2 = subs(M,q2,q2d);
44 P = simplify(M2*dqd);
45

46 % Defining Matrix
47 Kd = [-20 0; 0 -2.6];

Figure C.2 Matlab code for Reyes-Báez et al. controller, rigid configuration, part 2.
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1 % System error
2 Q = q - qd;
3

4 pdo = simplify(M*dqd);
5 Lambda = [35 0 ; 0 3.1];
6 pr = simplify(pdo - Lambda*Q);
7 S = p - pr;
8

9 % Controller dynamics
10 dpr = (diff(M,q1)*dq1+diff(M,q2)*dq2)*dqd + M*Ddqd - Lambda*([dq1; ...

dq2]-dqd);
11 Hpr = subs(H, p1, p1-S(1,1));
12 Hpr = subs(Hpr, p2, p2-S(2,1));
13 HS = subs(H, p1, p1-pr(1,1));
14 HS = subs(HS, p2, p2-pr(2,1));
15

16 U1 = dpr + [diff(Hpr,q1);diff(Hpr,q2)] + D*[diff(Hpr, ...
p1);diff(Hpr,p2)];

17 U2 = simplify(-Kd*[diff(HS,p1);diff(HS,p2)] - (M^(-1))*Lambda*Q + ...
[diff(pr'*(M^(-1))*S,q1) ; diff(pr'*(M^(-1))*S,q2)]);

18

19 U = U1 + U2;
20 QN = M^(-1)*p;
21 U = subs(U,dq1,QN(1,1));
22 U = subs(U,dq2,QN(2,1));
23

24

25 % Final System Equations
26 CEQ = simplify([O I; -I ...

-D]*[diff(H,q1);diff(H,q2);diff(H,p1);diff(H,p2)]+[O;B]*U);

Figure C.3 Matlab code for Reyes-Báez et al. controller, rigid configuration, part 3.
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C.2 Dirksz and Scherpen controller for the rigid model.

1 % Rigid model simulation, Dirksz and Scherpen controller
2 % Programmed by Juan Jose Padilla-Mora
3

4 clear;close all;clc;
5

6 % Define the variables
7 syms q1 q2 p1 p2 real
8 syms m1 m2 r1 r2 l1 l2 I1 I2 real
9 syms d1 d2 u1 u2 real

10 syms t c1 c2 w1 w2 real
11 syms qc1 qc2 real
12 syms kp1 kp2 kd1 kd2 kc1 kc2 real
13

14 Define the constants Constants
15 m1 = 1.9585;
16 m2 = 0.1504;
17 I1 = 0.23041858;
18 I2 = 0.010724;
19 r1 = 0.2;
20 r2 = 0.25;
21 l1 = 0.343;
22 l2 = 0.267;
23 c1 = 30*(pi/180);
24 c2 = 30*(pi/180);
25 w1 = 0.2;
26 w2 = 0.4;
27 d1 = 0.5;
28 d2 = 0.1;
29 Im1 = 0.1;
30 Im2 = 0.1;
31

32 % Defining vector variables
33 p = [p1 ; p2];
34 q = [q1 ; q2];
35

36 %Define Inertia-matrix
37 m11 = m1*l1^2+m2*((l1^2) +(l2^2) +2*l1*l2*cos(q2));
38 m21 = m2*((l2^2) +2*l1*l2*cos(q2));
39 m22 = m2*(l2^2);
40

41 M = [m11 m21; m21 m22];

Figure C.4 Matlab code Dirksz and Scherpen controller, rigid configuration, part 1.
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1 % Defining the Hamiltonian
2 H=simplify(0.5*[p1 p2]*(M^(-1))*[p1;p2]);
3

4 % Constant matrices
5 B = [1 0; 0 1];
6 D = [d1 0; 0 d2];
7 U=[u1; u2];
8 I = eye(2);
9 O = zeros(2);

10

11 % *************************** controller **********************/
12 % Defining Matrix
13 Kp = [5000 0; 0 600];
14 Kc = [3000 0; 0 400];
15 Kd = [3 0; 0 3];
16

17 % Desired trajectory
18 q1d = c1*sin(w1*t);
19 q2d = c2*sin(w2*t);
20 qd = [q1d; q2d];
21

22 dq1d = diff(q1d,t);
23 dq2d = diff(q2d,t);
24 dqd = [dq1d; dq2d];
25

26 Ddq1d = diff(dq1d,t);
27 Ddq2d = diff(dq2d,t);
28 Ddqd = [Ddq1d; Ddq2d];

Figure C.5 Matlab code Dirksz and Scherpen controller, rigid configuration, part 2.
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1 % Change of variables
2 Q = [q1; q2] - [q1d; q2d];
3 P = [p1; p2] - M*[dq1d; dq2d];
4 NH = 0.5*P'*(M^(-1))*P+0.5*Q'*Kp*Q;
5

6 % Controller dynamics
7 qc = [qc1;qc2];
8 v = Q - qc;
9 dcq = (Kd^(-1))*Kc*(Q - qc)

10

11 % Creating the input U
12 F1 = M*Ddqd;
13

14 VF1 = M*dqd;
15 DiffMatrix1 = [(diff(VF1(1,1), q1)) (diff(VF1(1,1), q2)); ...

(diff(VF1(2,1), q1)) (diff(VF1(2,1), q2))];
16 F2 = DiffMatrix1*dqd;
17

18 EF1 = dqd'*M*dqd;
19 F3 = 0.5*[(diff(EF1, q1)); (diff(EF1, q2))];
20

21 F4 = Kp*Q;
22 F5 = Kc*v;
23

24 U = F1+F2-F3-F4-F5;
25

26 % Final System Equations
27 EqF = [O I; -I ...

-D]*[diff(NH,q1);diff(NH,q2);diff(NH,p1);diff(NH,p2)]+[O;B]*U

Figure C.6 Matlab code Dirksz and Scherpen controller, rigid configuration, part 3.
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C.3 Reyes-Báez et al. multi-scale controller for the flex-
ible model.

1 % Flexible model simulation, Reyes-Baez et al. multi-scale controller
2 % Programmed by Juan Jose Padilla-Mora
3 clear;close all;clc;
4

5 % Define the variables
6 syms q1 q2 p1 p2 dq1 dq2 real
7 syms qm1 qm2 pm1 pm2 dqm1 dqm2 real
8 syms z1 z2 pz1 pz2 dz1 dz2 real
9 syms t E

10 aux1 = sym('aux1(t)');
11 aux2 = sym('aux2(t)');
12

13 % Define the constants
14 m1 = 1.9585;
15 m2 = 0.1504;
16 I1 = 0.23041858;
17 I2 = 0.010724;
18 r1 = 0.2;
19 r2 = 0.25;
20 l1 = 0.343;
21 l2 = 0.267;
22 c1 = 30*(pi/180);
23 c2 = 30*(pi/180);
24 w1 = 0.2;
25 w2 = 0.4;
26 d1 = 0.5;
27 d2 = 0.1;
28 Im1 = 0.1;
29 Im2 = 0.1;
30 K1 = 78.6765;
31 K2 = 30.4639;

Figure C.7 Matlab code for Reyes-Báez et al. multi-scale controller, flexible configu-
ration, part 1.
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1 % Defining vector variables
2 p = [p1 ; p2];
3 pm = [pm1 ; pm2];
4 q = [q1 ; q2];
5 qm = [qm1 ; qm2];
6 z = [z1; z2];
7 pz = [pz1; pz2];
8 dq = [dq1; dq2];
9 dqm = [dqm1; dqm2];

10

11 qE_z = [q;z];
12 qE_q = [q;(q-qm)/E];
13

14 % Change of variables
15 pE_z = [p;pz];
16 pE_p = [p;(p-pm)/E];
17

18 QM = q-z*E;
19 PM = p-pz*E;
20

21 % Constant Matrix
22 I = eye(2);
23 O = zeros(2);
24 K = [K1 0; 0 K2];
25 IN = [Im1 0; 0 Im2];
26

27 % Define expanded Mass-Inertia matrix
28 a1 = m1*r1^2 + m2*l1^2 + I1;
29 a2 = m2*r2^2 + I2;
30 b = m2*l1*r2;
31

32 M = [a1+a2+2*b*cos(q2) a2+b*cos(q2);a2+b*cos(q2) a2];
33 ME = simplify([M O; O IN]);
34

35 % Defining the Hamiltonian
36 HE= simplify(0.5*pE_z'*(ME^(-1))*pE_z)+0.5*(E*z)'*K*(E*z);
37 HE2 = subs(HE, [z1 z2 pz1 pz2], [qE_q(3), qE_q(4), pE_p(3), pE_p(4)]);
38

39 % Constant matrix
40 D = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0];
41 I = eye(4);
42 O = zeros(4);

Figure C.8 Matlab code for Reyes-Báez et al. multi-scale controller, flexible configu-
ration, part 2.
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1 % Derivatives of the Hamiltonian
2 dif1 = simplify(diff(HE2,q1));
3 dif2 = simplify(diff(HE2,q2));
4 dif3 = simplify(diff(HE,z1));
5 dif4 = simplify(diff(HE,z2));
6 dif5 = simplify(diff(HE2,p1));
7 dif6 = simplify(diff(HE2,p2));
8 dif7 = simplify(diff(HE,pz1));
9 dif8 = simplify(diff(HE,pz2));

10 HM = [dif1; dif2; dif3; dif4; dif5; dif6; dif7; dif8];
11

12 % Full system in Hamiltonian without controller
13 Eq=simplify([O I; -I -D]*HM);
14

15 % ********************* Multi-scale controller ****************/
16 % Defining desired trajectory
17 q1d = c1*sin(w1*t);
18 q2d = c2*sin(w2*t);
19 qd = [q1d; q2d];
20

21 dq1d = diff(q1d,t);
22 dq2d = diff(q2d,t);
23 dqd = [dq1d; dq2d];
24

25 Ddq1d = diff(dq1d,t);
26 Ddq2d = diff(dq2d,t);
27 Ddqd = [Ddq1d; Ddq2d];
28

29 % Change of variables
30 M2 = subs(M,q2,q2d);
31 P = simplify(M2*dqd);
32

33 %Controller parameters
34 Kd = [-5.5 0; 0 -1];
35 Lambda = [50 0 ; 0 5];

Figure C.9 Matlab code for Reyes-Báez et al. multi-scale controller, flexible configu-
ration, part 3.
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1 % System error
2 Q = q - qd;
3

4 pdo = simplify(M*dqd);
5 pr = simplify(pdo - Lambda*Q);
6 S = p - pr;
7

8 % Slow controller dynamics
9 dpr = (diff(M,q1)*dq1+diff(M,q2)*dq2)*dqd + M*Ddqd - Lambda*([dq1; ...

dq2]-dqd);
10

11 Hpr = subs(HE2, p1, p1-S(1,1));
12 Hpr = subs(Hpr, p2, p2-S(2,1));
13 HS = subs(HE2, p1, p1-pr(1,1));
14 HS = subs(HS, p2, p2-pr(2,1));
15

16 U1 = simplify((dpr + [diff(Hpr,q1);diff(Hpr,q2)]));
17 U2 = simplify((-Kd*[diff(HS,p1);diff(HS,p2)] - (M^(-1))*Lambda*Q + ...

[diff(pr'*(M^(-1))*S,q1) ; diff(pr'*(M^(-1))*S,q2)]));
18 Us = U1 + U2;
19

20 QN = M^(-1)*p;
21 Us = subs(Us,dq1,QN(1,1));
22 Us = subs(Us,dq2,QN(2,1));
23

24 % Fast controller
25 kv = [-14 0; 0 -16];
26 dEz = (dq-dqm);
27 Uf = kv*dEz;
28

29 % Final System Dynamics
30 U = Us+Uf;
31 ErrorQ = (M^(-1))*p - (M2^(-1))*(pr+Lambda*(q-qd));
32 ErrorZ = (M^(-1))*(p-pm);
33

34 EqF = [Eq(1); Eq(2); Eq(3); Eq(4); Eq(5); Eq(6); Eq(7)+U(1); ...
Eq(8)+U(2)];

35 qF = (M^(-1))*p;
36 qFm = (M^(-1))*pm;
37 EqF = subs(EqF, [dq1 dq2 dqm1 dqm2], [qF(1) qF(2) qFm(1) qFm(2)]);
38 EqF = subs(EqF, [qm1 qm2 pm1 pm2], [QM(1) QM(2) PM(1) PM(2)]);

Figure C.10 Matlab code for Reyes-Báez et al. multi-scale controller, flexible configu-
ration, part 4.
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C.4 Jardón-Kojakhmetov et al. multi-scale controller
for the flexible model.

1 % Flexible model simulation, Jardon-Kojakhmetov et al. multi-scale ...
controller

2 % Programmed by Juan Jose Padilla-Mora
3

4 % Define variables
5 syms q1 q2 p1 p2 real
6 syms qm1 qm2 pm1 pm2 real
7 syms z1 z2 pz1 pz2 real
8 t = sym('t','positive');
9 E = sym('E','positive');

10 syms qc1 qc2 Zc1 Zc2 real
11

12 % Define the constants
13 m1 = 1.9585;
14 m2 = 0.1504;
15 I1 = 0.23041858;
16 I2 = 0.010724;
17 r1 = 0.2;
18 r2 = 0.25;
19 l1 = 0.343;
20 l2 = 0.267;
21 c1 = 30*(pi/180);
22 c2 = 30*(pi/180);
23 w1 = 0.2;
24 w2 = 0.4;
25 d1 = 0.5;
26 d2 = 0.1;
27 Im1 = 0.1;
28 Im2 = 0.1;
29 K1 = 78.6765;
30 K2 = 30.4639;

Figure C.11 Matlab code for Jardón-Kojakhmetov et al. multi-scale controller, flexible
configuration, part 1.
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1 % Defining vector variables variables
2 p = [p1; p2];
3 pm = [pm1; pm2];
4 q = [q1 ; q2];
5 qm = [qm1 ; qm2];
6 z = [z1; z2];
7 pz = [pz1; pz2];
8

9 % Change of variables
10 qE_z = [q;z];
11 qE_q = [q;(q-qm)/E];
12 pE_z = [p;pz];
13 pE_p = [p;(p-pm)/E];
14 QM = q-z*E;
15 PM = p-pz*E;
16

17 % Constant Matrix
18 I = eye(2);
19 O = zeros(2);
20 K = [K1 0; 0 K2];
21 IN = [Im1 0; 0 Im2];
22

23 % Expanded Mass-Inertia matrix
24 m11 = m1*l1^2+m2*((l1^2) +(l2^2) +2*l1*l2*cos(q2));
25 m21 = m2*((l2^2) +2*l1*l2*cos(q2));
26 m22 = m2*(l2^2);
27

28 M = [m11 m21; m21 m22];
29 ME = simplify([M+IN -E*IN; -E*IN E*E*IN]);
30

31 % TE Matrix
32 TE = simplify(chol(ME,'lower', 'nocheck'));
33 t1 = simplify([TE(1,1) TE(1,2); TE(2,1) TE(2,2)]);
34 T = t1*t1';
35 t2 = simplify([TE(3,1) TE(3,2); TE(4,1) TE(4,2)]);
36 t3 = simplify([TE(3,3) TE(3,4); TE(4,3) TE(4,4)]);
37 t4 = simplify(chol(IN-IN*(T^-1)*IN,'lower', 'nocheck'));

Figure C.12 Matlab code for Jardón-Kojakhmetov et al. multi-scale controller, flexible
configuration, part 2.
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1 % Constants
2 alpha = simplify((t4^-1)*I*(T^-1));
3 eq1 = (t1^-1)*p;
4 beta = simplify([diff(eq1, q1) diff(eq1, q2)]);
5 eq2 = alpha*p;
6 gama = simplify([diff(eq2, q1) diff(eq2, q2)]);
7

8 % TE inversa
9 TEin = [(t1^-1) O; alpha (t4^-1)/E];

10

11 % JE Matrix
12 j1 = simplify(beta*(t1^-1)'-(t1^-1)*beta');
13

14 j21 = simplify(-beta*alpha'-(t1^-1)*gama');
15 eq3 = (t4^-1)*pz;
16 eq3 = subs(eq3, [pz1 pz2], [pE_p(3) pE_p(4)]);
17 j22 = simplify((t1^-1)*[diff(eq3,q1) diff(eq3,q2)]);
18 j2 = simplify(j21-(1/E)*j22);
19

20 j31 = simplify(-gama*alpha'+alpha*gama');
21 eq4 = (t4^-1)*pz;
22 eq4 = subs(eq4, [pz1 pz2], [pE_p(3) pE_p(4)]);
23 j32 = simplify([diff(eq4,q1) ...

diff(eq4,q2)]*alpha'-alpha*[diff(eq4,q1) diff(eq4,q2)]');
24 j3 = simplify(j31-(1/E)*j32);
25

26 % Final Matrix
27 FM = [O O (t1^-1) alpha'; O O O (t4^-1)'/E; -(t1^-1) O j1 ...

j21-j22/E; -alpha' -(t4^-1)/E -j21+j22/E -j32/E];
28

29 % Hamiltonian Matrix
30 HE = simplify(0.5*pE_z'*pE_z+0.5*(E*z)'*K*(E*z));
31 HE2 = subs(HE, [z1 z2 pz1 pz2], [qE_q(3), qE_q(4), pE_p(3), pE_p(4)]);
32

33 % derivatives of the Hamiltonian
34 dif1 = simplify(diff(HE2,q1));
35 dif2 = simplify(diff(HE2,q2));
36 dif3 = simplify(diff(HE,z1));
37 dif4 = simplify(diff(HE,z2));
38 dif5 = simplify(diff(HE2,p1));
39 dif6 = simplify(diff(HE2,p2));
40 dif7 = simplify(diff(HE,pz1));
41 dif8 = simplify(diff(HE,pz2));
42 HM = [dif1; dif2; dif3; dif4; dif5; dif6; dif7; dif8];

Figure C.13 Matlab code for Jardón-Kojakhmetov et al. multi-scale controller, flexible
configuration, part 3.
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1 % System Dynamics
2 Maux1 = FM*HM;
3 Maux2 = [Maux1(5); Maux1(6); Maux1(7); Maux1(8)];
4

5 % desired trajectory
6 q1d = c1*sin(w1*t);
7 q2d = c2*sin(w2*t);
8 qd = [q1d; q2d];
9

10 dq1d = diff(q1d,t);
11 dq2d = diff(q2d,t);
12 dqd = [dq1d; dq2d];
13

14 Ddq1d = diff(dq1d,t);
15 Ddq2d = diff(dq2d,t);
16 Ddqd = [Ddq1d; Ddq2d];
17

18 % Slow Controller
19 Kp = [300 0; 0 200];
20 Kc = [100 0; 0 100];
21 Kd = [3 0; 0 3];
22

23 % Slow controller dynamics
24 QC = [qc1;qc2];
25 dqc = (Kd^-1)*Kc*(q-qd-QC);
26

27 % Slow controller components
28 Us1 = M*Ddqd;
29

30 eq5 = M*dqd;
31 Us2 = [diff(eq5,q1) diff(eq5,q2)]*dqd;

Figure C.14 Matlab code for Jardón-Kojakhmetov et al. multi-scale controller, flexible
configuration, part 4.
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1 eq6 = dqd'*M*dqd;
2 Us3 = -0.5*[diff(eq6,q1); diff(eq6,q2)];
3

4 Us4 = -Kp*(q-qd);
5 Us5 = -Kc*(q-qd-QC);
6

7 Us = simplify(Us1+Us2+Us3+Us4+Us5);
8

9 % Fast Controller
10 Lp = [200 0; 0 100];
11 Lc = [300 0; 0 300];
12 Ld = [3 0; 0 3];
13

14 % Fast controller dynamics
15 Zc = [Zc1;Zc2];
16 dzc = (Ld^-1)*Lc*(z-Zc);
17 Uf = simplify(-Lp*z-Lc*(z-Zc));
18

19 % Final System Dynamics
20 U = [Us;Uf];
21 Maux3 = Maux2+U;
22 SD = [Maux1(1); Maux1(2); Maux1(3); Maux1(4); Maux3(1); Maux3(2); ...

Maux3(3); Maux3(4)];
23

24 Md = subs(M, q2, q2d);
25 pd = Md*dqd;
26

27 SD = subs(SD, [qm1 qm2 pm1 pm2], [QM(1) QM(2) PM(1) PM(2)]);

Figure C.15 Matlab code for Jardón-Kojakhmetov et al. multi-scale controller, flexible
configuration, part 5.





Appendix D

Spring coupling mechanical design.

This appendix is focused in the design of a mechanical extension for the springs of
the 2DoF Quanser manipulator robot. The joints are originally adapted to be used
with a pair of springs which will simulate the elastic behavior of a mechanical joint.
Several improvements have been sketched, presenting here the simplest, cheapest
and with the less impact in the system functioning.

Figure D.1 Original spring attachments

Figure D.1 shows the simple mechanical connection of the springs. It consists
of an assembly of two bronze components with a screwed coupling which fixes
the spring to the robot joint; a stainless steel pin in which the ring of the spring is
secured; and a mechanical spacer. The individual components of the assembly can
be seen in Figure D.2.
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Figure D.2 Spring attachment components: (from left to right) upper bronze coupling,
lower bronze coupling, mechanical spacer, stainless steel pin, spring.

As can be seen in Figure D.1, each coupling is designed to support only one
spring. If needed, the spring constant for the joint can only be increased by changing
the spring. A new mechanical attachment with the possibility to attach several
springs in parallel to increase the value of such constant is justified.

D.1 Proposal 1.

The proposed change for the spring coupling in the joint is shown in the Figure D.3.
It consists of an enlargement of the stainless steel pin supporting the springs, as
well as a mechanical spacers concentric to the pin in order to physically separate the
springs.

The spacers will not be subjected to any kind of forces, so they can be manufac-
tured with a material similar to PLA in a 3D printer machine. On the other hand,
the pin will be experiencing shear forces due to the action of the springs. For this
reason, an analysis of the mechanical stresses handled by the pin is necessary.

The pin has been studied as in F. Beer and Mazurek (2013) as a cantilevered beam
subjected to a force P at its end. If a cut in the beam is made at a distance x from the
support, the internal forces are a force P′ equal and opposite to P, and a moment M
with a magnitude M = Px.
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Figure D.3 Schematic of spring attachments: 1. springs, 2. designed mechanical
spacers, 3. upper bronze coupling, 4. lower bronze coupling, 5. support bar, 6.
stainless steel pin and 7. original mechanical spacer

This moment causes a sheer stress in the beam. Having I as the moment of inertia
of the beam of the cross-section with respect to it’s centroidal axis to the plane of M,
the stress is defined as

σm =
Mc

I
=

Pxc
I

, (D.1)

where P is defined as the force experienced by the pin because of the potential
energy stored in the springs, P = −kx. Assuming the worst scenario, in which 2
springs of 3,5 lbs/in are attached to the joint coupling, a single spring of 7 lb/in can
be modeled for the control system. Besides, the analysis has been carried out at a
distance of 8.5mm, which is the distance where the last spring will be secured. The
springs have a maximum elongation of 5mm. Then, the force applied by each spring
is

P = −kx

= 3.5lb/in · 5cm · 0,393701

≈ 6.89lb

≈ 30.65N,

(D.2)
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Finally, According to F. Beer and Mazurek (2013), the yield stress for the stainless
steel AISI 302 is 150MPa. The maximum sheer stress experienced by the pin if
manufactured with those materials is:

σsteel =
Pxc

I
,

=
(P1x1 + P2x2)c

I
,

=
P(x1 + x2 + x3)c

I
,

=
30.65N · (0.5mm + 8.5mm) · 1.55mm

0.25 · π · 1.55mm4 ,

≈ 94.3MPa.

(D.3)

D.2 Proposal 2.

The proposed change for the spring coupling in the joint is shown in the Figure D.4.
In this proposal, the component of interest is the upper bronze coupling, which has
been modified eliminating the through hole and creating an extension in the form of
a cantilevered beam. At its end, the beam ends with a screw thread to secure the
springs

Once again, there is a cantilevered beam subjected to a force P at its end, as
studied in F. Beer and Mazurek (2013). If a cut in the beam is made at a distance
x from the support, the internal forces are a force P′ equal and opposite to P, and
a moment M with a magnitude M = Px. This moment causes a sheer stress in the
beam. Having I as the moment of inertia of the beam Of the cross-section with
respect to it’s centroidal axis to the plane of M, the stress is calculated as

σm =
Mc

I
=

Pxc
I

, (D.4)

where P is defined as the force experienced by the pin because of the potential energy
stored in the springs, P = −kx. Assuming the worst scenario, in which 3 springs
of 3,5 lbs/in are attached to the joint coupling, a single spring of 10.5 lb/in can
be modeled for the control system. Besides, the analysis has been carried out at a
distance of 16.5mm, which is the distance where the last spring will be secured. The
springs have a maximum elongation of 5mm. The force applied by each spring is
the same as in D.2:
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Figure D.4 Schematic of spring attachments: 1. springs, 2. nut, 3. mechanical spacer,
4. upper bronze coupling, 5. lower bronze coupling and 6. support bar.

According to F. Beer and Mazurek (2013), the yield stress for the aluminum 6061
is 140MPa. The maximum sheer stress experienced by the pin if manufactured with
aluminum 6061 is:

σaluminum =
Pxc

I
,

=
(P1x1 + P2x2 + P3x3)c

I
,

=
P(x1 + x2 + x3 + P3x3)c

I
,

=
30.65N · (0.5mm + 8.5mm + 16.5mm) · 2mm

0.25 · π · 24 ,

≈ 124.4MPa.

(D.5)

D.3 Discussion.

The first design has the advantage of being easy to manufacture. The changes to
the original design are minimum, and the new parts are easy to machine by a lathe.
However, the dimensions of the original beam reduce the amount of springs that
can actually be set in that configurations (only two), because of the high sheer stress
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that would experience due to the force of the springs. Even changing the material of
the pin probably would not be enough to safely be able to attach another spring.

The second design has the advantage of being relatively easy to manufacture
(tough more complex than the proposal 1) and has the possibility to couple three
springs instead of two, because the area of the cantilevered beam is higher. The
material proposed is an aluminum 6061, but there are several other aluminum allows
that can be used, assuming a yield stress higher than 125MPa. Other materials as
stainless steel can be used to ensure the safety of the piece, however the price of the
work would rise.

The proposed designs presented in this document have been analyzed with
theoretical values and materials. The analysis shall be repeated once the design has
been approved and a clearest context of the local mechanical workshops (materials,
availability...) and the customer interest (time, budget...) to make a decision.
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