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Resumen

La tesis en estudio trata sobre la posible identi�cación de fallas mecánicas en una
turbina eólica mediante la estimación de parámetros de los componentes mecánicos
del eje �exible de baja velocidad. No es el propósito de esta tesis establecer la causa
de las fallas mecánicas, pero establecer una base para la detección de las fallas. Se
analiza el comportamiento global de una turbina eólica hacia diferentes situaciones o
experimentos como los incrementos y disminuciones de las principales inercias y los
parámetros mecánicos en estudio. La tesis incluye el modelado matemático de una
turbina eólica, el diseño de un observador adecuado para el estimador de parámetros,
asi como el diseño del estimador.
Palabras claves: Turbinas eólicas, estimación de parámetros, fallas mecánicas,
observador, rls, lqr.
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Abstract

The thesis in subject looks forward the possible identi�cation of mechanical faults
in a wind turbine using parameter estimation of the low speed shaft's mechanical
components. It is not the purpose of this thesis to establish the reasons of the
mechanical faults, but to set up a base for the detection of the faults. It analyzes
the overall behavior of a wind turbine towards di�erent situations or experiments
such as increments and decreases of the main inertias and mechanical parameters in
study. The thesis includes the mathematical modeling of a wind turbine, the design
of a suitable observer for the parameter estimator and the design of the parameter
estimator.
Keywords: Wind turbines, parameter estimation, mechanical faults, observer, rls,
lqr.
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Chapter 1

Introduction

1.1 Context of the thesis

Wind energy is the energy produced by the atmospheric air in motion that is com-
monly known as wind. The wind is generated by several factors, but the more
important are due to the rotation of the earth, the changes in ocean temperature,
local weather conditions and geography as deserts, mountains, vegetation type, etc.

This type of energy has already been used in a limited way for centuries in various
parts of the world for shipping, windmills, or to extract groundwater, to mention
some [15]. As a combined result of the increasingly worrisome environmental situ-
ation, application and development for this speci�c type of energy has accelerated
sharply in the last decades [4]. The progressive reduction of reserves of fossil fuels
is one of the most alarming factors [31].

Wind energy is one of the most economic alternative energies and therefore a favorite
nowadays [15]. This type of energy has no waste of any kind, requires less exotic
or rare-earth materials for power generation and there is no need of water for the
production. It does not emit pollutants into the atmosphere and, by now as deeper
discussion is taking place, can only be attributed as a slight inconvenience, acoustic
noise emission and alteration of the landscape.

Wind turbines are devices that, through their rotation, convert the wind's kinetic
energy into mechanical energy. Turbines are usually classi�ed according to the
type of aerodynamic force that causes rotation of the rotor, whether these are drag
forces or forces of lift; or according to the arrangement of its rotation axis being in
horizontal or vertical position.

The reliability of a wind turbine system is a critical factor in the success of a wind
energy project. Low reliability directly a�ects the project revenue stream through
increased operation and maintenance costs and lower availability to generate power
due to downtime of the turbine [32].

Parameter estimation is the process in which observations for developing dynamic
mathematical models that adequately represent system characteristics system are
used [23].

The model assumes that the system consists of a �nite set of parameters, from
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CHAPTER 1. INTRODUCTION

which the value is approximated using estimation techniques. Fundamentally, the
approach is based on minimizing the error between the model response and the
response of the real system.
With the advent of digital high-speed computers, the most complex and sophisti-
cated techniques such as the method of error �lter and other innovative methods
based on arti�cial neural networks have increased their use in parameter estimation
problems [23]. The idea behind modeling an engineering system or a process is to
improve their performance or design the control system.
Mathematical modeling through parameter estimation is one of the ways leading
to a deeper understanding of the characteristics of the system. These parameters
often describe the stability of the system. The estimation of these parameters from
input-output data (signals) system is thus an important step analysis of the dynamic
system. [23]
The thesis is developed in the Technische Universitaet of Muenchen in a research
group named "Control of Renewable Energy Systems", focused on the robust control
of wind turbines.

1.2 Description of the problem

The thesis consists in determining whether it is possible or not to detect mechanical
faults in a wind turbine using parameter estimation of the low speed shaft's me-
chanical constants. For achieving this, understanding the electromechanical system
of the turbine is necessary for correctly math model it. As well as the design of a
functioning observer and a parameter estimator.

1.3 Justi�cation

There is not a proper research in the group about the possibility of detecting me-
chanical faults in a wind turbine with a two mass system using parameter estimation
of the low speed shaft's mechanical constants.

1.4 Synthesis of the problem

Identi�cation of mechanical faults in wind turbines before they happen.

1.5 Solution's approach

The proposed solution is divided in four main sections: the mathematical modeling
of the wind turbine, the control of the wind turbine, the working observer and the
parameter estimator.
In the matter of the understanding of the wind turbine's electromechanical system,
the mathematical modeling of a one mass system is the initial step based on the

2



1.5. SOLUTION'S APPROACH

idea of starting with simple working things. To correctly show the behavior of the
wind turbine under normal circumstances, the basic modeling should be proposed.
After obtaining a working one mass system model, a two mass system model must
be implemented based on the one mass system model. Since the two mass system is
actually describing the complete electromechanical system of the wind turbine, there
are some models that could be obtained. The di�erence between the models are the
state vectors of each, making one more suitable than the other depending of what
is desired. In this case, it is chosen a state vector with the turbine and machine's
rotational speeds and torques as states. The model should be implemented and
simulated in Simulink.
The control of the wind turbine will be done by the usual speed control. The results
are going to be checked by the corresponding simulation. The speed control will
be applied �rst to the one mass system model of the wind turbine to move to the
two mass system model. If the control works for the one mass system, it should be
expected to work on the two mass system model.
For the working observer, a turbine's torque observer is chosen. The turbine's toque
is not a measured variable and the observer should work as a sensor for it. Due to
the nature of the measurement of the turbine's torque, a trustworthy observer must
be implemented. For the design of the observer, it is initially planed to be carried by
pole placement. The method is simple and good results are expected. In case this
observer does not work as desired, a Linear Quadratic Regulator (LQR) method is
stated as a second choice. The results of the section are going to be shown by the
proper simulations.
As for the parameter estimator, the estimation is initially decided to be carried
on by an Extended Kalman Filter. The EKF has been historically used for online
estimations due to the fast convergence and good results obtained from it. As well
as the complexity As a second choice, a Recursive Least Squares (RLS) method
could be implemented.
With the three main sections completed, the �nal approach would be the analysis
of the data obtained from the simulations and decide whether it is possible or not
to detect mechanical faults with this method.
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Chapter 2

Goal and objectives

2.1 Goal

The aim of this thesis is to detect mechanical faults in wind turbines using parameter
estimation. This being achieved throughout the analysis and estimation of the low
speed shaft's mechanical constants and the design of a reliable turbine's torque
observer to check the e�ect of four main experiments on those.

2.2 Main objective

Detection of mechanical faults in a wind turbine using the estimation of the low
speed �exible shaft's mechanical constants.

2.3 Speci�c objectives

• Attain a mathematical model of a wind turbine with a low speed �exible shaft.

• Design of an observer for the turbine's torque.

• Implement a parameter estimator for the mechanical constants of the low speed
shaft.

• Analyze the estimated parameters and their e�ect on the overall turbine's
behavior.
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Chapter 3

Theoretical framework

3.1 Modern wind turbines

Wind turbines are devices that through their rotation, convert the wind's kinetic
energy into mechanical energy. Modern wind turbines have switched, almost ex-
clusively, to produce electricity. In the past, wind turbine concepts were applied
to other di�erent activities. Throughout the world, wind farms have become very
popular in the last decades as such wind turbines can be built on land or o�shore
in large bodies of water like oceans and lakes [16].
The aerodynamical functioning of the wind turbine can be explained as shown in
Fig. 3.1. By removing some of its kinetic energy the wind must slow down, but only
that mass of air which passes through the rotor disc is a�ected. Assuming that the
a�ected mass of air remains separate from the air which does not pass through the
rotor disc and does not slow down, a boundary surface can be drawn. No air �ows
across the boundary and so the mass �ow rate of the air �owing along the stream-
tube will be the same for all stream-wise positions along the stream-tube. Because
the air within the stream-tube slows down, but does not become compressed, the
cross-sectional area of the stream-tube must expand to accommodate the slower
moving air [8].

Figure 3.1: Extraction stream-tube of a wind turbine[8, p.40]

Modern wind turbines can be divided into two basic groups: the horizontal-axis
(HAWT) variety and the vertical-axis (VAWT) design, as can be identi�ed in the
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Fig. 3.2. Horizontal-axis wind turbines usually have three blades operating "up-
wind", which means facing into the wind. Vertical-axis wind turbines are always
aligned with the wind, so there is no need of adjustment in case of wind direction
changes.

(a) Vertical-axis (b) Horizontal-axis

Figure 3.2: Axis orientation in a wind turbine [5]

In a vertical-axis wind turbine, the shaft is mounted vertically, perpendicular to the
ground. VAWTs need a boost from the electrical system to start moving because
it can not begin all by itself. Instead of a tower, it typically uses guy wires for
support, so the rotor elevation is lower. Lower elevation means slower wind due
to ground interference, so VAWTs are generally less e�cient than HAWT. On the
upside, all equipment is at ground level for easy installation and servicing; but that
means a larger footprint for the turbine, which is a big disadvantage in wind farming
areas. [24]
As the name refers to it in a HAWT, the shaft is mounted horizontally, parallel to the
ground. As HAWTs are facing "upwind", there is the need to constantly align the
blades with the wind using a yaw-adjustment mechanism. The yaw system typically
consists of electric motors and gearboxes that move the entire rotor left or right in
small increments. The turbine's electronic controller reads the position of the wind
and adjusts the position of the rotor to capture the most wind energy available.
HAWTs use a tower to lift the turbine components to an optimum elevation for
wind speed and take up very little ground space since almost all of the components
are up to 80 meters in the air. [24]

3.1.1 Basic components

A wind turbine is a complex mechatronical system and in modern wind turbines of
more than 1 MW there are a some basic components that can be identi�ed. Some
of them have been mentioned before and are shown in Fig. 3.3. Section based on [1].
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Components:

• Turbine on a horizontal axis with three pitch-regulated rotor blades

• Gearbox

• Electric machine or generator

• Back-to-Back Converter

• Line reactor or �lter

• Transformer

• Grid with �xed frequency, in this case, f=50 Hz

Turbine

Gear box

Generator

Back-to-Back Converter
Filter

Transformer

Grid

Control

PCCR

PCCS

Figure 3.3: Basic components of a wind turbine with horizontal axis [12].

The overall components are divided in di�erent categories, for example, in one hor-
izontal axis wind turbine you will �nd the following:

1. Foundation

2. Tower

3. Turbine and turbine's blades

4. Nacelle with drive train

5. Electronic equipment

6. Others

9
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3.1.2 Operation principle

Wind turbines operate on a very simple principle. The process, from start to �nish,
of generating electricity from wind begins with the rotor blades transforming the
wind's speed, vw [m

s
], into a rotational movement described by the rotational speed

of the turbine ωT [ rad
s
]. The rotational movement of the turbine is then transferred

to a generator. Where the rotation of the turbine is transformed into electricity.
The turbine usually includes three blades, and the turbine radius, rT [m] and turbine
area AT [m2] are given by the blade dimensions. Each blade has a pitch system that
can set a pitch angle β [◦], for the turbine to obtain the nominal power from wind.
The most important variables needed to understand how a wind turbine works are
shown in Fig. 3.4.

Figure 3.4: Front view of a wind turbine [13, p.9]

The nacelle, as mentioned before, includes the gearbox, electronic control, yaw con-
troller and breaks. The gearbox increases the speed of the shaft between the rotor
and the generator. The generator uses the rotational energy of the shaft to generate
electricity using electromagnetism.
The electronic control unit is the monitoring system that controls the yaw mecha-
nism and shuts down the turbine in case of malfunction. The yaw controller moves
the rotor certain degrees, γ [◦], to align it with the direction of the wind. The brakes
stop the rotation of the shaft in case of a power overload or a system failure.
The tower is the one that supports the rotor and nacelle and lifts entire setup to a
higher elevation where blades can safely be.
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Finally, there is the electrical equipment which carries electricity from generator
down through tower and controls many safety elements of turbine. In this part of
the wind turbine the convertor, transformer and �lter can be found.

3.1.3 Wind turbine operation regions

Depending on the wind speed, vW , a wind turbine can be functioning in 4 di�erent
regions as displayed in Fig. 3.5.

• Region I: Zone in which the wind speed is lower than the necessary, vW,cut−in
[m

s
], to produce the minimal power, pT,min [W]. The wind turbine is not even

connected to the network.

• Region II: In this region the wind speed is capable to achieve the minimal
power, pT,min, necessary to start functioning. The wind turbine is connected
to the network but working at a variable speed until the nominal power, pT,nom
[W], is achieved. The wind speed begins at vW,cut−in, which is the minimun to
start, and stops increasing when nominal wind speed, vW,nom, is reached.

• Region III: The wind turbine is working at nominal wind speed, vW,nom, to
achieve the nominal power, pT,nom, for as long as it is possible. The operation
region ends when it is necessary to shut down the wind turbine.

• Region IV: Region in which the wind turbine needs to be shut down because
of vW > vW,cut−out [

m
s
]. It should be a progressive shut down.

I II III IV

pT,nom

pT,min

pT [W]

vW,cut−in vW,nom vW,cut−out vW [m
s
]

Figure 3.5: Wind turbine operation areas [13, p.18]
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3.2 Modern control systems

This section is based on [14]. The basis of engineering come from the understanding
and controlling of our environment for the bene�t of humankind and applying it to
small segments of our daily life, usually called systems. These systems are the used
for the creation of useful devices or products. Part of the e�ective control of these
systems require the individual understanding and modeling of each system.

In between the new challenges of control engineers are the modeling and control
of modern, complex, interrelated systems such as tra�c control systems, chemical
processes, and robotic systems. Nevertheless, the opportunity to control machines
and industrial and economic processes for the bene�t of society is, perhaps, the most
characteristic quality of control engineering [14].

Control engineering is based on feedback theory and linear system analysis, and in-
tegrating concepts of network communication theory. Therefore control engineering
can not be limited to engineering disciplined, but it must be equally applicable to
any other aspect of life. In addition to it, as the understanding of the dynamics
of business, social, and political systems increases, the ability to control them also
increase.

A control system is an interconnection of components forming a system con�guration
that will provide a desired system response [14]. The basis for the system's analysis
is the linear system theory and the assumptions of cause-e�ect relationships for the
components in the system. In this way, processes can be represented by blocks, such
as shown in Fig. 3.6. The cause-and-e�ect relationship of the process is represented
by the input-output relationship, which represents as well a processing of the input
signal to provide an output signal variable, often with a power ampli�cation [14].

Input Output

Process

Figure 3.6: Process to be controlled [14]

One of the ways to di�erentiate control systems is by the feedback signal in it. A
feedback signal means there is an additional measure of the actual output to compare
the actual output with the desired output response. An open-loop control system
uses a controller and an actuator to obtain the desired response, and an open-loop
system is a system without feedback. Di�erent from it, a closed-loop control system
uses the feedback signal.

A feedback control system is a control system that tends to maintain a prescribed
relationship of one system variable to another by comparing functions of these vari-
ables and using the di�erence as a means of control. With an accurate sensor, the
measured output is a good approximation of the actual output of the system [14].
Usually, a feedback control system uses the relationship between the output and the
input as a function to control the process. In these cases, the di�erence between the

12



3.2. MODERN CONTROL SYSTEMS

output of the process that is under control and the input of is ampli�ed and used
to control the process, and by way reduce the di�erence.

This di�erence between the output that is desired and the actual output of the
system is known to be the error of the process, which in a feedback system, as
mentioned before is adjusted by the controller to modify the response of the system.
The output of the controller causes the actuator to modulate the process in order to
reduce the error. Feedback control systems tend to be negative, the output of the
system is usually substracted from the input, the di�erence signal is now the input
signal for the controller. The feedback concept has been the foundation for control
system analysis and design [14] and it is shown in Fig. 3.7.

|

+

−

Desired output

control
Actual
Output

Error

Measurements Feedback

Sensor

ProcessActuatorController

Figure 3.7: Closed-loop feedback control system with feedback [14]

Closed-loop control has many advantages over open-loop control including the abil-
ity to reject external disturbances and improve measurement noise attenuation. A
system with disturbances and measurement noise is shown in Fig. 3.8. External
disturbances and measurement noise are inevitable in real-world applications and
must be addressed in practical control system designs [14]. One characteristic of
feedback control systems is that they might contain one or more feedback loops.

|

+

−

+

+

+

+

Desired output
control

Actual
Output

Disturbances

Noise

Error

Measurements Feedback

Sensor

ProcessActuatorController

Figure 3.8: Closed-loop feedback system with external disturbances and measurement
noise [14]

Due to the increasing complexity of the system under control and the interest in
achieving optimum performance, the importance of control system engineering has
grown in the past decade. Furthermore, as the systems become more complex,
the interrelationship of many controlled variables must be considered in the control
scheme.
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3.2.1 Mechatronic systems

Mechatronics comes in to modern engineering as a natural stage in the evolutionary
process. The term "mechatronics" was �rst mentioned in Japan in the 1970s [14]
and talks about the synergistic integration of mechanical, electrical, and computer
systems. It has evolved over the past 30 years leading the development of a new
type of intelligent products and systems.

The key elements of mechatronics are physical systems modeling, sensors and ac-
tuators, signals and systems, computers and logic systems, and software and data
acquisition [14]. Feedback control encompasses aspects of all �ve key elements of
mechatronics, transforming feedback control is an integral aspect of modern mecha-
tronic systems even though it primarily is associated with signals and system ele-
ments.

Figure 3.9: Mechatronics engineering [30]

A revolutionized engineering design started with the advances in computer hardware
and software technology mixed with the desire to increase the performance-to-cost
ratio of the products. As days go by, new products are being developed at the inter-
section of traditional disciplines of engineering, computer science, and the natural
sciences.

The continued advances in traditional disciplines facilitated an exponential growth
of mechatronic systems by providing "enabling technologies" [14]. For example,
microprocessors are known to be an enabling technology because of its deep and
important e�ect on the design and development of new products. In between the
category of "enabling categories", the following are found: microprocessors and mi-
crocontrollers, novel sensors and actuators enabled by advancements in applications
of microelectromechanical systems (MEMS), advanced control methodologies and
real-time programming methods, networking and wireless technologies, and mature
computer-aided engineering (CAE) technologies for advanced system modeling, vir-
tual prototyping, and testing [14]. It is only a matter of time for the development
smart products of new di�erent areas.

14



3.2. MODERN CONTROL SYSTEMS

An exciting area of future mechatronic system development in which control sys-
tems will play a signi�cant role is the area of alternative energy production and
consumption. Hybrid fuel automobiles and e�cient wind power generation are two
examples of systems that can bene�t from mechatronic design methods [14].
In fact, the mechatronic design philosophy can be illustrated in a very clear way by
analyzing the example of the evolution of the modern cars or automobiles. Before the
1960s, the radio was the only signi�cant electronic device in an automobile. Nowa-
days cars have 30-60 microcontrollers, up to 100 electric motors, about 200 pounds
of wiring, a multitude of sensors, and thousands of lines of software code [14]. So it
can be assumed that a modern cars isn't just a mechanical machine, it transformed
itself into a mechatronic system. As it is the topic of this thesis, modern wind power
generation systems are as well, mechatronic examples.

3.2.2 Mathematical modeling of systems

The understanding and controlling of complex physical systems is made through
quantitative mathematical models in order to carry on the design and analysis of
control systems. It is necessary then to analyze the existing relationships between
the system's variables and obtain a mathematical model. Because the systems that
are being considered are dynamic in nature, the descriptive equations are usually dif-
ferential equations. Since most physical systems are nonlinear, but these equations
can be linearized to simplify the method of solution.
In practice, the complexity of systems and our ignorance of all the relevant factors
will then require the introduction of assumptions about the system's operation. Ini-
tially it is useful to consider the physical system, express the necessary assumptions
if they exist, and try to linearize the system and obtain the di�erential equations.
Finally, a solution is obtained describing the operation of the system.
The approach to dynamic system modeling can be enumerated as:

1. De�ne the system and its components.

2. Formulate the mathematical model and fundamental necessary assumptions
based on basic principles.

3. Obtain the di�erential equations representing the mathematical model.

4. Solve the equations for the desired output variables.

5. Examine the solutions and the assumptions.

6. If necessary, reanalyze or redesign the system.

3.2.2.1 Di�erential equations

The di�erential equations describing the dynamic performance of a physical system,
equally applied to mechanical, electrical, �uid, and thermodynamic system, are
obtained by utilizing the physical laws of the process [14].
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While describing a system, two types of variables can exist: through variables that
are measured with a gauge connected in series to an element and across variables
that are measured with a gauge connected in parallel to an element [28].
A mechanical system could be translational, rotational or both. In those cases the
through and across variables for each one are:

Table 3.1: Through and across variables for a mechanical system

System
Variable
through
element

Integrated
through
variable

Variable
across
element

Integrated
across
variable

Mechanical
translational

Force
Translational
momentum

Velocity
di�erence

Displacement
di�erence

Mechanical
rotational

Torque
Angular

momentum
Angular velocity

di�erence
Angular displacement

di�erence

The basic mechanical modeling that is going to be further used is explained in
Fig. 3.10 where J corresponds to a rotational inertia, k to a rotational spring, b to
a rotational damper, φ(t) to the angular displacement, ω(t) to the rotational speed
and m(t) to the torque applied.

J

k

b

φ(t)

φ(t)

φ(t)

ω(t)

ω(t)

ω(t)

m(t)

m(t)

m(t)

m(t) = J ·

d

dt
ω(t)

m(t) = J ·

d
2

dt2
φ(t)

m(t) = k ·

∫
ω(t)

m(t) = k · φ(t)

m(t) = b · ω(t)

m(t) = b · d

dt
φ(t)

Figure 3.10: Mechanical rotational system modeling [9]

The basic modeling of a mechanical system can be explained through a spring-mass-
damper example [14] as shown in Fig. 3.11.
The model includes the wall friction as a viscous damper, which means that the
friction force is linearly proportional to the velocity of the mass. Friction in reality
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is much more complicated, but for more about friction and its modeling, see [20,
pp.17-28]. For a well-lubricated, sliding surface, the viscous friction is appropriate.
Summing the forces acting on M and utilizing Newton's second law, the system can
be modeled. To describe a mechanical system, the Newton's laws are used and for
the description of an electrical system, Kirchho�'s voltage and current laws are used.

M
d2

dt2
y(t) + b

d

dt
y(t) + ky(t) = u(t) (3.1)

where k is the spring constant of the ideal spring and b is the friction constant.

|
u(t)

b

M

y(t)

k

(a) System

|
u(t)

b d

dt
y(t)

M

y(t)

ky(t)

(b) Free-body diagram

Figure 3.11: Spring-mass damper system [14]

Equation (3.1) is a second-order linear constant-coe�cient di�erential equation.
Which can be transformed into

M
d

dt
v(t) + bv(t) + k

t∫
0

v(t)dt = u(t) (3.2)

by v(t) = d
dt
y(t).

3.2.2.2 State variable models

The state of a system is a set of variables whose values, together with the input
signals and the equations describing the dynamics, will provide the future state and
output of the system. To describe a model as a state variable model, it is necessary to
consider the time domain formulation of the equations. The time-domain techniques
can be used for nonlinear, time-varying, and multivariable systems and itself, a time-
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varying control system is de�ned as a system in which one or more of the parameters
of the system may vary as a function of time [14].

The time-domain description of a dynamic system is represented by the system's
di�erential equations. The time domain is the mathematical domain that incorpo-
rates the response and description of a system in terms of time, t [14]. As it is, the
representation of control systems in time-domain has become an essential basis for
modern control theory and system optimization.

For a dynamic system, the state of a system is described in terms of a set of state
variables (x1(t), x2(t), · · · , xn(t))>. The state variables are those variables that de-
termine the future behavior of a system when the present state of the system and
the excitation signals are known [14]. The state variables describe the present con-
�guration of a system and can be used to determine the future response, given the
excitation inputs and the equations describing the dynamics.

The concept of a set of state variables that represent a dynamic system can be
illustrated in terms of the spring-mass-damper system shown in Fig. 3.11 and equa-
tion (3.1). The number of state variables chosen to represent a system should be
as small as possible in order to avoid redundant state variables [14]. In this case,
state variables for the position and velocity of the mass are su�cient to describe the
system. The state variables are de�ned as (x1, x2)>, where

x1(t) = y(t) and x2 =
d

dt
y(t) (3.3)

Transforming, in this case, equation (3.1) into

M
d

dt
x2(t) + bx2(t) + kx1(t) = u(t) (3.4)

the behavior of the spring-mass damper system can now be described as the set
of two �rst-order di�erential equations in terms of the rate of change of each state
variable.

d

dt
x1(t) = x2(t) (3.5)

d

dt
x2(t) =

1

M

(
u(t)− bx2(t)− kx1(t)

)
(3.6)

The state variables that describe a system are not a unique set, and several alterna-
tive sets of state variables can be chosen depending on what is desired to control and
the adequately way to describe the dynamics of the system. It is usual to choose a
set of state variables that can be readily measured [14].

The concept of system state is not limited to the analysis of physical systems and
is particularly useful in analyzing biological, social, and economic systems. For
these systems, the concept of state is extended beyond the concept of the current
con�guration of a physical system to the broader viewpoint of variables that will be
capable of describing the future behavior of the system.
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3.2.2.3 The state di�erential equation

As explained, the response of a system is described by a set of �rst-order di�erential
equations written in terms of the state variables (x1(t), x2(t), · · · , xn(t))> and the
inputs (u1(t), u2(t), · · · , um(t))>. Describing a system with n-state variables and
m-inputs.

These �rst-order di�erential equations can be written in general form as

d
dt
x1 = a11x1 + a12x2 + · · ·+ a1nxn + b11u1 + · · ·+ b1mum

d
dt
x2 = a21x1 + a22x2 + · · ·+ a2nxn + b21u1 + · · ·+ b2mum
...

d
dt
xn = an1x1 + an2x2 + · · ·+ annxn + bn1u1 + · · ·+ bnmum

(3.7)

Whom can be simultaneously written in matrix form as:
d
dt
x1(t)

d
dt
x2(t)
...

d
dt
xn(t)

 =


a11 a12 · · · a1n

a21 a22 · · · a2n

... · · ·
...

an1 an2 · · · anm



x1(t)
x2(t)
...

xn(t)

+


b11 · · · b1m

...
...

bn1 · · · bnm



u1(t)
u2(t)
...

um(t)

 (3.8)

The matrix representation gives us the, from now on, "state vector" and it is written
as

x(t) =


x1(t)
x2(t)
...

xn(t)

 (3.9)

and also referenced as (x1(t), x2(t), · · · , xn(t))>. In the same way, the input vector
is de�ned as u.

u(t) =


u1(t)
u2(t)
...

um(t)

 (3.10)

Then the system can be represented by the compact or reduced notation of the state
di�erential equation as

d

dt
x(t) = Ax(t) +Bu(t) (3.11)

which is commonly references as the state equation. In here, A is a square matrix
as in A ∈ Rn×n, B is a matrix as B ∈ Rn×m.

The state di�erential equation relates the rate of change of the state of the system
to the state of the system and the input signals. The outputs of the system are
also related to the state variables and the input signals by the de�ned as "output
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equation"
y(t) = Cx(t) +Du(t) (3.12)

In here, C is a matrix de�ned as C ∈ Rn×m, D is a matrix as D ∈ Rn×m. The D
matrix is usually zero due to the system's physics, so it is commonly neglected.
The block diagram is shown in Fig. 3.12

+ + + +

A

B C

D

∫
d

dt
x(t) x(t) y(t)u(t)

Figure 3.12: System block diagram

If the system is de�ned in the matrix form, the characteristic equation of the system
is given by

det(pI−A) = 0 (3.13)

where I corresponds to an identity matrix of size n × n and p represents the roots
of the characteristic equation commonly referred as the poles of the system

3.2.2.4 Feedback control systems

A control system is de�ned as an interconnection of components forming a system
that will provide a desired system response [14]. As explained by Dorf and Bishop, a
feedback system is a system that uses a signal proportional to the error between the
desired and the actual response of the system to control it. Feedbacks often appear
to the need of improving the control system. Interesting enough, feedback appears
also in nature, being the human heart an example of a feedback control system.
As mentioned before, a system without feedback is often called an open-loop system.
In these cases, disturbances directly in�uence the output of the system, becoming
highly sensitive to disturbances and to changes in parameters. An open-loop system
operates without feedback and directly generates the output in response to an input
signal [14].
Di�erent from it, a closed-loop system uses a measurement of the output signal and
a comparison with the desired output to generate an error signal that is used by the
controller to adjust the actuator, adding the following advantages:

• Less sensitivity of the system to variations in the parameters of the process.

• Better rejection of the disturbances.

• Better measurement noise attenuation.
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• Improved reduction of the steady-state error of the system.

• Easy control and adjustment of the transient response of the system.

Error signal From a closed-loop feedback control system, the tracking error is
de�ned as the di�erence between the actual response y(t) and the desired one yref (t)

ε(t) = yref (t)− y(t) (3.14)

3.2.2.5 Stability

When considering the design and analysis of feedback control systems, stability is
of the utmost importance [14]. From a practical point of view, both closed-loop and
open-loop systems might be unstable, and some are even designed to be unstable.
Active control is introduced by engineers to stabilize the unstable systems to address
other considerations, such as transient performance. A feedback, we can stabilize
unstable systems and then, by choosing the correct parameters in the controller
design, adjust the transient performance. For open-loop stable systems, feedback is
still used to meet the design speci�cations.
Closed-loop feedback systems can either be stable or unstable, referencing to abso-
lute stability. There could also exist "relative stability".

De�nition 1 (Absolute stability). A control system that is completely stable.

De�nition 2 (Relative stability). A control system with a certain degree of stability.

For more information about absolute and relative stability, please check [14].
A system is absolutely stable by analyzing the characteristic polynomial of transfer
function of the system. For the system to be stable, all of its poles need to be lying in
the left-half imaginary plane, or equivalently, have all the eigenvalues of the system
matrix A lie in the left-half imaginary plane in case of continuous time or inside the
unitary circle for discrete time. Relative stability can be analyzed by examining the
relative locations of the poles (or eigenvalues) [14].
A stable system is de�ned as a system with a bounded system response. That means
that if the system is subjected to a bounded input or disturbance and the response
is bounded in magnitude, the system is said to be stable [14]. A stable system is a
dynamic system with a bounded response to a bounded input. The response to a
displacement, or initial condition, is going to result in either a decreasing, neutral,
or increasing response.
The location in the imaginary-plane of the poles of a system indicates the resulting
transient response. The poles in the left-hand portion of the imaginary-axis result
in a decreasing response and the right-hand portion of the imaginary-axis result in
a neutral or an increasing response, respectively, for a disturbance input. Clearly,
the poles of desirable dynamic systems must lie in the left-hand portion of the
imaginary-plane [14].
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3.2.2.6 Observability and controllability

While designing or just analyzing a system, a key question that shows up is whether
or not all the poles of the closed-loop system can be arbitrarily placed or are placed
in the complex plane. If a system is controllable and observable, then its poles
can be placed in desired locations to meet the performance speci�cations for the
design. Usually, pole-placement techniques are used for the design of the systems,
but it is important to note that a system must be completely controllable and
completely observable to allow the �exibility to place all the closed-loop system
poles arbitrarily [14].
The concepts of controllability and observability were introduced by Kalman in
the 1960s. Rudolph Kalman was a hugely important person in the development of
mathematical systems theory. He is well known for his role in the development of the
"Kalman �lter", which was instrumental in the successful Apollo moon landings [14].
As de�ned by Richard Dorf and Robert Bishop in their book,

De�nition 3. A system is completely controllable if there exists an unconstrained
control u(t) that can transfer any initial state x(0) to any other desired location x(t)
in a �nite time, t0 ≤ t ≤ T .

Assuming the system
d

dt
x(t) = Ax(t) +Bu(t) (3.15)

y(t) = Cx(t) +Du(t) (3.16)

It can be determined whether the system is controllable by examining the following
condition

M =
[
B AB A2B · · · An−1B

]
(3.17)

In here, A is de�ned as A ∈ Rn×n and B as B ∈ Rn×1. For a single-input, single-
output system, the controllability matrix M is described in terms of A and B as a
matrix with dimensions n × n. In this case, if the determinant of M is nonzero or
if the rank of the matrix M is n, the system is controllable. [14].
In advanced state variable design techniques, some situations where the system is
not completely controllable can be handled, but the states that cannot be controlled
are inherently stable. Those types of systems are considered stabilizable and even
if the system is completely controllable, it is also considered stabilizable. For those
cases, the Kalman state-space decomposition provides a mechanism for partitioning
the state-space so that it becomes apparent which states (or state combinations) are
controllable and which are not [14].
De�ned as well by Dorf and Bishop, observability refers to the ability to estimate a
state variable.

De�nition 4. A system is completely observable if and only if there exists a �nite
time T such that the initial state x(0) can be determined from the observation
history y(t) given the control u(t), t0 ≤ t ≤ T .

22



3.2. MODERN CONTROL SYSTEMS

It can be determined whether the system is observable by examining the following
condition

S =


C
CA
CA2

...
CAn−1

 (3.18)

Considering a single-input, single-output system where C is a 1 × n row vector,
and x is a n × 1 column vector. This system is completely observable when the
determinant of the observability matrix S is nonzero or if the rank of the matrix S
is n. In this case, S is a n× n matrix.

The same that happens with systems that are not completely controllable happens
with systems that are completely observable, but where the states that cannot be
observed are inherently stable. These type of systems are classi�ed as detectable and
even if the system is completely observable, it is also detectable. As well as in the
controllability, the Kalman state-space decomposition is able to provide a mechanism
for partitioning the state-space so that it becomes apparent which states (or state
combinations) are observable and which are not [14].

3.2.2.7 Observer design

Even though it is hoped that all systems are completely controllable and observable,
generally speaking, only a subset of the states are readily measurable and available.
Most of the time having all the states available implies that these states are measured
with a sensor or sensor combinations which increases the cost and complexity of the
control system. So, even in situations where extra sensors are available, it may not
be cost e�ective to employ if the control can accomplish the needs. If the system is
observable with a given set of outputs, then it is possible to estimate the states that
are not directly measured or observed.

According to Luenberger [14], a full-state observer for a system de�ned as

d

dt
x(t) = Ax(t) +Bu(t) (3.19)

y(t) = Cx(t) +Du(t) (3.20)

is given by
d

dt
x̂(t) = Ax̂(t) + Bu(t) + L

(
y(t)−Cx̂(t)

)
(3.21)

where x̂ denotes the estimate of the state x. The matrix L is the observer gain
matrix and is to be determined as part of the observer design procedure.

The block diagram of a Luenberger observer is shown in Fig. 3.13
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Figure 3.13: Observer with augmented system block diagram

The observer has two inputs, u(t) and y(t), and one output, x̂. The goal of the
observer is to provide an estimate x̂ so that x̂ tends to x as t tends to in�nity. As
x(t0) is unknown, an initial estimate x(t0) should be provided to the observer.
De�ne the observer estimation error as

εobs(t) = x(t)− x̂(t) (3.22)

The design of the observer should produce εobs(t) → 0 as t → inf. One of the
main results of systems theory is that if the system is completely observable, we can
always �nd L so that the tracking error is asymptotically stable, as desired [14].
Taking the time-derivative of the estimation error ends up in

d

dt
εobs(t) =

d

dt
x(t)− d

dt
x̂(t) (3.23)

which can be transformed by inserting (3.19) and (3.21) into (3.23) and assuming
D is zero.

d

dt
εobs(t) = Ax(t) +Bu(t)︸ ︷︷ ︸

(3.19)

−Ax̂(t) +Bu(t) + L
(
y(t)−Cx̂(t)

)︸ ︷︷ ︸
(3.21)

(3.24)

d

dt
εobs(t) = (A− LC)εobs(t) (3.25)
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It can be guaranteed that εobs(t) tends to 0 as t tends to in�nity for any initial
tracking error εobs(t0) if the characteristic equation

det
(
pI− (A− LC)

)
= 0 (3.26)

has all its roots in the left half-plane. Therefore, the observer design process reduces
to �nding the matrix L such that the roots of the characteristic equation lie in
the left half-plane. This can always be accomplished if the system is completely
observable [14].

3.2.2.8 Robustness

Designing highly accurate systems in the presence of signi�cant plant uncertainty
is a classical design problem. Going back to the early 1930s, the theoretical bases
to solve this problem can be found in the works of H. S. Black and H. W. Bode,
when this problem was referred to as the sensitivities design problem. Since then
an important amount of literature has been published about the design of systems
that are subject to large process uncertainties [14].
An objective of the designer should be to obtain a system that performs adequately
over a large range of uncertain parameters. The goal of robust system's design
is to retain assurance of system performance in spite of model inaccuracies and
changes. A system is robust when the system has acceptable changes in performance
due to model changes or inaccuracies, when it is durable, hardy, and resilient. A
robust control system is identi�ed by exhibiting the desired performance despite the
presence of signi�cant process uncertainties [14].

De�nition 5. Sensitivity The minimum signal power that can be distinguished
from the random �uctuations in the output of a measuring system caused by noise
inherent in the system. [17]

De�nition 6. A control system is robust when it has low sensitivities, it is stable
over the range of parameter variations, and the performance continues to meet the
speci�cations in the presence of a set of changes in the system parameters [14].

De�nition 7. Robustness is the low sensitivity to e�ects such as disturbances,
measurement noise, or unmodeled dynamics, that are not considered in the analysis
and design phase [14].

The system should be able to withstand these neglected e�ects when performing the
tasks for which it was designed [14].

3.3 Parameter estimation

This section is based on [23]. Parameter estimation is the process of using obser-
vations from a dynamic system to develop mathematical models that adequately
represent the system characteristics [23]. The model that is assumed consists of a
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�nite set of parameters, which are estimated using one of the various estimation
techniques. Fundamentally, the approach is based on minimization of the error
between the model response and actual system's response. With the advent of high-
speed digital computers, more complex and sophisticated techniques like �lter error
method and innovative methods based on arti�cial neural networks �nd increasing
use in parameter estimation problems [23].

The idea behind modeling an engineering system or a process is to improve its
performance or to design a control system.

Dynamic systems abound in the real-life practical environment in a variety of sys-
tems that can be categorized in biological, mechanical, electrical, civil, chemical,
aerospace, road tra�c and others. Understanding the dynamic behavior of these
systems, as mentioned before, is one of the primary interests to scientists as well as
engineers. Mathematical modeling via parameter estimation is one of the ways that
leads to deeper understanding of the system's characteristics. These parameters
often describe the stability and control behavior of the system [23].

Estimation of these parameters from the input-output data of the system is an
important step in the analysis of the dynamic system. By all means, analysis can
be referred as the process of obtaining the system response to a speci�c input, given
the knowledge of the model representing the system [23], but within this method,
the knowledge of the mathematical model and its parameters is vital. This can end
up falling into the known category of "inverse problems" where the knowledge of
the dynamical system is actually derived from the input-output data of the system.
Opening or starting the discussion about the uniqueness of the identi�ed model
and establishing the adequacy of the estimated model parameters on the analyst.
Nevertheless, there are several criteria available for establishing the adequacy and
validity of such estimated parameters and models. Parameter estimation is based
on the minimization of some criterion, and this criterion itself can serve as one of
the means to establish the adequacy of the identi�ed model [23].

The parameters of the model are adjusted through iteration until the time when
the responses of the model match closely with the measured outputs of the system
under investigation in the sense speci�ed by the minimization criterion. It must be
emphasized here that though a good match is necessary, it is not the su�cient condi-
tion for achieving good estimates [23]. A simpli�ed block diagram of the parameter
estimation is shown in Fig. 3.14.
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Figure 3.14: Simpli�ed block diagram of the estimation procedure [23]

As early as 1795, Gauss dealt with the motion of the planets and concerned himself
with the prediction of their trajectories, using only a few parameters in the pro-
cess to describe these motions, making pioneering contributions to the problem of
parameter estimation of the dynamic systems. He invented the least squares pa-
rameter estimation method as a special case of the so-called maximum likelihood
type method, though he did not name it [23]. Commonly, the estimation of the
parameters of dynamic systems and the state-estimation is done by using Kalman
�ltering algorithms. In this thesis, forms of both methods, least squares and Kalman
�ltering are used.
The parameter error can be obtained if the true parameter value is known, which
does not happen in real-life scenarios. However, the parameter estimation algorithms
can be checked and/or validated with simulated data, which is generated using the
true parameter values of the system. For the real data situations, assumptions about
the error in estimated values of the parameters can be made based on some statistical
properties [23]. Mostly, the approach to use the output error is appealing from the
point of view of matching of the measured and estimated or predicted model output
responses.

3.3.1 Kalman �ltering

In 1960, R.E. Kalman published his famous paper describing a recursive solution
to the discrete-data linear �ltering problem. Since that time, due in large part to
advances in digital computing, the Kalman �lter has been the subject of exten-
sive research and application, particularly in the area of autonomous or assisted
navigation [34].
The Kalman �lter is a set of mathematical equations that provides an e�cient
computational (recursive) means to estimate the state of a process, in a way that
minimizes the mean of the squared error. The �lter is very powerful in several
aspects: it supports estimations of past, present, and even future states, and it can
do so even when the precise nature of the modeled system is unknown [34].
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Although most dynamic systems are continuous-time, the Kalman �lter is an ex-
tremely popular �ltering method and is best discussed using the discrete-time model.
In addition, in the sequel, it will be seen that the solution of the Kalman �lter re-
quires handling of the Riccati equation, which is easier to handle in discrete form
rather than in continuous-time form.
The basic principle of the method is predicting the value of an state and then
correcting the measurement that was done. The time update equations can also be
thought of as predictor equations, while the measurement update equations can be
thought of as corrector equations. Indeed the �nal estimation algorithm resembles
that of a predictor-corrector algorithm for solving numerical problems [34] as shown
in Fig. 3.15

T ime update

”Prediction”

Measurement update

”Correction”

Figure 3.15: The ongoing discrete Kalman �lter cycle [34]

In deriving the equations for the Kalman �lter, the goal is to �nd an equation that
computes an a posteriori state estimate as a linear combination of an a priori esti-
mate and a weighted di�erence between an actual measurement and a measurement
prediction. Where the di�erence is called the measurement innovation or residual.
The residual re�ects the discrepancy between the predicted measurement and the
actual measurement. A residual of zero means that the two are in complete agree-
ment.
The Kalman �lter estimates a process by using a form of feedback control: the �lter
estimates the process state at some time and then obtains feedback in the form of
noisy measurements [34]. As such, the equations for the Kalman �lter fall into two
groups: time update equations and measurement update equations.
The time update equations are responsible for projecting forward in time the current
state and error covariance estimates to obtain the priori estimates for the next time
step. The measurement update equations are responsible for the feedback, or for
incorporating a new measurement into the priori estimate to obtain an improved a
posteriori estimate [34].

3.3.2 Least squares parameter estimation method

The least squares (LS) estimation method was invented by Karl Gauss in 1809 and
independently by Legendre in 1806 [23]. Gauss was interested in predicting the
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motions of the planets using just measurements obtaining or inventing the least
squares method. It is a well established and easy to understand method. Still, to
date, many problems center on this basic approach. The least squares method is
a special case of the well-known maximum likelihood estimation method for linear
systems with Gaussian noise [23].
In general, least squares methods can be used with both linear as well as nonlinear
problems. They are also applicable to multiple input multiple output dynamic sys-
tems. Least squares techniques can be applied to the online parameter identi�cation
or to the o�ine parameter identi�cation.
The measurement equation model is assumed to have the following form:

y = ϕ>θ + ν (3.27)

where y is a m × 1 vector of true outputs and ϕ is a m × n matrix or vector
that denotes the measurements or data, usually a�ected by noise, of the unknown
parameters. θ is a n × 1 vector of the unknown parameters and ν represents the
measurement noise which is assumed to be zero mean and Gaussian. This model is
called the measurement equation model, since it forms a relationship between the
measurements and the parameters of a system. [23]
It is said that the estimation theory and the methods have a data-dependent nature,
since the measurements used for estimation are invariably noisy [23]. But these
noisy measurements are used in the estimation method to improve upon the initial
estimate of the parameters that characterize the signal or system.
For this method, it is assumed that the system parameters do not rapidly change
with time, thereby assuring an almost stationary behavior of the plant or the process
parameters, or at least during the measurement period [23]. This should not be
confused with the requirement of non-steady input-output data over the period for
which the data is collected for parameter estimation. This means that during the
measurement period there should be some activity.
The least squares method is considered a deterministic approach to the estimation
problem. There is then chose an estimator of θ that minimizes the sum of the squares
of the error. Or that minimizes the well-known "cost function"

J =
1

2

N∑
k=1

v2[k] =
1

2
(y − ϕ>θ)>(y − ϕ>θ) (3.28)

Here J is a cost function and v is the residual error at time k. It is noticed that ν
is neglected for the cost function.
There are several methods based on the least squares estimation, so the implemen-
tation depends on the chosen method, but there are properties that are shown in
every one. To read more up on the topic, please check [22].
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Chapter 4

Methodology

In this chapter the four main sections of the solution's approach to determine if it is
possible to detect mechanical faults in wind turbines with the estimation of the low
speed shaft's mechanical constants are developed. The main information sources for
the thesis are published books and scienti�c articles and master's thesis developed
on the research group.

4.1 Mechanical modeling of wind turbines

In this section only the basic mechanical components are considered to describe the
modeling of a wind turbine with direct drive. The section in based on [3] and [13].

4.1.1 Turbine

The turbine with its three blades, as shown in Fig. 3.4, is the one in charge of
transforming the wind's energy into rotational energy. As explained in section 3.1.2,
the turbine has a radius, rT [m] and it spans de�ning an area described by

AT := π · rT 2 [m2] (4.1)

in this case, this area is assumed as the total area. The nacelle area, AG [m2], can
be neglected due to its small value compared to the turbine area.
Any change in the wind speed will be re�ected in the whole system. And it is possible
to obtain a relation between the wind speed and the rotational speed, known as the
tip speed, λ [1].
The tip speed is the ratio between the tangential speed of the tip of a blade, wT · rT ,
and the actual wind speed, vW . The tip speed is related to the e�ciency of the wind
turbine, varying on the blade design. The higher the tip speeds is, higher noise levels
are produced and stronger blades are required due to large centrifugal forces [33].
The equation that describes the tip speed is

λ :=
rT · ωT
vW

(4.2)
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The tip speed, λ, is a key variable in the control of wind turbines because it allows
the wind turbine to operate in the optimum point to obtain the maximum possible
power from the wind. It is important to note that even without the knowledge of
the tip speed, the turbine is allowed to operate at the optimal point by physics.

There is also an optimal tip speed, λopt [1] or λ
∗ [1], that stays the same for every

wind speed. Working as a constant reference.

Besides λ, the pitch angle, β, needs to be considered as another control variable due
to the importance associated to angle changes in the overall functioning of the wind
turbine. The slightest change in the pitch angle means the incident wind �ow in the
rotor blades is increased or decreased.

The relationship between these two variables and the wind turbine performance is
further explained with the power coe�cient and the turbine torque.

4.1.1.1 Power coe�cient

The power coe�cient, cP [1], is described as the amount of mechanical power, pT
[W], that can be obtained from the wind's power, pW [W]. It comes as a result of
the relation between the pitch angle, β, and the tip speed, λ.

The Betz factor, cP,Betz is the theoretical value of the power coe�cient, or its max-
imum. It is used as the power coe�cient reference and it has a value of 16

27
or 0,59

approximately.

The actual power obtained from the wind is given by

pW (t) =
1

2
· ρ · π · rT 3 · vW (t)2 (4.3)

In this equation it needs to be considered the air's density, ρ [kg/m3].

As mentioned before, the power coe�cient has a direct impact on the overall turbine
power, which can be obtained applying the power coe�cient to the wind power as

pT (λ, β) = cP (λ, β) · pW (t) ≤ cP,Betz · pW (t) (4.4)

From the direct relation between the power coe�cient and the turbine's power, the
maximum power from the wind turbine can be obtained at the maximum cP , shown
in Fig. 4.1 as the graph's maximum.
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Figure 4.1: Power coe�cient for a 2 MW wind turbine, see (4.5)

Approximation of the power coe�cient The power coe�cient can be divided
into two depending on the pitch angle, β:

• cP,1: In this case there is no pitch system and the value of the power coe�cient
at any speci�c λ can be obtain with the equation

cP,1(λ) := max

{[
46.4 ·

(1

λ
− 0.01

)
− 2

]
· e−15.6·

(
1
λ
−0.01

)
; 0

}
(4.5)

cP,1 has a maximum located in λ∗, which is given by the derivative of the
equation (4.5).

d

dλ
cP,1(λ) = 0 (4.6)

• cP,2: This speci�c wind turbine has a pitch system, and the value of the power
coe�cient is given by

cP,2(β, λ) := max

{[
151·

( 1

λ− 0, 02β
− 0, 003

β3 + 1

)
−0, 58β−0, 002·β2,14−13, 2

]

· exp
(
− 18, 4 ·

( 1

λ− 0, 02β
− 0, 003

β3 + 1

))
; 0

}
(4.7)

cP,2 has also a maximum located in λ∗, which is given by the derivative of the
equation (4.5).

d

dλ
cP,2(β, λ) = 0, β = 0 (4.8)

4.1.1.2 Turbine torque

While the turbine is converting the kinetic wind energy in rotational energy, a torque
is being generated on the drive train that leads to an acceleration and rotation of
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the generator shaft.

As power, torque and rotational speed are related in

pT (t) = mT (t) · ωT (t) (4.9)

from here, mT can be obtained using (4.3) and (4.4).

mT (t) =
pT (t)

ωT (t)
=

1

2
· ρ · π · rT 2 · vW (t)3 · cP (β, λ)

ωT (t)
(4.10)

The turbine torque can be de�ned as a function ofmT (vW , β, λ) or asmT (vW , β, ωT ).
Both of them can be used because of the relationship given by the power coe�cient
and (4.2).

As those relationships are established, the direct relation between the power coe�-
cient cP , tip speed λ, and pitch angle β is shown.

4.1.2 Transmission

The transmission is the part of the wind turbine in charge of transmitting the
mechanical power from the driving shaft to the driven one.

Most of the simple wind turbine gear box consists of two main shafts, the low speed
shaft which is basically connected with the wind turbine blades, and the second one
which is called the high speed shaft connected directly to the generator [3].

The turbine rotational speed, ωT , is much slower than the machine's rotational
speed, ωM [ rad

s
]. The relation between rotational speeds is called gearbox radio, gr

[1].

gr :=
ωM
ωT
≥ 1 (4.11)

Assumption 1. For a direct drive, the gear ratio is 1.

The present thesis shows two di�erent mathematical modeling approaches that are
commonly used to model the mechanical system. The two techniques are explained
and detailed with the assumptions used in order to distinguish the di�erences and
hence the consequences of each modeling.

Assumption 2. Elimination of the inertias from: the low speed shaft ΘLS [kg m2]
and the high speed shaft ΘHS [kg m2]

Assumption 3. The gearbox inertia, ΘGB [kg m2], is included in the total machine's
inertia, ΘM [kg m2], as

ΘM = ΘM0 + ΘGB (4.12)

Assumption 4. Static friction is always neglected.
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4.1.2.1 One-mass system

The transmission system in the wind turbine has two sides, as mentioned before,
the turbine side and the machine side. Each side has a rotational speed, a torque
and an inertia.

The one-mass system (1MS) is the one that consists of one inertia Θ [kg m2] that is
the sum of all of the coupled masses, and a gear ratio gr. In this case, the mechanical
system is driven by the turbine's torque mT [N m] and it is subject to the machine's
torque mM [N m].

Assumption 5. Dynamic friction is neglected for the one-mass system.

ΘT

mTωT
ΘM

mM ωM

(a) Turbine gearbox and machine gear-

box

ΘT

mTωT

ΘM ′

mM ′ ωM ′

(b) Turbine gearbox re�ected on the

machine side

Figure 4.2: Gearbox transmission in a wind turbine, based on [13, p.18]

As shown in Fig. 4.2, the turbine side in (a) is described with the turbine's rotational
speed, ωT , turbine's inertia, ΘT [kg m2], and turbine's torque,mT . On the other side,
the machine's variables are the machine's rotational speed, ωM , machine's inertia,
ΘM [kg m2], and machine's torque, mM .

Both sides can be re�ected on the other one to obtain relations that will describe
the system. In this case, the machine's side is the one re�ected on the turbine's side.
As this is done and the turbine's variables are the same, it applies

ωT ′ = ωT , mT ′ = mT and ΘT ′ = ΘT (4.13)

Not the same happens to the machine's variables, which change to ωM ′ , ΘM ′ and
mM ′ and the values need to be deducted. The starting point for deductions is
the conservation of energy in the drive train in (4.14) and the power conservation
in (4.15)

∀t ≥ 0 :
1

2
·
(

ΘT ·ωT (t)2 +ΘM ·ωM(t)2
)

=
1

2
·
(

ΘT ·ωT (t)2 +ΘM ′ ·ωM ′(t)2
)

(4.14)

∀t ≥ 0 : mM(t) · ωM(t) = mM ′(t) · ωM ′(t) (4.15)

By relating the variables, the system can be described as a direct drive system, so
the shaft speed is the same for both sides in Fig. 4.2 (b). Due to this, ωM ′(t) = ωT (t)
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and (4.11), mM ′(t) can be obtained

∀t ≥ 0 : ωM ′(t) = ωT (t) =
ωM(t)

gr
(4.16)

mM ′(t) = gr ·mM(t) (4.17)

To �nd out the total inertia of the system, both inertias need to be added, but
ΘM ′ [kg m2] is still unde�ned. It can be deducted

ΘM ′
(4.14)
= ΘM ·

ωM(t)2

ωM ′(t)2

(4.16)
= ΘM ·

����ωM(t)2

���ωM (t)2

g2r

= g2
r ·ΘM (4.18)

Θ = ΘT + ΘM ′ = ΘT + g2
r ·ΘM (4.19)

Finally, it is possible to obtain a simple model that describes the wind turbine in a
one-mass system

d

dt
ωM(t) =

1

Θ
·
(
mT (t) +mM ′(t)

)
=

1

Θ
·
(
mT (t) + gr ·mM(t)

)
, ωM(0) = ωM,0

(4.20)
From this simple model, ωM(t) is the output and feedback variable, Θ is a known
value, mT (t) is given by (4.10), gr is given by (4.11), and mM(t) is described by the
electrical modeling of the generator.

4.1.2.2 Two-mass system

Two inertias coupled by a harmonic drive can be considered as an elastic two-mass
system [20, p.16].
In particular, most controllers are considered more adapted for high-�exibility wind
turbines that cannot be properly modeled with a one mass model. Besides, it is
shown that the two-mass model can show �exible modes in the gear train model
that cannot be done using the one mass model [3].
So the two-mass system (2MS) consists of two inertias, the machine's inertia ΘM

[kg m2] and the turbine's inertia ΘT [kg m2]. From the coupling, there is a low
speed shaft sti�ness cS [N m

rad
] and low speed shaft damping dS [N m s

rad
] associated. The

coupling may, as well, include a gear ratio gr [1].

ΘT

mT

ωT , φT

dT

ds

cs

dM
mM−T

ΘM

gr

mT−M

mM

ωM , φM

(a) Turbine's gearbox and machine's

gearbox

ΘT

mT

ωT , φT

dT

ds

cs
dM ′

mM ′
−T

ΘM ′

mT−M ′ mM ′

ωM ′ , φM ′

(b) Machine's gearbox re�ected on the

turbine side

Figure 4.3: Two-mass system in a wind turbine
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The essential assumptions of this model are:

Assumption 6. A turbine damping e�ect dT [N m s
rad

] and a machine damping e�ect
dM [N m s

rad
] exist and are considered.

Assumption 7. The impact of the high speed shaft sti�ness cHS [
N m
rad

] and damping
dHS [N m s

rad
] exist, but are not considered.

In this two-mass model system, there are two ways to obtain the state variable that
describes the system shown in Fig. 4.3.

Case I To obtain the model that is described in Fig. 4.3, it is necessary to relate
the machine side to the turbine, as shown on Fig. 4.3 (b). From this moment on,
the gear ratio can be related as

gr =
ωM(t)

ωM ′(t)
=
φM(t)

φM ′(t)
=
mM ′−T (t)

mM−T (t)
and g2

r =
ΘM ′

ΘM

=
dM ′

dM
(4.21)

With Assumption 2, Assumption 3, Assumption 4, Assumption 6, Assumption 7,
and the Newton's second law for rotating systems, the mathematical model for the
turbine shown in Fig. 4.3 (b) is described by

ΘT ·
d

dt
ωT (t) + dTωT (t) = mT (t)−mT−M ′(t), ωT (0) = ωT,0 (4.22)

There are two torques, the torque produced by the turbine on the machine, mT−M
[N m], and the torque produced by the machine on the turbine, mM−T [N m]. These
torques are related by the gear ratio, gr.

mM−T = −mT−M

gr
(4.23)

In Fig. 4.3 (b), two torques are as well present, but in terms of the related machine.
Transforming the variables in the torque produced by the turbine on the related
machine, mT−M ′ [N m], and the torque produced by the related machine on the
turbine, mM ′−T [N m]

To describe mT−M ′ , as shown in Fig. 4.3 (b), it is necessary to include the angle of
the turbine φT [rad] and the angle of the related machine's shaft φM ′ [rad].

Applying Assumption 2, Assumption 4, Assumption 6, Assumption 7; the torque
produced by the turbine on the machine is reduced to

mT−M ′(t) = ds · (ωT (t)− ωM ′(t)) + cs · (φT (t)− φM ′(t)) (4.24)

For the machine's mathematical model the same procedure is used to obtain it

ΘM ′ ·
d

dt
ωM ′(t) + dM ′ωM ′(t) = mM ′(t)−mM ′−T (t), ωM(0) = ωM,0 (4.25)
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To describe mM ′−T , the same method used to describe mT−M ′ is used

mM ′−T (t) = ds · (ωM ′(t)− ωT (t)) + cs · (φM ′(t)φT (t))

= −mT−M ′
(4.26)

Using the relations and equations presented, the �nal equations to describe the
model can be resumed as

d

dt
ωT (t) =

1

ΘT

(mT (t)−mT−M ′(t)− dTωT (t)), ωT (0) = ωT,0 (4.27)

g�2rΘM ·
d

dt

ωM(t)

��gr
= gr ·mM(t)−mT−M ′(t)− g�2r · dM ·

ωM(t)

��gr
d

dt
ωM(t) = ��gr ·mM(t)

��gr ·ΘM

− mT−M ′(t)

gr ·ΘM

−��gr · dM · ωM(t)

��gr ·ΘM

d

dt
ωM(t) =

1

ΘM

(
mM(t) +

mT−M ′(t)

gr
− dMωM(t)

)
, ωM(0) = ωM,0

(4.28)

To relate the variables in this model, it is necessary to derive (4.24) with respect to
the time to obtain

d

dt
mT−M ′(t) = ds

(
d

dt
ωT (t)− d

dt
ωM ′(t)

)
+ cs

(
d

dt
φT (t)− d

dt
φM ′(t)

)

= ds

(
d

dt
ωT (t)− d

dt
ωM ′(t)

)
+ cs(ωT (t)− ωM ′(t))

(4.21)
= ds

(
d

dt
ωT (t)− d

dt

ωM(t)

gr

)
+ cs

(
ωT (t)− ωM(t)

gr

) (4.29)

After substituting values using (4.27) and (4.28) in (4.29)

d

dt
mT−M ′(t) =

(
cs −

ds · dT
ΘT

)
ωT (t) +

(
−csΘM + dM · ds

gr ·ΘM

)
ωM(t) +

ds
ΘT

mT (t)+(
−ds(ΘM · gr2 + ΘT )

gr2ΘTΘM

)
mT−M ′(t) +

ds
grΘM

mM(t), mT−M ′(0) = mT−M ′,0

(4.30)

The state variable system derived is

d

dt
x(t) = A · x(t) + b ·mM(t) + bd ·mT (t)
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y(t) = C · x(t)

where the state vector for this model is x(t) = (ωT (t), ωM(t),mT−M ′(t))
> ∈ R3×1,

with: A ∈ R3×3, b ∈ R3×1, bd ∈ R3×1 and C ∈ R3×3.
and the system can be represented as

+

+

++

A

b

bd

C
∫d

dt
x(t) x(t) y(t)mM(t)

mT (t)

Figure 4.4: Two mass system block diagram

Each matrix can be referenced as

A :=

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , b :=

b11

b21

b31

 , bd :=

bd11

bd21

bd31

 (4.31)

C :=

c11 c12 c13

c21 c22 c23

c31 c32 c33

 (4.32)

The matrix form of the state variables can be expressed as:

d

dt
x(t) =

 − dT
ΘT

0 − 1
ΘT

0 − dM
ΘM

1
gr·ΘM

cs − ds·dT
ΘT

− csΘM+dM ·ds
gr·ΘM

−ds(ΘM ·gr2+ΘT )
gr2ΘTΘM

x(t)+

 0
1

ΘM
ds

gr·ΘM

mM(t)+

 1
ΘT

0
ds
ΘT

mT (t)

(4.33)

y(t) =

1 0 0
0 1 0
0 0 1

x(t) (4.34)

This case of the two mass model is considered to be the most commonly used way
to describe a two-mass system [3].

Case II Using the previous assumptions and, as well as before, the Newton's
second law for rotating systems, the mathematical model for the turbine shown in
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Fig. 4.3 (b) from re�ecting the variables from the machine's side to the turbine's
side in Fig. 4.3 (a), is described by

ΘT ·
d

dt
ωT (t) + dTωT (t) = mT (t)−mT−M ′(t), ωT (0) = ωT,0 (4.35)

For machine's mathematical model the same procedure is used to obtain it

ΘM ′ ·
d

dt
ωM ′(t) + dM ′ωM ′(t) = mM ′(t)−mM ′−T (t), ωM ′(0) = ωM ′,0 (4.36)

In this case, mT−M ′ [N m] and mM ′−T [N m] are the torques produced by the turbine
on the related machine and the torque produced by the related machine on the
turbine respectively, and are described as

mT−M ′(t) = ds · (ωT (t)− ωM ′(t)) + cs · (φT (t)− φM ′(t)) (4.37)

mM ′−T (t) = ds · (ωM ′(t)− ωT (t)) + cs · (φM ′(t)− φT (t))

= −ds · (ωT (t)− ωM ′(t))− cs · (φT (t)− φM ′(t))
(4.37)
= −mT−M ′(t)

(4.38)

From this equations, a new relation can be obtained using the angular displacement
between the turbine's angle φT [rad] and the machine's angle φM [rad].

∆φT−M(t) = φT (t)− φM ′(t)
(4.21)
= φT (t)− φM(t)

gr
(4.39)

After obtaining this relations, it is possible to describe d
dt
ωT (t) and d

dt
ωM ′(t) us-

ing (4.37), (4.39) and (4.38) as

ΘT ·
d

dt
ωT (t) = mT (t)− ds · (ωT (t)− ωM ′(t))− cs ·∆φT−M(t)− dTωT (t) (4.40)

ΘM ′ ·
d

dt
ωM ′(t) = mM ′(t) + ds · (ωT (t)−ωM ′(t)) + cs ·∆φT−M(t)− dM ′ωM ′(t) (4.41)

Because of the addition of terms and variables in the model description, it is neces-
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sary to express all states in terms of M ′ in terms of M using (4.21)

ΘT ·
d

dt
ωT (t) = mT (t)− ds ·

(
ωT (t)− ωM(t)

gr

)
− cs ·∆φT−M(t)− dTωT (t)

d

dt
ωT (t) =

1

ΘT

(
mT (t)− ds ·

(
ωT (t)− ωM(t)

gr

)
− cs ·∆φT−M(t)− dTωT (t)

)

(4.42)

g�2r ·ΘM ·
d

dt

ωM(t)

��gr
= gr ·mM(t) + ds

(
ωT (t)− ωM(t)

gr

)
+ cs ·∆φT−M(t)− g�2r · dM ·

ωM(t)

��gr

gr ·ΘM ·
d

dt
ωM(t) =

(
gr ·mM(t) + ds

(
ωT (t)− ωM(t)

gr

)
+ cs ·∆φT−M(t)− gr · dM · ωM(t)

)
d

dt
ωM(t) =

(
��gr ·mM(t)

��gr ·ΘM

+ ds

(
ωT (t)

gr ·ΘM

− ωM(t)

g2
r ·ΘM

)
+
cs ·∆φT−M(t)

gr ·ΘM

−��gr · dM · ωM(t)

��gr ·ΘM

)
d

dt
ωM(t) =

1

ΘM

(
mM(t) + ds

(
ωT (t)

gr
− ωM(t)

g2
r

)
+
cs ·∆φT−M(t)

gr
− dM · ωM(t)

)
(4.43)

In this case the state variable system derived is

d

dt
x(t) = A · x(t) + b ·mM(t) + bd ·mT (t)

y(t) = C · x(t)

The system can be represented as shown in Fig. 4.4 and The state vector for this
model is x(t) = (ωT (t), ωM(t),∆φT−M(t))> ∈ R3×1; with: A ∈ R3×3, b ∈ R3×1,
bd ∈ R3×1 and C ∈ R3×3. The matrices can be referenced as shown in case I
with (4.31) and (4.32).

Now, by di�erentiating (4.39) with respect to time, rearranging (4.42) and (4.43)
in terms of d

dt
ωT (t) and d

dt
ωM(t) respectively, the matrix form of the state variables

can be expressed as:

d

dt
x(t) =

−
(ds+dT )

ΘT

ds
gr·ΘT

− cs
ΘT

ds
gr·ΘM

− (ds+g2r ·dM )
g2r ·ΘM

cs
gr·ΘM

1 − 1
gr

0

x(t) +

 0
1

ΘM

0

mM(t) +

 1
ΘT

0
0

mT (t)

(4.44)

y(t) =

1 0 0
0 1 0
0 0 1

x(t) (4.45)
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From the discussion made by [7], it can be concluded that a wind turbine can be
reduced to an e�ective two-mass model with an acceptable accuracy, and also that
more than two-mass model may be more appropriate for short-time phenomena
as transient stability analysis during faults. The choice of choosing the two-mass
model with a �exible low-speed shaft is motivated by the fact that the low speed
shaft encounters a torque gr-times greater than the high-speed shaft torque that
turns gr-times quicker than the low-speed shaft. As the low-speed shaft encounters
a higher torque, it is subject to more deviation and it is more convenient to take
it into consideration. And, besides that, the use of two �exible shafts leads to a
more complex model not really well adapted for controllers design. And as many
authors report, general models can be largely simpli�ed to be used in a control
system [7], [25].

4.2 Speed control for the one-mass system

This section is based on [7] and [13]. The control applied to the model obtained
in (4.20) is a speed control. The control is used aiming to obtain the maximum
power from the wind.

At all times, the turbine's power is given by the turbine's torque times the turbine's
rotational speed (see (4.9)).

As shown in Fig. 3.5, it must be true that at regions I and IV, the machine's power
is 0. In region III, the nominal turbine's power should be achieved at any given
time, being the turbine's power described by

pT,nom(t) = mT,nom(t) · ωT,nom(t) > 0 [W] (4.46)

Where mT,nom [N m] is the nominal turbine's torque and ωT,nom [ rad
s
] is the nominal

turbine's rotational speed.

In region II, the machine's power is less than the nominal value, and as cP,1 is being
used, there is no pitch angle.

pT (t) = mT (t) · ωT (t) < pT,nom (4.47)

The basic speed control for a wind turbine is given by the block diagram in Fig. 4.5
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−

mM,ref

mM

mT

ωT

1

gr

1

Θ

λ

Current control loop ≈ 1

Figure 4.5: Block diagram for a basic speed control in a wind turbine with a direct drive

For this control it is necessary that some conditions are true and some assumptions
to be considered such as the following:

Assumption 8. The turbine is working in the region II, see Fig. 3.5

∀t ≥ 0 : vnom > vW (t) ≥ vcut−in > 0 and ωT (t) > ωT,min > 0 (4.48)

Assumption 9. It is assumed that the speed control is fast enough to, ideally,
apply

∀t ≥ 0 : mM,ref (t) = mM(t) (4.49)

Assumption 10. Variables used with a star exponent (∗) are taking into consider-
ation as nominal values.

Assumption 11. The wind turbine is supposed to be working in region II, so the
turbine's power can be calculated as

pT (vW , λ) = pT (vW , λ) = cP (λ) · 1

2
· ρ · π · rT 2 · vW (t)3 (4.50)

pT (vW , λ) ≤ cP (λ∗) · pT (t) (4.51)

From this new equations and relations, (4.20) can be transformed into:

d

dt
ωT (t) =

1

Θ
·
(mT (vW , ωT )

gr
+mM(t)

)
=

1

Θ
·
(mT (vW , ωT )

gr
+mM,ref (t)

)
(4.52)

The speed control implementation has two necessary terms. There is a constant
named K∗p and the square value of the rotational speed. The combination of both
gives us the variable mM,ref (t) shown in Fig. 4.5 and 4.49

mM,ref = −K∗p · ωT (t)2 (4.53)

In this control, the constant value of K∗p is assumed as

K∗p =
ρ · π · rT 5

2 · gr
· cP,1(λ∗)

(λ∗)3
(4.54)

43



CHAPTER 4. METHODOLOGY

4.3 Observer design for the two-mass system

After obtaining the model that describes the two-mass system in (4.44) and (4.45),
the design of an observer for the turbine's torque mT is necessary to work as a sensor
for the variable. As the turbine's torque is not a state of the model, it is going to
be treated as a disturbance since it can be assumed that through time, it should be
kept as a constant.

4.3.1 Augmented system, observability and reachability

Using [10] as a guide, in this case a disturbance observer is designed to estimate the
unknown value of the turbine torque mT (t). In this case, the disturbance observer is
going to be used as a sensor since mT (t) is not usually measured and it is necessary
for further steps. For doing this, an augmented system of (4.44) and (4.45) is
introduced with an additional (virtual) disturbance state xd [10]. This augmented
system is going to be the basis for the observer and controller design

4.3.1.1 Augmented system

The disturbance can be de�ned as

d(t) = d0 + d(t) = mT (t) (4.55)

with d0 as a constant and d(t) as the variable part of the disturbance. From this
moment on, it is possible to introduce the virtual disturbance state d

dt
xd(t) = 0

with an initial value xd(0) = d0. The augmented state vector corresponds to x′ =
(x>, xd)

> and the augmented system is given by

d

dt
x′(t) =

[
A bd
0>3 0

]
︸ ︷︷ ︸
:=A′∈R4×4

x′(t) +

(
b
0

)
︸ ︷︷ ︸

:=b′∈R4×1

u(t) +

(
bd
0

)
︸ ︷︷ ︸

:=b′d∈R4×1

d(t) (4.56)

y(t) =
(
C 03

)
︸ ︷︷ ︸
:=C′∈R3×4

x′(t) (4.57)

with 0k as a vector of zeros with k-rows.

The system is now described as

d

dt
x′(t) = A′x′(t) + b′u(t) + b′dd(t) (4.58)

y(t) = C′x′(t) (4.59)

and represented as
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+

+

+ +

A′

b′

b′

d

C′

∫d

dt
x′(t) x′(t) y(t)

d(t)

u(t)

Figure 4.6: Augmented system block diagram

Each matrix can be assumed as

A′ :=


a′11 a′12 a′13 a′14

a′21 a′22 a′23 a′24

a′31 a′32 a′33 a′34

a′41 a′42 a′43 a′44

 , b′ :=


b′11

b′21

b′31

b′41

 , b′d :=


b′d11

b′d21

b′d31

b′d41

 (4.60)

C′ :=

c′11 c′12 c′13 c′14

c′21 c′22 c′23 c′24

c′31 c′32 c′33 c′34

 (4.61)

With the new variables, the resultant matrix are

A′ =


− (ds+dT )

ΘT

ds
gr·ΘT

− cs
ΘT

1
ΘT

ds
gr·ΘM

− (ds+g2r ·dM )
g2r ·ΘM

cs
gr·ΘM

0

1 − 1
gr

0 0

0 0 0 0

 ,b′ =


0
1

ΘM

0
0

 ,b′d =


1

ΘT

0
0
0

 (4.62)

C′ =

1 0 0 0
0 1 0 0
0 0 1 0

 (4.63)

4.3.1.2 Observability and controllability

For the observability and controllability of the system, it is necessary to obtain
matrix S and M, given as

S :=


C′

C′A′

C′A′2

...
C′A′n−1

 (4.64)
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M :=
[
b′ A′b′ A′2b′ · · · A′n−1b′

]
(4.65)

A n-th order system, with squared matrices, is observable when the determinant of
S is 6= 0 and controllable when the determinant of M is 6= 0. If matrices are not
squared, the system is observable and controllable if the rank of the matrices is n
(see [29, Th. 9.5, Th. 9.11]).
In this case, the rank of each matrix is maximum 4, so the matrix can be represented
as follows to analyze them.

S =


C′

C′A′

C′A′2

C′A′3

 =


1 0 0 0
0 1 0 0
0 0 1 0

−(ds+dT )
ΘT

ds
gr·ΘT

−cs
ΘT

1
ΘT

...
...

...
...

 (4.66)

M =
[
b′ A′b′ A′2b′ A′3b′

]
(4.67)

Note that the rank of S is, indeed, 4 as long as 1
ΘT
6= 0, which means the system is

always observable since 4 independent equations are obtained. In the controllability
matrix, since it is not yet necessary, it was computed through the symbolic toolbox of
MATLAB to obtain its rank. Due to the nature of the b′ matrix, the maximum rank
of M in this case is 3, which means that at least one of the states not controllable.
And through the computation it was con�rmed that the rank of the matrix is 3.

4.3.2 Disturbance observer design

Convention 1. The usage of ( ˆ ) over any of the variables introduced before,
corresponds to a equivalent variable in the disturbance observer design.

Based on (4.56) and (4.57), it is possible to obtain a generic Luenberger observer
to estimate the unknown disturbance xd through the state x̂d. The observer that is
going to be designed corresponds to:

d

dt
x̂′(t) = A′x̂′(t) + b′u(t) + ûobs(t) (4.68)

ŷ(t) = C′x̂′(t) (4.69)

The last term, known as ûobs, is the observer's feedback and works as a correction
value that contains the di�erence between the measured output and the estimated
output.

ûobs = L(y(t)−C′x̂′(t)) = L(y(t)− ŷ(t)) = LC′(x′(t)− x̂′(t)) (4.70)

The correction term helps reducing the e�ects of the di�erence between the dynamic
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model and the real system. Where L ∈ R4×3 is a matrix that works as a weight
matrix.

The error dynamics in the state estimation can be obtained, de�ning the observer's
error εobs as

εobs(t) := x′(t)− x̂′(t) (4.71)

By di�erencing (4.71) in time,

d

dt
εobs(t) =

d

dt
x′(t)︸ ︷︷ ︸
(4.58)

− d

dt
x̂′(t)︸ ︷︷ ︸
(4.68)

d

dt
εobs(t) = A′(x′(t)− x̂′(t)) + b′dd(t)− LC′(x′(t)− x̂′(t))

the error dynamics result in

d

dt
εobs(t) = (A′ − LC′︸ ︷︷ ︸

:=Aobs∈R4×4

)εobs(t) + b′dd(t) (4.72)

In this design, Aobs is obtained as

Aobs =


aobs11 aobs12 aobs13 aobs14

aobs21 aobs22 aobs23 aobs24

aobs31 aobs32 aobs33 aobs34

aobs41 aobs42 aobs43 aobs44



=


a′11 a′12 a′13 a′14

a′21 a′22 a′23 a′24

a′31 a′32 a′33 a′34

a′41 a′42 a′43 a′44

−

l11 l12 l13

l21 l22 l23

l31 l32 l33

l41 l42 l43


c′11 c′12 c′13 c′14

c′21 c′22 c′23 c′24

c′31 c′32 c′33 c′34



=


− (ds+dT )

ΘT

ds
gr·ΘT

− cs
ΘT

1
ΘT

ds
gr·ΘM

− (ds+g2r ·dM )
g2r ·ΘM

cs
gr·ΘM

0

1 − 1
gr

0 0

0 0 0 0

−

l11 l12 l13

l21 l22 l23

l31 l32 l33

l41 l42 l43


1 0 0 0

0 1 0 0
0 0 1 0



=


− (ds+dT )

ΘT

ds
gr·ΘT

− cs
ΘT

1
ΘT

ds
gr·ΘM

− (ds+g2r ·dM )
g2r ·ΘM

cs
gr·ΘM

0

1 − 1
gr

0 0

0 0 0 0

−

l11 l12 l13 0
l21 l22 l23 0
l31 l32 l33 0
l41 l42 l43 0


(4.73)
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Finally resulting in

Aobs =


− (ds+dT )

ΘT
− l11

ds
gr·ΘT

− l12 − cs
ΘT
− l13

1
ΘT

ds
gr·ΘM

− l21 − (ds+g2r ·dM )
g2r ·ΘM

− l22
cs

gr·ΘM
− l23 0

1− l31 − 1
gr
− l32 −l33 0

−l41 −l42 −l43 0

 (4.74)

The observer can be represented as

−

+

+ + +

+

+ +

+

A′

b′

b′

d

C′

A′

b′

C′

L

∫

∫

d

dt
x′(t) x′(t)

d

dt
x̂′(t) x̂′(t)

y(t)

ŷ(t)

Observer

d(t)

u(t)

Figure 4.7: Observer with augmented system block diagram

4.3.2.1 Observer design by pole placement

In this case, the observer dynamics shown in (4.71) are asymptotically stable if all
of the values in Aobs are in the imaginary half plane, that means, that their real
part is negative.
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The observer poles are given by

det(zI4 −Aobs) = 0 (4.75)

with I4 as a 4x4 identity matrix.

zI4 −Aobs = z


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

aobs11 aobs12 aobs13 aobs14

aobs21 aobs22 aobs23 aobs24

aobs31 aobs32 aobs33 aobs34

aobs41 aobs42 aobs43 aobs44



=


z 0 0 0
0 z 0 0
0 0 z 0
0 0 0 z

−

− (ds+dT )

ΘT
− l11

ds
gr·ΘT

− l12 − cs
ΘT
− l13

1
ΘT

ds
gr·ΘM

− l21 − (ds+g2r ·dM )
g2r ·ΘM

− l22
cs

gr·ΘM
− l23 0

1− l31 − 1
gr
− l32 −l33 0

−l41 −l42 −l43 0



=


z + (ds+dT )

ΘT
+ l11 − ds

gr·ΘT
+ l12

cs
ΘT

+ l13 − 1
ΘT

− ds
gr·ΘM

+ l21 z + (ds+g2r ·dM )
g2r ·ΘM

+ l22 − cs
gr·ΘM

+ l23 0

−1 + l31
1
gr

+ l32 z + l33 0

l41 l42 l43 z


(4.76)

And the values needed are �xed by the polynomial

Pdesired(z) = (z − p1)(z − p2)(z − p3)(z − p4) (4.77)

It is possible to simplify (4.76) choosing the value of some of the observer gains
based on the relation between states, such as

l12 = a
′

12 =
ds

gr ·ΘT

, l13 = a
′

13 = − cs
ΘT

, l21 = a
′

21 = − ds
g2
r ·ΘM

, l23 = a
′

23 =
cs

gr ·ΘM

,

l31 = a
′

31 = 1, l32 = a
′

32 = − 1

gr
, l42 = 0 and l43 = 0

Applying this relations to the current zI4 −Aobs matrix, the resulting matrix is

zI4 −Aobs =


z + (ds+dT )

ΘT
+ l11 0 0 − 1

ΘT

0 z + (ds+g2r ·dM )
g2r ·ΘM

+ l22 0 0

0 0 z + l33 0
l41 0 0 z

 (4.78)

Using the symbolic toolbox of MatLab, the coe�cients from det(zI4−Aobs) should be
now compared with the ones of the desired polynomial Pdesired(z) in (4.77), obtaining

49



CHAPTER 4. METHODOLOGY

that

l11 = a
′

11 − p2 − p3, l22 = a
′

22 − p1, l33 = −p4, and l41 =
p2 · p3

a
′
14

(4.79)

With this relations, it is possible to get the �nal L matrix with all of the observer's
gains

L =


l11 a

′
12 a

′
13

a
′
21 l22 a

′
23

a
′
31 a

′
32 l33

l41 0 0

 =


− (ds+dT )

ΘT
− p2 − p3

ds
grΘT

− cs
ΘT

ds
gr·ΘM

− (ds+g2r ·dM )
g2r ·ΘM

− p1
cs

grΘM

1 − 1
gr

−p4

ΘT · p2 · p3 0 0

 (4.80)

After obtaining the �nal L matrix for the observer, Aobs can be described as

Aobs =


p2 + p3 0 0 − 1

ΘT

0 p1 0 0
0 0 p4 0

−ΘT · p2 · p3 0 0 0

 (4.81)

The values for pi with i = 1, 2, 3, 4 are found through tests to see if the observer is
working correctly.

Due to the amount of cancellations in the design of this observer, a disturbance
observer design by LQR with stability margin is also stated, for further comparison
between the results.

4.3.2.2 Disturbance observer design by LQR with stability margin

In this design, based on [11, Sec IV], as well as in the one done by pole placement
previously, it is necessary that the L matrix values are chosen for the values of
(A′ − LC′) to be on the left side of the complex half plane.

It is noted for this design that det(A′ − LC′) = det(A′> −C′>L>), with this, and
considering the dual system [27, Sec. 7.1.2] with a dual state x̂q and dual input ûq,
the design of a Linear Quadratic Regulator (LQR) [27, Sec. 10.4.5] with respect to
the cost function can be started

Jo =

∞∫
0

e2αot
(
x̂q(t)

>Qox̂q(t) + ûq(t)
>Roûq(t)

)
dt (4.82)

A stability margin α0 ≥ 0 is stated, as well as the weighting matrices Qo and Ro

0 ≤ Qo = Q>o ∈ R4×4 and 0 ≤ Ro = R>o ∈ R3×3 (4.83)

A dual system with dual state and dual input can be explained using the error
dynamics in the observer design 4.72.
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The optimal feedback gain matrix L is obtained using [27, Sec. 10.4.5] and the
equation described as

L = (R−1
o C′P−1

o ) (4.84)

Where a third weighting matrix is introduced and de�ned as 0 ≤ Po = P>o ∈ R4,
additionaly it solves the Riccati equation as

(A′ + αoI4)Po + Po(A
′ + αoI4)> −PoC

′>R−1
o C′Po + Qo = O4×4 (4.85)

Where O4×4 is a 4× 4 zero matrix and I4 is a 4× 4 identity matrix.

It is important to know what each matrix means and how it a�ects the overall
performance of the observer as well as what is the role of the stability margin. The
matrix Ro is related to the characteristics of noise measurements, Qo is associated
with the con�dence in the system model and Po represents the mean-squared error
or covariance of the initial conditions.The stability margin itself corresponds to a
value, decided by the designer, which setts up a place in the negative imaginary half
plane from which the poles of the system are placed to assure the stability of the
system. [2].

Observability As analyzed before, the S matrix shown in (4.64) is used by sub-
stituting A′ with (A′ + α0 · I4). The maximum rank of the S matrix is still 4 as
before, and the rank obtained with the mentioned substitution is 4. With this, we
can assure all of the states in the system are observable.

4.4 Parameter estimation

After obtaining a stable and well functioning observer for the turbine's torque mT as
shown in Chapter 4.2, the proceeding part will be to estimate the value of unknown
parameters to establish a fault detection pattern. There are four main mechanical
parameters that can be estimated: the low-speed shaft's damping ds, the low-speed
shaft's sti�ness cs, the turbine's damping dT and the machine's damping dM , as
shown in Fig. 4.3. Initially it is desired to estimate the four of them and an Extended
Kalman Filter (EKF) is proposed for the parameter estimation.

It is important to note that it is assumed that there is a very precise wind measure-
ment and that the cP,1 curve �ts the reality perfectly so that the turbine's torque
that is used is the precise one. This is noted because in the past chapter, the whole
idea is to obtain a precise turbine's torque observer, variable that is needed for the
parameter estimation.
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4.4.1 Overall nonlinear model

To implement the EKF it is necessary to obtain a nonlinear state space model that
will follow the form

d

dt
x = g(x,u), x0 ∈ R7 and y = h(x) (4.86)

The new state vector x will include the present states and new ones, or the ones that
are going to be estimated. The output or measurement vector is known as y and
the input vector as u. The overall nonlineal model works as an augmented system
to add the parameters as states.

x = (ωT (t), ωM(t),∆φT−M(t), ds(t), cs(t), dT (t), dM(t))> ∈ R7 (4.87)

y = (ωT (t), ωM(t),∆φT−M(t))> ∈ R3 (4.88)

u = (mM(t),mT (t))> ∈ R2 (4.89)

The nonlinear model can by transforming or adapting the three basic state equations
(see (4.39), (4.42) and (4.43)). In these three state equations, the parameters are
adapted from constants to time varying function. For example, the low speed shaft's
damping ds changed from a constant to ds(t) which means it is now changing through
time, as shown in (4.90).

g(x,u) =



1
ΘT

(
mT (t)− ds(t)

(
ωT (t)− ωM (t)

gr

)
− cs(t)∆φT−M(t)− dT (t)ωT (t)

)
1

ΘM

(
mM(t) + ds(t)

(
ωT (t)
gr
− ωM (t)

g2r

)
+ cs(t)∆φT−M (t)

gr
− dM(t)ωM(t)

)
ωT − ωM

gr

0
0
0
0


(4.90)

h(x) =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 (4.91)

4.4.2 Discretization

To apply the EKF method, it is necessary to have a discrete system. The system,
de�ned in (4.39), (4.42) and (4.43) is now discretized using the Euler method [21,
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p.9-11] with a sample time TS [s] su�ciently small as 0 < TS << 1.

The Euler method itself describes a function ϑ(t) as

ϑ(t) ≈ ϑ(kTS) := ϑ[k], k ∈ N (4.92)

From the method it is stated that the derived function can be de�ned as

d

dt
ϑ(t) :≈ ϑ[k + 1]− ϑ[k]

TS
(4.93)

The three basic state equations are now de�ned as:

ωT [k+1] =
[
1−TSds[k]

ΘT

−TSdT [k]

ΘT

]
ωT [k]+

TSds[k]ωM [k]

grΘT

−TScs[k]∆φT−M [k]

ΘT

+
TSmT [k]

ΘT

(4.94)

ωM [k+1] =
TSds[k]ωT [k]

grΘM

+
[
1−TSds[k]

g2
rΘM

−TSdM [k]
]
ωM [k]+

TScs[k]∆φT−M [k]

grΘM

+
TSmM [k]

ΘM

(4.95)

∆φT−M [k + 1] = TSωT [k]− TSωM [k]

gr
+ ∆φT−M [k] (4.96)

And the equations that describe the parameters, which are constants so their deriva-
tives are zero as shown in (4.90), are stated as

ds[k + 1] = ds[k] (4.97)

cs[k + 1] = cs[k] (4.98)

dT [k + 1] = dT [k] (4.99)

dM [k + 1] = dM [k] (4.100)

After the Euler method was applied to the state variables and solved for x[k + 1]
the resultant system can be de�ned as

x[k + 1] = Ak · x[k] + Bk · u[k] (4.101)

y[k] = Ck · x[k] (4.102)
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With the matrices Ak ∈ R7×7, Bk ∈ R7×2 and Ck ∈ R3×7 de�ned as

Ak := TS



1
TS
− ds[k]+dT [k]

ΘT

ds[k]
grΘT

− cs[k]
ΘT

−grωT [k]+ωM [k]
grΘT

−∆φT−M [k]

ΘT
−ωT [k]

ΘT
0

ds[k]
grΘM

1
TS
− ds[k]+g2rdM [k]

g2rΘM

cs[k]
grΘM

grωT [k]−ωM [k]
g2rΘM

∆φT−M [k]

grΘM
0 −ωM [k]

g2rΘM

1 − 1
gr

1
TS

0 0 0 0

0 0 0 1
TS

0 0 0

0 0 0 0 1
TS

0 0

0 0 0 0 0 1
TS

0

0 0 0 0 0 0 1
TS


(4.103)

Bk := TS



1
ΘT

0

0 1
ΘM

0 0
0 0
0 0
0 0
0 0


(4.104)

Ck :=

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 (4.105)

For further reference about the discretization, see [29, p.385].

4.4.3 Extended Kalman Filter

Based on [2]. Iniatially, the EKF is an extension of the Kalman �lter but it is applied
to nonlinear systems. The EKF is based on a discrete nonlinear system model. For
the discretization of the system, the Euler method with a sampling time Ts[s] is used
in the continuous model obtained in (4.44) and (4.45).

The nonlinear discrete model of the wind turbine can be written as

x[k + 1] = x[k] + TSg(x[k],u[k]) + w[k] (4.106)

y[k] = h(x[k]) + v[k] (4.107)

wherew[k] ∈ R7×7 and v[k] ∈ R3×7 are included in the model system and correspond
to uncertainties and measurement noise, respectively. For simplicity [2], it is assumed
that the covariance matrices of the system are constant, which means that for all
k ∈ N

Q := E{w[k]w[k]>} ≥ 0 and R := E{v[k]v[k]>} ≥ 0 (4.108)

The EKF algorithm is shown next, and it achieves an optimal state estimation by
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minimizing the covariance of the estimation error for each time instant or the known
cost function, as shown in (4.82), with the correspondant relations between variables.

4.4.3.1 Extended Kalman Filter algorithm

Step 1: Initialization for k = 0

x̂[0] = E{x0},

P0 := P[0] = E{(x0 − x̂0)(x0 − x̂0)>}

K0 := K[0] = P[0]C[0]>(C[0]P[0]C[0]> + R)−1

with C[k] := ∂h(x)
∂x
|x̂−[k] and x̂−[k] being the previous measurement.

Step 2: Time update

(a) State prediction
x̂−[k] = g

[
x̂[k − 1],u[k − 1]

]
(b) Prediction of the error covariance matrix

P−[k] = A[k]P[k − 1]A[k]> + Q

with A[k] := ∂f(x,u)
∂x
|x̂−[k]

Step 3: Observability check

n[k] := rank(So[k]) with So as in (4.109)

Step 4: The Kalman gain is computed

K[k] = P−[k]C[k]>(C[k]P−[k]C[k]> + R)−1

Step 5: Known as the correction step, in here the measurement is updated for
k ≥ 1

(a) The estimation is updated

x̂[k] = x̂−[k] + K[k](y[k]− h(x̂−[k]))

(b) The error covariance matrix is updated

P[k] = P−[k]−K[k]C[k]P−[k]
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Step 6: Return to Step 2 with C[k]

The choice of these matrices, P0, Q and R is a crucial step during the design of the
EKF because they a�ect the performance and the convergence of the EKF [2]. Usu-
ally, the three of them are chosen to be diagonal matrices. The covariance matrix
P0 represents the covariances of the initial conditions and determines the initial am-
plitude of the transient behavior of the estimation process. The matrix Q describes
the con�dence with the system model, which means that large values in Q indicate
a low con�dence with the system model and will increase the matrix gain to give
a better/faster measurement update. The matrix R is related to the measurement
noise characteristics. Increasing the values of R indicates that measured signals are
heavily a�ected by noise and, therefore, are of little con�dence. Consequently, the
Kalman gain will decrease yielding a slower response.

Observability Observability, as well as before, analyzing the rank of the matrix
So

So =


Cd

CdAd

CdA
2
d

...
CdA

n−1
d

 (4.109)

So after the discretization, the corresponding Ak and Ck are

Ak = TS



1
TS
− ds[k]+dT [k]

ΘT

ds[k]
grΘT

− cs[k]
ΘT

−grωT [k]−ωM [k]
grΘT

−∆φT−M [k]

ΘT
− ωT

ΘT
0

ds[k]
grΘM

1
TS
− ds[k]+g2rdM [k]

g2rΘM

cs[k]
ΘM

grωT [k]−ωM [k]
g2rΘM

∆φT−M [k]

grΘM
0 − ωM

g2rΘM

1 − 1
gr

1
TS

0 0 0 0

0 0 0 1
TS

0 0 0

0 0 0 0 1
TS

0 0

0 0 0 0 0 1
TS

0

0 0 0 0 0 0 1
TS


(4.110)

Ck =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 (4.111)
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with both of this matrices, the observability for the system can be checked. For this
matter, the matrix So results in

So =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 1 − gr∆φT−M [k]

ωM [k]−grωT [k]
0 ωM [k]

ωM [k]−grωT [k]

0 0 0 0 0 1 1
gr

0 0 0 0 0 0 0
0 0 0 0 0 0 0
...

...
...

...
...

...
...


(4.112)

As the maximum rank was 7, but the rank obtained for this matrix was 5, two
parameters are not observable. After considering the importance of the estimation
of all the parameters, it is decided to check if ds and cs are observable at the same
time since dT and dM are being neglected.

Assuming the new state vector is (ωT (t), ωM(t),∆φT−M(t), ds(t), cs(t))
> ∈ R5, and

using the same equations described before, the new Ak and Ck matrices are

Ad = TS



1
TS
− ds[k]+dT [k]

ΘT

ds[k]
grΘT

− cs[k]
ΘT

−grωT [k]−ωM [k]
grΘT

−∆φT−M [k]

ΘT
ds[k]
grΘM

1
TS
− ds[k]+g2rdM [k]

g2rΘM

cs[k]
ΘM

grωT [k]−ωM [k]
g2rΘM

∆φT−M [k]

grΘM

1 − 1
gr

1
TS

0 0

0 0 0 1
TS

0

0 0 0 0 1
TS


(4.113)

Cd =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 (4.114)

with both of this new matrices, the observability for the system can be checked. For
this matter, the matrix So results in

So =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 − gr∆φT−M [k]

ωM [k]−grωT [k]

...
...

...
...

...

 (4.115)

Once more, the maximum rank was 5 and the rank obtained is 4. Which means
only one of the two parameters can be observed at a time since they are linearly
dependent. Due to this it is decided to move from an Extended Kalman Filter to a
Recursive Least Square method with a di�erent sampling method to solve the static
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observability problem.

4.4.4 Recursive Least Squares (RLS)

Based on [26]. The recursive method of least squares was also created by Gauss
(1809) [23]. First applications of this technique to dynamic systems have been
presented by Lee (1964) and Albert and Sittler (1965) [22]. In this speci�c method,
di�erent from a non-recursive method of least squares, the new parameter estimates
should be available during the measurement, after each sample step. So previous
measurements do not have to be stored.

The RLS algorithm is used in this thesis to implement the estimation of the me-
chanical parameters of a wind turbine. The RLS algorithm with a forgetting factor
compromises the convergence rate of the estimated parameters and the �ltering ef-
fect on the measurement noise [26]. The RLS algorithm is described by the following
equations:

θ̂[k] = θ̂[k − 1] + K[k](y[k]− ϕ>[k]θ̂[k − 1]) (4.116)

K[k] = P[k − 1]ϕ[k](γI + ϕ>[k]P[k − 1]ϕ[k])−1 (4.117)

P[k] =
1

γ
(I−K[k]ϕ>[k])P[k − 1]) (4.118)

where the system's description for the parameter estimation is given by

y = ϕ>θ (4.119)

In here, y and ϕ> are the output and states; θ and θ̂ are the real and estimated
parameter vectors respectively. γ is a positive forgetting factor, which is chosen
less than 1. P is the covariance matrix and K the correcting factor for the next
measurement.

In order to start the recursive method of least squares, the initial values for θ̂ and
K must be known, but also can be initialized to 0.

A small forgetting factor results in fast convergence rate of the parameter estimation
but large noise level in estimated values. Therefore, a proper forgetting factor should
be chosen to achieve a trade-o� between the convergence rate and the noise level.
Usually, 0.95 is chosen.

To choose and de�ne the output, states and parameter matrices, the following steps
are taken.

1. De�ne the equations that are going to be used for the method

ωT [k + 1]− ωT [k]

TS
=
mT [k]

ΘT

− ωT [k] · ds[k]

ΘT

+
ωM [k] · ds[k]

grΘT

− ∆φT−M [k] · cs[k]

ΘT

(4.120)
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ωM [k + 1]− ωM [k]

TS
=
mM [k]

ΘM

+
ωT [k] · ds[k]

grΘM

− ωM [k] · ds[k]

g2
rΘT

+
∆φT−M [k] · cs[k]

grΘM

(4.121)

2. Choose the parameters and identify them in the stated equations in the pre-
vious step. These parameters are from now on known as θ

ωT [k + 1]− ωT [k]

TS
=
mT [k]

ΘT

− ωT [k] · ds[k]

ΘT

+
ωM [k] · ds[k]

grΘT

− ∆φT−M [k] · cs[k]

ΘT

(4.122)

ωM [k + 1]− ωM [k]

TS
=
mM [k]

ΘM

+
ωT [k] · ds[k]

grΘM

− ωM [k] · ds[k]

g2
rΘT

+
∆φT−M [k] · cs[k]

grΘM

(4.123)

3. Identify which terms in the stated equation do not depend directly on the
chosen parameters. These terms are now the output vector y.

ωT [k + 1]− ωT [k]

TS
=
mT [k]

ΘT

− ωT [k] · ds[k]

ΘT

+
ωM [k] · ds[k]

grΘT

− ∆φT−M [k] · cs[k]

ΘT

(4.124)

ωM [k + 1]− ωM [k]

TS
=
mM [k]

ΘM

+
ωT [k] · ds[k]

grΘM

− ωM [k] · ds[k]

g2
rΘT

+
∆φT−M [k] · cs[k]

grΘM

(4.125)

4. Separate the terms that are a�ected directly by the chosen parameters. This
terms constitute the state or data matrix ϕ>.

ωT [k + 1]− ωT [k]

TS
=
mT [k]

ΘT

− ωT [k] · ds[k]

ΘT

+
ωM [k] · ds[k]

grΘT

− ∆φT−M [k] · cs[k]

ΘT

(4.126)

ωM [k + 1]− ωM [k]

TS
=
mM [k]

ΘM

+
ωT [k] · ds[k]

grΘM

− ωM [k] · ds[k]

g2
rΘT

+
∆φT−M [k] · cs[k]

grΘM

(4.127)

5. Arrange the selected terms into the corresponding matrices.

θ =

[
ds[k]
cs[k]

]
(4.128)
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y =

[
ωT [k+1]−ωT [k]

TS
− mT [k]

ΘT
ωM [k+1]−ωM [k]

TS
− mM [k]

ΘM

]
(4.129)

ϕ> =

[
−grωT [k]−ωM [k]

grΘT
−∆φT−M [k]

ΘT
grωT [k]−ωM [k]

g2rΘM

∆φT−M [k]

grΘM

]
(4.130)

4.4.4.1 Principle of the estimation

In the last section while the EKF was being implemented, it is shown a weak ob-
servability for the four parameters estimation of the wind turbine, even for the two
main ones ds and cs.

To achieve the convergence of the estimator, it is proposed the consideration of the
sinusoidal injected signal as the sampling principle. An example sampling of the
d-axis is shown in Fig. 4.8
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Figure 4.8: Sampling principle

Where k1 and k2 denote two di�erent sampling instants for the estimator. So con-
sidering the model of the wind turbine at the sampling instants k1 and k2, it is
obtained

ωT [k1+1]−ωT [k1]
TS

− mT [k1]
ΘT

ωT [k2+1]−ωT [k2]
TS

− mT [k2]
ΘT

ωM [k1+1]−ωM [k1]
TS

− mM [k1]
ΘM

ωM [k2+1]−ωM [k2]
TS

− mM [k2]
ΘM

 =


−grωT [k1]−ωM [k1]

grΘT
−∆φT−M [k1]

ΘT

−grωT [k2]−ωM [k2]
grΘT

−∆φT−M [k2]

ΘT
grωT [k1]−ωM [k1]

g2rΘM

∆φT−M [k1]

grΘM
grωT [k2]−ωM [k2]

g2rΘM

∆φT−M [k2]

grΘM

 ·
[
ds
cs

]
(4.131)

Equation (4.119) holds under the assumption that the time interval between two
adjacent points k1 and k2 is relatively small so that the parameter variation during
the sampling time interval can be neglected [26]. This assumption can be ful�lled by
achieving two conditions: choosing a relative fast sampling time for the estimator
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so that the variation between two adjacent points is small, and using small injected
signal which causes a negligible in�uence on the parameters.
In this case, observability should be checked as well, but in this method, it is analysed
through the matrix B. And the basic conditions for the observability are that the
discriminant of B is di�erent from zero or that the rank of B matches the size of
the matrix itself. [26]

B =


−grωT [k1]−ωM [k1]

grΘT
−∆φT−M [k1]

ΘT

−grωT [k2]−ωM [k2]
grΘT

−∆φT−M [k2]

ΘT
grωT [k1]−ωM [k1]

g2rΘM

∆φT−M [k1]

grΘM
grωT [k2]−ωM [k2]

g2rΘM

∆φT−M [k2]

grΘM

 (4.132)

It is simple to �nd out that the rank of the matrix B is 2, if the rotational speeds
ωT [k] and ωM [k] are di�erent from each other or and if ∆φT−M [k] is not zero. There-
fore, it can be assumed that there is at least one sampling pattern that guarantees
the parameter identi�cability for the sinusoidal current injection. In order to achieve
a fast convergence time for the parameter estimation, more sampling points can be
chosen within one period of the injected sinusoidal signal.
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Chapter 5

Analysis and results

In this chapter, the main simulations that were designed as well as the necessary
steps to get to the shown results are included. Simulations for the working one
and two mass system, speed control, observer designs and parameter estimator are
shown.

5.1 Speed control for the one-mass system

The control previously explained in section 4.2 is implemented in Simulink us-
ing equations for variables λ, cP,1, mT , gr, Θ, d

dt
ωT (t), K∗P and mM,ref , given

by (4.2), (4.5), (4.10), (4.11), (4.18), (4.19), (4.16), (4.52), and (4.53); respectively.

For the correct simulation of a basic wind turbine, assuming as basic a wind turbine
with a one mass system, some constants are needed.

For this thesis, the simulations are being carried on for a 2 MW wind turbine. The
needed constants and data assumed from a 2 MW wind turbine and air conditions
were taken from [13]. For this and further simulations, a �xed step solver Runge-
Kutta (ode4) for Simulink was used.

Table 5.1: Wind turbine and air conditions for simulation

Description Symbol Value with units
Sample time sT 20× 10−3 s
Air density ρ 1.293 kg/m3

Turbine's radius rT 40 m
Optimal tip speed λ∗ 8.506

Optimal power coe�cient c∗P,1 0.558
Turbine's inertia ΘT 8.6× 106 kg m2

Machine's inertia ΘM 1.3× 106 kg m2

Speed Controller gain K∗P 188.73× 105 kg m2

Gear ratio gr 1
Constant wind's speed vW 4 m

s
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The basic equations and constants were set in Simulink by the use of blocks and
Matlab functions for the correct implementation of the simulation.

The control variables: tip speed ratio (λ), the turbine's rotational speed (ωT ),
machine's torque (mM), turbine's torque (mT ) and power coe�cient (cP,1) where
graphed to check the system and control's response. The data obtained is displayed
in Fig. 5.1.

In the �rst graph, a constant wind speed is shown. In graph 2, the optimal tip
speed ratio λ∗ and the tip speed ratio through time λ(t) are shown, displaying the
converging behavior of the system by reaching the expected value of the tip speed
ratio with a constant wind speed.

About the power coe�cient, as well as in the previous graph, the optimal c∗P,1 and
the through time cP,1(t) response are shown in graph 3. Where the same behavior
is displayed, the power coe�cient through time reaches the optimal value.

The graph 4, the turbine's rotional speed ωT (t) is shown. In this graph it can be
noticed the initial value of the integrator as 1 and how it reaches an stable value
around 0.86 rad

s
.

And, in graph 5, the turbine's torque mT (t) and machine's torque mM(t) through
time are shown. As it is shown in the model, it is assumed that both of them are
the same and the simulation displays the assumption.

In all 4 of the 5 graphs, it is shown the working control system for the turbine as
all of the variables end up converging to the expected value.

The tip speed ratio and the power coe�cient reach their optimal values, the turbine's
rotational speed reaches a constant value and the torques converge to the exact same
value.

In these initial simulations, the initial values are not the system's initial values just
to illustrate the correct functioning of the control and overall system.

This behavior obtained is set as a standard for following behavior with the two-mass
system with constant wind speed, with the correct initial values.
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Figure 5.1: Wind speed, tip speed ratio, power coe�cient, turbine's rotational speed and
torques simulation results of a one-mass system
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5.1.1 Disturbance observer design for the two-mass system

The two-mass system was implemented in the Simulink simulation using the initial
equations that characterized each of the states as in (4.44) and (4.45). As for
the observer designed, it was implemented in the Simulink simulation using (4.68)
and (4.69) and the correspondent values ofA′,b′,C′ and L as shown in (4.62), (4.63)
and (4.80).

Some constants are also assumed from data of a 2 MW wind turbine and air con-
ditions. All the needed values were taken from [13]. And as well as before, a �xed
step solver Runge-Kutta (ode4) was used for the simulation.

Table 5.2: Wind turbine and air conditions for two-mass system simulation

Description Symbol Value with units
Sample time sT 20× 10−3 s
Air density ρ 1.293 kg/m3

Turbine's radius rT 40 m
Optimal tip speed λ∗ 8.506

Optimal power coe�cient c∗P,1 0.558
Low-speed shaft damping ds 1.35× 107 N m s

rad

Low-speed shaft sti�ness cs 2.36× 109 N m
rad

Turbine's damping dT 0 N m s
rad

Machine's damping dM 0 N m s
rad

Turbine's inertia ΘT 8.6× 106 kg m2

Machine's inertia ΘM 1.3× 106 kg m2

Speed Controller gain K∗P 188.73× 105 kg m2

Gear ratio gr 1
Constant wind's speed vW 4 m

s

The block diagram for the disturbance observer is shown in Fig. 5.2
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Figure 5.2: Original system and observer with augmented system block diagram

5.1.1.1 Disturbance observer design by pole placement

To decide on the observer gains' values, after implementing the diagram shown in
Fig. 5.2, an initial L matrix is calculated with all the poles set in -1.

The initial gain matrix L corresponds to

L =


0.4302 1.5698 −2.7442
10.3846 −9.3846 1.8154

1 −1 1
8600000 0 0


The results obtained with the poles in -1 are good, but there is a small retardation
in the answer of the observer. The decision made after some tests is to place the
poles as further as possible for the observer to have the quickest and closer response
to the original turbine torque that is is now treated as the "disturbance".
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The best result is obtained when the poles are placed in:

p1 = p2 = p3 = p4 = −10

The values are all negative for the response to be stable as explained in the in-
troduction, where the poles of the system should be placed on the left side of the
imaginary half plane. The values are also chosen accordingly to the variable they are
dependent on: p1 is related to the machine's rotational speed error, p2 and p3 relate
to the turbine's rotational speed error, and p4 is related to the angle displacement
error.

Simulation results The main point of the simulations is to show the working
observer for the turbine's torque and the original turbine's torque as a reference.
The following graphs will also show the conditions on which the turbine is working
and that directly a�ect the turbine's torque such as wind speed, tip speed ratio and
power coe�cient. In the same way, the three basic states and the di�erence between
the original and the observed states are shown.

Initially, the system is simulated using the diagram shown in 5.2 and a constant wind
speed. The initial values for each of the variables have been set for the simulation
to be as truthful as possible.

The results that show the wind turbine's conditions such as wind speed, tip speed
ratio and power coe�cient are shown in the �rst three graphs in Fig. 5.3. As well
as the rotational speeds and angle displacement for the turbine and machine in the
original system and the observed one, the two states, y(t) and ŷ(t), are compared
in the last three graphs in Fig. 5.3. It is shown, a constant wind speed with some
small disturbances that stay constant for small periods of time just to show, as
well, the correct functioning of the controller and the overall behavior of the wind
turbine. In both graphs 2 and 3, the tip speed ratio and power coe�cient react to
the disturbance, but the system quickly absorbs and controls it.

As for turbine's and machine's rotational speeds and angle displacement, shown in
graphs 4, 5 and 6, the observer follows through all of the changes as they happen.
Which is also shown in graphs 2, 3 and 4 in Fig. 5.4 where the di�erences between
the original and observed states are displayed. About the rotational speeds, there
are some small changes in the measurements with every disturbance which can
be assumed as normal. It is noticeable, that both of the rotational speeds react
basically the same, turning this behavior into a zero or really small value in the
angle displacement variable.

The same behavior is shown in graphs 5 and 6 in Fig. 5.4 where the original and
observed turbine's torque are stated. The observed system follows through the
changes, and there are some big di�erences between the observed and original system
in every disturbance. After the disturbance is made, the observed system quickly
adapts and keeps of following the original system.
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Figure 5.3: Simulation results for the wind speed, tip speed ratio, power coe�cient, original
and observed rotational speeds and angle displacement in a wind turbine with a
two-mass system with a constant wind speed input and a observer designed by
pole placement
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Figure 5.4: Simulation results for the wind speed, the di�erence between the original system
and the observed system for the rotational speeds and angle displacement, the
original turbine's torque and the observed one and the di�erence between them
in a wind turbine with a two-mass system with a constant wind speed input and
a observer designed by pole placement
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After obtaining what can be considered as a good response from the observer and
overall system with a constant wind speed, a wind speed pro�le is added to the
simulation. Where the following results are obtained.

As well as before, the two states, y(t) and ŷ(t), are compared in Fig. 5.5. The
graphs shown in Fig. 5.5 corresponds to the wind speed, tip speed ratio and power
coe�cient in the �rst three graphs. In the fourth, �fth and sixth graphs, the original
system's response and the observed system's response are shown. The fourth graph
corresponds to the the turbine's rotational speed ωT , the machine's rotational speed
ωM in the �fth one, and the angle displacement between the turbine and the related
machine φT−M in the sixth one.

It can be observed in Fig. 5.5 how the tip speed ratio and power coe�cient react to
the wind pro�le. It is noted that the tip speed ratio constantly �uctuates around
the optimal tip speed ratio value, and that the power coe�cient constantly reaches
the maximum power coe�cient value for this wind turbine.

Physics can be used to explain the relation between these two variables, and that
every time the tip speed ratio equals the optimal tip speed ratio, the power coe�cient
reaches its maximum value.

As for the three basic states, the rotational speeds for the turbine and machine and
the angle displacement, the observed system follows through the original almost per-
fectly. The di�erence between both values for the three states are shown in Fig. 5.6.
The di�erence between the observed and original systems for the rotational speeds
are almost the same, as before, ending up in a zero value in the angle displacement
variable. This is shown in graphs 2, 3 and 4 of Fig. 5.6.

As well as before, in Fig. 5.6 the �rst graph corresponds to the wind speed. The
second, third and fourth graphs correspond to the di�erence between the original
system and the observed one, y(t) and ŷ(t), in the three main states: ωT , ωM and
∆φT−M . In the �fth graph the original turbine's torque and the observed one are
shown, as well as the di�erence between them in the sixth graph.

About the observer response, it seems to follow through the changes of the origi-
nal turbine's torque quite good, showing a small di�erence, less than a 15 percent
between the original and observed responses.
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Figure 5.5: Simulation results for the wind speed, tip speed ratio, power coe�cient, original
and observed rotational speeds and angle displacement in a wind turbine with
a two-mass system with a wind pro�le input and a observer designed by pole
placement
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Figure 5.6: Simulation results for the wind speed, the di�erence between the original system
and the observed system for the rotational speeds and angle displacement, the
original turbine's torque and the observed one and the di�erence between them
in a wind turbine with a two-mass system with a wind pro�le input and a
observer designed by pole placement
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5.1.1.2 Disturbance observer design by LQR with stability margin

For the observer to work correctly, it is crucial to chose the values of the design
weighting matrices Ro and Qo, as well as the stability margin α0.

Initially, the matrices are chosen as

Ro =

1 0 0
0 1 0
0 0 1

 (5.1)

Qo =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.2)

After solving (4.84) and (4.85), the resultant L matrix is

L = 1× 107 ·


0.000000351910945 −0.000000206094948 −0.000000003453908
−0.000000206094948 0.000002962789615 0.000000040766102
−0.000000003453908 0.000000040766102 0.000000002623445
3.077542334623121 2.299738362124113 0.027062094727349


(5.3)

Using [6] to tune the design matrices Ro and Qo. Increasing Qo would indicate
the presence of either heavy system noise or increased parameter uncertainty. An
increment of the elements of Qo will likewise increase the EKF gain, resulting in
a faster �lter dynamic. Although, large values in Qo are also related to a low
con�dence in the model. On the other hand, matrix Ro is associated measurement
noise. Increasing the values of the elements of Ro will mean that the measurements
are a�ected by noise and thus they are of little con�dence. Consequently the �lter
gain L will decrease, yielding poorer transient response [6]. As the relation between
the two of them is what matters in the design, Ro can be assumed as a diagonal
matrix of ones and Qo should also be a diagonal, but with small values on it.

Consequently, the matrices used ended up being

Qo =

1× 10−6 0 0
0 1× 10−6 0
0 0 1× 10−6

 (5.4)

Ro =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.5)

And the stability margin α0 was chosen to be 10, the same value chosen before for
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the pole placement design.

Simulation results As well as in the past simulations, the system is simulated
using the diagram shown in 5.2 and to start with, a constant wind speed, from which
the following results are obtained.

The two states, y(t) and ŷ(t) are compared in the fourth, �fth and sixth graphs in
Fig. 5.7. In Fig. 5.7 as well, the response of the wind speed, tip speed ratio and
power coe�cient are shown in graphs 1, 2 and 3, respectively.

The fourth graph shown in Fig. 5.7 corresponds to the turbine's rotational speed
ωT , the �fth one to the machine's rotational speed ωM , and the sixth one to the
angle displacement between the turbine and the related machine ∆φT−M .

The overall behavior of the wind turbine is the same as the previous observer design
graphs since those did not change. As for the observed system, it can be noted
in Fig. 5.7 that this systems follows through the changes of the original one quite
closely. This can be shown in graphs 4, 5 and 6 of Fig. 5.7 where the original and
observed system response are compared using the turbine and machine's rotational
speeds and the angle displacement variables.

After obtaining y(t) and ŷ(t), the di�erence between them is graphed in graphs 2,
3 and 4 in Fig. 5.8. Where the big di�erences happen when the disturbances in the
constant wind speed happens. With this observer, there is a di�erence between the
rotational speeds, ending up in a di�erence in the angle displacement. Which was
actually expected.

The results from the disturbance observer designed work as expected, with an error
below 10 percent. The results are shown in graph number 5 and 6 in Fig. 5.8.

After obtaining a good response from the observer with a constant wind speed, a
wind speed pro�le is added to the simulation(see �rst graph in Fig. 5.9). Where
the following results are obtained: the two states, y(t) and ŷ(t), are compared in
Fig. 5.9 where the turbine's rotational speed ωT , the machine's rotational speed ωM ,
and the angle displacement between the turbine and the related machine φT−M in
the fourth, �fth and sixth graphs are shown. In the second and third graphs in
Fig. 5.9 the response of the tip speed ratio and power coe�cient are shown.

The di�erence between the results of y(t) and ŷ(t), is shown in Fig. 5.10, where the
di�erence in the turbine's rotational speeds ωT can be found in the second graph,
the di�erence in the machine's rotational speeds ωM in the third one, and the angle
displacement di�erence between the turbine and the related machine φT−M in the
fourth one.

The disturbance observer designed and its response is also shown in Fig. 5.10. In
the �fth graph in Fig. 5.10 the response of the original system and the observed one
is shown, as well as the di�erence between them in the sixth graph.

In this case, when the wind pro�le is used to test the disturbance observer designed
by LQR with a stability margin, basically the same results from the constant wind
speed are obtained. The observer follows through and the di�erence between the
observed and original system is quite small.
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Figure 5.7: Simulation results for the wind speed, tip speed ratio, power coe�cient, original
and observed rotational speeds and angle displacement in a wind turbine with a
two-mass system with a constant wind speed input and a observer designed by
LQR
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Figure 5.8: Simulation results for the wind speed, the di�erence between the original system
and the observed system for the rotational speeds and angle displacement, the
original turbine's torque and the observed one and the di�erence between them
in a wind turbine with a two-mass system with a constant wind speed input and
a observer designed by LQR
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Figure 5.9: Simulation results for the wind speed, tip speed ratio, power coe�cient, original
and observed rotational speeds and angle displacement in a wind turbine with
a two-mass system with a wind pro�le input and a observer designed by LQR
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Figure 5.10: Simulation results for the wind speed, the di�erence between the original sys-
tem and the observed system for the rotational speeds and angle displacement,
the original turbine's torque and the observed one and the di�erence between
them in a wind turbine with a two-mass system with a wind pro�le input and
a observer designed by LQR
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5.1.1.3 Comparison between distubance observer design by pole place
and by LQR with stability margin

It is shown in Fig. 5.11 the two observed responses for the original system's turbine's
torque are shown, as well as the di�erence between them. The one labeled under
mTPP refers to the one designed by pole placement and the one labeled under mTLQR

refers to the one designed by LQR method with a stability margin.
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Figure 5.11: Simulation results for the turbine's torque observer designed by pole placement
and LQR method with a stability margin, and the di�erence between them

5.2 Parameter estimation

5.2.1 Simulation results

After the realization that besides both parameters are not observable in an static
point of view, they are dynamically, the simulation is implemented using the equa-
tions (4.119), (4.128), (4.129) and (4.130).

The simulation diagram up to this point is shown in Fig. 5.12
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Figure 5.12: Simulation diagram for the parameter estimation

For the results, there are two di�erent input signals that were tested: a sinusoidal
signal as the one shown in Fig. 4.8 and Fig. 5.13, and the wind pro�le that was used
before for previous simulations (see Fig. 5.9).
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Figure 5.13: Sinusoidal input for the parameter estimation of the low-speed shaft damping
ds using a sinusoidal input
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Figure 5.14: Simulation results of the parameter estimation of the low-speed shaft damping
ds and the low-speed shaft sti�ness cs using a sinusoidal input
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Figure 5.15: Simulation results of the parameter estimation of the low-speed shaft damping
ds and the low-speed shaft sti�ness cs using a wind pro�le as input

As for the graphs, in Fig. 5.13 it is shown initially the sinusoidal input in graph 1,
followed by the three main states in graphs 2, 3 and 4. The turbine's rotational
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speed is shown in graph 2, the machine's rotational speed in graph 3 and the angle
displacement between the turbine and the machine in graph 4.
In graphs 5 and 6, the behavior of the low-speed shaft's damping is shown. Graph 5
shows the original low-speed shaft's damping value and the estimated one. There is a
big �uctuation at the beginning of the simulation that is attributed to the forgetting
factor of the RLS method used. With this method, it is given a speci�c weight to
the previous measurement, lasting a few seconds reaching the expected value.
Graphs 7 and 8 show the behavior of the low-speed shaft's sti�ness. In here there is
more of a progressive reach to the expected value, also attributed to the forgetting
factor.
It is stated that the results are more than satisfactory due to the achievement of the
expected value in both cases.
Quite the same happens in Fig. 5.15 where the three main states are shown in graphs
2, 3 and 4. The wind pro�le is shown in graph 1 and the low-speed shaft's damping
and sti�ness behaviour is shown in graphs 5, 6, 7 and 8.
The big variation between the di�erent input signals was shown in a reduction of
the oscillation before the �nal value of the parameters were reached, but makes no
di�erence in the �nal outcome.
There is not a really big di�erence between the methods, but deciding over the
designing method itself. It is chosen to keep on working with the observer that
was designed by LQR with a stability margin due to the amount of cancellations
made for the pole placement method and because of the smaller error respecting the
original system.

5.3 Detection of mechanical faults

Finally, after obtaining a system that is able to describe correctly the wind tur-
bine dynamics and estimate the mechanical parameters of the low-speed shaft, it
is possible to put the model up to some tests to see if with these two parameters,
mechanical faults can be detected.
The tests that are going to be carried on are changes in the turbine and machine's
inertia and changes to the values of the low-speed shaft damping and sti�ness to see
the e�ect on the overall behavior of the turbine and on the observer.

5.3.1 Changes on the turbine's inertia

Since the beginning of the simulations, the turbine inertia has been stated as
8.6× 106 kg m2, so the simulation results for that inertia value can be checked in
Figures: 5.9, 5.10 for the overall turbine's behavior with a wind pro�le.
The changes made to the turbine's inertia consisted of decreases and increases of
the value itself as shown in the second graph of Fig. 5.16. The behavior of the
overall turbine with the changes and a wind pro�le input are shown in Fig. 5.16, the
behavior or response of the turbine's toque observer in Fig. 5.17. The parameter
estimation of the low-speed shaft's damping and sti�ness is also shown in Fig. 5.18.
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5.3.1.1 Results
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Figure 5.16: Simulation results of wind speed, changing turbine's inertia, tip speed ratio,
power coe�cient, and original system's and observed system's response for the
rotational speeds and angle displacement in a wind turbine with a two-mass
system
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Figure 5.17: Simulation results of wind speed, changing turbine's inertia, di�erence between
the original system's and observed system's response for the rotational speeds
and angle displacement, original and observed turbine's torque and the di�er-
ence between them in a wind turbine with a two-mass system and changing
turbine's inertia
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Figure 5.18: Simulation results of wind speed, changing turbine's inertia and parameter
estimation for the low speed shaft's damping and sti�ness in a wind turbine
with a two-mass system
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5.3.1.2 Discussion

From the turbine's inertia increases, it can be noted that with each increase the
system becomes slower. This behavior can be noted by some aspects such as the
decrease in the tip speed ratio λ of the turbine, as well as the decrease in the power
coe�cient.

It can also be shown with the progressive decrease of the values that the turbine's
rotational speed ωT and machine's rotational speed ωM take.But the same expected
behavior happens with the decreases, which can all be attributed to physics.

The turbine's torque observer that was designed seems to follow through even as
the changes were made even though it sometimes follows very vaguely. It is noted
that with each increase the turbine's torque becomes less �uctuating or more stable.
And when the turbine's inertia decreases, even a little bit, it �uctuates much more.
This behavior actually gives up a hint for fault detection, showing that with big
turbine's torque �uctuations something is not right with the turbine's inertia.

The parameter estimation of the low-speed shaft's sti�ness was carried on in a very
robust way, where the only �uctuations are shown in the very beginning of the
simulation. Showing that the parameter estimation method converges very fast to
the expected value.

For the parameter estimation of the low-speed shaft's damping, with every increase
in the turbine's inertia, the estimation became more erratic. Even with the small
decrease, it starts �uctuating a lot, showing big disturbances in the expected value.
This gives up another hint and actually showing how susceptible the low-speed
shaft's damping is to changes in the turbine's inertia.

From the results, the traceable hints for the detection of mechanical faults would be
the detection of big errors in the estimation of the low speed shaft's damping and
the big �uctuations in the turbine's torque measurements.

Nevertheless, in reality the errors are unknown, so errors are not good parameters
to look at for detectability of a fault.

5.3.2 Changes on the machine's inertia

The machine's inertia has been stated as 1.3× 106 kg m2 since the beginning, so the
simulation results for that inertia value can be checked in Figures: 5.9, 5.10 for the
overall turbine's behavior with a wind pro�le.

The changes made to the machine's inertia consisted of increases and decreases of
the value itself as shown in the second graph of Fig. 5.19. The behavior of the overall
turbine with a wind pro�le and the changes made are shown in Fig. 5.19 and the
behavior or response of the turbine's toque observer in Fig. 5.20. The parameter
estimation of the low-speed shaft's damping and sti�ness is also shown in Fig. 5.21.
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5.3.2.1 Results
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Figure 5.19: Simulation results of wind speed, changing machine's inertia, tip speed ratio,
power coe�cient, and original system's and observed system's response for the
rotational speeds and angle displacement in a wind turbine with a two-mass
system
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Figure 5.20: Simulation results of wind speed, changing machine's inertia, di�erence be-
tween the original system's and observed system's response for the rotational
speeds and angle displacement, original and observed turbine's torque and the
di�erence between them in a wind turbine with a two-mass system
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Figure 5.21: Simulation results of wind speed, changing machine's inertia and parameter
estimation for the low speed shaft's damping and sti�ness in a wind turbine
with a two-mass system
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5.3.2.2 Discussion

From the machine's inertia increases, it can be noted that with each increase the
system becomes slower and that the angle displacement in between the turbine's
rotational speed ωT and machine's rotational speed ωM actually becomes more un-
stable, �uctuating more than in other cases. But these changes can be given to
physics.

The turbine's torque observer that was designed seems to work as if no change
was made, showing that the observer actually follows through with the turbine's
dynamics still in a stable and robust way.

The parameter estimation of the low-speed shaft's sti�ness is also carried on in a
very robust way, where some �uctuations are shown with the changes but around the
expected value. For the estimation of the low-speed shaft's damping, big �uctuations
happen through the increases and even decreases of the value itself.

In this case, it shows that as the machine's inertia increases, so the �uctuation at
the beginning of the low-speed shaft's damping estimation does. And a more stable
low-speed shaft's sti�ness estimation.

From the changes to the machine's inertia the only possible hint on how to detect
mechanical faults using the estimation of the low-speed shaft's parameters is alerting
over big changes in the low speed shaft's damping estimation. Even though, the
machine's inertia is not likely to change in such ways, denoting that there are no
useful hints on how to detect mechanical faults with this experiment.

5.3.3 Changes on the low-speed shaft's damping

The low-speed shaft's damping has been stated as 1.35× 107 N m s
rad

since the begin-
ning, so the simulation results can be checked for the overall turbine behavior with
a wind pro�le in Figures: 5.9, 5.10.

The changes made to the low-speed shaft's damping are increases and decreases on
the value, as shown in graph 2 of Fig. 5.22. For one quarter of the simulation the
low-speed shaft's damping has its original value, for the next quarter it is increased
then decreased and �nally, increased again. Each of the changes happened for one
quarter of the simulation time. So the behavior of the turbine with a wind pro�le
and the observer is going to be shown in each of the cases, as well as the parameter
estimation for those variations.
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5.3.3.1 Results
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Figure 5.22: Simulation results of wind speed, changing low-speed shaft's damping, tip speed
ratio, power coe�cient, and original system's and observed system's response
for the rotational speeds and angle displacement in a wind turbine with a two-
mass system
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Figure 5.23: Simulation results of wind speed, changing low-speed shaft's damping, di�er-
ence between the original system's and observed system's response for the ro-
tational speeds and angle displacement, original and observed turbine's torque
and the di�erence between them in a wind turbine with a two-mass system
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Figure 5.24: Simulation results of wind speed, changing low-speed shaft's damping and pa-
rameter estimation for the low speed shaft's damping and sti�ness in a wind
turbine with a two-mass system
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5.3.3.2 Discussion

From the changes to the low-speed shaft's damping, it can be noted that it has
almost no traceable e�ect on the value of the tip speed ratio and power coe�cient.
As well as in the turbine's rotational speed, machine's rotational speed nor angle
displacement.

But as it is shown in the Fig. 5.23, the increases in the low-speed shaft's damping
actually increases the di�erence in between the original system and the observed
one for the machine's rotational speed.

The designed observer for the turbine's torque is able to follow through the changes,
even though it is noted a small increase in the error between the original system and
the observed one.

The parameter estimation is once more very stable and converges to the expected
values. For the low-speed shaft's damping, in Fig. 5.24 is noted a small �uctuating
when a change in the low-speed shaft's damping is made and right at the beginning
of the simulation when the iterations are being made.

As for the low-speed shaft's sti�ness estimation, the value converges to the known
value as fast as in the other cases.

In this case, there is an explicit and very precise way of detecting faults in the wind
turbine by tracking the changes in the low speed shaft's damping. This due the
simulation and estimation actually follows through the changes made as shown in
graph 3 of Fig. 5.24.

5.4 Changes on the low-speed shaft's sti�ness

The low-speed shaft's sti�ness, from the beginning, was stated as 2.36× 109 N m
rad

since the beginning, so the simulation results can be checked for the overall turbine
behavior with a wind pro�le in Figures: 5.9, 5.10.

The changes made to the low-speed shaft's sti�ness are one increase and one de-
crease. For two quarters of the simulation the low-speed shaft's sti�ness has its
original value, at the beginning and at the end. For the in between quarters it is
initially increased and then decreased. So the behavior of the turbine with a wind
pro�le and the observer is going to be shown in each of the cases, as well as the
parameter estimation for those variations.
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5.4.0.1 Results

[m
/
s]

3

4

5

6

7
vW (t)

[G
N
m
/
ra
d
]

0

2

4

6
cs(t)

[1
]

6

8

10

12
λ(t) λ∗

[1
]

0.5

0.52

0.54

0.56

0.58

cP,1(t) c∗P,1

[r
a
d
/
s]

0.6

0.8

1

1.2

1.4

ωT (t) ω̂T (t)

[r
a
d
/
s]

0.6

0.8

1

1.2

1.4

ωM (t) ω̂M (t)

time t [s]

[m
ra
d
]

0 100 200 300 400 500 6000

0.25

0.5
∆φT−M (t) ∆φ̂T−M (t)

Figure 5.25: Simulation results of wind speed, changing low-speed shaft's sti�ness, tip speed
ratio, power coe�cient, and original system's and observed system's response
for the rotational speeds and angle displacement in a wind turbine with a two-
mass system
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Figure 5.26: Simulation results of wind speed, changing low-speed shaft's sti�ness, di�er-
ence between the original system's and observed system's response for the ro-
tational speeds and angle displacement, original and observed turbine's torque
and the di�erence between them in a wind turbine with a two-mass system
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Figure 5.27: Simulation results of wind speed, changing low-speed shaft's sti�ness and pa-
rameter estimation for the low speed shaft's damping and sti�ness in a wind
turbine with a two-mass system
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5.4.0.2 Discussion

Analyzing the changes to the low-speed shaft's sti�ness, it can be noted that it has
no almost no traceable e�ect on the value of the tip speed ratio and power coe�cient,
as well as in the changes for the low-speed shaft's damping.

In this case, there are no big changes in between the turbine's rotational speed and
the machine's rotational speed. Although, it is clearly shown in Fig. 5.25 that every
time the low-speed shaft's sti�ness is increased, the angle displacement in between
rotational speeds is decreased. It could easily be given to to the fact that if the shaft
is sti�er, it will be harder no bend it since it becomes less �exible.

The designed observer for the turbine's torque is able to follow through the changes
as in all the other changes, even though it is noted a small increase in the error
between the original system and the observed one just as in the dynamic changes to
the low-speed shaft's damping.

The parameter estimation is once more very stable and converges to the expected
values. For the low-speed shaft's damping, in Fig. 5.27 is noted a big �uctuation
when a change in the low-speed shaft's sti�ness happens, but ends up converging to
the expected low speed shaft's damping value.

As for the low-speed shaft's sti�ness estimation, the value converges to the known
value as fast as in the other cases, showing variations every time the low-speed
shaft's sti�ness is changed, but it actually converges to the expected values.

As well as before, with this experiment there are very explicit and precise hints
for the detection of mechanical faults. First of all, there is the explicit e�ect of
increasing and decreasing the low-speed shaft's sti�ness in the angle displacement.
And the precise way the estimator tracks the changes made to the low-speed shaft's
sti�ness gives another method of detecting mechanical faults that explicitly a�ect
those parameters.

5.4.1 Summary of the experiment results

The table 5.3 shows the summary of the e�ect that the main experiment has on the
three main states, turbine's torque, low speed shaft's damping and low speed shaft's
sti�ness
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Table 5.3: Summary of the experiment results for detection of mechanical faults in wind
turbines

ωT (t) ωM(t) ∆φT−M(t) mT (t) d̂s(t) ĉs(t)
Turbine's
inertia

X X X X X -

Machine's
inertia

- - - - X X

Low speed shaft's
damping

- - - - X -

Low speed shaft's
sti�ness

- - X - - X
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Chapter 6

Conclutions and recomendations

6.1 Conclutions

• The mathematical modeling of a wind turbine with a one mass system and a
two mass system were proposed.

• The speed control implemented for the wind turbine worked as expected for
the one mass and two mass system's models.

• The observer designed by the LQR method with an stability margin was chosen
due to its con�ability towards the original turbine's torque.

• The turbine's torque observer followed through all the changes made to the
original turbine's torque with an error smaller than 10 percent.

• The observability issue was solved by the use of the alternative method of the
RLS with a sinusoidal input.

• Changes in the turbine's inertia had the most detectable changes on the tur-
bine's torque observer.

• Disturbances in the low speed shaft's mechanical constants are trackable for
fault detection.

6.2 Recomendations

• A di�erent wind pro�le, with greater changes, to set the wind turbine model
under a more di�cult simulation environment could be used to check the e�ects
on the results.

• A turbine's inertia observer should be designed and tried for the same matter
of the turbine's torque designed in this thesis.

• A more sensitive method for the sensoring of the wind speed and turbine's
torque should be found and opens up the research and development chances.
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• The observability issue might be solved in an alternative way by implementing
a new two mass system model with less assumptions and neglections.
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Appendix A

Context of the project

The thesis in study was carried on in a research project called "Control of Renewable
Energy Systems" from the Technische Universitaet Muenchen (TUM) in Germany.
The research project is one of four projects that form part of an energy project
called "TUM.Energy Valley Bavaria".

A.1 TUM.Energy Valley Bavaria

The energy project comes under the justi�cation that future energy's needs in various
regions of the world are determined primarily by analysis of time series such as
increased integration of renewable energies and new challenges to conventional power
plants.

Then, there are various power plant concepts and possible locations that are being
evaluated by a large number and variety of simulation calculations and optimization
systems, where the focus stays in Germany and Europe.

The current base of power, nuclear power, will no longer be available in 2022. There-
fore, activities for production of energy from renewable sources are inevitable. In the
development there is a commitment, increasingly visible among the progressive re-
duction of nuclear energy, reducing emissions of greenhouse gases and economically
acceptable cost of electricity. [19]

The program has four research projects, managing to cover a variety of related
topics.

The �rst research project called "Organic Photovoltaics" and has to do with the
peculiarities associated with the generation of electricity from solar energy.

The next project is called "Flexible Power Plants", where di�erent technical pos-
sibilities are explored to replace the missing capabilities in systems of renewable
energy generation by optimizing the technologies and the development of new exist-
ing technologies.

An important part of total energy consumption is caused by buildings and transport,
this aspect is analyzed in the third research project "Energy E�ciency and Smart
Cities". This project aims to develop measures to reduce the energy consumption.
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Finally, the fourth research project called "Control of Renewable Energy Systems",
which focuses on improving the reliability of wind turbine systems at an early stage.
Each research project has been developed as a research center with a highly special-
ized for each team areas.

A.2 Control of Renewable Energy Systems (CRES)

The research group "Control of Renewable Energy Systems" (CRES) was established
in 2014 as a part of the "TUM.Energy Valley Bavaria" project of the Munich School
of Engineering (MSE). The group is led by Dr. Ing. Christoph Hackl and has other
engineers from di�erent related areas as part.
The research group focuses on energy e�ciency, robust and optimized renewable
energy systems control. The special expertise of the interdisciplinary research group
lies in the combination of engineering disciplines such as electrical drive technol-
ogy, power electronics, mechatronics, control disciplines of mathematics and system
theory. [18]
Currently, the research focuses on modeling and control of electrical components for
wind turbines. [18]

114


