
Instituto Tecnológico de Costa Rica

Área Académica de Ingenieŕıa Mecatrónica

Implementation of a low-cost IoT system for a Hermle
UWF900E CNC milling machine

Informe de Proyecto de Graduación para optar por el t́ıtulo de

Ingeniero en Mecatrónica con el grado académico de Licenciatura

Daniel Berrocal Campos

Cartago, 2 de abril de 2018





Declaro que el presente Proyecto de Graduación ha sido realizado enteramente por mi

persona, utilizando y aplicando literatura referente al tema e introduciendo conocimientos

propios.

En los casos en que he utilizado bibliograf́ıa he procedido a indicar las fuentes mediante

las respectivas citas bibliográficas. En consecuencia, asumo la responsabilidad total por

el trabajo de graduación realizado y por el contenido del correspondiente informe final.

Daniel Berrocal Campos

Cartago, 2 de abril de 2018

Céd: 4-0226-0718









Abstract

This inform summarizes the work executed for designing, building and testing a custom,

low-cost monitoring system for a CNC milling center model Hermle UWF900E. The struc-

ture proposed follows the general topology of an IoT application, with the intention of

making access and data collection easier. The variables monitored were chosen as a com-

bination of basic working conditions, safety parameters and environmental factors that

could affect the operation. The stages involved in the project development included the-

oretical research, to find the adequate protocols and components to use; electrical circuit

design, including sensor calibration and controller programming; and Internet communi-

cation deployment, involving both a web-based database storage and web-page working

as user interface. Each stage included a series of tests to prove individual performance of

the parts involved. After installing the whole system, real operative data was recorded

during a period of 2 weeks, allowing to both asses the efficiency of the IoT system and

to discover some relationships in the observed magnitudes. A meaningful correlation be-

tween spindle speed and high-frequency vibrations was found, with Spearman coefficients

over 0.7, proving the ability of the system installed to generate enough data for functional

analysis of the machine.

Keywords: CNC machines, condition monitoring, Fast Fourier Transform, Internet of

Things, Platform as a Service, sensor conditioning, serialization protocols





Dedico este trabajo a mis padres, con todo cariño





Agradecimientos

En primer lugar, quisiera agradecer a mi familia, cuyo apoyo incondicional durante todos

los años de estudio, y especialmente durante el peŕıodo en el que trabajé en este proyec-

to, fue indispensable para seguir hacia adelante. Extiendo igualmente mis más sinceros

agradecimientos al personal del Departamento de Ingenieŕıa Mecánica del DHBW sede

Karlsruhe, especialmente a Dr. Clemens Reitze, Prof. Mathias Metzner y Prof. Gunter

Schafer, quienes no sole me brindaron la oportunidad de usar las instalaciones de la insti-

tución para implementar mis ideas, también me brindaron valiosas recomendaciones sobre

diversos aspectos de las mismas. A los miembros de mi tribunal evaluador en el ITCR, Ing.

Arys Carrasquilla, Msc. Carlos Salazar y Msc. Yeiner Arias les agradezco sus importantes

aportes sobre el trabajo realizado, que me permitió mejorar en gran medida este reporte

y afinar muchos detalles que de otra manera no hubiera considerado. Finalmente, quisiera

agradecer a todos los profesores y compañeros con los que compart́ı durante mis años

de carrera, ya que sin la experiencia que adquiŕı junto a ellos me hubiera sido imposible

siquiera encarar el reto que supuso el proyecto.

Daniel Berrocal Campos

Cartago, 2 de abril de 2018





Contents

List of Figures v

List of Tables vii

List of symbols and abbreviations ix

1 Introduction 1

1.1 History and perspectives of the DHBW Karlsruhe . . . . . . . . . . . . . . 1

1.2 The challenge of monitoring mechanical equipment . . . . . . . . . . . . . 2

1.3 Brief overview of the monitoring system design . . . . . . . . . . . . . . . . 3

1.4 Objectives and document structure . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical references 7

2.1 CNC machines: characteristics and requirements . . . . . . . . . . . . . . . 7

2.1.1 General definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Maintenance of CNC machines . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Examples of modern maintenance . . . . . . . . . . . . . . . . . . . 9

2.1.4 Hermle UWF900E parameters . . . . . . . . . . . . . . . . . . . . . 9

2.2 Internet of Things and cloud-hosted services . . . . . . . . . . . . . . . . . 10

2.2.1 What is IoT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Cloud hosting and Platform as a Service (PaaS) . . . . . . . . . . . 12

2.2.3 Databases: SQL vs NoSQL . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Basics of web design . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Communication protocols for fast processing . . . . . . . . . . . . . . . . . 14

2.3.1 Serialization protocols . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Google Protocol Buffers . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Filtering and data analysis on the digital domain . . . . . . . . . . . . . . 17

2.4.1 Processing filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Timing and digitization errors . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Frequency analysis: Fast Fourier Transform (FFT) . . . . . . . . . 19

3 IoT Monitoring System for CNC: Sensors and other electronic compo-

nents 23

3.1 Summary of the design process . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



ii Contents

3.2.1 Variables to be monitored . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Sensor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Microcontroller and other ICs . . . . . . . . . . . . . . . . . . . . . 26

3.3 Microcontroller programming . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 General structure and timing . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Serial communications . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Measurement processing . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Physical installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Electronic circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Installation on the CNC machine . . . . . . . . . . . . . . . . . . . 34

4 IoT Monitoring System for CNC: Internet communication 35

4.1 Summary of the design process . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Software selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Server side management (PaaS) . . . . . . . . . . . . . . . . . . . . 37

4.2.3 Programming language and additional libraries . . . . . . . . . . . 38

4.3 Processing services on the SBC . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Sensor data parsing and database updates . . . . . . . . . . . . . . 39

4.3.2 Machine status and frequency analysis . . . . . . . . . . . . . . . . 41

4.3.3 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Web based services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Web page main layout . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.2 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Security options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Results and analysis 47

5.1 Sensor calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Bluetooth and Protocol Buffers . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Web page with made-up data . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Web page with real-time data . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Analysis of operative data . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Watchdog tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Costs involved in the project . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusions and future work 73

Bibliography 77

A Example of the Cooley-Tukey FFT algorithm 83

B Installation and user guide 85

B.1 Quick Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 Modifying existing software . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Contents iii

B.2.1 Installing NodeJS and libraries . . . . . . . . . . . . . . . . . . . . 86

B.2.2 Modifying Raspberry Pi services . . . . . . . . . . . . . . . . . . . . 87

B.2.3 Linking a new Bluetooth module . . . . . . . . . . . . . . . . . . . 88

B.2.4 Creating new server repository . . . . . . . . . . . . . . . . . . . . . 89

B.2.5 Deploying changes to the webpage . . . . . . . . . . . . . . . . . . . 89

B.2.6 Administering database users . . . . . . . . . . . . . . . . . . . . . 90

B.2.7 Programming the MCU . . . . . . . . . . . . . . . . . . . . . . . . 90

B.2.8 Changing the Protobuf message . . . . . . . . . . . . . . . . . . . . 92

C Electronic circuit in detail 93

Index 95



iv Contents



List of Figures

1.1 CNC milling machine Hermle UWF900E. Source: [4] . . . . . . . . . . . . 2

1.2 General structure implemented in the project. Source: Own elaboration . . 5

2.1 Failure tree elaborated for a 3-axis CNC milling machine. Source: [8] . . . 8

2.2 Example of the topology for an IoT system. Source: [16] . . . . . . . . . . 11

2.3 Comparison between serialization protocols. Source: [28] . . . . . . . . . . 16

2.4 File size for different serialization protocols. Source: [26] . . . . . . . . . . 17

3.1 PCB design. Source: Own elaboration . . . . . . . . . . . . . . . . . . . . 34

4.1 Login page for user interface. Source: Own elaboration . . . . . . . . . . . 44

4.2 Home page for user interface. Source: Own elaboration . . . . . . . . . . . 44

4.3 Error message for user interface. Source: Own elaboration . . . . . . . . . 45

4.4 Example of graph view for user interface. Source: Own elaboration . . . . 46

5.1 Calibration curve for pressure sensor. Source: Own elaboration . . . . . . . 51

5.2 Calibration curve for microphone. Source: Own elaboration . . . . . . . . 52

5.3 Time required for sending a full array-type message. Source: Own elaboration 55

5.4 Time required for a single ADC conversion. Source: Own elaboration . . . 56

5.5 Results obtained for made-up data: “Acceleration”. Source: Own elaboration 57

5.6 Results obtained for made-up data: “Vibrations”. Source: Own elaboration 57

5.7 Results obtained for made-up data: “Temperature”. Source: Own elabo-

ration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 Results obtained for real data on 1st try: Noise. Source: Own elaboration . 59

5.9 Results obtained for real data on 1st try: Acceleration. Source: Own

elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.10 Results obtained for real data on 1st try: Spindle speed. Source: Own

elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.11 Operational data: Spindle-speed. Source: Own elaboration . . . . . . . . . 61

5.12 Operational data: Pressure. Source: Own elaboration . . . . . . . . . . . . 61

5.13 Operational data: Temperature. Source: Own elaboration . . . . . . . . . 62

5.14 Operational data: Vibrations. Source: Own elaboration . . . . . . . . . . . 63

5.15 Operational data: Vibrations frequency. Source: Own elaboration . . . . . 63

5.16 Operational data: Acceleration. Source: Own elaboration . . . . . . . . . . 64

5.17 Operational data: Acoustics. Source: Own elaboration . . . . . . . . . . . 65

v



vi List of Figures

5.18 Operational data: Acoustics frequency. Source: Own elaboration . . . . . . 65

5.19 Correlation analysis for vibrations: Pearson. Source: Own elaboration . . . 67

5.20 Correlation analysis for vibrations: Spearman. Source: Own elaboration . . 67

5.21 Correlation analysis for temperatures: Pearson. Source: Own elaboration . 68

5.22 Correlation analysis for temperatures: Spearman. Source: Own elaboration 68

5.23 Correlation analysis for vibrations frequency: Pearson. Source: Own elab-

oration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.24 Correlation analysis for vibrations: Spearman. Source: Own elaboration . . 69

5.25 Message for setup alarm. Source: Own elaboration . . . . . . . . . . . . . 69

5.26 Message for repeated alarm. Source: Own elaboration . . . . . . . . . . . . 70

5.27 Example of wrongly activated alarm. Source: Own elaboration . . . . . . . 70

B.1 Circuit for Atmega 328 programming.Source: [55] . . . . . . . . . . . . . . 91

C.1 Main electronic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



List of Tables

2.1 CNC Hermle UWF900E Specifications . . . . . . . . . . . . . . . . . . . . 10

3.1 Sensors used in the project . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Comparison between microcontroller models . . . . . . . . . . . . . . . . . 28

3.3 Other integrated circuits used in the project . . . . . . . . . . . . . . . . . 29

3.4 Current consumption in the system circuits . . . . . . . . . . . . . . . . . . 33

4.1 Comparison between different PaaS providers . . . . . . . . . . . . . . . . 38

5.1 Calibration tests for light sensor . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Measurements for linear accelerometer calibration . . . . . . . . . . . . . . 48

5.3 Results for lineal accelerometer after processing . . . . . . . . . . . . . . . 49

5.4 Measurements for vibrations sensor calibration . . . . . . . . . . . . . . . . 50

5.5 Test results for vibration sensor after processing . . . . . . . . . . . . . . . 50

5.6 Measurements in pressure sensor calibration . . . . . . . . . . . . . . . . . 51

5.7 Test results for pressure sensor after processing . . . . . . . . . . . . . . . 51

5.8 Comparison of microphone performance . . . . . . . . . . . . . . . . . . . . 53

5.9 Results for frequency analysis tests . . . . . . . . . . . . . . . . . . . . . . 54

5.10 Test results for communication with Bluetooth and Protobufs . . . . . . . 54

5.11 Costs of the project by category . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



viii List of Tables



List of symbols and abbreviations

Abbreviations
BSON Binary JavaScript Object Notation

CM Condition Monitoring

CNC Computer Numerical Control

COTS Commercially off-the-shelf

DFT Discrete Fourier Transform

DHBW Duale Hochschule Baden-Württemberg (Baden-Württemberg Cooperative State

University)

DSP Digital Signal Processing

FFT Fast Fourier Transform

GUI Graphic User Interface

HTML Hyper Text Markup Language

IaaS Infrastructure as a Service

IC Integrated Circuit

IoT Internet of Things

IP Internet Protocol

IT Information Technologies

JSON JavaScript Object Notation

LAN Local Area Network

MCU Microcontroller Unit

MEMS Micro Electro-Mechanical System

PaaS Platform as a Service

PCB Printed Circuit Board

RMS Root Mean Square

RTC Real Time Clock

SaaS Software as a Service

SBC Single-Board Computer

SPL Sound Pressure Level

SQL Structured Query Language

URI Uniform Resource Identifier

WSN Wireless Sensor Network

General notation
a[n] n-th element of the a series

C Set of the complex numbers

ix



x List of symbols and abbreviations

e Euler’s number, base of the natural logarithm

Im(z) Imaginary part of complex number z

j j =
√
−1

Re(z) Real part of complex number z∑m
i=n a[i] Summation of the elements of the sequence a, starting with the n-th element

and ending with the m-th element



Chapter 1

Introduction

1.1 History and perspectives of the DHBW Karl-

sruhe

The State of Baden-Württemberg is widely recognized as one of the most industrial-

oriented zones in Germany, and it is the home of several important companies with his-

torical impact in the country’s economic development, such as Daimler, Bosch, and IBM

Deutschland. The demand of qualified workers has boosted a privileged culture for the

growth of mechanical and electrical engineering, and high-precision metal machining. An

even more interesting fact is that most of the business located in this region are classified

as medium or small-sized, so in many cases the focus of the local I&D centers is shifted

towards these markets [1]. The economic context was a key factor in the creation of the

Baden-Württemberg Cooperative State University (Duale-Hochschule Baden-Württem-

berg, DHBW). Since 1974, this institution has been a pioneer in the application of the

dual-education concept, integrating formal academic studies with practical work directly

in enterprises. For this reason, the different campus need to adjust their academic plans

to the industries real-world inquiries, and therefore require facilities that are up to the

latest technologies [2].

The Karlsruhe campus of DHBW has an important catalog of engineering careers, includ-

ing departments for Electronic, Mechanical, Computer and Mechatronics Engineering [3].

Each department has industrial level equipment which can be used by students in lessons

and practices. The Mechanical Engineering department, for example, has turbines, ovens

and different milling machines and lathes. One of the most important devices, in terms

functional complexity, is the Hermle CNC milling machine, model UWF900E, which can

be found in the figure 1.1.

The maintenance of this and the rest of the machines is a very important considering the

frequency of their usage, which expose them to a more accelerated degradation process.

Bearing in mind the whole population of students is about 3000 people [3], to monitor

the use of every single piece of institutional equipment becomes a total challenge. That

1



2 1.2 The challenge of monitoring mechanical equipment

is why some of the professors involved with the machines have begun their own research

towards the development of tools that ease this task and allow them to comprehend in a

better way how is everything working in their own laboratories.

Figure 1.1: CNC milling machine Hermle UWF900E. Source: [4]

1.2 The challenge of monitoring mechanical equip-

ment

The Mechanical Engineering Department of the DHBW Karlsruhe has many different

machines and equipment. The professors would like to know about the work conditions

these machines are really facing, but obviously, they cannot be watching over them the

whole day. Therefore, there is a need to monitor these devices remotely, showing the

results in such a manner any member of the faculty could see them and understand them

easily. Moreover, to maximize the usefulness of such monitoring system, it is convenient

to allow simultaneous access to all the personnel interested in the situation, so they can

complete any further analysis over the collected data.

Taking into consideration that installing measurement systems over the whole department

inventory would require a long time, it was a better option to test the idea only in one

of the machines. Then, analyzing its own set of features and the overall importance

it has for the university, the Hermle UWF900E milling machine was chosen as starting

point. CNC machines are highly complex electromechanical devices, so to register their

functional state, several physical variables need to be analyzed. Each of the variables lies

on a specific range of values that can be considered good enough for the CNC regular

operation. Also, in many cases, visualizing relationships between two or more variables

is necessary to establish the real state of the whole group. Although most of the times

the internal controllers of the CNC manage these datasets, access by user side is usually

protected or directly blocked.

The personnel at Mechanical Engineering Department has found some critical variables

required to understand the behavior of their milling machine, which include: hydraulic



1 Introduction 3

pressure and temperature for the cooling system; open/closed state of the access door for

safety; rotational, lineal speeds and vibrations in the working area for tool positioning;

and current consumption for electrical power. The control section relies entirely on the

internal computers and software, which does not get degraded with usage, so there is no

utility in keeping them under constant vigilance. There is space for monitoring any other

operative conditions that could complement the functional profile of the device.

In synthesis, the problem this project solved was the need to verify that the machines of

DHBW Karslruhe Mechanical Engineering Department are working in optimal conditions.

1.3 Brief overview of the monitoring system design

To keep a complete, real-time, remote access to all the information registered, besides

a group of sensors and electronic controllers, a full working communication system is

necessary. Therefore, the plan for this project was to focus on a system based on Internet

of Things (IoT). In simple words, the final design integrates web-based communications

and data storage with mechanical and electronic devices.

Right now, there are fully developed options available in the market for IoT applications

in factories and other industrial environments. Nevertheless, implementing one of these

solutions is usually expensive. For academic environments and low-scale enterprises is

better to design tailored systems, using open-source elements and COTS sensors, which

are cheaper and have more possibilities for the user. Also, this approach is optimal

for scaling up solutions to other CNCs or different kind of machines, as intended by

the Mechanical Engineering Department. Thus, the project was developed within this

vision. Moreover, one of the first considerations made was that just showing raw data on

a screen makes the analysis of usage tendencies and performance more difficult for the

people interested in it. Hence, the solution developed includes a simple GUI, allowing the

visualization of time-series registers in different graphs.

The general working scheme used in this project was:

• Theoretical research about the machine and possible materials to use: To

select which characteristics are important enough to be monitored, which of them

can be measured without too much intervention in the CNC, and what kind of

sensors could get those measurements, a brief review of technical documents and

discussions with the professors of the DHBW were conducted. Also, it was necessary

to choose a micro- controller, a SBC and all the software packages for communication

and GUI, always collecting the right information before getting a conclusive choice.

• Selection and calibration of electronic components: Once all the sensors

were bought, it was necessary to verify the output of each one under controlled

stimulus. The same tests allowed to evaluate accuracy and precision. In the end,

it was possible to generate a set of experimental curves, which were the basis for

further measurement pre-processing programming.



4 1.4 Objectives and document structure

• Micro-controller programming: It was required to establish a connection be-

tween all the sensors and the controller selected, to process the measurements and

set an appropriate flow of data. This include the use of filters and the creation of

timing algorithms that assured no interference between components. After that, a

new communication section was tested, this time to send data to the SBC, and the

heaviest parts of data processing, which could not be implemented in the controller,

were developed in this other device.

• Cloud database programming: A full working data structure, able to manage

incoming data from all the sensors, was designed and implemented online. Then,

the required queries tested the functionality of the database. Finally, permissions

and access keys were added. The whole database system was connected to a remote

server, via a PaaS provider.

• GUI programming: A specific format for the downloaded data in each query was

established, according to common use protocols. Then, over the cloud-based server

platform, a web page including graphs for each variable monitored was created. The

design includes the ability to refresh information, so every time the page is loaded,

the complete set of data is retrieved from the database, including the newest uploads.

• Results evaluation: When the whole system was ready, information was collected

over a period of two weeks, expecting to detect any tendency in the CNC operation

and giving special attention to variables correlation. A statistical analysis software

was used for this purpose.

Figure 1.2 shows a high level representation of the whole installed system. Notice the

wired connections between the sensors and the micro-controller work over a specific com-

munication protocol, which would be properly explained in further chapters.

1.4 Objectives and document structure

The main objective pursued with this project was to develop a remote monitoring system

for operational proficiency of a CNC milling machine, applying IoT concepts and low-cost

components, in way that allows easy access and usage to the people in charge of the

equipment. To clarify the way to achieve this general goal, the reach of the work done

was divided in the following specific objectives:

1. To design the external measurement circuit required to supervise the machine, con-

sidering the critical variables for its operation.

2. To implement the necessary algorithms for communicating the electronic micro-

controllers with a cloud-stored database, using informatics safety elements

3. To design a graphical interface able to show all the measurement results in a clear

way, over any computer provided with access to the database



1 Introduction 5

Figure 1.2: General structure implemented in the project. Source: Own elaboration

4. To evaluate the performance of the milling machine analyzing tendencies over a

short period of time (1-2 weeks) through the data registered by the IoT system

This inform explains how all these objectives were fulfilled in a sequential order. The next

chapter covers the theoretical basis applied in the project, and some references consulted

as a source of ideas for the structure designed. In chapter 3, the sensor electronics and

programming of such design are explained in detail, commenting all the decisions made

for each section of the system, the reasons behind them and corresponding data to back

them up when it was considered necessary. Correspondingly, in chapter 4 the same is

done with the Internet communication segment. Chapter 5 shows a brief collection of

the experimental results achieved in the end of the implementation, and some analysis

done over this information. Finally, on chapter 6, a list of the main conclusions obtained

with this work and some recommendations for future research in the area is presented.

Some related data, as demonstrations for algorithms and user guides, is included in the

appendix section at the end of the document.



6 1.4 Objectives and document structure



Chapter 2

Theoretical references

2.1 CNC machines: characteristics and requirements

2.1.1 General definition

Traditional machining processes are characterized by the presence of an operator who

leads the motion of the working area in the machine to create the desired shape on a

piece [5]. This method has several disadvantages: the output rate is heavily limited by

the capacity of the operators; the accuracy is very dependent on the level of skill the

person has and the human factor affects the repeatability of dimensional accuracy [5].

Moreover, most of the pieces produced nowadays have requirements in shape and surface

accuracy so extensive they cannot be reached with only one-dimensional movements [6],

and modern industry privileges the concepts of flexible and tailored design, which imply

constant change in the used set of tools [7]. Therefore, it is impossible for single operator

to do the whole job accurately by himself [5]. CNC machining centers solve the problem.

In simple words, CNC (Computer Numerical Control) refers to the method of directing the

operation of a machining equipment introducing directly the wanted numeric parameters

via a computerized environment, instead of guiding the movements manually [5]. Like

other manufacturing machines, these centers always count with a table (which holds the

machined pieces) and a spindle (which holds the tools). According to spindle position

and operation, the three main types of machining centers are vertical mills, horizontal

mills and turning (or lathing) centers, which include rotation in the table too. [6].

2.1.2 Maintenance of CNC machines

The main disadvantages CNC machines have when compared to traditional ones are

higher initial costs; personnel training with more specific requirements, which involves

knowledge not only on common machining, but programming and design as well [5] [7]);

and elevated costs of long term maintenance. The last one deserves a special attention,

7



8 2.1 CNC machines: characteristics and requirements

as its effects span over a longer period. Some of the augmented expenses come from

the greater complexity of such devices, which integrate electrical, mechanical, pneumatic,

and hydraulic sections [7] through coordinated movements in 3 or more axes. Also, the

software controls introduce another layer of possibilities whenever a failure occurs [5]. An

example of a complete, traditional maintenance plan for CNC centers is presented in [8].

It divides the possible failures on the machine in the following areas: cooling subsystem,

positioning subsystem, computer control subsystem, electrical power subsystem and safety

subsystem. Figure 2.1 shows this categorization, alongside the most common reasons for

failure found by the work. The consequences lousy or badly planned inspections bring

Figure 2.1: Failure tree elaborated for a 3-axis CNC milling machine. Source: [8]

over the machine can go from a detrimental in the quality of pieces produced to a total

operative damage. One common way machining devices show internal unbalance is by

excessive vibrations. Wrong cutting parameters or not optimal selected tools are usual

sources for that problem. [6]. Another case is thermal distortion on tools and piece, caused

by several different situations, such as insufficient bearing lubrication or wrong cooler

fluid application while cutting [6]. Both conditions show the relevance of extending CNC

maintenance to more modern techniques, involving a close understanding of the operative

conditions.



2 Theoretical references 9

2.1.3 Examples of modern maintenance

Condition monitoring (CM) and predictive maintenance are two trending concepts in

industrial maintenance .The first one relates to continuous collection of operative data

from a given device to identify states in it. Predictive maintenance, by other side, seeks

to analyze the information to generate future state estimations on each variable, which

set predictions over failure before it happens [9]. Most of the times a CM strategy is

applied to a machining center, the focus is to monitor one or two magnitudes, and then

use analysis tools and historic data to compliment it. The work of [10] offers an example of

this situation. The authors analyze the procedures of a producer dealing with tolerances of

microns in his lots. To assess the real ability of the positioning system, a sensor measures

the radius of circular paths executed by the spindle. With only one variable registered,

the whole set of balancing parameters can be determined. The personnel environment

collects temperature and humidity too, to create correlations with movement accuracy.

Going even further, the authors of [9] investigated the effectiveness of retrieving vibrations

to determine deterioration on cutting tools. Using only vibration sensors attached to 3-

axis CNC mill, with a sample rate about 1 kHz, the team could recognize properly the wear

state of the tool, after cutting test pieces. On the same topic, [11] shows the use of a micro-

controller with USB interface and a relatively cheap accelerometer to detect vibrations

on spindle. With a cost under $200, the authors were able to distinguish the signals

reported for brand new tools and clearly damaged tools. One of their conclusions is that

frequency analysis offers more accurate results than amplitude analysis when evaluating

wear conditions.

A last example is shown in [12]. The authors based their research on the idea that cutting

pieces emit acoustic signals between 2 kHz and 4 kHz, along with regular vibrations, but

the former can be easier to detect with cheap sensors. They registered data for 4 different

variables, at a sample rate of 44100 kHz: cut depth, feed rate, RPMs, and RMS acoustic

level near the spindle, calculated as follows:

SRMS =

√
s21 + s22 + s33 + . . .+ s2n

N
(2.1)

The authors were capable of mark some distinction between brand new and used tools,

and a very remarked difference with worn out tools.

2.1.4 Hermle UWF900E parameters

The monitored machine for this project is classified as universal milling machine with

3 axis of movement. According to [4], the total travelling distances for its axis are 600

mm on X axis, 400 mm in Y axis and 420 mm on the Z one. The model that is used

at DHBW Karlsruhe campus has a Heidenhain model TNC 407 controller, programmed

with MasterCam software. The user manual indicates that this controller is on the low

end of specifications (limited graph use, longer block processing time,etc.), but features



10 2.2 Internet of Things and cloud-hosted services

Year of production: 1995

Table total dimensions: 900 mm x 458 mm

Spindle model: SK 40

Spindle travel: 75 mm

Number of places in tool

magazine:
30

Tool rotational speed: 20-4000 RPM

Feed rate: 1-5000 mm/min

Power voltage: 400 V, 3-phase, 50 Hz

Control voltage: 34 V

Maximum power consump-

tion:
7 kW

Net weight: 3200 kg

Cooling system: Compressed air, max. pressure 7 bar

Other details:

Full protection cabin with transparent 3 door access,

machine light included inside the cabin (lights on when

powered)

Table 2.1: CNC Hermle UWF900E Specifications

communication through RS-232 and RS-422 protocols [13]. In table 2.1, there is a list of

other important machine characteristics.

2.2 Internet of Things and cloud-hosted services

2.2.1 What is IoT?

The concept of Internet of Things refers to an upcoming tendency in communications

technology. Explained in simple terms by [14], it consists in the integration of Internet-

based connections not only to personal computers and related devices, but to almost

commo, from household devices to work-place machines. The intention is to share device

operative or environmental information in an extensive way, instead of maintaining the

data and the control of it in internal-networks[15]. IoT development was possible due to

the convergence of several factors: designers interest in recovering data from real source

to help them with their work; better, cheaper sensor technologies, easy to integrate on

other devices; ubiquity of Internet in common life, specially through wireless, broad band

protocols; and the creation of new services for transmission and management of huge

amounts of information (Big Data applications) time [14] [16] [15].

A general IoT application structure can be seen on figure 2.2. The sensors, which

provide the data for the whole system, are located on the starting side. These elements



2 Theoretical references 11

can be connected through wired protocols, or through Wireless Sensor Networks (WSN),

although the latter are limited most of the times to an internal level of communication

[15]. A gateway, a device with stable Internet connection and available ports for the

sensors protocols, is usually added to link both sides. Considering the limited functions

they need to display embedded options are preferred [14]. Once a gateway has been

established, the data is within the local area network (LAN). To communicate at global

scale, a dedicated server needs to run the required processes. Many IoT applications use

third-party providers for this task, which allocate the programs in big, software-based

company servers [14]. The most popular services provided through IoT include: database

generation and maintenance, analysis of data, remote control of the machines, data display

and prediction reports [16]. Some IoT systems, include security option for the collected

information, such as user profiles, or firewalls in the gateway.

Figure 2.2: Example of the topology for an IoT system. Source: [16]

The main advantages of installing IoT systems are: the easiness to control direct func-

tions or update machines control programs remotely; the possibility to keep real-time

monitoring over wide conditions sets; the deep analysis that can be applied automati-

cally over operational information; and the opportunity to extend user experience and

get better designs at the same time [14]. Referring to manufacturing industry, it has

been reported IoT is especially useful for managing automated process, such as CNC ones

manu-handbook. On the other side, some of the biggest challenges to overcome when de-

signing or implementing IoT are securing sensible information from unauthorized access;

providing a reliable transmission path for all the collected data; and choosing the right

sensors and analysis combination to provide valuable system perception [15] [16].



12 2.2 Internet of Things and cloud-hosted services

2.2.2 Cloud hosting and Platform as a Service (PaaS)

IoT solutions are commonly implemented through Cloud Computing tools. This concept

is defined as a software development method where every program and file handled to

the end user is ultimately stored in a remote server memory space and accessed through

network communications[14]. The origins of cloud computing are linked with the rise of

big web-centered companies. By the nature of their own work, these companies need huge

clusters of Internet-ready database computers in their own facilities. Data centers usually

have memory space that is not required at full-capacity, so the source company can get

profit renting that extra space to other IT companies that are needing it. [17].

Depending on the layers of responsibility assigned to the provider, cloud services can be

classified, in Infrastructure as a Service (IaaS), Platform as a Service (PaaS) or Software

as a Service (SaaS). For the first one, the provider only offers access to the memory and

processor of their own servers. In a PaaS, the provider gives the client the opportunity

to use programming language environments, dedicated web page display, pre-configured

databases, and other utilities. This is intended to allow software developers flexible tools

without caring too much for maintenance. Finally, a SaaS provider has a full functioning

program or application running on the cloud, and the clients can use it with their own

files [18].

The advantages of using cloud computing are avoiding the costs and technical difficulties

of installing an own cluster of servers and giving it maintenance; the ability and flexibility

to use only the amount of processing that is really needed in each moment[18]; and the

ubiquity of information, that can be reached from different devices and users without los-

ing track of the latest changes [14]. The main challenge that remains for cloud computing

is to provide enough security to the clients about their information [18]. The authors of

[19] made a security analysis for the three types of service layers, and the conclusion is

that PaaS clients need to interact thoroughly with the provider safety procedures, because

it is their own job to call them correctly inside the programs.

Choosing a specific provider for cloud services depends on the reach of the desired project.

The authors [20] offer a well-based guide to it, with an evaluation framework to compare

providers based upon user environment and needs. The full extent of the method is

no matter of discussion for this inform, but the general structure is a good reference

to consider. The paper evaluates each provider on four attributes, divided in four sub-

attributes each, and those ones divided themselves in metrics, that can be discretely

assigned numeric values. The attributes used were agility, security, performance, and

usability.

2.2.3 Databases: SQL vs NoSQL

Database deployment and maintenance is a key element in IoT design process. The dif-

ferent infrastructures that provide such service are mainly classified in two categories.



2 Theoretical references 13

The first one is relational databases, also recognized by the usage of structure query lan-

guage or SQL. These databases appeared around 40 years ago, when information traffic

and query requirements were lower [21], so they focus on what is called ACID compli-

ance: atomicity, consistency, isolation, and durability [16].SQL databases are constructed

through structured data, that means that every element stored is part of an explicit and

pre-defined structure declared in the database management section. Common view for

SQL databases is the one of a table, with sets of relationship rules established if a con-

nection between tables is needed. Notice that, because the schema is used to validate the

queries, SQL does not accept missing spaces when uploading a new data point [21].

For quick-update, parallel-scalable, Big Data applications, SQL have some performance

troubles. Thus, the second database category, NoSQL databases, tackles this problem

using partially non-structured data big-data. There are at least four main categories

of NoSQL databases: key-value pairs, column-based, graph-based, and document-based.

The first one is a very basic method, where values are attached only to a correspondent

tag, but no further relationships are necessary. Column-based type adds the possibility to

group different key-value pairs to be identified as whole object of data, although they still

manage relationship freedom. A document-based database allows grouping in a little bit

more structured way, including generating hierarchical subgroups. Graph-based service

works with nodes of information and multiple relationships stored for each one [16].

The main advantage of NoSQL is flexibility, so if the application is known to have remark-

able difference from data point to data point, getting one of those database is valuable.

Relational bases are still useful when ACID characteristics are necessary (NoSQL are usu-

ally faulty in one or various of the attributes). The authors of [21] offer an extensive series

of recommendations to choose the most appropriate type in different scenarios. Document

databases, for example, are suit for web applications, with small and continuous reads

and writes.

2.2.4 Basics of web design

Web page visualization is based in the Hypertext Transfer Protocol or HTTP, which

defines the rules to execute hyperlinks and other main functionalities. HTTP works by

sending method requests, each one related to different resources. The two most used

methods in web design are GET and POST. The GET method asks the server for the file;

the POST method covers the opposite function: to send some information from the client

side to the server [22]. The HTTP scheme uses Hypertext Markup Language (HTML)

documents to establish the specific layout and file paths of a given page[23]. To execute

programming functions beyond visualization, like accessing databases, the servers have

programs interacting with HHTP requests. The same programs that manage a web page

can be easily integrated with other Internet-based functions, like e-mail, because they

share a common basis in their procedures. In the specific case of mail, the protocol is

called SMTP [24].



14 2.3 Communication protocols for fast processing

Some actions, mainly interactivity ones, need to run on the client side. HTTP cookies are

one particularly useful example. These are small pieces of data, which are stored by the

browser. Whenever the server requires, it can access to them or modify them. The core

usage of cookies is to store static settings defined by the user for the web page navigation

[22]. The programming language dedicated to this task is almost universally JavaScript, a

high-level, weakly-typed and interpreted language[23]. Nowadays, JavaScript can also be

executed in server side, primarily with the NodeJS environment. Node is recognized by

web developers because its working scheme (event driven and with asynchronous execution

of functions) is vastly efficient for the high input/output requirements servers must deal

usually [25].

2.3 Communication protocols for fast processing

2.3.1 Serialization protocols

In systems that interact with heavy information flow, like most IoT applications, col-

lected data should be used by all the parts involved with minimum effort. This require-

ment includes both user interactions, where human-recognizable formats are needed, and

machine-to-machine communications [26]. For the latter, information is usually formatted

into byte arrays to transmit it over connection lines in an easier way, a process known as

serialization. Consequently, the receiving end must reconstruct the whole data structure

from the array, or deserialize it [27]. The main issue with serialization is how to pre-

serve internal data structure relationships all along the whole procedure; several different

encoding protocols have been created to tackle the problem [28].

A first approach is to use XML, a format similar to HTML which is widely popular because

it natively multi-platform, plain-text based and therefore, human-readable. Nevertheless,

the use of tags, redundant by nature, increases the size of serialized byte array tends to

several times the original object, and reduces clarity[27]. A similar alternative is JSON,

the notation used by default in JavaScript to create objects. The structure of a JSON

file is also made of plain-text, but it distinguishes different elements with simple symbols

and writing order. The evidence collected in academic works suggests JSON serialization

produces smaller arrays than XML, making it better for storage and faster to send [27].

Because computers work with binary representation, the logical step to maximize the

usage of memory is to convert the full object into a binary file. BSON, for example, is

an adaptation of JSON to a binary format. It is self-describing, meaning that machines

do not require extra files to deserialize messages, and it also has internal hierarchy for

complex structures [26].The other common self-describing protocol is MessagePack, which

is also derived from JSON [29]. Another popular protocol is Avro. Although it is not

completely self-describing (because it uses a predefined schema), it is classified as dy-

namically generated [28]. Avro was designed for the Apache Foundation and it is mainly

used in big data applications [27]. Other serialization protocols rely entirely on a schema



2 Theoretical references 15

file read before executing any serialization. The protocol needs to provide a compiler for

every programming language it is intended to be used. The two more popular options

within this category are Protocol Buffers (Protobufs), developed by Google for their own

archives, and Thrift, with a similar situation for Facebook [28].

The references consulted point out that binary protocols produce more compact files, and

therefore, they are more efficient in terms of storage and speed [27]. In [27], the authors

run a benchmark test between JSON, XML, Avro, Protobufs and Thrift implementations

for the .NET environment, both with small and big number of objects. The analysis shows

after 100 objects there is a noticeable difference between plain text and binary formats,

as binary protocols can be even 5 times faster and around 3 times smaller. Protobufs

is the protocol with the best results in each test. The authors of [28] made a similar

test run. Their results are more diverse, but they show again that plain text is always

a step behind binary, with the worst performances being JSON implementations. The

best options, according to this work, are: Avro in terms of arrays size, Protocol Buffers

in terms of serialization time and Thrift for deserialization time. Finally, both [26] and

[29] made a comparation between BSON and Protobufs. The conclusion is that BSON

performance is on the same level of JSON, with sizes 5 times bigger and times twice the

ones Protocol Buffers can achieve. Figures 2.3 and 2.4 shows some of the commented

results.

Although BSON is the worst binary option in the papers referenced, its features tend to

benefit storage and query functions. The files generated by BSON have a characteristic

known as traversability, the ability of quick indexing and searching for specific values

inside them. To achieve it, the encoding method add extra information in every document,

creating a memory overhead, but it pays off during search requests. In some cases, all

this overhead makes BSON files bigger than JSON equivalents, but keeping in mind that

BSON goal is not set on size but accessibility, it turns out to be a good option for storage

[30].

2.3.2 Google Protocol Buffers

Google designed Protocol Buffers to deal with their indexed servers requests. It was

created as a more efficient alternative to XML with a fast, lean serialization system able

to accept new data fields without upgrading servers, defined through easy to read schemes,

multi-language, and multi-platform [31]. A specific Protobufs implementation starts with

the schema file, called .proto file, which defines a generic message structure with the

proper elements in it. To apply it into a program, the .proto file needs to be compiled

for the desired language, be it C++, C#, Java, Python, Ruby, Go, PHP or JavaScript

. The result of compilation process is a reference script that can be invoked inside other

source codes. A programmer only would need to create the desired data structure in

the preferred language, and call serialize or deserialize methods; that is, it does not get

involved with the binary encoding itself [32].



16 2.3 Communication protocols for fast processing

Figure 2.3: Comparison between serialization protocols. Source: [28]

When working with integer values, the serialization encoding executes adjustments to

use only the necessary space, although some tagging is required for each variable. For

floating point numbers and strings, there is no conversion protoencode. Protobufs can

treat numerical arrays like strings, to avoid individual tags; and it has an option to

encode signed integers, preventing the appearance of very large representations of negative

numbers. The main disadvantage of Protobufs messages is they never include neither the

total amount of bytes sent, nor any end sequence. Adding these consideration is a task

left for the programmer [31].



2 Theoretical references 17

Figure 2.4: File size for different serialization protocols. Source: [26]

2.4 Filtering and data analysis on the digital domain

2.4.1 Processing filters

Although almost all modern technologies (including Internet protocols) are based on digi-

tal computing, many of the signals a monitoring system catches are still analog by nature.

Thus, conversions are required for each of them. To assure the data stored in last term is

representative of reality, Digital Signal Processing (DSP) techniques are necessary. DSP

studies computing algorithms that manipulate analog signals after digital conversion,

with the goal of enhancing their quality, recognize patrons or make them more suitable

for transmission [33].

Noise is a basic concept in this area. When acquiring a measurement, physics phenomena

can get involved in the generation and transmission of data, provoking an erroneous value

to be registered. The range of perturbances includes environmental elements such as

humidity, temperature, or magnetic field, but also unexpected situations that deviate the

monitored condition instantaneously [34]. Also, high frequencies required in both control

and transmission ICs introduce resonance effects contributing to signal distortion [35].

These alterations are considered completely random and for that reason, they cannot be

totally avoided, only countered with the help of filters.

A common analog filter is normally composed of passive components (resistors and ca-

pacitors) and operational amplifiers. The basic design is one pole circuit, named after its

transference function on the frequency domain:

H(s) =
1

1 + s
ωc

(2.2)



18 2.4 Filtering and data analysis on the digital domain

The given function works for low-pass filters, with a cut frequency on ωc. Noise is usually

perceived as a high frequency element, so low-pass filters are a convenient election. Single

component RC circuits behave as one-pole filters, as the transference function of the

capacitor voltage can be written as:

Vc(s) =
1

1 +RC
(2.3)

Comparing equations 2.2 and 2.3, the formula for the cut frequency is obtained:

fc =
1

2πRC
(2.4)

Analog filters present some disadvantages for real-life applications. In first place, the

passive elements introduce a source of uncertainty to the system, as the tolerance rates

on commercially available versions can reach even 10%. Also, the same high frequency

issues that affect paths of connection act over resistors and capacitors too. Finally, as

[33] explains, the analog to digital conversion itself adds more random noise, that would

not be perceived by the filter. Analog filters are still necessary to reduce the amount of

noise that reaches the digital stage, but software filters should be added in any large-scale

project. A digital filter never deals with the physical limitations analog filters have, and

so its performance is several times better[35].

One characteristic that digital filters exploit to reduce noise is that, when generated by

natural sources, its probability distribution can be well approximated with a Gaussian

function. Furthermore, the Central Limit Theorem proves that even when the random

values come from non-Gaussian sources, the total sum of them would tend to behave as a

Gaussian function [33]. Because all the noise added to a signal can be interpreted in this

way, simply averaging the measurements over a predefined period is effective in reducing

the alterations and recovering the original values. The so-called moving average filter is

then the first solution that should be tested when facing the problem of noise in digital

systems. The mathematical expression of this filter is:

y[i] =
1

M

M−1∑
j=0

x[i+ j] (2.5)

Where y is the output signal for the filter, x the input, i is every consecutive measurement

taken by the system and M is a design parameter. Although its simplicity, moving average

filters are commonly the optimal solution against noise [33]. In fact, for a given edge

sharpness there are no other filters that reduce noise as much as averaging. The general

rule is using larger values for M gets a better performance in noise reduction (in the order

of
√
M), but lowers edge resolution.

Moving average is effective in time-domain situations. For frequency-domain situations

where a specific bandwidth needs to be filtered out, other options (Chebysev, Butterworth,

Bessel) are more suited [35]. Other statistical measurements (median, for example) can

be used for time-domain filters, but the theory and practice predict results equal or worse

than moving average [33].



2 Theoretical references 19

2.4.2 Timing and digitization errors

Transforming a full analog signal into digital information involves 3 stages: sampling,

quantization, and digitalization. The signal is always function involving an independent

variable (time, frequency, or distance) and a dependent variable (the magnitude of inter-

est: temperature, speed, etc.). In an analog environment, both are continuous. Digital

systems, by the other hand, can only store data in discrete versions. In the first stage,

sampling, the independent variable is converted. To achieve this, sample-and-hold com-

ponents are used. They catch the instant value of the signal periodically and then hold

it until the next measurement. There is a clear loss of information in this step, as the

intermediate values between every request are never registered. This is the sampling error

[34].

Next stage applies discrete conversion to the dependent variable. The analog-to-digital

units have a predefined number of levels (expressed in bits) that can be taken by the out-

put. Hence, the sampled signal is interpreted by ranges, assigning them the nearest lower

or higher value inside ADC. Again, such process results in an accuracy loss, because many

intermediate values are interpreted as the same. The situation is known as quantization

error. In the last step, the levels are simply translated to binary numbers and stored in

memory. The conversion is executed one-to-one, so no error is introduced in this stage

[35].

The quantization error can be assumed as a deviation added to the real value of the

signal, taking the maximum value of 1/2 LSB (least significant bit). If that signal is not

static, the difference between original signal and registered levels is effectively interpreted

as another source of Gaussian noise, with standard deviation of 1√
12

LSB. Sampling error

cannot be treated this way. Most of the times, this error is simply ignored if the signal

changes slower than the sample rate, because there is enough information to reconstruct

the original data. But if the signal frequency is too high, there is no way to find the real

original signa. The error is known as “aliasing”, and to avoid it, the Nyquist Theorem

establishes the sample rate should be at least twice the higher frequency component

measured. [33]

Another sampling error can occur when it is assumed that collected data represents one

period of the given signal, a principle used in several algorithms. That forces the number

of samples to cover the lowest frequency expected. In a general case, to avoid analysis

errors:

N ∗ fs ≥
1

fmin

(2.6)

Where N is the number of samples.

2.4.3 Frequency analysis: Fast Fourier Transform (FFT)

The Fourier Transforms are a family of mathematical tools useful in the frequency domain

analysis. For digital computing, that work with discrete variables and finite amount of



20 2.4 Filtering and data analysis on the digital domain

data, the transform can be applied assuming one series of samples represent a period.

The Fourier transform used in digital devices is thus based on discrete, periodical signals,

and it is called Discrete Fourier Transform (DFT) [35].

The basic Fourier theory not only states a signal can be formed from sine and cosine

waves, but tells the frequencies of all those waves are entire multiples of a base frequency.

In the DFT the base frequency is established as the one covered by one array of samples.

Then, the basic transformation functions are given by:

ck[i] = cos(2πki/N) (2.7)

sk[i] = sin(2πki/N) (2.8)

Where N is the number of samples. A DFT decomposition is made of N/2+1 sine waves

and the same amount of cosine waves, always starting with k=0. The indexed series of

each wave amplitude is called the frequency spectrum [33]. Another way of interpreting

the output of DFT is treating the frequency spectrum as a series of phasors containing

information of each frequency component, where the cosines are the real part of each

phasor and sines (properly, the opposite values) are the correspondent imaginary part.

[34].

The most common algorithm for DFT uses the correlation, an operation that shows how

similar is a given signal to a predefined target. For discrete sampled signals, this can be

done multiplying point by point both signals. In DFT, the targets are the sine and cosine

bases. Then, the mathematical expression for this algorithm is:

Re(X[k]) =
N−1∑
i=0

x[i]cos(2πki/N) (2.9)

Im(X[k]) =
N−1∑
i=0

x[i]sin(2πki/N) (2.10)

Where x is the input [33]. A more compact way to express this formula is to refer to the

phasor interpretation and use the Euler identity for numbers in C:

X[k] =
N−1∑
i=0

x[i]e−
2πki
N

j (2.11)

The previous algorithm is not efficient when executed by a computer. J.W. Cooley and

J.W. Tuckey introduced in 1965 a method for calculating the transformation that can be

even two orders of magnitude faster. Accordingly, it was called Fast Fourier Transform

(FFT) [33]. The method is intended to be used with the original definition of the DFT,

where the output has N elements, instead of N/2+1. However, for a purely real input it

is possible to prove that:

X[k] = X[k +N/2] (2.12)



2 Theoretical references 21

So, in the end, only N/2 complex outputs are necessary. The main concept behind the

algorithm is to divide the whole series of samples in one group of even-indexed elements

and one of odd-indexed. Then, it is possible to state that:

X[k] =

N/2∑
i=0

x[2i]e−
2πk
N

2ij +

N/2∑
i=0

x[2i+ 1]e−
2πk
N

(2i+1)j (2.13)

From the “odd indexed” group, one can extract one e factor element, defining both sums in

a similar form. Comparing them to the equation 2.11, it is clear that each one corresponds

to the DFT of their respective half. That can be expressed as:

X[k] = E[k] + e−
2πk
N

jO[k] (2.14)

Where E[k] is the transformation for even-indexed elements and O[k] for odd-indexed.

Then, recurring to equation 2.12 and using the Euler’s Formula, the basic equation for

FFT is derived:

X[k] = E[k] + e−
2πj
N

kO[k]; (2.15)

X[k +N/2] = E[k]− e−
2πj
N

kO[k] (2.16)

E[k] and O[k] calculation can be done recursively applying the same formula to each

subgroup [34]. If the number of samples is a power of 2, the base case would be when one

point composes each group. In that case, the frequency spectra are equal to the points

themselves [33].

The advantage in terms of operations of the FFT over regular DFT is explained by the

type of loops a program must run to execute one algorithm or the other. In common

DFT, each value of the spectrum has to recover the whole array, and there are exactly

N values of the spectra, so the amount of operations is proportional to N2. In the FFT,

each stage has to cover the whole number of values of the array, but there are only log2N

stages [35].



22 2.4 Filtering and data analysis on the digital domain



Chapter 3

IoT Monitoring System for CNC:

Sensors and other electronic

components

3.1 Summary of the design process

The starting point in this project was establishing a definitive to-be-monitored variable

list, with the help of datasheets, data plaques on the machine, research papers revisions,

CNC personal inspections and discussions with the Mechanical Engineering department

personnel. The main criterion to select which variables would enter in the list was the

possibility of measuring them without modifying the structure of the machine or inter-

rupting its functionality. Later, it was possible to clarify the requirements for sensors and

the microcontroller that would collect their measurements, including limitations on phys-

ical dimensions, operative ranges, resistance to external conditions and the total amount

of components to be used. With this information, a research among common, low-cost

options available in the local market was conducted, choosing the best option for each one

of the variables. Then, knowing the type and quantity of signals that would be generated,

an appropriate controller was chosen.

After getting all selected components, the next task was to execute some proof measure-

ments, leading to a calibration process based on experimental data. Then, the microcon-

troller was programmed with a periodic measurement routine, considering the filters that

were deemed necessary according to the empiric results, and maximizing programming

effort and memory usage. Database connection and refreshment was delegated to a single-

board computer (SBC), because it was too demanding in terms of processing power for

the microcontoller. The work assuring MCU-SBC connection kept the information un-

altered and without losses was done while the control programs were being created, and

it was tested thoroughly after. Finally, the sensors and circuits set was installed on the

CNC machine.

23



24 3.2 Component selection

3.2 Component selection

3.2.1 Variables to be monitored

An initial approach to CNC maintenance programs was found in citecnc-maintenance.

Such work was estimated appropriate, because its end goal is also a medium-size, 3-

axis milling machine. Based on the author considerations, the following variables were

remarked as relevant to the CNC performance: sliding-guides position and speed on each

axis, CNC controller status, spindle motor speed, cooling bomb pressure output, security

door state and power consumption on motors, bomb, and main electrical feed.

Direct monitoring of any motor condition was discarded from the beginning, because

the position of these and other pieces like bearings or gears would force dismounting

operations when installing any sensor. The decision was to keep an eye only on the

secondary actions: speed and pressure of the bomb. The dedicated controller of the CNC

works under proprietary software and all its interface ports are input-only, so operative

data seems to be blocked by the manufacturer. Hence, the option of getting feedback

directly from the CNC was pruned and software control status was eliminated from the

variable list too. Power input for the CNC is high voltage and therefore, the feed cables on

the workshop were installed underground. Even if an external sensor did the measurement,

there is not enough space available to install it without danger. This magnitude was also

ignored because the evident difficulties

Considering the deep level of analysis the authors of [11], [12], and [9] achieved in an envi-

ronment similar to the Hermle CNC, vibrations and acoustic emission measurements were

included in the project. Following the method applied in the references, these variables

were monitored both in magnitude and frequency. Vibrations required 2 measure points,

because the column and the table of the milling machine are separate structures. In the

same way, the theory explained in [6] and [11] suggested working-zone temperatures ob-

servation could compliment the other measurements. In this case, 3 contact points were

selected: tables, as “environment reference”; spindle, as working area; and cooling hose,

to test the respective system effects. Finally, cabin light status was added to the variable

catalogue, mainly because its role in safety conditions.

The final list of selected monitoring variables is: axis feed speed, spindle speed, cooler

pressure, door status, light status, vibrations, vibrations frequency, noise, noise frequency

and temperature.

3.2.2 Sensor selection

The sensor selection for each of the selected magnitudes was based on three factors: ma-

chine characteristics, price, and availability. The main features of the Hermle UWF900E

are displayed on table 2.1. In terms of price the idea was to keep the expenses as low

as possible, without sacrificing too much performance, so a total materials budget of



3 IoT Monitoring System for CNC: Sensors and other electronic components 25

250e was expected. Thus, a 20e limit was chosen for electronic components. About

availability, the intention was to make easier the ordering procedures for the DHBW ad-

ministration, given that they oversaw approval of the purchase. Therefore, only local,

online shop options were considered.

For the door status, the most suitable idea was to use reed contact switches. The features

studied when selecting the specific model for the project were basic. The voltages and

currents used for the contact were on digital control levels (5 V and few miliamperes),

quantities that almost any commercial switch easily withstand. The passive state of the

switch (normally closed or open) did not matter. The other detail were dimensions. The

CNC door has a gap of about 2 cm when totally closed. A sensor with a slightly lower

width was chosen.

In the light status case, the solution approach was to use phototransistor. The first

searched condition was polarity: NPN transistors are easier to integrate in the role of

switches to digital circuits. Voltage and current limitations were barely considered, be-

cause common transistors are designed for digital voltages. About size LED-type en-

capsulation was preferred, considering the sensor must be attached directly to a lamp.

Finally, the sensitivity range was selected according to fluorescent lamps spectrum, which

peaks around 500 and 600 nm. There are no transistor options with maximum sensitivity

near these values; the better approximation peaks on 900 nm and its working range is

between 400 nm and 1100 nm [36].

The acoustic measurement needs a simple and small type of microphone, to connect it

without using extensive circuits to a microcontroller and install it as near as possible to

the spindle. Electret mics are the recommended type. The frequency range was selected

following the results of [12], where data lied between 2 kHz and 4 kHz. For the microphone

sensitivity, values between -30 dB and -40 dB were accepted. A low impedance value was

preferred, to counter the loss involved in the long installation cables. The model selected

has a range between 100 Hz and 10kHz, -40 dB sensitivity and 2.2 kΩ impedance [37].

Linear speed measurements are quite hard to acquire with low-cost sensors. A better

option is to derive them from acceleration, a magnitude that can be detected with cheap

MEMS sensors, which have good sensitivity and small size. The principal requisite for the

sensor was to distinguish between positive and negative movements in the 3 different axis.

Following this, sensitivity range was estimated knowing maximum speed is around 0.08

m/s and system response fall in the order of 5 milliseconds. Then, maximum expected

acceleration is around 2 g. Ideally, the sensor should be also able to detect the smallest

speed changes, around 1/5000th of the maximum value. Even working with a 12-bit ADC,

this cannot be done. Therefore, the search was limited to the upper limit. For directional

sensors, the best sensor found has a range of around 3 g, and sensitivity of 300 mV/g [38].

Vibration measurements are basically acceleration transducers on smaller scales. The

work done in [9] suggests that for heavy usage, values do not surpass 0.8 g, so a sensor

with a 1 g range should be enough. The sensor selected has precisely this range, detects

vibrations in every direction and has a sensitivity of 5 V/g, (experimentally estimated),



26 3.2 Component selection

which is an improvement of 16 times over the directional sensors.

For bomb pressure, a gauge type sensor was required, as work load evaluation is typically

done related to atmospheric level. MEMS integrated sensors are available for this task

and they are the cheapest option. Working with a limit pressure of 7 bar (101 psi), it was

estimated that a precision of 0.1 bar should be enough for the project intents. With a 5

V control voltage and 10 bits in ADC, this represents a sensitivity of at least 40 mV/bar

or 2 mV/psi. The sensor selected has a range up to 100 psi and a sensitivity of 40 mV/psi

[39], which is in turn 20 times the minimum required.

To make the temperature sensor calibration process less complicated and to reduce the

amount of analog ports needed on the microcontroller, a digital output sensor was the

main idea. The big advantage of these options is they process and compensate the signal,

so data recorded does not need further treatment. The range expected for the sensors was

between 15º C and 50º C, enough to cover CNC conditions. About sensitivity, knowing

temperature changes over a disperse surface can be slow, a resolution of 0.5º C was

requested. The option chosen was Maxim DS18S20 model, which uses a communication

protocol (OneWire) based on only one digital pin [40], highly beneficial regarding MCU

limitations.

Finally, to measure spindle speed, the best option should be adapting an optical encoder

to the corresponding shaft. However, such option was discarded because it is too invasive.

The alternative was to apply the same concept of the encoder with existing structures.

The spindle tool grabbing piece has two sections that stand out 5 millimeters. When

rotating, detecting these sections can give an indirect measurement of speed. To execute

the detection, an optical sensor is needed. Discrete output distance sensors are adequate

for the task. The distance between the outer diameter of the spindle and the side of the

column (where the sensor could be attached) is 5 cm. However, no commercial options

for distance sensors operate on that range. The closest option found was 15 cm [41]. On

table 3.1, there is a summary of all the selected sensors.

3.2.3 Microcontroller and other ICs

The features expected from the microcontroller were mainly determined by the operational

characteristics of the sensor set. Bearing in mind 7 of the selected sensor outputs are

analog, an ADC with that number of entries was necessary; to cover the most demanding

measurement, units of at least 10 bits should be used. The microcontroller should also

be able to handle at least 3 different externally triggered interrupts: door sensor, light

sensor, and spindle speed measurement. Finally, another digital input is required for

the temperature sensors.The general structure considered was 8-bit architecture, because

computing load was estimated to be low.

To execute frequency analysis, adequate sample rates should be set in the ADC. The

stable sample frequencies for ADC in 8-bit MCUs is around 200 times slower than the

clock frequency, and the highest expected frequency in the measurements is around 10



3 IoT Monitoring System for CNC: Sensors and other electronic components 27

Variable Manufacturer Model Quantity
Price by

piece ({e})

Door Status Sygonix
18734Y1

Normally Open
1 6.99

Light Status Everlight Opto PT331C 1 0.36

Noise Kepo
KPCM-94H65L-

40DB-1689
1 0.63

Linear acceleration Analog Devices ADXL335 2 13.59

Vibrations Iduino 801S-SE040 2 10.49

Fluid pressure Honeywell 40PC100G2A 1 9.99

Temperature Maxim Integrated DS18S20 3 3.54

Distance

(for spindle speed)
Sharp GP2D150A 1 26.09

Table 3.1: Sensors used in the project

kHz. On a conservative basis, the minimum clock frequency accepted should be 8 MHz;

hence, values from 16 to 20 MHz were searched. For timer interrupts, the idea then was

to use only one and distribute the measurements. However, because some variables would

change slowly (temperature) or be very stable (bomb pressure), the time range between

timer interrupts was estimated in the order of seconds. With a clock frequency of 16 MHz

and the standard maximum pre-scaler of 256, only 16-bit timers can reach these values.

Sample arrays for frequency analysis were estimated to contain between 128 and 512

measurements. The software structure that hold them needs to allocate memory statically

on the MCU RAM. Worst-case scenario the amount of memory required would be 2

KB. The program itself was also foreseen to be relatively large. In that sense, practical

experience indicated that 28 or 32 KB for program memory should give enough space to

work without any problem. Finally, the only communication protocol port needed was

UART, wich provides serial communication with the SBC with huge flexibility, especially

regarding wireless systems.

A research of models that fulfilled the conditions was made in a main MCU producer

webpage[42]. From all the available options, the best 3 ones are shown in table 3.2. The

abilities of all of them seem almost the same. The Atmega 328P has a pin count slightly

lower. In that way, it seem less oversized. There is also another advantage of the 328P

model: it can be easily programmed and debugged through the development platform

Arduino. The Mechanical Engineering Department already has several of these devices

and no other dedicated MCU programmer, so this characteristic was relevant. For those

reasons, the Atmega328P was chosen.

Although the regular version of the 328P has effectively 8 ADC channels, the DIP encapsu-

lation bought only includes 6 analog pins, missing a channel for one of the measurements.

To solve the issue, an analog multiplexer was added. A 2 to 1 switch with TTL level on

selection channels and transition times under 1 ms (to avoid errors in the ADC measure-



28 3.2 Component selection

Model Atmega 328P Atmega32A Atmega324PA

Program memory 32 KB 32 KB 32 KB

RAM 2048 bytes 2048 bytes 2048 bytes

Pin count 32 44 44

Max CPU speed 20 MHz 16 MHz 20 MHz

RAM 2048 bytes 2048 bytes 2048 bytes

ADC channels 8 8 8

ADC resolution 10 bits 10 bits 10 bits

Timers
2 x 8 bits, 1 x 16

bits

2 x 8 bits, 1 x 16

bits

2 x 8 bits, 1 x 16

bits

Communications
1 UART, 2 SPI,

1 I2C

1 UART, 1 SPI,

1 I2C

2 UART, 3 SPI,

1 I2C

External Inter-

rupts

2 predefined, 3

Pin Change op-

tions

3 predefined, 4

Pin Change op-

tions

3 predefined

Price 3.39e 4,87e 3,97e

Table 3.2: Comparison between microcontroller models

ments) should be enough. For availability reasons, the IC acquired in the final version is

a 4 to 1 multiplexer, with a transition time of it is typically 130 ns [43].

All components selected, except the directional accelerometer, work with 5 V power input.

The best idea to power the system is to keep a main line on this voltage, and add a DC-

DC level converter, with an output of at least 3V (per accelerometer manual [38]). It

was intended to work with a fully integrated structure and a minimal output current 10

mA without heatsink. The IC chosen goes up to 500 mA without heating problems, and

the output (considering ripple) can go from 3.275 to 3.325 mV [44], so it can manage

the sensors supply. In SBC selection, the best price/performance ratio was found for

Raspberry Pi models. A Bluetooth connection between SBC and MCU was the choice,

as this protocol is one of the most reliable low-power, wireless formats. The Raspberry

Pi model 3 includes in its structure an integrated Bluetooth module. This characteristic

gave it the edge over the other models

Electret microphones sensitivity is low. To obtain a useful ADC measurement, an ampli-

fier must be applied. In audio applications, the model LM386 is the most popular option.

Having a default 26 dB gain [45], it was good enough for the project needs. Finally, during

MCU-SBC communication, the controller side needed a corresponding module. There are

two ICs available in the market that can execute the serial-Bluetooth conversion: HC-05

and HC-06. The main difference is that HC-06 can only be used as slave module, while

HC-05 can be both master and slave. For debugging tests, the second one was deemed

more adequate. Table3.3 shows a list of the selected ICs.



3 IoT Monitoring System for CNC: Sensors and other electronic components 29

Function Manufacturer Model
Price

by piece({e})

microcontroller Atmel
Atmega328P

DIP package
3.39

Analog multiplexer Analog Devices ADG409 9.25

Buck DC-DC

converter
ROHM BP5275-33 4.90

Single Board

Computer (Gateway)
Raspberry Pi

Model B

version 3
34.99

Audio amplifier Texas Instruments LM386 1.09

Bluetooth module ALLNET HC-05 6 pins 15.30

Table 3.3: Other integrated circuits used in the project

3.3 Microcontroller programming

3.3.1 General structure and timing

The microcontroller program takes care of scheduling individual samples for each moni-

toring variable, executes signal processing, formats data points according to the elected

communication code and finally sends the information through the UART port. The pro-

tocol chosen for the serial communication was Protocol Buffers, because its performance

is better than similar options, as explained on chapter 2. General structures for the

messages are created at the start, and the data slots are adapted whenever a specific data

sending takes place.

For most of the variables (temperatures, linear accelerations, spindle speed, noise, and

vibrations magnitudes) it was deemed enough to send only one data point per minute.

Using smaller time frames simply saturates the database with extra information that

could be not useful. The cooler pressure was set to a smaller rate, one data point every

10 seconds, because there seem to be small oscillations that were important to register.

Finally, for the noise and vibration data, although the intention was to save them every

minute, frequency analysis (executed in the SBC) requires a data exchange every 5 sec-

onds. Anyways, the timer was set to 1 second, to cover the needs of filtering methods for

multiple samples.

The door and light status are only registered when a change happens (for that reason,

their sensors are attached to an external interrupt). To correctly asses condition value,

a variable reads the initial state of the interrupt pins, and its value is toggled by the

interrupt routine. The changes are heavily exposed to quick oscillations, then a bounce-

rejection code is included in each call. By rule of thumb, interruption routines should be

kept as short as possible to avoid process collision in the controller; and data transmission



30 3.3 Microcontroller programming

procedures are lengthy. Hence, the information about status is sent with the next sched-

uled measurement. The interrupt merely sets a flag and it is cleared when the change

information is sent. Spindle speed monitoring also uses interrupts, through a counting

method. In this case, an auxiliary variable keeps a revolutions count, until the schedule

cycle calls to send the value (once every minute) and resets the variable.

The timer interrupt keeps an internal count, which is used to send the different mea-

surement information in a staggered fashion. The idea is that, in worse-case scenario,

two measurements are sent in a 1 second period, to avoid data collision and loss in the

interrupt-driven measurements. The data transmission process can take as long as 100

ms, so the scheduling scheme applied assures a 90% of accuracy in such magnitudes. A

special situation happens around temperature registers. They interact with the MCU

through OneWire protocol and the dedicated Atmel library. To retrieve a single measure-

ment, the protocol sends first a command to start a conversion, which lasts 100 ms to be

completed [40]. To avoid the mentioned data loss, in any scheduled communication, the

temperatures measurements use 2 different slots of 1 second, one only to start conversion,

and the other one to receive and transmit it.

Other important settings are the UART baud rate, fixed to 115200 by empirical tests,

and the ADC frequency. By Nyquist, a sample rate of 20 kHz should be enough for it.

However, as a safety factor, a value around 3 times was selected. By datasheet [46], the

fixed frequency should be 70 kHz, but different runtime operations slow it down to 60

kHz.

3.3.2 Serial communications

To implement Protocol-Buffers in the MCU, a C-based version dedicated to low-memory

applications (<10 kB), known as Nanopb, was applied. In this case, the base data struc-

ture for the protocol is a C struct type. The encoding procedure uses an auxiliary data

type, the “stream”, that preserves the information of the process. Basically, the stream

takes an array and fills it with the encoding coming from a given struct and the compiled

reference files, and then saves the number of written bytes. One useful Nanopb feature

is that every variable size data element can be limited to a maximum, allowing static

allocation.

Two different types of message were defined: one to manage the arrays of samples needed

in frequency analysis, and another one for the rest of one-value measurements. There

are several reasons for marking a distinction. The sample arrays for both noise and

vibrations can use the same number of elements, so this option can be defined only

once in the program. If the same message was used for all measurements, constant

changes should be done in runtime. Another detail is that, given its high memory size,

the frequency-oriented message was thought to include only integers as sample (which

Protobufs compresses better), but one-value data points include floating-point variables.

Finally, the difference makes slightly faster the SBC-side processing.



3 IoT Monitoring System for CNC: Sensors and other electronic components 31

The one-value message consists of 3 required spaces and 3 optional. The required ones

are: monitored machine name, controller version number and monitored condition. One

optional space, named “sensor”, is used to distinguish cases where one variable has differ-

ent contact sites The other 2 spaces are for the measurement itself, one integer and one

floating point. The strings inside message were limited to a maximum of 20 characters.

The array message has the same 4 first spaces one-value, but it has a repeated space, to

store measurement samples. The intention was to cover frequencies starting in 100 Hz,

which in turn requires a sample number of 512, considering a 60 kHz and equation 2.6.

However the highest array size allowed by the RAM space of the Atmega 328p is 128

samples, which works for a minimum frequency around 400 Hz, value that is still useful

following the ranges used in [11] and [12].

The controller program only initializes one “stream” and one-byte array. The stream is

reset every time a new data point is transmitted. The byte array is limited to 300 bytes

(an extreme case for the regular messages used). After each byte array is written to the

UART, a series of four “255” valued bytes is sent, serving as separator sequence. Such

sequence was chosen because it is impossible for it to appear in the Protobuf encoding

using 4-byte floating point numbers.

3.3.3 Measurement processing

The variables door status, light status and spindle speed do not need any further pro-

cessing, as they state discrete changes in the machine. The temperatures are processed

by the pre-calibrated circuit inside the sensors. The tests done with them show a very

stable output, with acceptable accuracy, so no other operation was applied over them.

For the rest of the signals, different levels of noise were detected during the calibration

tests. Following the recommendations given by [33], an average filter was the first option

tested. In the MCU, the averaging is done first with the raw ADC results, and then

respective conversions to right units are applied.

The pressure sensor required a not especially large averaging. During lab tests, an average

with the 10 measurements was enough to achieve a measurement almost constant. The

initial deviation in the linear accelerometer was smaller. Consequently, using a filter with

10 measurements provided again a smooth output in first place. After additional noise

was perceived in experimental environment, the quantity of measurements was extended

up to 60. For the acoustic magnitudes, a double step averaging is executed. In the first

stage, RMS value of the sampled signal is extracted every time an array is registered,

following the same procedure employed in [12]. Still, there is too much noise perceived

between the successive magnitudes. An second, 12-element averaging was the solution

implemented. The vibration sensors were by far the ones with worse performance. Noise

could be reduced by an order of magnitude with a moving-average filter of 100 elements,

but performance did not really improve with larger filters. Other variants of statistical

filters (median filter, for example) were tested, with similar results. In the end, the



32 3.4 Physical installation

decision was to repeat the same method used for acoustics) and try to reduce external

noise with a simple analog filter.

The frequency analysis done with microphone data seemed to have heavy components

of distortion in some cases, and no deviation in others. This was caused by outliers in

some of the sample lots. To prevent any further problem, the same averaging that was

being used for the magnitudes was applied to frequencies. There was no lab test done

for vibration frequency, because the lab lacked reliable references, but with the existent

experience with the sensors, it was highly probable that noise would also affect it.

To correctly detect acoustics frequency main component, microphone offset (previously

detected through calibration) is subtracted from the signal before sending the data. In

this way, the first base frequency, zero, is ignored. The vibrations sensor does not have

a clear offset, though, because it is multidirectional. The solution applied is to subtract

the average value of the array from each sample.

3.4 Physical installation

3.4.1 Electronic circuits

All the sensors outputs are connected to one corresponding pin in the microcontroller.

However, each sensor required different conditioning circuits. The simplest sensors are the

ones used for door and the light status, which are just switches. The only circuit they need

is a pull-up resistor connected in series. For the door switch, an arbitrary value of 1 kΩ was

selected, merely to guarantee a few milliamperes current. The phototransistor, however,

have voltage drops in the emitter-collector junction. As the collector current gets higher,

the leakage voltage in the junction grows. With a 1 kΩ, the generated current is enough

to drop around 3 V, outputting a “high” value too low for TTL levels. Augmenting the

resistance to 10 k Ω solves the problem, reducing the leakage to less than 500 mV.

The distance sensor used for spindle speed operates under open-collector technology.

Therefore, it needs a pull-up resistor in the output pin. The value was set to 10 kΩ,

to avoid voltage drop problems. The temperature sensors also require a pull-up on the

communication wire, according to the datasheet [40]. The recommended value is 4.7 kΩ,

but 1 kΩ resistors were employed successfully.

The microphone involves a larger circuit. It uses a resistor in series to a power source,

to generate the output signal, which later needs to be amplified. To couple the mic

output with the amplifier input, a 10 nF is connected between them. The amp IC does

not require any additional components to use the default gain, only the usual ground

and power connections. An additional RC filter was added between output and ground

lines to filter out noise. Datasheet recommendations, set the filter components to 10 Ω

and 50 nF [37]. According to equation 2.4, this filter should block frequencies over 300

kHz. It was necessary to limit this frequency even more, to around 30 kHz, so a 500 nF



3 IoT Monitoring System for CNC: Sensors and other electronic components 33

capacitor was put in place. An additional filtering capacitor for the power supply was

placed between a 5 V and ground. Noise from this source should not be especially high,

so an arbitrarily low capacitor (4.7 nF) was deemed enough.

Vibration sensors outputs pass through the inputs of the multiplexer. On the output of

this piece, a grounded capacitor was placed, to filter out high frequencies. The value was

estimated to follow microphone filter design (considering both should face the same fre-

quency analysis). However, the multiplexer already provides an ohmic resistance between

100 and 170 Ω. Using the equation 2.4 again, the final value for the capacitor was 47 nF,

which works for frequencies between 20 and 33 kHz, as intended.

The MCU is connected to other 2 components. A 16 MHz crystal with paired capacitors

(10 pF) is used for clock generation. And the Bluetooth module is connected to the

UART ports. Between MCU Tx pin and Bluetooth Rx pin, a protection resistor was

placed, because the logic levels on the module work with 3.6 V. A full-circuit diagram

can be seen on appendix C.

A PCB was designed and fabricated to serve as a permanent installation. All sensor

connections were inserted via screw secured blocks, that give a mechanical safety level

to the connections and are more flexible to use than just soldering. Several blocks were

connected to power and ground, to make easier the access to both voltages. The power

supply required should provide 5 V DC and at least 500 mA, as proven by table 3.4.A

cell phone charger can perform this task, and the lab counted with several of them. To

adapt the charger port to the PCB, a micro-USB port was soldered to the board, using

only the power and ground pins of it. The diagram of the PCB can be seen on figure 3.1

Component Current per piece (mA) Total consumption (mA)

Door sensor 5 5

Light sensor 0,48 0,48

Microphone 0,5 0,5

Accelerometer 0,35 0,7

Vibration sensor 20 40

Pressure sensor 10 10

Temperature sensor 1,5 4,5

Distance sensor 50 50

MCU 10 10

Analog multiplexer 0,5 0,5

Audio amplifier 250 250

Buck converter 0,67 0,67

Bluetooth module 40 40

Total 412,35

Table 3.4: Current consumption in the system circuits



34 3.4 Physical installation

Figure 3.1: PCB design. Source: Own elaboration

3.4.2 Installation on the CNC machine

The sensors require placement all over different places in the CNC machine. To keep a

connection with the controller, long (around 6 m) cables are necessary. Thinking about

the environmental, and inherent cable noise, shielded, pair twisted, CAT 5 cables were

chosen. These cables are designed to have low percentage of losses even in distances over

10 m, their coating reflects external magnetic interference, and the pair structure cancels

out the antenna effects on the wires. Each coated piece of CAT 5 cable has inside 4 pairs

of single core wires, for a total amount of 8 individual wires. To maximize the usage of

this material, the sensors were grouped in the basis of their expected location.

Five sensors need to be placed over the column or overall near the spindle. Those are:

the microphone, one vibration sensor, one linear accelerometer (the Z feed is exerted by

this piece, not by the table), two temperature sensors (the cooler hoses are kept around

the column) and the distance sensor for rotational speed. The required wires include one

for each sensor output, one for 5 V, another one for 3 V and one connected to ground.

Both temperature sensor can share the output line, effectively making one CAT 5 cable

enough for the whole group.

The other group of sensors is placed on the table. This location was chosen for the fol-

lowing components: one temperature sensor, one vibration sensor and one accelerometer

with two outputs (for X and Z feeds). Again, lines for 5 V, 3 V and ground are required,

so 7 wires are enough for the group. The sensors for door, light and fluid pressure are

located far enough from both locations and from each other to be connected in the same

cable. Un-coated pieces of wire were used for them. Both the door switch and the pho-

totransistor use only two wires, so they could be properly twisted with each other. The

pressure sensor uses 3 connections: 5 V, ground, and output. In this case, a twisted pair

was used for output and ground, and the 5 V was an independent piece of wire.



Chapter 4

IoT Monitoring System for CNC:

Internet communication

4.1 Summary of the design process

While selecting sensors, a parallel research for cloud database and remote server frame-

work was done. Main characteristics for this section were low-cost and compatibility with

open-source software. Also, keeping in mind the system built in the project is intended

to expand to other machines, standard protocols use and compatibility with different

electronic and software elements were very important. When the entire web platform

was selected, a decision for the programming language was made, based on integration

with software tools. In this same process, chart generation library was chosen, putting

special attention to embedded ability for managing large amount of data and dynamically

visualization changes. The options analyzed also had to be on the high-level side, to let

the work focus in information retrieval itself and not on the graphics generation.

The system for data classification exposed in chapter 3 was adapted to the communica-

tion chain, mainly in database generation. Considering both the receiving protocols in

the SBC, and the determined requirements for database uploads, a service routine was

programmed to take charge of data transmission stage. The database safety character-

istics were exploited to avoid unauthorized information access. Another service routine

was deployed to execute basic level, real time analysis with uploaded data, specifically

detecting general work states in the machine. Later, web page server management was

programmed, using the software packages previously selected. It was optimized to refresh

its contents with every browser load, through database queries. Graph visualization was

also designed to dynamically change with each restart. At last, the user interactive op-

tions, like graph selection, were added. Safety cautions were included since the beginning

of web page work

Finally, an internal performance monitoring service was added to the SBC, to look af-

ter some critical variables for device right operation. This program, usually known as

35



36 4.2 Software selection

“watchdog”, avoids unexpected failures in the communication flow. The version installed

for the project was rather simple, just considering five different magnitudes. For each

of them, the limits were imposed in a range wide enough to keep the computer working

without emergency reboots, but without excessive alarms.

4.2 Software selection

4.2.1 Database

The time frames established for microcontroller-SBC communication are in the order of

ten per second. This requirement implies processing involved in every new information

package upload to database needs to be relatively fast, to avoid data collisions and addi-

tional loses. Then, the database chosen for the project should be reliable, in the sense it is

already tested, and not just an experimental environment; and must have quick indexing

system. Also, the system should consider data points are extracted from different kind

of sensors. According to the proposed design, the value measured for some of them is a

discrete variable, and for others it is a numerical continuous value. Some of the moni-

tored conditions are covered through different specific sensors. Nevertheless, all collected

information needs to be stored in a unified database, to allow the user quick access to any

desired set without adding more interconnections that would turn GUI slow and safety-

weak. The general panorama is data entries seem to differ from each other in structure

terms, but they should to be stored and indexed in the same way. As discussed in chapter

2, NoSQL databases are especially useful in such situation.

Considering the recommendations made by [21] about appropriate databases for different

uses, a document-based one is the optimal configuration for the project needs. Document-

oriented databases are also highly popular for web applications, which is convenient for

the end user interface. Additionally, these databases are highly unstructured, even by

NoSQL standards, which in turn gives enough freedom for uploading very different data

points and also opens the possibility to upgrade or change the structures stored without

any additional effort. This feature was especially useful during development, as different

formats were tested before arriving to the final one. Finally, document-oriented bases are

well suited for adapting different pattern recognition and analytic searches. Although this

function was not applied in the project, the intention was to make easier further research

in the same area.

Once database choices were reduced to document-oriented category, a quick research on

theoretic references showed the most commonly used and time-tested options are Mon-

goDB, CouchDB, and DynamoDB. There is a good amount of supporting resources avail-

able for all these frameworks; there is also empirical evidence of their proficiency, with

user-cases from well-established tech companies (Cisco and Comcast are using MongoDB,

for example [47]). Therefore, the three of them complied with the reliability expected. Dy-

namoDB distinguishes itself from the other two by being a proprietary, paid software from



4 IoT Monitoring System for CNC: Internet communication 37

Amazon Web Services. Although it offers a free usage, basic level deal (thus eliminating

the costs problem), one of the goals in the whole project was to use as much open-source

software as possible, because that work model opens more optimizing possibilities for

future designs.

Between Mongo and Couch, the main difference found was data management protocol.

CouchDB uses plain JSON for both data communication and information storage. Mon-

goDB includes BSON as its main resource for information exchange. According to chapter

2, one can consider BSON implementations have the cutting edge in terms of database

utilities over common JSON applications. The other selection criterion was the offer of

cloud-hosted services. The aim for the project was to take advantage of cloud technolo-

gies, so database was planned to be host in that way. Henceforth, IaaS structures were

analyzed for both database options. CouchDB mostly has beta tests and recently pub-

lished cloud storage versions, something that MongoDB surpasses slightly with a couple

of well-established companies offering the service. In the end, MongoDB seemed to be

the best option for the project requirements.

The provider selection was based in developer’s popularity, helping resources amount and

pricing. The system is intended to be low-cost, and mainly with academic purposes, so free

options were highly considered. Most cloud services providers charge for used processing

resources, but in small programming load applications, some offer free access with limited

functions. Specifically talking about MongoDB, two main options were found: Mongo

Atlas, from the development team of the database itself, and mLab, from an independent

source. Both have free tier services with up to 500 MB of storage, basic secure access

options and user management, and the possibility to select the location of the server (for

additional physical security). mLab has more inter-connectivity with other programming

tools, and for that reason it was selected.

4.2.2 Server side management (PaaS)

The arguments exposed in chapter 2 show a PaaS is the most adequate framework to

adapt the project structure to a web based user interface. Although an IaaS provider

could be enough for server programs deployment and maintenance, the limited functions

this structure provides to developers were deemed too short for the project goals. The

programming tools used for GUI creation were mainly in the high-level end, because

networking designs or server management are not part of the project extent. In the other

hand, there is not a full working SaaS that could be adapted for graphs generation. SaaS

products are also too restrictive for the envisioned design idea, since they do not provide

enough access to customizing options.

To have a well-reasoned PaaS choosing process, the evaluation criteria were based in

the work of [20]. Considerations about learning and support resources were done too,

as the initial deployment of the web page, being a subject particularly different from

other sections, required some research beforehand. Just like with the databases, pricing



38 4.2 Software selection

had also a big weight in the final decision. The contrasted alternatives were Google

App Engine, Amazon AWS, Microsoft Azure, Heroku and RedHat OpenShift. Only free

tier services were evaluated, to keep a realistic focus on the analysis. Although Google,

Microsoft and Amazon offer almost all the paid functions in their free trials, these ones

get cancelled after 12 months. Free tier services from the other providers are permanent

in principle. Looking to future work expanding the reach achieved in the project indicates

temporary options could carry problems in the future. Other important details pondered

during evaluation were: web page design is intended to be mostly static and it does not

require constant computing; the graphic interface is not thought to be replicated through

multiple users; and connectivity with the selected database from the PaaS was completely

necessary

Main characteristics of each provider are summarized on table 4.1. Google and Amazon

have better agility and security performances. But when specific project requirements

are remarked, Heroku is the option with better qualifications. A big role is played by

mLab connectivity, a service no other provider offers natively. Heroku also allows full

web site management control through terminal commands in any Linux distribution.

This possibility is useful in design testing and optimization, and it makes processed like

features introduction and crash recovering considerably faster. Hence, the choice was

made in favor of this platform.

Provider: Google Amazon Microsoft Heroku RedHat

Computing time

(monthly):
270h 750h 750h 1000h 540

Code storage

size:
1 GB 5 GB Unlimited Unlimited 1GB

Agility score: 1.326 1.235 0.978 1.201 0.985

Security score: 1.123 1.578 1.429 0.976 0.884

Performance

score:
1.124 1.345 0.967 1.345 1.076

Usability score: 1.432 1.318 0.754 1.546 1.020

Table 4.1: Comparison between different PaaS providers

4.2.3 Programming language and additional libraries

Heroku offers the possibility of programming the server-side management in the following

languages: NodeJS, Ruby, Java, Python, PHP, Go, Scala and Cojure. MongoDB has

connectivity extensions for most of them, too. Programs to be deployed in the PaaS are

server-side web page management routines. As explained on chapter 2, the universally

used language for client-side computing is JavaScript, so choosing its server version (Node)

was deemed a natural progression. Although all the mentioned languages can manage the



4 IoT Monitoring System for CNC: Internet communication 39

web site design, it was expected that a Node implementation would be simpler and more

adjusted to the final product environment. Moreover, MongoDB works with BSON for-

mat for its storage, but all the database uploads and queries are interpreted through

JSON, the human-readable origin format for BSON. JSON is the native object represen-

tation for JavaScript, thus using the language allows a direct management of the database

activities without any additional parsing, which keeps the programmed code organized

and time-efficient. Finally, NodeJS is widely recognized for its asynchronous approach to

task execution, implementing parallel computing without losing track of the newest data

loaded. This characteristic could be useful to manage the multiple queries involved each

way the web page is requested.

Once NodeJS was selected for web page design, it was considered natural to apply it to

the other web communications services. In this manner, all the Internet section would be

done with the same parameters and functions, avoiding problems such as incorrect use of

exchange methods between languages, and keeping the whole development process more

organized and code-compact. Programming all web sections with Node also allowed more

efficiency in certain areas. For example, data point upload service, which is locally run by

the SBC, but needs database access. The incoming data from the microcontroller is al-

ready encoded with Protocol Buffers format and requires an initial parsing, so eliminating

other steps in the same vein is highly advantageous.

Most functions on web programming were execute through server-located libraries. NodeJS

has a cloud-based, open source, free repository, and package manager for external source

libraries, called npm [48], operated directly from command line. Installation processes

are simply called from it. Two libraries deserve a special recognition. For web page visual

style enhancement, some elements Bootstrap were recalled; meanwhile, the graph genera-

tion was achieved with Dygraphs, a high-level, interactive library specialized in this task.

Neither of them was installed on the server nor the SBC; the client-side executes them

instead. Processing load perceived in the PaaS is lowered, but in exchange, the result

quality is highly dependent of the user equipment and Internet browser. Still, computing

load for both visual operations was little enough to be managed by most of modern days

browsers.

4.3 Processing services on the SBC

4.3.1 Sensor data parsing and database updates

The basic function assigned to the SBC was to act as main database upload gateway,

because the function was too demanding for a common microcontroller. Therefore, the

program in charge of executing it was the first and most important service implemented

in the device. As explained in chapter 3, there are two different type of messages defined

for information exchange: one for single measurements and another one for registering

large arrays of samples. Both are encoded through Protocol Buffers C language version



40 4.3 Processing services on the SBC

before being shared through a Bluetooth connection. The database, however, is accessed

through JSON format, and the upload program itself was programmed in JavaScript.

Then, the first step was to translate the information received to the necessary format.

Bluetooth parsing was easily adapted, because the microcomputer run a light weighted

Linux distribution (Raspbian, the default option for Raspberry equipment), and therefore,

communication ports are simply accessed as directories in the file system. Moreover, the

Bluetooth port in the Raspberri Pi 3 is internally connected to one of the UART (serial

communication) ports of the main microprocessor. Then, any information exchange in the

device can be interpreted as a native serial message. The Raspberry was able to interpret

the raw, encoded messages as arrays of bytes in a time persistent way, which means after

one call it would stay listening to any incoming data.

Next step was to deserialize the Protobuf code. For the SBC, the methods defined by

the compiler for transform any message instance to a predefined class element, with

attributes and methods. JavaScript classes are exactly represented through JSON using

thee toObject(), from the Protocol Buffers standard operation. The following stage is

to directly load the data points to database. MongoDB has official backed methods for

connecting, authenticate credentials and upload new “documents”, but they require to

manually manage some access options on each new upload. For this project, a third-party

library called Mongoose was used instead. The connection and authentication are done

only once and in one step. Mongoose needs other element to work properly, though:

a data schema definition, provided with an external JSON file. Although schema-less

operation is a basic principle in NoSQL, Mongoose only uses them as loose reference for

indexing document collections and to implement queries in a more efficient way.

The schema definition was adapted from .proto files, with changes. First, there are no

array spaces in the schema, because storing a whole array in the database was perceived as

inefficient and possibly problematic. The decision was to only store single measurements

in the database, and for the array-type messages, report only the most significant value

obtained. The other detail is a time-reference is necessary on each point make sense about

data collection. This could not be added by the microcontroller, but the SBC, through the

Internet connection, can get a local date and time reference. So, the JSON schema has the

additional key-value: timestamp. On each message, all the other attributes of the JSON

document are set by the deserialization method, but the timestamp program-defined.

The nature of the CNC working cycle is to be active only on certain day periods and

be idle most of the time, causing most monitored conditions to have a zero value during

several hours. It is not useful to have continuous null data points during idle periods.

The design decision was to not store a document if it was part of such consecutive series

of “zeroes”. With that goal in mind, the following logic was implemented: data points

are only saved if they are not zero-valued or if the last saved document under the same

“variable” is not zero-valued. Discrete variables (light, door status) are only sent by the

controller on a change, thus, they are always saved

During design stages, the intention was to keep the service as neutral as possible, looking



4 IoT Monitoring System for CNC: Internet communication 41

forward to further works involving the Mechanical Engineering Department to use the

bases already developed. In the end, there was a necessity to include variable-specific

options for averaging the frequency values reported. Storing the results every 5 seconds

proved to include too much noise, so averaging them during a 1-minute period was the

solution found. But, as they are calculated until the SBC stage, the averaging can only

be done in that same step.

4.3.2 Machine status and frequency analysis

The frequency analysis was implemented in the same program that manages parsing

for process order reasons. The goal was to extract the most dominant frequency trace

in the reported spectrum for each data point. In this context, most dominant is the

component with higher magnitude after the signal was transformed from time domain to

frequency domain. The transformation applied to the sampled signals is the most common

version of Fast Fourier Transform, the Cooley-Tukey algorithm, explained on chapter

2. According to the theory, the frequency traces are calculated as integer multiples of

fsample/N . Because both values were pre-established by microcontroller limitations and

error-avoidance considerations as 62 kHz and 128, the frequency traces are statically

obtained inside the program. The magnitude of the complex numbers, stated as n =

a+ b ∗ j is calculated as:

|n| =
√
a2 + b2 (4.1)

Frequency analysis process begins after deserializing the Protocol Buffers code. Then,

the FFT algorithm is applied over the decoded sample array, which in turn generates an

array with the phasors: every element of the array is in turn a complex value, with real

and imaginary parts. Then, a magnitudes array is created applying formula 4.1. This

array is inspected to find the biggest number in it. Finally, searching for the index of

that value inside the given array and multiplying by the frequency trace base produces

the wanted main frequency. The values are not stored right away, but added to a buffer

that averages them in groups of 12.

A service to register machine general state was also programmed. Although such task can

be delegated to the PaaS provider, the rate in which the state should be computed has to

be at least near the rate any other variable is obtained. This would imply a result every

minute, with the program running permanently (because there is no way to predict when

information would change). The operation of the service woud surpass the free computing

load limits of Heroku. If the processing load is kept small, the SBC can execute it instead,

without interrupting the parsing functions.

The service implementation runs on four single document queries. The program connects

to the database at the start through Mongoose and every 60 seconds, it requests the

latest stored value for spindle speed, and acceleration on each feed direction. Then, the

states logic was included following in-situ observations. Every time the equipment is fully

working, the spindle should be rotating. There are still moments when, although the



42 4.3 Processing services on the SBC

spindle is not moving, the machine is being operated. For examples, an initial reference

for the positioning system is being set; or the cutting tool is being changed. In those

moments, there is movement in the table and column axes, usually a strong one.. In this

line of thought, there are 3 states, which were called Running, Preparing and Resting.

The first one happens when spindle speed is over zero, the second one when spindle speed

is zero, but any axis is strongly moving (1 m/s is the established limit for that strength)

and the third one when the spindle and the axis are stopped. In the same way that door

or light status are only updated when there is a change, the last machine state stored is

kept in a variable and a new state is uploaded only if it differs. Because of this working

method, there should be an initial state when the program starts. That was arbitrarily

set to be Resting, and thus, every time the program starts, a machine status document

with value 0 is sent to the database.

4.3.3 Watchdog

A watchdog monitoring safety conditions for the SBC operation was the last incorporated

service. There were no safety routines in microcontroller because its internal architecture

is too simple to introduce any further monitoring over them. The provider already man-

ages web services, with alerts and logs when anything crashes, so the only section where

supervision was both needed and viable was the gateway.

Most Linux distributions keep log files of RAM memory and processor usage, with details

about every process running, in a directory called proc. In the watchdog, they were

accesed through a NodeJS parsing utility for text files, to obtain the total processor load,

total available memory, and free memory. Load processor is registered as the sum of

fractional use by each core. Raspberry Pi 3 has 4 cores [49], hence, if each one is working

full-time, the reported value would be 4. The situation is considered inside the program,

just like memory, where the analyzed value is obtained as the fraction of free memory

over available.

The Raspbian distro also includes internally run programs monitoring processor condi-

tions, and they can be executed with the archives in the /opt/vc/bin/vcgencmd directory.

Voltage, temperature, and clock frequency measurements were retrieved in that way. The

programs were originally intended to be Linux terminal commands. To include them in-

side a Node program, a child process needs to be called and then redirected using the file

reading functions. A 500 ms delay is implemented before collecting data, allowing OS to

correctly link procedures.

The five variables are monitored every 5 seconds, and then compared to limits that were

deemed execution-safe. The processor and memory load limits were set by user experience

to 85%. For temperature, official producer guide [49] indicates internal ICs can withstand

up to 70º C. To provide some action space, the limit was put in 60º C. For voltage and

frequency, the information found was not clear, but it is known both values should be

stable through all device operation. Usage experience showed values are fixed at 250 MHz



4 IoT Monitoring System for CNC: Internet communication 43

and 1.2 V, then a 10% range around was applied.

The alarms are send as an email message, using SMTP protocol. A dedicated email

address was created for the Raspberry with Gmail provider, to attach a valid sender to

alarm messages. The automated email always includes which variable triggered the alarm

and what value was reported for it. Multiple receivers can be set to the service, although

for testing purposes only a personal email address was used. To avoid overpopulating the

inbox with repeated messages about the same issue, a time restriction was set. An email

is sent only if 3 hours have passed since the last email involving the same magnitude was

sent. There is also a tracking of the alarm status at all time, so if the dangerous value

was sustained over all the 3 hours, the message sent is different, emphasizing the situation

has been occurring during long time.

4.4 Web based services

4.4.1 Web page main layout

The web site is entirely dedicated to organizing graph access, with some added extra

details. Express, a library specially designed to implement HTTP routing in Node, was

the tool in charge of setting a port in the host (automatically assigned by Heroku).

The program itself would not load any visual content, that is done through HTML files,

but it indicates which files should be loaded. Moreover, it uses a modifiable version of

HTML called EJS, which can parse variables (strings, numbers, or arrays) send to it as

arguments. The program can also get variables set by the user in the page using POST

method and store the values if they are meant to be persistent (authentication credentials,

for example), with a cookies session.

The web site uses in total 5 different views. The first one (the root route) is a login page.

The project incorporates basic security options in a simple page that greets the user to

the site and asks for its username and password. The page requires both GET and POST

codes. For a GET request, it checks if there are already valid credentials registered in the

browser, redirecting the user to the “home” page if positive. If not, it loads the regular

login view with credentials spaces, as seen on figure 4.1 When the user submits data, the

POST code is called to check if the credentials are valid. In that case it loads “home”

page, but also stores information in the cookies session. If username or password were

incorrect, the login page is reloaded with a warning about the mistake found. There is

an extra button that gives access to the home page without login, managed as a simple

hyperlink.

The home page includes title, description, one button for each graph available, one drop

down menu for selecting the machine to monitor, one button for logout (erase user cre-

dentials from memory) and latest state displays for each of the discrete variables, as it

can be seen on figure 4.2. With a GET request, the first thing the server does is to



44 4.4 Web based services

Figure 4.1: Login page for user interface. Source: Own elaboration

check the browser registers for a machine selection. This function is intended to be useful

for further works. After this step, the server queries the discrete variables, looking for

the last document stored. The program assigns the corresponding labels to each discrete

value. The POST method covers two situations. When the logout button is pressed, it

destroys the cookies session and redirects the user to the login page. When an option in

the dropdown menu is selected, it changes the corresponding cookie to the new value. In

the project the only option was the Hermle CNC. The graph buttons are linked inside to

their respective views.

Figure 4.2: Home page for user interface. Source: Own elaboration

There is another view, which is shown when an unauthorized user tries to access protected

content. It just warns about the error and have hyperlinks to the home and login pages.

It can be seen on figure 4.3.



4 IoT Monitoring System for CNC: Internet communication 45

Figure 4.3: Error message for user interface. Source: Own elaboration

4.4.2 Graphics

There are two views for graph generation. One is used for continuous variables and the

other one for discrete ones. There are no POST requirements in graph views, only GET

processes. When a specific variable graph is requested, the program starts a query for all

the documents stored under that variable name. Then, it fills out an array with all the

documents timestamps. Later, it goes through each document to extract the measurement

value and add it to the previous array. For the variables with multiple sensors, a pre-

established order is respected when creating the arrays, using blank spaces to state the

data point comes from one source only. When the array is ready, the HTML file is called

and the whole collection is parsed to it, with the name of the sensors and the units of the

measurements.

The Dygraphs library interprets the array as a value against time recording and creates

series for each sensor if it is necessary. Dygraphs is interactive by design, so when it

generates the chart, it already has zoom options, and shows series labels and specific values

for points when the user hovers the mouse over them. With continuous variables, the only

task done is to charge data in a Dygraphs object and set the axis labels accordingly to

the units of the variables. For discrete variables, the chart is set to be a step plot, which

represents values with horizontal lines, and changes with vertical ones. Then, the labels

and value names shown for points are set to discrete labels, but any other intermediate

value (for example, 1.2) is set to null, to ignore them during visualization.

When the data arrays are generated, the program also saves them to a .csv file using a

specialized library. The .csv files are always stored in the temporary directory inside the

server, an access-free space for the program inside the host memory. A button in the

graph pages has always a hyperlink to the corresponding .csv file, linked to the browser

as a download order. Finally, every graph page has another hyperlink to the home page.

An example of the graph view is offered in figure 4.4



46 4.4 Web based services

Figure 4.4: Example of graph view for user interface. Source: Own elaboration

4.4.3 Security options

User authentication protects some GUI functions, to test the existent abilities in vulner-

able data protection. It was decided all continuous variable charts should be protected,

letting the discrete variable graphs free to access. Hence, latest state information in home

page is also left without protection. To apply this function, the database characteristics

were exploited. MongoDB only lets a program to load a database if it provides a valid

username and password. In the case of mLab, the registered client can create users’ cre-

dentials through the provider website but needs to verify own identity first. Moreover,

users can be set as read-only, avoiding possible information manipulation. Furthermore,

every time a database is recalled, it is requested through secure HTTP protocol, an en-

crypted version of the regular protocol that adds an extra layer of safety.

Only one user with write privileges was created and its usage is restricted to parsing and

machine status services on the SBC. Another public access user, with read-only status,

was created as a public key for unprotected data sets. The username and password were

random generated and included inside the server program. Whenever unprotected data

is requested, the browser loads this public key. Finally, users with read-only privileges

were created for the designer and the professors of the DHBW. When the page checks

credentials validity, be it on login page or graph view, the program tries database access

with the username and password stored in cookies. If the database throws an error, the

combination parsed by the user is not valid.



Chapter 5

Results and analysis

5.1 Sensor calibrations

First sensor to pass calibrations was the phototransistor. The tests tried different envi-

ronment illumination conditions on the component, to prove it could distinguish between

room light and a directly focused lamp light. The output was registered as analog signal

(in millivolts), although the sensor is used in digital configuration. The intention was to

contrast the output voltage in each case with known recognition values. In Atmega 328P,

“high” logical level starts on 3 V and “low” level goes up to 0.8 V. Information collected in

table 5.1, evidences the output stays half volt over the “high” limit when exposed to any

intensity of room illumination. When exposed to the lamp, in a dark or lit room, the re-

sponse is respectively set half volt under the “low” limit. Such data is considered a strong

proof the sensor selected can work without any problem as a change detecting switch on

any lamp. Other tests were conducted to register the triggered interrupts amount with

one light change. Between 11 and 43 interrupts were detected with only one click on the

lamp, indicating a clear necessity for an anti-bounce routine.

For the door switches, the tests conducted were focused to determine maximum distance to

change state. This value differs when bringing closer the two pieces and when separating

them, because the sensor experiments hysteresis effects. In the first case, it is around

17 mm, in the second one it is 21 mm. The existent door gap 20 mm wide, therefore

placing the movable piece in it should bring it closer enough to activate the switch.

Similar procedures were executed with the distance sensor, to establish critical recognition

distance. Bringing an object closer to the sensor activated the output at 14.6 cm, while

taking it farther triggered a change at 15.3 cm. The 7 mm hysteresis is very important to

consider, as the difference between the spindle inner and outer diameter is only 15 mm.

Hence, the sensor needs careful positioning to avoid false positives during measurement.

Considering all involved distances, the perpendicular extension required for the sensor

should be 10.3 cm long.

The linear accelerometers were tested with gravity force applied on each side, in positive

47



48 5.1 Sensor calibrations

Condition
Highest

voltage (mV)

Lowest

voltage (mV)

Average

voltage (mV)

Inner office, low natural

light, no artificial light
4897 4863 4883

Near window, low natural

light, no artificial light
4819 4761 4805

Near window, low natural

light, room lights on
4770 4712 4740

2 m under room lights, low

natural light, room lights on
4741 4502 4603

20 cm under room lights,

low natural light, room

lights on

4926 4775 4828

Directly under lamp on,

room lights off
210 190 196

Directly under lamp on,

room lights on
244 225 234

Near window, high natural

light, room lights on
3975 3540 3691

Table 5.1: Calibration tests for light sensor

and negative directions. Table 5.2 shows the initial data collected for these devices,

indicating each direction has a slightly different response. The best option was to treat

them separately in the control program, to keep a better precision. The signal processing

includes a zero-level offset calculation (the sensors operate in this way to distinguish

directions), and then a sensitivity factor. For the 3 axes, such sensitivity is around 0.14

m/s2 per ADC unit. In chapter 3, it was recalled the sensitivity is not enough to cover

machine full range. Nonetheless, most works are executed with a feed over 200 mm/min,

a value that seems to be detected by the lower boundaries of the sensor.

Variable Direction Average ADC value Standard Deviation (ADC units)

x
Positive 399,191 0,315

Negative 265,610 0,359

y
Positive 396,457 0,588

Negative 260,326 0,054

z
Positive 404,101 0,394

Negative 269,651 0,573

Table 5.2: Measurements for linear accelerometer calibration

About noise conditions, standard deviations seem to be relatively low for all 3 directions.

However, CNC acceleration range is so large, even the sensor is not capturing it completely.



5 Results and analysis 49

Given that there is already an important information loss occurring, noise distortion

should be kept at minimum. On table 5.3, results after filtering(with 6 samples) are

presented. Considering sensitivity factor, standard deviation was diminished in most

cases to the half, and in some of them, even the fourth part. The noise seems to be

contained in less than a half ADC unit and it is considered small enough to do not affect

the output. Regarding accuracy error, it only seems to affect zero level accelerations. To

tackle the issue, a 0.5 bias limit was added to the control program.

Variable Reference (m/s2) Standard deviation (m/s2) Average error(m/s2)

Z feed

9,81 0,02 0,04

-9,81 0,11 -0,03

0 0,04 0,16

Y feed

9,81 0,05 0,09

0 0,09 -0,22

-9,81 0,01 0,03

X feed

9,81 0,06 -0,01

-9,81 0,01 0,06

0 0,10 0,44

Table 5.3: Results for lineal accelerometer after processing

In the case of vibration sensors, a similar approach was used. The selected model does

not recognize static accelerations; consequently, it had to be tested on free fall, where

the reference value is still the gravity acceleration, 9.81 m/s2. Ten consecutive tests with

30 measurements each were executed, and their results can be seen on table 5.4. It is

evident collected data has a great variability. Even when comparing obtained averages,

there seems to be no definitive agreement between tests. Standard deviation covers almost

a third part of ADC capacity, which proves the sensor has too much noise to conserve

precision in the output. Nevertheless, a trend was observed on the measurement series.

Most of the values collected were on the ADC maximum (1023), but every test had

around 5 other low values registered. Then, for calibration purposes, the 1024 output was

associated to reference value, establishing a sensitivity of 0.0096 m/s2 per ADC unit.

The real operation of vibrations sensors is not over stable accelerations, but quickly chang-

ing signals. For that reason, blocking heavy leaps in measurement is not the best strategy,

although it provides a much better approximation in stable environment. In the end, a

large-sample averaging method was selected, as explained in chapter 3. The results of

1000 sample filter can be appreciated on 5.5. In general terms, zero level performance is

on par with the rest of sensors, having a bias that can be easily blocked on processing,

and a standard deviation around 2 ADC units. For the upper extreme, the performance

is still faulty. Although the noise has a slightly smaller range, standard deviation is one

fourth of the whole possible values range. Anyways, 1000-sample averaging provided the

best lab results for the sensor, and the test was done without adding any analog filter,

thus it was the final solution programmed in the MCU.



50 5.1 Sensor calibrations

Number of test Average ADC value Standard deviation (ADC units)

1 800 276

2 920 236

3 930 180

4 831 386

5 877 340

6 778 380

7 728 391

8 824 370

9 962 171

10 870 281

Table 5.4: Measurements for vibrations sensor calibration

Reference m/s2 Standard Deviationm/s2 Average errorm/s2

0 0,03 -0,01

9,81 2,33 1,01

Table 5.5: Test results for vibration sensor after processing

The pressure sensor was tested with the help of a compressor and an adjustable pressure

control valve. Although operative value for the CNC is 7 bar, tests were done up to 3

bar to not force the valve excessively. On figure 5.1, there is a graph produced with the

calibration data. Correlation parameter R shows a very linear response from this sensor, as

expected from datasheet details. The sensitivity is also very similar to producer suggested

values. Noise conditions are relatively low for small pressures, but they show a tendency

to grow for larger reference values. Real measurements are expected to be at least twice

the test ones, hence, some problems could arise if no further processing is added. With

a simple 6 measurement averaging, the standard deviation diminished between 2 and 5

times, according to tables 5.6 and 5.7. Compared to the expected 0.1 bar resolution, the

variance is already located 2 orders of magnitude lower, enough to assure no visible effects

on the output. Accuracy error is in the worst case the same as required resolution, and

it was ignored.

Microphone output is supposed to be lineal when measuring sound pressure on the air.

However, in acoustic environments the decibel-registered SPL is the most common way

to report magnitudes. For testing purposes, environment noise was measured through a

PC application using SPL conventions and then converted to pascal units through the

formula:

SPLdB = 20log
P1

20µPa
(5.1)



5 Results and analysis 51

Figure 5.1: Calibration curve for pressure sensor. Source: Own elaboration

Reference (bar) Standard deviation (ADC units)

0 1,54

2,4 1,70

2,8 2,85

2,5 1,48

2,2 1,66

2 1,53

1,8 1,44

1,6 1,75

1,4 1,39

1,2 1,51

1 1,61

Table 5.6: Measurements in pressure sensor calibration

Figure 5.2 shows the microphone has a linearity similar to the pressure sensor, which in

turn proves it is good enough for project goals. The test values used for calibration went

from 20 dB (the average background noise in a quiet office) to 96 dB (expected noise

Reference value (bar) Standard Deviation(bar) Average error(bar)

0 0,0043 -0,0955

3 0,0044 -0,1146

2 0,0041 -0,0097

Table 5.7: Test results for pressure sensor after processing



52 5.1 Sensor calibrations

for industrial environment). Considering the logarithmic nature of sound perception, the

sensitivity shown on the graph can describe the interest range (the area between 60 and 90

dB, typical number in heavy industrial activity) with a relatively good resolution. Also,

the test showed the microphone output gets saturated over 100 dB, confirmed upper limit

for its operation.

Figure 5.2: Calibration curve for microphone. Source: Own elaboration

Noise incidence in audio records is shown on table 5.8. The first set of data was used

for the response curve. Although remarked as “before processing”, the measurements

reported were in fact RMS numbers of the signals, because the nature of the audio waves

require this step before comparing measurements. The table shows the noise variance was

rather ample. With sensitivity conversion, the noise addition would represent a precision

loss of 0.252 Pa, around half of the expected lower limit. After applying 6-measurement

averaging, the noise deviation was reduced in one order of magnitude. For practical

reasons, the same SPL values could not be repeated in the second set of data. Still,

variance, even for smaller values, is small enough to not affect the output more than 1

dB. The impact is barely noticeable in real situations, so the proposed filter was accepted.

Finally, tests were executed to prove FFT algorithm performance. To do so, a web-based

application for audio tone generation was used with the microphone to catch sinusoidal

sound waves on different frequencies. The app was verified in first place connecting the

microphone to an oscilloscope, where perfect correspondence between reported and mea-

sured frequencies was confirmed. Then, the microphone signal was sampled and analyzed

through the program mentioned in chapter 4. Different combinations of sample rate and

total sample numbers were examined. The table 5.9 shows the two with better experi-

mental fits. Standard deviation for a specific measurement is either null or a very large

number. In this case, the wrong measurements consisted in frequency analysis reports

where the main component was 0 Hz. Because the reference levels were in the order of kilo-



5 Results and analysis 53

Condition Reference value(Pa) Standard deviation(ADC units)

Before processing

0,0014 21,42

0,0178 15,11

0,0063 18,99

0,1002 16,67

0,3990 27,50

0,5637 28,61

After processing

0,0002 1,11

0,0008 0,93

0,0016 1,22

0,0056 0,78

0,0032 3,73

0,0050 3,38

0,0080 3,32

0,0112 2,67

0,02 3,25

Table 5.8: Comparison of microphone performance

hertz, such errors have a deep performance impact. The situation motivated the addition

of averaging in the frequency analysis. Although not shown in this inform, moving-average

with around 5 samples was enough to avoid the zero-valued measurements, because they

tended to occur rather isolated.

About accuracy error, it is necessary to consider that FFT only generates discrete fre-

quency spectrum and obtaining the exact value of a main frequency is highly improbable.

In the table, it is possible to see when no strong deviation is involved, the error is two or

three orders of magnitude smaller than the reference. Under those conditions, the error

is justified by the discretization possibilities and can be ignored. The zero-valued mea-

sures obviously add a heavy amount of error, because for them, the deviation is exactly

the equal to reference. Just like standard deviation, filtering solved this problem Finally,

there is no clear difference in performance between the two sample settings used, which

means the algorithm is barely affected by operative parameter alteration.

5.2 Bluetooth and Protocol Buffers

To test serialization protocol working state, set-up data was sent with it through the

pretended communication channel. The data was manually loaded in the microcontroller

using the message structures previously designed, sent to the Bluetooth module through

UART, received in the SBC and decoded to review the integrity of the message. Errors

were evaluated on the numeric elements of the messages.

As it can be seen on table 5.10, the trials were executed with different baud rates on the



54 5.2 Bluetooth and Protocol Buffers

Conditions Reference value (Hz) Standard deviation(Hz) Average error(Hz)

35 kHz sample

rate, 512 samples

200 30,57 56,45

300 0 26,56

400 0 -10,16

500 0 89,84

1000 0 42,97

2000 0 85,94

5000 1099,43 -467,10

10000 1099,43 -466,60

20000 66,90 401,37

60 kHz sample

rate, 128 samples

500 0 46,88

900 0 -6,25

1200 673,70 341,45

1500 509,27 355,26

2000 898,27 855,26

4000 935,59 136,51

8000 3817,63 3134,87

10000 5056,72 4228,62

15000 0 46,88

20000 0 515,62

Table 5.9: Results for frequency analysis tests

UART port, to asses which one was more appropriate for the system. Communication

speed is vital to avoid interrupt collisions in the microcontroller program. Therefore, the

goal was to use the fastest rate that did not present data losses. For each test, 20 messages

with random assigned numerical values were sent. The Protobufs implementation on

NodeJS throws run-time errors were a message sent is impossible to decode. Hence, the

“received” set of data only counts messages that were both successfully received on the

Raspberry Bluetooth port and decoded back in the program dedicated to it.

Type of message Baud rate Received Average error

One-value, integer

921600 0 N.A

460800 20 0

230400 20 0

One-value, floating point

921600 0 N.A.

460800 17 0,000002

230400 20 0,000002

Array of values

460800 0 N.A

230400 11 0

115200 20 0

Table 5.10: Test results for communication with Bluetooth and Protobufs



5 Results and analysis 55

Empirical data proves raising bytes quantity increases communication error. To include all

operative conditions existing for the project, the 115200-baud rate is the fastest option,

and correspondingly it was selected for the MCU program. In all tests, integer values

did not present any deviation when the message was received. Distortion on binary

information, when present, causes changes not only on the numerical values themselves,

but in the whole serialized code, causing the whole message to be unreadable. Therefore,

by guaranteeing that messages are getting decoded, the integrity of the data is mostly

secured. In the case of floating point numbers, the small errors perceived are due to

conversions in a different environment during decoding. The errors found are 5 orders of

magnitude smaller than the desired resolution, so is safe to ignore them. The examination

was repeated with the selected baud rate but positioning the SBC about 10 meters from

the MCU, inside the CNC workshop, to detect noise susceptibility in the channel. The

same 100% efficiency was found, evidencing no trouble with environmental noise.

Measurements were then made to measure the time communication protocols would take

to be executed. The initial design goal was to keep it under a 10% of the timer period. This

should prevent interrupt unawareness by control program execution, especially relevant

with the spindle speed routine. With timers set every second, the execution for the longest

sections should not exceed 100 ms. The figure 5.3 displays the serialization of a full 128

sample message and its transmission. The process can take almost 70 ms, which is still

under the desired limits. The only other process that would take more time would be the

temperature sensor conversions (90 ms according to datasheet [40]) but this operation

runs on the sensors themselves, not the MCU.

Figure 5.3: Time required for sending a full array-type message. Source: Own elaboration

The final step for MCU settings examination, the ADC real sample rate was determined.

Following datasheet instructions, a 16 pre-scaler was selected for the unit, with the inten-

tion to operate on a 70 kHz rate. Figure 5.4 exposes that in real conditions, the frequency

is more close to 60 kHz. The magnitude is still good enough to cover the desired ranges



56 5.3 Web page with made-up data

following the Nyquist theorem, but the frequency analysis program must be adapted to

include this detail.

Figure 5.4: Time required for a single ADC conversion. Source: Own elaboration

5.3 Web page with made-up data

To analyze Internet communications side functional abilities without sensors circuit in-

tervention, pre-defined data was generated from an independent MCU (for easiness, an

Arduino card was used) and transmitted to the cloud using the designed information

bus (UART-Bluetooth-SBC-Mongo database-web server). The data was set up with the

one-value message type, including all the “required” spaces. All the safety and display

options, according to chapter 4, were included in the web site operation.

The first data set uploaded was labeled as “acceleration”. It consisted of a random series

of values between 0 and 100, sent in regular intervals of time (5 seconds). To prove the

uploading algorithm in presence of null-valued messages, the magnitudes sent during a 50

seconds period, in the middle of the test, were purposely set to zero. The image 5.5 was

obtained directly from the corresponding web page.

The data points keep a 5 seconds distance between them, correctly stating no data loss

in the process. Also, the values on the graph stay under 100, so there was no heavy

distortion in them. The zero-valued period, although not clearly showed in the figure,

was saved as only two points (at the beginning and the end), so the test proved no extra

data is uploaded when the system is “inactive”.

To clearly asses the results distortion, a new test was executed with data points strictly fit

to a function. In this case, data was labeled “Vibrations”, and the function chosen was a

quadratic curve, specifically f(t) = 0.8t− 0.0128t2 + 4, with t being time in seconds. The



5 Results and analysis 57

Figure 5.5: Results obtained for made-up data: “Acceleration”. Source: Own elaboration

sending periods were still set to 5 seconds and the 50-second null space was preserved.

Results can be appreciated on figure 5.6. The null period was also saved as two points,

as expected. The general shape of the graph follows smoothly the shape of a quadratic

function, and the individual points are shown in the positions predicted by the given

function. In that sense, no important distortion was detected.

Figure 5.6: Results obtained for made-up data: “Vibrations”. Source: Own elaboration

Finally, to prove graphic library ability to handle multiple series in one chart, messages

with 3 different sensor spaces were sent, all under a “Temperature” variable label. All

data sets were created with a sine function but including a 90º phase shift between them.

Figure 5.7 shows the graph created with these parameters. The 3 series can be easily

distinguished, and they conserve the sinusoidal shape expected from them. There is small

shape distortion in the initial portion of one graph, caused by an initial value equal to zero,

which was ignored by the upload algorithm. Still, it is considered a successful attempt.



58 5.4 Web page with real-time data

With these tests, the login, logout, machine selection and error page functions of the web

site were also tested, reporting a positive performance in all those areas.

Figure 5.7: Results obtained for made-up data: “Temperature”. Source: Own elaboration

5.4 Web page with real-time data

During sensor installation, a first run with the whole system working was executed. Pre-

liminary versions of the MCU and SBC programs were used. For that reason, some of the

filters were still not optimized and the frequency averaging was not even implemented.

Also, no “Machine status” was included, as the corresponding service was still incomplete.

The data was collected over the space of about 2 hours. During this time, the real-time

status function for light and door state was checked, resulting in an operation without

errors. Temperature and pressure measurements worked with almost no noise. Vibra-

tions were perceived slightly noisier, but still useful. The main issues happened with the

acoustics, acceleration, and spindle speed measurements.

Acoustics monitoring, seen on figure 5.8, has too much variance to be considered repre-

sentative or useful. Although is the workshop environment is relatively loud and noisy,

the microphone measurements should at least point out some difference related to the

sensor placement, something not clearly present in the graph. Consequently, too much

external interference is still reaching the MCU. To attack the situation microphone filter

were strengthened, both in the analog side, changing the capacitor (it was first set as 50

nF, and then raised to 500 nF); and the digital side, raising the sample number from 6

to 12.

The acceleration measurements, shown in figure 5.9, also presented a heavy output vari-

ance. The situation is even worse considering most of the time, the real accelerations

present in the CNC machine should be null. Moreover, the average reported value is near



5 Results and analysis 59

Figure 5.8: Results obtained for real data on 1st try: Noise. Source: Own elaboration

1 m/s2, which is the identified limit for tool change fast movements. A closer inspection,

confirms all Y direction measurements are over the zero line, while the X direction ones

are under it. This characteristic suggested the root problem was faulty calibration. The

specific sensor used for calibration process was not any of the installed ones, resulting in

differences on the reference zero-level offset used. A quick recalibration was done in-situ

to define the real zero outputs. After it, the averaging filter was also changed from the

original number of samples to 60, to avoid future noise induced errors.

Figure 5.9: Results obtained for real data on 1st try: Acceleration. Source: Own elaboration

The main concern for spindle speed monitoring, although there were precision errors

issues, was accuracy. As it can be noted in figure 5.10, the values obtained from the sensor

and the counting algorithm in the MCU never surpassed 35 RPM. But the real spindle

speed was set during the whole process to 400 RPM. The bias was too big to be ignored,

and the results were simply not representative of machine state. During consecutive new



60 5.4 Web page with real-time data

tests exclusively done with the spindle speed variable, using progressively higher RPM

values, it was discovered the measurements were perfectly accurate for magnitudes under

100 RPM. Nonetheless, over this value, the algorithm produced results proportionally

smaller. For speeds around 600 RPM and over, the system reported only zeros. This

behavior suggested a problem with the interrupt handling. Although in theory no issue

should be expected in the MCU, the evidence was enough to try another approach. The

solution implemented was to move the counting algorithm to the SBC as another service,

considering this component has a far superior computing power. The program was written

in NodeJS, and directly loads the measurements to the database.

Figure 5.10: Results obtained for real data on 1st try: Spindle speed. Source: Own elaboration

Following the modifications, the database was cleared and the whole system was put to

work again, to record data over a larger period. The intention was to use it for at least

two weeks. The data shown in the following figures was collected between December 9th

and December 21th, 2017, and the machine was actively used on December 11th and

December 12th.

Figure 5.11 refers spindle speed results. The chart was zoomed in to show only areas

where non-zero values were present. Operative periods in two different days can be

distinguished, rendering the information useful. The measurements seem less noisy that

first tests. However, the variation range is equal in relative terms. The accuracy improved

in significant terms. For a reported value of 600 RPM, the experimental results oscillated

between 400 and 600 RPM, with a maximum error of 33.12% and an average of 16.10%,

while in the first test the average error was around 92%. Still, present variability is too

high for what is supposed to be a constant value. Reminding this variable is measured

without any filtering, the usage of post processing could be useful.

Figure 5.12 show collected data for cooler subsystem pressure.

A comparison between this graph and the previous one indicates working peaks occurrence

at similar times. The type of piece machined during tests generated large amounts of

chip and produced localized heat, thus, air was switched on almost the whole time the



5 Results and analysis 61

Figure 5.11: Operational data: Spindle-speed. Source: Own elaboration

Figure 5.12: Operational data: Pressure. Source: Own elaboration

CNC was under operation. For that reason, no analysis on air cooling effects over other

variables can be made, as there are no operative points without air pressure presence. The

measurements collected have actually one of the best performances in the whole project,

with a 0.8 bar standard deviation and an average value (6.46 bar) valid in comparison

to real conditions, considering maximum bomb pressure is 7 bar, but losses in control

valves and hoses normally exist. In general terms, the pressure measurements comply

with system expectations.

Figure 5.13 includes the results for registered temperatures. The sensor accuracy seems

right, because most values in the graphic are around 22º Celsius, an accepted valued for

an inner-building spaces as the workshop. Moreover, the 3 series follow the same pattern



62 5.4 Web page with real-time data

in general line, with a difference between them present in the form of an offset. Such

offset seems to correlate with the distance of the given sensor to the working area. In

that sense, the sensor placed in the cooler system has higher temperatures than the table

one, given the compressed air effects do not affect the hose surface.

Figure 5.13: Operational data: Temperature. Source: Own elaboration

The general behavior of the data series has a slight rise on December 11th and noticeable

peak on December 12th, coinciding with the operative times. There are also minimum

points on the morning of December 12th and afternoon of December 13th. Although

the origin of these other variations remains unknown, one possible explanation is they

correspond to maintenance labors to clean the machine after heavy work or prepare the

area for it. About noise, the standard deviation for the three sensors is around 0.7º
C, which is near the minimal sensor resolution (0.5º C). Table sensor has large periods

with constant output and reacted slower to changes.; cooler sensor has the most unstable

output. Such differences could indicate measurements variances are caused in great part

by real environment circumstances.

The vibrations magnitude chart on figure 5.14 specifies big peaks occurred on December

12th during the active usage of the CNC. The data values are noticeable higher for the

sensor located on the table, on almost 1:2 ratio when compared to the column sensor. Also,

there is a clear difference between both sensors in noise conditions. While table sensor

kept its output in zero for most of the time, only showing results during operative time

(the mentioned peak and smaller results on December 11th), the spindle column sensor

had avariable output around 0.02 m/s2, with very small variance, during rest time. This

noise value is two orders of magnitude smaller than the peak performance registered for

the same sensor, hence it can be discarded as zero-level bias, like it was done with another

variables processing. The main effect of this noisy background, though, can be appreciated

on figure 5.15, which shows the respective frequencies reported for both sensors. While

the table sensor only shows values during the commented operative periods, the column



5 Results and analysis 63

sensor generated frequency analysis results all the time, mainly reporting noise frequency.

For that reason, no clear pattern is found in the series. Anyways, the data collected

suggests a correlation between spindle speed, vibrations, and temperature. Chapter 2

explains this could cause an impact over tool health and pieces quality. Also, it appears

December 12th working load was more demanding for the machine than other days.

Figure 5.14: Operational data: Vibrations. Source: Own elaboration

Figure 5.15: Operational data: Vibrations frequency. Source: Own elaboration

In the linear acceleration case, the figure 5.16 describes the behavior found. At first

glance, the signals recorded are still very noisy and with a significant variance. The noise

variability extends over the expected range for measurements (from -1.5 to 1.5 m/s2),

and the standard deviations in each series represent a 30% of that same quantity, so no

clear distinction can be done between valuable results and noise. Compared to the first



64 5.4 Web page with real-time data

test, however, the measurements are distributed around the zero level, proving the re-

calibration was effective. A closer look to the 3 different series in the graph also remarks

the differences between them. The Y direction feed actually has the expected output for

the sensor, with a few momentary peaks corresponding to sudden movements and a zero

level most of the time. This direction was being measured with a different sensor, because

the column controls that feed. Z direction accelerations, by other side, seem to lose their

calibration after December 12th, and all values reported after that date are negative.

As the initial values did not show that tendency, it was clear that some misalignment

happened with the sensor position Therefore, a trouble during the installation the table

sensor was considered. An inspection showed the sensor lost its adhesion to table surface,

which partially explains the errors registered.

Figure 5.16: Operational data: Acceleration. Source: Own elaboration

Noise strongly diminished between December 13th and 20th, when the machine was barely

used. Reminding sensor sensitivity was high, this event could mean much of the noise

caught was generated by vibrations and external actions over the machine. In any way,

the acceleration data would require better filters to generate useful information. The

side effect to heavy noise in acceleration monitoring is that “MachineStatus” variable had

a large number of erroneous results. For that reason, it was not even considered into

analysis.

About acoustics measurement, figures 5.17 and 5.18 show noise captured by the micro-

phone is still too ample to be limited by proposed processing. In consequence, the collected

data has no recognizable patterns and no relation can be easily established with the rest

of variables. There were no specific values expected for the sensors, but noise variance

can be compared with the mean measurement reported. The average sound pressure de-

tected is 76.64 mPa, while the biggest instant changes between adjacent points can be as

high as 71.41 mPa. Having both quantities so close to each other proves the low relia-

bility these results have. In the frequency domain, the standard deviation found is 500

Hz, and the average frequency reported is 1484.4. Although slightly better, the reported



5 Results and analysis 65

amounts represent a 30% variability. The only relatable information can be seen on figure

5.18, where the peak frequency happens during recognized operation time. Bearing in

mind averaging with higher sample numbers, using other statistical operators (median,

for example) and different analog filters were proven without any visible advantage in

performance, one possible solution would be to use low-pass higher order digital filters

(Chebysev, Butterworth, etc). The amount of variance, also suggests using a different

sensor may be necessary, as the electret seems to have a very open field of measure. A

microphone with a more focused range could be useful for the intended function.

Figure 5.17: Operational data: Acoustics. Source: Own elaboration

Figure 5.18: Operational data: Acoustics frequency. Source: Own elaboration

The other collected variables, data and light status, are not shown here as they do not

require further analysis. Door status presents periods with high change amounts before

and after operating the CNC, as would be expected of regular work preparations and



66 5.5 Analysis of operative data

posterior cleansing. About light status, its behavior is the same as the door, consistent

with its aiding function. The light also has a period of multiple changes on December 21,

when intense maintenance labors were executed.

Looking to the graphs with constantly varying values (specially 5.17, 5.18 and 5.13),

“jumps” between data points can be identified. The missing information in those periods

was caused by a faulty Internet connection on the SBC, which effectively stopped data

uploads. Although the original plan was to use wired LAN access, the building limitations

made necessary the application of a Wi-Fi network. The wireless link proved to be

unstable, though. Whenever the signal was lost, the Raspberry required a reboot to get

back to work, but no precautions were taken to alert about it. In the end, some of the

reboots were executed even 2 days after signal was lost.

5.5 Analysis of operative data

Data for spindle speed, temperature and vibrations presented hints to a mutual correla-

tion. To assess if this possibility is statistically significant, tests with collected measure-

ments full sets for each variable were run. Statistical analysis software Minitab was chosen

as testing environment. Two different parameters were studied. The first, Pearson corre-

lation coefficient, indicates the degree of strictly lineal dependency between magnitudes

in a scale from -1 to 1, where zero is no absolute presence of correlation and 1 is perfect

correlation The second one, the Spearman correlation coefficient, is used for monotonic

relationships, where the change rate can be different for variables involved, as long as

both follow the same direction. Therefore, Spearman coefficient also includes non-linear

relations [50].

The first test studied the correlation between spindle speed and vibrations. Figures 5.19

and 5.20 show the analysis coefficients found for table and column sensors. Even when they

seem to follow a very similar pattern, the noise presence in the spindle sensor affected in a

great manner the statistical characteristics of the measurements, so its coefficient related

to table sensor register is lower than 0.5, indicating a weak correlation. The noise also

affected the correlation perception of with the spindle speed, and the coefficient in this

case is even smaller. Although correlation seems to be poor in all cases, the p-value does

not allow to categorically reject the possibility of some influence between variables. For

the table sensor, the coefficient obtained with Spearman test is over 0.7, a high quantity

if noise and environmental conditions are considered. Pearson coefficient is lower than

Spearman one, so the idea of a strictly linear relationship is discarded. In summary,

there is strong statistical evidence a monotonic correlation between the speed and the

vibrations exists, at least on the table.

For temperatures, the results can be reviewed on figures 5.21 and 5.22. In this case, as

suggested by the graphs, the relation between the different temperature sensors outputs

is the highest one obtained for any analysis in the project. Such situation indicates the



5 Results and analysis 67

Figure 5.19: Correlation analysis for vibrations: Pearson. Source: Own elaboration

Figure 5.20: Correlation analysis for vibrations: Spearman. Source: Own elaboration

three sensors were affected by the same environmental effects, and the information col-

lected by them is representative of CNC conditions. Then, comparing their respective

coefficients related to spindle speed, the response is much less related, with all the coef-

ficients staying under 0.3. Unlike vibrations, that are closely associated to the rotations

by the mechanical structures, many factors easily influence temperature. The evidence

shows their correlation is better than spindle vibration sensor, though. In that sense, it

is possible to confirm spindle action has a little, but noticeable influence in temperature

state. As every Pearson coefficient found was higher than its Spearman counterpart, the

influence must be considered linear.

Finally, another test was done with the vibration frequency reported values. The output

of such analysis is on figures 5.23 and 5.24. The great impact noise had on frequency in

the spindle sensor caused loss of valuable information to establish relationships with other

variables; under the present condition, the information kept lost its usefulness. Hence,

in all comparisons made with this sensor data, the p-value was big enough to discard

any correlation. In the opposite side, the table vibration sensor presents a considerably

strong relation to spindle speed. Furthermore, the correlation between frequency and

spindle speed appears to be monotonic too. The results reinforce the proposition that

both variables are statistically related.

Looking at figure 5.15, the peak frequencies for vibrations have values around 6.5 kHz.

The author of [9] found peak vibrations for both regular and worn out tools in levels under



68 5.5 Analysis of operative data

Figure 5.21: Correlation analysis for temperatures: Pearson. Source: Own elaboration

Figure 5.22: Correlation analysis for temperatures: Spearman. Source: Own elaboration

100 Hz, but as [12] explains, structure-based emissions can be found also in frequencies

over the 4 kHz. There are strong possibilities the reported high frequency vibrations are

related to tool quality degradation, according to [6]. More measurements including other

work conditions would be necessary to clarify the panorama.

Figure 5.23: Correlation analysis for vibrations frequency: Pearson. Source: Own elaboration



5 Results and analysis 69

Figure 5.24: Correlation analysis for vibrations: Spearman. Source: Own elaboration

5.6 Watchdog tests

Before implementing watchdog final version on the system, a quick test to prove the

algorithm performance was run. To make sure that the alarms were responding, it was

necessary to trigger them on purpose, a task that could be easily achieved changing the set

limits to regular operative levels. Core temperature was the selected condition, because

under regular operation, it maintains a stable level (around 40º C) compared to memory

and processor loads, that can easily fluctuate; but it has small variance amounts, unlike

core voltage and frequency, that are basically constant. The limitation for temperature

was then set to 30º C to make sure alarm state was always on, and later the SBC was

turned with only the watchdog service running in it, for a 4 hour period.

The figure 5.25 shows the contents of an e-mail message received in the personal account

set as receiver, just seconds after the service was put on operation. The algorithm was

able to identify at first try the status of the component as dangerous, given the false rules

programmed for the test. The message includes the value measured and the correct units,

thus it can be regarded as a successful evidence of right watchdog operation.

Figure 5.25: Message for setup alarm. Source: Own elaboration

The image 5.26 corresponds to a new alarm e-mail received on the same address exactly

3 hours after the first one, fact proved by the details on each message. The heading and

the written contents of this second e-mail match the ones corresponding to a repeated

alarm situation. There were no other messages received from the watchdog service during

the trial period; therefore, the timing control (intended to avoid excessive inbox flow) and



70 5.7 Costs involved in the project

longtime scenario identification were proven to work.

Figure 5.26: Message for repeated alarm. Source: Own elaboration

Considering the results obtained during testing stages, the watchdog was implemented

with the real limits. Nevertheless, while executing trials in other system sections, several

messages, identified as false positives were detected on the receiving account. The email

on figure 5.27 was one of them. A quick inspection suggested a reading confusion inside

watchdog program, caused by the use of extremely short delays. In this case, the delays

were adjusted from 50 to 500 ms. After correcting the mistake, no more errors were

perceived from the watchdog.

Figure 5.27: Example of wrongly activated alarm. Source: Own elaboration

5.7 Costs involved in the project

One of the goals proposed for the system designed was to keep it low-cost, using the

proposed e250 limit as reference. A summary of all costs involved in final solution

development was made after system implementation, to evaluate if the target was really

achieved. The results of the budget review are presented on table 5.11. The methods for

estimating each listed element vary between categories. For all the hardware components

except the PCB, prices were easily registered in order lists or receipts. PCB case was a bit

different, because the DHBW provides free fabrication service to students and researchers

working with the institution. In real terms, no costs were added to the project’s budget by

this element. Nonetheless, looking the monitoring system as a product with a monetary

value, it is necessary to include at least a PCB price estimation. With that goal in mind,

web-based producers were searched. The price shown in the table was obtained through



5 Results and analysis 71

[51]. This producer was chosen because they distribute to all Germany, and they also

calculate prices for single delivery, small-sized, simple layered boards, just like the one

required for the project.

About software, using free and open-source options was a design decision, explained in

chapter 4, and no budget charge was added by the category. The case of human resource

costs was a situation similar to the PCB price, because all work involved in design and

installation was done without remuneration. No simple references exist about DHBW

salaries, and the simpler alternative was to use any other known source. For the design

work, considered an engineering labor, the reference consulted was [52], which states

graduation projects general guidelines. The minimal salary established in the document

is ₡300000 per month. The conversion to euros was done using the exchange rates ₡569.80

= $1 and $1.2338 = 1e, consulted from [53]. For installation job, costs were computed as

CNC lost work hours, since it was necessary to stop and keep the machine off during such

labors. The minimum payment for a metal machining technician was found in [54] to be

₡12829.63 per every 8 hours. The aforementioned exchange rates were applied. Finally,

for all other resources, the monthly price was approximated to 200e, based on personal

renting experience with similar accommodations.

The total value assigned to the project is e2197 or $2711 using the consulted exchange

rates. Such amount of money is way over the established low-cost limit. Nevertheless, the

costs are including many factors that were not actually added in the real implementation.

Considering only hardware elements in the budget, the value assigned is e245 ($302),

which is still under the limit proposed. Hence, the system developed is not expensive,

at least speaking about materials. A big part of the monetary value the system acquires

comes from the original work it requires, being a tailored solution.



72 5.7 Costs involved in the project

Category Element Quantity Total Price (e)

Hardware

Sensors See table 3.1 102.84

Other Ics See table 3.3 68.92

Other electronics
8 resistors, 6 capacitors,

1 crystal, 1 micro USB port
3.43

CAT5 cable 15 meters 12.15

PCB 1 piece (87 x 71 mm) 32.13

Terminal blocks and

sockets for PCB
7 pieces 2.47

Cable binders 50 pieces 15

Other installation

materials

2 tubes of liquid adhesive,

2 rolls of adhesive tapes,

several screws and nuts

8

Software

Database storage 500 MB
Free (free tier

cloud service used)

Web server renting 1000 h per month
Free (free tier

cloud service used)

Libraries and

development environments

Several different software

packages

Free (open-source

software used)

Human resource
Enginnering labors 3 months as half-time job 1280

Installing labors 32 hours of technician job 73

Other resources

Electricity, Internet,

working space and access

to lab equipment

3 months 600

Table 5.11: Costs of the project by category



Chapter 6

Conclusions and future work

After studying the results obtained from the different tests performed with the whole IoT

system, the selected sensors and the respective processing, although having the required

performance in lab placed tests, seem deficient for the real machine installation. Under

controlled environment, the highest deviation and average errors found were around 20%

and 10% of the real measured value (both found in the vibration sensor). However, the

noise added by different elements (wiring, electrical motors, and controls), and the exis-

tence of uncontrolled external conditions affecting the machine and the sensor set itself

introduced unexpected distortions that caused loss of useful data in some of them. Feed

acceleration and sound measurements can be labeled as faulty, as the noise captured in

both completely blocked the possibility of extracting useful information. In the accel-

eration measurements, the noise variation is in the exact same range as the expected

measurements (1.5 m/s2), and standard deviation reach the 30%. Meanwhile, for the

microphone, instant variability between adjacent measurements is almost equal to the

average result registered (71 to 76 mPa).

Still, considering quality terms, the measurements for temperature and cooler pressure,

that kept standard deviations about 3% and 12% of the values registered, and the status

monitoring over door and light (which reported zero errors during tests, mainly because

of their discrete nature) generated perfectly valid information about real time operation

with the filters proposed, and can be considered successfully implemented. Vibrations

measurements, even with a remaining noise of 0.002 m/s, were distinct enough to allow

extraction of properties from the data set, considering the reported values are two orders

of magnitude over the noise. About the frequency analysis algorithms, the noise effects

were heavily dependent on the sensor. In that way, the frequency results for table vibra-

tions, which had no appreciable noise in magnitude measurements, were in turn free from

heavy variability. In the other hand, acoustic frequency has the same issues as acoustic

magnitude measurements (standard deviation of 33% the average measure). Apart from

this irregular performance, the circuit achieved the proposed goal to be low-cost, keeping

the total manufacture and installation materials expense under e250

In terms of data collection and communication, the microcontroller programming did not

73



74

have performance issues in any aspect but one. For counting the spindle revolutions, the

processing speed and interrupt handling features of the Atmega 328P lead to erroneous

results in the output. Moving the signal processing to the SBC was a temporary solution.

In all other areas, the proposed design fulfilled data integrity, safety, visualization and

access requirements. The Internet based communication chain to be highly reliable once

an initial connection is established and would continue to operate uninterruptedly while

Internet access is still available. This was proved by the 100% transmission rate and null

average error reported for baud rates under 115200 and integer values. Also, the protocols

used for internal data exchange could operate on the fast speeds require by the controllers,

namely 70 ms, even under the noisy conditions introduced in the test environment.

About the graphical interface, the tests done with made up data proved database and

server connection reliability, because all the datapoints intended to be stored were shown

without any loss or distortion in value. Also, the graphics library functions allowed to

distinguish very clear the different types of generated curves, in a way that general shape

and details could be easily visualized, although the decision to not store repeated null

points caused some slight changes in the way the graphs are perceived. Because all other

functions in the webpage (zoom in the graphs, login and blocked access, downloadable

data) were tested during this same trial, the general concept and functionalities of the

GUI comply with the intended goals for the section.

For performance evaluation, the correlation test run suggests the existence of a heavy

interaction between spindle activity and table vibrations, considering the coefficients for

monotonic correlation of 0.7 both in magnitude and frequencies. Also, there is a mild

influence over temperature raise, where the linear correlation coefficients are around 0.3.

By theoretical references, these situations are known to directly affect the quality of

operations. Although the quantity and variability of the measurements reported is not

enough to generate a categorically analysis that links the variables, it was possible to use

system data to extract deeper relationships, what proves the efficiency of a monitoring

system for maintenance purposes. In general terms, although some of the measurements

were not representative of the real conditions of the machine, the system achieves the

proposed goals of monitoring simple individual conditions and store them in a way that

could be easily and safely accessed to execute deeper analysis.

For future works in the same area, there are several recommendations to consider. About

sensor processing, great performance improvement can be done with the inclusion of bias

rejection for the vibrations sensors. The measurements for both accelerations and acous-

tics could be enhanced with the application of different digital filters, such as Chebysev

or Butterworth. In that sense, the design strategy to choose the adequate parameters for

the processing algorithms could also be based on analytic solutions and theoretical refer-

ence, instead of relying on empirical work, which was proven during the project to be a

slow approach. The criteria used to establish frequency limits could rely on the presented

results, making the design process even faster. In the case of acceleration, apart from

using more advanced digital filtering and include the possibility of previous analog stage

to prevent aliasing, it is highly recommended to firmly secure the sensors to its position



6 Conclusions and future work 75

on the machine (as the sensitivity can be seriously affected by installation details) and

to calibrate each sensor used individually. For the acoustic recordings, even more than

recommending new filters, the conclusion is that electret microphones are not appropriate

for the CNC environmental conditions, and a different approach should be tried.

In terms of communication, the most important improvement that could be done is chang-

ing the gateway main LAN connection from Wi-Fi to wire based, as the first method pre-

sented repeated issues to keep a long-time access. In the same way, an additional feature

in the already working watchdog that could reset the SBC in absence of Internet could be

useful in future implementations, as important periods of time remained without data be-

cause there was no warning about the lost connection. Regarding the microcontroller and

the processing issue found in it, other models and providers should be considered for fur-

ther implementations. Furthermore, there are some COTS options that integrate MCUs

with microprocessors and Internet modules, collecting in one component the functions of

controller and gateway. Such alternatives could be useful to avoid extra communication

steps, but the would require to have one individual gateway on every monitored machine,

which could cause data collisions if wrongly managed.

MCU demands can also be lowered from different sides. All data filtering methods were

located in the controller for this project. Nevertheless, to expand the scope to more

complex monitoring conditions, moving information processing to the cloud services is

the best option. The sample rate used for frequency measurements, on the other side,

was intentionally higher than the minimum required, but empirical results show no need

for that prevision. Finally, with lower sample rates, the use of crystal oscillators could be

avoided.

One last recommendation, regarding performance analysis, is that more work should be

done with the spindle speed, temperature, and vibrations parameters, using incoming

data from more diverse operation conditions. Tool state should also be compared to the

measurements registered.



76



Bibliography

[1] Baden-Württemberg State Government. Our State: Business Location-Home to

commerce and industry. [Online]. Available: https://www.baden-wuerttemberg.de/

en/our-state/business-location/

[2] Duale Hochschule Baden-Württemberg. About us. [Online]. Available: http:

//www.dhbw.de/english/dhbw/about-us.html

[3] Duale Hochschule Baden-Württemberg Karlsruhe campus. About Us-The dual

study concept. [Online]. Available: https://www.karlsruhe.dhbw.de/en/general/

about-us.html

[4] Duale Hochschule Baden Württemberg Karlsruhe campus. Maschinenbau: Aus

Lehre & Forschung-Modelfabrik. [Online]. Available: https://www.karlsruhe.dhbw.

de/mb/aus-lehre-forschung.html

[5] D. E. Kandray, Programmable Automation Technologies - An In-

troduction to CNC, Robotics and PLCs. Industrial Press, 2010.

[Online]. Available: http://app.knovel.com/hotlink/toc/id:kpPATAICN2/

programmable-automation/programmable-automation

[6] S. Kalpakjian and S. Schmid, Manufacturing, Engineering and Technology, 7th ed.

Pearson Education, 2014, vol. 2.

[7] H. Kief and H. Roschiwal, CNC Handbook. Mc-Graw Hill Professional, 2012.

[8] A. S. Agredo, “Elaboración de un plan de mantenimiento para fresadora MFG de

3 ejes del Laboratorio de Mecatrónica de la Universidad EAFIT,” Bachelor Thesis,

Universidad EAFIT, Medelĺın, Colombia, 2012.

[9] P. Wright, D. Dornfeld, and N. Ota, “Condition monitoring in end-milling using

wireless sensor networks (WSNs),” Transactions of NAMRI/SME, vol. 36, 2008.

[10] N. Ahmed, A. J. Day, J. L. Victory, L. Zeall, and B. Young, “Condition monitoring

in the management of maintenance in a large scale precision CNC machining manu-

facturing facility,” in 2012 IEEE International Conference on Condition Monitoring

and Diagnosis, Sept 2012, pp. 842–845.

77

https://www.baden-wuerttemberg.de/en/our-state/business-location/
https://www.baden-wuerttemberg.de/en/our-state/business-location/
http://www.dhbw.de/english/dhbw/about-us.html
http://www.dhbw.de/english/dhbw/about-us.html
https://www.karlsruhe.dhbw.de/en/general/about-us.html
https://www.karlsruhe.dhbw.de/en/general/about-us.html
https://www.karlsruhe.dhbw.de/mb/aus-lehre-forschung.html
https://www.karlsruhe.dhbw.de/mb/aus-lehre-forschung.html
http://app.knovel.com/hotlink/toc/id:kpPATAICN2/programmable-automation/programmable-automation
http://app.knovel.com/hotlink/toc/id:kpPATAICN2/programmable-automation/programmable-automation


78 Bibliography

[11] J. Z. Zhang and J. C. Chen, “Tool condition monitoring in an end-milling

operation based on the vibration signal collected through a microcontroller-based

data acquisition system,” The International Journal of Advanced Manufacturing

Technology, vol. 39, no. 1, pp. 118–128, Oct 2008. [Online]. Available:

https://doi.org/10.1007/s00170-007-1186-6

[12] T. Zafar, K. Kamal, R. Kumar, Z. Sheikh, S. Mathavan, and U. Ali, “Tool health

monitoring using airborne acoustic emission and a PSO-optimized neural network,”

in 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), June 2015,

pp. 271–276.

[13] DR. JOHANNES HEIDENHAIN GmbH, Technical Manual TNC 407, TNC 415,

TNC 425, Heidenhain.

[14] R. Toulson and T. Wilmshurst, Fast and Effective Embedded Sys-

tems Design - Applying the ARM mbed (2nd Edition). Elsevier,

2017. [Online]. Available: http://app.knovel.com/hotlink/toc/id:kpFEESDAA1/

fast-effective-embedded/fast-effective-embedded

[15] J. Huang and K. Hua, Managing the Internet of Things - Ar-

chitectures, Theories and Applications. Institution of Engineering and

Technology, 2017. [Online]. Available: http://app.knovel.com/hotlink/toc/id:

kpMITATA02/managing-internet-things/managing-internet-things

[16] R. Stackowiak, A. Licht, V. Mantha, and L. Nagode, Big Data and the Internet of

Things: Enterprise Information Architecture for a New Age. Apress, 2015.

[17] H. Geng, Manufacturing Engineering Handbook, 2nd ed. Mc-Graw Education, 2016.

[18] K. Munir, M. S. Al-Mutairi, and L. A. Mohammed, Handbook of Re-

search on Security Considerations in Cloud Computing. IGI Global,

2015. [Online]. Available: http://app.knovel.com/hotlink/toc/id:kpHRSCCC03/

handbook-research-security/handbook-research-security

[19] L. Newcombe, Securing Cloud Services - A Pragmatic Approach to Security

Architecture in the Cloud. IT Governance Publishing, 2012. [Online]. Avail-

able: http://app.knovel.com/hotlink/toc/id:kpSCSAPAS4/securing-cloud-services/

securing-cloud-services

[20] J. M. Pintos, C. N. Castillo, and F. López-Pires, “Evaluation and comparison frame-

work for platform as a service providers,” in 2016 XLII Latin American Computing

Conference (CLEI), Oct 2016, pp. 1–11.

[21] S. Mohanty, M. Jagadeesh, and H. Srivatsa, Big data imperatives: Enterprise ‘Big

Data’warehouse,‘BI’implementations and analytics. Apress, 2013.

[22] D. Gourley and B. Totty, HTTP: the definitive guide. O’Reilly Media, Inc., 2002.

https://doi.org/10.1007/s00170-007-1186-6
http://app.knovel.com/hotlink/toc/id:kpFEESDAA1/fast-effective-embedded/fast-effective-embedded
http://app.knovel.com/hotlink/toc/id:kpFEESDAA1/fast-effective-embedded/fast-effective-embedded
http://app.knovel.com/hotlink/toc/id:kpMITATA02/managing-internet-things/managing-internet-things
http://app.knovel.com/hotlink/toc/id:kpMITATA02/managing-internet-things/managing-internet-things
http://app.knovel.com/hotlink/toc/id:kpHRSCCC03/handbook-research-security/handbook-research-security
http://app.knovel.com/hotlink/toc/id:kpHRSCCC03/handbook-research-security/handbook-research-security
http://app.knovel.com/hotlink/toc/id:kpSCSAPAS4/securing-cloud-services/securing-cloud-services
http://app.knovel.com/hotlink/toc/id:kpSCSAPAS4/securing-cloud-services/securing-cloud-services


Bibliography 79

[23] C. Musciano, B. Kennedy et al., HTML, the definitive Guide. O’Reilly & Associates,

1996.

[24] K. R. Fall and W. R. Stevens, TCP/IP illustrated, volume 1: The protocols. addison-

Wesley, 2011.

[25] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-Performance

Network Programs,” IEEE Internet Computing, vol. 14, no. 6, pp. 80–83, Nov 2010.

[26] S. Popić, D. Pezer, B. Mrazovac, and N. Teslić, “Performance evaluation of using

Protocol Buffers in the Internet of Things communication,” in 2016 International

Conference on Smart Systems and Technologies (SST), Oct 2016, pp. 261–265.

[27] A. Nagy and B. Kovari, “Analyzing .NET serialization components,” in 2016 IEEE

11th International Symposium on Applied Computational Intelligence and Informat-

ics (SACI), May 2016, pp. 425–430.

[28] K. Maeda, “Performance evaluation of object serialization libraries in XML, JSON

and binary formats,” in Digital Information and Communication Technology and it’s

Applications (DICTAP), 2012 Second International Conference on, May 2012, pp.

177–182.

[29] T. Dawborn and J. R. Curran, “docrep: A lightweight and efficient document rep-

resentation framework,” in Proceedings of COLING 2014, the 25th International

Conference on Computational Linguistics: Technical Papers, 2014, pp. 762–771.

[30] BSON organization. BSON (Binary JSON): FAQ. [Online]. Available: http:

//bsonspec.org/faq.htm

[31] Google Developer. Protocol Buffers Developer Guide. [Online]. Available:

https://developers.google.com/protocol-buffers/docs/overview

[32] Google Developers. Protocol Buffers API Reference. [Online]. Available: https:

//developers.google.com/protocol-buffers/docs/reference/overview

[33] S. W. Smith, The scientist and engineer’s guide to digital signal processing. Cali-

fornia Technical Pub., 1999.

[34] R. Oshana, DSP Software Development Techniques for Embedded and Real-Time

Systems. Elsevier, 2006. [Online]. Available: https://app.knovel.com/hotlink/toc/

id:kpDSPSDTE1/dsp-software-development/dsp-software-development

[35] T. T. Tran, High-speed DSP and Analog System Design. Springer Science & Business

Media, 2010.

[36] Y. He, Technical Datasheet-5mm Phototransistor T1, Everlight Electronics Co., Ltd.

[37] Conrad Electronics, Datasheet-File No.: H21205C10, Conrad Electronics SE.

http://bsonspec.org/faq.htm
http://bsonspec.org/faq.htm
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/reference/overview
https://developers.google.com/protocol-buffers/docs/reference/overview
https://app.knovel.com/hotlink/toc/id:kpDSPSDTE1/dsp-software-development/dsp-software-development
https://app.knovel.com/hotlink/toc/id:kpDSPSDTE1/dsp-software-development/dsp-software-development


80 Bibliography

[38] Analog Devices, Preliminary Technical Data-ADXL335, Analog Devices Inc.

[39] Honeywell, Honeywell Sense and Control Pressure Sensors, Honeywell International

Inc.

[40] Maxim Integrated, DS18S20 High-Precision 1-Wire Digital Thermometer, Maxim

Integrated Products, Inc.

[41] SHARP, GP2D150A-General Purpose Distance Measuring Sensor, SHARP.

[42] Microchip Technology Inc. New/Popular 8-bit Microcontrollers Products. [Online].

Available: http://www.microchip.com/ParamChartSearch/Chart.aspx?branchID=

1012

[43] Analog Devices, LCMOS 4-/8-Channel High Performance Analog Multiplexers-

ADG408/ADG409, Analog Devices Inc.

[44] ROHM Semiconductor, Non-Isolated Step-Down 3-Terminal DC/DC Converters-

Datasheet, ROHM Co., Ltd.

[45] National Semiconductor, LM386-Low Voltage Audio Power Amplifier, National Semi-

conductor Corporation.

[46] Atmel, ATmega328/P-DATASHEET COMPLETE, Atmel Corporation.

[47] MongoDB Inc. MongoDB for GIANT ideas. [Online]. Available: https:

//www.mongodb.com/

[48] NPM, Inc. npm Documentation; 01-What is npm? [Online]. Available:

https://docs.npmjs.com/getting-started/what-is-npm

[49] The Raspberry Pi Foundation. Raspberry Pi FAQs. [Online]. Available:

https://www.raspberrypi.org/help/faqs/

[50] Minitab Express Support. A comparison of the Pearson and Spearman correlation

methods. [Online]. Available: http://support.minitab.com/en-us/minitab-express/

1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/

a-comparison-of-the-pearson-and-spearman-correlation-methods/

[51] Eurocircuits GmbH. Naked proto pcb service (calculator). [Online]. Avail-

able: http://be.eurocircuits.com/shop/orders/configurator.aspx?loadfrom=web&

service=nakedproto&lang=en

[52] Área Académica de Ingenieŕıa Mecatrónica ITCR, “Normas para proyecto de grad-

uación,” Published for internal use of ITCR professors and students, 3 2017.

[53] Banco Central de Costa Rica. Tipos de cambio. [Online]. Available: www.bccr.fi.cr/

indicadores economicos /Tipos cambio.html

http://www.microchip.com/ParamChartSearch/Chart.aspx?branchID=1012
http://www.microchip.com/ParamChartSearch/Chart.aspx?branchID=1012
https://www.mongodb.com/
https://www.mongodb.com/
https://docs.npmjs.com/getting-started/what-is-npm
https://www.raspberrypi.org/help/faqs/
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
http://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
http://be.eurocircuits.com/shop/orders/configurator.aspx?loadfrom=web&service=nakedproto&lang=en
http://be.eurocircuits.com/shop/orders/configurator.aspx?loadfrom=web&service=nakedproto&lang=en
www.bccr.fi.cr/indicadores_economicos_/Tipos_cambio.html
www.bccr.fi.cr/indicadores_economicos_/Tipos_cambio.html


Bibliography 81

[54] Ministerio de Trabajo y Seguridad Social de Costa Rica. Lista de salarios. [Online].

Available: http://www.mtss.go.cr/temas-laborales/salarios/lista-salarios.html

[55] Arduino. From Arduino to a Microcontroller on a Breadboard. [Online]. Available:

https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard

http://www.mtss.go.cr/temas-laborales/salarios/lista-salarios.html
https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard


82 Bibliography



Appendix A

Example of the Cooley-Tukey FFT

algorithm

For the purpose of proving how the FFT is calculated, the following example will use a

square signal centered around zero level, with peak-to-peak amplitude of 2 and a given

frequency f . If this signal is digitalized with a sample rate of 2f , the result is an array of

values in the following way:

[1,−1, 1,−1, 1, ...]

To keep the example short, the amount of samples considered would be 4. The algorithm

starts by sorting out the elements on the array in groups of odd and even indexed values.

Considering the initial array is [1,−1, 1,−1], executing the sort process by placing the

even elements to the right generates the following new array [1, 1,−1,−1]. Now, the basic

formula of FFT, as stated in equations 2.15 and 2.16, can be recalled recursively to create

frequency spectrum with powers of 2 number of elements. For the first case, N=2. Taking

the first two elements of the sorted array:

X0[0] = E + e−
2πj
2

0O = 1 + e0 ∗ 1 = 2

X0[1] = E − e−
2πj
2

0O = 1− e0 ∗ 1 = 0

The same process, applied to the following two elements, would be:

X1[0] = E + e−
2πj
2

0O = −1 + e0 ∗ −1 = −2

X1[1] = E − e−
2πj
2

0O = −1− e0 ∗ −1 = 0

So, after the first step, the results of the FFT algorithm are two arrays of 2 elements.

Reminding that the values in the frequency spectrum are complex numbers, the respective

arrays can be expressed as:

X0 = [2 + 0j; 0 + 0j]

X1 = [−2 + 0j; 0 + 0j]

83



84

The following step would take N=4. The calculations for this step are:

X[0] = E[0] + e−
2πj
4

0O[0] = X0[0] + e0X1[0] = 2 +−2 = 0

X[1] = E[1] + e−
2πj
4

1O[1] = X0[1] + e−
πj
2 X1[1] = 0 + (cos(

πj

2
)− sin(

πj

2
)j) ∗ 0 = 0

X[2] = E[0]− e−
2πj
4

0O[0] = X0[0]− e0X1[0] = 2− (−2) = 4

X[3] = E[1]− e−
2πj
4

1O[1] = X0[1]− e−
πj
2 X1[1] = 0− (cos(

πj

2
)− sin(

πj

2
)j) ∗ 0 = 0

Because the value of N is equal to the total amount of samples, this is the final step. The

result of the FFT, expressed in the way of phasors, would be:

X = [0 + 0j; 0 + 0j; 4 + 0j; 0 + 0j]

Although in this case all the values obtained are purely real, that is not always like that.

To know the total magnitude of a single phasor, equation 4.1 should be appplied. For the

sake of keeping the example complete, the calculations of magnitude are the following:

|X[0]| =
√

02 + 02 = 0

|X[1]| =
√

02 + 02 = 0

|X[2]| =
√

42 + 02 = 4

|X[0]| =
√

02 + 02 = 0

|X| = [0; 0; 4; 0]

To relate the magnitudes of the spectrum to real frequency values, one have to consider the

base frequency for the FFT analysis, given by fsample/N . In this case, the base frequency

would be:

fbase =
fsample

N
=

2f

4
=
f

2

Then, each index in the frequency spectrum array represents a integer multiple of the base

frequency. A frequency array can be generated parallel to the magnitudes, as follows:

F = [0fbase; 1fbase; 2fbase; 3fbase] = [0
f

2
; 1
f

2
; 2
f

2
; 3
f

2
] = [0;

f

2
; f ;

3f

2
]

By inspection, one can conclude the only frequency band with a value different than zero,

and therefore the main component of the signal, is f . This was the original value set to

the signal, so the Cooley-Tukey algorithm is proven to work



Appendix B

Installation and user guide

This section explains the steps required to install and get to work the different software

components involved in the project, and also provides instructions on how to make changes

to the provided programs. A very important detail to consider is that the whole system

was designed in a Linux-based environment and it is intended to be used in that way.

Also, most of the software specifically created for the project was developed using the

NodeJS language. As the components requiring programming have it already installed

for the testing done, they can be used without worrying for any software installation.

However, if the user intends to make changes to any of the programs, it should consider

these conditions.

B.1 Quick Setup

1-The physical installation requires the set of sensors (already attached with cables in

groups), the controller circuit soldered onto the PCB, the Raspberry Pi, and two cell-

phone chargers of 1 A. The circuit should have the ADG409 multiplexer and the Atmega

328p mounted on it, but they are deattachable, so you should check them before starting.

The same should be done with the Raspberry and the micro SD

2-To place the sensors, make sure the machine is off and without any tool in the spindle.

As explained in chapter 3, the sensors are grouped by their location in the machine: table,

column, and the 3 independent sensors: light, door status and pressure. For the column

sensors, a wide cable binder can be used around the structure to fasten to it.

3-Table accelerometer can be fastened to the table grooves using a screw, nuts and the

hole the sensor itself has. For the other table sensors, there is no proffered method of

attachment; adhesive tape should be enough.

4-To place pressure sensor, find the relief valve of the compressor, in the backside of the

machine. Locate the tee on the output hose. Introduce the hose fixed to the sensor in

the free hole of the tee and move the black switch in it to the “pass” position.

85



86 B.2 Modifying existing software

5-Each sensor cable needs to be connected to the controller circuit using the respective

block. The blocks input can be opened using the screw on top of them (flat screwdriver

required), and are labeled with their function in the following way: 5V: 5V power input 0:

Ground 3V: 3.3V power input X: X feed accelerometer Y: Y feed accelerometer Z: Z feed

accelerometer Vt: Table vibrations sensor Vs: Column vibrations sensor T: Temperature

sensors M: Microphone L: Light sensor D: Door status sensor S: Spindle speed sensor

6-If the MCU and multiplexer are not in position, insert them in the corresponding

platforms. The direction of the multiplexer should make coincide the chip indent with

the socket one, but for the microcontroller should be the opposite one. In case of doubt,

review figure 3.1.

7-Plug one of the chargers in the micro-USB port in the backside of the PCB, and power

it on. The red LED of the Bluetooth module on the circuit should get on and start to

flicker.

8-Insert the SD and the other charger in the corresponding slots of the Raspberry, and

power it on. The green and red LEDs should light on, and after a couple of seconds the

LED on the PCB should change the frequency of flickering.

9-The programs in the Raspberry should run automatically on reboot. You can check

their state opening the terminal inside the Raspberry and running the following command:

sudo systemctl status name-of-service.service Also, for the data upload services

(named “Comm” and “Status”), a work log can be retrieved executing this command:

sudo journalctl -f -u name-of-service.service

8-In case the logs for the services show the following message: “MongoError: connect

ECONNREFUSED”, you should contact the personnel in charge of internal network and

ask them to raise the firewall restrictions for host “ds125335.mlab.com” at port “25335”.

9-The data can be checked at the webpage: http://dhbw-ka-maschinenbau.herokuapp.com/.

To have full access to all the graphs, you would need a valid username and password. If

you do not have an user assigned, use the guest user credentials.

B.2 Modifying existing software

For the following sections, it is assumed you have access to the full collection of programs

and related documents involved in the project. The whole group of files was left to the

personnel of Mechanic Engineering at the DHBW Karlsruhe, so you can contact them in

case of missing archives.

B.2.1 Installing NodeJS and libraries

For Debian Linux distributions and related ones (like Ubuntu) the installation of Node

can be done through the terminal, via package management. Just run the following



B Installation and user guide 87

commands:

sudo apt-get update

sudo apt-get install nodejs

It is also recommended to install NPM, which is an utility that allows the management

of Node libraries and packages to be done easily. To install it, run the command: sudo

apt-get install npm

All the libraries used for both the Raspberry services and the webpage server programs

are included in the folder named “node-modules”. You should place it inside the same

folder that would contain all other programs you would use, to avoid mistakes. In case

the folder is missing, you can always get them from file named “package.json”. In that

case, you need to get that file inside the common folder for programs, access that folder

from terminal and run the command: npm install

In case you are going to use a new Raspberry Pi for the project, you should also execute

the previous instructions in it. Consider that the Raspberry requires to burn an adequate

operative system image in the SD before putting it to work. For this project, the operative

system chosen was Raspbian (available for downloads in

https://www.raspberrypi.org/downloads/raspbian/) but any Linux distribution would

work fine. Also, remember that Raspberry is a minimal computer unit, so in order to

work in it you would need a screen with HDMI port and a keyboard, or remote access

services like SSH or VNC servers.

B.2.2 Modifying Raspberry Pi services

The services already included in the project’s Raspberry Pi are fully enabled to be mod-

ified and adapted without any problem. To change any characteristic in their operation,

locate the corresponding script for the service desired (both share the same name) and

open it. If the system warns you about the file, ignore all options and select “Open File”.

After making the desired changes, you need to restart the service. To do so, execute the

following commands:

sudo systemctl stop name-of-service.service

sudo systemctl start name-of-service.service

In case you want to include to include a whole new service in the Raspberry, follow these

instructions:

1-Write the source script for the service, in the programming language you prefer. Con-

sider that you need to have installed the compiler or interpreter for that language in your

Raspberry.

2-Save the script in a known folder in your Raspberry



88 B.2 Modifying existing software

3-Go to the folder “/lib/systemd/system/” and create a new text file named “name-of-

service.service”. The file should contain the following lines:

[Unit]

Description=add a description here

After=multi-user.target

[Service]

Type=simple

ExecStart=folder where compiler or interpreter is installed and direction

where you saved your script

Restart=on-abort

[Install]

WantedBy=multi-user.target

As a tip, compilers are usually installed in the “usr/bin/” folder.

4-Open the terminal and execute this commands, one by one:

sudo chmod 644 /lib/systemd/system/name-of-service.service

chmod +x direction where you saved your script

sudo systemctl daemon-reload

sudo systemctl enable name-of-service.service

sudo systemctl start name-of-service.service

After this, your script would be automatically executed every time the Raspberry powers

on.

B.2.3 Linking a new Bluetooth module

If you want to connect any Bluetooth device to a Raspberry Pi 3 (that has Bluetooth

reception included in it), you need to establish first a secure link. You can do this directly

from the terminal, following this instructions:

1-Open the terminal and run the command sudo bluetoothctl. You would see a list of

all devices already recognized by the system, and the terminal should indicate you are

working on the “bluetooth” mode.

2-Run the command agent on, and then defaul-agent. You should see success messages

for both

3-Run the command scan on. This will show a list with all the available Bluetooth

devices, with their corresponding addresses (series of alphanumeric combinations) and, if



B Installation and user guide 89

you allow from the device itself, the nickname of it.

4-Select the address of the device you want to connect, and then execute pair address .

If your device has a password, you would be asked to type it in.

5-After the device is rightly paired, you should execute the command trust address , to

be sure the system will always recognize it.

6-Come out of the “bluetooth” running exit and in the regular terminal, run this com-

mand: sudo rfcomm watch hci0. This should connect the device and create a port in

the Raspberry, in the direction “/dev/rfcomm0”, that you can use as any serial port.

You should run the rfcomm command everytime the Raspberry or the Bluetooth device

restarts. To make easier this task, you can create a service that takes care of it. Simply

create a script with the “#!/bin/bash” first line and the command after it, save it with

the “.sh” extension and follow the regular instructions for services. Because it is a shell

script, it will not need a compiler specification.

B.2.4 Creating new server repository

The webpage for the project was created using Heroku as PaaS. By default, Heroku stores

the page info using Git repositories, so this is the easiest way to keep an archive for future

work. To create a new Git repository with the webpage files:

1-Veriy that you have Git installed by running the command git. If installed, you will see

a list of common comands. If not, you can download it running sudo apt-get install

git-all

2-Copy all the webpage files, including the programs, HTML scripts and images, in a

known folder on your PC. Keep an eye on the folder order provided, as the webpage

needs to keep track of links between different directions.

3-From the terminal, access the page files folder.

4-Run the command git init . and then git add .. You should see confirmation messages.

5-Run the command git commit. You will be asked to add a comment about the

changes done to the repository. Write something you consider important about it, then

click CTRL+X and then the key “Y”.

B.2.5 Deploying changes to the webpage

The changes you do on the webpage files will not be reflected on the final product until

you update the repository in the Heroku server. To do it, you can use the dedicated

command line or CLI, which is the fastest way to link the repository to the cloud. The

full instructions to update the page are:

1-To install Heroku CLI, run in order the following terminal commands:



90 B.2 Modifying existing software

sudo add-apt-repository “deb https://cli-assets.heroku.com/branches/stable/apt

./”

curl -L https://cli-assets.heroku.com/apt/release.key — sudo apt-key add -

sudo apt-get update

sudo apt-get install heroku

2-Access to the Heroku account running heroku login in the terminal. You will be asked

about the email and password for the account; write the project’s credentials as provided

in the webpage files.

3-Access the repository folder from the terminal. If it is the first time you try to upload

the repository to Heroku, run heroku git:remote -a dhbw-ka-maschinenbau. If not,

continue to the next step

4-If you created a new file inside the folder, run git add ., and then git commit. Write

a comment and exit with CTRL+X. If you only made changes to already existing files,

you only need to do the commit part.

5-Run git push heroku master. After this, changes should be visible in the webpage

The CLI also allows you to check the logs to search for errors (run heroku logs from

inside the folder) and to rename the webpage (run heroku apps:rename newname .

About webpage files, remember that the one named “Procfile” always define the main

program to run inside server.

B.2.6 Administering database users

You can change the users defined for the database and webpage access using the Heroku

credentials. To do it, go to the following website: https://dashboard.heroku.com/login.

Enter the credentials, and you will see a list of pages associated with the account. Select

the one called “dhbw-ka-maschinenbau” (or the current name you have for it). Then,

under the “Installed add-ons” title, search for “mLab MongoDB”. After clicking on

it, you will be redirected to the database presentation page. You can see there tabs to

visualize data stats, search for specific datapoints and even erase the collection from there.

The tab named “Users” is the one indicated for roles and permissions. From there, you

can add a new user or remove existing ones. When adding a new user, you can select if

you want it to be read-only or not.

B.2.7 Programming the MCU

Any microcontroller needs an external programming device to upload the desired instruc-

tions in it. For the Atmega 328p, the programmer can be replaced for an Arduino UNO,

which is a cheap and widely available solution. To use this method, the Arduino IDE is



B Installation and user guide 91

required. The steps to program the Atmega chip are:

1-Go to the following website: https://www.arduino.cc/en/Main/Software and download

the version of the IDE that suits your PC. After downloading the package, open the files

and follow instructions for installation.

2-Open the IDE, go to Files/Examples and select the one named “ArduinoISP”. Compile

it and load it to the Arduno board, using the corresponding icons in the upper side of the

screen. Remember to select, in the “Tools” tab, “Arduino/Genuino Uno” as the board,

“AVR ISP” as programmer, and the right port were you connected the USB cable for the

Arduino.

4-With the Arduino board and the MCU, prepare the circuit shown on figure B.1. Notice

that you will also need a 1 kΩ resistor and the crystal clock that you will use for the MCU

common operation

Figure B.1: Circuit for Atmega 328 programming.Source: [55]

3-In the “Tools” tab, change the board to “Arduino Duemilanove or Nano w/ ATmega328”

and the programmer to “Arduino as ISP”.

4-If it is the first time you program that specific MCU, run Tools/Burn bootloader

5-Search and open in the IDE the program you want to load to the controller. Compile

it to check for errors, and then run Program/Upload using programmer. This flashes the

MCU with the chosen script.

Keep in mind that for the control program used in this project, is necessary to have the

following files inside the “libraries” folder of the Arduino installation directory, before



92 B.2 Modifying existing software

compiling it: the “OneWire” library for the temperature sensors; “TimerOne” library for

the timing structure; and the “nano” files, including “Model.pb.h” and “Model.pb.c”, for

the Protocol Bufers encoding

B.2.8 Changing the Protobuf message

To allow the upload service on the Raspberry and the control program in the MCU to

run the Protobuf utility, different files compiled from the .proto archive to the specific

language are needed. If you make a change to “Model.proto” or need to create a new

type of message, you need to recompile the files. For the Raspberry ones, the JavaScript

version is the one required. The steps to use it are:

1-From terminal, get into the folder containing the .proto file. It is recommended that

this folder should be the same containing the rest of programs.

2-If you have not installed the compiler before, run the command npm install google-

protobuf. Also, download from https://github.com/google/protobuf/releases the pack-

age corresponding to JavaScript, and un-compress it. This is the compiler, “protoc”

3-Every time you need to compile a new version, run the command:

protoc –js out=import style=commonjs,binary:. name-of-file.proto.

This will create a file named name-of-file pb.js. You need to place that file in the same

folder as “Comm4.js”

For the microcontroller, the version is known as “Nanopb”. To use it:

1-If you have not downloaded the “protoc” compiler, do it following previous instructions

2-Download the compressed file from https://jpa.kapsi.fi/nanopb/download/. Un-compress

it inside the folder containing the .proto file

3-From the uncompressed files, you need to copy the ones named “pb”, “pb-common”

and “pb-encode”, with both .c and .h extensions to the Arduino libraries folder. If you

already copy there the “nano” folder included in the program files of the project, ignore

this step.

4-From the terminal, get into the folder containing the .proto file and run the commmand:

./nanopb/generator-bin/protoc –nanopb out=.name-of-file.proto -D PB FIELD 16BIT=1

5-The output should be 4 files. Copy the ones named name-of-file pb.c and name-of-

file pb.h to the Arduino libraries folder. Compile and load the controller program to the

MCU again



Appendix C

Electronic circuit in detail

In the next page, an schematic drawing of the main circuit for the monitoring system is

presented. It is included as a separate section to allow more level of detail for a better

visualization.

93



94

Figure C.1: Main electronic circuit



Index

CNC machine, 7

Database selection, 36

Fast Fourier Transform, 19

FFT implementation, 41

Filtering, 31

Hermle UWF900E specs, 10

HTTP and HTML, 13

Internet of Things, 10

Microcontroller selection, 26

Monitoring results, 58

PaaS providers, 37

PCB, 93

Platform as a Service, 12

Protobuf implementation, 30

Protocol Buffers, 15

Sensor calibration, 47

Sensor selection, 24

Watchdog, 42

Web site design, 43

95


	Contents
	List of Figures
	List of Tables
	List of symbols and abbreviations
	1 Introduction
	1.1 History and perspectives of the DHBW Karlsruhe
	1.2 The challenge of monitoring mechanical equipment
	1.3 Brief overview of the monitoring system design
	1.4 Objectives and document structure

	2 Theoretical references
	2.1 CNC machines: characteristics and requirements
	2.1.1 General definition
	2.1.2 Maintenance of CNC machines
	2.1.3 Examples of modern maintenance
	2.1.4 Hermle UWF900E parameters

	2.2 Internet of Things and cloud-hosted services
	2.2.1 What is IoT?
	2.2.2 Cloud hosting and Platform as a Service (PaaS)
	2.2.3 Databases: SQL vs NoSQL
	2.2.4 Basics of web design

	2.3 Communication protocols for fast processing
	2.3.1 Serialization protocols
	2.3.2 Google Protocol Buffers

	2.4 Filtering and data analysis on the digital domain
	2.4.1 Processing filters
	2.4.2 Timing and digitization errors
	2.4.3 Frequency analysis: Fast Fourier Transform (FFT)


	3 IoT Monitoring System for CNC: Sensors and other electronic components
	3.1 Summary of the design process
	3.2 Component selection
	3.2.1 Variables to be monitored
	3.2.2 Sensor selection
	3.2.3 Microcontroller and other ICs

	3.3 Microcontroller programming
	3.3.1 General structure and timing
	3.3.2 Serial communications
	3.3.3 Measurement processing

	3.4 Physical installation
	3.4.1 Electronic circuits
	3.4.2 Installation on the CNC machine


	4 IoT Monitoring System for CNC: Internet communication
	4.1 Summary of the design process
	4.2 Software selection
	4.2.1 Database
	4.2.2 Server side management (PaaS)
	4.2.3 Programming language and additional libraries

	4.3 Processing services on the SBC
	4.3.1 Sensor data parsing and database updates
	4.3.2 Machine status and frequency analysis
	4.3.3 Watchdog

	4.4 Web based services
	4.4.1 Web page main layout
	4.4.2 Graphics
	4.4.3 Security options


	5 Results and analysis
	5.1 Sensor calibrations
	5.2 Bluetooth and Protocol Buffers
	5.3 Web page with made-up data
	5.4 Web page with real-time data
	5.5 Analysis of operative data
	5.6 Watchdog tests
	5.7 Costs involved in the project

	6 Conclusions and future work
	Bibliography
	A Example of the Cooley-Tukey FFT algorithm
	B Installation and user guide
	B.1 Quick Setup
	B.2 Modifying existing software
	B.2.1 Installing NodeJS and libraries
	B.2.2 Modifying Raspberry Pi services
	B.2.3 Linking a new Bluetooth module
	B.2.4 Creating new server repository
	B.2.5 Deploying changes to the webpage
	B.2.6 Administering database users
	B.2.7 Programming the MCU
	B.2.8 Changing the Protobuf message


	C Electronic circuit in detail
	Index

