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Summary

In the present work it is proposed to study hierarchical implementations for a reference

shard in sharded blockchain environments. Classic sharded blockchains suffer from low

cross-shard transaction throughput, given that common cross-shard protocols such as

two phase commit, compromise throughput to prioritize consistency. The results of this

study could lead to the creation of better sharded blockchain systems with enhanced

cross-shard throughput with no compromises to system consistency. This research will

use simulations with real main net transactions with the intent of analyzing the yield

in performance that having a hierarchical structure of reference shards could have

in cross-shard transaction throughput and latency. The results of this experiments

will be statistically analyzed (ANOVA) to determine that there could be a significant

advantage of using a hierarchical implementation against using a single reference shard

implementation.
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1. Introduction

In 2009, a person or persons under the pseudonym of Satoshi Nakamoto published the

white paper of the first successful digital currency, Bitcoin [6]. This work presented

the idea of using a distributed network of computers to maintain a ledger that could

record transactions in a totally decentralized and trust less fashion. This network

would have nodes where every node would maintain a local copy of a data structure

called blockchain and these nodes would be rewarded for keeping the network safe and

behave according to an established protocol.

The blockchain was proposed as a timestamp server [1] composed of a succession

of blocks that could hold transactions as payload and where each block would be linked

to its predecessor by using a hash pointer.

This technology proved to be very secure in part due to its distributed nature

and to the fact that recording the historical log of transactions in a linked list of hash

related blocks made it tamper proof. This means that if any malicious actor tries to

modify any of the past transactions confirmed in the network, it would have to change

the whole chain of hashes in the rest of successive blocks, which in turn would be

noticed as an unmistakable sign of tampering with the system.

Bitcoin implementation also solved the so called double spending problem, that

was an unresolved challenge in the field. By using the blockchain data structure,

transactions where recorded in an unchangeable order, meaning a person could not
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spend the same token twice since the origin of each token could be tracked since the

beginning, making impossible to spend something that was already spent.

After bitcoin’s success, there were a number of other projects that by harnessing

the benefits of blockchain technology were able to put together cryptocurrencies with

enhanced functionalities. For instance, Ethereum was created as a cryptocurrency that

leveraged blockchain to record transactions, but abstracted away the idea of transaction

execution and generalized it into a general purpose code execution engine, which gave

birth to smart contracts [7].

Very soon many computers scientists began to observe that despite the strong

security properties of cryptocurrencies implemented using blockchain, it would be hard

to reach mass adoption due the lack of capacity of these systems to scale. The amount

of transactions that these networks where capable of processing is very low, for instance

bitcoin can only process as much as 15 tx/s, which is very low when compared to other

payment systems like Visa that is capable of processing 65000 transactions per second

[5].

Blockchain technology is normally modeled as 3 layer stack, where layer 0 is

related to data, layer 1 is related to consensus and layer 2 is related to off chain

solutions [3]. So far there have been many different attempts in all of these layers.

Scalability is likely to be achieved by a combination of solutions from all three layers

[5].

The consensus layer has been a layer where many computer scientists have fo-

cused, since improvements in this layer would be the ones that would rebound the

horizontal scalability capacity of blockchain systems. One of the areas that has re-
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ceived most of the attention in recent years is sharding [8]. Sharding is a divide and

conquer approach, where the responsibility of maintaining the state of the system is

divided among the nodes of the network.

Sharding technique basically divides the network into smaller groups of nodes.

This exploits the locality of transactions to avoid the need of involving the whole set

of nodes. This means transaction could be processed only in the nodes that maintain

the state related to that transaction. Nevertheless, this techniques has very impor-

tant drawback, such as reduced tamper resistance and poor cross-shard transaction

throughput [4].

In a sharded blockchain system cross-shard transactions are of crucial importance

as lacking the ability to connect the different subgroups that compose the system, would

degenerate into a set of blockchains working independently.

1.1. Problem Statement

Blockchain systems are the backbone of today’s cryptocurrencies. Cryptocurrencies

are one of the most promising technologies to transform global economy [9]. This tech-

nologies will allow the democratization of currency creation through decentralization.

Nevertheless, they have not been able to reach wide mass adoption due in part to their

poor scalability.

Since their inception, blockchain systems have suffered from poor scalability prop-

erties [5]. The consensus protocols that make these systems successful in terms of

security have undermined their ability to process a large number of transactions per

second.
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The most popular and widely used blockchain systems today can rarely process

more than a 1000 transactions per second. When these systems are compared against

wide adopted credit card networks like Visa (65000 tx/s), it is evident that there is a

long way in blockchain development so that one day these systems will be able to take

over cash payments.

A number of solutions have been proposed to alleviate this system weakness.

Sharding, is one of such solutions and is a well-known approach to increase throughput

in databases [8]. When sharding is applied to a distributed ledger running a blockchain

protocol, a big monolithic network is split into several subgroups with each of the

subgroups maintaining its own blockchain.

Since the states stored into each of the blockchains are disjoint, a mechanism is

needed to allow transactions to happen between different shards. Transactions that

traverse many shards are called Cross Shard Transactions. The mechanisms to im-

plement this transactions needs to guarantee atomicity and prevent double-spending

[3].

In the sharding space there have been a number of approaches to implement the

cross shard mechanism, for instance most sharded blockchain use an approach called

two phase commit . This approach basically blocks value in the origin shards and

then transfers that value to the destination shard [8]. The problem with this common

approach is that the protocol needs to wait until all the shards that are involved in

a transaction confirm value has been locked, which in turn compromises the protocol

throughput.

So far the community has been trying different alternative approaches. One
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of these approaches is by using a reference (central) shard [4], where worker shards

continually publish their state and cross shard transactions are processed on top of the

states that worker shards publish to reference shards. This approach uses optimistic

assumptions and doesn’t rely on performing busy waiting until value is locked in origin

shards.

Implementations with reference shards were proven to perform better than other

implementations using 2pc [4]. Nevertheless, this approach has not been tested while

using a hierarchy of reference shards, which could in turn yield better performance and

allow this type of protocols to scale better. So, basically it is unknown if whether or not

using a hierarchy of reference shards these type of protocols would improve their cross

shard transaction throughput and latency while intra shard transactions (transactions

that do not cross shards) throughput and latency remain unaffected.
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2. Hypothesis and Objectives

2.1. Hypothesis

There have been many sharded blockchain implementations that take advantage of

using a reference shard pattern, for instance rivet, polkadot (Relay chain), ethereum

2.0 (beacon chain) and they have proved to be efficient, although no study has tested

that using a hierarchy of reference shards could increase throughput. So, the hypothesis

for this research is the following:

A sharded blockchain (like Rivet framework) implemented using a hierarchical

structure of reference shards will yield an increase of at least 10%1 in cross-shard

transaction throughput, while having the same cross-shard transaction latency and

without affecting intra-shard transaction throughput and latency2 when tested against

a blockchain using a single reference shard using organic main network transaction

benchmarks (Ethereum transactions).

2.2. General objective

Determine if a hierarchical structure of reference shards implementation of a sharded

blockchain system (rivet framework) yields an advantage in terms of cross shard trans-

1Given that performance gain of a framework like Rivet against 2PC is of 20% and that experi-
mental throughput was 80% of input rate when using a single reference shard.

2Given that a framework like Rivet experimental intra-shard latency is 5 times the one of 2PC it
would be undesirable to have an increase in this metric
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action throughput against a single reference shard implementation.

2.3. Specific objectives

1. Design the algorithms for cross shard transaction processing with hierarchical

reference shards.

2. Extend a python based simulation framework (BlockSim [10]) to test both hier-

archical and single reference shard implementations.

3. Explore which topologies yield best results for the hierarchical implementation.

4. Analyze how intra-shard transaction confirmation latency is affected in a sharded

hierarchical setup.

5. Explore how the number of worker shards affect the structure of the hierarchical

setup.
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3. Theoretical Framework

This chapter presents all the fundamental theoretical concepts that are directly or

indirectly related to the development of this research.

3.1. History of Blockchain

The first mention to digital money happened back in 1983, David Chaum was the

first to describe digital money [11]. Then, in the 1990’s there were companies like

paypal who implemented web-browser based payment systems that allowed individuals

to pay one another by using their emails as identities. In 1998 Wei Dai, proposed B-

money [12], which shares many similarities to what Nakamoto proposed [1] and which

eventually became the worlds first successful cryptocurrency. After B-money it came

Bit Gold, which was another digital currency which had its own Proof-of-Work

(PoW) mechanism through which the solutions were cryptographically signed and

broadcasted to the public [11, 13]. In 1997, Adam Back proposed Hashcash as a

denial of service counter measure for services such as email [14]. Hashcash also made

use of a PoW algorithm for generating new coins and faced many of the same problem

of its predecessors.

In 2009, Bitcoin was presented in [1] by a person under the pseudonym of Satoshi

Nakamoto. This work proposed the use of a peer to peer network that would achieve

consensus through proof of work algorithm (PoW). Also, one of the innovations intro-
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duced by Nakamoto was the use of a data structure called blockchain as a ledger to

store transactions.

3.2. The first steps of Blockchain: Bitcoin

Bitcoin was proposed as a peer to peer system. In this system the nodes would collect

transactions from clients (users) and by using a gossip protocol they would transmit

these transactions to the rest of the system. After that, they would compete (through

a PoW protocol) to add these transactions to a distributed ledger called blockchain.

In figure 3.1, it can be seen the basic dynamic of such distributed ledger implemented

through blockchain. The blockchain is a data structure that exist in each member

of the network and it is by following a consensus protocol that nodes will be able to

update their local copy of the blockchain.

The concept of blockchain entails a timestamp server as can be seen in figure 3.2,

this idea works by creating a hash of a block of data to be timestamped and publishing

that hash to all the network. This timestamp would in turn prove that the data must

have existed at the time. Each timestamp would also include the previous timestamp

in its hash, this would form a chain with each new timestamp and the succeeding

timestamps would in turn reinforce the ones before [1].

The way of adding new blocks to this timestamp server is through a consen-

sus protocol called Proof of Work. In this protocol, to propose a new block for the

blockchain a node also called a miner, creates the new block out of as many transac-

tions (that it has in its transaction pool collected from clients and other nodes) that

could be fitted into 1 MB [1] of space [6]. Then, the miner would add a nonce to start

9



Figure 3.1: Distributed blockchain ledger

Figure 3.2: Bitcoin timestamp server [1]

10



calculating a sha256 hash of the block (transactions + nonce) and verifies if such

hash is less than a specific number called difficulty . If the hash obtained from such

calculation is not less than the difficulty then the miner would increase the nonce by

one and repeats until a hash less than the difficulty is obtained [6]. The process of

looking for a nonce that satisfies the difficulty is called mining .

This means that in order to add new transactions to the blockchain the miner

needs to provide a proof that it has made a lot of work (and he will be rewarded for

this work). This proof in turn is hard to fake, since the proof of work protocol works

with a problem that is very hard to solve but very easy to verify. This means that

while a miner could have used thousands of computing cores to solve the problem fast,

anyone in the system could verify his solution with commodity hardware [6].

This protocol makes blockchains tamper proof in the sense that if someone wants

to deviate from the protocol and introduce forged transactions to benefit from that, it

will need to invest a huge amount of computing power (money) to compete in the proof

of work protocol. This is turn means that it will need to beat the hash rate(computing

power) of the rest of the honest nodes in the network. So, if the network has a big

hash rate, it will be nearly impossible and unattractive for a rational player to try to

perform this type of attack, this is called 51% attack.

Consensus protocols have made blockchains very secure and resistant to tamper-

ing, but they have affected their scalability. In blockchain, scalability means the ability

to increase the throughput of a network if the amount of nodes is also increased [5].

Due to the use of consensus algorithms like PoW, the mechanism to process transac-

tions is strongly coupled to the consensus algorithm [15]. This coupling in turn makes
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throughput heavily dependent on the speed of the consensus protocol which is more

likely slow [5]. In figure 3.3, one can see a bar chart with the amount of transactions

per second for mainstream payment systems and some popular cryptocurrencies. In

this chart, it can be seen that Visa which is a widely used credit card system allows

45000 transactions per second. It can be argued that if blockchain systems would take

over world’s economy one day, they should at least be capable of processing as much

transactions as Visa. Furthermore, considering that Visa is not able to handle all of

the worlds transactions, cryptocurrencies and blockchain technologies would need to

go way beyond 45000 tx/s throughput to achieve such goal.

Figure 3.3: Transactions per second of widely used payment systems, derived from [2]

3.3. Solutions to scalability issues

To ease the development of blockchain technology and also analyze the solutions to

scalability issues the community has created a model of layers, composed of three

layers: network, consensus and application [3].
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3.3.1 Blockchain Layers

Network Layer: In this layer nodes join a peer to peer p2p network to synchronize

information with each other. In p2p networks there is no central communication node

[3].

Consensus Layer: the nodes that participate of this layer act as block producers

and generate such blocks by following a consensus algorithm.

Application Layer: On top of consensus layers, there may exist applications

such as digital assets, smart contracts and decentralized applications [3].

3.3.2 Blockchain consensus layer solutions

The consensus layer is where transactions get processed, thus this is the layer that is

directly related with the blockchain throughput [5]. This is the layer that needs to be

modified the most to increase the amount of transactions that can be processed. As

seen in table 3.1, this layer is also called Layer 1 is divided into 4 areas. These areas

aim towards vertical scalability and then others that aim towards horizontal scalability.

Vertical scalability has been used in projects such as bitcoin cash where the

size of each block in the chain has been increased to allow for more transactions to

fit in, thus increasing the amount of transactions processed per run of the consensus

algorithm. Nevertheless, this approach has been demonstrated [5] to lead to a more

centralized network, given that nodes that participate of the protocol should have

enhanced capabilities in terms of networking hardware to be able to handle blocks of

bigger size. This approach is similar to the SegWit in bitcoin project which is a solution
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Table 3.1

Current solutions for blockchain scalability [5]

Layer Categories Solutions

Layer 2: Non On-Chain
Payment Channels

Lightning Network, DMC
Raiden Network, Sprites

Side Chain
Pegged Sidechain, Plasma

liquidity.network
Cross-chain Cosmos, Polkadot

Layer 1: On-Chain

Block Data
SegWit, Bitcoin Cash

Compact Block relay, Txilm
CUB, Jidar

Consensus
Bitcoin-NG, Algorand
Snow white, Ouroboros

Sharding
Elastico, Omniledger
RapidChain, Monoxide

DAG

Inclusive, SPECTRE,
PHANTOM, Conflux,

Dagcoin, IOTA,
Byteball, Nano

Layer 0 Data Propagation
Erlay, Kadcast

Velocity, bloXroute

to transaction malleability but that at the same time increases block size to allow for

more transactions to fit into the block [6]. If this kind of solution is extrapolated

further that would lead to a blockchain network that is highly centralized, which could

in turn lead to increasing risks of the blockchain being hijacked by a group of nodes

that collude to control the protocol [8].

The horizontal approach to blockchain scalability aims to modify the mechanisms

that are used to process the transactions. In this space the most promising solution

is sharding. Sharding is a divide and conquer approach where the fact that a trans-

action that involves only 2 different parties should not cause all the network to spend

bandwidth to process such transaction [8].

In figure 3.4 there is an example of how such a system would work. It can be seen

that basically the whole network is divided into groups of nodes called shards . Each

14



one of these groups would process transactions and maintain a local (to the group)

blockchain. These blockchains hold disjoint states meaning that each of them has the

record of a subgroup of the accounts of the system and if there is a transaction that

only involves transactions that exist in the local shard blockchain then that transaction

would be processed locally, this transactions are called Intra Shard transactions .

There may be a case in which a transaction could involve tokens or value that is locked

into different shards, this transactions are called Cross Shard transactions .

Figure 3.4: Sharded blockchain [3]

There are already many different projects such as Elastico [16], Chainspace [17],

Omniledger [18], RapidChain [19] and Monoxide [20] that have leveraged sharding

techniques to increase the transaction throughput and lower transaction latency. These

protocols are far more complex than bitcoin [3], because they need to have mechanisms

for node selection, epoch randomness, node assignment, intra shard consensus, cross

shard consensus and reconfiguration.

These protocols use a combination of Practical byzantine fault tolerance consen-

sus algorithms for intra shard consensus and then special consensus like two phase

15



commit algorithms for cross shard transaction processing. PBFT algorithms allow

shards to reach consensus quickly, but as seen in figure 3.5 they rely on several phases

of message exchanges. This makes these algorithms to scale badly and make their

execution expensive.

Figure 3.5: Practical Byzantine Fault Tolerant algorithm [3]

Even though these protocols have been able to theoretically increase the blockchain

bandwidth, cross shard transaction consensus remains a bottleneck [4]. This happens

because of the two phase commit algorithm’s reliance on running PBFT intra shard

consensus algorithm [4].

In figure 3.6, an execution example can be seen of a client driven two phase

commit protocol. In this protocol when there is a transaction between shards (cross

shard), the values within the input shards need to be locked, so the client sends a

lock request to the shards that in turn need to run the intra shard consensus protocol

to agree on the lock value. After the values are locked, the input shards will send a

certificate signed by the majority of the nodes. The client will then be able to send

this certificate to the output shard where the value (or tokens) will be assigned to the

account of the transaction recipient. Each time the client sends a message to each of
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the shards involved in the transaction, the intra shard consensus needs to run, which

makes this approach expensive in terms of message exchanges.

Figure 3.6: Client Driven Two Phase Commit algorithm [3]

The protocols in [17, 16, 18, 19] use two phase commit protocol (2pc), which

affects their cross shard transaction throughput. So, even though this solution has

proved to be effective processing thousands of intra shard transaction per second the

cross shard transaction mechanism is a bottleneck that affects overall system perfor-

mance [4].

As an alternative to 2PC protocol there are some protocols like ethereum 2.0

(beacon chain), polkadot (relay chain) and Rivet framework which use reference shards.

Which are basically central nodes that maintain a main chain where the state of all the

worker shards is committed through hashes. In figure 3.7, there is a reference shard

that constantly receives the hashes of the state of each of the worker shards, therefore

if a cross shard transaction occurs the transaction will be processed on top of the states

reported by worker shards. This means worker shards run an optimistic algorithm that

whenever there are no cross shard transactions will run in a normal fashion and will be

able to do progress each time it commits its state to the reference shard. In case a cross
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shard transaction happens, after the transaction is processed in the reference shard it

will invalidate state that has not been committed to reference shard. This approach

eventually eliminates the need to block value in each shard with the drawback that it

will affect the intra shard throughput [4].

Figure 3.7: Rivet framework Cross Shard protocol [4]

The implementation of sharded blockchain with a central reference shards may

yield performance benefits in relation to the performance of sharded blockchains that

use 2PC [4]. Nevertheless, having a single reference shard will only allow the network

to grow up to a certain size because of the following reasons:

• The reference shard needs to run a PBFT protocol which scales bad.

• The nodes in the reference shard will be able to handle incoming traffic networks

up to a certain amount, after which they would start falling behind.

That is why we needed a method in which reference shards could scale to handle

more load coming from more clients and more worker shards. A way to achieve such

scaling is by using a hierarchical structure of reference shards which could in turn

handle more traffic and maybe even increase the performance of the overall network

(transaction throughput and latency).
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4. Implementation

At the beginning of this research, BlockSim[10] was going to be used to conduct all

the experiments. This simulator was going to be extended and the ability of shard

simulation was going to be added. Nevertheless, extending this simulator proved to be

a difficult task.

Since the very beginning it was observed that even when this simulator was used

to explore latency and throughput of major blockchains such as bitcoin and ethereum,

the network topology was not a major concern of the author.

In this scenario it was decided that the best approach was to use discrete simula-

tion but BlockSim was no longer an option to conduct the experiments for this research

and this is why the idea of creating a simulator from scratch that would expose an API

to allow a protocol researcher to use code to represent a topology in a simple way was

thought of as very good approach. So, one of the main contributions of this work is

ShardSim, this simulator unlike BlockSim has the topology of the network encoded in

its core.

Since there may be other repositories in the community with the same name, I

hereby declare that ShardSim is an entirely original creation of this research.
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4.1. ShardSim design

ShardSim was born as an alternative to BlockSim, so from a usability perspective it is

very different to BlockSim as it is designed to represent topologies by using code since

the beginning, but it uses the same simulations principles i.e discrete simulation.

In figure 4.1, it can be seen that the simulator receives an stimuli consisting of

transactions, this transactions are parsed and put into an event queue. This queue is

constantly being sorted timestamp wise, so that each time that an event gets drawn

from by the simulation engine, it gets the most imminent event.

In ShardSim, events have a type and the engine will handle each event depending

on their type, handling an event generally means updating the state of the simulation,

which is held at the blockchain classes. Updating the state in turn could potentially

generate new events that are sent to the queue by the blockchain classes.

While the simulation is running there is a special kind of event that will be sched-

uled periodically for reporting. Each time this event happens while the simulation is

running, metrics will be gathered an aggregated by a module called metrics aggregator.

The metrics aggregator will traverse the whole topology in search of incoming transac-

tions to calculate the amount of transactions that the simulated blockchain system is

receiving and will also check the amount of transactions that are being settled in the

blockchains of each shard of the system to calculate the output amount of transactions.

Is important to note that metrics aggregator is capable of gathering and aggregating

such transactions shard wise, meaning that it allows to eventually calculate the aver-

age intra-shard throughput, intra-shard latency, cross-shard throughput and cross-shard
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latency. When the simulation finishes the engine will command the metrics aggregator

to dump those metrics into file for later analysis.

Figure 4.1: ShardSim high level overview

4.1.1 ShardSim classes and simulation details

ShardSim is basically a discrete time simulation system, this means that simulations

in ShardSim are driven by events that will carry a timestamp. When these events

get processed by the simulation engine, new events will be generated with a different

timestamp, this basically represents how much simulation time has passed between

the initial event and the subsequent event, in other words simulation time increments

could be little or large depending on what model is used to represent the phenomena
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that is being simulated. Also, it is worth nothing that simulation time in a discrete

event simulator is completely decoupled from host system time, so it does not matter

if the simulator is being used in a slow or very fast computer the results should be the

same on both.

In ShardSim, each time that an event gets generated, the timestamp that will

be assigned will be the sum of the current simulation time and a time delta that is

generated randomly and has exponential distribution. An exponential distribution is

what best describes the delay on a network according to [21].

4.2. Generalizing shard algorithm

In [4], authors use 2 different types of shards, worker and reference shards. This research

main intent was to test the performance (throughput and latency) of different shard

hierarchies, intuitively what this means is that shards are no longer just reference or

worker type, there will be an intermediate type of shard that should have characteristics

of both reference and worker shards.

Intuitively, in the Rivet framework worker shards are allowed to progress with

intra-shard transaction execution while at the same time they poll the reference shard

and when a cross-shard transaction is detected the worker shard will throw away all the

blocks that were been created since the last time it committed a block to the reference

shard.

Then, if there is no conflict with cross-shard transactions the reference shard

would have to accept worker shard block commitments and settle those in a blockchain

that it maintains.
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One of the big questions in this research was how would an intermediate shard

behave? That is, a shard that is not a worker and is not the top most shard. In figure

4.2 it can be seen the 3 types of shards that would be present in a hierarchical system.

The intermediate kind of shard would in turn need to have a little bit of worker in

the sense that it would need to be able to poll its parent shard but at the same time

have a bit of a reference shard as it would need to accept commitments coming from

its children.

Figure 4.2: Types of shard in a hierarchical topology of shards

Intermediate shards would have to behave as hybrids and that is why a special

version of the algorithms proposed in [4] had to be created. Algorithm 1, is a combi-

nation of the aforementioned algorithms and it allows a shard to accept commits from

its children and then commit the blocks it generates to its parent. In algorithm 1, each

time that the shard commits a block it will retrieve the latest known parent block Pi,

but the parent on its own will do progress that is why the latest parent block Pk is

mentioned in the algorithm because they can differ depending on the block generation

frequency of the parent. The algorithm starts by checking if the latest block in the

parent is at a height that is higher than the height of the latest known block (from the

previous commit), if the latest block has a lower height that means that its parent has

discarded blocks because of an upstream conflict with a cross-shard transaction, so now
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the shard will have to look in the parent blockchain for its latest committed block. This

block commitment should appear in parent block Pg, with g ≤ i The shard will now

have to discard all the blocks, that appear after Bg (Bg being the block committed at

Pg). Since this type of shard does not maintain the state of accounts and instead only

preserves a history of cross-shard transactions, the shard will take all the transactions

of all the blocks that appear after Bg and will move them to the transaction pool, so

that they are not lost. After this, the shard will retrieve from its parent all transactions

that involve any of its children Qg,k and that appear after Pg and will store these in a

new block Bg+1. This block will also contain all the new cross-shard transactions and

commitments done by the shard’s children, that are not mentioned in Qg,k. On the

other hand, if the shard’s parent has not discarded any blocks since the last time the

shard committed a block Pi height will be greater than Pk and in this case, it will need

to ask for transactions that involve any of its children Qi,k, then all new transactions

and commitments done by the children will be added to the new block, if they do not

conflict with the transactions mentioned in Qi,k.

It is worth mentioning that this algorithm is a first and maybe naive implemen-

tation, I invite other researchers to dig deeper on the optimization of this algorithm.

The optimization of this algorithm was not included in this work because it falls out

of the strict scope of deciding if using a multi-level hierarchy of shards renders any

benefits in terms of throughput or latency.
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Algorithm 1 Intermediate shard
1: Inputs:
2: Pi:latest known parent block
3: Pk:latest parent block
4: Bi:latest committed block
5: Bj :latest block
6: newctx:New cross shard transactions available
7: newcom:New state commitment transactions available
8:
9: function valid commitments(Q, com)

10: Sl+1 ← ∅
11: for each shard Xi do
12: validXi

= ∅
13: for each state commitment comj = ⟨bj , hj⟩ from Xi in com do
14: if bj extends b

ℓ(i)
& bj is certified & Qi is empty then

15: validXi
← validXi

∪ {comj} a

16: comj
∗ ← max{validXi

}
17: Sl+1 ← Sl+1 ∪ {com∗

i }
18: Qi ← ∅
19:

return Sl+1

20:
21: if Pkheight

< Piheight
then

22: Pg parent block with the highest commitment
23: Bg block committed in Pg ▷ All blocks after Bg are dropped
24: Qg,k transactions that appear between parent blocks Pg and Pk
25: qg,j children cross shard transactions that appear between block Bg and Bj
26: newctx = newctx ∪ qg,j
27: ▷ θ checks the addresses in Qg, k and adds to Qg,k all txs in newctx that do not overlap with the first
28: Q← θ(Qg,k, newctx)
29: Sg+1 ← V ALID COMMITMENTS(Q,newcom)
30: Bg+1 ← ⟨g + 1, hash(Bg), Sg+1, Q⟩
31: else
32: Qi, k cross shard transactions between parent Pi and Pj that include any children shard
33: Q← θ(Qi,k, newctx)
34: Sj+1 ← V ALID COMMITMENTS(Q,newcom)
35: Bj+1 ← ⟨j + 1, hash(Bj), Sj+1, Q⟩
36:
37:

4.3. Experiment design

In summary the aim of the experiment carried out during this research was to answer

this question: Would a hierarchical architecture, meaning an architecture with more

than 2 levels(worker and reference) be able to yield any benefit in terms of throughput

or latency intra or cross shard?.

4.3.1 Initial notions for experiment design

The experiment design process was preceded by an intuitively high-level analysis of

why and why not a hierarchical architecture of shards may yield benefits in terms of

latency and throughput.

In a blockchain system, the throughput is given by the number of transactions
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that can be settled in the blockchain in a given amount of time. The most important

bottlenecks in a blockchain system are the frequency by which the blocks are pro-

duced and the number of transactions that can fit into a block. That means that the

transaction throughput can be computed as stated in formula 4.1.

transaction throughput = block production frequency ∗ block size (4.1)

Latency, on the other hand, is given by the amount of time that takes from the

moment that the transactions arrive at a node in the system to the moment it gets

settled into the blockchain. So, the following intuitions were enumerated in favor and

against a hierarchical architecture.

First of all, the main reason shards are used in blockchain implementation is to

increase the throughput of the overall system by introducing a boundary that segregates

the state maintenance among groups of nodes. That means that in sharded blockchain

a node will only need to worry about correctly maintaining a subsection of the state,

so it will only need to worry about transactions that modify its state. Then, since

shards are part of a bigger overall system that needs to maintain consistency, shards

need a mechanism to communicate their state to the rest of the shards. In [4] authors

mention that worker shards report their state to the overall system by doing a block

commit to a central blockchain. In essence, what worker shards do in Rivet Framework

is to summarize information by committing a hash of their state, so even though the

state of the worker shards can not be reconstructed using the information contained
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in a block commit it is enough to maintain consistency and safety across the system.

Intuitively, what this suggests is that if the amount of levels is increased then upper

levels of shards will be able to summarize a bigger amount of information. For instance,

if there are three levels in a system like the one shown in 4.3 then the shards that are

at the very bottom maintain a blockchain for a set of accounts and they report their

state to an intermediate shard level that will maintain a blockchain with block commits

and transactions. At this intermediate level state from the bottom shards is already

summarized and then finally the intermediate shards will commit their blocks to a

higher level where basically blockchain will contain a summary of summaries.

Figure 4.3: Hierarchical shard blockchain example

An argument against the usage of hierarchies in sharded blockchains is that if the

state of any of the accounts that are managed by a certain shard changes in between

commits that shard will have to throw away all of its progress done since the last

commit. This already worsens the intra shard latency in a system where only exists

2 levels of shards (workers and reference), but if we have several levels this can easily

prevent shards in lower levels from achieving progress, so the effect of the penalty gets

amplified in a hierarchical system with more than just the worker and reference levels.

It is worth mentioning that the influence of this effect in the behavior of the overall

system is affected by the amount of cross shard transactions, that is the number of
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transactions that change the state in accounts belonging to different shards.

4.3.2 Experiment setup

After having analyzed the most important characteristics of hierarchical sharded blockchains

it was decided that the experiment would have as its input variables, the number of

shards, the number of children per shard, the number of levels in the sys-

tem, the transaction rate and the cross-shard transaction ratio. Then, the

variables that were going to be measured were intra shard throughput, intra shard

latency, cross shard throughput and cross shard latency.

The experiment consisted of running discrete event simulations with 16 different

architectures using different combinations for the number of shards, children per shard,

and the number of levels. In table 4.1 you can see the architectures that were used and

the number of shards in each.

Table 4.1

Experimental architectures

Number of shards Levels Children Per Shard
1 5 3 2
2 5 3 3
3 5 2 5
4 10 3 3
5 10 2 10
6 15 4 3
7 15 3 5
8 15 3 10
8 20 4 3
10 20 3 5
11 20 3 10
12 30 4 3
13 30 3 5
14 30 3 10
15 50 4 5
16 50 3 10
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At the beginning of the experimentation process, transactions dump were ac-

quired from https://blockchair.com/dumps which is a popular site to extract dumps

from many popular blockchains like bitcoin and Ethereum. These transaction dumps

allowed to run some tests where it was noticed that real transactions were not going

to be good for the experiment because 1) Real transaction dumps included transac-

tion types that were not being studied in the experiment and 2) Transaction dumps

that do not take in consideration sharding, would make the system enter trivial states

where for example all transactions were being processed as cross-shard transactions

and processing power from lower levels workers was being wasted.

For the purposes of the experiment, it was better to create transaction dumps

specifically generated for the number of shards (at the lowest level), transaction rate,

and cross-shard transaction ratio of each experimental treatment.

Each of the architectures mentioned in table 4.1 was tested against 3 different

transaction rates 100, 200 and 300 and 3 different cross-shard transaction ratios 10%,

25% and 50% and each these permutations was 5 times to be able to get statistically

meaningful results.

4.3.3 Experiment simulation parameters

Although the experiment would be comprised of many different architectures, there

were some parameters that were common to all of the systems that were simulated and

these parameters are presented in table 4.2.
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Table 4.2

Experiment Blockchain Parameters

Parameter Value Description

function for delay computaion Exponential
This function was chosen based on
modeling in other work like

block size 300
This was considered a typical value after
extensive research on the size of blocks
of blockchain like bitcoin and ethereum

block generation frequency 10s
This value for the highest level of every
architecture and lower levels would have
submultiples of this number.

child blocks per block 20
This number was arbitrarily chosen based
on the behavior that was observed during
the experimentation process
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5. Results

After running the experiment in all the architectures mentioned in 4.1, there was a

lot of data that needed to be analyzed and presented for the 4 response variables

of the experiment, namely intra shard throughput, intra shard latency, cross shard

throughput and cross shard latency. Since the data had many different dimensions like

the amount of shards, the amount of children per shard, the amount of levels in the

overall architecture, the transaction rate and the cross shard transaction ratio, it was

necessary to present and organize the data in a meaningful easy to present way. So, it

was decided to center the analysis around the levels of the architectures, given that in

turn, it would be the variable that represents the depth of a hierarchy.

Also, it was necessary to choose among all of the data available from all the

scenarios that were tested which were the most interesting ones. Throughput the

repetitions of the experiment 3 different transaction rates were used, 100 Tx/s, 200 Tx/s

and 300 Tx/s. In the data analysis, the transaction rate and cross shard transaction

ratio were fixed to 200 Tx/s and 10% respectively for the sake of simplicity and because

by analyzing the wide range of data available it was considered that it would represent

the behavior of the systems in a meaningful way.
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5.1. Intra Shard Throughput and Latency

In figure 5.1, it can be seen the behavior of the intra-shard throughput as the number

of shards was increased. For each number of shards (which in turn represents the gross

amount of resources), the average of transactions per second using a configuration

with 2 different levels is shown. For example, when the number of shards is 5 there is a

configuration with 2 and 3 levels depending on the number of children that the shards

are allowed to have and the same applies to all numbers of shards. Even though there

are a couple of cases (5 and 10 shards) where it is impossible to have an architecture

with 4 levels, it can be observed that there is a clear pattern that as the architectures

increase their depth the intra-shard throughput will increase.

The reason for this behavior is that as the architecture grows in depth the number

of shards affected by a cross-shard transaction is decreased and the penalty that gets

a shard on its progress when this happens is less frequent.
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Figure 5.1: Intra Shard throughput across different architectures

To be able to ensure that there is a real difference between using different numbers

of levels in any of the architectures of the experiment an ANOVA (analysis of variance)

was used and it was applied to each number of shards individually. So, in table 5.1,

it is shown the case when the number of shards is 10 and that the P-value for the

number of levels variable is small compared to α = 0.05, so the throughputs of the

configurations for this architecture (2 and 3 levels) are statistically different.

Table 5.1

Intra Shard Throughput Anova Results for Shards=10

sum sq df F (Fcrit = 2.49) P-value
number of children 178.603597 2.0 5.640453 9.512041e-03
number of levels 819.344388 1.0 51.751177 1.539658e-07
transaction rate 424.360860 2.0 13.401675 1.108606e-04
cross shard transaction ratio 1319.364466 2.0 41.666645 1.095786e-08
Residual 395.809544 25.0 - -

In the latency case, it can be observed in figure 5.2, that in most cases it will be

lower as the depth of the architecture increases, and this can be attributed again to
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the fact that when architectures have more hierarchical levels, lower shards experience

penalties less frequently.

In this case, again an ANOVA was performed to be able to establish the statistical

significance of the behavior of the latency when the number of levels is changed. In this

case the ANOVA was made with the cases where the number of shards is equal to 10

and the P-value for the number of levels variable is considered small when compared

to the level of significance so it can be established that statistically, the number of

hierarchical levels affect the intra shard latency.

Figure 5.2: Intra Shard latency across different architectures

The variation of the latency when the number of levels is increased can be ob-

served in table 5.3 and it ranges between 6% and 48% which represents a very good

gain when the number of shards grows.
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Table 5.2

Intra Shard Latency Anova Results for Shards=10

sum sq df F (Fcrit = 2.17) P-value
Number of children 800.463134 2.0 1522.167835 5.931622e-90
Number of levels 511.136029 1.0 1943.961661 2.979356e-79
Transaction Rate 0.296066 2.0 0.563001 5.709012e-01
Cross Shard Transaction Ratio 0.756734 2.0 1.439012 2.409724e-01
Residual 33.655711 128.0 - -

Table 5.3

Intra shard throughput and Latency Variation with each architecture configuration

5 shards 10 shards 20 shards 30 shards 50 shards
Intra shard transaction Throughput +33.3% +20.5% +37.6 +38% +27.2%
Intra shard transaction Latency +10% -6.3% -31.11% -25.3% -48.8%

5.2. Cross Shard Throughput and Latency

When testing cross-shard throughput and latency, the cross-shard transaction ratio

needed to be changed to 25%. In the intra-shard case, 10% ratio was used because this

ratio means that the majority of the transactions are going to be directed towards the

lower shards, but it means that what is measured in terms of cross-shard behavior is

not very significant because it is a ratio that won’t be stressing the system. Instead, a

higher ratio would allow a fair amount of transactions to be cross-shard and the overall

system could be measured in a more meaningful way.

In figure 5.3, the behavior of the cross-shard throughput can be observed across

architectures with different numbers of shards and for each number of shards there are

2 number of levels. So, very similar to the intra-shard case the cross shard throughput

increased for all of the architectures when the architecture was deeper with variation

going from 16.3% to 31.2%, the variation between architecture configurations can be

seen in table 5.6. The higher throughput may be due to the reason that was mentioned
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in the implementation section, which points to the fact that transactions experience

less back pressure to get settled in the blockchain because they are summarized in

blocks at a certain level that then get committed to higher levels instead of having to

wait in a queue for a time when there is room in the block of the shard where they are

being processed.

Figure 5.3: Cross Shard throughput across different architectures

In this case, an ANOVA was performed case-wise (according to the number of

shards), to provide an example that there is a statistically meaningful difference be-

tween the performance that is obtained at different amounts of hierarchical levels when

the number of shards is 10.

In figure 5.4 results can be observed for many different architectures and it is

clear that latency is lower when the architecture has more hierarchical levels. In the

latency case, the descent was up to 61.6%, the variations for each architecture when

the levels were increased are shown in table 5.6. The latency decrement gains may be
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Table 5.4

Cross Shard Throughput Anova Results

sum sq df F (Fcrit = 2.49) PR(>F)
Number of children per shard 58.077666 2.0 1.587235 2.244156e-01
Number of levels 750.761935 1.0 41.035945 1.046155e-06
Transaction Rate 613.246198 2.0 16.759732 2.415438e-05
Cross Shard Transaction Ratio 1712.329853 2.0 46.797174 3.535495e-09
Residual 457.380681 25.0 - -

due also to a higher capacity of the blockchain due to the summarization of blocks of

an intermediate shard level into a higher shard level.

Figure 5.4: Cross Shard latency across different architectures

Cross-shard latency followed the same behavior as the cross-shard throughput and

from the ANOVA shown in table 5.5 it can be established that there is a statistically

significant difference between the number of hierarchical levels when it comes to cross-

shard latency.
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Table 5.5

Cross Shard Latency Anova Results

sum sq df F (Fcrit = 1.89) PR(>F)
C(children) 1.228106e+04 3.0 7.646355 4.821745e-05
C(levels) 7.004643e+04 2.0 65.417814 4.861786e-27
C(transaction rate) 3.517519e+05 2.0 328.508427 7.082142e-105
C(cross shard transaction ratio) 1.779614e+06 2.0 1662.018709 1.279252e-285
Residual 4.283019e+05 800.0 - -

Table 5.6

Cross shard throughput and Latency Variation with each architecture configuration

5 shards 10 shards 20 shards 30 shards 50 shards
Cross shard transaction Throughput +23.1% +31.2% +17.5% +20.1% +16.3%
Cross shard transaction Latency -38.2% -57.1% -55.8% -61.6% -44.4%
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6. Conclusions

This research met all the established goals and made good contributions to the state

of the art in terms of knowledge about sharded hierarchical systems and also tooling

that can be used by other researchers.

In terms of the tooling that this research yields, ShardSim was created as a frame-

work that allows simulating through discrete event simulation complex, architectures

of blockchain shards, this is a big contribution to the blockchain research community,

because until this point there were no alternatives to simulate complex architectures

of sharded blockchains.

In terms of the findings that this research yields it is clear that using architectures

with more levels of summarization can yield benefits in terms of both latency and

throughput and this behavior was observed in both contexts intra-shard and cross-

shard.

After having performed many runs of experimentation with many different archi-

tectures and configurations it can be concluded that:

• The initial hypothesis was partially confirmed and it was proven that a hierar-

chical architecture can yield benefits in the intra-shard and cross-shard scope. It

is partially true because it was found that these gains depend on how the system

is being operated in terms of the ratio of cross-shard transactions.

• The cross-shard transaction ratio is a very important factor in the response of a
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sharded system and this fact has been stressed by other researchers but in the

literature, it hasn’t been stressed the fact that to study these systems different

ratios should be used to extract relevant information from the intra-shard and

cross-shard response variables.

• This is an initial exploration, it remains a future work to build real distributed

systems and use the hierarchies used in this work. There may be unknown effects

of these systems that are not yet known. Also, the consensus algorithm may be

improved to optimize the way shards communicate with their parents and their

siblings.
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