Desarrollo de una herramienta de cálculo para el diseño de perfiles laminados en frío tipo C, Z y tubulares para la empresa M. Cruz y Asociados LTDA.

ESCUELA DE INGENIERÍA EN CONSTRUCCIÓN

CONSTANCIA DE PRESENTACIÓN PÚBLICA DEL TRABAJO FINAL DE GRADUACIÓN

Desarrollo de una herramienta de cálculo para el diseño de perfiles laminados en frío tipo C, Z y tubulares, para la empresa M. Cruz y Asociados

> Llevado a cabo por el estudiante: Fallas Ureña Luis Justin Carné: 2019043573

Trabajo Final de Graduación presentado públicamente ante el Tribunal Evaluador el viernes 19 de enero de 2024 como requisito parcial para optar por el grado de Licenciatura en Ingeniería en Construcción, del Instituto Tecnológico de Costa Rica.

En fe de lo anterior firman los siguientes integrantes del Tribunal evaluador:

Dr. Ing. Andrés Araya Obando Director de la Escuela

ANGEL HUMBERTO NAVARRO MORA (FIRMA) 08:36:02 -06'00'

Firmado digitalmente por ANGEL HUMBERTO NAVARRO MORA (FIRMA) Fecha: 2024.01.22

Ing. Ángel Navarro Mora, MSc. Profesor Guía

GUSTAVO	Firmado digitalmente por GUSTAVO ADOLFO
ADOLFO ROJAS	ROJAS MOYA (FIRMA)
MOYA (FIRMA)	Fecha: 2024.01.22
	10:34:26 -06'00'

Ing. Gustavo Rojas Moya, MSc. Profesor Lector

MILTON ANTONIO Firmado digitalmente por MILTON ANTONIO SANDOVAL QUIROS (FIRMA) SANDOVAL Fecha: 2024.01.19 10:20:05 QUIROS (FIRMA) -06'00'

Ing. Milton Sandoval Quirós, MBA Profesor Observador

Resumen

Se desarrolla un procedimiento estandarizado para el diseño de perfiles laminados en frío tipo C, Z y tubulares. Este trabajo se realizó debido a la necesidad de contar con un procedimiento actualizado y estandarizado por parte de la empresa M. Cruz y Asociados LTDA. Para eso, se realiza la compilación de datos necesarios para el diseño de estos elementos, se analizan los requerimientos que deben solventarse para llevar a cabo el proyecto con éxito y se elige la herramienta de cálculo más conveniente. Se desarrolla el procedimiento de cálculo en la herramienta seleccionada y se valida el procedimiento de diseño, mediante pruebas comparativas que involucran artículos científicos, fichas técnicas y cálculos manuales, así como software especializado en el cálculo de estructuras con materiales laminados en frío, como el software SAP 2000, con el objetivo de demostrar que el procedimiento estandarizado brinda resultados precisos y confiables.

Este procedimiento estandarizado utiliza tanto el método de diseño por factores de carga y resistencia (LRFD) como el método de *Resistencia Directa* para el diseño de los diferentes perfiles. Esto se realiza en conformidad con lo establecido en el Código Sísmico de Costa Rica (CSCR 2010/14) y en la especificación S100-16 del Instituto Americano de Hierro y Acero (American Iron and Steel Institute, AISI).

Palabras clave: laminado en frío, procedimiento estandarizado, diseño estructural, método de Resistencia Directa.

Abstract

A standardized procedure is developed for the design of cold-formed C, Z, and tubular profiles. This work was carried out due to the need to have an updated and standardized procedure by the company M.Cruz y Asociados LTDA. To achieve this, the necessary information for the design of these elements is compiled, the requirements that must be met to successfully carry out the project are analyzed, and the most suitable calculation tool is chosen. The calculation procedure is developed within the selected tool, and the design procedure is validated through comparative tests involving scientific articles, technical data sheets, manual calculations, as well as specialized software for the calculation of structures with cold-formed materials, such as SAP 2000 software, with the aim of demonstrating that the standardized procedure provides accurate and reliable results.

This standardized procedure employs both the Load and Resistance Factor Design (LRFD) method and the "Direct Strength" method for the design of the different profiles. This is done in accordance with the provisions of the Costa Rican Seismic Code (CSCR 2010/14) and the S100-16 specification of the American Iron and Steel Institute (AISI).

Keywords: cold-formed, standardized procedure, structural design, Direct Strength method.

Desarrollo de una herramienta de cálculo para el diseño de perfiles laminados en frío tipo C, Z y tubulares para la empresa M. Cruz y Asociados LTDA.

LUIS JUSTIN FALLAS UREÑA

Proyecto Final de Graduación (TFG) para optar por el grado de Licenciatura en Ingeniería en Construcción

Enero del 2024

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA EN CONSTRUCCIÓN

Contenido

Resumen ejecutivo	
Introducción	4
Objetivo general	5
Objetivos específicos	5
Capítulo 1: Marco teórico	6
1.1 Elementos estructurales laminados en frío	6
1.2 Código Sísmico de Costa Rica	7
1.3 Instituto Americano de Hierro y Acero (AISI)	7
1.4 Pandeo en elementos laminados en frío	9
1.4.1 Pandeo local	9
1.4.2 Pandeo por distorsión	
1.4.3 Pandeo lateral torsional	
1.4.4 Pandeo global	
1.5 Propiedades geométricas	
1.5.1 Elementos tipo C	14
1.5.2 Elementos tipo Z	
1.5.3 Elementos rectangulares	20
1.6 Diseño de elementos	
1.6.1 Capacidad a tensión	
1.6.2 Capacidad a compresión	24
1.6.3 Capacidad en flexión	
1.6.4 Capacidad a cortante	35
1.7 Interacción de fuerzas	30
1.7 1 Combinación de carga axial y flexión	وج عو
1.7.2 Combinación de flexión y cortante	
1.7.3 Combinación de flexión y aplastamiento del alma	
1.8 Incremento en el punto de fluencia	
Capítulo 2: Metodología	
2.1 Investigación	
2.2 Desarrollo de la herramienta	
2.3 Desarrollo de un modelo estructural	
2.4 Guía de uso del procedimiento estandarizado	
Capítulo 3: Resultados y análisis	

3.1 Resultados	
3.1.1 Herramienta de cálculo	45
3.1.2 Propiedades geométricas de elementos tubulares	47
3.1.3 Propiedades geométricas de elementos tipo C	
3.1.4 Propiedades geométricas de elementos tipo Z	50
3.1.5 Capacidad de elementos tubulares	52
3.1.6 Capacidad de elementos tipo C	53
3.1.7 Capacidad de elementos tipo Z	54
3.1.8 Interacción de fuerzas (D/C)	55
3.2 Análisis de resultados	
Conclusiones y recomendaciones	60
Conclusiones	
Recomendaciones	
Referencias	61
Apéndices	63
Apéndice 1. Guía de uso del procedimiento estandarizado	
Apéndice 2. Herramienta de cálculo	
Hoja: Entrada y Salida de Datos	73
Hoja: Hoja de Cálculo	76
Hoja: Resistencias Requeridas	
Hoja: Perfiles	
Apéndice 3. Cálculo manual	
Anexos	
Anexo 1. Resultados proporcionados por el software SAP 2000	

Resumen ejecutivo

Se desarrolla un procedimiento estandarizado para el diseño de perfiles laminados en frío tipo C, Z y tubulares. Este trabajo se desarrolla debido a la necesidad de contar con un procedimiento actualizado y estandarizado por la parte de la empresa M.Cruz y Asociados LTDA, una compañía especializada en el diseño de estructuras sismorresistentes, con más de 25 años de experiencia. El procedimiento desarrollado se ajusta a los lineamientos del Código Sísmicos de Costa Rica (CSCR 2010/16) y a la especificación S100-16 del Instituto Americano de Hierro y Acero (American Iron and Steel Institute, AISI). En este procedimiento se utilizaron tanto el método de diseño por factores de carga y resistencia (LRFD) como el método de **Resistencia Directa** para el diseño de los diferentes perfiles.

Se espera que este documento sirva como un recurso adicional para la Escuela de Ingeniería en Construcción y proporcionar un complemento en la preparación de los estudiantes, dado que el tema en estudio no forma parte del currículo de la carrera.

Este proyecto adquiere relevancia en el contexto de los Objetivos de Desarrollo Sostenible de las Naciones Unidas, ya que busca promover la construcción de infraestructuras resistentes, sostenibles y de calidad para satisfacer las necesidades de la sociedad. Además, al tratarse de un procedimiento estandarizado, facilita el trabajo colaborativo entre los profesionales responsables del diseño de estructuras y fomenta la innovación y el desarrollo de soluciones más eficientes y sostenibles.

Durante la ejecución de este trabajo, se realizó una investigación exhaustiva y una revisión de literatura técnica relacionada con el diseño de elementos estructurales laminados en frío (C, Z y tubulares). Luego, se desarrolló el procedimiento de cálculo mediante el software Excel. Por último, se validó el procedimiento de diseño, mediante pruebas comparativas que involucran artículos científicos, fichas técnicas y cálculos manuales, así como software especializado en el cálculo de estructuras con materiales laminados en frío. Para los resultados válidos, se observaron diferencias en la comparativa que son inferiores al 1%, por lo cual se determinó que el procedimiento de diseño estandarizado de perfiles laminados en frío tipo C, Z y tubulares, proporciona resultados precisos y confiables.

Adicionalmente, como parte integral del proyecto, se elaboró una guía de uso de la herramienta de diseño para facilitar la utilización del procedimiento de cálculo estandarizado. En esta guía se detalla el contenido de las cuatro hojas de cálculo que conforman cada uno de los procedimientos de diseño, así como la manera correcta de hacer uso de estas.

Introducción

Este proyecto será desarrollado en la empresa M.Cruz & Asociados LTDA, una compañía especializada en el diseño de estructuras sismorresistentes, con más de 25 años de experiencia. Para el análisis y diseño de elementos laminados en frío, la empresa cuenta con hojas de cálculo electrónicas creadas para casos específicos. Sin embargo, muchas de estas no poseen un formato estandarizado y se realizaron con normativas anteriores a las vigentes a la fecha de realización de este trabajo, lo cual implica que, al utilizarlas el diseñador debe realizar correcciones conforme con los requisitos de cada proyecto.

Es debido a esta situación que surge la necesidad de implementar un procedimiento de cálculo actualizado y estandarizado para elementos laminados en frío, tales como perfiles C, Z y tubulares, con la finalidad de que los ingenieros de esta organización puedan diseñar estos elementos estructurales de manera más efectiva, y de acuerdo con un estándar que, además, le permita a estos trabajar de una manera más eficiente cuando se requiera de una labor colaborativa.

El proyecto es relevante en el marco de los Objetivos de Desarrollo Sostenible de las Naciones Unidas, ya que contribuye directamente al Objetivo número 9: "Industria, Innovación e Infraestructura". Este objetivo busca promover la construcción de infraestructuras resistentes, sostenibles y de calidad, que permitan satisfacer las necesidades de la sociedad y promover el desarrollo económico, social y ambiental de las comunidades. Al desarrollar un sistema actualizado y estandarizado mediante una herramienta de software para el diseño de elementos estructurales, se promueve la creación de infraestructuras más fiables y resistentes, lo cual resulta clave para garantizar la seguridad de las personas. Además, al facilitar el trabajo colaborativo entre los ingenieros de la empresa, se promueve la innovación y el desarrollo de soluciones más eficientes y sostenibles.

En el nivel nacional, el Código Sísmico de Costa Rica (CSCR) establece los requisitos mínimos de diseño de elementos estructurales. En este se encuentra el apartado 10.8 correspondiente a sistemas sismorresistentes con base en perfiles de acero laminado en frío con secciones esbeltas. Este código hace referencia a las disposiciones del Instituto Americano de Hierro y Acero (American Iron and Steel Institute, AISI). En particular, destaca la especificación S100-2016, titulada "North American Specification for the Design of Cold-Formed Steel Structural Members", la cual es aplicable al diseño de miembros estructurales conformados en frío de un acero de bajo carbono o de baja aleación, con un espesor menor o igual a 2.54 centímetros. En cuanto a la determinación de las propiedades geométricas de los elementos laminados en frío, la AISI provee el "Cold-Formed Steel Design Manual, con la finalidad de facilitar el cálculo de estas propiedades".

En este proyecto se presentarán tres hojas de cálculo electrónicas, cada una adaptada a la geometría de los elementos, ya que los cálculos varían en función de las propiedades geométricas del elemento, las hojas desarrolladas son las siguientes:

- 1. Diseño de elementos tubulares.
- 2. Diseño de elementos tipo C.
- 3. Diseño de elementos tipo Z.

Objetivo general

Implementar un procedimiento estandarizado para el diseño de elementos estructurales laminados en frío, para la empresa M.Cruz y Asociados LTDA.

Objetivos específicos

- 1. Compilar la información necesaria para el diseño de elementos estructurales laminados en frío tales, como: perfiles C, Z y tubulares.
- 2. Implementar un procedimiento de cálculo mediante un software que permita el diseño estandarizado de elementos estructurales laminados en frío, tales como: perfiles C, Z y tubulares.
- 3. Validar el procedimiento de diseño estandarizado de perfiles laminados en frío tipo C, Z y tubulares, mediante pruebas comparativas con artículos científicos, cálculos realizados de forma manual, fichas técnicas y resultados de software especializado, asegurando la coherencia entre los resultados teóricos y prácticos para respaldar la robustez del procedimiento establecido.

Capítulo 1: Marco teórico

1.1 Elementos estructurales laminados en frío

Según Wei-Wen Yu (2019),

los elementos laminados en frío son conformados a partir de láminas, tiras, placas o barras planas de acero utilizando máquinas plegadoras o perfiladoras. El espesor de la lámina o tira de acero que generalmente se usa para elementos laminados en frio varía entre 0.4 mm a 6.4 mm. Elementos conformados en frío pueden formarse exitosamente con placas y barras de hasta 25 mm (p.1).

Monge, D. y Vindas, R. (2002), en su tesis de licenciatura, describen el proceso de fabricación de un perfil doblado o conformado en frío. Este proceso consiste en pasar una placa de acero a través de una serie de rodillos que gradualmente le confieren el espesor final deseado para la lámina de acero. Todo este procedimiento se lleva a cabo en frío, y la lámina resultante se enrolla en bobinas. Según Oviedo, A. (2010), una vez obtenidas las bobinas de acero con un espesor definido, se hacen pasar por un sistema cuyo propósito es eliminar impurezas del acero. Opcionalmente, las láminas de acero pueden ser sumergidas en zinc fundido para brindarle un galvanizado al material. Una vez el material está preparado se corta longitudinalmente según el tipo de perfil que se desea laminar. Las láminas cortadas son conducidas a través de un conjunto de rodillos con un diámetro definido, donde se dobla el acero de acuerdo con la forma deseada. Es importante destacar que este proceso se lleva a cabo completamente en frío. En el caso de los tubos estructurales, los rodillos dan forma a una configuración circular sobre la cual se aplica una soldadura continua para cerrar el perfil. Posteriormente, otro conjunto de rodillos moldea el perfil en forma cuadrada o rectangular, por último, se cortan los perfiles según una longitud dada.

En Costa Rica existen grandes proveedores en lo respecta a elementos laminados en frío. Entre ellos, se descarta la empresa Metalco y la empresa Ferromax, estas ofrecen variedad de perfiles con espesores que van desde los 0.7 m.m. hasta los 4.75 m.m.

1.2 Código Sísmico de Costa Rica

Según el Código Sísmico de Costa Rica 2010, en su revisión de 2014 (CSCR 2010/14), las estructuras con elementos sismorresistentes basados en perfiles de acero laminado en frío, caracterizados por sus secciones esbeltas, deben ser diseñadas mediante el método de diseño por factores de carga y resistencia (LRFD). Es necesario cumplir con los requisitos pertinentes establecidos en las especificaciones del Instituto Americano de Hierro y Acero (American Iron and Steel Institute, AISI).

EI CSCR 2010/14 establece que:

los sistemas a base de perfiles de acero laminado en frío ya sean marcos con uniones resistentes a momento o marcos arriostrados con uniones que no hayan sido probabas experimentalmente (tipo NP), o marcos con uniones resistentes a momento o marcos arriostrados con uniones que hayan sido probadas (tipo P), pueden emplearse exclusivamente en edificaciones de uno o dos niveles. Además, estas edificaciones deben tener una altura máxima de 10 metros en su parte más alta y la carga permanente para entrepisos y techos no debe exceder los 95 kg/m² (p.10/12).

1.3 Instituto Americano de Hierro y Acero (AISI)

De acuerdo con el AISI,

la especificación S100-16 (AISI, 2016b), establece los parámetros que se deben seguir para diseñar elementos estructurales conformados en frío a partir de láminas, tiras, placas o barras de acero al carbono o de baja aleación, con un espesor no superior 1 pulgada (25,4 mm) y utilizados para soportar cargas en edificios y otras estructuras diferentes a los edificios, siempre y cuando se tomen en cuenta los efectos dinámicos (p.1).

La especificación ofrece dos métodos para obtener soluciones analíticas en el diseño de elementos estructurales. Estos métodos son el Método de Ancho Efectivo y el Método de Resistencia Directa, los cuales están permitidos para el diseño básico de elementos en los capítulos que van desde la E hasta la H en la especificación.

La S100-16 aclara que no existe preferencia entre los dos métodos, ya que ambos brindan niveles consistentes de confiabilidad, aunque es posible que algunos casos las respuestas numéricas resultantes no sean idénticas. Es relevante destacar que tanto el Método de Ancho Efectivo como el Método de Resistencia Directa son igualmente válidos y aceptables. Asimismo, es importante subrayar que los diseños empleados con ambos métodos deben considerar el factor de resistencia, φ , de acuerdo con el diseño por LRFD y además deben cumplir con las limitaciones dimensionales establecidas en la tabla 1.

Tabla 1. Límites de aplicabilidad para el diseño de elementos de los capítulos E al H mediante el método del ancho efectivo y el
método de resistencia directa.

Criterios	Variables	Método de Ancho	Método de Resistencia
	limitantes ^a	Efectivo	Directa
Elemento rigidizado en	w/t ^b	≤ 500	≤ 500
compresión			
Elemento con borde	b/t	≤ 90 para I _s ≥ I _a	≤ 160
rigidizado en compresión		≤ 60 para I _s < I _a	
Elemento no rigidizado en compresión	d/t ^b	≤ 60	≤ 60
Elemento rígido en flexión	h/t	≤ 200 para almas no	≤ 300
(e.j. un alma)		rigidizadas	
		≤ 260 para refuerzo de	
		apoyos	
		≤ 300 para refuerzo de	
	- /	apoyo intermedios	
Radio de curvatura interior	R/t	≤ 10 ^d	≤ 20
Relación longitud/anchura	d _o /b _o	≤ 0.7	≤ 0.7
del refuerzo de borde simple			
Tipo de refuerzo de borde		Simple	Simple y complejo
Número máximo de	Νf	4	4
rigidizadores intermedios en			
W			
Número máximo de	n _{fe}	2	2
rigidizadores intermedios en			
b			
Número de refuerzos	n _w	0	4
intermedios en h			
Esfuerzo de fluencia nominal	Fy	< 80 ksi (552 MPa) ^e	< 95 ksi (655 MPa) ^e

Fuente: American Iron and Steel Institute, 2016a.

1.4 Pandeo en elementos laminados en frío.

De acuerdo con el American Iron and Steel Institute (2016a) las principales formas de pandeo que pueden ocurrir en un componente de acero conformado en frío abarcan el pandeo local, el pandeo distorsional y el pandeo global dentro del cual se encuentra el pandeo por flexión, pandeo por torsión y pandeo por flexión-torsión para elementos en compresión y pandeo por torsión lateral para miembros en flexión. A continuación, se describen algunos de estos.

1.4.1 Pandeo local

Wei-Wen Yu (2019) determinó que: la resistencia de un elemento rigidizado bajo compresión uniforme puede ser gobernado por pandeo local, como se muestra en la figura 1. Esto resulta en un esfuerzo menor que el límite elástico, especialmente si la relación w/t (ancho/espesor) es relativamente grande. Si se considera una placa cuadrada simplemente apoya (S.S) y sometida a esfuerzos de compresión en una dirección, ésta experimentará un pandeo en forma de curvatura simple en dos direcciones, como se muestra en la figura 2. Sin embargo, Wei-Wen Yu, también señala que: en una sección individual, la longitud del elemento suele ser mayor que su ancho. Por lo tanto, el comportamiento puede describirse como se presenta en la figura 3, lo cual ilustra un ejemplo similar al que se observa en la figura 1.

Figura 1. Pandeo local del ala rigidizada en compresión de una viga en forma de sombrero. Fuente: Wei-Wen Yu, 2019.

Figura 2. Placa cuadrada sometida a esfuerzos de compresión. Fuente: Wei-Wen Yu, 2019.

Figura 3. Placa rectangular sometida a esfuerzos de compresión. Fuente: Wei-Wen Yu, 2019.

Según Caamaño Palau (2009), "este modo de pandeo implica exclusivamente deformaciones en la placa, sin que se produzcan desplazamientos en las interacciones de las líneas de dos elementos de placa adyacentes, como se puede observar en la figura 4". Además, Caamaño Palau destaca que: "una característica del pandeo local es que su longitud de pandeo es la más corta entre los modos, y por lo general, es menor que la anchura de cualquiera de las placas que componen la sección del perfil".

Figura 4. Pandeo local de una sección C. Fuente: Caamaño Palau, 2009.

Es relevante destacar que: para realizar cálculos relacionados con el pandeo local, la especificación S100-16 del Instituto Americano de Hierro y Acero requiere de un coeficiente de pandeo de la placa (k). Este coeficiente puede ser determinado mediante la figura 5, en la cual, a partir de las condiciones de apoyo y los esfuerzos a los que están sometidas las placas, es posible determinar este coeficiente. Por ejemplo, para elementos rígidos a compresión soportados por un alma en cada borde longitudinal, el valor del coeficiente de pandeo de la placa corresponde a 4.

Values of Plate Buckling Coefficients

Figura 5. Coeficiente de pandeo de la placa (k). Fuente: American Iron and Steel Institute, 2016a.

1.4.2 Pandeo por distorsión

De acuerdo con Wei-Wen Yu (2019), en elementos con alas de borde rigidizado, la resistencia a la flexión puede verse limitada por el pandeo por distorsión, como se muestra en la figura 6. El modo de pandeo local de una sección C en flexión en su eje principal implica el pandeo de la porción comprimida del alma, el ala en compresión y el rigidizador de borde, sin que se produzca movimiento en la unión de la línea entre el alma y el rigidizador de borde. Para el modo de pandeo por distorsión del ala, el ala y el refuerzo de borde giran alrededor de la unión ala-alma, con cierta resistencia rotacional proporcionada por el alma. Es importante destacar que este modo de falla ocurre en longitudes de onda considerablemente más larga que el pandeo local, pero generalmente de longitud de onda más corta que el pandeo lateral-torsional (p.234).

Figura 6. Esfuerzo de pandeo de una sección C versus longitud media de onda para flexión en el eje principal. Fuente: Wei-Wen Yu, 2019.

Caamaño Palau (2009), argumenta que el pandeo distorsional puede describirse como un modo que implica la distorsión de la sección del perfil y que involucra la traslación de alguna de las líneas de intersección entre dos elementos de placa adyacentes, además de deformaciones en la placa, como se puede observar en la figura 7.

Figura 6. Pandeo distorsional (simétrico) de un perfil de sección tipo C. Fuente: Caamaño Palau, 2009.

1.4.3 Pandeo lateral torsional

Según Kabir & Bhowmick (2016), el pandeo lateral torsional es un estado en el cual el elemento presenta tanto deflexión como torsión (figura 7), generalmente miembros a flexión como vigas y columnas, muestran una resistencia considerablemente mayor alrededor de su eje principal en comparación con su eje secundario o menor, es por esta razón que las vigas y las columnas sin soporte lateral pueden experimentar una falla por pandeo lateral antes de alcanzar su capacidad máxima en el plano. Por lo tanto, el pandeo lateral torsional se puede considerar como una condición crítica en el diseño estructural en la que la deformación cambia de una flexión predominante en el plano a una deflexión lateral-torsional.

Fuente: Kabir & Bhowmick, 2016.

1.4.4 Pandeo global

De acuerdo con Caamaño Palau (2009), el pandeo global es un tipo de pandeo en el cual el perfil experimenta deformaciones sin que su forma se vea alterada. En consecuencia, las deformaciones se caracterizan por el desplazamiento de la directriz del perfil, ya sea con o sin torsión. Según las deformaciones observadas, este tipo de pandeo puede dividirse en pandeo global flexión alrededor de un eje y pandeo global de flexión con torsión. En la figura 8 se muestra la deformación por pandeo global de flexión de un perfil tipo C.

Figura 8. Pandeo global de flexión de un perfil tipo C. Fuente: Caamaño Palau, 2009.

1.5 Propiedades geométricas

Con la finalidad de que el sistema no dependa de una base de datos o de fichas técnicas exclusivas de algunas empresas, se sugiere que el usuario ingrese los datos que se presentan en las figuras 9, 11 y 13. Y a partir de estos se podrá calcular las propiedades necesarias para emplear métodos que permitan obtener soluciones analíticas.

1.5.1 Elementos tipo C

Figura 9. Datos de una sección tipo C.

Las siguientes propiedades son tomadas del Manual de Diseño de Acero Conformado en Frío del Instituto Americano de Hierro y Acero (AISI, 2013).

Figura 10. Datos definidos por el AISI para una sección tipo C. Fuente: AISI, 2013.

Al comparar la figura 9 con la 10 se tienen las siguientes equivalencias, respectivamente:

h = A'	Ecuación 1
b = B'	Ecuación 2
d = C'	Ecuación 3

Para la obtención de las propiedades del elemento tipo C, el AISI Manual se proponen las siguientes ecuaciones: \checkmark

Parámetros básicos

Ecuación 4
Ecuación 5
Ecuación 6
Ecuación 7
Ecuación 8
Ecuación 9
Ecuación 10
Ecuación 11
Ecuación 12

✓ Área transversal de la sección

$$A_g = t[a + 2b + 2u + \alpha(2c + 2u)]$$
 Ecuación 13

✓ Momento de inercia sobre el eje x

$$I_{x} = 2t \begin{cases} 0.0417a^{3} + b\left(\frac{a}{2} + r\right)^{2} + u\left(\frac{a}{2} + 0.637r\right)^{2} + 0.149r^{3} \\ + \alpha \left[0.0833c^{3} + \frac{c}{4}(a-c)^{2} + u\left(\frac{a}{2} + 0.637r\right)^{2} + 0.149r^{3} \right] \end{cases}$$
 Ecuación 14

✓ Distancia entre el centroide y la línea central del alma

$$\bar{x}_{c} = \frac{2t}{A} \left\{ b\left(\frac{b}{2} + r\right) + u(0.363r) + \alpha [u(b+1.637r) + c(b+2r)] \right\}$$
 Ecuación 15

✓ Distancia entre el centroide y el exterior del alma

$$\bar{x} = \bar{x}_c + \frac{t}{2}$$
 Ecuación 16

✓ Momento de inercia sobre el eje y

$$I_{y} = 2t \left\{ \begin{array}{c} b\left(\frac{b}{2}+r\right)^{2} + \frac{b^{3}}{12} + 0.356r^{3} \\ +\alpha[c(b-2r)^{2} + u(b+1.637r)^{2} + 0.149r^{3}] \end{array} \right\} - A \bar{x}_{c}^{2} \qquad Ecuación 17$$

✓ Distancia entre el centro de corte (S.C) y la línea central del alma

$$m = \bar{b} \left[\frac{3\bar{a}^2 \bar{b} + a\bar{c} (6\bar{a}^2 - 8\bar{c}^2)}{\bar{a}^3 + 6\bar{a}^2 \bar{b} + a\bar{c} (8\bar{c}^2 - 12\bar{a}\bar{c} + 6\bar{a}^2)} \right]$$
 Ecuación 18

✓ Distancia entre el centroide (C.G) y el centro de corte (S.C)

$$x_0 = -(\bar{x}_c + m)$$
, medido en direccion negativa Ecuación 19

✓ Constante de torsión de St. Venant

$$J = \frac{t^3}{3} [a + 2b + 2u + \alpha(2c + 2u)]$$
 Ecuación 20

✓ Constante de alabeo torsional

$$C_{w} = \frac{\bar{a}^{2}\bar{b}^{2}t}{12} \left\{ \frac{2\bar{a}^{3}\bar{b}+3\bar{a}^{2}\bar{b}^{2}+\alpha \left[\frac{48\bar{c}^{4}+112\bar{b}\bar{c}^{3}+8\bar{a}\bar{c}^{2}+48\bar{a}\bar{b}\bar{c}^{2}}{+12\bar{a}^{2}\bar{c}^{2}+12\bar{a}^{2}\bar{b}\bar{c}+6\bar{a}^{3}\bar{c}}\right]}{6\bar{a}^{2}\bar{b}+(\bar{a}+\alpha 2\bar{a})^{3}-\alpha 24\bar{a}\bar{c}^{2}} \right\}$$
 Ecuación 21

✓ Parámetro β_w

$$\beta_{w} = -\left[\frac{t\bar{x}_{c}\bar{a}^{3}}{12} + t\bar{x}_{c}^{3}\bar{a}\right]$$
 Ecuación 22

✓ Parámetro β_f

$$\beta_f = \frac{t}{2} \Big[(\bar{b} - \bar{x}_c)^4 - \bar{x}_c^4 \Big] + \frac{t\bar{a}^2}{4} \Big[(\bar{b} - \bar{x}_c)^4 - \bar{x}_c^4 \Big]$$
 Ecuación 23

✓ Parámetro β_l

$$\beta_l = \alpha \left\{ 2\bar{c}t \left(\bar{b} - \bar{x}_c\right)^3 + \frac{2}{3}t \left(\bar{b} - \bar{x}_c\right) \left[\left(\frac{\bar{a}}{2}\right)^3 - \left(\frac{\bar{a}}{2} - \bar{c}\right)^3 \right] \right\}$$
 Ecuación 24

✓ Parámetro utilizado en la determinación del momento crítico elástico:

$$j = \frac{1}{2l_y} \left(\beta_w + \beta_f + \beta_l \right) - x_0 \qquad Ecuación 25$$

1.5.2 Elementos tipo Z

Las siguientes propiedades son tomadas del Manual de Diseño de Acero Conformado en Frío del Instituto Americano de Hierro y Acero (AISI, 2013).

Figura 12. Datos definidos por el AISI para una sección tipo z. Fuente: AISI, 2013.

Al comparar la figura 11 con la 12 se tienen las siguientes equivalencias, respectivamente:

h = A'	Ecuación 26
b = B'	Ecuación 27
d = C'	Ecuación 28

Para la obtención de las propiedades del elemento tipo Z, el AISI Manual se proponen las siguientes ecuaciones:

✓ Parámetros básicos

$r = R + \frac{t}{2}$	Ecuación 29
a = A' - (2r + t)	Ecuación 30
$\bar{a} = A' - t$	Ecuación 31
$b = B'\left[r + \frac{t}{2} + \alpha\left(r + \frac{t}{2}\right)\tan\left(\frac{Y}{2}\right)\right]$	Ecuación 32
$\overline{b} = B' - \left[\frac{t}{2} + \left(\frac{\alpha t}{2}\right) \tan\left(\frac{Y}{2}\right)\right]$	Ecuación 33
$c = \alpha \left[\mathcal{C}' - \left(r + \frac{t}{2} \right) \tan \left(\frac{Y}{2} \right) \right]$	Ecuación 34
$\bar{c} = \alpha \left[C' - \left(\frac{t}{2}\right) \tan\left(\frac{Y}{2}\right) \right]$	Ecuación 35
$u_1 = \frac{\pi r}{2}$	Ecuación 36
$u_2 = \Upsilon r$	Ecuación 37
$\alpha = 1$, para perfiles con atiesadores	Ecuación 38

✓ Área transversal de la sección

$$A_a = t[a + 2b + 2u_1 + \alpha(2c + 2u_2)]$$
 Ecuación 39

✓ Momento de inercia sobre el eje x

$$I_{x} = 2t \begin{cases} 0.0417a^{3} + b\left(\frac{a}{2} + r\right)^{2} + u_{1}\left(\frac{a}{2} + 0.637r\right)^{2} + 0.149r^{3} \\ + \alpha \left[\left(\frac{Y + \sin(Y)\cos(Y)}{2} - \frac{\sin(Y)^{2}}{Y}\right)r^{3} + u_{2}\left(\frac{a}{2} + \frac{r\sin(Y)}{Y}\right)^{2} \\ + \frac{c^{3}\sin(Y)^{2}}{12} + c\left(\frac{a}{2} + r\cos(Y) - \frac{c}{2}\sin(Y)\right)^{2} \end{bmatrix} \end{cases}$$
 Ecuación 40

✓ Momento de inercia sobre el eje y,

$$I_{y} = 2t \left\{ b \left(\frac{b}{2} + r\right)^{2} + \frac{b^{3}}{12} + 0.356r^{3} + \alpha \begin{bmatrix} c \left(b - r(1 + \sin(\Upsilon)) + \frac{c}{2}\cos(\Upsilon)\right)^{2} + \frac{c^{3}\cos(\Upsilon)^{2}}{12} \\ + u_{2} \left(b + r + \frac{r(1 - \cos(\Upsilon))}{\Upsilon}\right)^{2} \\ + \left(\frac{\Upsilon - \sin(\Upsilon)\cos(\Upsilon)}{2} - \frac{(1 - \cos(\Upsilon))^{2}}{\Upsilon}\right)r^{3} \end{bmatrix} \right\}$$
 Ecuación 41

✓ Producto de inercias

$$I_{xy} = 2t \begin{cases} b\left(\frac{a}{2} + r\right)\left(\frac{b}{2} + r\right) + 0.5r^{3} + 0.285r^{3} \\ c\left(b + r(1 + \sin(\Upsilon)) + \frac{c}{2}\cos(\Upsilon)\right)\left(\frac{a}{2} + r\cos(\Upsilon) - \frac{c}{2}\sin(\Upsilon)\right) \\ + \left(\frac{\sin(\Upsilon)^{2}}{2} + \frac{\sin(\Upsilon)(\cos(\Upsilon - 1))}{\Upsilon}\right)r^{3} - \frac{c^{3}\sin(\Upsilon)\cos(\Upsilon)}{12} \\ + u_{2}\left(b + r + \frac{r(1 - \cos(\Upsilon))}{\Upsilon}\right)\left(\frac{a}{2} + \frac{r\sin(\Upsilon)}{\Upsilon}\right) \end{cases} \end{cases}$$
 Ecuación 42

✓ Ángulo entre el eje x y el eje principal menor, en radianes.

$$\theta = \frac{\pi}{2} + 0.5 \arctan\left(\frac{2I_{xy}}{I_y - I_x}\right)$$
 Ecuación 43

✓ Inercia del elemento sobre el eje x₂

$$I_{x2} = I_x \cos \theta^2 + I_y \sin \theta^2 - 2I_{xy} \sin \theta \cos \theta \qquad Ecuación 44$$

✓ Inercia del elemento sobre el eje y₂

$$I_{y2} = I_x \sin^2 \theta^2 + I_y \cos^2 \theta^2 + 2I_{xy} \sin^2 \theta \cos^2 \theta \qquad Ecuación 45$$

✓ Radio de giro sobre cualquier eje

$$r = \sqrt{\frac{I}{A}}$$
 Ecuación 46

✓ Radio mínimo de giro, sobre el eje x₂

$$r_{min} = \sqrt{\frac{I_{x2}}{A}}$$
 Ecuación 47

✓ Constante de torsión de St. Venant

$$J = \frac{t^3}{3} [a + 2b + 2u_1 + \alpha(2c + 2u_2)]$$
 Ecuación 48

✓ Constante de alabeo torsional

$$C_{w} = \frac{t}{12} \begin{cases} \frac{\bar{b}^{2}(\bar{b}^{3}(2\bar{a}+\bar{b})+\alpha \begin{bmatrix} \bar{b}^{2}(4\bar{c}^{4}+16\bar{b}\bar{c}^{3}+6\bar{a}^{3}\bar{c}+4\bar{a}^{2}\bar{b}\bar{c}+8\bar{a}\bar{c}^{3}) \\ + 6\bar{a}\bar{b}\bar{c}^{2}(\bar{a}+\bar{b})(2\bar{b}\sin(Y)+\bar{a}\cos(Y)) \\ + 4\bar{a}\bar{b}\bar{c}^{3}(2\bar{a}+4\bar{b}+\bar{c})\sin(Y)\cos(Y) \\ + \bar{c}^{3}(2\bar{a}^{3}+4\bar{a}^{2}\bar{b}-8\bar{a}\bar{b}^{2}+\bar{a}^{2}\bar{c}-16\bar{b}^{3}-4\bar{b}^{2}\bar{c})\cos(Y^{2}] \\ \hline \bar{a}+2(\bar{b}+\alpha\bar{c}) \end{cases} \end{cases}$$
Ecuación 49

1.5.3 Elementos rectangulares

Figura 13. Datos de una sección rectangular.

Las siguientes propiedades son propuestas tomando como referencia las ecuaciones establecidas en el Manual de Diseño de Acero Conformado en Frío del Instituto Americano de Hierro y Acero para elementos de tipo C y Z, y se adaptan para así determinar las propiedades de los elementos rectangulares.

✓ Parámetros básicos

$$r = R + \frac{t}{2}$$

$$h_{efectiva} = h - 2(R + t)$$

$$b_{efectiva} = b - 2(R + t)$$

$$u = \frac{\pi r}{2}$$
Ecuación 53

✓ Área transversal de la sección

$$A = t [2h_{efectiva} + 2b_{efectiva} + 4u]$$
 Ecuación 54

Los momentos de inercia del elemento se obtienen, mediante el teorema de ejes paralelos, cuya ecuación, de acuerdo con Hibbeler (2017), se describe de la siguiente manera:

$$I = \overline{I} + A \cdot d^2$$
Ecuación 55
Donde:
$$\overline{I} = Momento \ de \ inercia \ un \ área$$
$$A = \ área \ de \ la \ figura$$
$$d = distancia \ entre \ el \ centriode \ de \ la \ figura \ y \ el \ eje \ correspondiente$$

Además del teorema de ejes paralelos, también se hace uso de las ecuaciones de momentos de inercia para elementos lineales circulares con un ángulo entre los 0 a 90 grados. Estas ecuaciones son proporcionadas en el Manual AISI (2013) y se presentan a continuación:

$l = \frac{\pi r}{2}$	Ecuación 56
c = 0.637 r	Ecuación 57
$I_1 = I_2 = 0.149 r^3$	Ecuación 58

Donde: los parámetros anteriores se describen en la figura 10.

Figura 14. Elemento lineal circular con un ángulo entre los 0 a 90 grados. Fuente: AISI, 2013.

A partir de los datos anteriores se proponen las siguientes ecuaciones para determinar el momento de inercia de elementos rectangulares.

✓ Momento de inercia sobre el eje x

$$I_{x} = t \begin{cases} 2\left(\frac{h_{efectiva}^{3}}{12}\right) + 2\left(\frac{b_{efectiva}}{12}t^{2} + b_{efectiva}\left(\frac{h-t}{2}\right)^{2}\right) \\ + 4I_{1} + 4l\left(\frac{h_{efectiva}}{2} + c\right)^{2} \end{cases}$$
 Ecuación 59

✓ Momento de inercia sobre el eje y

$$I_{y} = t \begin{cases} 2\left(\frac{b_{efectiva}^{3}}{12}\right) + 2\left(\frac{h_{efectiva}}{12}t^{2} + h_{efectiva}\left(\frac{b-t}{2}\right)^{2}\right) \\ + 4I_{2} + 4I\left(\frac{b_{efectiva}}{2} + c\right)^{2} \end{cases}$$
 Ecuación 60

✓ Radio de giro sobre cualquier eje x

$$r_x = \sqrt{\frac{l_x}{A}} \qquad Ecuación 61$$

✓ Radio mínimo de giro, sobre el eje y

$$r_y = \sqrt{\frac{I_y}{A}} \qquad \qquad Ecuación \, 62$$

✓ Constante de torsión de St. Venant

Según el Instituto Canadiense de Construcción en Acero (2002), la constante torsional de St. Venant se puede estimar de forma conservadora, a partir de la siguiente ecuación:

$$J = \frac{4((h-t)\cdot(b-t)-r^{2}\cdot(4-\pi))^{2}t}{2((h-t)+(b-t))-2r^{2}\cdot(4-\pi)}$$
 Ecuación 63

✓ Constante de alabeo torsional

En cuanto, a la constante de alabeo torsional, el Instituto Canadiense de Construcción en Acero (2002), establece que la constante suele considerarse como cero.

Ecuación 64

$$C_w = 0$$

1.6 Diseño de elementos

Los siguientes procedimientos son tomados de la especificación S100-2016 (AISI, 2016b) y siguen los métodos de Resistencia Directa y LRFD. Es importante destacar que en este apartado se utilizan símbolos o variables cuyas definiciones varían según la sección en particular. Por lo tanto, para determinar las definiciones precisas de las diferentes variables, es necesario consultar la sección de símbolos de la especificación y tener claro a qué sección pertenece la variable en cuestión.

1.6.1 Capacidad a tensión

Para calcular la capacidad a la tensión se utiliza la sección D del AISI, en la cual la resistencia a la tracción del elemento propuesto se determina, mediante la sección D2 para calcular la capacidad del elemento en términos de fluencia y la sección D3 para determinar la resistencia por ruptura, como se muestra continuación:

✓ Resistencia por fluencia

$$\begin{array}{ll} \varphi_t = 0.90 & Ecuación \, 65 \\ T_n = A_g \cdot F_y & Ecuación \, 66 \end{array}$$

- ✓ Resistencia por ruptura
- $\begin{aligned} \varphi_t &= 0.75 \\ T_n &= A_g \cdot F_u \end{aligned}$

Ecuación 67 Ecuación 68

1.6.2 Capacidad a compresión

Para determinar la resistencia a la compresión se utiliza un factor de seguridad, φ_c , correspondiente a 0.85 de acuerdo con la metodología de diseño LRFD, tal y como se establece en el capítulo E de la especificación S100-2016 (AISI, 2016b).

Mediante la sección E2.1, es posible determinar la resistencia de diseño por fluencia y pandeo global para miembros tipo C y Z en compresión, no sujetos a pandeo torsional o flexo-torsional, a través de los siguientes cálculos:

 $\begin{aligned} F_{cre} &= \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} & Ecuación \ 69 \\ \lambda_c &= \sqrt{\frac{F_y}{F_{cre}}} & Ecuación \ 70 \\ Si \ \lambda_c &\leq 1.5 \ \rightarrow \ F_n = \left(0.658^{\lambda_c^2}\right) F_y & Ecuación \ 71 \\ Si \ \lambda_c &> 1.5 \ \rightarrow \ F_n = \left(\frac{0.877}{\lambda_c^2}\right) F_y & Ecuación \ 72 \end{aligned}$

- $P_{ne} = A_g \cdot F_n \qquad Ecuación 73$

Para elementos rectangulares, la especificación S100-16 (AISI, 2016b) establece la sección E2.1 y la sección E2.1.1, con las cuales es posible determinar la resistencia de diseño por fluencia y pandeo global para este tipo de elementos cuando se encuentran en compresión y no están sujetos a pandeo torsional o flexo-torsional. Los cálculos pertinentes se retallan a continuación:

$$k_c$$
 = Coeficiente de pandeo de la placa, según figura 5. *Ecuación 74*

 $F_{cr\ell} = k \frac{\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{w}\right)^2 \qquad Ecuación 75$

$$L_o = \pi r \sqrt{\frac{E}{F_{cr\ell}}} \qquad Ecuación 76$$

$$R_r = 0.65 + \frac{0.35 \, (KL)}{1.1 \, L_o} \qquad Ecuación \, 77$$

$$Si \ KL < 1.1 \ L_o \rightarrow F_{cre} = \frac{\pi^2 E}{\left(\frac{KL}{R_r r}\right)^2}$$
 Ecuación 78

$$Si \ KL \ge 1.1 \ L_o \rightarrow F_{cre} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$
 Ecuación 79

$$\lambda_c = \sqrt{\frac{F_y}{F_{cre}}} \qquad Ecuación \, 80$$

$$\begin{aligned} Si \ \lambda_c &\leq 1.5 \ \rightarrow \ F_n = \left(0.658^{\lambda_c^2}\right) F_y \\ Si \ \lambda_c &> 1.5 \ \rightarrow \ F_n = \left(\frac{0.877}{\lambda_c^2}\right) F_y \end{aligned} \qquad Ecuación \ 81 \end{aligned}$$

$$P_{ne} = A_g \cdot F_n$$
 Ecuación 83

La resistencia de diseño a la fluencia y pandeo global para miembros tubulares y tipo C en compresión, cuando están sujetos a pandeo por torsión o por flexión-torsión, se puede determinar, de acuerdo con la sección E2.2 del AISI, de la siguiente manera:

$$r_o = \sqrt{r_x^2 + r_y^2 + x_o^2} \qquad Ecuación 84$$

$$\sigma_t = \frac{1}{Ar_o^2} \left[GJ + \frac{\pi^2 E C_w}{(K_t L_t)^2} \right]$$
 Ecuación 85

$$\sigma_{ex} = \frac{\pi^2 E}{\left(\frac{K_X L_X}{r_X}\right)^2} \qquad Ecuación 86$$

$$\beta = 1 - \left(\frac{x_0}{r_0}\right)^2 \qquad Ecuación 87$$

$$F_{cre} = \frac{1}{2\beta} \left[(\sigma_{ex} + \sigma_t) - \sqrt{(\sigma_{ex} + \sigma_t)^2 - 4\beta \sigma_{ex} \sigma_t} \right]$$
 Ecuación 88

$$\lambda_c = \sqrt{\frac{F_y}{F_{cre}}} \qquad Ecuación 89$$

Si
$$\lambda_c \le 1.5 \rightarrow F_n = \left(0.658^{\lambda_c^2}\right) F_y$$
 Ecuación 90

Si
$$\lambda_c > 1.5 \rightarrow F_n = \left(\frac{0.877}{\lambda_c^2}\right) F_y$$
 Ecuación 91

$$P_{ne} = A_g \cdot F_n \qquad Ecuación 92$$

En el caso de los elementos tipo Z, la resistencia diseño por fluencia y pandeo global para un elemento en compresión, cuando está sujeto a pandeo por torsión o por flexión-torsión, se puede determinar, de acuerdo con la sección E2.3 del AISI, de la siguiente forma:

$$r_{o} = \sqrt{r_{x}^{2} + r_{y}^{2} + x_{o}^{2}}$$

$$Ecuación 93$$

$$\sigma_{t} = \frac{1}{Ar_{o}^{2}} \left[GJ + \frac{\pi^{2}EC_{w}}{(K_{t}L_{t})^{2}} \right]$$

$$Ecuación 94$$

$$\beta = 1 - \left(\frac{x_{o}}{r_{o}}\right)^{2}$$

$$Ecuación 95$$

$F_{cre} = min\left\{\sigma_t, \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}\right\}$	Ecuación 96
$\lambda_c = \sqrt{rac{F_y}{F_{cre}}}$	Ecuación 97
Si $\lambda_c \leq 1.5 \rightarrow F_n = \left(0.658^{\lambda_c^2}\right) F_y$	Ecuación 98
Si $\lambda_c > 1.5 \rightarrow F_n = \left(\frac{0.877}{\lambda_c^2}\right) F_y$	Ecuación 99

 $P_{ne} = A_g \cdot F_n$ Ecuación 100

La resistencia a la compresión en elementos rectangulares, de tipo C y Z, cuando se trata del pandeo local que interactúa con la fluencia y el pandeo global, se especifica en la sección E3.2.1 del AISI y se calcula de la siguiente manera:

 $F_{cr\ell} = k \frac{\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{w}\right)^2 \qquad Ecuación \ 101$

$$P_{cr\ell} = A_g \cdot F_{cr\ell} \qquad Ecuación \ 102$$

$$\lambda_{\ell} = \sqrt{\frac{P_{ne}}{P_{cr\ell}}} \qquad Ecuación \ 103$$

Si $\lambda_{\ell} \leq 0.776 \rightarrow P_{n\ell} = P_{ne}$ Ecuación 104

Si
$$\lambda_{\ell} > 0.776 \rightarrow P_{n\ell} = \left[1 - 0.15 \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4}\right] \left(\frac{P_{cr\ell}}{P_{ne}}\right)^{0.4} P_{ne}$$
 Ecuación 105

Nota: P_{ne} se define en la sección E2 y varía según si la sección está sujeta a torsión o no.

Según la especificación S100-16 (AISI, 2016b), se debe evaluar la resistencia axial nominal para el pandeo por distorsión en elementos de tipo C y Z. En el caso de los elementos de tipo C, esta resistencia se puede determinar siguiendo la Sección E4.1 del AISI, mediante las propiedades geométricas presentadas en la figura 15 y las ecuaciones siguientes:

Figura 15. Propiedades geométricas de una sección C. Fuente: American Iron and Steel Institute, 2016b.

 $A_f = (b+d) t \qquad Ecuación 106$

$$J_f = \frac{1}{3}b \cdot t^3 + \frac{1}{3}d \cdot t^3 \qquad Ecuación 107$$

$$I_{xf} = \frac{t(t^2b^2 + bd^3 + t^2bd + d^4)}{12(b+d)}$$
 Ecuación 108

$$I_{yf} = \frac{tb^2 d^2}{4(b+d)}$$
 Ecuación 102

$$C_{wf} = 0$$
 Ecuación 109

$$x_{\rm of} = \frac{b^2}{2(b+d)} \qquad \qquad Ecuación 110$$

$$h_{xf} = \frac{-(b^2 + 2db)}{2(b+d)} \qquad \qquad Ecuación \ 112$$

$$h_{yf} = y_{of} = \frac{-d^2}{2(b+d)}$$
 Ecuación 113

$$L_{crd} = \left\{ \frac{6\pi^4 h_o(1-\mu^2)}{t^3} \left[I_{xf} \left(x_{of} - h_{xf} \right)^2 + C_{wf} - \frac{I_{xyf}^2}{I_{yf}} \left(x_{of} - h_{xf} \right)^2 \right] \right\}^{1/4}$$
 Ecuación 114

$$k_{\phi fe} = \left(\frac{\pi}{L}\right)^4 \left[E \cdot I_{xf} (x_{of} - h_{xf})^2 + E \cdot C_{wf} - E \frac{I_{xyf}^2}{I_{yf}} (x_{of} - h_{xf})^2 \right] + \left(\frac{\pi}{L}\right)^2 G \cdot J_f \qquad Ecuación 115$$

$$k_{\text{pwe}} = \frac{Et^3}{6h_o(1-\mu^2)} \qquad Ecuación 116$$

 k_{ϕ} = Rigidez rotacional provista por un elemento de restricción (riostra, panel, tablero de cerramiento) a la unión aleta-alma de un miembro (cero si la aleta en compresión no está restringida). Si la rigidez rotacional proporcionada a las dos bridas es desigual, se utiliza la menor rigidez rotacional. *Ecuación 117*

$$\tilde{k}_{\phi fg} = \left(\frac{\pi}{L}\right)^2 \left\{ A_f \left[(x_{of} - h_{xf})^2 \left(\frac{I_{xyf}}{I_{yf}}\right)^2 - 2y_{of}(x_{of} - h_{xf}) \left(\frac{I_{xyf}}{I_{yf}}\right) + h_{xf}^2 + y_{of}^2 \right] + I_{xf} + I_{yf} \right\}$$
 Ecuación 118

 $\tilde{k}_{\phi wg} = \left(\frac{\pi}{L}\right)^2 \frac{th_0^3}{60} \qquad Ecuación 119$

$$F_{crd} = \frac{k_{\phi fe} + k_{\phi we} + k_{\phi}}{\tilde{k}_{\phi fg} + \tilde{k}_{\phi wg}}$$
 Ecuación 120

$$P_{crd} = A_g F_{crd} \qquad Ecuación 121$$

$$P_{\rm y} = A_{\rm g} F_{\rm y} \qquad \qquad Ecuación \ 122$$

$$\lambda_{\rm d} = \sqrt{P_{\rm y}/P_{\rm crd}} \qquad Ecuación \ 123$$

Si
$$\lambda_{\rm d} \le 0.561 \rightarrow P_{\rm nd} = P_{\rm y}$$
 Ecuación 124

Si
$$\lambda_{\rm d} > 0.561 \rightarrow P_{\rm nd} = \left[1 - 0.25 \left(\frac{P_{\rm crd}}{P_{\rm y}}\right)^{0.6}\right] \left(\frac{P_{\rm crd}}{P_{\rm y}}\right)^{0.6} P_{\rm y}$$
 Ecuación 125

La resistencia axial nomina para el pandeo por distorsión de una sección tipo Z se puede determinar siguiendo las directrices de la sección E4.1 de la especificación S100-16 (AISI, 2016b). Esto se realiza, a partir de las propiedades geométricas de la figura 16.

Figura 16. Propiedades geométricas de una sección Z. Fuente: American Iron and Steel Institute, 2016.

$$A_f = (b+d) t \qquad Ecuación 126$$

$$J_f = \frac{1}{3}b \cdot t^3 + \frac{1}{3}d \cdot t^3 \qquad Ecuación 127$$

$$I_{xf} = \frac{t(t^2b^2 + 4bd^3 - 4bd^3\cos^2(\theta) + t^2bd + d^4 - d^4\cos^2(\theta))}{12(b+d)}$$
 Ecuación 128

$$I_{yf} = \frac{t(b^4 + 4db^3 + 6d^2b^2\cos(\theta) + 4d^3b\cos^2(\theta) + d^4\cos^2(\theta))}{12(b+d)}$$
 Ecuación 129

$$C_{wf} = 0$$
 Ecuación 130

$$x_{\rm of} = \frac{b^2 - d^2 \cos\left(\theta\right)}{2(b+d)} \qquad Ecuación \ 131$$

$$h_{xf} = \frac{-(b^2 + 2db + d^2\cos(\theta))}{2(b+d)}$$
 Ecuación 132

$$h_{yf} = y_{of} = \frac{-d^2 \sin(\theta)}{2(b+d)}$$
 Ecuación 133

$$L_{crd} = \left\{ \frac{6\pi^4 h_o (1-\mu^2)}{t^3} \left[I_{xf} \left(x_{of} - h_{xf} \right)^2 + C_{wf} - \frac{I_{xyf}^2}{I_{yf}} \left(x_{of} - h_{xf} \right)^2 \right] \right\}^{1/4}$$
 Ecuación 134

$$\mathbf{k}_{\phi fe} = \left(\frac{\pi}{L}\right)^4 \left[\mathbf{E} \cdot \mathbf{I}_{xf} (\mathbf{x}_{of} - \mathbf{h}_{xf})^2 + \mathbf{E} \cdot \mathbf{C}_{wf} - \mathbf{E} \frac{\mathbf{I}_{xyf}^2}{\mathbf{I}_{yf}} (\mathbf{x}_{of} - \mathbf{h}_{xf})^2 \right] + \left(\frac{\pi}{L}\right)^2 \mathbf{G} \cdot \mathbf{J}_f \qquad \text{Ecuación 135}$$

$$k_{\phi we} = \frac{Et^3}{6h_o(1-\mu^2)} \qquad Ecuación 136$$

 k_{ϕ} = Rigidez rotacional provista por un elemento de restricción (riostra, panel, tablero de cerramiento) a la unión aleta-alma de un miembro (cero si la aleta en compresión no está restringida). Si la rigidez rotacional proporcionada a las dos bridas es desigual, se utiliza la menor rigidez rotacional. *Ecuación 137*

$$\tilde{k}_{\phi fg} = \left(\frac{\pi}{L}\right)^2 \left\{ A_f \left[(x_{of} - h_{xf})^2 \left(\frac{I_{xyf}}{I_{yf}}\right)^2 - 2y_{of}(x_{of} - h_{xf}) \left(\frac{I_{xyf}}{I_{yf}}\right) + h_{xf}^2 + y_{of}^2 \right] + I_{xf} + I_{yf} \right\}$$
 Ecuación 138

$$\tilde{k}_{\phi wg} = \left(\frac{\pi}{L}\right)^2 \frac{th_0^3}{60} \qquad Ecuación \ 139$$

$$F_{crd} = \frac{k_{\phi fe} + k_{\phi we} + k_{\phi}}{\tilde{k}_{\phi fg} + \tilde{k}_{\phi wg}} \qquad Ecuación 140$$

$$P_{crd} = A_g F_{crd} \qquad Ecuación 141$$

$$P_{y} = A_{g}F_{y} \qquad \qquad Ecuación \ 142$$

$$\lambda_{\rm d} = \sqrt{P_{\rm y}/P_{\rm crd}}$$
 Ecuación 143

Si
$$\lambda_{\rm d} \le 0.561 \rightarrow P_{\rm nd} = P_{\rm y}$$
 Ecuación 144

Si
$$\lambda_{\rm d} > 0.561 \rightarrow P_{\rm nd} = \left[1 - 0.25 \left(\frac{P_{\rm crd}}{P_{\rm y}}\right)^{0.6}\right] \left(\frac{P_{\rm crd}}{P_{\rm y}}\right)^{0.6} P_{\rm y}$$
 Ecuación 145

1.6.3 Capacidad en flexión

La resistencia nominal a la flexión para elementos rectangulares, C y Z, es evaluada, mediante las secciones F2, F3 y, en el caso, únicamente de los elementos C y Z, la sección F4, de acuerdo con la especificación S100-16 (AISI, 2016b). En estas secciones se evalúa la resistencia para fluencia y pandeo global (lateral-torsional), la interacción de la fluencia o el pandeo global con el pandeo local, y el pandeo por distorsión, respectivamente.

Para determinar la capacidad nominal de los elementos en flexión, el AISI especifica usar un factor de seguridad, φ_c , de 0.90 para el método LRFD.

La resistencia para fluencia y pandeo global (lateral-torsional) en secciones de caja cerrada (elementos rectangulares) es determinada por medio de las siguientes ecuaciones:

$L_u = \frac{0.36C_b\pi}{F_y S_f} \sqrt{EGJI}$	Ecuación 146
Si $L_{u} \leq L \rightarrow F_{cra} = \frac{c_{b}\pi}{\sqrt{EG/I}}$	Ecuación 147

$$L_u \leq L$$
, $\Gamma_{cre} = \frac{1}{KLS_f} \sqrt{LGfI}$

 $Si L_u > L \rightarrow F_n = F_y$ Ecuación 148

$$Si F_{cre} \ge 2.78 F_y \rightarrow F_n = F_y$$
 Ecuación 149

Si 2.78
$$F_y > F_{cre} > 0.56 F_y \rightarrow F_n = \frac{10}{9} F_y \left(1 - \frac{10 F_y}{36 F_{cre}}\right)$$
 Ecuación 150

$$Si F_{cre} \le 0.56 F_y \rightarrow F_n = F_{cre}$$
 Ecuación 151

$$M_y = S_{fy}F_y$$
 Ecuación 152

$$M_{ne} = S_f F_n \le M_y$$
 Ecuación 153

La determinación de la resistencia a la fluencia y pandeo global (lateral-torsional) en secciones simple o doblemente simétricas curvadas alrededor del eje simétrico se realiza, a través de las ecuaciones siguientes:

$$r_{o} = \sqrt{r_{x}^{2} + r_{y}^{2} + x_{o}^{2}}$$
Ecuación 154
$$\sigma_{t} = \frac{1}{Ar_{o}^{2}} \left[GJ + \frac{\pi^{2} EC_{w}}{(K_{t}L_{t})^{2}} \right]$$
Ecuación 155

$$\sigma_{ey} = \frac{\pi^{2} E}{\left(\frac{K_{y} L_{y}}{r_{y}}\right)^{2}} \qquad Ecuación 156$$

C_b = Se permite que C_b se tome de manera conservadora como unidad en todos los casos. Para voladizos o salientes donde el extremo libre no está arriostrado, C_b se tomará como unidad. *Ecuación 157*

$$F_{cre} = \frac{c_b r_o A}{s_f} \sqrt{\sigma_{ey} \sigma_t}$$
 Ecuación 158

$Si F_{cre} \ge 2.78 F_y \to F_n = F_y$	Ecuación 159
Si 2.78 $F_y > F_{cre} > 0.56 F_y \rightarrow F_n = \frac{10}{9} F_y \left(1 - \frac{10 F_y}{36 F_{cre}}\right)$	Ecuación 160
$Si F_{cre} \leq 0.56 F_y \rightarrow F_n = F_{cre}$	Ecuación 161
$M_{y} = S_{fy}F_{y}$	Ecuación 162
$M_{ne} = S_f F_n \le M_y$	Ecuación 163

La resistencia para fluencia y pandeo global (lateral-torsional) en secciones simétricas simples dobladas sobre el eje centroidal perpendicular con el eje de simetría y se determinada, mediante las siguientes ecuaciones:

$$\sigma_{t} = \frac{1}{Ar_{o}^{2}} \left[GJ + \frac{\pi^{2} EC_{w}}{(K_{t}L_{t})^{2}} \right]$$
 Ecuación 164
$$\sigma_{ex} = \frac{\pi^{2} E}{\left(\frac{K_{x}L_{x}}{r_{x}}\right)^{2}}$$
 Ecuación 165

 $C_S = +1$, para momento que produzca compresión en el lado del centro de corte, medido desde el centroide y -1, para momento que produzca tensión en el lado del centro de corte, medido desde el centroide. *Ecuación 166*

$$C_{TF} = 0.6 - 0.4 \left(\frac{M_1}{M_2}\right) \qquad Ecuación 167$$

$$r_o = \sqrt{r_x^2 + r_y^2 + x_o^2} \qquad Ecuación \, 168$$

$$F_{\rm cre} = \frac{C_s \, A \, \sigma_{ex}}{C_{TF} \, S_f} \left[j + C_s \sqrt{j^2 + r_o^2 (\sigma_t / \sigma_{ex})} \right] \qquad Ecuación \, 169$$

 $C_b = Se$ permite que C_b se tome de manera conservadora como unidad en todos los casos. Para voladizos o salientes donde el extremo libre no está arriostrado, C_b se tomará como unidad. *Ecuación 170*

$$Si F_{cre} \ge 2.78 F_y \rightarrow F_n = F_y$$
 Ecuación 171

$$Si \ 2.78 \ F_y > F_{cre} > 0.56 \ F_y \to F_n = \frac{10}{9} \ F_y \left(1 - \frac{10 \ F_y}{36 \ F_{cre}}\right)$$
 Ecuación 172

 $Si F_{cre} \le 0.56 F_y \rightarrow F_n = F_{cre}$ Ecuación 173

$$M_y = S_{fy} F_y$$
 Ecuación 174

$$M_{ne} = S_f F_n \le M_y$$
 Ecuación 175

$$F_{\rm cre} = \frac{C_{\rm b} r_{\rm o} A}{S_{\rm f}} \sqrt{\sigma_{\rm ey} \sigma_{\rm t}} \qquad Ecuación 176$$
La determinación de la resistencia a la fluencia y pandeo global (lateral-torsional) en secciones simétricas puntuales alrededor del eje principal se realiza, a través de las ecuaciones siguientes:

$$\begin{aligned} r_o &= \sqrt{r_x^2 + r_y^2 + x_o^2} & Ecuación 177 \\ \sigma_t &= \frac{1}{Ar_o^2} \left[GJ + \frac{\pi^2 E C_W}{(K_t L_t)^2} \right] & Ecuación 178 \\ \sigma_{ey} &= \frac{\pi^2 E}{\left(\frac{K_y L_y}{r_y}\right)^2} & Ecuación 179 \end{aligned}$$

C_b = Se permite que C_b se tome de manera conservadora como unidad en todos los casos. Para voladizos o salientes donde el extremo libre no está arriostrado, C_b se tomará como unidad. *Ecuación 180*

$$F_{cre} = \frac{c_b r_o A}{2S_f} \sqrt{\sigma_{ey} \sigma_t}$$
 Ecuación 181

$$Si F_{cre} \ge 2.78 F_y \rightarrow F_n = F_y$$
 Ecuación 182

Si 2.78
$$F_y > F_{cre} > 0.56 F_y \rightarrow F_n = \frac{10}{9} F_y \left(1 - \frac{10 F_y}{36 F_{cre}}\right)$$
 Ecuación 183

$$Si F_{cre} \le 0.56 F_y \rightarrow F_n = F_{cre}$$
 Ecuación 184

$$M_y = S_{fy}F_y$$
 Ecuación 185

$$M_{ne} = S_f F_n \le M_y$$
 Ecuación 186

La resistencia de diseño en flexión para pandeo local interactuando con la fluencia y el pandeo global sobre el eje fuerte se puede determinar siguiendo las directrices de la sección F3.2.1 del AISI, por medio de las siguientes ecuaciones:

$$k_f$$
 = Coeficiente de pandeo de la placa, según figura 5. *Ecuación 187*

$$F_{cr\ell} = k \frac{\pi^2 E}{12(1-\mu^2)} \left(\frac{t}{w}\right)^2 \qquad Ecuación \, 188$$

$$M_{cr\ell} = S_f F_{cr\ell} \qquad Ecuación \, 189$$

$$\lambda_{\ell} = \sqrt{\frac{M_{ne}}{M_{cr\ell}}} \qquad Ecuación 190$$

 $Si \lambda_{\ell} \le 0.776 \rightarrow M_{n\ell} = M_{ne}$ Ecuación 191

$$Si \lambda_{\ell} > 0.776 \rightarrow M_{n\ell} = \left[1 - 0.15 \left(\frac{M_{cr\ell}}{M_{ne}}\right)^{0.4}\right] \left(\frac{M_{cr\ell}}{M_{ne}}\right)^{0.4} M_{ne}$$
 Ecuación 192

Nota: M_{ne} se define en la sección F2 y depende de si la sección está sujeta a torsión o no.

La resistencia de diseño en flexión para pandeo por distorsión en elementos tipo C se calcula, mediante la sección F4.1 de la especificación S100-16. Esto se realiza, a partir de las siguientes ecuaciones, en las cuales se involucran parámetros que son definidos en la determinación de la resistencia axial nominal para el pandeo por distorsión.

$$L_{crd} = \left\{ \frac{4\pi^4 h_o(1-\mu^2)}{t^3} \left[I_{xf} \left(x_{of} - h_{xf} \right)^2 + C_{wf} - \frac{I_{xyf}^2}{I_{yf}} \left(x_{of} - h_{xf} \right)^2 \right] + \frac{\pi^4 h_o{}^4}{720} \right\}^{1/4}$$
 Ecuación 193

$$\mathbf{k}_{\phi fe} = \left(\frac{\pi}{L}\right)^4 \left[\mathbf{E} \cdot \mathbf{I}_{\mathrm{xf}} (\mathbf{x}_{\mathrm{of}} - \mathbf{h}_{\mathrm{xf}})^2 + \mathbf{E} \cdot \mathbf{C}_{\mathrm{wf}} - \mathbf{E} \frac{\mathbf{I}_{\mathrm{xyf}}^2}{\mathbf{I}_{\mathrm{yf}}} (\mathbf{x}_{\mathrm{of}} - \mathbf{h}_{\mathrm{xf}})^2 \right] + \left(\frac{\pi}{L}\right)^2 \mathbf{G} \cdot \mathbf{J}_{\mathrm{f}} \qquad Ecuación 194$$

$$k_{\text{pwe}} = \frac{Et^3}{12(1-\mu^2)} \left[\frac{3}{h_0} + \left(\frac{\pi}{L}\right)^2 \frac{19 h_0}{60} + \left(\frac{\pi}{L}\right)^4 \frac{h_0^{-3}}{240} \right]$$
 Ecuación 195

 k_{ϕ} = Rigidez rotacional provista por un elemento de restricción (riostra, panel, tablero de cerramiento) a la unión aleta-alma de un miembro (cero si la aleta en compresión no está restringida). Si la rigidez rotacional proporcionada a las dos bridas es desigual, se utiliza la menor rigidez rotacional. *Ecuación 196*

$$\begin{split} \tilde{k}_{\phi fg} &= \left(\frac{\pi}{L}\right)^2 \left\{ A_f \left[(x_{of} - h_{xf})^2 \left(\frac{l_{xyf}}{l_{yf}}\right)^2 - 2y_{of}(x_{of} - h_{xf}) \left(\frac{l_{xyf}}{l_{yf}}\right) + h_{xf}^2 + y_{of}^2 \right] + I_{xf} + I_{yf} \right\} \qquad \textit{Ecuación 197} \\ \tilde{k}_{\phi wg} &= \frac{h_o t \pi^2}{13440} \left\{ \frac{[45360(1 - \xi_{web}) + 62160] \left(\frac{L}{h_0}\right)^2 + 448 \pi^2 + \left(\frac{h_0}{L}\right)^2 [53 + 3(1 - \xi_{web})] \pi^4}{\pi^4 + 28 \pi^2 \left(\frac{L}{h_0}\right)^2 + 420 \left(\frac{L}{h_0}\right)^4} \right\} \qquad \textit{Ecuación 198} \\ \xi_{web} &= \frac{(f_1 - f_2)}{f_1} f_1 \qquad \textit{Ecuación 199} \end{split}$$

 $\beta = valor que tiene en cuenta el gradiente de momento, el cual se permite que se tome de manera conservadora como 1.$ Ecuación 200

$$F_{crd} = \beta \frac{k_{\phi fe} + k_{\phi we} + k_{\phi}}{\tilde{k}_{\phi fg} + \tilde{k}_{\phi wg}}$$
 Ecuación 201

$$M_{crd} = S_f F_{crd}$$
 Ecuación 202

$$M_{y} = S_{fy}F_{y} \qquad \qquad Ecuación \ 203$$

$$\lambda_{\rm d} = \sqrt{\frac{M_{\rm y}}{M_{\rm crd}}} \qquad Ecuación 204$$

$$Si \lambda_{d} \leq 0.673 \rightarrow M_{nd} = M_{y}$$
 Ecuación 205

$$Si \lambda_{\rm d} > 0.673 \rightarrow M_{\rm nd} = \left[1 - 0.22 \left(\frac{M_{\rm crd}}{M_{\rm y}}\right)^{0.5}\right] \left(\frac{M_{\rm crd}}{M_{\rm y}}\right)^{0.5} M_{\rm y}$$
 Ecuación 206

La resistencia de diseño en flexión para pandeo por distorsión, en elementos tipo Z se calcula, mediante la sección F4.1 de la especificación S100-16. Al igual que en los elementos C, esto se realiza por medio de las siguientes ecuaciones, en las cuales se involucran parámetros que son definidos en la determinación de la resistencia axial nominal para el pandeo por distorsión.

$$L_{crd} = \left\{ \frac{4\pi^4 h_o (1-\mu^2)}{t^3} \left[I_{xf} \left(x_{of} - h_{xf} \right)^2 + C_{wf} - \frac{I_{xyf}^2}{I_{yf}} \left(x_{of} - h_{xf} \right)^2 \right] + \frac{\pi^4 h_o{}^4}{720} \right\}^{1/4}$$
 Ecuación 207

$$\mathbf{k}_{\phi fe} = \left(\frac{\pi}{L}\right)^4 \left[\mathbf{E} \cdot \mathbf{I}_{\mathrm{xf}} (\mathbf{x}_{\mathrm{of}} - \mathbf{h}_{\mathrm{xf}})^2 + \mathbf{E} \cdot \mathbf{C}_{\mathrm{wf}} - \mathbf{E} \frac{\mathbf{I}_{\mathrm{xyf}}^2}{\mathbf{I}_{\mathrm{yf}}} (\mathbf{x}_{\mathrm{of}} - \mathbf{h}_{\mathrm{xf}})^2 \right] + \left(\frac{\pi}{L}\right)^2 \mathbf{G} \cdot \mathbf{J}_{\mathrm{f}} \qquad Ecuación 208$$

$$k_{\text{dwe}} = \frac{Et^3}{12(1-\mu^2)} \left[\frac{3}{h_0} + \left(\frac{\pi}{L}\right)^2 \frac{19 h_0}{60} + \left(\frac{\pi}{L}\right)^4 \frac{h_0^3}{240} \right]$$
 Ecuación 209

 k_{ϕ} = Rigidez rotacional provista por un elemento de restricción (riostra, panel, tablero de cerramiento) a la unión aleta-alma de un miembro (cero si la aleta en compresión no está restringida). Si la rigidez rotacional proporcionada a las dos bridas es desigual, se utiliza la menor rigidez rotacional. *Ecuación 210*

$$\tilde{k}_{\phi fg} = \left(\frac{\pi}{L}\right)^2 \left\{ A_f \left[(x_{of} - h_{xf})^2 \left(\frac{I_{xyf}}{I_{yf}}\right)^2 - 2y_{of}(x_{of} - h_{xf}) \left(\frac{I_{xyf}}{I_{yf}}\right) + h_{xf}^2 + y_{of}^2 \right] + I_{xf} + I_{yf} \right\}$$
 Ecuación 211

β = valor que tiene en cuenta el gradiente de momento, el cual se permite que se tome de manera conservadora como 1. Ecuación 214

$$F_{crd} = \beta \frac{k_{\phi fe} + k_{\phi we} + k_{\phi}}{\tilde{k}_{\phi fg} + \tilde{k}_{\phi wg}}$$
 Ecuación 215

$$M_{crd} = S_f F_{crd}$$
 Ecuación 216

$$M_y = S_{fy}F_y$$
 Ecuación 217

$$\lambda_{\rm d} = \sqrt{\frac{M_{\rm y}}{M_{\rm crd}}} \qquad Ecuación 218$$

 $Si \lambda_{\rm d} \le 0.673 \rightarrow M_{\rm nd} = M_{\rm y}$ Ecuación 219

$$Si \lambda_{\rm d} > 0.673 \rightarrow M_{\rm nd} = \left[1 - 0.22 \left(\frac{M_{\rm crd}}{M_{\rm y}}\right)^{0.5}\right] \left(\frac{M_{\rm crd}}{M_{\rm y}}\right)^{0.5} M_{\rm y}$$
 Ecuación 220

1.6.4 Capacidad a cortante

Para calcular la capacidad de un elemento laminado frío que es sometido a un esfuerzo cortante, la especificación S100-2016 proporciona en el capítulo G2 parámetros para determinar la resistencia al corte de almas sin agujeros, así como también proporcional el capítulo G5 con el cual se puede determinar la resistencia nominal al aplastamiento del alma.

La resistencia al corte en elementos sin rigidizadores se puede calcular de la siguiente forma:

$$\begin{split} \varphi_v &= 0.95 & Ecuación 221 \\ A_W &= h t & Ecuación 222 \\ k_v &= \text{Coeficiente de pandeo de la placa, según figura 5.} & Ecuación 223 \\ F_{\text{cr}} &= \frac{\pi^2 \text{Ek}_V}{12(1-\mu^2)(h/t)^2} & Ecuación 224 \end{split}$$

$$V_{cr} = A_w F_{cr}$$
 Ecuación 225

$$V_y = 0.6 A_w F_y$$
 Ecuación 226

$$\lambda_{\rm v} = \sqrt{\frac{\rm v_y}{\rm v_{\rm cr}}} \qquad \qquad Ecuación 227$$

$$Si \lambda_{\rm v} \le 0.815 \rightarrow V_{\rm n} = V_{\rm y}$$
 Ecuación 228

$$Si \ 0.815 < \lambda_v \le 1.227 \rightarrow V_n = 0.815 \sqrt{V_{cr} V_y}$$
 Ecuación 229

$$Si \lambda_v > 1.227 \rightarrow V_n = 0.904 \text{ E k}_v \text{ t}^3/\text{h}$$
 Ecuación 230

La resistencia nominal al aplastamiento del alma se determina de acuerdo con los siguientes parámetros:

$$\varphi_w = Según \, la \, tabla \, 2, 3 \, o \, 4.$$
 Ecuación 231

$$C = Coeficiente de la tabla 2,3 o 4.$$
 Ecuación 232

 $\theta =$ Ángulo entre el plano del alma y el plano de la superficie de apoyo, $45^{\circ} \le \theta \le 90^{\circ}$. Ecuación 233

,

$$C_R = Coeficiente del radio de dobles según la tabla 2,3 o 4.$$
 Ecuación 234

- $C_N = Coeficiente de longitud de apoyo de la carga, según la tabla 2,3 o 4.$ Ecuación 235
 - $C_h = Coeficiente de esbeltez del alma, según la tabla 2, 3 o 4.$ Ecuación 236
 - Ecuación 237 N = Longitud de apoyo de carga (mínimo 19 mm)

$$P_n = Ct^2 F_y \sin \theta \left(1 - C_R \sqrt{\frac{R}{t}} \right) \left(1 + C_N \sqrt{\frac{N}{t}} \right) \left(1 - C_h \sqrt{\frac{h}{t}} \right)$$
 Ecuación 238

Support and Flange Conditions		1.10			CR	C _R C _N	Ch	USA and Mexico		Canada	Tinto
		Load C	Load Cases					$\stackrel{ASD}{\Omega_W}$	LRFD Øw	¢w	Limits
Fastened to Support	Stiffened or Partially	One- Flange	End	4	0.14	0.35	0.02	1.75	0.85	0.75	$R/t \le 9$
	Stiffened Flanges	Loading or Reaction	Interior	13	0.23	0.14	0.01	1.65	0.90	0.80	$R/t \le 5$
	19220	Two-	End	7.5	0.08	0.12	0.048	1.75	0.85	0.75	$R/t \le 12$
		Flange Loading or Reaction	Interior	20	0.10	0.08	0.031	1.75	0.85	0.75	R/t ≤ 12 d ¹ ≥4.5 in. (110 mm)
Unfastened Stiffened or Partially Stiffened Flanges	One-	End	4	0.14	0.35	0.02	1.85	0.80	0.70		
	Stiffened Flanges	Loading or Reaction	Interior	13	0.23	0.14	0.01	1.65	0.90	0.80	R/t≤5
		Two- Flange Loading or Reaction	End	13	0.32	0.05	0.04	1.65	0.90	0.80	R/t≤3
Unstiff			Interior	24	0.52	0.15	0.001	1.90	0.80	0.65	
	Unstiffened	One-	End	4	0.40	0.60	0.03	1.80	0.85	0.70	$R/t \le 2$
	rianges	Loading or Reaction	Interior	13	0.32	0.10	0.01	1.80	0.85	0.70	$R/t \le 1$
		Two-	End	2	0.11	0.37	0.01	2.00	0.75	0.65	R/t≤1
		Flange Loading or Reaction	Interior	13	0.47	0.25	0.04	1.90	0.80	0.65	

Tabla 2. Factores de resistencia y coeficientes para secciones canal con almas sencillas y secciones C

Note: 1 d = Out-to-out depth of section in the plane of the web

Fuente: American Iron and Steel Institute, 2016.

Nota: Según la especificación S100-16 (AISI, 2016b), la tabla 2 solo aplica para secciones C y canales de alma simple donde h/t \leq 200, N/t \leq 210, N/h \leq 2,0 y θ = 90°, para cargas sobre las dos aletas sujetas al apoyo, la distancia desde el borde del apoyo de la carga al extremo del miembro se extenderá al menos 2,5h, para casos de aletas no sujetas, la distancia desde el borde del apoyo de la carga al extremo del miembro se extenderá al menos 2,5h.

Support and Flange Conditions		Load Cases		с	CR	C _N	C _N C _h	USA and Mexico		Canada	410.00
								$\stackrel{ASD}{\Omega_W}$	LRFD Øw	¢w	Limits
Fastened to Support	Stiffened or Partially	One- Flange	End	4	0.14	0.35	0.02	1.75	0.85	0.75	$R/t \le 9$
	Stiffened Flanges	Loading or Reaction	Interior	13	0.23	0.14	0.01	1.65	0.90	0.80	R/t≤5
	132-2	Two-	End	7.5	0.08	0.12	0.048	1.75	0.85	0.75	$R/t \le 12$
	Flange Loading or Reaction	Interior	20	0.10	0.08	0.031	1.75	0.85	0.75	R/t ≤ 12 d ¹ ≥4.5 in. (110 mm)	
Unfastened Stiffened or Partially Stiffened Flanges Unstiffened Flanges	One-	End	4	0.14	0.35	0.02	1.85	0.80	0.70		
	Stiffened Flanges	Loading or Reaction	Interior	13	0.23	0.14	0.01	1.65	0.90	0.80	R/t≤5
	1111 111 100 100 100	Two- Flange Loading or Reaction	End	13	0.32	0.05	0.04	1.65	0.90	0.80	R/t≤3
			Interior	24	0.52	0.15	0.001	1.90	0.80	0.65	
	One-	End	4	0.40	0.60	0.03	1.80	0.85	0.70	$R/t \le 2$	
	Flange Loading or Reaction	Interior	13	0.32	0.10	0.01	1.80	0.85	0.70	$R/t \le 1$	
		Two-	End	2	0.11	0.37	0.01	2.00	0.75	0.65	
	-	Loading or Reaction	Interior	13	0.47	0.25	0.04	1.90	0.80	0.65	$R/t \le 1$

Tabla 3. Factores de resistencia y coeficientes para secciones Z con almas sencillas.

Note: $^{1}d = Out-to-out depth of section in the plane of the web$

Fuente: American Iron and Steel Institute, 2016.

Nota: Según la especificación S100-16 (AISI, 2016b), la tabla 3 solo aplica para secciones Z con almas sencillas donde h/t \leq 200, N/t \leq 210, N/h \leq 2,0 y θ = 90°, para cargas sobre las dos aletas sujetas al apoyo, la distancia desde el borde del apoyo de la carga al extremo del miembro se extenderá al menos 2,5h, para casos de aletas no sujetas, la distancia desde el borde del apoyo de la carga al extremo del miembro se extenderá al menos 2,5h.

Support Conditions	Load Cases		с		C _N		USA and Mexico		Canada	
				CR		Ch	ASD Ω _w	LRFD ¢w	¢w	Limits
Fastened to Support	One-Flange	End	4	0.04	0.25	0.025	1.70	0,90	0.80	$R/t \le 20$
	Reaction	Interior	8	0.10	0.17	0.004	1.75	0.85	0.75	
	Two-Flange Loading or Reaction	End	9	0.12	0.14	0.040	1.80	0.85	0.70	$R/t \le 10$
		Interior	10	0.11	0.21	0.020	1.75	0.85	0.75	
Unfastened	One-Flange	End	3	0.04	0.29	0.028	2.45	0.60	0.50	R/t ≤20
	Reaction	Interior	8	0.10	0.17	0.004	1.75	0.85	0.75	
	Two-Flange	End	6	0.16	0.15	0.050	1.65	0.90	0.80	R/t ≤ 5
	Reaction	Interior	17	0.10	0.10	0.046	1.65	0.90	0.80	

Tabla 4. Factores de resistencia y coeficientes para secciones de almas múltiples.

Note: Multi-web deck sections are considered unfastened for any support fastener spacing greater than 18 in. (460 mm).

Fuente: American Iron and Steel Institute, 2016.

Nota: Según la especificación S100-16 (AISI, 2016b), la tabla 4 solo aplica para secciones de almas múltiples donde h/t \leq 200, N/t \leq 210, N/h \leq 3 y θ = 45° \leq θ \leq 90°.

1.7 Interacción de fuerzas

Los siguientes procedimientos para evaluar los elementos bajo fuerzas combinadas son tomados de la especificación S100-2016 (AISI, 2016b) y siguen los métodos de Resistencia Directa y LRFD. Estos procedimientos abordan elementos sujetos a carga axial y flexión combinadas, la combinación de flexión y cortante, así como la combinación de flexión y aplastamiento del alma.

1.7.1 Combinación de carga axial y flexión

De acuerdo con la sección H.1 de la especificación S100-2016 (AISI, 2016b), la combinación de cargas en tensión y flexión deben satisfacer las ecuaciones 239 y 240 mientras, que la combinación de cargas en compresión y flexión deben satisfacer la ecuación 241.

$$\frac{\overline{M}_{x}}{M_{axt}} + \frac{\overline{M}_{y}}{M_{ayt}} + \frac{\overline{T}}{T_{a}} \le 1.0$$
Ecuación 239
$$\frac{\overline{M}_{x}}{M_{ax}} + \frac{\overline{M}_{y}}{M_{ay}} - \frac{\overline{T}}{T_{a}} \le 1.0$$
Ecuación 240
$$\frac{\overline{P}}{P_{a}} + \frac{\overline{M}_{x}}{M_{ax}} + \frac{\overline{M}_{y}}{M_{ay}} \le 1.0$$
Ecuación 241

1.7.2 Combinación de flexión y cortante

Para vigas sin rigidizadores de cortante que se encuentran bajo la influencia de fuerzas combinadas de flexión y cortante, la especificación S100-2016 (AISI, 2016b), en la sección H2, establece que la siguiente ecuación debe cumplirse:

$$\sqrt{\left(\frac{\bar{M}}{M_{a\ell o}}\right)^2 + \left(\frac{\bar{V}}{V_a}\right)^2} \le 1.0$$

Ecuación 242

1.7.3 Combinación de flexión y aplastamiento del alma.

Según la especificación S100-2016 (AISI, 2016b), las almas simples no reforzadas y sujetas a una combinación de flexión y carga o reacción concentrada se deben diseñar de tal forma que se satisfaga la siguiente ecuación:

$$0.91\left(\frac{\bar{P}}{P_{n}}\right) + \left(\frac{\bar{M}}{M_{n\ell o}}\right) \le 1.33\phi \qquad Ecuación 243$$

Donde:

$$\phi = 0.90$$

Ecuación 244

Nota: En los apoyos interiores de luces continuas, la ecuación 243 no es aplicable a tableros metálicos o vigas con dos o más almas sencillas, cuando los bordes en compresión de las almas adyacentes sean apoyados lateralmente, en la región de momentos negativos por elementos de continuos o intermitentes conectados a la aleta, revestimientos rígidos o sistemas de arriostramiento lateral, y el espaciamiento entre las almas adyacentes no excedan las 10 pulgadas (254 mm).

1.8 Incremento en el punto de fluencia

De acuerdo con la especificación S100-2016 (AISI, 2016b), el conformado en frío aumenta la resistencia de fluencia del material, este incremento se puede utilizar en cálculos específicos. Las limitaciones y los métodos de determinación del esfuerzo de fluencia (F_{ya}) descritos por la especificación son los siguientes:

- a) El esfuerzo de fluencia del acero se debe determinar, con base en los siguientes métodos:
 - 1. Ensayos de tracción de sección completa.
 - 2. Ensayos sobre columnas cortas
 - 3. Calculado de acuerdo con la siguiente ecuación:

$$F_{ya} = C \cdot F_{yc} + (1 - C)F_{yc} \le F_{uv} \qquad Ecuación 245$$

- b) Para miembros en tensión axialmente cargados el punto de fluencia del acero será determinado ya sea por el método 1 o por el método 3 descritos en la sección anterior (a).
- c) El efecto de la soldadura sobre las propiedades mecánicas de un elemento se determinará, con base en ensayos sobre probetas de sección completa que contengan, dentro de la longitud testigo, el tipo de soldadura que el fabricante pretenda utilizar.

Capítulo 2: Metodología

2.1 Investigación

Para llevar a cabo el proyecto, en primera instancia, se realizó una investigación exhaustiva y una revisión de literatura técnica relacionada con el diseño de los elementos estructurales laminados en frío, la cual se presenta en el marco teórico. A partir de esta investigación, se recopilan las hojas de cálculo disponibles en la empresa utilizadas para el diseño de los elementos laminados en frío. Además, se aplicaron consultas verbales a los profesionales de la empresa. Todo esto se efectuó con el propósito de determinar los requisitos bajo los cuales debe operar el procedimiento estandarizado para el diseño de perfiles laminados en frío y, de esta manera, definir los criterios del sistema para determinar la alternativa más apropiada para el desarrollo es este proyecto.

2.2 Desarrollo de la herramienta

De acuerdo con la investigación se determina que la alternativa mas apropiada para desarrollar este proyecto corresponde al software Excel dado que es ampliamente conocido por todos los colaboradores de la empresa y permite llevar a cabo los cálculos necesarios por el proyecto. Una vez definida la herramienta por utilizar, se procede a programar los cálculos de las propiedades geométricas detalladas en el apartado 1.5 del marco teórico. Estos cálculos se implementan en diferentes hojas de cálculo, correspondientes a los diferentes elementos laminados en frío. El propósito de esta implementación es garantizar que el procedimiento de cálculo no dependa de bases de datos exclusivas de algunos proveedores, lo que aumenta la independencia y versatilidad de la herramienta.

En las diferentes hojas de cálculo, se programan las fórmulas y funciones necesarias para calcular las diferentes propiedades geométricas, como el área de la sección transversal, el momento de inercia, el módulo de sección, entre otras propiedades. Una vez programados estos cálculos, se llevan a cabo pruebas comparativas utilizando diversos artículos científicos y fichas técnicas para verificar que el procedimiento de cálculo produce resultados precisos y confiables. Cualquier error o discrepancia identificado durante esta etapa se corrige de manera oportuna y rigurosa.

Luego de calcular las propiedades geométricas para cada elemento, se procede a desarrollar los cálculos de diseño, siguiendo lo especificado el aparatado 1.6 del marco teórico. Estas hojas de cálculo contienen las fórmulas y funciones definidas en la especificación S-100-2016 del AISI para el diseño de elementos laminados en frío utilizando tanto el método Resistencia Directa como el método de diseño por factores de carga y resistencia (LRFD), este último conforme a lo establecido por el Código Sísmico de Costa Rica. De esta forma se obtienen todos los cálculos requeridos para el diseño de los perfiles laminados en frío, tipo C, Z y tubulares.

Es importante destacar que, en la programación de las hojas electrónicas, se optó por no aplicar el incremento de la resistencia de fluencia del material al ser conformado en frío. Esta decisión se basa en una

de las limitaciones establecidas por la especificación S100-2016 para el uso del incremento del esfuerzo de fluencia. La especificación requiere que se considere el efecto de la soldadura sobre las propiedades mecánicas del elemento mediante ensayos sobre probetas de sección completa que contengan, dentro de la longitud testigo, el tipo de soldadura que el fabricante pretenda utilizar. Por lo tanto, al desarrollar el procedimiento estandarizado de cálculo, se decide no incrementar este esfuerzo de fluencia y mantener un enfoque conservador con el propósito de minimizar el riesgo de error de diseño y garantizar la seguridad de la estructura.

A partir de la misma metodología empleada para revisar la programación de las propiedades geométricas, se realiza una exhaustiva revisión del apartado de cálculos de diseño en cada hoja de cálculo. En esta revisión se utilizan artículos científicos, cálculos realizados de forma manual, así como también software especializado en el cálculo de estructuras con materiales laminados en frío, como es el caso del software SAP 2000, en el cual se desarrolla un modelo estructural. Lo anterior con el objetivo de asegurar que el procedimiento de cálculo genera resultados precisos y confiables.

2.3 Desarrollo de un modelo estructural

En el programa SAP 2000 Ultimate, se desarrolla un modelo estructural teórico con un área de 54 metros cuadrados. Este modelo consta de ocho columnas, cada una compuesta por una sección de 100 x 100 x 2,37 mm. Además, se incorporan vigas de amarre que completan los marcos estructurales y que también tienen la misma sección que se emplea en las columnas. El modelo incluye cuatro cerchas en las cuales se utiliza una sección de 72 x 72 x 2.17 mm, cuya cuerda inferior corresponde a la viga de amarre especificada. En cuando a los clavadores, se generan dos modelos, en el primero se utilizan clavadores tipo C con una sección de 150 x 50 x 15 x 3,17 mm. En el segundo modelo, se utilizan elementos tipo Z con una sección de 200 x 50 x 15 x 2,37 mm. Adicionalmente, se incorporan arriostres para proporcionar una mayor estabilidad a la estructura con elementos tubulares cuya sección corresponde a la misma que se utiliza en las cerchas (72 x 72 x 2.17 mm). Es importante destacar que tanto los clavadores tipo C como los clavadores tipo Z se encuentran rotados 13,50°, respecto de los ejes locales del programa, lo cual corresponde a la posición en la cual su base se encuentra totalmente apoyada sobre la cuerda superior de las cerchas, dado que el techo del modelo presenta una pendiente del 24%. Por último, se asume un sitio de cimentación de categoría S3 y una clasificación de zona sísmica III. En las figuras 17 y 18 se muestran los modelos especificados.

Figura 18. Modelo estructural con clavadores tipo Z. Fuente: Computers and Structures, s.f.

2.4 Guía de uso del procedimiento estandarizado

Después de verificar la funcionalidad adecuada de la herramienta de diseño para elementos laminados en frío, se procedió a desarrollar una guía de uso con el propósito de proporcionar instrucciones detalladas y claras para llevar a cabo el procedimiento de cálculo estandarizado para el diseño de perfiles laminados en frío. En esta guía se detalla el contenido de las cuatro hojas de cálculo que conforman cada uno de los procedimientos de diseño, así como la manera correcta de hacer uso de esta. La Figura 19 muestra la portada de la guía, y una copia de esta, se adjunta en el apéndice 1.

Figura 19. Portada de la guía de uso del procedimiento estandarizado.

Capítulo 3: Resultados y análisis

3.1 Resultados

En este apartado se presenta la herramienta de cálculo que permite el diseño estandarizado de los elementos laminados en frío, así como los resultados obtenidos de esta en cada uno de sus apartados. Estos resultados abarcan las propiedades geométricas de los elementos, la capacidad de estos y las interacciones de fuerzas.

3.1.1 Herramienta de cálculo

La herramienta desarrollada consta de cuatro hojas de cálculo. La primera se titula: *Entrada y Salida de Datos*, en esta hoja se ingresan las propiedades del material y del elemento propuesto para el diseño, y se muestran todos los resultados de los cálculos realizados por la herramienta. La segunda hoja se llama *Hoja de Cálculo* en la que se llevan a cabo de manera detallada todos los cálculos relacionados con la capacidad del elemento evaluado. En cuanto a la tercera hoja, *Resistencias Requeridas*, permite el ingreso de los datos de las fuerzas a las que se someten los diferentes elementos de la estructura por diseñar, con el fin de realizar los cálculos de interacción de fuerzas y verificar que el diseño cumple con las demandas del proyecto. Por último, se encuentra la hoja de cálculo llamada *Perfiles*, que corresponde a una base de datos que almacena las propiedades básicas de cada elemento. Esta base de datos facilita el diseño, a través de un menú de acceso rápido que simplifica la introducción de las propiedades básicas de diferentes perfiles. La Figura 20 ejemplifica los tres procedimientos de diseño desarrollados en este proyecto. Además, en la sección de apéndice 2 se proporciona un detalle completo de cada una de las hojas de cálculo que integran la herramienta desarrollada.

Figura 20. Interfaz de las herramientas de cálculo.

3.1.2 Propiedades geométricas de elementos tubulares

Para verificar que el procedimiento de cálculo de las propiedades geométricas de los elementos tubulares se procede a realizar una comparación entre los resultados obtenidos por Romanjek (2013a), en el artículo propiedades y capacidades de los tubos estructurales laminados en frío y producidos en Costa Rica, y una ficha técnica de la empresa Metalco, S. A. para tubos estructurales.

7,2x7,2x0,120	Hoja de cálculo	Romanjek (2013a)	%Diferencia
$A_g(cm^2) =$	3,34	3,34	0,00%
$I_{xx}=I_{yy}$ (cm ⁴) =	27,60	27,60	0,00%
$S_x=S_y$ (cm ³) =	7,67	7,67	0,00%
$r_x = r_x (cm) =$	2,88	2,88	0,00%

Tabla 9. Comparación de propiedades geométricas para un elemento de 7.2x7.2x0.120 cm.

Tabla 10. Comparación de propiedades geométricas para un elemento de 15x5x0.150 cm.

15x15x1,50	Hoja de cálculo	Metalco, S. A. (s.f).	%Diferencia
$A_g(cm^2) =$	5,813	5,810	0,06%
I_{xx} (cm ⁴) =	156,673	156,690	0,01%
$I_{yy}(cm^4) =$	28,454	28,470	0,05%
S _x (cm ³) =	20,890	20,890	0,00%
$S_y(cm^3) =$	11,382	11,390	0,07%
r _x (cm) =	5,191	5,190	0,03%
r _y (cm) =	2,212	2,210	0,09%
J (cm ⁴) =	80,040	80,040	0,00%

3.1.3 Propiedades geométricas de elementos tipo C

Con el propósito de verificar los resultados de las propiedades geométricas de los elementos tipo C, se utilizan las características de los elementos 12CS3.5x105 y 9CS2.5x105, las cuales se obtienen de la tabla I-1 del Manual AISI, 2013.

Elemento	12CS3,5x105	9CS2.5x105
A' (in) =	12,000	9,000
B' (in) =	3,500	2,500
C' (in) =	0,885	0,885
t (in) =	0,105	0,105
R (in) =	0,188	0,188
$A_g(in^2) =$	2,09	1,57
I _{xx} (in ⁴) =	43,80	18,10
$I_{yy}(in^4) =$	3,07	1,24
S _x (in ³) =	7,29	4,02
$S_{y,min}$ (in ³) =	1,17	0,68
r _x (in) =	4,57	3,40
r _y (in) =	1,21	0,89
J (in ⁴) =	0,00769	0,00576
C _w (in ⁶) =	89,10	21,50
r₀ (in) =	5,23	3,89
x ₀ (in) =	-2,23	-1,68

Tabla 11. Propiedades geométricas de los elementos 12CS4x105 y 9CS2.5x105.

Fuente: American Iron and Steel Institute, 2013.

Con los datos de la tabla 11, se procede a calcular los elementos mediante la hoja de cálculo, pero con la conversión de unidades respectivas, para las cuales fue diseñada la hoja de cálculo.

12CS4x105	Hoja de cálculo	Manual AISI (2013)	%Diferencia		
$A_{g}(cm^{2}) =$	13,506	13,484	0,17%		
I _{xx} (cm ⁴) =	1821,610	1823,094	0,08%		
$I_{yy}(cm^{4}) =$	127,745	127,783	0,03%		
S _x (cm ³) =	119,528	119,462	0,06%		
$S_{y,min}$ (cm ³) =	19,189	19,173	0,08%		
r _x (cm) =	11,613	11,608	0,05%		
r _y (cm) =	3,075	3,073	0,07%		
J (cm ⁴) =	0,32023	0,32008	0,05%		
C_{w} (cm ⁶) =	23937,130	23926,546	0,04%		
r ₀ (cm) =	13,284	13,284	0,00%		
x ₀ (cm) =	-5,667	-5,664	0,05%		

Tabla 12. Comparación de propiedades geométricas para el elemento 12CS3.5x105.

Tabla 13. Comparación de propiedades geométricas para el elemento 9CS2.5x105.

9CS2.5x105	Hoja de cálculo	Manual AISI (2013)	%Diferencia
$A_g(cm^2) =$	10,119	10,129	0,10%
$I_{xx}(cm^4) =$	753,011	753,379	0,05%
$I_{yy}(cm^4) =$	51,511	51,613	0,20%
S _x (cm ³) =	65,880	65,876	0,01%
$S_{y,min}$ (cm ³) =	11,084	11,078	0,06%
r _x (cm) =	8,626	8,636	0,12%
r _y (cm) =	2,256	2,256	0,02%
J (cm ⁴) =	0,23992	0,240	0,07%
$C_{w} (cm^{6}) =$	5771,779	5773,521	0,03%
r ₀ (cm) =	9,883	9,881	0,02%
x ₀ (cm) =	-4,262	-4,267	0,11%

3.1.4 Propiedades geométricas de elementos tipo Z

Con el propósito de verificar los resultados de las propiedades geométricas de los elementos tipo C, se utilizan las características de los elementos 8ZS2.25x059 y 12ZS3.25x085, las cuales se obtienen de la tabla I-4 del Manual AISI, 2013.

Elemento	8ZS2.25x059	12ZS3.25x085
A' (in) =	8,000	12,000
B' (in) =	2,250	3,250
C' (in) =	0,910	0,960
t (in) =	0,059	0,085
R (in) =	0,188	0,188
Y (°) =	50,00	50,00
$A_g(in^2) =$	0,82	1,70
$I_{xx}(in^4) =$	7,76	35,50
I _{yy} (in ⁴) =	1,08	3,75
S _x (in ³) =	1,940	5,920
S _y (in ³) =	0,384	0,982
r _x (in) =	3,070	4,580
r _y (in) =	1,140	1,490
J (in ⁴) =	0,001	0,004
C _w (in ⁶) =	12,65	98,60

Tabla 14. Propiedades geométricas de los elementos 8ZS2.25x059 y 12ZS3.25x085.

De la misma manera que se realizó para los elementos tipo C, se procede a calcular las propiedades geométricas de los miembros de la tabla 14 mediante la hoja de cálculo, pero con la conversión de unidades respectivas para las cuales fue diseñada esta.

8ZS2.25x059	Hoja de cálculo	Manual AISI (2013)	%Diferencia
$A_g(cm^2) =$	5,304	5,303	0,01%
I _{xx} (cm ⁴) =	323,094	322,996	0,03%
$I_{yy}(cm^{4}) =$	44,791	44,953	0,36%
S _x (cm ³) =	31,801	31,791	0,03%
$S_y(cm^3) =$	6,286	6,293	0,11%
r _x (cm) =	7,805	7,798	0,09%
r _y (cm) =	2,906	2,896	0,36%
J (cm ⁴) =	0,03971	0,03971	0,01%
C _w (cm ⁶) =	3397,103	3396,979	0,00%

Tabla 15. Comparación de propiedades geométricas para el elemento 8ZS2.25x059.

 Tabla 16.
 Comparación de propiedades geométricas para el elemento 12ZS3.25x085.

12ZS3.25x085	Hoja de cálculo	Manual AISI (2013)	%Diferencia
$A_g(cm^2) =$	10,938	10,968	0,27%
$I_{xx}(cm^4) =$	1479,607	1477,622	0,13%
$I_{yy}(cm^{4}) =$	156,607	156,087	0,33%
$S_x(cm^3) =$	97,087	97,011	0,08%
$S_y(cm^3) =$	16,121	16,092	0,18%
r _x (cm) =	11,631	11,633	0,02%
r _y (cm) =	3,784	3,785	0,02%
J (cm ⁴) =	0,16995	0,170	0,07%
C_{w} (cm ⁶) =	26551,302	26477,636	0,28%

3.1.5 Capacidad de elementos tubulares

Para evaluar los elementos tubulares, se utiliza el ejemplo 5.1 del Wei-Wen Yu (2020), el ejemplo II-9 del Manual de AISI (2013), resultados obtenidos por Romanjek (2013a), un cálculo realizado de forma manual, el cual se adjunta en el apéndice 3, y el modelo realizado en el software SAP 2000 Ultimate. Esto permite llevar a cabo las siguientes comparaciones:

Tabla 17. Comparación de resultados de resistencia de diseño en compresión.						
	Hoja de cálculo	Wei-Wen Yu (2020)	%Diferencia			
P _{ne} (kg) =	23454,389	23450,603	0,02%			
P _{nl} (kg) =	35558,151	35588,671	0,09%			

Tabla 18. Comparación de resultados de resistencia de diseño en flexión.

rabia ro. Comparación de resultados de resistencia de diseño en nexión.			
	Hoja de cálculo	Manual AISI (2013)	%Diferencia
M _n (kg⋅cm) =	294849,947	262683,041	12,25%

Tabla 19 Comparación de resultados de resistencia de diseño en flexión.

	Hoja de cálculo	Cálculo manual	%Diferencia
Mn (kg⋅cm) =	294849,947	294835,316	0,00%

Tabla 20. Comparación de resultados de resistencia de diseño a cortante.

	Hoja de cálculo	Romanjek (2013a)	%Diferencia
V _n (kg) =	2159,953	2161,060	0,05%

Tabla 21. Comparación de los resultados de resistencia de diseño a través de software de análisis estructural.

Elemento: 100 x 100 x 2,37 mm				
	Hoja de cálculo	SAP 2000	%Diferencia	
φ T _n (kg) =	18773,07	18773,07	0,00%	
φ P _n (kg) =	4472,713	4471,338	0,03%	
φ M _n (kg⋅cm) =	58763,082	58751,001	0,02%	
φ V _n (kg) =	5362,936	5362,936	0,00%	
	Elemento: 72 x 72x 2,37 mm			
	Hoja de cálculo SAP 2000 %Diference			
φ T _n (kg) =	13245,01	13245,01	0,00%	
φ P _n (kg) =	11947,55	11947,43	0,00%	
φ M _n (kg⋅cm) =	29082,18	29072,99	0,03%	
φ V _n (kg) =	3612,39	3612,39	0,00%	

3.1.6 Capacidad de elementos tipo C

Para verificar que el procedimiento de cálculo de diseño de elementos tipo C produce resultados precisos y confiables se hace uso del ejemplo I del informe de investigación D100 del AISI (2021), así como también resultados obtenidos por Romanjek (2013b), para elementos tipo C, y los resultados obtenidos del modelo desarrollado en el software SAP 2000 Ultimate.

	Hoja de cálculo	AISI D100 (2021)	%Diferencia
P_{ne} (kg) =	21986,556	21999,115	0,06%
P_{nl} (kg) =	8940,386	8935,723	0,05%
P _{nd} (kg) =	8986,905	8981,082	0,06%

Tabla 22. Comparación de resultados de resistencia de diseño en compresión.

Tabla 23. Comparación de resultados de resistencia de diseño a flexión alrededor de eje X.

	Hoja de cálculo	AISI D100 (2021)	%Diferencia
M _{ne} (kg⋅cm) =	145108,993	145166,944	0,04%
M _{nl} (kg⋅cm) =	107901,893	107838,301	0,06%
M _{nd} (kg⋅cm) =	106834,830	106686,182	0,14%

Tabla 24. Comparación de resultados de resistencia de diseño a flexión alrededor del eje Y.

	Hoja de cálculo	AISI D100 (2021)	%Diferencia
M _{ne} (kg⋅cm) =	23820,012	23825,813	0,02%
M _{nl} (kg⋅cm) =	23820,012	23825,813	0,02%
M _{nd} (kg⋅cm) =	20740,824	20853,347	0,54%

Tabla 25. Comparación de resultados de resistencia de diseño a cortante según Romanjek (2001).			
Hoja de cálculo Romanjek (2013b) %Diferencia			
V _{n,y} (kg) =	1145,786	1145,770	0,00%

Tabla 26. Comparación de los resultados de resistencia de diseño a través de software de análisis estructural.

Elemento: 150 x 50 x 15 x 3,17 mm				
	Hoja de cálculo	SAP 2000	%Diferencia	
φ T _n (kg) =	16749,81	16749,81	0,00%	
φ P _n (kg) =	3970,99	3970,99	0,00%	
φ M _{n,x} (kg⋅cm) =	48985,20	48994,96	0,02%	
φ M _{n,y} (kg⋅cm) =	12547,94	12547,94	0,00%	
$\varphi V_{n,y} (kg) =$	5476,49	5476,49	0,00%	
φ V _{n,x} (kg) =	2590,65	2590,65	0,00%	

3.1.7 Capacidad de elementos tipo Z

Para comprobar la precisión y confiabilidad del procedimiento de cálculo de diseño de elementos tipo Z, se emplea el ejemplo III del informe de investigación D100 del AISI (2021), junto con los resultados obtenidos por Romanjek (2011), para elementos similares de tipo Z y el modelo desarrollado en el software SAP 2000 Ultimate.

	Hoja de cálculo	AISI D100 (2021)	%Diferencia
P _{ne} (kg) =	23454,389	23450,603	0,02%
P _{nl} (kg) =	10246,022	10205,775	0,39%
P _{nd} (kg) =	9911,909	9933,621	0,22%

Tabla 27. Comparación de resultados de resistencia de diseño en compresión según la especificación D100 del AISI.

Tabla 28. Comparación de resultados de resistencia de diseño a flexión según la especificación D100 del AISI.

	Hoja de cálculo	AISI D100 (2021)	%Diferencia
M _{ne} (kg⋅cm) =	152446,203	152770,926	0,21%
M _{nl} (kg⋅cm) =	115686,088	115787,919	0,09%
M _{nd} (kg⋅cm) =	93310,107	93436,818	0,14%

Tabla 29. Comparación de resultados de resistencia de diseño a flexión según la especificación D100 del AISI.

	Hoja de cálculo	AISI D100 (2021)	%Diferencia
M _{ne} (kg⋅cm) =	42886,146	42858,812	0,06%
M _{nl} (kg⋅cm) =	41524,380	41476,270	0,12%
M _{nd} (kg⋅cm) =	28637,629	28572,541	0,23%

Tabla 30. Comparación de resultados de resistencia de diseño a cortante según Romanjek (2001).

	Hoja de cálculo	Romanjek (2011)	%Diferencia
V _{n,y} (kg) =	926,647	926,606	0,00%

Tabla 31. Comparación de los resultados de resistencia de diseño a través de software de análisis estructural.

	Elemento: 200 x 50) x 15 x 2,37 mm	
	Hoja de cálculo	SAP 2000	%Diferencia
φ T _n (kg) =	15658,86	15658,86	0,00%
φ P _n (kg) =	5719,33	5670,98	0,85%
φ M _{n,x} (kg⋅cm) =	40260,44	40188,51	0,18%
φ M _{n,y} (kg⋅cm) =	13029,00	13029,00	0,00%
$\varphi V_{n,2} (kg) =$	5158,86	5158,86	0,00%
φ V _{n,3} (kg) =	2474,19	2474,19	0,00%

3.1.8 Interacción de fuerzas (D/C)

Con el propósito de verificar la funcionalidad del procedimiento estandarizado para el diseño de perfiles laminados en frío tipo C, Z y tubulares bajo condiciones de fuerzas combinadas, se realiza una comparación entre los resultados de las distintas hojas de cálculo y los resultados que brinda el software SAP 2000 Ultimate, para el modelo desarrollado en este proyecto. A continuación, se presentan los resultados obtenidos a través de las hojas de cálculo, según las capacidades calculadas por el procedimiento de diseño y los esfuerzos obtenidos por el modelo desarrollado en el programa de diseño.

	<i>Tabla 32.</i> Int	eracción de fuerzas en el elemento 100 x 100 x 2,37 mm.
Interacción 1	0,625	Flexión y carga axial en tracción combinadas.
Interacción 2	0,340	Flexión y carga axial en tracción combinadas.
Interacción 3	0,813	Flexión y carga axial en compresión sobre el eje X, sin considerar torsión.
Interacción 4	0,813	Flexión y carga axial en compresión sobre el eje X, considerando torsión.
Interacción 5	0,813	Flexión y carga axial en compresión sobre el eje Y, sin considerar torsión.
Interacción 6	0,813	Flexión y carga axial en compresión sobre el eje Y, considerando torsión.
Interacción 7	0,381	Flexión y cortantes combinados.
Interacción 8	0,587	Combinación de flexión y arrugado del alma.

Tabla 33. Interacción de fuerzas en el elemento 72 x 72 x 2,37 mm.

Interacción 1	0,475	Flexión y carga axial en tracción combinadas.
Interacción 2	0,458	Flexión y carga axial en tracción combinadas.
Interacción 3	0,805	Flexión y carga axial en compresión sobre el eje X, sin considerar torsión.
Interacción 4	0,805	Flexión y carga axial en compresión sobre el eje X, considerando torsión.
Interacción 5	0,790	Flexión y carga axial en compresión sobre el eje Y, sin considerar torsión.
Interacción 6	0,790	Flexión y carga axial en compresión sobre el eje Y, considerando torsión.
Interacción 7	0,473	Flexión y cortantes combinados.
Interacción 8	0,728	Combinación de flexión y arrugado del alma.

Tabla 34. Interacción de fuerzas en el elemento C 150 x 50 x 15 x 3.17 mm.

Interacción 1	0,763	Flexión y carga axial en tracción combinadas.
Interacción 2	0,928	Flexión y carga axial en tracción combinadas.
Interacción 3	0,928	Flexión y carga axial en compresión sobre el eje X, sin considerar torsión.
Interacción 4	0,928	Flexión y carga axial en compresión sobre el eje X, considerando torsión.
Interacción 5	0,928	Flexión y carga axial en compresión sobre el eje Y, sin considerar torsión.
Interacción 6	0,928	Flexión y carga axial en compresión sobre el eje Y, considerando torsión.
Interacción 7	0,310	Flexión y cortantes combinados.
Interacción 8	0,182	Combinación de flexión y arrugado del alma.

Interacción 1	0,997	Flexión y carga axial en tracción combinadas.
Interacción 2	0,997	Flexión y carga axial en tracción combinadas.
Interacción 3	0,997	Flexión y carga axial en compresión sobre el eje X, sin considerar torsión.
Interacción 4	0,997	Flexión y carga axial en compresión sobre el eje X, considerando torsión.
Interacción 5	0,997	Flexión y carga axial en compresión sobre el eje Y, sin considerar torsión.
Interacción 6	0,997	Flexión y carga axial en compresión sobre el eje Y, considerando torsión.
Interacción 7	0,482	Flexión y cortante combinadas.
Interacción 8	0,717	Combinación de flexión y arrugado del alma.

Tabla 35. Interacción de fuerzas en el elemento Z 200 x 50 x 15 x 2.37 mm.

En cuanto a los resultados de la interacción de esfuerzos que proporciona el software, estos se presentan en el apartado de anexos para cada perfil empleado en el modelo estructural. Adicionalmente, en este apartado se muestran los resultados de forma gráfica, mediante las figuras 21 y 22, y las fuerzas máximas para cada elemento se destacan con un círculo rojo.

Figura 21. Interacción de fuerzas en el modelo estructural con clavadores tipo C. Fuente: Computers and Structures, s.f.

Figura 22. Interacción de fuerzas en el modelo estructural con clavadores tipo Z. Fuente: Computers and Structures, s.f.

Con los datos de las interacciones de fuerzas obtenidas, a través de las hojas de cálculo programadas y los resultados de las interacciones obtenidas mediante el software, se procede a realizar la comparación que se muestra en la tabla 36. Para evaluar los elementos tubulares y tipo C, se utiliza el modelo de la figura 21, mientras que, para los elementos tipo Z, se emplea el modelo de la figura 22.

Elemento	Hoja de cálculo	SAP 2000	%Diferencia
100 x 100 x 2,37 mm	0,813	0,811	0,25%
72 x 72 x 2,37 mm	0,805	0,805	0,00%
C 150 x 50 x 15 x 3.17 mm	0,928	0,928	0,00%
Z 200 x 50 x 15 x 2.37 mm	0,997	0,998	0,10%

Tabla 36. Comparación de interacción de fuerzas entre las hojas de cálculo y el programa

3.2 Análisis de resultados

La comparación de resultados, como se puede observar en el apartado anterior, permite verificar la veracidad de las propiedades geométricas, tanto de los elementos tubulares como de elementos tipo C y Z. En el caso de los elementos tubulares, se observa un porcentaje de error del 0,09%, mientras que para los elementos tipo C y Z, se registran porcentajes de error del 0,20% y 0,36%, respectivamente. Es importante destacar que en el caso de los elementos tipo C y Z, estas variaciones pueden atribuirse, en parte, a que los resultados del Manual AISI (2013) están expresados en unidades de medidas imperiales o sistema inglés. Al hacer la conversión, se podría generar diferencias con los resultados obtenidos en la hoja de cálculo. Además, cabe destacar que parte de este error puede derivarse del redondeo de los resultados, el cual, al estar acompañado de un cambio de unidad de medida, podría influir, significativamente, en los resultados. No obstante, es relevante destacar que los datos muestran una variación que se encuentra por debajo del 1%, lo que indica una precisión notable.

Al analizar los resultados obtenidos en la sección de cálculos de diseño, se observa una variación en el cálculo de la resistencia de diseño en flexión de un elemento tubular, correspondiente al ejemplo II-9 del Manual de AISI (2013). Es importante destacar que los resultados del ejemplo se obtienen utilizando el método **Ancho Efectivo**, mientras que las hojas de cálculo están programas con el método de **Resistencia Directa.** La elección de utilizar los resultados de este ejemplo para la comparación se basa en la falta de bibliografía que proporcione ejemplos o resultados de cálculos, mediante el método **Resistencia Directa.** Es relevante mencionar que, en los comentarios de la especificación S100 (AISI 2016a), se menciona que esta no posee preferencia entre los dos métodos de diseño y, además, ambos proporcionan niveles consistentes de confianza, aunque no brindan resultados, numéricamente, idénticos.

Dado que se obtiene un porcentaje de error del 12,25% al comparar los resultados del ejemplo II-9 del Manual de AISI (2013) y con la finalidad de verificar la precisión de la hoja de cálculo, se procede a realizar los cálculos de forma manual, tal y como se adjunta el apéndice 3. Al comparar los resultados obtenidos de forma manual usando el enunciado del ejemplo II-9 del Manual de AISI, pero resolviendo el ejercicio mediante el método de **Resistencia Directa** se obtiene un porcentaje de error del 0,00%. Este porcentaje de diferencia entre los cálculos demuestra que el uso de tres decimales es suficiente para obtener resultados precisos, así como también que existe congruencia entre los cálculos obtenidos de forma manual. En cuanto a los parámetros restantes de comparación en los elementos tubulares, se observa que la máxima diferencia entre los resultados corresponde a un 0.09% lo cual no representa un porcentaje de error significativo. Se destaca la precisión al realizar la comparación con los resultados obtenidos, mediante el uso del software de diseño y análisis estructural, SAP 2000, en donde a pesar de que en algunos casos se utiliza el método de diseño **Ancho Efectivo**, los cálculos muestran un porcentaje de error prácticamente nulo (0,03%).

En cuanto a los resultados de diseño de los elementos tipo C, se observa que el mayor porcentaje de error se presenta en el cálculo de resistencia nominal a la flexión considerando la interacción del pandeo local y el pandeo global alrededor del eje Y, como se muestra en la tabla 24. Este porcentaje de error corresponde al 0,54%. Es importante destacar que la comparación de este resultado se lleva a cabo, a partir del ejemplo I de la del informe de investigación D100 del AISI (2021), en el cual los datos se obtienen bajo el **Método Directo** y se expresan en unidades imperiales. Este último factor, junto con el uso de dos cifras significativas y, por ende, el redondeo de los resultados puede generar variaciones que se reflejen dentro del valor correspondiente al 0,54%.

Adicionalmente, se destaca un porcentaje de error máximo del 0,02% al comparar los resultados obtenidos por medio de la hoja de cálculo con los del software de diseño y análisis estructural, en cuanto a la

capacidad del elemento 150 x 50 x 15 x 3,17 m. Es importante mencionar que estas capacidades se obtuvieron, mediante una longitud libre del elemento de 300 cm y un factor de longitud efectiva (K) correspondiente a 1. Este porcentaje muestra una mínima variación entre los resultados obtenidos por medio del software y los resultados obtenidos mediante la hoja de cálculo para elementos tipo C. Cabe mencionar que algunos de los resultados brindados por el software se obtienen por medio del método **Ancho Efectivo**.

En relación con los elementos de tipo Z, se destaca que la variación máxima en los porcentajes de diferencia alcanza un 0,39%. Esta diferencia se obtiene al calcular la resistencia de diseño en compresión, considerando el pandeo local interactuando con la fluencia y el pandeo global sobre el eje X. De manera similar, en el caso de los elementos tipo C, al usar la misma especificación para obtener los parámetros de comparación, se hace referencia a los factores mencionados anteriormente, lo cuales pueden influir en el porcentaje de error. Además, se observan porcentajes de error menores al 1% en la comparación de resultados de la hoja de cálculo con los resultados obtenidos por medio del software SAP 2000. Es importante mencionar que, aunque algunos de los resultados proporcionados por el programa se obtienen por medio del método **Ancho Efectivo**, se observa una buena precisión entre los resultados.

Al evaluar los datos proporcionados por las hojas de cálculo, se observa que todos los resultados se encuentran por debajo de un valor de 1. Esto demuestra que el diseño propuesto es válido para resistir no solo fuerzas y/o cargas unitarias, sino que también la combinación de estas. Es relevante mencionar que, en la interacción 8, el valor podría llegar a ser de un valor de hasta 1.197, según se define en las ecuaciones 243 y 244. Mediante el uso de las figuras 21 y 22, se observa el máximo valor de las ecuaciones de fuerzas combinadas proporcionadas por el programa de diseño y análisis estructural (SAP 2000 Ultimate), los detalles de estos resultados se adjuntan en el apartado de anexos.

Respecto de la comparación entre los resultados de las interacciones máximas proporcionadas por el software y las interacciones más críticas obtenidas, a través de las hojas de cálculo, se observa que los porcentajes de error que no superan el 0,25%. Esto corrobora la precisión de las hojas de cálculo en la evaluación de los elementos por demanda y capacidad cuando se encuentran sometidos a múltiples fuerzas simultáneas, lo cual resulta ser muy probable durante un sismo y por lo cual es vital evaluar las interacciones o combinaciones de fuerzas. Los porcentajes de variación obtenidos en esta comparación pueden deberse a varios factores, unos de estos corresponden al uso del método **Ancho Efectivo** por parte del programa de diseño y análisis estructural para la obtención de algunos parámetros de diseño, así como también se destaca que el software mantiene una mayor precisión en cuanto a los valores respectivos de los esfuerzos, a los cuales se somete cada elemento, individualmente.

Conclusiones y recomendaciones

Conclusiones

Se implementó un procedimiento de cálculo estandarizado para el diseño de perfiles laminados en frío de tipo tubular, C y Z. Este procedimiento sigue los parámetros de diseño establecidos en la especificación S100-2016 del Instituto Americano de Hierro y Acero (AISI), y cumple con los criterios del Código Sísmico de Costa Rica (CSCR 2010/16). En este procedimiento, se emplean tanto el método de diseño por factores de carga y resistencia (LRFD) como el método de **Resistencia Directa**, para el diseño de los diferentes perfiles.

Por medio de pruebas comparativas con artículos científicos, cálculos realizados de forma manual, fichas técnicas, y resultados de software especializado, se determinó que el procedimiento de diseño estandarizado de perfiles laminados en frío tipo C, Z y tubulares, proporciona resultados precisos y confiables.

Como parte integral del proyecto, se creó una guía de uso de la herramienta de diseño, con el propósito de facilitar la utilización del procedimiento de cálculo estandarizado. Esta guía se apoya en este trabajo escrito para detallar el funcionamiento del procedimiento estandarizado de diseño de perfiles laminados en frío.

Recomendaciones

Se sugiere la implementación de un procedimiento estandarizado complementario para el diseño de conexiones de perfiles laminados en frío. Esto es, particularmente, relevante, ya que en algunas ocasiones, el diseño de elementos de acero se basa en la capacidad de las conexiones para resistir las fuerzas a la cual se someten las uniones entre los elementos.

Al diseñar estructuras con perfiles laminados en frío, se recomienda siempre hacer uso del procedimiento estandarizado desarrollado en este trabajo. Esto permitirá validar los datos proporcionados por el software en caso de realizar el modelo de la estructura en un programa de diseño y análisis estructural capaz de evaluar elementos laminados en frío. De esta manera, se puede comprobar y asegurar que el diseño es preciso y correcto.

Se sugiere llevar a cabo una evaluación más exhaustiva para determinar el aumento realizable en la capacidad de los esfuerzos por fluencia mediante el laminado en frío. Esto es relevante, ya que como se puede observar en el marco metodológico, este proyecto utiliza, únicamente el esfuerzo de fluencia del acero virgen, el cual se especifica en las fichas técnicas proporcionadas por los proveedores.

Se recomienda siempre comprobar el cumplimiento de los estados límites de servicio durante el proceso de diseño, de acuerdo con los códigos vigentes, para garantizar que las estructuras sean confortables para los usuarios y cumplan con los estándares aplicables.

Referencias

- American Iron and Steel Institute. (2016a). Commentary on North American Specification for the Design of Cold-Formed Steel Structural Members (AISI S100).
- American Iron and Steel Institute. (2016b). North American specification for the design of cold-formed (AISI S100).
- American Iron and Steel Institute. (2013). Cold-Formed Steel Design Manual (AISI Manual).
- American Iron and Steel Institute. (2021). Development of Desing Tables for the Cold-Formed Steel Cross-Sections in AISI D100.
- Caamaño Palau, E. (2009). Estudio teórico y experimental de los modos de pandeo de perfiles estructurales de acero de chapa delgada, conformados en frío, de sección abierta y con perforaciones sometidos a compresión. https://upcommons.upc.edu/handle/2099.1/7695
- Computers and Structures, I. SAP 2000 Ultimate [computer software]
- Colegio Federado de Ingenieros y Arquitectos de Costa Rica. (2016). Código Sísmico de Costa Rica 2010. Revisión 2014 (5ta ed.). Editorial Tecnológica de Costa Rica.
- Hibbeler, R. C. (2017). Mechanics of materials. (10ma ed.).
- Instituto Canadiense de Construcción en Acero. (2002). TORSIONAL SECTION PROPERTIES OF STEEL SHAPES. (CISC).
- Kabir, I., & Bhowmick, A. K. (2016). Lateral Torsional Buckling of Welded Wide Flange Beams. Orlando, Florida.
- Metalco, S. A. (s.f). TUBERÍA ESTRUCTURAL. https://metalco.net/wpcontent/uploads/2022/12/FT_Tuberia-Estructural_61222.pdf
- Monge, D., & Vindas, R. (2002). Manual de Construcción para Estructuras Metálicas con base en Perfiles Doblados en Frío [Tesis de licenciatura, Instituto Tecnológico de Costa Rica]. https://hdl.handle.net/2238/252
- Oviedo, A. (2010). Desarrollo de una herramienta para el diseño de elementos estructurales de acero laminado en frío basado en la norma AISI 2007 y por el método LRFD. [Tesis de licenciatura, Instituto Tecnológico de Costa Rica]. https://hdl.handle.net/2238/6241
- Romanjek, M. (2011). PROPIEDADES Y CAPACIDADES DE LOS PERFILES TIPO "Z" LAMINADOS EN FRÍO Y PRODUCIDOS EN COSTA RICA.

https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/611

Romanjek, M. (2013a). PROPIEDADES Y CAPACIDADES DE LOS TUBOS ESTRUCTURALES LAMINADOS EN FRÍO Y PRODUCIDOS EN COSTA RICA.

https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/7903

Romanjek, M. (2013b). Tablas y propiedades de perfiles laminados en frío pertenecientes a la fábrica nacional Metalco. https://revistas.ucr.ac.cr/index.php/ingenieria/article/view/8004

Wei-Wen Yu, LaBoube, R., & Chen, H. (2020). Cold-Formed Steel Design. (5ta ed). John Wiley.

Apéndices

Apéndice 1. Guía de uso del procedimiento estandarizado.

Índice

Introduc	ción	3
Estructu	ra de la herramienta de cálculo	3
-	Entrada y Salida de Datos	4
-	Hoja de Cálculo	6
-	Resistencias Requeridas	6
-	Perfiles	6
Funcion	alidades especiales	8
-	Menú de perfiles	8
-	Filtros	8

Introducción

Esta guía tiene como objetivo proporcionar instrucciones detalladas y claras para la utilización del procedimiento de cálculo estandarizado para el diseño de perfiles laminados en frío tipo C, Z y tubulares. Esta guía está dirigida a ingenieros y profesionales responsables del diseño de estructuras que incorporan estos perfiles. Al seguir la guía paso tras paso, los profesionales podrán diseñar elementos de manera estandarizada, para reducir los posibles riesgos de error y mejorar la eficiencia. Además, esta guía permite a los ingenieros estructurales trabajar de una manera más eficiente cuando se requiera de un trabajo colaborativo.

Estructura de la herramienta de cálculo

Los tres procedimientos de diseño constan de cuatro hojas de cálculo (Entrada y Salida de Datos, Hoja de Cálculo, Resistencias Requeridas y Perfiles), tal y como se observa en la figura 1.

ropieda	ides del m	aterial	Comentarios
E =	2100000	kg/cm ²	Módulo de elasticidad del acero
G =	807692,31	kg/cm ²	Módulo de corte de acero
μ=	0,3		Relación de Poisson del acero
F _{yy} =	2314	kg/cm ²	Esfuerzo de fluencia por tracción del acero virgen
F., =	3160	kg/cm ²	Resistencia a la tracción del acero virgen

Propiedades del elemento

Comentarios

Figura 1. Hojas de Cálculo de los procedimientos de diseño.

A continuación, se describe cada una de las hojas de cálculo:

Entrada y Salida de Datos: Como su nombre indica, en este apartado se ingresan las propiedades del material y del elemento propuesto para el diseño. Esto se realiza en las primeras filas de la hoja de cálculo, tal y como se muestra en la figura 2 y 3. Además, en este aparatado se presentan todos los resultados que se obtienen, mediante la herramienta, se incluyen los resultados de la interacción de fuerzas y un apartado con los resultados en unidades de toneladas y metros, para proporcionar una mayor comodidad en algunos casos, en donde sea necesario de trabajar con grandes magnitudes. Los apartados anteriores se visualizan en las figuras 4, 5 y 6.

A	В	с	Ď	E	F	G	н
	Diseno de s	ecciones re	ectangulares lan	ninadas en fr	io segun el A	151 5100-16	
Propie	dades del n	naterial		C	omentario	S	
E	= 2100000	kg/cm ²	Módulo de ela	sticidad del ac	ero		
G	807692,31	kg/cm ²	Módulo de cor	rte de acero			
μ	= 0,3		Relación de P	oisson del ace	ro		
Fw	= 2314	kg/cm ²	Esfuerzo de fl	luencia por trac	ción del acere	o virgen	
Fur	= 3160	kg/cm ²	Resistencia a	la tracción del	acero virgen		
127					7.		

Figura 2. Ingreso de las propiedades del material.

Figura 3. Ingreso de las propiedades del elemento.
Capacidad del elemento			Comentarios				
$\phi_i T_n =$	12107,05	kg	Resistencia de diseño en tensión				
$\phi_c P_{r,x} =$	11233,604	kg	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje X				
φ _c ρ _{n,x} =	11233,604	kg	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje X				
φ _c P _{n,γ} =	6811,198	kg	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje Y				
φ _c P _{n,γ} =	6811,198	kg	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje Y				
φ _b M _{n,x} =	43505,54	kg-cm	Resistencia de diseño en flexión alrededor del eje X				
φ _b M _{n,y} =	23710,24	kg-cm	Resistencia de diseño en flexión alrededor del eje Y				
φ _v V _{n,x} =	1622,35	kg	Resistencia de diseño al cortante de las almas del eje X				
φ _v V _{n,y} =	5579,29	kg	Resistencia de diseño al cortante de las almas del eje Y				
φ.,	2155,90	kg	Resistencia de diseño al aplastamiento del alma				
Malo, K =	48339,49	kg-cm	Resistencia disponible del elemento flexionado en el eje X				
M _{alo,y} =	26344,72	kg·cm	Resistencia disponible del elemento flexionado en el eje Y				
M _{nlo,x} =	43505,54	kg-cm	Resistencia nominal del elemento flexionado en el eje X				
M _{nlo.y} =	23710,24	kg·cm	Resistencia nominal del elemento flexionado en el eje Y				
Maxt =	43505,54	kg·cm	Resistencia a la flexión disponible al considerar la fluencia por tensión				
Mayt =	23710,24	kg·cm	Resistencia a la flexión disponible al considerar la fluencia por tensión				

Figura 4. Capacidad del elemento propuesto.

Interacción de fuerzas (D/C)

Interacción 1	0,47543	Flexión y carga axial en tracción combinadas. (Eq. H1.1-1)
Interacción 2	0,45807	Flexión y carga axial en tracción combinadas. (Eq. H1.1-2)
Interacción 3	0,80524	Flexión y carga axial en compresión sobre el eje X, sin considerar torsión (Eq. H1.2-1)
Interacción 4	0,80524	Flexión y carga axial en compresión sobre el eje X, considerando torsión (Eq. H1.2-1)
Interacción 5	0,79018	Flexión y carga axial en compresión sobre el eje Y, sin considerar torsión (Eq. H1.2-1)
Interacción 6	0,79018	Flexión y carga axial en compresión sobre el eje Y, considerando torsión (Eq. H1.2-1)
Interacción 7	0,47316	Flexión y cortante combinadas. (Eq. H2-1)
Interacción 8	0,72823	Combinación de flexión y aplastamiento del alma (Eq. H3-1b)

Figura 5. Resultados de la interacción de fuerzas

Datos en toneladas (T) y metros (m)

	Capacidad	Demanda	Comentarios
φ _t T _n =	13,245	1,2666	Resistencia de diseño en tensión
φ _c P _{n,s} =	11,948	5,4152	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje X
ф _с Р _{п.8} =	11,948	5,4152	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje X
φ _c P _{n,y} =	12,381	5,4152	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje Y
φ _c P _{n,y} =	12,381	5,4152	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje Y
φ _b M _{n,x} =	29,082	0,135	Resistencia de diseño en flexión alrededor del eje X
$\phi_b M_{n,y} =$	29,082	0,042	Resistencia de diseño en flexión alrededor del eje Y
φ _v V _{n.x} =	3,612	0,028	Resistencia de diseño al cortante de las almas del eje X
φ _v V _{n,y} =	3,612	0,916	Resistencia de diseño al cortante de las almas del eje Y

Figura 6. Resultados de capacidad y demanda en toneladas y toneladas m.

- Hoja de Cálculo: Este apartado proporciona un cálculo detallado de todos los parámetros necesarios para el diseño de los perfiles laminados en frío. Se destaca que se ha establecido un formato específico para que, en caso de ser necesario, proporcionar una memoria de cálculo, sea suficiente con imprimir los datos contenidos en esta hoja.
- Resistencias Requeridas: En esta hoja se ingresan los datos de las fuerzas a las que se someten los diferentes elementos de la estructura por diseñar. Estos datos deben ser agregados en la sección TABLA EDITABLE, se deben respetar los encabezados de la tabla que se muestran con tonalidades diferentes, tal como se observa en la figura 7. Además, estos datos deben ser agregados en toneladas y toneladas metro, tal y como se especifica en el encabezado de la tabla. El usuario debe asegurarse de que el rango de los parámetros de interacción, que se encuentran, tanto a la derecha de la tabla editable como en la parte superior, incluyan la totalidad de los datos ingresados. Esta hoja está programada para considerar datos hasta la fila número 50000, por lo tanto, siempre se debe verificar que todos los datos sean evaluados.

									TABLA E	DITABLE					5
	TABLE: Element Forces - Frames														
Frame	s	tation		OutputCa	ise	CaseType	P	2	V2 = Vuy	V3 = Vux	т	M2 = Muy	M3 = Mux	FrameElem	ElemStation
Text		m		Text		Text •	Tor	if 🖭	Tonf -	Tonf	Tonf-m 🔹	Tonf-m ·	Tonf-m •	Text -	m -
336			0.6	6-2		Combination	-5	,1366	-0,6829	0,00006973	0,00012	0,00064	-0,10851	336-1	c
209		3,8078	9 6	6-2		Combination	-5	1364	0,6829	-0,00006919	-0,00012	0,00054	-0,10851	209-9	0,15232
219		3,8078	9 1	6-2		Combination	-5	,1361	0,6829	0,00007116	0,00012	-0,00064	-0,10851	219-9	0,15232
340			0 6	6-2		Combination	-5	1361	-0,6829	-0,0000679	-0,00012	-0,00064	-0,10851	340-1	C
336		1,5231	5 6	6-2		Combination	-5	,3916	0,2506	-0,00001295	0,0000918	0,00058	0,09061	336-5	0
209		2,2847	3 (6-2		Combination	-5	3914	-0,2506	0,00001366	-0,00009194	0,00058	0,09061	209-5	0,53516
219		2,2847	3 (6-2		Combination	-5	3911	-0,2506	-0,00001131	0,00009162	-0,00058	0,09061	219-5	0,53516
340		1,5231	5 1	6-2		Combination	-5	3911	0,2506	0,00001537	-0,00009231	-0,00058	0,09061	340-5	0
336		1,5231	5 (6-2		Combination	-5	2538	-0,3159	-0,00001295	0,0000918	0,00058	0,09061	336-4	0,494
209		2,2847	3 6	6-2		Combination	-5	,2536	0,3159	0,00001366	-0,00009194	0,00058	0,09061	209-6	c
219		2,2847	3 (6-2		Combination	-5	,2533	0,3159	-0,00001131	0,00009162	-0,00058	0,09061	219-6	C

Figura 7. Sección de ingreso de demandas.

Perfiles: Esta hoja proporciona una base de datos con parámetros básicos de los perfiles laminados en frío, que incluyen la esbeltez (h), el ancho (b), el espesor (t) y el radio interno de doblez (R). Además, en el caso de elementos tipo C, se incluye la longitud de la pestaña (d), y en elementos tipo Z, se añade el parámetro de longitud de pestaña (d), así como también el ángulo de pestaña (Y).

Perfil	t (mm)	R (mm)	h (mm)	b (mm)
12x12x0,70	0,70	1,40	12	12
12x12x0,80	0,80	1,60	12	12
12x12x0,90	0,90	1,80	12	12
12x12x0,95	0,95	1,90	12	12
12x12x1,20	1,20	2,40	12	12
19x19x0,70	0,70	1,40	19	19
19x19x0,80	0,80	1,60	19	19
19x19x0,95	0,95	1,90	19	19
19x19x1,00	1,00	2,00	19	19
19x19x1,20	1,20	2,40	19	19
19x19x1,50	1,50	3,00	19	19
22x22x0,95	0,95	1,90	22	22
22x22x1,20	1,20	2,40	22	22
22x22x1,50	1,50	3,00	22	22
25x25x0,70	0,70	1,40	25	25
25x25x0,80	0,80	1,60	25	25
25x25x,0,90	0,90	1,80	25	25
25x25x1,00	1,00	2,00	25	25
25x25x1,20	1,20	2,40	25	25
25x25x1,80	1,80	3,60	25	25
31x31x0,80	0,80	1,60	31	31
31x31x0,90	0,90	1,80	31	31
31x31x0,95	0,95	1,90	31	31
31x31x1,20	1,20	2,40	31	31
31x31x1,50	1,50	3,00	31	31

Figura 8. Base de datos de perfiles tubulares.

Funcionalidades especiales

Con el objetivo de ofrecer más facilidades en el procedimiento estándar de diseño, se incorporan dos funciones especiales que se describen a continuación:

Menú de perfiles: En la hoja de Entrada y Salida de Datos, se encuentra un menú despegable diseñado para facilitar el ingreso de las propiedades básicas de diferentes perfiles. A este menú se puede acceder posicionándose en la casilla que se muestra en la figura 9. Al hacerlo, se activará un botón a la derecha que permite acceder a la base de datos que se encuentra en la hoja de cálculo Perfiles. En caso de no encontrar la sección requerida dentro del menú, se puede ingresar los datos de manera directa en las casillas correspondientes o agregar los parámetros básicos de la sección en la base de datos, asegurándose de que los datos se encuentren entre la fila 4 y la fila 200, y se respeta el encabezado de la base de datos.

Figura 9. Casilla de ingreso al menú de perfiles.

Filtros: En la hoja de cálculo Resistencias Requeridas, se establecen filtros en los encabezados de las tablas esta hoja. Estos filtros resulta que tienen una gran utilidad cuando se necesita realizar diferentes visualizaciones, como ordenar los datos de una columna de mayor a menor, para identificar los casos de carga más críticos. En la figura 10 se muestra el acceso a estos filtros, mediante un ícono cuadrado con un triángulo invertido en su interior.

TABLA EDITABLE															
TABLE: Element Forces - Frame															
Station	OutputCase	CaseType		VZ = Viry	V9 = Vue		M2 = Muy	M8 = Mue	frametiem	Elemitation	Interacción		Combinación de l	lander y cortar	ne (Eq. H2-1)
- m 14	Texet +	Tear +	Torif +	Tost +	Tonf +	Tout-re-	Tool m +	Tonf-mi+	Test .	10 +	M1/M7 -	Min/Maria	Mus/Mana +	Vus/ d/mx :=	Vuw diviny -
. 0	5-3 C	Continution	-5,1106	0,6829	0,00006/173	0,00002	0,00064	-0,10851	336-1	0	11.005808074	0,33580399	0,001980594	1,0303E-05	0,189044055
3,80789	3 6 2	Combination	-5,1364	0,6829	-0,00006919	-0,00012	0,00064	0.10851	209-9	0,35232	0.005896074	0,33580359	0.001980594	1,91535E-05	0,189044055
3,00789	7.6-7	Contribution	-5,136t	0,6829	0,00067138	D,00012	-0,00064	-0,10851	219-8	0,25232	0.005888074	0,33580359	0,001980504	1,909898-00	0,129044053
0	0.6-2	Combination	-5,136t	-0,6829	-0,0000679	-0,00012	-0,00064	-0.10851	340-1	à	0.005666074	0,33560399	0.001980594	1,87964E-05	0.189044055
1,52315	5.6-2	Combination	-5,3910	0,2506	-0,00001295	0,0800018	0,00058	0,09061	336-5	0	0.006401059	0,280408841	0,001794014	1,584895-00	0,069372441
2,28473	10-3	Combination	5,3814	0,2506	0,00001366	-0,00099194	0,00058	0,09081	209-5	0,53518	0,006401058	0,280406841	0,001794914	1,78143E-06	0,069372441
	58atton m 3,8078 1,6079 1,5351 2,2847	Stration OutputCase m + Text 0 6-2 3,80789 3,80789 6-2 3,80789 1,52355 6-2 3,2355 2,28673 6-2 3,2355	Shattam OutputCase CaseType m + Test + Test + 0 6-3 Combination 3,80789 Combination 3,80789 6-2 Combination 3,80789 6-2 Combination 0 6-2 Combination 2,3873 6-2 Combination 2,28473 6-3 Combination 2,3873 6-3 Combination	Station DurputCase CaseType P m Text Text Text Tool + 0 6-2 Combination 5,1364 3,60789 6-2 Combination 5,1364 1,53515 6-2 Combination -5,1361 1,53515 6-2 Combination -5,3918 2,28473 6-2 Combination 5,3914	Station OutputCase CaseType P V2 = Vuy m * Text Tool + Tool 0 6-3 Combination -5,1360 0,8629 3,80789 6-2 Combination -5,1361 0,8629 3,60789 6-2 Combination -5,1361 0,8629 1,3515 6-2 Combination -5,1361 0,8629 1,3515 6-2 Combination -5,1361 0,8629 2,28673 6-2 Combination -5,3916 0,2508	TABLE Demans Faces - Fram Station OutputCase CaseType P V2 = Vuy V8 = Vus m 1 Test P V2 = Vuy V8 = Vus m 1 Test Tool + Tool + Tool + Tool + 0 6-2 Combination -5,1364 0,6829 0,00000719 3,60789 6-2 Combination -5,1361 0,6829 0,00000719 1,53535 6-2 Combination -5,1361 0,6829 0,00000719 1,53535 6-2 Combination -5,1361 0,6829 0,00000719 1,53535 6-2 Combination -5,1361 0,6829 0,00000129 2,28473 6-2 Combination -5,3814 -0,2508 0,00001245	TABLE Clement Forces - Forces Station ClargenCare CareType P V2 = V/uz V9 = V/uz V = V/uz m = Text - Tool + Tool + Tool + Tool + Tool + 0 6-3 Combination 5,1364 0,6829 0,00000915 0,00012 3,60789 6-2 Combination 5,1364 0,6829 0,0000915 0,00012 0 6-2 Combination 5,1361 0,6829 0,0000915 0,00012 0 6-2 Combination 5,1361 0,5829 0,0000915 0,00012 1,35315 F-2 Combination 5,1361 0,5829 0,00001255 0,00012 2,28473 6-3 Combination 5,3184 -0,2506 0,00001366 0,000019164	Valid Contact Valid Contact TABLE: Demans Forces -Frame Station OutputCale Cale Matter Cale Tool - Tool	TABLE Demant Farces - Trainer Station Clarge/Case CaseType P V2 = Vuy V5 = Vus T M2 = Muy M8 = Mus m = Test + Test + Toolf + Toolf + Toolf - <td>TABLA FORMASIZ TABLE Termine Forces - Frame Station OutputCase CaseType P V2 = Vuy V8 = Vus T M2 = Muy M8 = Mus Pramellem m + Test + Tool +</td> <td>TABLE Termine TABLE Termine Forces - Firmme Station ClargetCase CaseType P V2 = Vup V8 = Vus T M2 = Mus M8 = Mus FrameEllam m = Test = Test = Tool + Tool +<td>TABLE Demant Forces + Fame Station OutputCase CaseType P V2 = Vuy V5 = Vus T M2 = Mus M8 = Mus Fear (= m + M1/M2 (= m +</td><td>VEXALL Details : Seminer Forces - Former: Station Composition Case Type P V2 = Vuy V5 = Vue T M2 = Muy M8 = Mus PrameElem Immerclaim Immerclaim m = Test + Test + Tool +</td><td>VAILA Dermark Forces - Former Statum DurgunCase CaseType P V2 = Vuy V5 = Vue T M2 = Mus HameElem HameElem Hermetlem <t< td=""><td>TABLE Formation Forces - Frame Station OutputCase CaseType P V2 = Vux T M2 = Mux Max Frame/Em Elemination Interaction Correlevación de llación y contar m Test Toof <</td></t<></td></td>	TABLA FORMASIZ TABLE Termine Forces - Frame Station OutputCase CaseType P V2 = Vuy V8 = Vus T M2 = Muy M8 = Mus Pramellem m + Test + Tool +	TABLE Termine TABLE Termine Forces - Firmme Station ClargetCase CaseType P V2 = Vup V8 = Vus T M2 = Mus M8 = Mus FrameEllam m = Test = Test = Tool + <td>TABLE Demant Forces + Fame Station OutputCase CaseType P V2 = Vuy V5 = Vus T M2 = Mus M8 = Mus Fear (= m + M1/M2 (= m +</td> <td>VEXALL Details : Seminer Forces - Former: Station Composition Case Type P V2 = Vuy V5 = Vue T M2 = Muy M8 = Mus PrameElem Immerclaim Immerclaim m = Test + Test + Tool +</td> <td>VAILA Dermark Forces - Former Statum DurgunCase CaseType P V2 = Vuy V5 = Vue T M2 = Mus HameElem HameElem Hermetlem <t< td=""><td>TABLE Formation Forces - Frame Station OutputCase CaseType P V2 = Vux T M2 = Mux Max Frame/Em Elemination Interaction Correlevación de llación y contar m Test Toof <</td></t<></td>	TABLE Demant Forces + Fame Station OutputCase CaseType P V2 = Vuy V5 = Vus T M2 = Mus M8 = Mus Fear (= m + M1/M2 (= m +	VEXALL Details : Seminer Forces - Former: Station Composition Case Type P V2 = Vuy V5 = Vue T M2 = Muy M8 = Mus PrameElem Immerclaim Immerclaim m = Test + Test + Tool +	VAILA Dermark Forces - Former Statum DurgunCase CaseType P V2 = Vuy V5 = Vue T M2 = Mus HameElem HameElem Hermetlem <t< td=""><td>TABLE Formation Forces - Frame Station OutputCase CaseType P V2 = Vux T M2 = Mux Max Frame/Em Elemination Interaction Correlevación de llación y contar m Test Toof <</td></t<>	TABLE Formation Forces - Frame Station OutputCase CaseType P V2 = Vux T M2 = Mux Max Frame/Em Elemination Interaction Correlevación de llación y contar m Test Toof <

Figura 10. Botón de filtros en la hoja "Resistencias Requeridas".

Apéndice 2. Herramienta de cálculo.

Hoja: Entrada y Salida de Datos

Di	Diseño de secciones rectangulares laminadas en frío, según el AISI S100-16						
Propied	lades del m	aterial	Comentarios				
E =	2100000	kg/cm ²	Módulo de elasticidad del acero				
G =	807692,31	kg/cm ²	Módulo de corte de acero				
μ =	0,3		Relación de Poisson del acero				
$F_{yv} =$	2314	kg/cm ²	Esfuerzo de fluencia por tracción del acero virgen				
F _{uv} =	3160	kg/cm ²	Resistencia a la tracción del acero virgen				

Propiedades del elemento

Comentarios

Sección	72X72	X2,37	
h=	7,20	cm	Esbeltez del elemento
b=	7,20	cm	Ancho del elemento
t =	0,237	cm	Espesor de la sección
R =	0,474	cm	Radio interno de doblez
K _x =	1,00		Factor de longitud efectiva en el eje x
K _y =	1,00		Factor de longitud efectiva en el eje y
$K_t =$	1,00		Factor de longitud efectiva para torsión
$L_x =$	76	cm	Longitud no arriostrada del elemento en el eje x
$L_y =$	36	cm	Longitud no arriostrada del elemento en el eje y
$L_t =$	76	cm	Longitud no arriostrada del elemento para torsión

k _c =	4	Coeficiente de pandeo de la placa en compresión
$k_f =$	23,9	Coeficiente de pandeo de la placa en flexión
k _v =	5,34	Coeficiente de pandeo de la placa en cortante
C =	10	Coeficiente de la tabla G5-5
C _R =	0,11	Coeficiente de longitud del rodamiento de la tabla G5-5
N =	12,00	cm Longitud de apoyo de la carga (mínimo 19 mm)
$C_N =$	0,14	Coeficiente de longitud de apoyo de la tabla G5-5
$C_h =$	0,04	Coeficiente de esbeltez del alma de la tabla G5-5

Capacio	dad del eler	nento	Comentarios
$\mathbf{\Phi}_{t}\mathbf{T}_{n} =$	13245,01	kg	Resistencia de diseño en tensión
φ _c P _{n,x} =	11947,554	kg	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje X
$\Phi_{c}P_{n,x} =$	11947,554	kg	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje X
$\Phi_{c}P_{n,y} =$	12381,296	kg	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje Y
$\Phi_{c}P_{n,y} =$	12381,296	kg	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje Y
φ _b M _{n,x} =	29082,18	kg∙cm	Resistencia de diseño en flexión alrededor del eje X
ф ь М п,у =	29082,18	kg-cm	Resistencia de diseño en flexión alrededor del eje Y
$\phi_v V_{n,x} =$	3612,39	kg	Resistencia de diseño al cortante de las almas del eje X
$\phi_v V_{n,y} =$	3612,39	kg	Resistencia de diseño al cortante de las almas del eje Y
$\phi_w P_{nw} =$	5767,36	kg	Resistencia de diseño al aplastamiento del alma
M _{alo,x} =	32313,53	kg∙cm	Resistencia disponible del elemento flexionado en el eje X
M _{alo,y} =	32313,53	kg∙cm	Resistencia disponible del elemento flexionado en el eje Y
M _{nlo,x} =	29082,18	kg∙cm	Resistencia nominal del elemento flexionado en el eje X
M _{nlo,y} =	29082,18	kg-cm	Resistencia nominal del elemento flexionado en el eje Y
M _{axt} =	29082,18	kg∙cm	Resistencia a la flexión disponible al considerar la fluencia por tensión
M _{ayt} =	29082,18	kg∙cm	Resistencia a la flexión disponible al considerar la fluencia por tensión

Interacción de fuerzas (D/C)

Interacción 1	0,47543	Flexión y carga axial en tracción combinadas. (Eq. H1.1-1)
Interacción 2	0,45807	Flexión y carga axial en tracción combinadas. (Eq. H1.1-2)
Interacción 3	0,80524	Flexión y carga axial en compresión sobre el eje X, sin considerar torsión (Eq. H1.2-1)
Interacción 4	0,80524	Flexión y carga axial en compresión sobre el eje X, considerando torsión (Eq. H1.2-1)
Interacción 5	0,79018	Flexión y carga axial en compresión sobre el eje Y, sin considerar torsión (Eq. H1.2-1)
Interacción 6	0,79018	Flexión y carga axial en compresión sobre el eje Y, considerando torsión (Eq. H1.2-1)
Interacción 7	0,47316	Flexión y cortante combinadas. (Eq. H2-1)
Interacción 8	0,72823	Combinación de flexión y aplastamiento del alma (Eq. H3-1b)

Datos en toneladas (T) y metros (m)

	Capacidad	Demanda	Comentarios
$\mathbf{\Phi}_{t}\mathbf{T}_{n} =$	13,245	1,2666	Resistencia de diseño en tensión
$\mathbf{\Phi}_{c}\mathbf{P}_{n,x}$ =	11,948	5,4152	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje X
$\mathbf{\Phi}_{c}\mathbf{P}_{n,x} =$	11,948	5,4152	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje X
$\mathbf{\Phi}_{c}\mathbf{P}_{n,y} =$	12,381	5,4152	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje Y
$\mathbf{\Phi}_{c}\mathbf{P}_{n,y}$ =	12,381	5,4152	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje Y
$\phi_{b}M_{n,x} =$	29,082	0,135	Resistencia de diseño en flexión alrededor del eje X
φ _b M _{n,y} =	29,082	0,042	Resistencia de diseño en flexión alrededor del eje Y
$\phi_v V_{n,x} =$	3,612	0,028	Resistencia de diseño al cortante de las almas del eje X
$\phi_v V_{n,y} =$	3,612	0,916	Resistencia de diseño al cortante de las almas del eje Y

Hoja: Hoja de Cálculo

	PROYECTO:	Realizado por: Ing.		
		Revisado por: Ing.		
MCruz				
& ASOCIADOS LIDA Ingeniería Estructural				

Diseño de secciones tubulares laminadas en frío según el AISI S100-16

Propiedad	Propiedades del material		Comentarios
E =	2100000	kg/cm ²	Módulo de elasticidad del acero
G =	807692,31	kg/cm ²	Módulo de corte de acero
μ =	0,3		Relación de Poisson del acero
F _{yv} =	2314	kg/cm ²	Esfuerzo de fluencia por tracción del acero virgen
$F_{uv} =$	3160	kg/cm ²	Resistencia a la tracción del acero virgen

Propiedades del elemento

Comentarios

R =	0,47	cm	Radio interno de doblez
h _{efectiva} =	5,78	cm	Esbeltez efectiva
b _{efectiva} =	5,78	cm	Ancho efectivo
r =	0,59	cm	Radio medio de doblez
u =	0,93	cm	Longitud media de doblez
$A_g =$	6,3598	cm ²	Área completa de la sección transversal
$A_n =$	6,36	cm ²	Área neta de la sección transversal
K _x =	1,00		Factor de longitud efectiva en el eje x
K _y =	1,00		Factor de longitud efectiva en el eje y
$K_t =$	1,00		Factor de longitud efectiva para torsión
$L_x =$	76,16	cm	Longitud del elemento en el eje x
$L_y =$	36,02	cm	Longitud del elemento en el eje y
$L_t =$	76,16	cm	Longitud no arriostrada del elemento para torsión
$I_{xx} =$	50,2717	cm ⁴	Inercia del elemento sobre el eje x
$I_{yy} =$	50,27	cm ⁴	Inercia del elemento sobre el eje y
$S_x =$	13,96	cm ³	Módulo de sección con respecto al eje x
S _y =	13,96	cm ³	Módulo de sección con respecto al eje y
$r_x =$	2,81	cm	Radio de giro en el eje x
$r_y =$	2,81	cm	Radio de giro en el eje y
$C_b =$	1,00		*Se permite estimar Cb=1, de manera conservadora para todos los casos.
J =	82,01	cm ⁴	Constante de torsión de la sección
$C_w =$	0,00	cm ⁶	Constante de alabeo torsional de la sección transversal

D. MIEMBROS EN TENSIÓN

D2 Fluencia de	e la secció	on bruta	Comentarios
Φ t =	0,90		Factor de resistencia
$T_n =$	14717	kg	Resistencia nominal a tracción. (Eq. D2-1)
$\phi_t T_n =$	13245	kg	Resistencia de diseño por fluencia
D3 Ruptura d			
Φ t =	0,75		Factor de resistencia
$T_n =$	20097	kg	Resistencia nominal a tracción. (Eq. D3-1)
$\phi_t T_n =$	15073	kg	Resistencia de diseño por ruptura

E. MIEMBROS EN COMPRESIÓN

<u>E2 Fluencia y pandeo global</u> (flexión, flexión-torsional y <u>torsional)</u>			Comentarios			
φc =	0,85		Factor de resistencia			
	Alrededor del eje X (eje fuerte)					
E2.1 Secciones no sujetas a pandeo torsional o flexo-torsional			Para secciones de simetría doble, secciones cerradas o cualquier otra sección para la cual se puede demostrar que no está sujeta a pandeo torsional o flexo-torsional.			
F _{cre} =	21084,19	kg/cm ²	Esfuerzo crítico de pandeo elástico por flexión alrededor del eje de pandeo. (Eq.E2.1-1)			
$\lambda_{c} =$	0,33		(Eq. E2-4)			
$F_n =$	2210	kg/cm ²	Esfuerzo de compresión. (Eq. E2-2)-(Eq. E2-3)			
P _{ne} =	14056	kg	Resistencia nominal en compresión. (Eq. E2-1)			
φ _c P _{ne} =	11948	kg	Resistencia de diseño en compresión para miembros <u>no</u> <u>sujetos a pandeo torsional o flexo-torsional</u> sobre el eje X			

k _c =	4		Coeficiente de pandeo de la placa
w =	5,78	cm	Ancho plano del elemento
$F_{crl} =$	12773	kg/cm ²	Esfuerzo de pandeo crítico mínimo. (Eq. 1.1-4)
L _{0,x} =	113,25	cm	Longitud en la que la tensión de pandeo local es igual a la tensión de pandeo por flexión, eje x. (Eq.E2.1.1-1)
$R_{r,x} =$	0,86		Factor de reducción, eje x. (Eq. E2.1.1-2)
$R_{r,x} \cdot r_x =$	2,43	cm	

E2.2 Secciones con doble o simple simetría sujetas a pandeo por torsión o por flexión-torsión

$\sigma_t =$	658828,77	kg/cm ²	(Eq. E2.2-5)
$\sigma_{\text{ex}} =$	28246,53	kg/cm ²	(Eq.E2.2-6)
$r_o =$	3,98	cm	Radio polar de giro de la sección transversal alrededor del centro de corte. (Eq. E2.2-4)
β=	1,00		(Eq. E2.2-3)
F _{cre} =	28246,53	kg/cm ²	(Eq. E2.2-1)
$\lambda_{\rm c} =$	0,29		(Eq. E2-4)
$F_n =$	2236,0	kg/cm ²	Esfuerzo de compresión. (Eq. E2-2)-(Eq. E2-3)
P _{ne} =	14221	kg	Resistencia nominal en compresión. (Eq. E2-1)

 $\varphi_{\rm c} \mathsf{P}_{\rm ne} = 12088 \quad \mathrm{kg}$

Resistencia de diseño en compresión para miembros <u>sujetos</u> <u>a pandeo por torsión o por flexión-torsión</u> sobre el eje X

<u>E2 Fluencia y pandeo global</u> (flexión, flexión-torsional y torsional)			Comentarios
φc =	0,85		Factor de resistencia
		Alree	dedor del eje Y (eje débil)
E2.1 Secciones no sujetas a pandeo torsional o flexo-torsional			Para secciones de simetría doble, secciones cerradas o cualquier otra sección para la cual se puede demostrar que no está sujeta a pandeo torsional o flexo-torsional
F _{cre} =	94254,16	kg/cm ²	Esfuerzo crítico de pandeo elástico por flexión alrededor del eje de pandeo. (Eq.E2.1-1)
$\lambda_{\rm c} =$	0,16		(Eq. E2-4)
$F_n =$	2290	kg/cm ²	Esfuerzo de compresión. (Eq. E2-2)-(Eq. E2-3)
P _{ne} =	14566	kg	Resistencia nominal en compresión. (Eq. E2-1)
$\phi_c P_{ne} =$	12381	kg	Resistencia de diseño en compresión para miembros <u>no</u> <u>sujetos a pandeo torsional o flexo-torsional</u> sobre el eje Y

E2.1.1 Secciones de caja cerrada

k _c =	4		Coeficiente de pandeo de la placa
w =	5,78	cm	Ancho plano del elemento
$F_{crl} =$	12773	kg/cm ²	Esfuerzo de pandeo crítico mínimo. (Eq. 1.1-4)
L _{0,y} =	113,25	cm	Longitud en la que la tensión de pandeo local es igual a la tensión de pandeo por flexión, eje x. (Eq.E2.1.1-1)
$R_{r,y} =$	0,86		Factor de reducción, eje y. (Eq. E2.1.1-2)
$R_{r,y} \cdot r_y =$	2,43	cm	Radio de giro reducido

E2.2 Secciones con doble o simple simetría sujetas a pandeo por torsión o por flexión-torsión

φ _c P _{ne} =	12381	kg	Resistencia de diseño en compresión para miembros <u>sujetos</u> <u>a pandeo por torsión o por flexión-torsión</u> sobre el eje Y
P _{ne} =	14566	kg	Resistencia nominal en compresión. (Eq. E2-1)
$F_n =$	2290,3	kg/cm ²	Esfuerzo de compresión. (Eq. E2-2)-(Eq. E2-3)
$\lambda_{c} =$	0,16		(Eq. E2-4)
$F_{cre} =$	94254,16	kg/cm ²	Según nota de la seccion E2.2
$r_{o} =$	3,98	cm	Radio polar de giro de la sección transversal alrededor del centro de corte. (Eq. E2.2-4)
$\sigma_t =$	658828,77	kg/cm ²	(Eq. E2.2-5)

E3 pandeo local interactuando con la fluencia y el pandeo global

φc =	0,85		Factor de resistencia
			Alrededor del eje X
E3.2 Método de I	resistenci	a directa	
E3.2.1 Miembi	ros sin agu	jeros	
P _{ne} =	14056	kg	Resistencia global de la columna. (Eq. E2-1)
P _{crl} =	81235	kg	Fuerza de pandeo local. (Eq. 2.3.1.2-1)
$\lambda_{I} =$	0,42		(Eq. E3.2.1-3)
P _{nl} =	14056	kg	(Eq. E3.2.1-1)-(Eq. E3.2.1-2)
φ _c P _{nI} =	11948	kg	Resistencia de diseño en compresión para pandeo local interactuando con la fluencia y el pandeo global sobre el eje X, en miembros no sujetos a pandeo torsional o flexo- torsional
E3.2.1 Miembi	ros sin agu	jeros	
P _{ne} =	12088	kg	Resistencia global de la columna. (Eq. E2-1)
P _{crl} =	81235	kg	Fuerza de pandeo local. (Eq. 2.3.1.2-1)
$\lambda_{I} =$	0,39		(Eq. E3.2.1-3)
P _{nl} =	12088	kg	(Eq. E3.2.1-1)-(Eq. E3.2.1-2)
φ _c P _{nl} =	10274	kg	Resistencia de diseño en compresión para pandeo local interactuando con la fluencia y el pandeo global sobre el eje X, en miembros sujetos a pandeo por torsión o por flexión- torsión

E3 pandeo local interactuando con la fluencia y el pandeo global

	φc=	0,85		Factor de resistencia
				Alrededor del eje Y
E3.2 Mé	todo de	resistenci		
E3.2	.1 Miemb	ros sin agu	jeros	
	P _{ne} =	14566	kg	Resistencia global de la columna
	Parl =	81235	ka	Euerza de pandeo local (Eg. 2.3

P _{ne} =	14566	kg	Resistencia global de la columna. (Eq. E2-1)
$P_{crl} =$	81235	kg	Fuerza de pandeo local. (Eq. 2.3.1.2-1)
$\lambda_i =$	0,42		(Eq. E3.2.1-3)
P _{nl} =	14566	kg	(Eq. E3.2.1-1)-(Eq. E3.2.1-2)

$$\phi_{\rm c} P_{\rm nl} = 12381 \ {\rm kg}$$

Resistencia de diseño en compresión para pandeo local interactuando con la fluencia y el pandeo global sobre el eje Y, en miembros no sujetos a pandeo torsional o flexotorsional

E3.2.1 Miembros sin agujeros

φ _c P _{nl} =	12381	kg	Resistencia de diseño en compresión para pandeo local interactuando con la fluencia y el pandeo global sobre el eje Y, en miembros sujetos a pandeo por torsión o por flexión- torsión
$P_{nl} =$	14566	kg	(Eq. E3.2.1-1)-(Eq. E3.2.1-2)
$\lambda_{I} =$	0,42		(Eq. E3.2.1-3)
P _{crl} =	81235	kg	Fuerza de pandeo local. (Eq. 2.3.1.2-1)
P _{ne} =	14566	kg	Resistencia global de la columna. (Eq. E2-1)

F. MIEMBROS EN FLEXIÓN

F2 Cedencia (lateral	y pandeo -torsional)	<u>global</u>	Comentarios			
		-	Alrededor del eje X			
φb =	0,90		Factor de resistencia			
F2.1 Inicio d	el límite elá	stico				
S _{fy} =	13,96	cm ³	Módulo elástico de la sección efectiva, calculado respecto a la fibra extrema en tensión			
$M_y =$	32314	kg∙cm	(Eq. F2.1-2)			
S _f =	13,96	cm ³	Módulo elástico de la sección efectiva, calculado respecto a la fibra extrema en compresión			
M _{ne} =	32314	kg∙cm	Resistencia nominal a la flexión para la fluencia y el pandeo global. (Eq. F2.1-1)			
$\phi_{b}M_{ne,x} =$	29082	kg∙cm	Resistencia de diseño en flexión para fluencia y pandeo global			
F2.1.4 Seccior	F2.1.4 Secciones de caja cerrada					
L _u =	2926,86	cm	(Eq. F2.1.4-1)			

$L_u =$	2926,86	cm	(Eq. F2.1.4-1)
$F_{cre} =$	522299,48	kg/cm ²	Esfuerzo de pandeo elástico para flexión (Eq. F2.1.4-2)
$F_n =$	2314	kg/cm ²	(Eq. F2.1-3)-(Eq. F2.1-4)-(Eq. F2.1-5)

F2 Cedencia y pandeo global (lateral-torsional)

Comentarios

Alrededor del eje Y

0,90 $\Phi b =$

Factor de resistencia

F2.1 Inicio del límite elástico

$S_{fy} =$	13,96	cm ³	Módulo elástico de la sección efectiva, calculado respecto a la fibra extrema en tensión
$M_y =$	32314	kg∙cm	(Eq. F2.1-2)
S _f =	13,96	cm ³	Módulo elástico de la sección efectiva, calculado respecto a la fibra extrema en compresión
M _{ne} =	32314	kg∙cm	Resistencia nominal a la flexión para la fluencia y el pandeo global. (Eq. F2.1-1)
φ _b M _{ne,y} =	29082	kg∙cm	Resistencia de diseño en flexión para fluencia y pandeo global

F2.1.4 Secciones	s de caja	cerrada
------------------	-----------	---------

$L_u =$	2926,86	cm	(Eq. F2.1.4-1)
$F_{cre} =$	522299,48	kg/cm ²	Esfuerzo de pandeo elástico para flexión (Eq. F2.1.4-2)
$F_n =$	2314	kg/cm ²	(Eq. F2.1-3)-(Eq. F2.1-4)-(Eq. F2.1-5)

F3 pandeo local que interactúa con la fluencia y el pandeo global

Comentarios

Alrededor del eje X

 $\phi_{b} = 0,90$

Factor de resistencia

F3.2 Método de fuerza directa

F3.2.1 Miembros sin agujeros

$\phi_{\rm b}M_{\rm nl} =$	29082	kg∙cm	Resistencia de diseño en flexión para pandeo local que interactúa con la fluencia y el pandeo global sobre el eje X
M _{nl} =	32314	kg∙cm	Resistencia nominal a la flexión considerando la interacción del pandeo local y el pandeo global. (Eq. F3.2.1-1)-(Eq. F3.2.1-2)
$\lambda_{I} =$	0,17		(Eq. F3.2.1-3)
M _{crl} =	1065754	kg∙cm	Momento crítico de pandeo local elástico. (Eq. 2.3.3.2-1)
$F_{crl} =$	76320	kg/cm ²	Esfuerzo de pandeo local en la fibra de compresión extrema. (Eq. 2.3.3.2-2)
$k_t =$	23,9		Coeficiente de pandeo de la placa

F3 Pandeo local que interactúa con la fluencia y el pandeo global

Comentarios

Alrededor del eje Y

 $\phi_{b} = 0,90$

Factor de resistencia

F3.2 Método de fuerza directa F3.2.1 Miembros sin agujeros

$k_t =$	23,9		Coeficiente de pandeo de la placa
F _{crl} =	76320	kg/cm ²	Esfuerzo de pandeo local en la fibra de compresión extrema. (Eq. 2.3.3.2-2)
M _{crl} =	1065754	kg∙cm	Momento crítico de pandeo local elástico. (Eq. 2.3.3.2-1)
$\lambda_{I} =$	0,17		(Eq. F3.2.1-3)
M _{nl} =	32314	kg∙cm	Resistencia nominal a la flexión considerando la interacción del pandeo local y el pandeo global. (Eq. F3.2.1-1)-(Eq. F3.2.1-2)
$\phi_{\rm b}M_{\rm nl}$ =	29082	kg∙cm	Resistencia de diseño en flexión para pandeo local que interactúa con la fluencia y el pandeo global sobre el eje Y

G. MIEMBROS EN CORTANTE

G2. Resistencia	a al corte o	de almas	Comentarios
<u>sin a</u>	<u>gujeros</u>		
φv =	0,95		Factor de resistencia
			Almas en el eje Y
G2.1 Elemen	tos a flexić	on sin	
rigidizadores tra	nsversales	s de alma	
$A_w =$	2,74	cm ²	Área del elemento del alma. (Eq. G2.1-6)
$k_v =$	5,34		Coeficiente de pandeo por cortante para almas no reforzadas
$V_{cr} =$	186808	kg	Fuerza de pandeo por cortante elástico. (Eq. 2.3.5-1)
V _y =	3803	kg	Fuerza de fluencia a cortante de la sección transversal. (Eq.G2.1- 5)
$\lambda_v =$	0,14		(Eq. G2.1-4)
V _{n,y} =	3803	kg	Resistencia nominal al cortante (Eq. G2.1-1)-(Eq. G2.1-2a)- (Eq. G2.1-1a)
$\mathbf{\phi}_{\mathbf{v}}\mathbf{V}_{\mathbf{n},\mathbf{y}} =$	3612	kg	Resistencia de diseño al cortante del alma del eje Y

Almas en el eje X

G2.1 Elementos a flexión sin rigidizadores transversales de alma

A _w =	2,74	cm ²	Área del elemento del alma. (Eq. G2.1-6)
k _v =	5,34		Coeficiente de pandeo por cortante para almas no reforzadas
$V_{cr} =$	186808	kg	Fuerza de pandeo por cortante elástico. (Eq. 2.3.5-1)
V _y =	3803	kg	Fuerza de fluencia a cortante de la sección transversal. (Eq.G2.1- 5)
$\lambda_v =$	0,14		(Eq. G2.1-4)
V _{n,x} =	3803	kg	Resistencia nominal al cortante (Eq. G2.1-1)-(Eq. G2.1-2a)- (Eq. G2.1-1a)

G. PANDEO LOCALIZADO DEL ALMA (Web Crippling)

<u>G5 esfuerzo de</u> <u>en el alma</u>	pandeo lo sin aguje	ocalizado ros	Comentarios
P _{nw} =	6785,13	kg	Resistencia nominal al aplastamiento del alma. (Eq. G5-1)
C =	10		Coeficiente de la tabla G5-5
θ =	90	grados (°)	Ángulo entre el plano del alma y el plano de la superficie de soporte
C _R =	0,11		Coeficiente de longitud del rodamiento de la tabla G5-5
N =	12,00	cm	Longitud de apoyo de la carga (mínimo 19 mm)
C _N =	0,14		Coeficiente de longitud de apoyo de la tabla G5-5
C _h =	0,04		Coeficiente de esbeltez del alma de la tabla G5-5
h=	5,78	cm	Dimensión plana del alma
R/t =	2		Relación entre el radio interno de dobles y el espesor de la sección
φw =	0,85		Factor de resistencia según la tabla G5-5
$\mathbf{\phi}_{w}\mathbf{P}_{nw} =$	5767	kg	Resistencia de diseño al aplastamiento del alma

H. ELEMENTOS BAJO FUERZAS COMBINADAS

$M_{alo,x} =$	32313,53	kg∙cm	Resistencia disponible de un elemento flexionado en el eje X
$M_{alo,y} =$	32313,53	kg∙cm	Resistencia disponible de un elemento flexionado en el eje Y
$M_{nlo,x} =$	29082,18	kg∙cm	Resistencia nominal de un elemento flexionado en el eje X
M _{nlo,y} =	29082,18	kg∙cm	Resistencia nominal de un elemento flexionado en el eje Y
M _{axt} =	29082	kg∙cm	Resistencia a la flexión disponible al considerar la fluencia por tensión. (Eq. H1.1-3b)
M _{ayt} =	29082	kg∙cm	Resistencia a la flexión disponible al considerar la fluencia por tensión. (Eq. H1.1-3b)

Interacción 1	0,47543	Flexión y carga axial en tracción combinadas. (Eq. H1.1-1)
Interacción 2	0,45807	Flexión y carga axial en tracción combinadas. (Eq. H1.1-2)
Interacción 3	0,80524	Flexión y carga axial en compresión sobre el eje X, sin considerar torsión (Eq. H1.2-1)
Interacción 4	0,80524	Flexión y carga axial en compresión sobre el eje X, considerando torsión (Eq. H1.2-1)
Interacción 5	0,79018	Flexión y carga axial en compresión sobre el eje Y, sin considerar torsión (Eq. H1.2-1)
Interacción 6	0,79018	Flexión y carga axial en compresión sobre el eje Y, considerando torsión (Eq. H1.2-1)
Interacción 7	0,47316	Flexión y cortante combinadas. (Eq. H2-1)
Interacción 8	0,72823	Combinación de flexión y aplastamiento del alma (Eq. H3-1b)

			Recument
$\phi_t T_n =$	13245,01	kg	Resistencia de diseño en tensión
$\phi_c P_{n,x} =$	11947,55	kg	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje X
$\phi_c P_{n,x} =$	11947,55	kg	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje X
$\phi_c P_{n,y} =$	12381,30	kg	Resistencia de diseño en compresión para miembros no sujetos a pandeo torsional o flexo-torsional sobre el eje Y
$\phi_c P_{n,y} =$	12381,30	kg	Resistencia de diseño en compresión para miembros sujetos a pandeo por torsión o por flexión-torsión sobre el eje Y
$\phi_{b}M_{n,x} =$	29082,18	kg∙cm	Resistencia de diseño en flexión alrededor del eje X
$\boldsymbol{\phi}_{\mathbf{b}} \mathbf{M}_{\mathbf{n},\mathbf{y}} =$	29082,18	kg∙cm	Resistencia de diseño en flexión alrededor del eje Y
$\mathbf{\phi}_{\mathbf{v}}\mathbf{V}_{\mathbf{n},\mathbf{x}} =$	3612,39	kg	Resistencia de diseño al cortante de las almas del eje X
$\mathbf{\phi}_{\mathbf{v}}\mathbf{V}_{\mathbf{n},\mathbf{y}} =$	3612,39	kg	Resistencia de diseño al cortante de las almas del eje Y
$\phi_{w}P_{nw} =$	5767,36	kg	Resistencia de diseño al aplastamiento del alma

Hoja: Resistencias Requeridas

Combinación de flexión y cortante. (Eq. H2-1)	0,4816758
Combinación flexión y tracción. (Eq.	0.9973107
H1.1-1)	-,
Combinación flexión y tracción. (Eq.	0.9973107
H1.1-2)	0,0010201
Combinación flexión y compresión	
sobre el eje X, sin considerar torsión	0,9973107
(Eq. H1.2-1)	
Combinación flexión y compresión	
sobre el eje X, considerando torsión	0,9973107
(Eq. H1.2-1)	
Combinación flexión y compresión	
sobre el eje Y, sin considerar torsión	0,9973107
(Eq. H1.2-1)	
Combinación flexión y compresión	
sobre el eje Y, considerando torsión	0,9973107
(Eq. H1.2-1)	
Combinación de flexión y arrugado	0 7160285
del alma (Eq. H3-1b)	0,7109585

	TABLA EDITABLE										
TABLE: Element Forces - Frames											
								M2	M3		
				P =		V3 =		=	=		
Frame	Station	OutputCase	CaseType	Pu	V2 = Vuy	Vux	Т	Muy	Mux	FrameElem	ElemStation
Text	m	Text	Text	t	t	t	tm	tm	tm	Text	m

Hoja: Perfiles

Perfil	t (mm)	R (mm)	h (mm)	b (mm)
12x12x0,70	0,70	1,40	12	12
12x12x0,80	0,80	1,60	12	12
12x12x0,90	0,90	1,80	12	12
12x12x0,95	0,95	1,90	12	12
12x12x1,20	1,20	2,40	12	12
19x19x0,70	0,70	1,40	19	19
19x19x0,80	0,80	1,60	19	19
19x19x0,95	0,95	1,90	19	19
19x19x1,00	1,00	2,00	19	19
19x19x1,20	1,20	2,40	19	19
19x19x1,50	1,50	3,00	19	19
22x22x0,95	0,95	1,90	22	22
22x22x1,20	1,20	2,40	22	22
22x22x1,50	1,50	3,00	22	22
25x25x0,70	0,70	1,40	25	25
25x25x0,80	0,80	1,60	25	25
25x25x,0,90	0,90	1,80	25	25
25x25x1,00	1,00	2,00	25	25
25x25x1,20	1,20	2,40	25	25
25x25x1,80	1,80	3,60	25	25
31x31x0,80	0,80	1,60	31	31
31x31x0,90	0,90	1,80	31	31
31x31x0,95	0,95	1,90	31	31
31x31x1,20	1,20	2,40	31	31
31x31x1,50	1,50	3,00	31	31
31x31x1,80	1,80	3,60	31	31
38x38x0,80	0,80	1,60	38	38
38x38x0,90	0,90	1,80	38	38
38x38x0,95	0,95	1,90	38	38
38x38x1,00	1,00	2,00	38	38
38x38x1,20	1,20	2,40	38	38
38x38x1,50	1,50	3,00	38	38
38x38x1,80	1,80	3,60	38	38
31x19x0,95	0,95	1,90	31	19
31x19x1,20	1,20	2,40	31	19
38x25x0,80	0,80	1,60	38	25
38x25x0,90	0,90	1,80	38	25
38x25x0,95	0,95	1,90	38	25
38x25x1,20	1,20	2,40	38	25
38x25x1,50	1,50	3,00	38	25

44x19x1,20	1,20	2,40	44	19
50x25x0,90	0,90	1,80	50	25
50x25x0,95	0,95	1,90	50	25
50x25x1,00	1,00	2,00	50	25
50x25x1,20	1,20	2,40	50	25
50x25x1,50	1,50	3,00	50	25
50x25x1,80	1,80	3,60	50	25
50x25x2,37	2,37	4,74	50	25
50x25x3,17	3,17	6,34	50	25
72X72X1,13	1,13	2,26	72	72
72X72X1,20	1,20	2,40	72	72
72X72X1,50	1,50	3,00	72	72
72X72X1,80	1,80	3,60	72	72
72X72X2,37	2,37	4,74	72	72
72X72X3,17	3,17	6,34	72	72
91 X 91 X 1,50	1,50	3,00	91	91
91 X 91 X 1,53	1,53	3,06	91	91
91 X 91 X 1,80	1,80	3,60	91	91
91 X 91 X 1,83	1,83	3,66	91	91
96 X 48 X 1,13	1,13	2,26	96	96
96 X 48 X 1,40	1,40	2,80	96	96
96 X 48 X 1,50	1,50	3,00	96	96
96 X 48 X 1,53	1,53	3,06	96	96
96 X 48 X 1,80	1,80	3,60	96	96
96 X 48 X 1,83	1,83	3,66	96	96
96 X 48 X 2,37	2,37	4,74	96	96
96 X 48 X 3,17	3,17	6,34	96	96
100 X 100 X 1,37	1,37	2,74	100	100
100 X 100 X 1,40	1,40	2,80	100	100
100 X 100 X 1,50	1,50	3,00	100	100
100 X 100 X 1,53	1,53	3,06	100	100
100 X 100 X 1,80	1,80	3,60	100	100
100 X 100 X 1,83	1,83	3,66	100	100
100 X 100 X 2,37	2,37	4,74	100	100
100 X 100 X 3,17	3,17	6,34	100	100
100 X 100 X 4,75	4,75	9,50	100	100
150 X 100 X 1,80	1,80	3,60	150	100
150 X 100 X 2,37	2,37	4,74	150	100
150 X 100 X 3,17	3,17	6,34	150	100
150 X 100 X 4,75	4,75	9,50	150	100
150 X 50 X 1,50	1,50	3,00	150	50
150 X 50 X 1,53	1,53	3,06	150	50
150 X 50 X 1,80	1,80	3,60	150	50
150 X 50 X 1,83	1,83	3,66	150	50

150 X 50 X 2,37	2,37	4,74	150	50
150 X 50 X 3,17	3,17	6,34	150	50
150 X 50 X 4,75	4,75	9,50	150	50
150 X 150 X 2,37	2,37	4,74	150	150
150 X 150 X 2,37	3,17	6,34	150	150
150 X 150 X 4,75	4,75	9,50	150	150
200 X 50 X 2,37	2,37	4,74	200	50
200 X 50 X 3,17	3,17	6,34	200	50
200 X 100 X 2,37	2,37	4,74	200	100
200 X 100 X 3,17	3,17	6,34	200	100
200 X 100 X 4,75	4,75	9,50	200	100

Apéndice 3. Cálculo manual.

Ejemplo II-9 del Manual de AISI (2013) desarrollado paso tras paso, mediante el método de Resistencia Directa.

Datos:

- Acero: $F_y = 46$ ksi.
- Sección: HSS 6X6X8 (ver figura x).
- Longitud del elemento: 10 ft.
- Elemento arriostrado lateralmente en ambos extremos.

Procedimiento de cálculo

✓ En primera instancia se procede a realizar una conversión de unidades

$$F_{y} = 46 \ ksi \cdot \frac{453.59 \ kg}{1 \ kip} \cdot \frac{1 \ in^{2}}{6.4516 \ cm^{2}} = 3234.120 \ kg/cm^{2}$$

$$Longitud = 10 ft \cdot \frac{30.48 cm}{1 ft} = 304.8 cm$$

Longitud de la sección = h = 6 in $\cdot \frac{2.54 \text{ cm}}{1 \text{ in}} = 15.24 \text{ cm}$

Espesor de la sección =
$$t = 0.125$$
 in $\cdot \frac{2.54 \text{ cm}}{1 \text{ in}} = 0.3175 \text{ cm}$

Radio de la sección =
$$R = 0.0494 \text{ in} \cdot \frac{2.54 \text{ cm}}{1 \text{ in}} = 0.1255 \text{ cm}$$

✓ Cálculo de propiedades

o Parámetros básicos

$$r = R + \frac{t}{2} = 0.1255 + \frac{0.3175}{2} = 0.284 \ cm$$

 $h_{efectiva} = b_{efectiva} = L - 2(R + t) = 15.24 - 2(0.1255 + 0.3175) = 14.354 \, cm$

$$u = \frac{\pi r}{2} = \frac{\pi \cdot 0.284}{2} = 0.446 \ cm$$

o Área transversal de la sección

$$A = t \left[2h_{efectiva} + 2b_{efectiva} + 4u \right] = 0.3175 \left[2 \cdot 14.354 + 2 \cdot 14.354 + 4 \cdot 0.446 \right] = 18.796 \ cm^4$$

o Momento de inercia sobre el eje x

$$l = \frac{\pi r}{2} = \frac{\pi \cdot 0.28}{2} = 0.446 \ cm$$
$$c = 0.637 \ r = 0.637 \ \cdot 0.284 = 0.181$$
$$I_1 = I_2 = 0.149 \ r^3 = 0.149 \ \cdot 0.284^3 = 0.0034$$

$$\begin{split} I_x &= I_y = t \begin{cases} 2 \left(\frac{h_{efectiva}^3}{12} \right) + 2 \left(\frac{b_{efectiva}}{12} t^2 + b_{efectiva} \left(\frac{h-t}{2} \right)^2 \right) \\ &+ 4 I_1 + 4 l \left(\frac{h_{efectiva}}{2} + c \right)^2 \end{cases} \\ &= 0.3175 \begin{cases} 2 \left(\frac{14.354^3}{12} \right) + 2 \left(\frac{14.354}{12} 0.3175^2 + 14.354 \left(\frac{15.24 - 0.3175}{2} \right)^2 \right) \\ &+ 4 \cdot 0.0034 + 4 \cdot 0.446 \left(\frac{14.354}{2} + 0.181 \right)^2 \end{cases} \\ &= 694.667 \ cm^4 \end{cases}$$

o Módulo de sección efectiva

$$S_f = \frac{I_x}{\left(\frac{h}{2}\right)} = \frac{694.667}{\left(\frac{15.24}{2}\right)} = 91.164 \ cm^3$$

o Constante de torsión de St. Venant

$$J = \frac{4((h-t)\cdot(b-t) - r^2\cdot(4-\pi))^2 t}{2((h-t)+(b-t)) - 2r^2\cdot(4-\pi)} = \frac{4((15.24 - 0.318)\cdot(15.24 - 0.318) - 0.284^2\cdot(4-\pi))^2\cdot0.318}{2((15.24 - 0.318) + (15.24 - 0.318)) - 2\cdot0.284^2\cdot(4-\pi)}$$

= 1058.393 cm⁴

✓ Cálculo de la resistencia para fluencia y pandeo global (lateral-torsional) en secciones de caja cerrada:

 $L_{u} = \frac{0.36C_{b}\pi}{F_{y}S_{f}} \sqrt{EGJI} = \frac{0.36 \cdot 1 \cdot \pi}{3234.12 \frac{kg}{cm^{2}} \cdot 91.164 \ cm^{3}} \sqrt{2070000 \frac{kg}{cm^{2}} \cdot 795000 \frac{kg}{cm^{2}} \cdot 1058.393 \ cm^{4} \cdot 694.667 \ cm^{4}}$ $= 4219.4265 \ cm$

Como $L_u > L$ el elemento no se encuentra sujeto a apande
o lateral, por lo tanto $F_n = F_y$

$$M_{ne} = S_f F_n = 91.164 \ cm^3 \cdot 3234.12 \frac{kg}{cm^2} = 294835.3157 \ kg \cdot cm$$

Anexos

Anexo 1. Resultados proporcionados por el software SAP 2000.

Project _____ Job Number _____ Engineer _____

SAP2000

AISI-16 (Units :	COLD-FORMED S Kgf, cm, C	TEEL SEC	TION CHECK					
Frame :	20	Desi	gn Sect	: 100 X 1	100 X 2,37	Т	hrough-Faste	ened To
Deck: No X Mid :	600,	Desi	gn Type	: Column		F	astener Ecce	entricity
N/A Y Mid :	600,	Fram	е Туре	: Braced		F	astening R V	Value
N/A Z Mid :	150,	2nd-	Order Meth	od: General	l 2nd-Order	E	esign Provis	ion
LRFD Length : Loc :	300, 0,	LLRF Majc	r Axis	: 1, : 0, degi	rees			
MATERIAL	PROPERTIES 21	E .00000,	Fy 2314,	Fu 3160,	G 807692 , 308	U 0,3		
ELEMENT/S	SEGMENT INFO	L	K	Lg	LNet	iBraceLoc	jBraceLoc	LhRatio
h	Major	300,	2,327	300,	0,	Ο,	300,	Ο,
'	Minor	300,	2,327	300,	Ο,	Ο,	300,	Ο,
,	LTB	300,	1,	300,	Ο,	Ο,	300,	Ο,
, /A	stortional	300,	1,	N/A	N/A	Ο,	300,	N/A
SECTION H	PROPERTIES GROSS	rxx 3,956	ryy 3,956	Sxx Top 28,21	Sxx Bot 28,21	Syy Left 28,21	Syy Right 28,21	
		Ax	Ay	Ixx	Iyy	J	x0	у0
w	GROSS	9,014	9,014	141,052	141,052	220,546	Ο,	0,
RESISTANO	CE FACTORS	PhiTy 0,9	PhiTr 0,75	PhiC 0,85	PhiB 0,9	PhiBPipe 0,95	PhiV 0,95	
STRESS CH COMB.	HECK FORCES & RATIO EQUATI	MOMENTS ON - (H1	.2-1)- GOV	ERNS THE DE	ESIGN			
COMB.	COMB. RATIO RATIO LIMIT	0,811 =	P/Pa 0,675	+ Mx/Max + 0,131	+ My/May + 0,005			
DEMA	DEMANDS CAPACITIES AND/CAPACITY	Combo 6-2	P -3018,123 4471,338 0,675	M33 -7707,276 58751,001 0,131	M22 295,99 58751,001 0,005	V2 -40,641 5362,936 0,008	V3 1,388 5362,936 0,	
EFFECTIVE	E WIDTH METHO All limits	D Applic are sat	ability Li isfied	mits				
AXIAL - 1 hi*Tensio	TENSION A	irea Ag	Area An	PhiTy*Y	Yielding Tn	PhiTr*	Rupture Tn	
8773 , 066		9,014	9,014		18773 , 066		21363,76	
AXIAL - (GLOBA ole Effer	COMPRESSION AL BUCKLING	Fcre	LambdaC	Fn	PhiC*Pne	Buc	kling Axes	
ot Requi	Flex 6	65 , 411	1,865	583,565	4471 , 338**	÷	Geometric	
	Fcrl	.Flange	FcrlWeb	L0Major	RrMajor	LOMinor	RrMinor	

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501/042023e15r.38uación.sdb

					Job N	Number				
SAP2000					Engineer					
	51	795,368	5795 , 368	236,561	1,000E-06	236,561	1,000E-06			
LOCAL BI	UCKLING		Web	TopFlange	BotFlange	Lip	Corner	Total		
Stiffe	ening Com le Diamet	ndition ter. dh	S O -	S N/A	S N/A	N/A N/A	N/A			
J	Hole Leng	gth, Lh	Ŏ,	N/A	N/A	N/A	N/A			
		k Forl	4,	4,	4,	N/A	N/A			
		Lambda	0,317	0,317	0,317	N/A N/A	N/A N/A			
		Rho	1,	1,	1,	N/A	N/A			
Eff	Flat W: ective W	idth, w	8,578 8,578	8,578 8,578	8,578 8,578	N/A N/A	N/A N/A			
Effe	ective A	rea, Ae	4,066	2,033	2,033	N/A	0,882	9,014		
GLO	obal stre Pì	ess, Fn hiC*Pnl	2016,845	583,565 1008,423	583,565 1008,423	N/A N/A	583,565 437,648	583,565 4476,298		
Hole at	t This Lo	ocation	NO	,	,	·		.,		
DISTORT. BU	UCKLING	Not	Required							
** FLE	XURAL BU	CKLING g	overns AXIA	L COMPRESSI	ON CAPACITY					
LEXURE	TELDING	F 17	Q f v	StyNot	Dhi R*Mv		Dhi R*MuNo+			
Hole	Major	2314,	28,21	N/A	58751,001**	÷	N/A			
1		0014	00.01	27 / 7			27.47			
)	Minor	2314,	28,21	N/A	58751,001**	د	N/A			
GLOBAL BU	UCKLING	Fcre	Fn	Sf	PhiB*Mne	Buc	kling Axes			
le Effects	Major	N/A	2314,	28,21	58751,001		Geometric			
t Required	Minor	N/A	2314	28 21	58751 001		Coometric			
t Required	MINOI	N/A	2314,	20,21	56751,001		Geometiic			
ama et		Cb	Cs	CTF	j	Lu	Sigma_ex	Sigma_ey		
1442 072	Major	2,19	1,	0,367	Ο,	8713 , 596	665,411	665,411		
1443,873	Minor	2,157	1,	0,437	0,	8582,29				
LOCAL BU	UCKLING	Ie	Eff. N.A.	Se	Set	PhiB*Mnl	P	hiB*Set*Fy		
note	Major 1	141,052	5,	28,21	28,21	58751,001		58751,001		
)	Minor 1	141,052	5,	28,21	28,21	58751,001		58751,001		
1	EFFECTIVI	E WIDTH	Web	Top Web	Bot Web	TopFlange	BotFlange	Top Lip		
ы шір Stiff	Major ening Com	ndition	S	N/A	N/A	S	S	N/A		
A St	tress Con	ndition	Grad	N/A	N/A	Tension	UniComp	N/A		
A Buck	ling stre	ess, Fn	2314,	N/A	N/A	2314,	2314,	N/A		
A		f1	-1984,949	N/A	N/A	N/A	N/A	N/A		
A		f2	1984,949	N/A	N/A	N/A	N/A	N/A		
A		f	-1984,949	N/A	N/A	2314,	-2314,	N/A		
A		Psi	1,	N/A	N/A	N/A	N/A	N/A		
(>										
A		k	24,	N/A	N/A	N/A	4,	N/A		

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501/04/2023e15r.348uación.sdb

ND200	0		Project Job Number Engineer							
	U									
7		Lambda	0,239	N/A	N/A	N/A	0,632	N/A		
2		Rho	1,	N/A	N/A	N/A	1,	N/A		
7	Flat	Width, w	8,578	N/A	N/A	8,578	8,578	N/A		
Effecti	ve Width	n, b (be)	8,578	N/A	N/A	8,578	8,578	N/A		
- Eff	ective W	Width, bl	2,145	N/A	N/A	N/A	N/A	N/A		
A Eff	ective W	Vidth, b2	4,289	N/A	N/A	N/A	N/A	N/A		
A		ho/bo	1,	N/A	N/A	N/A	N/A	N/A		
Stif	Minor fening C	: Condition	S			S	S	N/A		
A	Stress C	Condition	UniComp			Grad	Grad	N/A		
A Buc	kling st	ress, Fn	2314,			2314,	2314,	2314,		
14,		f1	N/A			-1984,949	-1984,949	N/A		
A		f2	N/A			1984,949	1984,949	N/A		
A		f	-2314,		-	-1984,949	-1984,949	N/A		
A		Psi	N/A			1,	1,	N/A		
Α		k	4,			24,	24,	N/A		
A		Fcrl	5795 , 368		3	34772 , 207	34772 , 207	N/A		
Ą		Lambda	0,632			0,239	0,239	N/A		
A		Rho	1,			1,	1,	N/A		
A	Flat	Width, w	8,578			8,578	8,578	N/A		
A Effecti	ve Width	n, b (be)	8,578			8,578	8,578	N/A		
A Eff	ective W	Width, bl	N/A			N/A	N/A	N/A		
A Eff	ective W	Vidth, b2	N/A			N/A	N/A	N/A		
A		ho/bo	N/A			N/A	N/A	N/A		
A	DUOVI		Description							
** YI	ELDING C	of GROSS SE	CTION gove	rns MAJOR MON	MENT CAPACIS	ΓY				
** YI	ELDING c	DÍ GROSS SE	CTION gove	rns MINOR MON	MENT CAPACI	ΓY				
HEAR	kv	Fcr	LambdaV	Vcr	Fy	Aw	Vy	PhiV*Vn		
Major	5,34	7736 , 816	0,424	31457,677	2314,	4,066	5645 , 196	5362 , 936		
Minor	5,34	7736,816	0,424	31457,677	2314,	4,066	5645,196	5362,936		
: Stiffene /S: Unstif /S: Partia	d fened lly Stif	fened								
niComp: Un rad: Stres	iform Co s Gradie	ompression ent								

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501/04/2023e16jr.348uación.sdb

Project Job Number ____ Engineer ____

SAP2000

None: No Stress

N/A: Not Applicable N/C: Not Calculated N/N: Not Needed

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P5010623e15ra8uación.sdb

Project ______ Job Number ______ Engineer ______

SAP2000

AISI-16 (Units :	COLD-FORMED : Kgf, cm, C	STEEL SE(CTION CHECK	[
Frame :	336	Dest	ign Sect	: 72 X 72	2 X 2.37	Т	hrough-Faste	ened To
X Mid :	485,	Dest	ign Type	: Brace		F	astener Ecce	entricity
Y Mid :	300,	Fran	ne Type	: Braced		F	astening R V	Value
Z Mid :	345,	2nd-	-Order Meth	od: General	2nd-Order	D	esign Provis	ion
Length : Loc :	380,789 0,	LLRI Majo	7 Dr Axis	: 1, : 0, degr	rees			
MATERIAL	PROPERTIES 2	E 100000,	Fy 2314,	Fu 3160,	G 807692,308	U 0,3		
ELEMENT/S	SEGMENT INFO	L	K	Lg	LNet	iBraceLoc	jBraceLoc	LhRatio
n	Major	36,021	1,	36,021	0,	Ο,	36,021	0,
,	Minor	76 , 158	1,	76 , 158	0,	Ο,	76 , 158	0,
,	LTB	76 , 158	1,	76 , 158	0,	0,	76,158	0,
Dis /A	stortional	76 , 158	1,	N/A	N/A	0,	76,158	N/A
SECTION H	PROPERTIES GROSS	rxx 2,811	ryy 2,811	Sxx Top 13,96	Sxx Bot 13,96	Syy Left 13,96	Syy Right 13,96	
		Ax	Ay	Ixx	Iyy	J	x0	у0
√ ,	GROSS	6,36	6,36	50 , 256	50,256	80,009	0,	0,
RESISTANC	CE FACTORS	PhiTy 0,9	PhiTr 0,75	PhiC 0,85	PhiB 0,9	PhiBPipe 0,95	PhiV 0,95	
STRESS CH COMB.	HECK FORCES RATIO EQUAT	& MOMENTS ION - (H1 0.805 =	5 L.2-1)- GOV P/Pa = 0.43	ERNS THE DE + Mx/Max + 0.373	SIGN + My/May + 0.002			
COMB.	RATIO LIMIT	1,	0,10					
DEM	DEMANDS CAPACITIES AND/CAPACITY	Combo 6-2	P -5136,636 11947,426 0,43	M33 -10851,059 29072,999 0,373	M22 63,742 29072,999 0,002	V2 -682,893 3612,385 0,189	V3 0,07 3612,385 0,	
EFFECTIVE	E WIDTH METH All limit:	DD Applic s are sat	cability Li cisfied	mits				
AXIAL - 1 hi*Tensio	TENSION A	Area Ag	Area An	PhiTy*Y	ielding Tn	PhiTr*	Rupture Tn	
3245,012		6,36	6,36		13245,012		15072,832	
AXIAL - (GLOBA	COMPRESSION AL BUCKLING	Fcre	LambdaC	Fn	PhiC*Pne	Buc	kling Axes	
ot Requir	Flex : red	21079 , 3	0,331	2210,085	11947,426**	ŧ	Geometric	
	Fcr	lFlange	FcrlWeb	L0Major	RrMajor	LOMinor	RrMinor	

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501/el2023e22ra9uación.sdb

SAP20	000		Project Job Number Engineer							
	1	2773,15	12773,15	113,235	0,751	113,235	0,864			
LOC. S	LOCAL BUCKLING Stiffening Condition Hole Diameter, dh Hole Length, Lh		Web S 0,	TopFlange S N/A N/A	BotFlange S N/A N/A	Lip N/A N/A N/A	Corner N/A N/A	Total		
		к Fcrl Lambda Rho	4, 12773,15 0,416 1,	4, 12773,15 0,416 1,	4, 12773,15 0,416 1,	N/A N/A N/A N/A	N/A N/A N/A N/A			
Но	Flat W Effective W Effective A Global str P le at This I	Width, w Width, b Area, Ae cess, Fn PhiC*Pnl Location	5,778 5,778 2,739 2210,085 5144,98 NO	5,778 5,778 1,369 2210,085 2572,49	5,778 5,778 1,369 2210,085 2572,49	N/A N/A N/A N/A	N/A N/A 0,882 2210,085 1657,465	6,36 2210,085 11966,212		
DISTOR	T. BUCKLING	Not	Required							
* *	FLEXURAL BU	JCKLING g	overns AXIA	L COMPRESSI	ON CAPACITY					
FLEXURE	YIELDING	Fy	Sfy	SfyNet	PhiB*My		PhiB*MyNet			
t Hole	Major	2314,	13,96	N/A	29072,999**	r	N/A			
0	Minor	2314,	13,96	N/A	29072,999**	Ŧ	N/A			
GLOBA ole Effec	AL BUCKLING	Fcre	Fn	Sf	PhiB*Mne	Buo	ckling Axes			
	Major	N/A	2314,	13,96	29072 , 999		Geometric			
ot Requi	Minor Minor red	N/A	2314,	13,96	29072,999		Geometric			
iama ot		Cb	Cs	CTF	j	Lu	Sigma_ex	Sigma_ey		
rama_ec	Major	2,819	1,	0,85	0,	8151 , 927	126228,776	28237,811		
42934,90	0 Minor	1,034	1,	1,	0,	2991,024				
LOC.	AL BUCKLING	Ie	Eff. N.A.	Se	Set	PhiB*Mnl	P	hiB*Set*Fy		
t hole	Major	50,256	3,6	13,96	13,96	29072,999		29072,999		
0	Minor	50,256	3,6	13,96	13,96	29072,999		29072 , 999		
ot Lip	EFFECTIV	VE WIDTH	Web	Top Web	Bot Web	TopFlange	BotFlange	Top Lip		
S / A	tiffening Co	ondition	S	N/A	N/A	S	S	N/A		
/A	Stress Co	ondition	Grad	N/A	N/A	Tension	UniComp	N/A		
/A	Buckling str	ress, Fn	2314,	N/A	N/A	2314,	2314,	N/A		
/A		f1	-1856,985	N/A	N/A	N/A	N/A	N/A		
/A		f2	1856 , 985	N/A	N/A	N/A	N/A	N/A		
/A		f	-1856,985	N/A	N/A	2314,	-2314,	N/A		
/A		Psi	1,	N/A	N/A	N/A	N/A	N/A		
/A		k	24,	N/A	N/A	N/A	4,	N/A		
				(-	/-	/-		(-		

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P561/el2023e220:289uación.sdb

		P2000					
N/A	0,426	N/A	N/A	N/A	0,156	Lambda	
N/A	1,	N/A	N/A	N/A	1,	Rho	
N/A	5,778	5,778	N/A	N/A	5,778	Flat Width, w	
N/A	5,778	5,778	N/A	N/A	5,778	tive Width, b (be)	Effec
N/A	N/A	N/A	N/A	N/A	1,445	ffective Width, bl	E
N/A	N/A	N/A	N/A	N/A	2,889	ffective Width, b2	E
N/A	N/A	N/A	N/A	N/A	1,	ho/bo	
N/A	S	S			S	Minor iffening Condition	St
N/A	Grad	Grad			UniComp	Stress Condition	
2314,	2314,	2314,			2314,	uckling stress, Fn	B
N/A	-1856,985	1856 , 985	-		N/A	f1	4,
N/A	1856,985	1856 , 985			N/A	f2	
N/A	-1856,985	1856,985	-		-2314,	f	
N/A	1,	1,			N/A	Psi	L.
N/A	24,	24,			4,	k	
N/A	76638,9	76638,9			12773,15	Fcrl	
N/A	0,156	0,156			0,426	Lambda	
N/A	1.	1.			1.	Rho	
N/A	5.778	5.778			5.778	Flat Width. w	
N/A	5,778	5,778			5.778	tive Width. b (be)	Effec
N/A	N/A	N/A			N/A	ffective Width, bl	
N/A	N/A	N/A			N/A	ffective Width, b1	ц.
N/A	N/A	N/A			N/A	he /he	-
N/A	N/ A	N/A			N/A	107.00	
					Required	RT. BUCKLING Not	DISTO
		Y Y	NT CAPACIT NT CAPACIT	ns MAJOR MOME ns MINOR MOME	CTION gover CTION gover	YIELDING of GROSS SE YIELDING of GROSS SE	**
PhiV*Vn	Vy	Aw	Fy	Vcr	LambdaV	kv Fcr	EAR
3612,385	3802,511	2,739	2314,	46701 , 965	0,285	5,34 17052,155	Major
3612,385	3802,511	2,739	2314,	46701 , 965	0,285	5,34 17052,155	Minor
						ned iffened ially Stiffened Uniform Compression	Stiffe S: Unst S: Part
						ially Stiffened Uniform Compression ess Gradient	S: Part iComp: ad: Str

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P561/el2023e220:29uación.sdb

Project Job Number ____ Engineer ____

SAP2000

None: No Stress

N/A: Not Applicable N/C: Not Calculated N/N: Not Needed

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P5012623e23r28uación.sdb

Project ______ Job Number ______ Engineer ______

SAP2000

AISI-16 Units :	COLD-FORMED Kgf, cm, C	STEEL SEC	FION CHECK					
Frame :	272	Desi	gn Sect	: C 150 >	x 50 x 15 x 3	3.17 1	hrough-Faste	ened To
ECK: NO X Mid :	522,	Desi	gn Type	: Beam		E	Castener Ecce	ntricity
N/A Y Mid :	450,	Fram	е Туре	: Braced		E	Castening R V	alue
N/A Z Mid :	336,	2nd-	Order Meth	od: General	L 2nd-Order	Ι	esign Provis	ion
LRFD Length : Loc :	300, 150,	LLRF Majo	r Axis	: 1, : 0, degi	rees			
MATERIAL	PROPERTIES 2	E 2100000,	Fу 2314,	Fu 3160,	G 807692,308	U 0,3		
ELEMENT/	SEGMENT INFC) L	K	Lg	LNet	iBraceLoc	jBraceLoc	LhRatio
1	Major	300,	1,	300,	Ο,	Ο,	300,	0,
	Minor	300,	1,	300,	0,	0,	300,	0,
,	LTB	300,	1,	300,	0,	0,	300,	0,
, Di /A	stortional	300,	1,	N/A	N/A	0,	300,	N/A
SECTION	PROPERTIES GROSS	rxx 5,66	ryy 1,696	Sxx Top 34,349	Sxx Bot 34,349	Syy Left 16,611	Syy Right 6,412	
		Ax	Ay	Ixx	Iyy	J	x0	<u>у</u> 0
7	GROSS	8,043	8,043	257,615	23,132	0,269	-3,318	Ο,
146,562								
RESISTAN	ICE FACTORS	PhiTy 0,9	PhiTr 0,75	PhiC 0,85	PhiB 0,9	PhiBPipe 0,95	PhiV 0,95	
STRESS C COMB. COMB.	HECK FORCES RATIO EQUAT COMB. RATIC RATIO LIMIT	& MOMENTS TION - (H1 0 0,928 = 1 1,	.1-2)- GOV Mx/Max 0,501	TERNS THE DE + My/May + 0,427	ESIGN - T/Ta - 0,			
DEM	DEMANDS CAPACITIES NAND/CAPACITY	Combo 6-2 7	P 0, 3970,994 0,	M33 20942,264 48994,963 0,501	M22 -6282,98 12547,936 0,427	V2 0, 5476,492 0,	V3 0, 2590,651 0,	
EFFECTIV	E WIDTH METH All limit	HOD Applic s are sat	ability Li isfied	mits				
AXIAL -	TENSION	Area Ag	Area An	PhiTy*1	lielding Tn	PhiTr*	Rupture Tn	
5749 , 813	on Th	8,043	8,043		16749,813		19061,297	
AXIAL -	COMPRESSION AL BUCKLING	Fcre	LambdaC	Fn	PhiC*Pne	Buc	kling Axes	
GLOB	CUS		1 9 6 0	580 866	3970,994**	÷	Geometric	
ole Effe	Flex	662,333	1,009	500,000	00,001			

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501/el2023e2graduación.sdb

		Project								
	~~~									
	000									
		x0 -3,318	у0 0,	r0 6,776	beta 0,76	Sigma_ex 7376,376	Sigma_ey 662,333	Sigma_t 1304,164		
LOC	CAL BUCKLING		Web	TopFlange	BotFlange	Lip	Corner	Total		
2	Hole Diame	eter, dh	0,	P/S N/A	P/S N/A	0/5 N/A	N/A N/A			
	Hole Len	gth, Lh	0,	N/A	N/A	N/A	N/A			
	w/t <=	0.328S	N/A N/A	Yes N/A	Yes N/A	N/A N/A	N/A N/A			
		n	N/A	N/A	N/A	N/A	N/A			
		Ia	N/A N/A	N/A N/A	N/A N/A	N/A	N/A			
		RI	N/A	N/A	N/A	N/A	N/A			
		k	4,	N/A	N/A	0,43	N/A			
		Lambda	4446,978	N/A N/A	N/A N/A	0,046	N/A N/A			
		Rho	1,	N/A	N/A	1,	N/A			
	Flat W Effective W	lidth, w	13,098 13,098	3,098 3,098	3,098 3,098	0,549	N/A N/A			
	Effective A	rea, Ae	4,152	0,982	0,982	0,348	1,578	8,043		
	Global str	ess, Fn	580,866	580,866	580,866	580,866	580,866	580,866		
Ho	ole at This I	ocation	2050,028 NO	404,002	484,882	1/1,855	119,352	3970,994		
DISTOF	RT. BUCKLING	Ру	Pcrd	LambdaD	PhiC*Pnd					
t hole	18	610,904	43036,719	0,658	15344,849					
0										
Phi wg	Fcrd	L	Lcrd	Lm	kPhi_fe	kPhi_we	kPhi	kPhi_fg		
,185	5351,001	30,871	30,871	300,	1351,879	816 <b>,</b> 795	Ο,	0,221		
vf(vof)	Af	Jf	Ixf	Iyf	Ixyf	Cwf	xof	hxf		
0,149	1,91	0,064	0,225	4,525	0,519	Ο,	1,82	-2,863		
**	FLEXURAL BU	ICKLING g	overns AXIA	L COMPRESSI	ON CAPACITY					
FLEXURE	VIELDINC	F	0 ftt	9 funct	Dhi D*Mu		DbiP*MuNot			
t Hole	TIETDING	гУ	STÀ	этумес	тптр∪мА		титр.ыдмес			
0	Major	2314,	34,349	N/A	71534,448		N/A			
0	Minor	2314,	16,611	N/A	34594,281		N/A			
GLOE	AL BUCKLING	Fcre	Fn	Sf	PhiB*Mne	Buc	kling Axes			
ole Effe	ects Major	1675 <b>,</b> 75	1584,892	34,349	48994,963*	*	Geometric			
ot Requi	Minor .red	4165,3	2174,342	6,412	12547,936*	*	Geometric			
-										
		Cb	Cs	CTF	j	Lu	Sigma_ex	Sigma_ey		
ıgma_et	Maior	1,136	1.	1.	0.	N/A	7376,376	662,333		
304,164	Minor	1,136	-1,	1,	8,792	N/A	,	,		
TOC	CAL BUCKLING	Te	Eff. N.A.	Se	Set	PhiB*Mnl	P	hiB*Set.*Fv		
t hole	Major	257,615	7,5	34,349	34,349	48994,963	-	71534,448		
C	Minor	23,132	1,393	6,412	16,611	12547,936		34594,281		

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P561/el2023e22:aduación.sdb
Project Job Number

Engineer

SAP	20	00
-----	----	----

C							
ot Lip	EFFECTIVE WIDTH	Web	Top Web	Bot Web	TopFlange	BotFlange	Top Lip
, <u>r</u>	Major Stiffening Condition	S	N/A	N/A	P/S	P/S	U/S
5 	Stress Condition	Grad	N/A	N/A	UniComp	Tension	Grad
ision	Buckling stress, Fn	1584 <b>,</b> 892	N/A	N/A	1584 <b>,</b> 892	1584,892	1584 <b>,</b> 892
34,892	f1	-1383,927	N/A	N/A	N/A	N/A	-1383,927
,913	f2	1383 <b>,</b> 927	N/A	N/A	N/A	N/A	-1267,913
33,927	f	-1383,927	N/A	N/A	-1584,892	1584,892	-1383,927
,913	Psi	1,	N/A	N/A	N/A	N/A	0,916
192	w/t <= 0.328S	N/A	N/A	N/A	Yes	N/A	N/Z
7	S	N/A	N/A	N/A	N/A	N/A	N/A
7	n	N/A	N/A	N/A	N/A	N/A	N/A
T	Ia	N/A	N/A	N/A	N/A	N/A	N/A
7	Is	N/A	N/A	N/A	N/A	N/A	N/Z
7	RI	N/A	N/A	N/A	N/A	N/A	N/Z
7	k	24,	N/A	N/A	N/A	N/A	0,46
7	Fcrl	26681,866	N/A	N/A	N/A	N/A	291171,938
L	Lambda	0,228	N/A	N/A	N/A	N/A	0,069
1	Rho	1,	N/A	N/A	N/A	N/A	1,
1	Flat Width, w	13,098	N/A	N/A	3,098	3,098	0,549
49 Eff	ective Width, b (be)	13,098	N/A	N/A	3,098	3,098	0,549
49	Effective Width, bl	3,275	N/A	N/A	N/A	N/A	N/Z
2	Effective Width, b2	6,549	N/A	N/A	N/A	N/A	N/Z
L L	ho/bo	3,	N/A	N/A	N/A	N/A	N/Z
	Minor Stiffening Condition	S			S	S	U/S
.Comp	Stress Condition	Tension			Grad	Grad	UniComp
4,342	Buckling stress, Fn	2174,342			2174,342	2174,342	2174,342
,	f1	N/A			-1601,142	-1601,142	N/Z
	f2	N/A			266,127	266,127	N/Z
74.34	f	839,327			-1601,142	-1601,142	-2174,342
, . 1	Psi	N/A			0,166	0,166	N/2
3	k	N/A			9,505	9,505	0,43
106.2	Fcrl	N/A			188880,52	188880,52	272106,36
.±00,3	Lambda	N/A			0,092	0,092	0,089
202	Rho	N/A			1,	1,	1,

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P5012623e23raduación.sdb

					Job Number					
	)()				Engir	neer				
		n n la	12.000			2 000	2 000	0 540		
549	Fiat	t width, w	13,098			3,098	3,098	0,549		
549	ive Widt	th, b (be)	13,098			3,098	3,098	0,549		
EI A	fective	Width, bl	N/A			0,978	0,978	N/A		
A	fective	Width, b2	N/A			2,12	2,12	N/A		
A		no/bo	N/A			0,333	0,333	N/A		
DISTOR	T. BUCKI	LING My 79482,72	Mcrd 390378,07	LambdaD 0,451	PhiB*Mnd 71534,448					
	Fcrd	L	Lcrd	Lm	kPhi_fe	kPhi_we	kPhi	kPhi_fg		
hi_wg 113 037	65 <b>,</b> 173	27,974	27,974	300,	1863 <b>,</b> 155	1605 <b>,</b> 9	Ο,	0,269		
	beta 1,	XiWeb 2,	At hole NO							
f (mcf)	Af	Jf	Ixf	Iyf	Ixyf	Cwf	xof	hxf		
I (YOI)	1,91	0,064	0,225	4,525	0,519	Ο,	1,82	-2,863		
Hole Major Minor	5,34 5,34	5936,715 106119,051	0,484 0,114	24649,633 208431,823	2314, 2314,	4,152	5764,728 2727,001	5476,492 2590,651		
) 3: Stiffen J/S: Unsti 2/S: Parti	ed ffened ally St:	iffened								
JniComp: U Grad: Stre None: No S	Iniform ( ss Grad: tress	Compression ient								
N/A: Not A N/C: Not C N/N: Not N	applicabl Calculate Weeded	le ed								

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P561/e62023e223r.aduación.sdb

Project Job Number _____ Engineer _____

## SAP2000

AISI-16 Units :	COLD-FORMED Kgf, cm, C	STEEL SEC	FION CHECH	ζ				
Frame :	: 248	Desig	gn Sect	: Z 200 Z	x 50 x 15 x	2.37	Through-Faste	ened To
X Mid :	: 4,	Desig	gn Type	: Beam		H	Sastener Ecce	entricity
: N/A Y Mid :	: 450 <b>,</b>	Frame	е Туре	: Braced		H	Sastening R N	Value
: N/A Z Mid :	: 318,	2nd-0	Order Metl	nod: General	l 2nd-Order	I	Design Provis	sion
Length : Loc :	: 300, : 150,	LLRF Majo:	r Axis	: 1, : 0, degi	rees			
MATERIAI	D PROPERTIES 2	E 100000,	Fy 2314,	Fu 3160,	G 807692,308	U 0,3		
ELEMENT/	SEGMENT INFC	L	K	Lg	LNet	iBraceLoc	jBraceLoc	LhRatio
h	Major	300,	1,	300,	0,	Ο,	300,	0,
'	Minor	300,	1,	300,	Ο,	Ο,	300,	Ο,
,	LTB	300,	1,	300,	Ο,	Ο,	300,	Ο,
, Di I/A	stortional	300,	1,	N/A	N/A	0,	300,	N/A
SECTION	PROPERTIES GROSS	rxx 7,49	ryy 2,205	Sxx Top 42,186	Sxx Bot 42,186	Syy Left 6,256	Syy Right 6,256	
		Ax	Ay	Ixx	Iyy	J	x0	У0
W	GROSS	7,519	7,519	421,864	36 <b>,</b> 571	0,141	Ο,	0,
690,829								
RESISTAN	ICE FACTORS	PhiTy 0,9	PhiTr 0,75	PhiC 0,85	PhiB 0,9	PhiBPipe 0,95	PhiV 0,95	
STRESS C COMB. COMB.	CHECK FORCES RATIO EQUAT COMB. RATIC RATIO LIMIT	& MOMENTS ION - (H1 0,998 = 1,	.1-2)- GOV Mx/Max 0,48	/ERNS THE DI + My/May + 0,518	ESIGN - T/Ta - 0,			
DEN	DEMANDS CAPACITIES MAND/CAPACITY	Combo 6-2	P 0, 5670,982 0,	M33 -20835,932 40188,509 0,48	M22 -6251,079 13028,998 0,518	V2 0, 5158,864 0,	V3 0, 2474,187 0,	
EFFECTIV	/E WIDTH METH All limit	OD Applica s are sat:	ability L: isfied	imits				
AXIAL -	TENSION	Area Ag	Area An	PhiTy*1	Yielding Tn	PhiTr'	'Rupture In	
hi*Tensi 5658,864	ion Tn 1	7,519	7,519		15658,864		17819 <b>,</b> 796	
AXIAL -	COMPRESSION BAL BUCKLING	Fcre	LambdaC	Fn	PhiC*Pne	Buc	ckling Axes	
	CUS			074 639	6228-978		Principal	
lole Effe	Flex	1120,11	1,437	974,030	0220,070			

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501@2023e1graduación - con clavad

Project Job Number

Enginee

		×0 0,	у0 0,	r0 7,808	beta 1,	Sigma_ex 12920,948	Sigma_ey 1120,115	Sigma_t 1599,74
					,			
LOC	CAL BUCKLING	ndition	Web	TopFlange	BotFlange	Lip U/S	Corner	Total
-	Hole Diame	ter dh	0	E/S N/A	E/S N/A	U/S N/A	N/A N/A	
	Hole Len	ath Lh	0,	N/A	N/A N/A	N/A N/A	N/A N/A	
	w/t <=	= 0.3285	N/A	Yes	Yes	N/A	N/A	
		S	N/A	N/A	N/A	N/A	N/A	
		n	N/A	N/A	N/A	N/A	N/A	
		Ia	N/A	N/A	N/A	N/A	N/A	
		Is	N/A	N/A	N/A	N/A	N/A	
		RI	N/A	N/A	N/A	N/A	N/A	
		k	4,	N/A	N/A	0,43	N/A	
		FCTL	1235,535	N/A	N/A	335/6,651	N/A	
		Landa	0,888	N/A	N/A	0,1/	N/A	
	⊽lo+ W	KIIO	10,047	N/A 2 057	N/A 2 057	1 169	N/A N/A	
	Effective W	lidth h	15,736	3,957	3,957	1 168	N/A N/A	
	Effective A	rea. Ae	3,729	0,938	0,938	0,554	0.686	6.845
	Global str	ress, Fn	974,638	974,638	974,638	974,638	974,638	974,638
	P	PhiC*Pnl	3089,625	777,01	777.01	458,831	568,505	5670,982
	-			,01	,01	100,001	000,000	00107002
НС	ole at This L	ocation	NO					
DISTOF hole	RT. BUCKLING	Ру	Pcrd	LambdaD	PhiC*Pnd			
	17	398,738	12355,898	1,187	9591 <b>,</b> 532			
	Fcrd	L	Lcrd	Lm	kPhi_fe	kPhi_we	kPhi	kPhi_fo
nr_wg	1643,312	33,855	33,855	300,	445,628	256,001	Ο,	0,155
272								
f(wof)	Af	Jf	Ixf	Iyf	Ixyf	Cwf	xof	hxf
110	1,456	0,027	0,107	4,182	0,379	0,	1,746	-3,017
* *	* INTERACTION	I BETWEEN	MEMBER AND	LOCAL BUCK	LINGS govern	ns AXIAL CO	MPRESSION CA	APACITY
*' LEXURE	* INTERACTION	I BETWEEN	MEMBER AND	LOCAL BUCK	LINGS goverr	ns AXIAL CO	MPRESSION CA	APACITY
*' LEXURE Hole	* INTERACTION YIELDING	I BETWEEN Fy	MEMBER AND Sfy	LOCAL BUCK SfyNet	LINGS goverr PhiB*My	ns AXIAL CO	MPRESSION CA PhiB*MyNet	APACITY
*, LEXURE Hole	* INTERACTION YIELDING Major	BETWEEN Fy 2314,	MEMBER AND Sfy 42,186	loCAL BUCK SfyNet N/A	LINGS govern PhiB*My 87857,353	as AXIAL CO	MPRESSION CA PhiB*MyNet N/A	APACITY
*, LEXURE Hole	<ul> <li>INTERACTION</li> <li>YIELDING</li> <li>Major</li> <li>Minor</li> </ul>	BETWEEN Fy 2314, 2314,	MEMBER AND Sfy 42,186 6,256	D LOCAL BUCK SfyNet N/A N/A	LINGS govern PhiB*My 87857,353 13028,998**	ns AXIAL CO	MPRESSION CA PhiB*MyNet N/A N/A	APACITY
texure Hole GLOE	* INTERACTION YIELDING Major Minor BAL BUCKLING	<pre>BETWEEN Fy 2314, 2314, Fcre</pre>	MEMBER AND Sfy 42,186 6,256 Fn	D LOCAL BUCK SfyNet N/A N/A Sf	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne	ns AXIAL CO	MPRESSION CA PhiB*MyNet N/A N/A kling Axes	APACITY
+, LEXURE Hole GLOE Le Effe	<ul> <li>INTERACTION</li> <li>YIELDING</li> <li>Major</li> <li>Minor</li> <li>BAL BUCKLING</li> <li>Bacts</li> <li>Major</li> <li>Major</li> </ul>	Fy 2314, 2314, 5cre 1058,49	MEMBER AND Sfy 42,186 6,256 Fn 1058,491	D LOCAL BUCK SfyNet N/A N/A Sf 42,186	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509**	ns AXIAL CO Buc	MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric	APACITY
, EXURE Hole GLOE e Effe : Requi	* INTERACTION YIELDING Major Minor BAL BUCKLING ects Major ired Minor	Fy 2314, 2314, 2314, Fcre 1058,49 24242,1	MEMBER AND Sfy 42,186 6,256 Fn 1058,491 2314,	0 LOCAL BUCK SfyNet N/A N/A Sf 42,186 6,256	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509** 13028,998	ns AXIAL CO	MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric Geometric	APACITY
+, JEXURE Hole GLOE Le Effe : Requi : Requi	<ul> <li>INTERACTION</li> <li>YIELDING</li> <li>Major</li> <li>Minor</li> <li>BAL BUCKLING</li> <li>Bat BUCKLING</li> <li>Bat Buckling</li> <li>Major</li> <li>Major</li> <li>Minor</li> <li>ired</li> <li>Minor</li> </ul>	Fy 2314, 2314, 2314, Fcre 1058,49 24242,1	MEMBER AND Sfy 42,186 6,256 Fn 1058,491 2314,	D LOCAL BUCK SfyNet N/A N/A Sf 42,186 6,256	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509** 13028,998	ns AXIAL CO	MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric Geometric	APACITY
*, LEXURE Hole GLOE Le Effe : Requi : Requi	<ul> <li>INTERACTION</li> <li>YIELDING</li> <li>Major</li> <li>Minor</li> <li>BAL BUCKLING</li> <li>Bat Buckling</li> <l< td=""><td>Fy 2314, 2314, 2314, Fcre 1058,49 24242,1 Cb</td><td>MEMBER AND Sfy 42,186 6,256 Fn 1058,491 2314, Cs</td><td>D LOCAL BUCK SfyNet N/A N/A Sf 42,186 6,256 CTF</td><td>LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509** 13028,998</td><td>ns AXIAL CO Buc</td><td>MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric Geometric Sigma_ex</td><td>APACITY Sigma_ey</td></l<></ul>	Fy 2314, 2314, 2314, Fcre 1058,49 24242,1 Cb	MEMBER AND Sfy 42,186 6,256 Fn 1058,491 2314, Cs	D LOCAL BUCK SfyNet N/A N/A Sf 42,186 6,256 CTF	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509** 13028,998	ns AXIAL CO Buc	MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric Geometric Sigma_ex	APACITY Sigma_ey
*, LEXURE Hole GLOE le Effe t Requi t Requi gma_et 99,74	<pre>MinterAction YIELDING Major Minor BAL BUCKLING ects Major ired Minor ired Major</pre>	Fy 2314, 2314, 2314, Fcre 1058,49 24242,1 Cb 1,136	MEMBER AND Sfy 42,186 6,256 Fn 1058,491 2314, Cs 1,	D LOCAL BUCK SfyNet N/A N/A Sf 42,186 6,256 CTF 1,	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509** 13028,998 j 0,	ns AXIAL CO Buc Lu N/A	MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric Geometric Sigma_ex 12920,948	APACITY Sigma_ey 1120,115
*, LEXURE Hole GLOP le Effe t Requi gma_et 99,74	<ul> <li>INTERACTION</li> <li>YIELDING</li> <li>Major</li> <li>Minor</li> <li>BAL BUCKLING</li> <li>ects</li> <li>Major</li> <li>ired</li> <li>Minor</li> <li>ired</li> <li>Major</li> <li>Minor</li> </ul>	Fy 2314, 2314, 2314, Fcre 1058,49 24242,1 Cb 1,136 1,136	MEMBER AND Sfy 42,186 6,256 Fn 1058,491 2314, Cs 1, 1,	<pre>b LOCAL BUCK SfyNet N/A N/A Sf 42,186 6,256 CTF 1, 1, 1,</pre>	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509** 13028,998 j 0, 0,	ns AXIAL CO Buc Lu N/A N/A	MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric Geometric Sigma_ex 12920,948	APACITY Sigma_ey 1120,115
*, LEXURE Hole GLOF Le Effc t Requi gma_et 99,74 LOC	<ul> <li>INTERACTION</li> <li>YIELDING Major</li> <li>Major</li> <li>BAL BUCKLING</li> <li>bects</li> <li>Major</li> <li>ired</li> <li>Minor</li> <li>ired</li> <li>Major</li> <li>Major</li> <li>Major</li> <li>Major</li> <li>Major</li> <li>Major</li> <li>Major</li> <li>Major</li> </ul>	Fy 2314, 2314, 2314, Fcre 1058,49 24242,1 Cb 1,136 1,136 1,136 Ie	MEMBER AND Sfy 42,186 6,256 Fn 1058,491 2314, Cs 1, 1, 1,	<pre>&gt; LOCAL BUCK SfyNet N/A N/A Sf 42,186 6,256 CTF 1, 1, 1, Se</pre>	LINGS govern PhiB*My 87857,353 13028,998** PhiB*Mne 40188,509** 13028,998 j 0, 0, 0, Set	Buc Buc Lu N/A N/A PhiB*Mnl	MPRESSION CA PhiB*MyNet N/A N/A kling Axes Geometric Geometric Sigma_ex 12920,948	APACITY Sigma_ey 1120,115 hiB*Set*Fy

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P50/@2023e13ra0uación - con clavac

SAP2	2000	Job Number Engineer							
0	Minor 36,571	5,846	6,256	6,256	13028,998		13028,998		
ot Lin	EFFECTIVE WIDTH	Web	Top Web	Bot Web	TopFlange	BotFlange	Top Lip		
ос птр	Major Stiffening Condition	S	N/A	N/A	P/S	P/S	U/S		
/S	Stress Condition	Grad	N/A	N/A	Tension	UniComp	Tension		
rad	Buckling stress, Fn	1058,491	N/A	N/A	1058,491	1058,491	1058,491		
)58,491	l f1	-983,232	N/A	N/A	N/A	N/A	928 <b>,</b> 801		
.023,54	45 f2	983 <b>,</b> 232	N/A	N/A	N/A	N/A	1023,545		
928,801	l f	-983,232	N/A	N/A	1058,491	-1058,491	928,801		
.023 <b>,</b> 54	45 Psi	1,	N/A	N/A	N/A	N/A	1,102		
907	w/t <= 0.328S	N/A	N/A	N/A	N/A	Yes	N/A		
A	S	N/A	N/A	N/A	N/A	N/A	N/A		
'A	n	N/A	N/A	N/A	N/A	N/A	N/A		
'A	Ia	N/A	N/A	N/A	N/A	N/A	N/A		
'A	Is	N/A	N/A	N/A	N/A	N/A	N/A		
'A	RI	N/A	N/A	N/A	N/A	N/A	N/A		
'A	k	24.	N/A	N/A	N/A	N/A	N/A		
463	Forl	7413.212	N/A	N/A	N/A	N/A	N/A		
5180 <b>,</b> 85	52 Lambda	0.364	N/A	N/A	N/A	N/A	N/A		
168	Bho	1	N/A	N/Z	N/A	N/A	N/A		
	Flat Width w	+ <b>/</b> 18 578	N/A	N/Z	3 957	3 957	1 168		
168 Ff	Fostivo Width h (bo)	10 570	N/71	N/7	2 057	3 057	1 160		
168	Effective Width, b (be)	10, 570	N/A	N/A	5,957	5,957 N/A	1,100 N/A		
'A	Effective Width, bi	4,645	N/A	N/A	N/A	N/A	N/A		
'A	Effective Width, b2	9,289	N/A	N/A	N/A	N/A	N/A		
'A	no/bo	4,	N/A	N/A	N/A	N/A	N/A		
	Minor Stiffening Condition	S			U/S	U/S	U/S		
'S	Stress Condition	None			Grad	Tension	Grad		
ension	Buckling stress, Fn	2314,			2314,	2314,	2314,		
314,	fl	N/A			-1801,09	234,54	-2314,		
16,691	l f2	N/A			-234,54	1801,09	-2016,691		
14,	f	0,			-1801,09	234,54	-2314,		
16,691	l Psi	N/A			0,13	7,679	0,872		
A	k	N/A			1,229	N/A	0,477		
'A	Forl	N/A			8367.329	N/A	37253.503		
'A	Tambda	N / 7			0 161	N / 7	0 2/0		
/A	Landua	11/11			0,101	11/ 11	0,240		

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501@2023e1graduación - con clavad

SAP2	000				Proje Job N Engir	ect Number neer		
		Rho	N/A			1,	N/A	1,
N/A	Flat	t Width, w	18,578			3,957	3,957	1,168
1,168 Effe	ective Wid	th, b (be)	18,578			3,957	3,957	1,168
1,108	Effective	Width, b1	N/A			N/A	N/A	N/A
N/A	Effective	Width, b2	N/A			N/A	N/A	N/A
N/A N/A		ho/bo	N/A			N/A	N/A	N/A
DIS	IORT. BUCK	LING My 97619,281	Mcrd 205717,178	LambdaD 0,689	PhiB*Mnd 86807,757			
	Fcrd	L	Lcrd	Lm	kPhi_fe	kPhi_we	kPhi	kPhi_fg
:Phi_wg ),052	4876,389	30,779	30,779	300,	604 <b>,</b> 166	562 <b>,</b> 176	Ο,	0,187
	beta 1,	XiWeb 2,	At hole NO					
	Af	Jf	Ixf	Iyf	Ixyf	Cwf	xof	hxf
nyf(yof) -0,119	1,456	0,027	0,107	4,182	0,379	0,	1,746	-3,017
* *	* LATERAL- * YIELDING	FORSIONAL E of GROSS S	BUCKLING gove	erns MAJOR : rns MINOR M	MOMENT CAPAC OMENT CAPACI	CITY ITY		
SHEAR	kv	Fcr	LambdaV	Vcr	Fy	Aw	Vy	PhiV*Vn
Majo:	r 5,34	1649,44	0,917	7262,46	2314,	4,403	6113,106	5158,864
Mino: NO	r 5,34	36349,825	0,195	68186,23	2314,	1,876	2604,408	2474,187
S: Stif: U/S: Un: P/S: Pa:	fened stiffened rtially St:	iffened						
UniComp Grad: S [:] None: No	: Uniform ( tress Grad: c Stress	Compressior ient	1					
N/A: Not N/C: Not N/N: Not	t Applicabi t Calculate t Needed	le ed						

C:\Users\Luis Fallas\OneDrive - Estudiantes ITCR\Desktop\Proyecto de Graduación\Modelo en SAP\P501@2023e1graduación - con clavad