INSTITUTO TECNOLÓGICO DE COSTA RICA CAMPUS TECNOLÓGICO LOCAL SAN CARLOS ESCUELA DE AGRONOMÍA

ESTUDIO DE LA ENTOMOFAUNA ASOCIADA A LAS ARVENSES EN SISTEMAS DE PRODUCCIÓN DE CAÑA DE AZÚCAR EN PÉREZ ZELEDÓN, COSTA RICA

Trabajo Final presentado a la Escuela de Agronomía como requisito parcial para optar al grado de LICENCIATURA en INGENIERÍA EN AGRONOMÍA

ESTEBAN GARRO MONGE

SANTA CLARA, SAN CARLOS, 2022

Carrera de Ingeniería en Agronomía Tecnológico de Costa Rica Campus Tecnológico Local San Carlos 2019-2023

DERECHOS RESERVADOS © 2022 Esteban Garro Monge

ESTUDIO DE LA ENTOMOFAUNA ASOCIADA A LAS ARVENSES EN SISTEMAS DE PRODUCCION DE CAÑA DE AZÚCAR EN PÉREZ ZELEDÓN, COSTA RICA

ESTEBAN GARRO MONGE

Aprobado por los miembros del Tribunal Evaluador:

Ing. Agr. Joaquín Durán Mora, PhD.	
	Asesor principal
Ing. Agr. José Daniel Salazar Blanco, Lic.	
	Co-asesor
Ing. Fo. Marlen Camacho Calvo, M.Sc.	
	Jurado
Ing. Agr. Eduardo Cadet Piedra, Lic.	 Jurado
	Jurado
Ing. Agr. Carlos Ramírez Vargas, PhD.	
mg. Agr. Ganos Rannoz Vargas, File.	Coordinador
	Trabajos Finales de Graduación
Ing. Agr. Milton Villarreal Castro, PhD.	
	Director
	Escuela de Agronomía

DEDICATORIA

A Dios por darme la vida y permitirme llegar a este momento.

A mis padres Marcos Joaquín Garro Hidalgo e Isabel Monge Camacho, y a mis hermanos por siempre apoyarme en todos mis proyectos.

A mis amigos Juan Diego, Valery Corella, Erika Campos, Gloriana Monge, Valery Jiménez, Alejandra Soto, Alison Venegas, Pablo Mora, David Campos, Oscar Solera y Paula Chacón por hacer de la etapa universitaria la mejor etapa de mi vida.

A Andrea Pacheco y Julio Rodríguez que me inspiraron a ser una mejor persona en medio de mi proceso de formación profesional.

A mi padrino en el campo agronómico Israel Garita por su apoyo en mi proceso de formación universitaria.

CONTRIBUYENTES Y FUENTES DE FINANCIAMIENTO

Este proyecto fue financiado por la Liga Agrícola Industrial de la Caña de Azúcar (LAICA), por medio de Ingeniero Agrónomo José Daniel Salazar Blanco, coordinador del Programa Fitosanidad y Manejo de Plagas del Departamento de Investigación y Extensión de la Caña de Azúcar (DIECA) y el Ingeniero Agrónomo Eduardo Cadet Piedra (DIECA).

Ing. Willy Valverde, gerente técnico de la división agrícola de la Corporación CoopeAgri, apoyó el proyecto facilitando el ingreso a las fincas e información de estas.

Ing. Agr. Jeudy Mora Robles (Cámara de Cañeros), Julio Cesar Barrantes (LAICA), Srta. Valery Jimenez (Estudiante del Tecnológico de Costa Rica), Srta. Carolina Quirós (Estudiante de la Universidad de Costa Rica) y Srta. Argerie Oviedo (LAICA) por su apoyo en las giras de campo.

Ing. Agr. Israel Garita (M.Sc), expresidente de la Asociación Costarricenses para el Estudio de las Malezas y Dr. Fernando Ramírez, profesor de la Universidad Nacional por su contribución en la identificación de arvenses.

Dr. Manuel Solís, profesor de la Escuela de Agronomía de la Universidad de Costa Rica, por su aporte en la identificación de dípteros e himenópteros, además, por proporcionar las instalación y equipos del Laboratorio de Entomología de esta escuela por la identificación de insectos.

Dr. Humberto Lezama, profesor y encargado del Laboratorio de Entomología de Escuela de Agronomía de la Universidad de Costa Rica en la identificación de orden Coleoptera.

NOMENCLATURA

SIGLAS	Definición
LAICA	Liga Agrícola de la Caña de Azúcar
DIECA	Departamento de Investigación y Extensión de la Caña
	de Azúcar
ha	Hectárea
dds	Días después de la siembra
ddc	Días después de cosecha
UCR	Universidad de Costa Rica
UNA	Universidad Nacional de Costa Rica
AE	Área experimental
UM	Unidad muestral

TABLA DE CONTENIDOS

Página

DEDICA	TORIAII
CONTRI	BUYENTES Y FUENTES DE FINANCIAMIENTO III
NOMEN	CLATURAIV
TABLA I	DE CONTENIDOSV
ÍNDICE I	DE CUADROSVII
RESUME	ENXI
ABSTRA	ACTXIII
1. IN	TRODUCCIÓN1
1.1.	Antecedentes1
1.2.	Justificación3
1.3.	Objetivo general4
1.4.	Objetivos específicos4
1.5.	Hipótesis4
2. RI	EVISIÓN DE LITERATURA5
2.1.	Cultivo de caña de azúcar5
2.	1.1 Generalidades del cultivo5
2.	1.2 Características botánicas y morfológicas
2.	1.3 Exigencias climáticas del cultivo6
2.2.	Arvenses asociadas a la caña de azúcar en Costa Rica 8
2.3.	Insectos asociados a la caña de azúcar en Costa Rica 8

	2.4.	Servicios ecosistémicos de los insectos9
	2.5.	Servicios ecosistémicos de las arvenses11
	2.6.	Índices utilizados13
3		MATERIALES Y MÉTODOS14
	3.1.	Descripción del sitio de estudio14
	3.2.	Período de estudio16
	3.3.	Material experimental16
	3.4.	Unidad muestral y área experimental19
	3.5.	Grupos y repeticiones20
	3.6.	Variables de respuesta20
	3.7.	Análisis estadístico21
4	•	RESULTADOS Y DISCUSIÓN22
	4.1.	Caracterización de las fincas según las arvenses encontradas 22
	4.2. dive	Comparación de las fincas de acuerdo con abundancia y ersidad biológica de arvenses a través del tiempo22
	4.3.	Caracterización de las fincas según los insectos encontrados 31
	4.4. dive	Comparación de las fincas de acuerdo con abundancia y ersidad biológica de insectos a través del tiempo32
	4.5.	Asociaciones entre arvenses e insectos benéficos 40
5	•	CONCLUSIONES42
6	-	RECOMENDACIONES43
7		BIBLIOGRAFIA44
8	_	ANEXOS49

ÍNDICE DE CUADROS

Página
Cuadro 1. Variables de respuesta para el estudio de asociación entre insectos
arvenses en sistemas de producción de caña de azúcar de la Región Sur de Costa
Rica
Cuadro 2. Cantidad de familias, géneros y especies de arvenses identificadas en
las fincas Porvenir y San Pedro, Pérez Zeledón entre febrero y noviembre del 2021.
22
Cuadro 3. Comparación de fincas de acuerdo con la abundancia e índice de
Shannon de arvenses de fincas Porvenir y San Pedro, Pérez Zeledón, Costa Rica,
202124
Cuadro 4. Cantidad de órdenes, familias e individuos de insectos identificados en
las fincas Porvenir y San Pedro entre febrero y noviembre del 2021 31
Cuadro 5. Comparación de fincas de acuerdo con abundancia e índice de Shannon
de familias de insectos de fincas Porvenir y San Pedro, Pérez Zeledón, Costa Rica,
202132
Cuadro 6. Lista de familias de insectos identificadas por Soto (2019) en las zonas
de Puntarenas y Turrialba entre abril y diciembre del 2018
Cuadro 7. Arvenses encontradas Puntarenas y Turrialba según Soto (2019) 60
Cuadro 8. Insectos benéficos asociados a la caña de azúcar según Bustillo (2011).
65
Cuadro 9. Plagas actuales y plagas potenciales de la caña de azúcar en Costa Rica
según Salazar et al. (2016)70
Cuadro 10. Plantas arvenses y su asociación son insectos benéficos
Cuadro 11. Métodos de control que ofrece LAICA para el manejo de poblaciones
de plaga en el cultivo de caña de azúcar según Salazar et al. (2016)
Cuadro 12. Lista de especies de arvenses identificadas en las fincas Porvenir y San
Pedro, Pérez Zeledón entre febrero y noviembre del 2021

Cuadro 13. Lista de familias de insectos identificadas en las fincas Porve	enir y San
Pedro, Pérez Zeledón entre febrero y noviembre del 2021	79

Figura 1. Rangos óptimos de temperatura en las diferentes etapas fenológicas del
cultivo. Fuente: Elaboración propia adaptado de Aguilar 2011 y Duarte y González
2019)7
Figura 2. Dinámica de variables climáticas en las fincas de estudio entre febrero y
noviembre del 202115
Figura 3. Imagen satelital de la finca El Porvenir. (Fuente: Satellite Pro)16
Figura 4. Imagen satelital de la finca San Pedro. (Fuente: Satellite Pro)
Figura 5. Instrumentos utilizados para la colecta de los insectos. A) Cuboide
metálico cubierto por una malla antiáfidos adyacente al cañal; B) Equipo de aspirado
de insectos, aspiradora de gasolina y bolsa confeccionada de malla anti-áfidos; C)
Bolsa de malla dentro de la bolsa hermética
Figura 6. Abundancia de arvenses encontrados en las fincas Porvenir y San Pedro
entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica
Figura 7. Índice de diversidad de Shannon-Weiner de arvenses de fincas Porvenir
y San Pedro, Pérez Zeledón, Costa Rica, 202126
Figura 8. Dominancia de familias de arvenses encontradas en la finca Porvenir
entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica
Figura 9. Dominancia acumulada arvenses encontradas en las fincas Porvenir y
San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica 30
Figura 10. Abundancia de individuos encontrados en las fincas Porvenir y San
Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica
Figura 11. Índice de Shannon-Weiner de familias de insectos calculado para las
fincas Porvenir y San Pedro entre febrero y noviembre de 2021 34
Figura 12. Dominancia acumulada de familias de insectos encontradas en la finca
Figura 12. Dominancia acumulada de familias de insectos encontradas en la finca Porvenir y San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa
Porvenir y San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa

Figura 14. Órder	ies de insectos	s encontrados e	en la finca	Porvenir	entre febrero	у
noviembre del 202	21, Pérez Zele	dón, Costa Rica	a		3	9

RESUMEN

La caña de azúcar es cultivada en 130 países del mundo, Costa Rica produce 4 194 596,7 toneladas métricas de caña de azúcar, de la cual se exporta cerca de un 46,1%, se consumió a nivel interno un 52,1% y se usó como semilla un 1,8%, sin embargo, múltiples plagas hacen que el rendimiento disminuya. La Liga Agrícola de la Caña de Azúcar (LAICA) ha descrito al menos 37 especie de plagas en el cultivo de la caña de azúcar, de estas se resalta en la zona de estudio el Complejo Barrenador-Picudo-Comején (BPC); para enfrentar cada una de estas plagas esta institución ha desarrollado múltiples estrategias centradas en un Manejo Integrado de Plagas (MIP).

Este estudio amplía la investigación de nuevas formas de manejo de plagas, considerando las arvenses como reservorios de insectos benéficos que mantienen un equilibrio dentro del agroecosistema. El estudio surge en respuesta a las restricciones del glifosato en 2019, principal herbicida para el manejo de arvenses en bordes y caminos, sin embargo, busca fomentar la producción de azúcar en agroecosistemas más sostenibles. El objetivo general fue analizar las asociaciones entre la entomofauna y las arvenses presentes en los bordes adyacentes y caminos de sistemas de producción de caña de azúcar en Pérez Zeledón, Costa Rica.

Los muestreos se realizaron en la finca Porvenir y San Pedro localizadas respectivamente en las comunidades de El Porvenir y San Rafael del distrito de San Pedro, Pérez Zeledón. Se aspiraron insectos presentes en arvenses de bordes y camino, que se almacenaron y transportaron a un en laboratorio para su respectiva clasificación taxonómica; una vez tomada la muestra de insectos se clasificaron *in situo* las arvenses del sitio de muestreo. Se calculó la abundancia, índice de diversidad de Shannon y dominancia de arvenses y familias de insectos.

Se encontró una mayor abundancia y diversidad de arvenses en El Porvenir. En ambas fincas fue más frecuente la familia Poaceae, sin embargo, en San Pedro, fue más frecuente que en Porvenir. Las arvenses *Acalypha arvensis*, *Bidens pilosa*, *Commelina difusa*, *Commelina erecta*, *Croton trinitatis*, *Cyathula prostrata*, *Kyllinga*

brevifolia, Momordica charantia, Sida rhombifolia y arvenses de los géneros Cyperus, Digitaria, Hyptis, Paspalum y Desmodium albergan insectos de depredadores y parasitoides que ejercen un control biológico sobre plagas en el cultivo.

En cuanto a familias de insectos, no se encontró diferencias significativas en abundancia e índice de diversidad entre fincas. Las familias de mayor Dominancia fueron Cicadellidae, Chloropidae, Cecidomyiidae y Ceratopogonidae que a excepción de la primera presentan variedad de insectos benéficos.

Se concluye que algunas de las arvenses encontradas son huéspedes de insectos benéficos; que la familia Poaceae dominó en ambas fincas; además, que estas fincas hay menor diversidad de arvenses e insectos que en otras regiones del país.

Palabras clave: arvenses, insectos, diversidad, asociaciones, caña de azúcar, ecología, agricultura orgánica.

ABSTRACT

Sugarcane is cultivated in 130 countries of the world, Costa Rica produces 4 194 596,7 metric tons of sugarcane, of which about 46.1% is exported, 52.1% is consumed domestically and 1.8% was used as seed, however, multiple pests cause the yield to decrease. The Liga Agrícola de la Caña de Azúcar (LAICA) has described at least 37 species of pests in sugarcane cultivation, of which the Barrenador-Picudo-Comején Complex (BPC) stands out in the study area; To deal with each of these pests, this institution has developed multiple strategies focused on Integrated Pest Management (IPM).

This study covers the investigation of new forms of pest management, considering weeds as reservoirs of beneficial insects, which maintain a balance within the agroecosystem. The study takes relevant in response to the restrictions of glyphosate in 2019, the main herbicide for the management of weeds on edges and roads, however, therefore it promote the production of sugar in the country more sustainable agroecosystems. The general objective was to analyze the associations between the insects and the weeds present in the adjacent borders and roads of sugarcane production systems in Pérez Zeledón, Costa Rica.

The sampling was carried out at the Porvenir and San Pedro farms, located respectively in the communities of El Porvenir and San Rafael in the district of San Pedro, Pérez Zeledón. Insects present in border and path weeds were aspirated, which were stored and transported to a laboratory for their respective taxonomic classification; Once the insect sample was taken, the weeds of the sampling site were classified in situ. Richness, Shannon diversity index, evenness and frequency of weeds and insect families were calculated.

A greater richness and diversity of weeds was found in El Porvenir, there were no significant differences for evenness. In both farms, the Poaceae family was more frequent, however, in San Pedro, it was more frequent than in Porvenir. The weeds *Acalypha arvensis*, *Bidens pilosa*, *Commelina diffusa*, *Commelina erecta*, *Croton*

trinitatis, Cyathula prostrata, Kyllinga brevifolia, Momordica charantia, Sida rhombifolia and weeds of the genera Cyperus, Digitaria, Hyptis, Paspalum and Desmodium harbor predatory insects and parasitoids that exert biological control over pests in the crop.

Regarding insect families, no significant differences were found in richness and diversity index between farms. The families with the highest frequency were Cicadellidae, Chloropidae, Cecidomyiidae and Ceratopogonidae, which, except for the first, present a variety of beneficial insects.

It is concluded that some of the weeds found are hosts of beneficial insects; that the Poaceae family dominated in both farms; In addition, these farms have less diversity of weeds and insects than in other regions of the country.

Key words: weeds, insects, diversity, associations, sugar cane, ecology, organic farming.

1. INTRODUCCIÓN

1.1. Antecedentes

La caña de azúcar provee el 75% del azúcar mundial, se cultiva en 130 países los cuales suman 14 517,88 millones de hectáreas cultivadas (León y Arroyo, 2012). La actividad cañera no solo es importante por su contribución a la economía, sino también por su aporte en la cultura e historia de estas naciones. En Costa Rica su historia se remonta desde la época colonial, donde inicialmente se consideraba un sector industrial-artesanal, no fue hasta 1900 que pasó a ser mayormente industrial, debido a la implementación de los ingenios para la producción de azúcar blanco (León y Arroyo, 2012).

A partir 1950 se comenzó a aplicar plaguicidas y fertilizantes en el cultivo, el resultado fue el incremento en el rendimiento; además, se practicaba la quema controlada con fines fitosanitarios y facilitar la cosecha, ya que aumentaba la eficiencia del trabajador, indirectamente también se redujeron los materiales extraños en el proceso industrial; sin embargo, esta práctica junto al factor clima y variedades susceptibles desencadenó un desbalance ecológico que llevó al aumento de plagas; por ejemplo, el perforador de tallo (*Diatraea saccharalis*), plaga muy importante en todas las zonas cañeras del país (León y Arroyo 2012). Atencio et al. (2018) reportan que efectivamente, este tipo de práctica afecta negativamente las poblaciones naturales de depredadores y parasitoides que ejercen un control biológico sobre las plagas.

Hoy día, en Costa Rica la producción se encuentra dividida en seis regiones cañeras del país: Guanacaste, que se divide en Este y Oeste, Puntarenas, Valle Central, Región Norte, dividida en San Carlos y Los Chiles, Turrialba, seccionada en Zona Media y Juan Viñas; y finalmente, Región Sur (Chaves y Bermúdez, 2020). En el 2019 se produjeron 4 009 954,3 toneladas métricas de caña de azúcar; 53,7% se consumió en el país, 43,9% se exportó y 2,4% se utilizó como semilla para la renovación de los cañales (INEC, 2020). Para el 2020 las cifras cambiaron, habían sembradas 60 750 hectáreas con las cuales se produjo alrededor de 4 194 596,7

toneladas métricas de caña de azúcar, de estas se exportó un 46,1%, se consumió a nivel interno un 52,1% y se usó como semilla un 1,8% (INEC, 2021), esta producción puede ser afectada por muchos factores, las plagas juegan un papel importante.

Salazar et al. (2016) mencionan que actualmente se consideran significativas alrededor de 37 especie de plagas en el cultivo de la caña de azúcar, las cuales están clasificadas en cinco órdenes distintos contemplando insectos, ácaros y roedores. Destacan por nivel de daño económico el barrenador de tallo (Diatraea spp.), barrenador gigante (Telchin atymnius futilis, T. atymnius drucei), salivazo o baba de culebra (Aeneolamia spp., Prosapia spp., Zulia vilior), chinche de encaje (Lectodutia tabida), jobotos (Phyllophaga spp.), y la rata cañera (Sigmodon hirsutus). No obstante, la fauna asociada al cultivo de caña también incluye parasitoides, depredadores, saprófitos y otros insectos benéficos (Atencio et al. 2018).

Al respecto, León y Arroyo (2011) señalan que las tres primeras plagas son las más persistentes a nivel regional, por su lado, Cadet et al. (2016) colocarían a *Diatraea* como el que desencadena el Complejo Barrenador-Picudo-Comején (BPC) en la Región Sur, importante ya que aumenta el contenido de miel y torta residual y reduce los grados Brix y pureza del jugo; lo que resulta en pérdidas económicas al sector.

Para enfrentar estas plagas se ha implementado un Manejo Integrado de Plagas (MIP), que a *grosso modo* significa que para una sola plaga se utilizan distintas estrategias de control. LAICA por medio de su división de investigación, ha puesto en marcha métodos de control diversos. El control biológico, trampas, uso de feromonas, control físico, tolerancia varietal, prácticas culturales, labranza del suelo y control químico son las principales estrategias que ofrecer esta organización a los productores de este cultivo (Salazar et al. 2016) y recientemente la investigación de arvenses como potenciales hospederas de insectos benéficos (Soto, 2019), lo que desmiente que a nivel global el atraso en investigación científica en la caña de azúcar con respecto a otros cultivos (Marín et al. 2018).

Asociado a lo anterior, se ha asumido que tanto las arvenses como los insectos están asociados a pérdida de rendimiento del cultivo. Si bien es cierto, algunos generan daños importantes al cultivo, solo un bajo porcentaje de insectos (3% de todas las especies descritas) genera serios problemas (Zumbado y Azofeifa 2018), lo que significa que es necesario conocer los servicios ecosistémicos del 97% de insectos restantes. De igual manera, muchas de las arvenses presentes dentro y en los alrededores del cultivo sirven de barrera natural para evitar la erosión, como hospederos de insectos, aportan materia orgánica al suelo, por lo que no solamente tienen efectos negativos sobre las plantaciones.

1.2. Justificación

El presente estudio responde al decimoquinto objetivo de desarrollo sostenible de las Organización de las Naciones Unidad el cual vela por reducir la pérdida de biodiversidad, considerando clave los servicios ecosistémicos de los invertebrados y que en la mayoría de los casos son desconocidos y rara vez reconocidos (ONU 2022).

Este estudio se suma al de Soto (2019) con el objetivo de cubrir todas las zonas productoras de caña de azúcar en el país, formará parte de las estrategias que tiene LAICA para el manejo de plagas en el cultivo. Además, genera investigación de nuevas formar de manejo de arvenses, ya que por medio de un decreto ejecutivo se restringió el uso del glifosato (principal ingrediente activo para el control de arvenses en bordes y caminos en cañales) en varias instituciones públicas y su prohibición en áreas protegidas (Forbes Staff 2019).

Aunque recientemente se firmó el decreto N°42769-MAG-S-MINAE donde se oficializó el Reglamento Técnico 504:2021: Registro de Insumos Agrícolas. Plaguicidas Sintéticos Formulados, Ingrediente Activo Grado Técnico, Coadyuvantes, Sustancias afines y Vehículos Físicos de Uso Agrícola, que hará más seguro y rápido los registros de pesticidas, el estudio de recursos que se tienen en las fincas (arvenses e insectos benéficos) nunca está demás, ya que cada vez los sistemas productivos agrícolas tienden a ser más sostenibles.

Considerando que se exploran nuevas y novedosas tecnología en un camino hacia sistemas más sustentables se debe cambiar el paradigma de que las arvenses e insectos solamente generan daños dentro de los sistemas productivos. Este estudio surgió como respuesta ante la necesidad de fomentar sistemas productivos más sostenibles, viendo el agroecosistema "como un todo", donde cada uno de los componentes cumple una función específica e importante.

1.3. Objetivo general

Analizar las asociaciones entre la entomofauna y las arvenses presentes en los bordes adyacentes de dos sistemas de producción al cultivo de caña de azúcar, uno orgánico y otro convencional.

1.4. Objetivos específicos

- Comparar la diversidad poblacional de arvenses presentes en bordes adyacentes de un sistema de producción de caña de azúcar convencional contra un sistema de producción orgánico a través del tiempo.
- Contrastar la diversidad poblacional de insectos asociados a las arvenses presentes en los bordes adyacentes de los dos sistemas de producción de caña de azúcar a través del tiempo.
- Investigar las asociaciones entre las arvenses e insectos presentes en el cultivo de caña de azúcar.

1.5. Hipótesis

Las arvenses establecidas en los bordes y caminos del cultivo de caña de azúcar albergan insectos benéficos que ejercen un control natural sobre plagas del cultivo.

2. REVISIÓN DE LITERATURA

2.1. Cultivo de caña de azúcar

2.1.1 Generalidades del cultivo

La caña de azúcar (*Saccharum* spp.) es un cultivo que está ligado directamente a procesos industriales. De los tallos de la caña se extrae el jugo que contiene de un 16 a un 20% de materia seca que contiene principalmente sacarosa, glucosa y fructosa. Artesanalmente este jugo se extrae con un trapiche y de manera tecnificada con un ingenio, a partir de este se obtienen azúcar, mieles y derivados para diferentes usos. No obstante, la mayor parte de la producción se destina a la elaboración de azúcar de mesa y melaza, de la cual se obtienen alcoholes (Aguilar 2011).

En el año 2011 habían alrededor de 130 países productores de caña de azúcar, los cuales cultivan cerca de 14 517 millones de hectáreas, 7 638 millones de hectáreas en Asia (53%), 3 519 millones en América del Sur (24%), 2 300 millones en Centroamérica (16%), 1 060 millones en África (7%), 0.489 millones en Oceanía y 0.393 millones en América del Norte (menos del 1% entre estas dos últimas) (Aguilar 2011).

La producción de caña de azúcar en Costa Rica está dividida en seis regiones cañeras según el Reglamento Ejecutivo de LAICA (Liga Agrícola Industrial de la Caña de Azúcar). La Zona A comprende las provincias de Cartago y Limón; la Zona B abarca las provincias de Heredia y de Alajuela, con excepción de Orotina, San Mateo, San Carlos, Upala, Los Chiles y Guatuso; la Zona C comprende los cantones de San Carlos, Los Chiles, Guatuso y Upala de la provincia de Alajuela; la Zona D percibe los cantones de Puntarenas, Esparza, Montes de Oro y Aguirre de la provincia de Puntarenas y los cantones Orotina y San Mateo de la provincia de Alajuela; la zona E comprende a la provincia de Guanacaste.

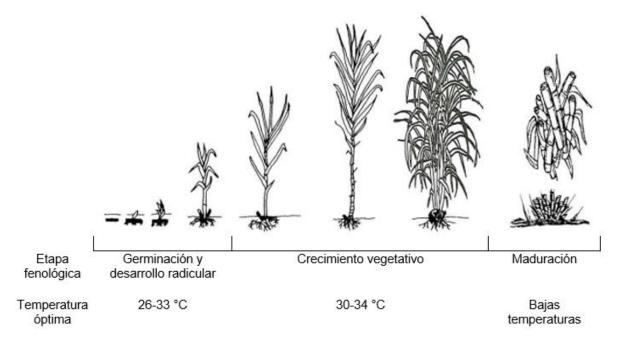
Finalmente, la zona donde se llevó a cabo el estudio es la Zona F, también llamada Región Sur, que es la más reciente; comenzó a operar alrededor de 1974 con la instalación del Ingenio CoopeAgri que se mantiene en la actualidad. Integra

en la producción: cuatro distritos del cantón de Buenos Aires de Puntarenas y seis distritos del cantón de Pérez Zeledón de la provincia de San José; los distritos Volcán, Cajón, San Isidro y San Pedro abarcan el 65% de área sembrada (Chávez y Chavarría 2013).

2.1.2 Características botánicas y morfológicas

La caña de azúcar es una planta perenne de metabolismo C4 que pertenece al género *Saccharum*, familia Poaceae, orden Glumiflorales, clase Monocotiledónea y división Embriofita. Dentro de este género hay especies silvestres como *S. barberi*, *S. sinensi*, *S. robustum* y *S. edule*, y además hay variedades comerciales derivadas de cruces interespecíficos de *S. officinarum*, *S. spontaneum* y *S. robustum* (Duarte y González 2019).

Morfológicamente, la planta presenta hojas con una lámina foliar unida a una vaina abierta que rodea al tallo (Duarte y González 2019). Estas hojas son largas y sin tricomas, aunque algunas variedades si los tienen (Valverde 2010); estas se distribuyen a través del tallo de forma alternada y opuesta. Los tallos de esta planta son cilíndricos, erectos, fibrosos; estos están formados por nudos y entrenudos, su altura varía entre uno y cinco metros y su diámetro entre un centímetro y cinco centímetros (Duarte y González 2019); además, son leñosos, esponjoso y dulces; una vez alcanzada cierta edad forma una panícula piramidal (Valverde 2010).


Los tallos están sujetos por las raíces, el 65% de estas se encuentra en los primeros 20 cm de profundidad y el 80% en un radio de 60 cm. Esta planta presenta brotes secundarios que se forman a partir de las yemas axilares presentes en los nudos. Su propagación para siembra comercial se da de forma asexual, por medio tallos o esquejes que brotan de las yemas, que más tarde formaran tallos principales, secundarios y hasta terciarios (Duarte y González 2019).

2.1.3 Exigencias climáticas del cultivo

Las condiciones climáticas inciden de manera importante en la germinación y desarrollo radicular, crecimiento vegetativo y maduración de las plantas. La

temperatura, la radiación solar y la humedad son factores determinantes en el crecimiento, rendimiento y calidad de la caña de azúcar (Duarte y González 2019).

La temperatura puede influir en el óptimo desarrollo de la planta en sus diferentes etapas fenológicas (Figura 1). Por debajo de los 20°C, la germinación y desarrollo radicular será lento; arriba de los 38°C y debajo de los 15°C, el crecimiento vegetativo se detiene. En la etapa de maduración cuando las temperaturas son bajas, aumenta la producción y almacenaje de sacarosa (Duarte y González 2019).

Figura 1. Rangos óptimos de temperatura en las diferentes etapas fenológicas del cultivo. Fuente: Elaboración propia adaptado de Aguilar 2011 y Duarte y González 2019).

En cuanto a la precipitación, el cultivo necesita en promedio 1350 mm por año, distribuida de manera desigual en las etapas de desarrollo. Para el desarrollo de raíces debe haber suficiente agua de lo contrario estas mueren; en la etapa de crecimiento vegetativo es donde se acumula mayor cantidad de biomasa, el agua es esencial, deficiencias de esta causan una detención del crecimiento y bajos rendimientos. Finalmente, en el periodo de maduración las necesidades de agua se reducen, ya que se necesita que la caña cese de crecer para que concentre sacarosa (Duarte y González 2019).

El macollamiento y crecimiento de los tallos son estimulados por la intensidad luminosa y la cantidad de horas luz. Cuando la planta recibe alta intensidad y larga duración de luz solar se favorece el macollamiento, cuando la luz solar se extiende entre 10 y 14 horas, los tallos aumentan de tamaño (Duarte y González 2019).

2.2. Arvenses asociadas a la caña de azúcar en Costa Rica

Rojas et al. (2003) en un estudio hecho en la Región Norte, encontraron arvenses en los bordes de los cañales con una dominancia mayor al 5% de: Ischaemum indicum, Rottboellia cochinchinensis, Paspalum notatum, Paspalum conjugatum, Paspalum fasciculatum, Mimosa pudica, Ipomoea sp., Paspalum virgatum, Xanthosoma sp., Digitaria sp., Brachiaria mutica, Hipobroma longiflora, Achyranthes aspera, Cynodon dactylon, Pennisetum purpureum presentes; no obstante, hay más de 50 especies asociadas a este cultivo. Por su lado Soto (2019) encontró 157 especies de arvenses, 83 especies en Puntarenas y 120 en Turrialba (Cuadro 7, Anexos).

2.3. Insectos asociados a la caña de azúcar en Costa Rica

En el país se reportan alrededor de 25 plagas insectiles (Cuadro 9, Anexos), todas ellas de alta importancia por su distribución e impacto al cultivo, se reconocen el barrenador gigante (*Telchin atymnius futilis*, *T. atymnius drucei*), barrenador común de tallo (*Diatraea guatemalella*, *D. tabernella*, *D. saccharalis*), jobotos (*Phyllophaga* spp., *Anomala* spp., *Cyclocephala* spp.), salivazo (*Aeneolamia* spp., *Prosapia* spp., *Zulia vilior*) y el chinche de encaje (*Leptodictya tabida*) (Salazar et al. 2016).

No todas las plagas tienen el mismo grado de importancia, se dividen según su estatus: plaga de alta importancia, plaga de alta importancia en condiciones específicas y plaga potencial (Salazar *et al.* 2016). Las poblaciones de las estas se pueden manejar por medio de diferentes estrategias de control (

Cuadro 11, Anexos) para evitar daños importantes en el cultivo; el manejo agronómico y las condiciones edafoclimáticas son determinantes para el establecimiento y proliferación de dichas poblaciones. Pero no todos los insectos son plaga, Soto (2019) realizó un estudio de insectos asociados a arvenses en el cultivo, encontró diferentes insectos asociados a estas (Cuadro 6, Anexos) dentro de los cuales hay saprófitos, parasitoides, depredadores, omnívoros y polinizadores, cuya función es importante para mantener un equilibrio dentro del agroecosistema.

2.4. Servicios ecosistémicos de los insectos

Los insectos son el grupo de organismos más diverso del planeta: corresponden al 54% del total de organismos descritos y 75% de las especies del reino animal. Generalmente, pasan desapercibidos debido a su tamaño: la mayoría miden tan solo unos milímetros. Ocupan múltiples ecosistemas tanto terrestres como acuáticos, donde en ocasiones pueden alcanzar altas poblaciones (Zumbado y Azofeifa 2018).

La palabra insecto en muchas ocasiones se asocia con organismos dañinos o molestos, debido a sus hábitos alimenticios o comportamiento. Ciertamente, pueden ocasionar daños en los cultivos, algunos afectan específicamente el cultivo de la caña de azúcar (Cuadro 9) o ser vectores de enfermedades en organismo animales y vegetales; sin embargo, estos insectos solo representan el 3% del total de insectos descritos, lo que quiere decir que 97% de los insectos descubiertos hasta la actualidad, cumplen un rol importante dentro del agroecosistema (Zumbado y Azofeifa 2018). Por ejemplo, de este alto porcentaje de individuos se puede obtener miel, polen, seda, cera, pegamentos, laca, aceites, tintes, colorantes, medicamentos, alimento para animales. Además, en el ámbito agrícola pueden ofrecer servicios de polinización, descomposición de materia orgánica y reciclaje de nutrientes.

En esta misma línea, Zumbado y Azofeifa (2018) indican que cerca del 25% son depredadores o parasitoides de otros insectos que son perjudiciales para los

cultivos, lo que podría verse como un servicio ecosistémico dentro del agroecosistema. El

Cuadro 8 muestra algunos de los insectos que son considerados benéficos dentro del sistema de producción de caña de azúcar, por su servicio ecosistémico de control natural de plagas del cultivo.

Bustillo (2011) menciona que existen una gama importante de insectos que causan daños en el cultivo de caña de azúcar. A pesar de lo anterior, muchos mantienen bajas poblaciones por lo que no repercuten considerablemente en el rendimiento del cultivo, debido a un control natural que ofrecen diversos insectos que se alojan en el agroecosistema. Este equilibrio se da integrando diferentes estrategias que fomentan la producción amigable con el ambiente. Fomentar y usar enemigos naturales de las plagas, introducir enemigos exóticos, utilizar control etológico, promover un manejo selectivo de arvenses nativas de los bordes aledaños a los cañales con el objetivo de proporcionar el alojamiento de enemigos naturales de los insectos plaga, sembrar variedades de caña con resistencia o tolerancia a plagas y usar organismos benéficos, son las estrategias más utilizadas para lograr una producción más ecológica (Bustillo 2011).

2.5. Servicios ecosistémicos de las arvenses

Es sabido que las malezas compiten con el cultivo por luz, agua, nutrientes y CO₂, esto podría generar pérdidas importantes en el rendimiento, además de que serían un potencial reservorio de enfermedades y plagas. No solo es necesario conocer las especies de arvenses de mayor Dominancia y con ello diseñar estrategias para evitar una reducción en el rendimiento, sino también para usar los servicios ecosistémicos que estas ofrecen al agroecosistema (Blanco y Leyva 2010); ya que estas tienen múltiples los beneficios (Pérez et al. 2016). No obstante, el productor por practicidad lleva a cabo un control total de las arvenses sin considerar estos beneficios (Blanco y Leyva 2010).

La diversidad de arvenses presentes el cultivo tiene un importante aporte en la composición y las interacciones de la entomofauna asociada a los cultivos. Los insectos benéficos en un hábitat diverso tienen más posibilidades para alimentarse, reproducirse y encontrar refugio (Blanco y Leyva 2009).

León y colaboradores (2019) mencionan que algunos años atrás se consideraba que las arvenses representan el principal problema de algunos cultivos, debido a su competencia con el cultivo, esto no va a variar. No obstante, el conocimiento generado hasta el momento señala que la contribución de estas coberturas vegetales en el equilibrio del agroecosistema por las relaciones que tienen con insectos benéficos es importante. Morales y colaboradores (2007) encontraron huevos parasitados de *Mocis* spp. (plaga en caña de azúcar), por *Trichograma pretiosum* en plantas arvenses del género *Digitaria*. Por otro lado, hay reportes de asteráceas en general albergando insectos benéficos de varias familias (Alonso *et al.* 2019). En el

Cuadro 10 se detallan más asociaciones de arvenses con insectos benéficos.

Entre los beneficios de las arvenses están el aumentar la cantidad de material genético del agroecosistema y su estabilidad, funcionan como abono verde, control de erosión (Blanco y Leyva 2007), algunas incrementan la fertilidad por medio de la fijación de nutrientes, regulación de plagas, refugio de organismos de control natural y control biológico, reservorio de depredadores y parasitoides de insectos (Alonso 2019), aporte de materia orgánica, retención de humedad en el suelo (Izquierdo 2012; lo que mantiene cierto equilibrio ecológico en el agroecosistema (León-Burgos, Murillo-Pacheco, Bautista-Zamora, & Quinto, 2019).

La FAO (2015) recomienda mantener niveles tolerables de arvenses para favorecer las poblaciones de insectos benéficos, por ejemplo, dentro (caminos) y en los alrededores de las fincas; tal y como lo plantea DIECA por medio de este estudio.

Dentro del marco agroecológico a esto se le llaman coberturas cuyos aportes coinciden con los anteriores mencionado (Izquierdo, 2012). Muchas de estas arvenses son nectaríferas (productoras polen y de jugos ricos en azúcar), lo que sirve para que los insectos benéficos se alimenten; por ejemplo, hay un control natural de salivazo (*Aeneolamia varia*) por parte de insectos benéficos *Salpingogaster nigra*, este obtiene alimento de arvenses nectaríferas, por lo tanto, se recomienda permitir el crecimiento controlado de estas con el objetivo de aumentar las poblaciones de estos insectos (Bustillo 2013).

2.6. Índices utilizados

Se utilizaron tres indicadores para describir las poblaciones y comunidades de las fincas: abundancia e Índice de diversidad de Shannon-Weiner. La abundancia se mide con el número de especies presentes en la comunidad (Soler et al. 2012) para el caso de este estudio la abundancia de arvenses se medirá con el número de especies para las arvenses y abundancia de insectos cantidad de individuos por familia taxonómica.

Índice de Shannon-Weiner se obtienen valores entre 0 y 5; cuando se acercan a 5 indica que la diversidad es alta, si por el contrario los valores son cercanos a 0

revela una diversidad baja (Soler et al. 2012, Soto, 2019). Se calcula tanto para las arvenses como para los insectos, con la siguiente ecuación:

$$H = -\sum_{i=1}^{S_{abs}} P_i \operatorname{Ln}_e P_i$$

$$P_i = n_i/N$$

Donde:

H = Índice de Shannon-Weiner

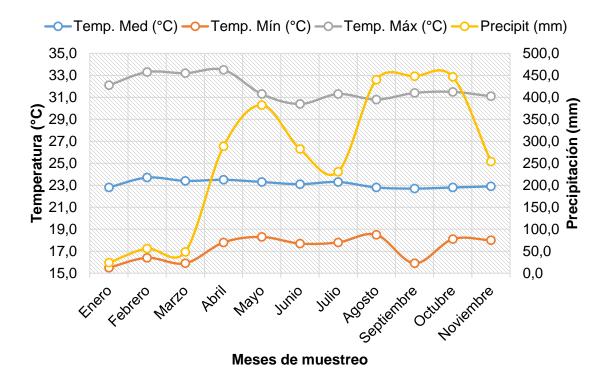
S = Abundancia (número de morfoespecies para los insecto y número de especies para las arvenses)

 n_i = Porcentaje de cobertura i para el caso de arvenses; número de individuos de la familia i para el caso de insectos.

N = Abundancia total de las especies, para el caso de arvenses; abundancia total de las familias para el caso de insectos.

 P_i = Abundancia proporcional de la *i*ésima especie. Se utilizará el porcentaje de cobertura de cada especie para el caso de las arvense y el número de individuos de cada morfoespecie para los insectos.

La dominancia es el porcentaje del total de veces que se identificó la especie o familia en cada finca.


3. MATERIALES Y MÉTODOS

3.1. Descripción del sitio de estudio

Se analizaron dos fincas del distrito de San Pedro de Pérez Zeledón, las cuales pertenecen a la zona de vida de bosque húmedo premontano, y presentan suelos ultisoles de estructura franco-arcillosa y un pH cercano a 4,7; cuentan con un relieve moderadamente ondulado y una altura promedio de entre 553 y 557 msnm (CIA, s.

f). La finca El Porvenir se sitúa en El Porvenir, San Pedro, Pérez Zeledón, específicamente en las coordenadas 548749 E y 1022961 N. La finca San Pedro se ubica en la Comunidad de San Rafael, San Pedro, Pérez Zeledón; en las coordenadas 548724 E y 1025652 N.

Según los datos de una estación meteorológica marca Davis ubicada en la Finca El Porvenir, se reportó que los meses más secos son enero, febrero y marzo y julio con menos de 75 mm mensuales de precipitación, abril, junio, julio y noviembre presentaron entre 200 y 300 mm mensuales. Los demás meses acumularon mensualmente más de 375 mm de lluvia (Figura 2). Por otro lado, la temperatura media anual tiene valores cercanos a 23°C, en los primeros meses del año se pueden alcanzar temperaturas máximas cercanas a 33°C por la noche temperaturas mínimas cercanas a 16°C.

Figura 2. Dinámica de variables climáticas en las fincas de estudio entre febrero y noviembre del 2021.

3.2. Período de estudio

El estudio se llevó a cabo en febrero, marzo, abril, mayo, agosto y noviembre del 2021.

3.3. Material experimental

La finca El Porvenir (Figura 3) se manejó bajo un sistema convencional. La finca se divide en dos sectores: A y B; las muestras se tomaron del sector B que tiene una extensión de 73,71 hectáreas (ha). Estos tenían sembradas las variedades RB 98-710, RB 99-381, LAICA 04-825, LAICA 05-805, LAICA 04-44, LAICA 04-809, Q 96, B 76-259, LAICA 05-802 y SP 78-4764, las cuales están segregadas en diferentes lotes de la finca¹.

Figura 3. Imagen satelital de la finca El Porvenir. (Fuente: Satellite Pro)

16

¹ Valverde, W. 20 may. 2020. Manejo agronómico de la caña de azúcar en las fincas (entrevista). Pérez Zeledón, Costa Rica. Corporación Coopeagri.

En ambas fincas el primer semestre se utiliza para las labores de fertilización, aplicación de herbicidas dentro del cultivo, ya que una vez que crece es difícil realizarla, en el segundo semestre realizan control de arvenses en bordes y caminos y otras labores de menor urgencia.

La fertilización se realizó a los 45 días y a los 90 días después de la siembra (dds) o días después de la cosecha (ddc), en cada aplicación se utilizaron 7 sacos/ha de la fórmula química completa 17-0-25-5-1,4; la única diferencia en la aplicación del fertilizante es que después de la siembra el fertilizante se coloca en el fondo del surco y después de la cosecha al voleo. Se realizó una quema controlada antes de la cosecha. El control de arvenses en el cañal se realizó por medio de herbicidas, para hoja ancha se utilizó Triclopyr, Metsulfuron metil, 2-4 D, para hoja angosta Hexazinona, Diuron y los preemergentes Pendimetalina, Terbutilazina; el manejo en bordes y callejones se hizo con Glifosato y Metsulfuron metil. Las principales plagas fueron los jobotos (*Phyllophaga* spp.), áfidos (*Rhopalosiphum* sp., *Melanaphis* sp., *Sipha* sp.), comején (*Heterotermes* sp.), picudo (*Metamasius hemipterus* y *M. dimidiatipennis*) y barrenador común del tallo (*Diatraea* spp.) para los cuales solamente se realizó control varietal¹ y contra este último liberaciones del parasitoide *Cotesia flavipes*².

Por su parte, la Finca San Pedro (Figura 4) tiene una extensión de 51,14 ha dividida en lotes sembrados con las variedades LAICA 04-809, CP 87-248, RB 98-710 y RB 86-7515. Esta estuvo en una transición a orgánica del 2016 hasta 2020, por razones de costos la corporación decidió seguirle dando un manejo convencional igual al de la finca Porvenir a partir del 2021.

_

² Salazar, J. D. 29 may. 2022. Manejo de Diatraea en fincas de caña de azúcar (entrevista). Grecia, Costa Rica, LAICA.

Figura 4. Imagen satelital de la finca San Pedro. (Fuente: Satellite Pro)

En los años en los que estuvo con un manejo orgánico se abonó con 100 sacos de una mezcla de 92% abono orgánico "El Sembrador", 4% harina de sangre y 4% de cal dolomita a los 45 días dds o ddc y siete sacos/ha de K-Mag 30 días después del abonado. No se realizó quema antes o después de la cosecha. El control de arvenses en el cañal, bordes y caminos se realizó con motoguadaña. Las principales plagas fueron los jobotos (*Phyllophaga* spp.), áfidos (*Rhopalosiphum* sp., *Melanaphis* sp., Sipha sp.), comején (*Heterotermes* sp.), picudo (*Metamasius hemipterus y M. dimidiatipennis*) y barrenador común de tallo (*Diatraea* spp.) para los cuales solamente se realiza control varietal, control biológico con parasitoides (*Cotesia flavipes*) y hongos entomopatógenos¹.

Los resultados que este estudio arroje son válidos únicamente en las condiciones específicas del sitio donde se ubican los cultivos, debido a que las interacciones entre los organismos no dependen de su presencia, sino que también de los factores ambientales.

3.4. Unidad muestral y área experimental

El área experimental (AE) fueron los bordes adyacentes y caminos de los cañales, estos no debían estar perturbados por el control de arvenses manual o químico. En cada visita mensual se aspiraron 10 muestras completamente al azar estratificado, cada muestra se colocó en una bolsa plástica de cierre hermético y se situó en una hielera para bajar el metabolismo de los insectos y así evitar la depredación; de cada sitio de muestreo se tomó una breve descripción.

La unidad muestral (UM) para el reconocimiento de las arvenses fue una cuadrícula de 0,25 m² y la UM de los insectos fue un cuboide metálico de 0,25 m³ cubierto de malla antiáfidos (Figura 5) el cual se revisó después de cada muestreo para asegurarse que no hubiesen quedado insectos dentro este.

Figura 5. Instrumentos utilizados para la colecta de los insectos. A) Cuboide metálico cubierto por una malla antiáfidos adyacente al cañal; B) Equipo de aspirado

de insectos, aspiradora de gasolina y bolsa confeccionada de malla anti-áfidos; C) Bolsa de malla dentro de la bolsa hermética.

3.5. Grupos y repeticiones

Los grupos para este estudio fueron las fincas con su respectivo manejo, el cual se detalló anteriormente; estas se evaluaron en febrero, marzo, abril, mayo, agosto y noviembre del 2021.

3.6. Variables de respuesta

Las variables de respuesta para arvenses se tomaron en campo, las de insectos se completaron en laboratorio (Cuadro 1).

Cuadro 1. Variables de respuesta para el estudio de asociación entre insectos arvenses en sistemas de producción de caña de azúcar de la Región Sur de Costa Rica.

Variables	Docarinaión	Abreviatura	Unidad de	Equipo de
variables	Descripción		medición	medición
Cobertura de arvenses	Porcentaje que ocupa cada especie de arvenses en 0,25 m ²	%Cob	Porcentaje	Cuadrícula, observación
Fenología del arvense	Se obtiene al determinar si la arvense tenía flores o estaban ausentes.	Fenología	No tiene	Observación
Abundancia de arvenses	Cantidad total de géneros de arvenses encontradas en las fincas, es un promedio mensual.	R <i>a</i>	No tiene	No tiene
Número de insectos por morfoespecies	Clasificar las morfoespecies y contar el número de insectos que tuvo.	InMorf	Cantidad de individuos por morfoespecie	Cuboide, aspirador, microscopio
Abundancia de insectos	Total de insectos por muestra de 0,25 m³, es un promedio mensual.	R <i>i</i>	Cantidad de insectos totales	Cuboide, aspirador, microscopio

Índice de Shannon-Weiner	Estima la diversidad de especies tanto de las arvenses como de los insectos, es un promedio mensual.	Н	No tiene	Programa estadístico Infostat/P
Dominancia	Porcentaje del total de veces que se identificó la especie/familia en cada finca.	Fr	No tiene	Microsoft Excel

3.7. Análisis estadístico

Una vez identificadas las muestras tanto de insectos como de arvenses se calculó las Dominancias relativas de arvenses e insectos por mes para cada una de las fincas en el programa Microsoft Excel 365.

Para la comparación de la diversidad de ambas fincas y tiempos de medición se utilizó la técnica de modelos lineales generales y mixtos y la prueba de comparación DGC para encontrar diferencias significativas entre meses y entre fincas. Estos análisis se ejecutaron con el programa estadístico InfoStat/P (Di Rienzo et al. 2019), con un nivel de confiabilidad del 0,95.

4. RESULTADOS Y DISCUSIÓN

4.1. Caracterización de las fincas según las arvenses encontradas

Se identificaron un total de 64 especies y 57 géneros pertenecientes a 24 familias (Cuadro 2). En finca Porvenir se clasificaron 43 especies y 37 géneros de 17 familias; mientras que en finca San Pedro se contabilizaron 44 especies y 41 géneros de 20 familias; en el Cuadro 12 se muestran las especies de arvenses encontradas en cada finca. Soto (2019) en su estudio encontró 157 especies (83 en El Palmar y 120 en Turrialba), 105 géneros (58 en El Palmar y 86 en Turrialba) y 41 familias (33 en cada zona), no obstante, realizó tres muestreos más que en este estudio; Vera et al. (2018) por su lado, encontraron 22 familias y 55 especies de arvenses en musáceas.

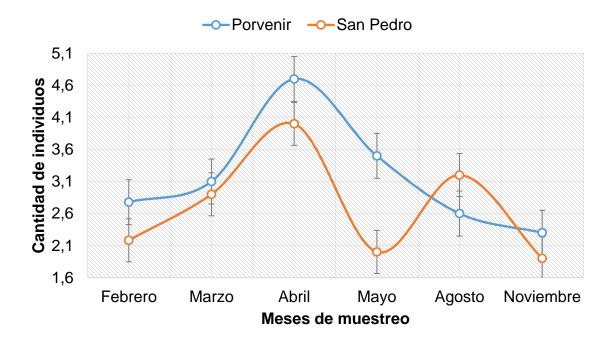
Cuadro 2. Cantidad de familias, géneros y especies de arvenses identificadas en las fincas Porvenir y San Pedro, Pérez Zeledón entre febrero y noviembre del 2021.

Finca	Familia	Género	Especie
Porvenir	17	37	43
San Pedro	20	41	44
TOTAL	23	57	64

4.2. Comparación de las fincas de acuerdo con abundancia y diversidad biológica de arvenses a través del tiempo.

Ambas fincas presentaron valores de abundancia y diversidad de Shannon de arvenses similares (

Cuadro 3). Al comparar estadísticamente los índices se encontró diferencias significativas entre fincas para la abundancia y diversidad de arvenses. Los valores de diversidad son más bajos con respecto a los encontrados por Soto (2019) en caña de azúcar.


Cuadro 3. Comparación de fincas de acuerdo con la abundancia e índice de Shannon de arvenses de fincas Porvenir y San Pedro, Pérez Zeledón, Costa Rica, 2021.

Finca	Abundancia	Índice de Shannon
Porvenir	3,17	1,62
San Pedro	2,69	1,65
Valor <i>P</i>	0,0371	0,0446

La gráfica abundancia de especies de arvenses mantuvo un comportamiento similar a la de diversidad en ambas fincas (Figura 6). Del mes de febrero a abril la abundancia de ambas fincas aumentó; la precipitación también aumentó en este periodo (Figura 2), Murillo et al. (2020) señalan al aumentar las lluvias, la vegetación también lo hace.

En la finca Porvenir la abundancia descendió paulatinamente hasta alcanzar en noviembre valores similares a los de febrero; la finca San Pedro por su lado, obtuvo valores bajos en febrero, mayo y noviembre, en abril y agosto alcanzó los valores más altos de la finca, solo en agosto superó a la finca Porvenir. No se encontró diferencias significativas entre fincas en ninguno de los meses.

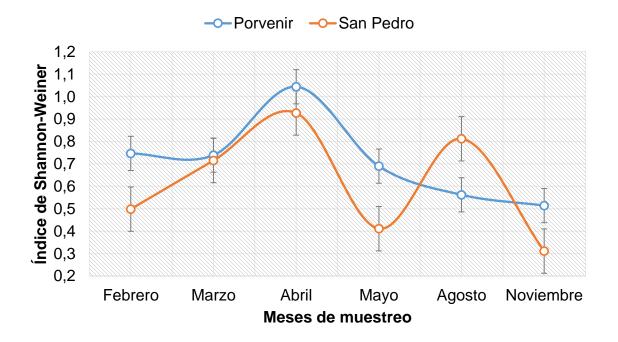

Los valores de abundancia de arvenses decrecen en el tiempo, tendencia contraria a la que Soto (2019) encontró en Puntarenas y Turrialba. En la finca San Pedro los valores del mes de mayo y noviembre cayeron debido a la aplicación de herbicidas días antes del muestreo, misma razón por la cual los valores en la finca Porvenir decrecen gradualmente en el tiempo, sin embargo, la curva varía debido a que las aplicaciones de estos no fueron en las mismas fechas.

Figura 6. Abundancia de arvenses encontrados en las fincas Porvenir y San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica.

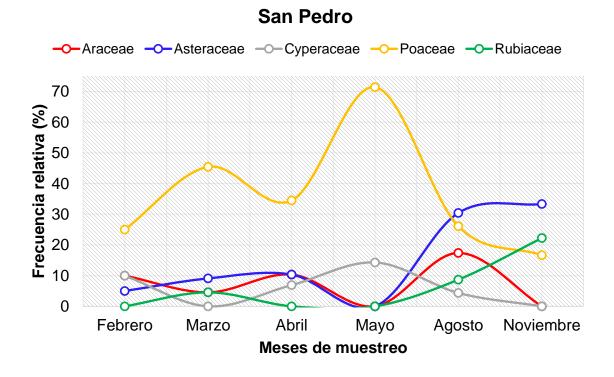
El índice de diversidad de Shannon en el tiempo mostró fluctuaciones a través del tiempo (Figura 7), tuvo un comportamiento similar al de abundancia. Ambas fincas tuvieron una curva creciente de febrero a abril; en Porvenir a partir de mayo los valores decrecen paulatinamente, mientras que San Pedro en los valores caen en mayo drásticamente en mayo, incrementan en agosto y decrecen nuevamente en noviembre. Este comportamiento fue distinto al encontrado por Soto (2019), tanto en Turrialba como Puntarenas la diversidad aumentó en el tiempo.

Los valores se mantuvieron entre 0,3 y 1,0 valores similares a los encontrados por Rojas (2011) en el cultivo de banano, no obstante, menores a los que mostró Soto (2019) en caña de azúcar.

Figura 7. Índice de diversidad de Shannon-Weiner de arvenses de fincas Porvenir y San Pedro, Pérez Zeledón, Costa Rica, 2021.

El comportamiento de la curva en ambas fincas es explicado por el manejo de arvenses, en ambas fincas se aplicó Metsulfuron metil y Glifosato para el control de estas. En Porvenir estos herbicidas son parte del manejo, mientras que en San Pedro estas no se habían aplicado en cuatro años, por lo cual puede explicar el decrecimiento en mayo y noviembre. Arizaleta et al. (2008) demostraron que la mezcla de estos dos herbicidas puede modificar significativamente tanto la cantidad como la diversidad de especies de arvenses.

En la finca Porvenir las familias de mayor Dominancia fueron Poaceae y Asteraceae (Figura 8), aunque ambas no se presentaron en noviembre y agosto respectivamente. La curva de las familias Rubiaceae y Euphobiaceae fue relativamente estable en el tiempo, por su parte, la familia Lamiaceae no presentó individuos en febrero, sin embargo, tuvo una tendencia similar a la familia Poaceae en el tiempo; las familias Lamiaceae y Euphorbiaceae no fueron frecuentes en San Pedro.


Por su lado en la finca San Pedro, la familia Poaceae en el tiempo obtuvo mayor Dominancia con respecto a las demás familias (Figura 8), a excepción de agosto que fue superada por la familia Asteraceae y en noviembre por Asteraceae y Rubiaceae. Las asteráceas tuvieron un alza importante en agosto y noviembre. En mayo todas las familias descendieron a excepción de las ciperáceas y poáceas, esto podría indicar que estas familias fueron menos susceptible a la aplicación de herbicida que se hizo entre abril y mayo; cabe resaltar que en el mes de noviembre el muestreo lo realizó una estudiante junto al asesor, lo que también pudo influir en la muestra. Resaltar un crecimiento rápido de la familia Rubiaceae en agosto y noviembre; finalmente, las familias Araceae y Cyperaceae no fueron frecuentes en Porvenir.

Soto (2019) también encontró que Poaceae fue la familia más frecuente, aunque no reporta a la familia Rubiaceae, Lamiaceae, si encontró a las familias Cleomaceae y Scrophulariaceae en Puntarenas y a Commelinaceae, Cyperaceae y Fabaceae en Turrialba.

La alta Dominancia de la familia Poaceae en ambas fincas coincide con los resultados de Rojas et al. (2003), Soto (2019), Barrera et al. (2019) y Naranjo et al. (2020) para el cultivo de caña de azúcar. En finca San Pedro donde se realizó entre 2016 y 2020 chapias para el control de arvenses fue aún más frecuente esta familia; Agüero et al. (2018) explican que las chapias hacen que se establezca una jerarquía de solo unas cuantas especies dominantes, ya que las otras especies están menos adaptadas a esta condición.

Porvenir -O-Asteraceae -O-Euphorbiaceae -O-Lamiaceae -O-Poaceae -O-Rubiaceae 45 40 Frecuencia relativa (%) 35 30 25 20 15 10 5 0 Febrero Abril Marzo Mayo Agosto Noviembre

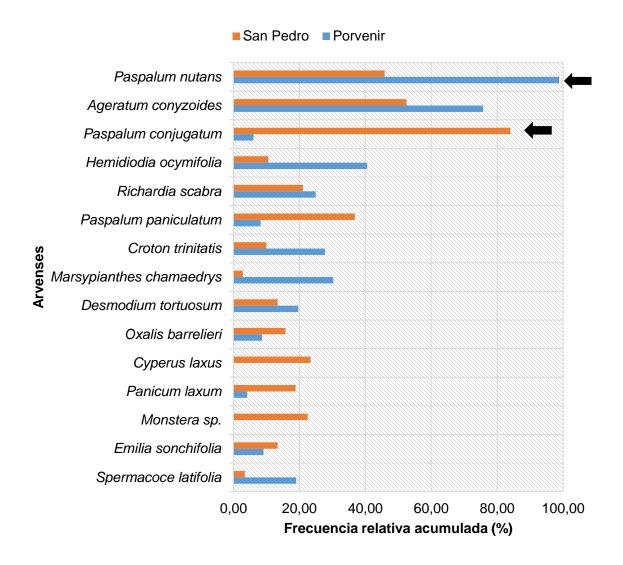

Meses de muestreo

Figura 8. Dominancia de familias de arvenses encontradas en la finca Porvenir entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica.

Al calcular la Dominancia acumulada se observó que *Paspalum nutans* fue la arvense más frecuente en la finca Porvenir, con 98,8%, mientras que en finca San Pedro más la habitual fue *Paspalum conjugatum*, con 84,0% (Figura 9), ambas de la familia Poaceae. Soto (2019), Rojas et al. (2003), Barrera et al. (2019) y Naranjo et al. (2020) mencionan que las arvenses de mayor dominancia en el cultivo de caña de azúcar pertenecen a la familia Poaceae. Además, en ambas fincas dominó un arvense del género *Paspalum*, este es uno de los más diversos de esta familia, con cerca de 310 especies (Sánchez 2019); *P. nutans* no se había reportado este en caña de azúcar.

En la finca Porvenir también se encontró a *Ageratum conyzoides* (75,7%), *Hemidiodia ocymifolia* (40,6%), *Marsypianthes chamaedrys* (30,3%), *Croton trinitatis* (27,8%), *Richardia scabra* (24,9%), *Desmodium tortuosum* (19,7%), *Spermacoce latifolia* (19,0%), *Emilia sonchifolia* (14,1%). En fincas San Pedro también se clasificó a *Ageratum conyzoides* (52,5%), *Paspalum nutans* (45,9%), *Paspalum paniculatum* (36,8%), *Cyperus laxus* (23,4%), *Monstera* sp. (22,5%), *Richardia scabra* (21,1%), *Panicum laxum* (18,8%), *Oxalis barrelieri* (15,8%), *Desmodium tortuosum* (13,4%) de las cuales *C. laxus y Monstera* sp. no fueron dominante en finca Porvenir.

Figura 9. Dominancia acumulada arvenses encontradas en las fincas Porvenir y San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica.

Rojas et al. (2003) realizaron un estudio en tres zonas cañeras de San Carlos: Cutris, Quebrada Azul y Santa Fe; encontraron a *Spermacoce latifolia* en Cutris y Quebrada Azul, varios géneros de *Cyperus*, no obstante, no precisamente a la especie *laxus*; además, clasificaron al género *Emilia*, aunque no la especie *sonchifolia*, al género *Croton*, sin embargo, no a la especie *trititatis*. Soto (2019) por su lado, no encontró a *Paspalum nutans*, *Hemidiodia ocymifolia* y a pesar de que encontró varias especies de *Cyperus* no encontró a *C. laxus*, halló dos especies de *Croton*, pero no a *C. trinitatis*. A *Ageratum conyzoides* y *Marsypianthes chamaedrys*

las localizó en Turrialba, a *Paspalum conjugatum*, *Paspalum paniculatum* las encontró en Turrialba y Puntarenas.

4.3. Caracterización de las fincas según los insectos encontrados

Entre los meses febrero y noviembre se identificó un total de 2053 insectos de nueve órdenes y 75 familias (Soto (2019) por su parte encontró 13026 insectos en nueve meses, 137 familias y 22 órdenes; alrededor de 76,4% más de insectos, 17,8% más familias y 59,1% más órdenes. Pudo incidir la baja cantidad y diversidad de arvenses, condiciones específicas de las fincas, el manejo y variación del tiempo atmosférico (Murillo et al. 2020).

Cuadro 4). En la finca Porvenir se encontró siete órdenes y 61 familias mientras que en San Pedro se clasificó nueve órdenes y 58 familias. Del total de individuos clasificados, 1305 de halló en finca Porvenir y 1448 en finca San Pedro; en el Cuadro 12 (anexos) se realizó una clasificación de los individuos por familia y su hábito alimenticio. Soto (2019) por su parte encontró 13026 insectos en nueve meses, 137 familias y 22 órdenes; alrededor de 76,4% más de insectos, 17,8% más familias y 59,1% más órdenes. Pudo incidir la baja cantidad y diversidad de arvenses, condiciones específicas de las fincas, el manejo y variación del tiempo atmosférico (Murillo et al. 2020).

Cuadro 4. Cantidad de órdenes, familias e individuos de insectos identificados en las fincas Porvenir y San Pedro entre febrero y noviembre del 2021.

Finca	Ordenes	Familias	Individuos
Porvenir	7	61	999
San Pedro	9	58	1054
TOTAL	9	75	2053

4.4. Comparación de las fincas de acuerdo con abundancia y diversidad biológica de insectos a través del tiempo


Ambas fincas presentaron valores de abundancia y diversidad de familias de insectos similares (Cuadro 5). Al comparar estadísticamente las fincas la abundancia, índice de diversidad de Shannon-Weiner a nivel de familias no se encontró diferencias significativas entre las fincas. Los valores de diversidad son más bajos que los de Soto (2019) en caña de azúcar, aunque son similares a los encontrados Murillo et al. (2020) en cítricos. Hidalgo y Acevedo (2012) explican que los valores bajos de diversidad familias de insectos, están asociados con la simplificación de la diversidad de los agroecosistemas.

Cuadro 5. Comparación de fincas de acuerdo con abundancia e índice de Shannon de familias de insectos de fincas Porvenir y San Pedro, Pérez Zeledón, Costa Rica, 2021.

Finca	Abundancia	Índice de Shannon
Porvenir	7,17	1,53
San Pedro	7,25	1,65
Valor P	0,9169	0, 3847

La curva de abundancia de individuos se comportó estable en la finca Porvenir, sin embargo, bajo paulatinamente de 220 individuos en febrero a 97 en noviembre (Figura 10), comportamiento que Soto (2019) encontró en Puntarenas. En la finca San Pedro inicio en 140 y terminó en 186 en noviembre; sin embargo, en marzo alcanzó 421 individuos, después descendió drásticamente hasta alcanzar en mayo el número más bajo (69 individuos), concluyó con 186 individuos en noviembre. En San Pedro como se dijo anteriormente se aplicó herbicida entre abril y mayo lo que repercutió indirectamente sobre las poblaciones de insectos.

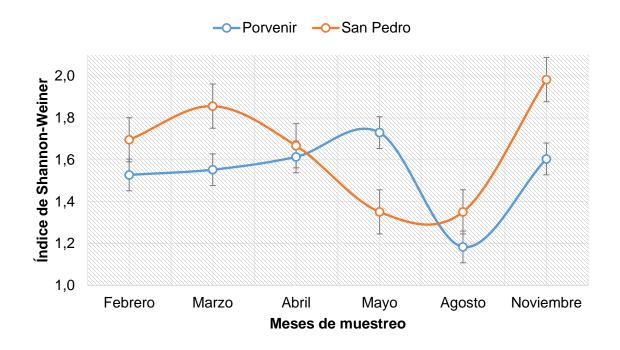
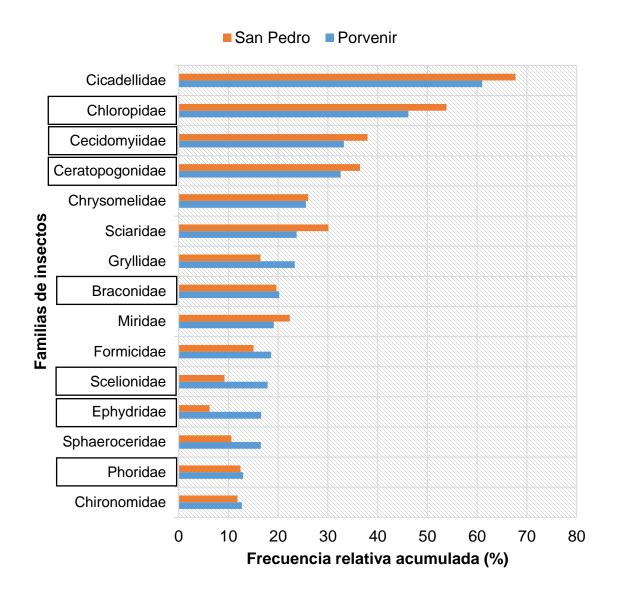

Nicholls (2008) explica que las poblaciones de insectos pueden fluctuar por factores independientes de la densidad, las labores de manejo en combinación con la época seca hacen que las poblaciones de insectos disminuyan; Bustillo (2013) por su parte, contradice esta afirmación. Por otro lado, los factores dependientes de la densidad como competencia, depredación y parasitismo también hacen que las poblaciones de artrópodos cambien en el tiempo (Nicholls 2008).

Figura 10. Abundancia de individuos encontrados en las fincas Porvenir y San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica.

La diversidad de familias tuvo un comportamiento distinto a través del tiempo en ambas fincas (Figura 11), la finca Porvenir inició con un valor de diversidad de 1,53 y mantuvo un crecimiento constante hasta mayo y en agosto bajó drásticamente a 1,18. Por su lado, la curva de la finca San Pedro inició en 1,69, ascendió levemente hasta mayo, hasta que bajó agosto 1,10. Los valores más altos los obtuvo Porvenir en el mes de noviembre. Aunque la finca San Pedro obtuvo mayores valores en los índices, excepto en el mes de mayo; este comportamiento es diferente al encontrado por Soto (2019) en las dos zonas analizadas. No hubo diferencias significativas entre finca en ninguno de los meses.

Es importante destacar que a pesar de que en ambas fincas la abundancia de insectos fue menor en noviembre (Figura 10) y la diversidad aumentó de agosto a noviembre (Figura 11), una de las razones pudo ser la reducción de las arvenses de la familia Poaceae y el aumento de la familia Asteraceae (Figura 8) en especial *Ageratum conyzoides* (Figura 9) que fue la de mayor dominancia. Altieri et al. (2015) menciona que a mayor diversidad de arvenses de la familia Asteraceae aumentan los polinizadores a insectos benéficos, ya que las flores ofrecen alimenta estos.

Figura 11. Índice de Shannon-Weiner de familias de insectos calculado para las fincas Porvenir y San Pedro entre febrero y noviembre de 2021.

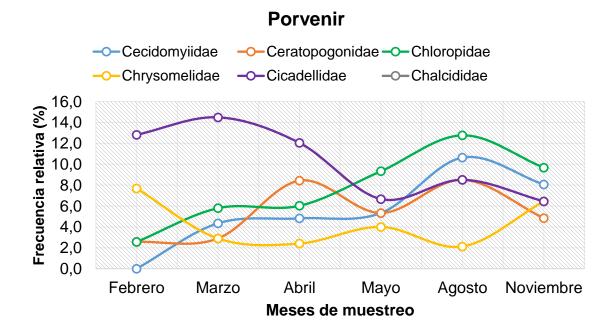

Y en la finca San Pedro donde fue significativamente mayor, con la dominancia de la familia Poaceae donde se realizaron chapias para el control de arvenses, actividad que hace que dominen solo unas cuantas especies (Agüero 2018).

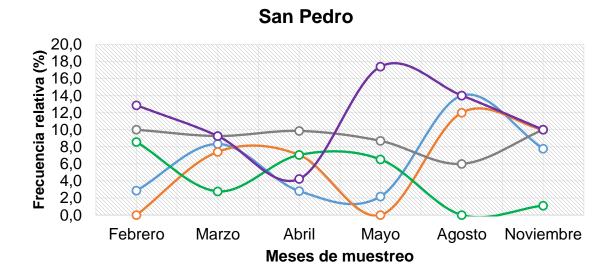
Al calcular la dominancia acumulada de insectos se encontró que en ambas fincas la familia de mayor dominancia fue la Cicadellidae (fitófagos), seguido de

Chloropidae, Cecidomyiidae que cuentan con individuos depredadores, parasitoides, saprófitos y fitófagos y Ceratopogonidae que presenta parasitoides, depredadores y hematófagos (Figura 12); estas familias fueron encontrados con la misma dominancia en Puntarenas y Turrialba por Soto (2019).

Resaltar las familias de insectos parasitoides Braconidae y Scelionidae; las familias Chloropidae, Cecidomyiidae, Ceratopogonidae, Phoridae y Ephydridae dentro de los cuales hay individuos depredadores y parasitoides; y Chironomidae que presenta algunas especies con hábito alimenticio de depredador. Cerca del 60% de estas familias de estos insectos benéficos tuvo una mayor frecuente en San Pedro con respecto a Porvenir, de cierta manera el manejo orgánico y condiciones de la finca pudo tener influencia en la creación de condiciones favorables para conservar las poblaciones de insectos benéficos (León et al. 2019), por otro lado, a pesar de que las fincas están relativamente cerca las condiciones de suelo, cercanía a bosques, altura, no se encontraron evidencias de que los herbicidas aplicados en los bordes y caminos de la finca San Pedro en esos años tengan efecto directo sobre las poblaciones de insectos, aunque hay un efecto indirecto ya que afecta las arvenses, lugar de reposo, reproducción y alimentación de estos (Blanco y Leyva 2007).

En esta línea, la finca San Pedro ofreció un hábitat adecuado para la flora y fauna de la zona, lo que incluye a los insectos; esto por medio de la incorporación de residuos de cosecha, labranza mínima, incorporación de abono orgánico, uso de coberturas vegetales, eliminación de fertilización nitrogenada y quemas de rastrojos y eliminación de plaguicidas que propició en esos cuatro años la llegada de nuevas especies de insectos benéficos (FAO 2022). En contraste, monocultivos convencionales reduce la biodiversidad por el uso continuo de pesticidas, simplifican la vegetación y rompen el equilibrio del agroecosistema (Blanco y Leyva 2007).


Figura 12. Dominancia acumulada de familias de insectos encontradas en la finca Porvenir y San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica.


La familia de mayor dominancia en ambas fincas fue Cicadellidae, aunque el comportamiento en el tiempo de sus poblaciones fue distinto entre fincas (Figura 13). La familia Chrysomelidae solamente estuvo presente en Porvenir mientras que Chalcididae lo fue únicamente en San Pedro. En esta última finca las familias Cicadellidae, Cecidomyiidae y Ceratopogonidae tuvieron un comportamiento similar

y en Porvenir todas las familias tuvieron una tendencia creciente, no así en caso de Chloropidae y Chalcididae en San Pedro.

El comportamiento de las poblaciones de Cicadellidae en Porvenir fue diferente a las encontradas por (Soto 2019), tanto en Puntarenas como Turrialba la tendencia fue creciente en el tiempo; la familia Sciaridae no estuvo entre las seis familias más frecuente de su estudio. Los crisomélidos estuvieron frecuentes solamente en Puntarenas; las demás familias experimentaron un comportamiento diferente a Puntarenas y Turrialba. Resaltar que las dominancias de este estudio fueron menores a las que encontró esta autora.

Nicholls (2008) explica que las labores de manejo del cultivo (cosecha, control de arvenses, fertilización, etc.) que en esta finca se realizan entre enero hasta abril, podría explicar porque en la mayoría de los casos las poblaciones inician bajas y aumentan en el tiempo; agrega que es posible que las poblaciones de la familia Cicadellidae del Porvenir estén adaptados a los cambios que se producen en el hábitat y que una vez que las labores de manejo acaban las poblaciones aumentan y las de cicadélidos bajan. Esto podría ser explicado por dos razones: 1) los individuos de las familias parasitoides y depredadores podrían estar ejerciendo cierto control sobre los cicadélidos (Blanco y Leyva 2007), (Nicholls 2008), (Bustillo 2011) y 2) estos solo estaban usan las arvenses como hospedero alterno (Blanco 2016), una vez que la caña vuelve a crecer migra a esta.

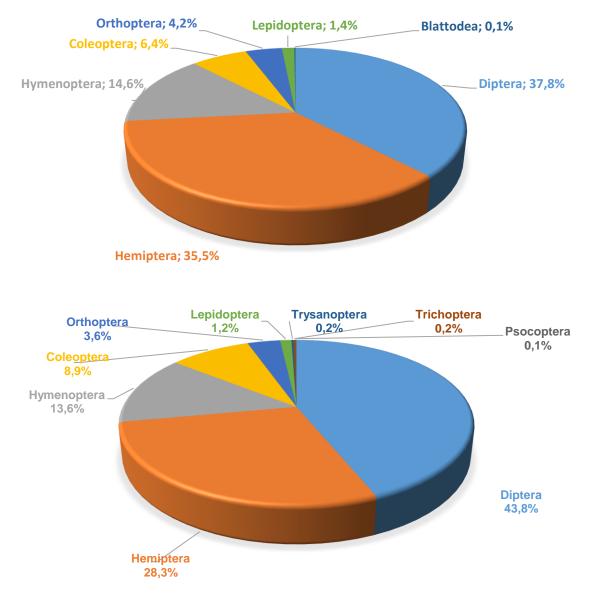


Figura 13. Dominancia de familias de insectos encontradas en las fincas Porvenir y San Pedro entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica.

El orden más frecuente en ambas fincas fue el Díptera (Figura 14) se encontró en 37,8% y 43,8% en Porvenir y San Pedro respectivamente. Le siguen los órdenes Hemíptera, Hymenoptera, Coleóptera, Orthoptera y Lepidóptera. En Porvenir se clasificaron individuos del orden Blattodea, mientras que en San Pedro

se clasificó los órdenes Trysanoptera, Trichoptera y Psocoptera. Soto (2019) encontró el mismo orden de dominancia de los primeros cuatro ordenes, aunque no mostró en los gráficos los órdenes Blattodea, Trysanoptera, Trichoptera y Psocoptera. Resaltar que estos taxones de insectos no son perjudiciales en el cultivo, por el contrario, se podrían usar como indicadores rápidos de salud del agroecosistema Guzmán et al. (2016).

Figura 14. Órdenes de insectos encontrados en la finca Porvenir entre febrero y noviembre del 2021, Pérez Zeledón, Costa Rica.

4.5. Asociaciones entre arvenses e insectos benéficos

De las arvenses encontradas (Cuadro 12, Anexos), *Acalypha arvensis* alberga arácnidos depredadores (Rojas 2011) y al polinizador *Apis melifera* L. (Carabalí et al. 2021); *Ageratum conyzoides* está relacionado con depredadores de la familia Syrphidae y con parasitoides de la familia Mymaridae (Soto 2019); *Bidens pilosa* está asociada con *Orius pumilio* (Anthocoridae) (Alonso et al. 2019), polinizadores como *Apis mellifera*, *Partamona* cf. *aequatoriana*, *Scaptotrigona barrocoloradensis*, *Tetragonisca angustula* (Carabalí et al. 2021)., además, alberga tachínidos que atacan barrenadores en caña de azúcar (Bustillo, 2013); en *Clidemia hirta* se han encontrado depredadores de las familia Tettigoniidae y Mantidae, también hormigas (Formicidae) (Rojas, 2011).

Commelina diffusa se pueden encontrar el bracónido Rogas sp., y los polinizadores Apis melifera L., Exomalopsis pulchella de la familia Apidae (Alonso et al. 2019); Commelina erecta se puede encontrar insectos benéficos de las familias Diapriidae, Braconidae, Coccinellidae, Formicidae y Miridae (Rojas, 2011); en Croton trinitatis, una arvense de olor atrayente alberga los depredadores de las familias Braconidae (Cotesia sp., Formicia clathrata), Chalcididae (Brachymeria sp., Spilochalcis sp., Conura inmaculata), e Ichneomoniae (Cassinaria sp.) (Aldaba et al. 1997).

También, *Cyathula prostrata* hospeda parasitoides de las familias Eulophidae y Tachinidae y depredadores de los taxones Aracnidae, Formicidae, Miridae, y Dolichopodidae; arvenses del género *Cyperus* sp., sirve como huésped de *Apis melifera* L. (Carabalí et al. 2021).; *Desmodium* sp. alberga depredadores de la familia Tettigoniidae (Rojas 2011); planta del género *Digitaria* sp., está asociado con *Trichograma pretiosum* de la familia Chalcididae (Morales et al. 2007), parasitoide del falso medidor *Mocis latipes* (Bustillo 2011); arvenses del género *Hyptis* spp., hospedan al parasitoide *Rhysipolis* spp. (Braconidae) y específicamente *Hyptis capitata* está asociado con *Brachymeria* sp. (Chalcididae) y *Telenomus* sp. (Scelionidae) (Aldaba et al. 1997), la especie *T. alecto* es parasitoide de *Diatraea* spp. Rojas (2011) menciona que *Kyllinga brevifolia* es huésped de hormigas

(Formicidae), *Panicum laxum* de depredadores (Tettigoniidae), *Paspalum* sp. de depredadores de la familia Coccinellidae, Platygasteridae, Tettigoniidae y Formicidae.

Además, *Momordica charantia* es hospedero de polinizadores (*Halictus* sp., *Ceratina* sp., *Pelopidas* sp., *Hylephila* sp., *Mesembrius bengalensis*, *Episyrphus* sp., *Camponotus* sp., *Stomorhina obsolete*, *Trigona* spp., abejas escarabajos pequeños (Kyam 2019); *Sida rhombifolia* alberga al chalcídido *Spilochalcis* sp. y a los bracónidos *Rhysipolis* sp y *Cotesia* sp. (Aldaba et al. 1997), este último es parasitoide de *Diatraea* spp. (Bustillo 2011); una de las razones por las cuales LAICA creó un Laboratorio de Control Biológico en 1984, con el objetivo de criar diferentes organismos para el control de plagas en plantaciones de productores de caña³. Finalmente, algunas especies de *Solanum* spp., sirven de huésped para el polinizador *Apis melifera* L. (Carabalí et al. 2021); *Spermacoce latifolia* está asociada con insectos depredadores de la familia Dolichopodidae (Soto 2019).

³ Salazar, J. D 26 may. 2022. Creación del Laboratorio de entomología, una iniciativa de DIECA (entrevista). Grecia, Costa Rica. DIECA.

5. CONCLUSIONES

- Se encontró una baja abundancia y diversidad tanto de arvenses como de insectos.
- Cuando las abundancia y diversidad de arvenses decrece, la abundancia y diversidad de insectos disminuye.
- La familia de arvenses que predominó en los sistemas de producción de caña de azúcar fue la Poaceae.
- Las familias de insectos en el cultivo de caña de azúcar son Cicadellidae.
 Chloropidae, Cecidomyiidae, Ceratopogonidae, de las cuales las tres últimas albergan insectos benéficos.
- La presencia de la arvense *Ageratum conyzoides* (Asteraceae) aumentó la diversidad de insectos.
- Las arvenses *Bidens pilosa, Croton trinitatis* y *Sida rhombifolia* tienen potencial para formar parte de las estrategias de MIC y MIP que promueve de LAICA en el sector cañero, ya que albergan insectos que ejercen un control natural de plagas del cultivo.

6. RECOMENDACIONES

- Aumentar el número de muestras por fecha de muestreo y reducir la cantidad de meses de muestreo.
- Realizar una visita previa a los sitios de muestreo, con el objetivo de identificar las arvenses más comunes y con ello elaborar un catálogo que facilite la identificación en campo.
- Realizar este tipo de estudios en las regiones productoras de caña de azúcar faltantes.
- Proponer estudios más específicos de arvenses hospederas de Cotesia flavipes, enemigo natural de *Diatraea*, plaga importante en casi todas las regiones productoras de caña en el país.
- Hacer un estudio más profundo de Ageratum conyzoides, ya que se evidenció un gran potencial como huésped de insectos.

7. BIBLIOGRAFIA

- Aguilar, N. 2011. Competitividad de la agroindustria azucarera de la huasteca México. Tesis PhD. Potosí, México, Universidad Autónoma de San Luis, 502.
- Abouhamad, SDL. 2017. Servicios ecosistémicos de regulación que benefician a la suciedad y su relación con la restauración ecológica. Biocenosis, 31:80–92.
- Alonso, O; Lezcano, C. 2019. Relación ecológica plantas arvenses-entomofauna beneficiosa en sistemas silvopastoriles del occidente de Cuba Weedsbeneficial entomofauna ecological relation in silvopastoral systems of western Cuba. Pastos y Forrajes, 42(1): 48–56.
- Altieri, M. 1999. AGROECOLOGÍA. Bases científicas para una agricultura sustentable. Hecht, S, Liebman, M, Magdoff, F, Norgaard, Sikor, TO. Montevideo, Argentina. Editorial Nordan–Comunidad, 325p.
- Altieri, MA; Nicholls, Clara; Gillespie, M; Waterhouse, B; Wratten, S; Gbehounou, G; Gemmill, B. 2015. Crops, weeds and pollinators. Understanding ecological interaction for better management (en línea). Roma, Italia. 95p. Consultado 14 jul. 2022. Disponible en https://www.fao.org/3/i3821e/i3821e.pdf
- Arizaleta, M; Anzalone, A; Silva, A. Efecto del uso de Metsulfuron-metil y Glifosato sobre malezas asociadas a cafetales en Venezuela. Bioagro 20(2): 79-88.
- Blanco, Y; Leyva, Á. 2009. Las arvenses y su entomofauna asociada en el cultivo del maíz (*Zea mays*, L.) Posterior al periodo crítico de competencia. Cultivos Tropicales, 30(1):11-17
- Blanco, Y. 2013. Las arvenses y su entomofauna asociada en el cultivo del frijol (*Phaseolus vulgaris*, L.) posterior al periodo crítico de competencia. Avances en Investigación Agropecuaria, 17(3):51–65.
- Blanco, Y., y Leyva, Á. 2010. Riqueza y diversidad de especies de arvenses en el cultivo de maíz (*Zea mays* L.) precedido de un barbecho transitorio después de la papa (*Solanum tuberosum* L.). Cultivos Tropicales, 31(2):12-16.

- Bustillo P, AE. 2011. Parasitoides, depredadores y entomopatógenos que afectan las Plagas de la Caña de Azúcar en Colombia. CENICAÑA. 16p.
- Chaves, MA; Bermúdez, AZ. 2020. 80 años de vida institucional del sector cañeroazucarero costarricense: breve recorrido por su historia. Revista trimestral del Departamento de Investigación y Extensión de la Caña de Azúcar. (16):1-69. https://laica.cr/wp-content/uploads/2020/08/revista-entre-cancc83erosno16.pdf
- Chávez, M, Chavarría, E. 2012. ¿Cómo se distribuye y dónde se cultiva territorialmente la caña destinada a la fabricación de azúcar en Costa Rica? (en línea). Congreso de la Asociación de Técnicos Azucareros de Centroamérica (ATACA), 19, Congreso de la Asociación de Técnicos Azucareros de Costa Rica (ATACORI). Memoria. Heredia, Costa Rica. 22. ATACA. ATACORI. Consultado 4 jul. Disponible en https://servicios.laica.co.cr/laica-cvbiblioteca/index.php/Library/download/wEIIIMwEJoViCoEDklhoXHwSVoVdv TVz#:~:text=La%20provincia%20de%20Guanacaste%20es,%25)%3B%20y %20Heredia%20con%20apenas
- Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M., Robledo C.W. InfoStat versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Disponible en http://www.infostat.com.ar
- Duarte, OJ, González, JD. 2019. Guía técnica cultivo de caña de azúcar.
- FAO (Food and Agriculture Organization). 2022. Organic Agriculture. (en línea, sitio web). Consultado el 14 jul. 2022. Disponible en https://www.fao.org/organicag/oa-faq/oa-faq6/es/
- Gómez, LA., y Lastra, LA. 1995. Insectos Asociados con la Caña de Azúcar en Colombia. Cenicaña, El Cultivo de La Caña En La Zona Azucarera de Colombia, 237–264.

- Guzmán, R., Calzontzi, J., Salas, M. D., & Martínez, R. (2016). La riqueza biológica de los insectos: análisis de su importancia multidimensional. *Acta Zoológica Mexicana*, 32(3), 370-379.
- INEC (Instituto Nacional de Estadística y Censos). 2020. Encuesta Nacional Agropecuaria 2019. Resultados Generales de la Actividad Agrícola y Forestal. (ISSN: 2215-552X). Recuperado de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reena-cultivos2019.pdf
- León, AF., Murillo, JI., Bautista, D., y Quinto, J. 2019. Insectos benéficos asociados a plantas arvenses atrayentes en agroecosistemas del Piedemonte de la Orinoquia Colombiana. Cuadernos de Biodiversidad, 56(56), 1. https://doi.org/10.14198/cdbio.2019.56.01
- Marín, FR.; Moreno, MA.; Farías, A., Villegas, F.; Rodríguez, JM.; van den Berg, M. 2018. Modelación de la caña de azúcar en Latinoamérica: Estado del arte y base de datos para parametrización, Luxemburgo, UE, Oficina de Publicaciones de la Unión Europea. 59 p. EUR 29018 ES
- Montero, GA. 2014. Ecología de las interacciones entre malezas y artrópodos. Capítulo X. Malezas e Invasoras de La Argentina: Ecología y Manejo. Tomo I, (March), 267–305.
- Morales, J., Vásquez, C., Pérez B., NL., Valera, N., Ríos, Y., Arrieche, N., Querino, R. B. 2007. Especies de *Trichogramma* (Hymenoptera: Trichogrammatidae) parasitoides de huevos de lepidópteros en el Estado Lara, Venezuela. Neotropical Entomology, 36(4), 542–546.
- Murillo, FD., Adame, J., Cabrera, H., Villegas, J., Rivera, AE. 2020. Fauna edáfica e insectos asociados a las arvenses en limón persa, monocultivo y policultivo. Ecosistemas y Recursos Agropecuarios 7(2): e2508. DOI: 10.19136/era.a7n2.2508
- ONU (Organización de las Naciones Unidas). 2016. ONU: Objetivos de Desarrollo Sostenible. Objetivo 15: Gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras,

- detener la pérdida de biodiversidad. (en línea, sitio web). Consultado el 14 jul. 2022. Disponible en https://www.un.org/sustainabledevelopment/es/biodiversity/
- Pérez Iglesias, HI., Santana Aguilar, I., Rodríguez Delgado, I. 2016. Manejo Sostenible de Tierras en la Producción de Caña de Azúcar, Tomo I. UTMACH. 196 p.
- Rodríguez, D., Barbosa, RN., y Rodríguez, E. 2019. Manejo de arvenses en caña de azúcar, impacto ambiental, efectividad económica y de control. Centro Agrícola, 46(2), 64–71.
- Rojas, L., Rodríguez, J., Villalobos, H., Arias, M., y Méndez, E. 2003. Malezas asociadas al cultivo de la caña de azúcar. Tecnología En Marcha, 16(1), 66–79.
- Salazar Blanco, JD. n.d.. Situación actual de las plagas de la caña de azúcar en Costa Rica. 18 p.
- Salazar Blanco, JD., Oviedo Alfaro, R., Cadet Piedra, E., Sáenz Acosta, C. 2016.

 Control Biológico y otras estrategias de manejo de plagas implementadas en el cultivo de la caña de azúcar, 17 p.
- Sánchez, JG. 2019. Riqueza de especies, clasificación y listado de las gramíneas (Poaceae) de México. Acta Botánica Mexicana 126(1379):1-73.
- Soto Sáenz, ÁE. 2019. Estudio de la asociación de entomofauna y arvenses acompañantes del cultivo de caña de azúcar en dos regiones productoras de Costa Rica. Tesis Lic. San José, Costa Rica, UCR. 221 p.
- Valverde Rojas, O. 2010. Propuesta de Mejora del Clima Organizacional del Departamento de Producción de la Empresa ASSUKKAR S.A. Tesis M.Sc. San José, Costa Rica, UCR. 163 p.
- Washington, J., Lucio, A., Valverde, H., Quijije, R., Bayas, F., y Merino, O. 2016. Evaluación de la fauna insectil en tres Sistemas Agroforestales Utilizando Como base el cultivo de Cacao. Revista Enlace Universitario, 42–46.

Zumbado, M. y Azofeifa, D. 2018. Insectos de importancia agrícola. Guía práctica de entomología. Heredia, Costa Rica. Programa Nacional de Agricultura Orgánica (PNAO). 204 pp.

8. ANEXOS

Cuadro 6. Lista de familias de insectos identificadas por Soto (2019) en las zonas de Puntarenas y Turrialba entre abril y diciembre del 2018.

Orden	Familia	Hábito alimenticio	Cantidad	Zona
		Depredado,	111	Puntarenas
Acari	Ácaro	saprófito y fitófago	46	Turrialba
Araobaida	Indeterminada	Donrododor	165	Puntarenas
Arachnida	mueterminaua	Depredador	107	Turrialba
	Achilidae	Fitófago	1	Turrialba
	Caraaridaa	Fit if a ma	32	Puntarenas
	Cercopidae	Fitófago	19	Turrialba
	Cicadellidae	Fitófago	919	Puntarenas
			1204	Turrialba
	Cicadidae	Fitófago	10	Puntarenas
			7	Turrialba
Auchenorrhyncha	Obstitute a	Eitófago	8	Puntarenas
	Cixiidae	Fitófago	11	Turrialba
	Dalahasidas	Fitófago	164	Puntarenas
	Delphacidae		59	Turrialba
	Dietvopharidae	Eitófago	152	Puntarenas
	Dictyopharidae	Fitófago	22	Turrialba
	Issidae	Fitófago	2	Turrialba
	Membracidae	Fitófago	9	Puntarenas

Orden	Familia	Hábito alimenticio	Cantidad	Zona
			39	Turrialba
Blattodea	Blattidae	Saprófito	2	Puntarenas
Diattodea	Diattidae	Sapronto	4	Turrialba
	Anthicidae	Omnívoro	15	Puntarenas
	Antinicidae	Ommoto	2	Turrialba
	Bostrichidae	Fitófago	1	Puntarenas
	Duprostidos	0 (":	1	Puntarenas
	Buprestidae	Saprófito	3	Turrialba
	Cantharidae	Depredador y saprófito	24	Puntarenas
	Cerambycidae	Depredador y saprófito	4	Turrialba
		Depredador	2	Puntarenas
Coleoptera	Carabidae	y parasitoide	2	Turrialba
	Chrysomelidae	Fitófago y	170	Puntarenas
	Citrysomendae	saprófito	134	Turrialba
	Cicindelidae	Depredador	12	Turrialba
	Cleridae	Depredador	10	Puntarenas
	Ciendae	Depredador	3	Turrialba
	Coccinellidae	Depredador	82	Puntarenas
	Coccinellidae	y fitófago	61	Turrialba
	Cucujidae	Depredador y saprófito	1	Turrialba
	Curculionidae		12	Puntarenas

Orden	Familia	Hábito alimenticio	Cantidad	Zona
		Fitófago y saprófito	24	Turrialba
	Dermestidae	Conréfito	5	Puntarenas
	Dermestidae	Saprófito	1	Turrialba
	Elateridae	Depredado, saprófito y fitófago	13	Puntarenas
	Languriidae	Fitófago, Depredado, saprófito y fitófago	1	Puntarenas
	Mordellidae		11	Puntarenas
	Mordellidae		9	Turrialba
	Nitidulidae	Depredador y saprófito	2	Turrialba
	Ostomidae	Depredador y saprófito	2	Puntarenas
	Phalacridae	Fitófago y saprófito	2	Puntarenas
	Staphylinidae	Depredador	2	Puntarenas
	Stapriyiiriidae	y saprófito	4	Turrialba
	Tenebrionidae	Depredador	4	Puntarenas
	· onosnomac	y saprófito	3	Turrialba
	Sin identificación		1	Puntarenas
Collembola	Collembola	Saprófito	47	Puntarenas

Orden	Familia	Hábito alimenticio	Cantidad	Zona
			59	Turrialba
Diplura	Diplura	Saprófito	2	Puntarenas
	Anisopodidae	Saprófito	4	Puntarenas
	Ariisopouldae	Sapronio	3	Turrialba
	Anthomyzidoo	Conráfito	12	Puntarenas
	Anthomyzidae	Saprófito	6	Turrialba
	Acilidos	Donrododor	37	Puntarenas
	Asilidae	Depredador	1	Turrialba
	Bibionidae	Saprófito	1	Turrialba
	Calliphoridae	Saprófito	11	Puntarenas
			2	Turrialba
	Cecidomyiidae	Depredado, parasitoide,	635	Puntarenas
Diptera		saprófito y fitófago	604	Turrialba
	Ceratopogonidae	Parasitoide, depredador	452	Puntarenas
		y hematófago	590	Turrialba
	Chamaemyiidae	Depredador	29	Puntarenas
	Chironomidae	Depredador y saprófito	17	Turrialba
	Chloropidae	Depredado, parasitoide,	1019	Puntarenas
	Onioropidae	saprófito y fitófago	651	Turrialba

Orden	Familia	Hábito alimenticio	Cantidad	Zona
	Clusiidae	Saprófito	1	Turrialba
	Conopidae	Parasitoide	3	Puntarenas
	Culicidae	Depredador	9	Puntarenas
	Cullcidae	y saprófito	11	Turrialba
	Diopsidae	Saprófito	1	Puntarenas
	Dixidae	Sanráfita	1	Puntarenas
	Dixidae	Saprófito	6	Turrialba
	Dolichopodidae	Donrododor	70	Puntarenas
	Dollchopodidae	Depredador	111	Turrialba
		Depredado,	148	Puntarenas
	Drosophilidae	saprófito y fitófago	218	Turrialba
	Empididao	Donrodador	63	Puntarenas
	Empididae	Depredador	48	Turrialba
	Ephydridae	Depredado, parasitoide,	15	Puntarenas
	Epnyariaae	saprófito y fitófago	101	Turrialba
	Lauxaniidae	Saprófito	57	Puntarenas
	Lonchaeidae	Fitófago y	82	Puntarenas
	Lonchaeidae	saprófito	50	Turrialba
	Micropezidae	Saprófito	1	Puntarenas
	MICIOPEZIUAE	σαρισιίο	1	Turrialba
	Milichiidae	Depredador y saprófito	1	Turrialba

Orden	Familia	Hábito alimenticio	Cantidad	Zona
	Mysstaphilidas	Conréfito	31	Puntarenas
	Mycetophilidae	Saprófito	15	Turrialba
	Opomyzidae	Fitófago y saprófito	1	Puntarenas
		Depredado,	52	Puntarenas
	Phoridae	parasitoide y saprófito	24	Turrialba
	Dayahadidaa	Saprófito y	5	Puntarenas
	Psychodidae	hematófago	30	Turrialba
	Dieberdiidee	Camuátita	25	Puntarenas
	Richardiidae	Saprófito	64	Turrialba
	Sarcophagidae	Parasitoide y saprófito	4	Puntarenas
	Castonaidas	Conráfito	8	Puntarenas
	Scatopsidae	Saprófito	130	Turrialba
	Sciaridae	Sanráfita	54	Puntarenas
	Sciandae	Saprófito	59	Turrialba
		Depredado,	2	Puntarenas
	Sciomyzidae	parasitoide y saprófito	5	Turrialba
	Sepsidae	Saprófito	2	Turrialba
	Simuliidae	Saprófito y	13	Puntarenas
	Simullidae	hematófago	16	Turrialba
	Stratiomyidae	Depredador y saprófito	2	Turrialba

Orden	Familia	Hábito alimenticio	Cantidad	Zona
	Syrphidae	Depredador	20	Puntarenas
	Оутринаае	y fitófago	24	Turrialba
	Tachinidae	Parasitoide	6	Puntarenas
	radiffiliado	Farasiloide	5	Turrialba
	Tophritidoo	Fitófogo	3	Puntarenas
	Tephritidae	Fitófago	6	Turrialba
	Tipulidae	Depredador y fitófago	12	Puntarenas
	Ulidiidae	Fitófago y	2	Puntarenas
		saprófito	4	Turrialba
	Sin identificación		33	Puntarenas
	Sin identificación		20	Turrialba
Ephemeroptera	Indeterminado	Fitófago y saprófito	3	Turrialba
	Alydidae	Fitófago	32	Puntarenas
	Alydidae		41	Turrialba
	Anthocoridae	Depredador	24	Puntarenas
	Antinocondae	Depredador	1	Turrialba
Heteroptera	Berytidae	Fitófago	2	Puntarenas
Петегоргега	Derylluae	Filolago	2	Turrialba
	Coreidae	Eitófago	7	Puntarenas
	Coreidae	Fitófago	6	Turrialba
	Lygaeidae	Depredador	47	Puntarenas
	Lygaeidae	y fitófago	6	Turrialba

Orden	Familia	Hábito alimenticio	Cantidad	Zona
-	Miridae	Depredador	274	Puntarenas
	wiiidae	y fitófago	135	Turrialba
	Pentatomidae	Depredador	59	Puntarenas
	1 chatomade	y fitófago	26	Turrialba
	Pyrrhocoridae	Fitófago	15	Puntarenas
	rynnocondae	Titolago	3	Turrialba
	Dh and ab second dec	Eitófago	164	Puntarenas
	Rhyparochromidae	Fitófago	40	Turrialba
	Reduviidae	Depredador	21	Puntarenas
	Reddylldae	Depredador	22	Turrialba
	Rophalidae	Fitófago	1	Puntarenas
	Schizopteridae	Fitófago	1	Turrialba
	Tingidae	Fitófago	5	Puntarenas
	Tiligidae	Titolago	2	Turrialba
	Sin identificación		2	Puntarenas
	Siri identificación		2	Turrialba
	Apidae	Polinizador	23	Puntarenas
	Bethylidae	Parasitoide	2	Puntarenas
	Braconidae	Parasitoide	132	Puntarenas
Hymonoptora	Bracoriidae	rarasiloide	86	Turrialba
Hymenoptera	Ceraphronidae	Parasitoide	1	Turrialba
	Chalcididae	Parasitoide	27	Puntarenas
	Charcididae	raiasiiulue	17	Turrialba
	Diapriidae	Parasitoide	5	Puntarenas

Orden	Familia	Hábito alimenticio	Cantidad	Zona
			16	Turrialba
	Dryinidae	Parasitoide	1	Turrialba
	Encyrtidae	Parasitoide	3	Puntarenas
			5	Turrialba
	Eucharitidae	Parasitoide	2	Puntarenas
			1	Turrialba
	Eulophidae	Parasitoide	74	Puntarenas
			78	Turrialba
	Eurytomidae	Parasitoide	3	Puntarenas
			3	Turrialba
	Evaniidae	Parasitoide	8	Puntarenas
			2	Turrialba
	Figitidae	Parasitoide	23	Puntarenas
			27	Turrialba
	Formicidae	Omnívoro	83	Puntarenas
			797	Turrialba
	Ichneumonidae	Parasitoide	6	Puntarenas
			12	Turrialba
	Mymaridae	Parasitoide	21	Puntarenas
			39	Turrialba
	Perilampidae	Parasitoide	1	Turrialba
	Platygastridae	Parasitoide	1	Puntarenas
			2	Turrialba
	Pompilidae	Parasitoide	3	Puntarenas

Orden	Familia	Hábito alimenticio	Cantidad	Zona
	Pteromalidae	Parasitoide	8	Puntarenas
	Ropronidae	Parasitoide	1	Puntarenas
	Scelionidae	Parasitoide	7	Puntarenas
	Scellorlidae	i arasitoide	14	Turrialba
	Sphecidae	Parasitoide	5	Turrialba
	Tenthredinidae	Parasitoide	1	Turrialba
	Trichogrammatidae	Parasitoide	2	Puntarenas
	rnchogrammandae	raiasiloide	1	Turrialba
	Vespidae	Depredador	6	Puntarenas
	vespidae	y fitófago	1	Turrialba
	Sin identificación		1	Puntarenas
	Sirilderitingacion		1	Turrialba
Lonidontora	Indeterminado	Eitófaga	57	Puntarenas
Lepidoptera	mdeterminado	Fitófago	50	Turrialba
Neuroptera	Hemerobiidae	Depredador	3	Turrialba
	Libelluloidea	Depredador	2	Turrialba
Odonata	Odonata	Depredador	1	Puntarenas
	Zygoptera	Depredador	1	Puntarenas
	Acrididae	Eitáfogo	181	Puntarenas
Orthontoro	Acrididae	Fitófago	118	Turrialba
Orthoptera	Gryllidae	Fitófago	1	Turrialba
	Mantodea	Depredador	2	Puntarenas
Protura	Indeterminado	Saprófito	7	Puntarenas
Psocoptera	Psocidae	Saprófito	1	Turrialba

Orden	Familia	Hábito alimenticio	Cantidad	Zona
	Indeterminado	Saprófito	1	Puntarenas
	Alovrodidao	Eitófago	15	Puntarenas
	Aleyrodidae	Fitófago	10	Turrialba
Ctown own, wooh o	A m h i di do o	=:	74	Puntarenas
Sternorrhyncha	Aphididae Fitófago	74	Turrialba	
	Coccidae	Fitófago	1	Puntarenas
	Sin identificación		1	Puntarenas
Thyganontoro	Trino	Depredador	30	Puntarenas
Thysanoptera	Trips	y fitófago	23	Turrialba
Zoraptera	Indeterminado	Saprófito	1	Turrialba
Zygentoma	Indeterminado	Saprófito	1	Turrialba
Cantidad total de ir	ndividuos		13 026	

Cuadro 7. Arvenses encontradas Puntarenas y Turrialba según Soto (2019).

Familia	Especie	Zona en la que se encontró
Aizoaceae	Trianthema portulacastrum	Puntarenas
Aniogogo	Eryngium foetidum	Turrialba
Apiaceae	Spananthe paniculata	Turrialba
Araceae	Dieffenbachia sp.	Turrialba
Araliaceae	Hydrocotyle bowlesioides	Puntarenas
	Acmella radicans	Turrialba
	Ageratum conyzoides	Turrialba
	Baltimora germinata	Turrialba
	Bidens pilosa	Turrialba
	Conyza bonariensis	Turrialba
	Crassocephalum crepidioides	Puntarenas y Turrialba
	Eclipta alba	Turrialba
	Eclipta postrata	Puntarenas
	Elvira biflora	Turrialba
Asteraceae	Emilia fosbergii	Turrialba
	Erechtites hieraciifolius	Turrialba
	Melampodium divaricatum	Puntarenas
	Mikania micrantha	Turrialba
	<i>Mikania</i> sp.	Turrialba
	Synedrella nodiflora	Turrialba
	Tridax procumbens	Puntarenas
	Vernonia cinerea	Puntarenas
	Wedelia sp.	Turrialba
	Youngia japonica	Turrialba
Begoniaceae	Begonia semiovata	Turrialba
Paraginagos	Heliotropium indicum	Puntarenas y Turrialba
Boraginaceae	Heliotropium procumbens	Puntarenas
Brassicaceae	Cardamine bonariensis	Turrialba
Campanulacaaa	Hippobroma longiflora	Turrialba
Campanulaceae	Lobelia xalapensis	Turrialba
_	Drymaria cordata	Puntarenas y Turrialba
Carvonhullagas	- · / · · · · · · · · · · · · · · · · · · ·	
Caryophyllaceae	Moehringia pentandra	Turrialba

Familia	Especie	Zona en la que se encontró
	Commelina diffusa	Turrialba
Commelinaceae	Commelina sp.	Turrialba
	Murdannia nudiflora	Turrialba
Convulvulaceae	Ipomoea alba	Turrialba
Convaivalaceae	lpomoea grandifolia	Turrialba
	Cucumis melo	Puntarenas
Cucurbitaceae	Melotria pendula	Puntarenas
	Momordica charantia	Puntarenas
	Cyperus diffusus	Turrialba
	Cyperus esculentus	Puntarenas y Turrialba
	Cyperus ferax	Turrialba
	Cyperus iria	Puntarenas
	Cyperus lazulae	Turrialba
	Cyperus odoratus	Puntarenas y Turrialba
Cyporacoao	Cyperus rotundus	Puntarenas y Turrialba
Cyperaceae	Cyperus sp.	Turrialba
	Fimbristylis annua	Turrialba
	Fimbristylis miliacea	Puntarenas y Turrialba
	Juncus dudleyi	Turrialba
	Kyllinga brevifolia	Turrialba
	Kyllinga sesquiflora	Turrialba
	Rhynchospora nervosa	Turrialba
	Acalypha alopecuroies	Puntarenas y Turrialba
	Caperonia palustris	Puntarenas
	Croton hirtus	Turrialba
	Croton lobatus	Puntarenas
Euphorbiosos	Euphorbia heterophylla	Puntarenas y Turrialba
Euphorbiaceae	Euphorbia hirta	Puntarenas y Turrialba
	Euphorbia hypericifolia	Puntarenas y Turrialba
	Euphorbia postrata	Puntarenas y Turrialba
	Hypericum gnidioides	Puntarenas
	Indigofera hirsuta	Turrialba
Cobosses	Aeschynomene sensitiva	Turrialba
Fabaceae	Centrosema sp.	Turrialba

Familia	Especie	Zona en la que se encontró
	Desmodium heterocarpon	Turrialba
	Desmodium sp.	Turrialba
	Erythrina poeppigiana	Turrialba
	Hypericum gnidioides	Turrialba
	Mimosa púdica	Puntarenas y Turrialba
	<i>Mimosa</i> sp.	Turrialba
	Pueraria phaseoloides	Turrialba
	Hyptis brevipes	Puntarenas
Lamiaceae	Hyptis suaveolens	Turrialba
	Marsypianthes chamaedrys	Turrialba
Loganiaceae	Spigelia anthelmia	Puntarenas
Lythraceae	Cuphea carthagenensis	Turrialba
	Malachra alceifolia	Puntarenas
Malvaceae	Sida rhombifolia	Puntarenas y Turrialba
	Sida sp.	Puntarenas
Molluginaceae	Mollugo verticillata	Puntarenas
Nyctaginaceae	Boerhavia erecta	Puntarenas y Turrialba
Onagragas	Ludwigia octovalvis	Turrialba
Onagraceae	<i>Ludwigia</i> sp.	Turrialba
Oxalidaceae	Oxalis barrelieri	Turrialba
Oxalidaceae	Oxalis corniculata	Turrialba
	Phyllanthus amarus	Puntarenas
Phyllonthacoso	Phyllanthus niruri	Turrialba
Phyllanthaceae	Phyllanthus sp.	Puntarenas y Turrialba
	Phyllanthus urinaria	Turrialba
Diporação	Peperomia pellucida	Puntarenas y Turrialba
Piperaceae	Piper umbellatum	Turrialba
Plantaginacoao	Mecardonia procumbens	Puntarenas
Plantaginaceae	Scoparia dulcis	Puntarenas
	Arthraxon hispidus	Puntarenas
	Chloris radiata	Turrialba
Poaceae	Coix lacryma-jobi	Turrialba
	Cynodon dactylon	Puntarenas y Turrialba
	Cynodon nlemfuensis	Turrialba

Familia	Especie	Zona en la que se encontró
	Dactyloctenium aegyptium	Puntarenas
	Digitaria sanguinalis	Puntarenas y Turrialba
	<i>Digitaria</i> sp.	Puntarenas
	Echinochloa colona	Puntarenas y Turrialba
	Echinochloa crus-galli	Puntarenas
	Eleusine indica	Puntarenas y Turrialba
	Fimbristylis annua	Turrialba
	Fimbristylis miliacea	Turrialba
	Ixophorus unisetus	Puntarenas y Turrialba
	Leptochloa filiformis	Puntarenas
	Leptochloa panicea	Puntarenas
	Leptochloa uninervia	Puntarenas
	Oplismenus burmannii	Puntarenas y Turrialba
	Oryza latifolia	Puntarenas
	Oryza sativa	Puntarenas
	Panicum capillare	Turrialba
	Panicum fasciculatum	Puntarenas
	Panicum trichoides	Puntarenas y Turrialba
	Paspalum conjugatum	Puntarenas y Turrialba
	Paspalum fasciculatum	Puntarenas y Turrialba
	Paspalum paniculatum	Puntarenas y Turrialba
	Paspalum squamulatum	Turrialba
	Poa annua	Turrialba
	Rottboellia cochinchinensis	Puntarenas y Turrialba
	Rottboellia exaltata	Puntarenas
	Saccharum officinarum	Turrialba
	Polygala dactylon	Turrialba
Polygalaceae	Polygala paniculata	Turrialba
	Polygonum persicaria	Puntarenas
Pontederiaceae	Heteranthera reniformis	Puntarenas y Turrialba
Portulacaceae	Portulaca oleracea	Turrialba
	Spermacoce hirta	Turrialba
Rubiaceae	Spermacoce alata	Puntarenas
	Spermacoce laevis	Turrialba

Familia	Especie	Zona en la que se encontró
	Spermacoce latifolia	Turrialba
Sapindaceae	Paullinia alata	Puntarenas
	Lindernia crustacea	Puntarenas y Turrialba
Caranhulariaaaa	Lindernia dubia	Puntarenas y Turrialba
Scrophulariaceae	Mecardonia procumbens	Turrialba
	Stemodia durantifolia	Puntarenas
	Browalia americana	Turrialba
Solanaceae	Physalis peruviana	Turrialba
Solanaceae	Physalis sp.	Puntarenas y Turrialba
	Solanum viarum	Turrialba
Tiliaceae	Corchorus orinocensis	Puntarenas
	Cecropia sp.	Turrialba
Lintingono	Laportea aestuans	Turrialba
Urticaceae	Phenax sonneratii	Turrialba
	Pilea hyalina	Turrialba
\/a#banaaaa	Lantana camara	Turrialba
Verbenaceae	Lantana trifolia	Turrialba
Vitaceae	Cissus verticillata	Turrialba
Zygophyllaceae	Kallstroemia maxima	Puntarenas

Cuadro 8. Insectos benéficos asociados a la caña de azúcar según Bustillo (2011).

Insecto benéfico	Orden	Familia	Plaga que controla
Acerastes sp.	Hymenoptera	Ichneumonidae	Elasmopalpus lignosellus
Achrysocharis sp.	Hymenoptera	Eulophidae	Caligo illioneus oberon
Agathis stigmateus	Hymenoptera	Braconidae	Diatraea saccharalis
Alcaerrhynchus grandis	Hemiptera	Pentatomidae	Caligo illioneus oberon
Anagrus sp.	Hymenoptera	Mymaridae	Perkinsiella saccharicida
Anicetus annulatus	Hymenoptera	Encyrtidae	Pulvinaria elongata, Saccharicoccus sacchari
Apanteles diatraeae	Hymenoptera	Braconidae	Diatraea saccharalis
Aphytis sp.	Hymenoptera	Aphelinidae	Duplachionaspis divergens
Aphaereta sp.	Hymenoptera	Braconidae	Caligo illioneus oberon
Aprostocetus sp.	Hymenoptera	Eulophidae	Perkinsiella saccharicida
Archytas marmoratus	Diptera	Tachinidae	Spodoptera frugiperda
Billaea claripalpis	Diptera	Tachinidae	Diatraea indigenella, Diatraea saccharalis
Brachymeria comitator	Hymenoptera	Chalcididae	Caligo illioneus oberon
Brachymeria orseis	Hymenoptera	Chalcididae	Caligo illioneus oberon
Calosoma sp.	Coleoptera	Carabidae	Perkinsiella saccharicida
Ceraeochrysa claveri	Neuroptera	Chrysopidae	Sipha flava
Ceraeochrysa cubana	Neuroptera	Chrysopidae	Sipha flava
Camponotus blandus	Hymenoptera	Formicidae	Aeneolamia varia
Carinodes sp.	Hymenoptera	Ichneumonidae	Elasmopalpus lignosellus
Casinaria sp.	Hymenoptera	Ichneumonidae	Spodoptera frugiperda
Chelonus insularis	Hymenoptera	Braconidae	Spodoptera frugiperda
Chelonus texanus	Hymenoptera	Braconidae	Spodoptera frugiperda

Insecto benéfico	Orden	Familia	Plaga que controla
Chrysoperla sp.	Neuroptera	Chrysopidae	Melanaphis sacchari, Perkinsiella saccharicida, Sipha flava
Cycloneda sanguinea	Coleoptera	Coccinellidae	Melanaphis sacchari, Perkinsiella saccharicida, Sipha flava, Saccharosydne saccharivora
Cleothera sp.	Coleoptera	Coccinellidae	Perkinsiella saccharicida
Coleomegilla maculata	Coleoptera	Coccinellidae	Diatraea saccharalis, Leptodictya tabida, Perkinsiella saccharicida, Saccharosydne saccharivora
Conura sp.	Hymenoptera	Chalcididae	Caligo illioneus oberon
Cotesia sp.	Hymenoptera	Braconidae	Caligo illioneus oberon
Cotesia flavipes	Hymenoptera	Braconidae	Diatraea saccharalis
Diadoplosis coccidivora	Diptera	Syrphidae	Pulvinaria elongata, Saccharicoccus sacchari
Diapetimorpha sp.	Hymenoptera	Ichneumonidae	Elasmopalpus lignosellus
Ectatomma ruidum	Hymenoptera	Formicidae	Aeneolamia varia
Eiphosoma sp.	Hymenoptera	Ichneumonidae	Spodoptera frugiperda
Encarsia sp.	Hymenoptera	Aphelinidae	Duplachionaspis divergens
Erythmelus sp.	Hymenoptera	Mymaridae	Leptodictya tabida
Euphorocera floridenses	Diptera	Tachinidae	Spodoptera frugiperda
Harmonia axyridis	Coleoptera	Coccinellidae	Perkinsiella saccharicida
Hippodamia convergens	Coleoptera	Coccinellidae	Melanaphis sacchari, Perkinsiella saccharicida,

Insecto benéfico	Orden	Familia	Plaga que controla
			Saccharosydne saccharivora
Iphiaulax rimac	Hymenoptera	Braconidae	Diatraea saccharalis
Jayneleskia jaynessi	Diptera	Tachinidae	Diatraea indigenella, Diatraea saccharalis
Lespesia affinis	Diptera	Tachinidae	Caligo illioneus oberon
Leucochrysa sp.	Neuroptera	Chrysopidae	Sipha flava
Lydella minense	Diptera	Tachinidae	Diatraea indigenella, Diatraea saccharalis
Lysiphlebus testaceipes	Hymenoptera	Braconidae	Melanaphis sacchari
Meteorus laphygmae	Hymenoptera	Braconidae	Spodoptera frugiperda
Monomorium pharainis	Hymenoptera	Formicidae	Perkinsiella saccharicida
Paratrechina sp.	Hymenoptera	Formicidae	Aeneolamia varia
Patelloa tincta	Diptera	Tachinidae	Caligo illioneus oberon
Pepsis sp.	Hymenoptera	Vespidae	Diatraea saccharalis
Pheidole sp.	Hymenoptera	Formicidae	Aeneolamia varia
Phlugis poecila	Orthoptera	Tettigoniidae	Perkinsiella saccharicida
Phlugis teres	Orthoptera	Tettigoniidae	Perkinsiella saccharicida
Phytomyptera sp.	Diptera	Tachinidae	Blastobasis graminea
Podissus nigrispinus	Hemiptera	Pentatomidae	Caligo illioneus oberon
Polistes sp.	Hymenoptera	Vespidae	Diatraea saccharalis, Spodoptera frugiperda
Polybia sp.	Hymenoptera	Vespidae	Caligo illioneus oberon
Pseudogonatopus morenoi	Hymenoptera	Dryinidae	Perkinsiella saccharicida
Repipta taurus	Hemiptera	Reduviidae	Perkinsiella saccharicida
Solenopsis sp.	Hymenoptera	Formicidae	Aeneolamia varia

Insecto benéfico	Orden	Familia	Plaga que controla
Salpingogaster nigra	Diptera	Syrphidae	Aeneolamia flavilatera, Aeneolamia lepidior, Aeneolamia reducta, Aeneolamia varia, Mahanarva andigena, Mahanarva bipars, Prosapia simulans, Zulia carbonaria
Sarcodexia innota	Diptera	Sarcophagidae	Rhynchophotus palmarum
Scymnus sp.	Coleoptera	Coccinellidae	Duplachionaspis divergens, Perkinsiella saccharicida, Saccharosydne saccharivora, Sipha flava
Spilochalcis femorat	Hymenoptera	Chalcididae	Caligo illioneus oberon
Spilochalcis fulvomaculata	Hymenoptera	Chalcididae	Caligo illioneus oberon
Spilochalcis nigrifrons	Hymenoptera	Chalcididae	Caligo illioneus oberon
Spilochalcis sp.	Hymenoptera	Chalcididae	Caligo illioneus oberon
Telenomus alecto	Hymenoptera	Scelionidae	Diatraea indigenella, Diatraea saccharalis
Telenomus remus	Hymenoptera	Scelionidae	Spodoptera frugiperda
Telenomus sp.	Hymenoptera	Scelionidae	Spodoptera frugiperda, Caligo illioneus oberon
Tetrastichus hagemowii	Hymenoptera	Eulophidae	Rhynchophotus palmarum
Theronia (Neotheronia)	Hymenoptera	Ichneumonidae	Caligo illioneus oberon
Trichograma pretiosum	Hymenoptera	Trichogrammatidae	Caligo illioneus oberon
Trichogramma atopovirilia	Hymenoptera	Trichogrammatidae	Spodoptera frugiperda

Insecto benéfico	Orden	Familia	Plaga que controla
Trichogramma exiguum	Hymenoptera	Trichogrammatidae	Diatraea indigenella, Diatraea saccharalis, Spodoptera frugiperda
<i>Wasmannia</i> sp.	Hymenoptera	Formicidae	Aeneolamia varia
Winthemia sp.	Diptera	Tachinidae	Spodoptera frugiperda, Caligo illioneus oberon
Xanthozona melanopyga	Diptera	Tachinidae	Caligo illioneus oberon
Zelus errans	Hemiptera	Reduviidae	Perkinsiella saccharicida
Zelus rubidus	Hemiptera	Reduviidae	Perkinsiella saccharicida

Cuadro 9. Plagas actuales y plagas potenciales de la caña de azúcar en Costa Rica según Salazar et al. (2016).

Orden	Familia	Especie	Nombre común
	Crambidae	Diatraea guatemalella Diatraea tabernella Diatraea saccharalis	Barrenador común del tallo
		Eoreuma loftini	Barrenador mexicano
Lepidoptera	Castniidae	Telchin atymnius futilis Telchin atymnius drucei	Barrenador gigante
	Pyralidae	Elasmopalpus lignosellus	Barrenador coralillo
	Noctuidae	Mocis latipes	Falso medidor
	Noctuldae	Spodoptera frugiperda	Cogollero
	Coleophoridae	Blastobasis graminea	Barrenador menor
	Crambidae	Eoreuma loftini	Barrenador mexicano
	Scarabaeidae	Phyllophaga elenans Phyllophaga menetries Anomala spp. Cyclocephala spp.	Joboto, Gallina ciega
Coleoptera		Tomarus bituberculatus	Escarabajo
00.00p.o.u		Euetheola humilis rugiceps	Escarabajo de la caña
	Curculionidae	Metamasius hemipterus Metamasius dimidiatipennis Apinocis saccharidis	Picudo de la caña Gorgojo de la caña
Hemiptera	Tingidae	Leptodictya tabida	Chinche de encaje
, , , ,	Pseudococcidae	Saccharicoccus sacchari	Cochinilla harinosa
	Ortheziidae	Insignorthezia insignis	Escama acanalada
	Aclerdidae	Aclerda sacchari	Escama
	Diaspididae	Dupalchionaspis divergens Rhopalosiphum maidis	Escama blanca
Homóptero	Afididae	Melanaphis sacchari Sipha flava	Áfidos, pulgones
	Delphacidae	Saccharosydne saccharivora Perkinsiella saccharicida	Cigarrita antillana Saltahojas hawaiano
	Cercopidae	Aeneolamia spp. Prosapia spp.	Baba culebra, salivazo

Orden	Familia	Especie	Nombre común
		Zulia vilior	
	Cicadidae	Proarna invaria	Chicharra
Isoptera	Rhinotermitidae	Heterotermes sp.	Comején
Orthoptera	Acrididae	Shistocerca sp.	Langosta voladora
Acari	Eriophydae	Abacarus doctus	Acaro de la herrumbre de la caña de azúcar

Cuadro 10. Plantas arvenses y su asociación son insectos benéficos.

Arvense	Insecto benéfico	Familia	Fuente
Amaranthus dubius	Coleomegilla cubensis Casey	Coccinellidae	Blanco y Leyva 2013
Mart. ex Thell.	Cycloneda sanguinea Limbifer	Coccinellidae	bianco y Leyva 2013
Bidens pilosa	Orius pumilio (Champion)	Anthocoridae	Alonso et al. 2019
Borreria laevis	Cotesia sp.	Braconidae	Aldaba <i>et al</i> . 1997
	Rogas sp.	Braconidae	
Commelina diffusa	Exomalopsis pulchella Cresson	Apidae	
	Apis melifera L.	Apidae	
	Apis melifera L.	Apidae	
	Coccinella maculata	-	
	Brachymeria flavipes (Fab.)	-	
	Brachymeria ovata (Say)	-	Alonso <i>et al.</i> 2019
Cunhoa hugaanifalia	Brachymeria incerta (Cresson)	Chalcididae	Alonso et al. 2013
Cuphea hyssopifolia	Brachymeria hammari (Cresson)	-	
	Conura feromata (Fabricius)	-	
	Conura sp.		
	Exomalopsis pulchella Cresson	Apidae	
Cassia reticulata	Conura inmaculata	Chalcididae	
Cassia tora	Cotesia sp.	Braconidae	
Cacola tora	Telenomus sp.	Scelionidae	
	Cotesia sp.	Braconidae	Aldaba <i>et al.</i> 1997
	Formicia clathrata	Braconidae	
Croton trinitatis	Cassinaria sp.	Ichneomoniae	
	Brachymeria sp. Spilochalcis sp.	Chalcididae Chalcididae	

Arvense	Insecto benéfico	Familia	Fuente
	Conura inmaculata	Chalcididae	
<i>Digitaria</i> sp.	Trichograma pretiosum	Chalcididae	Morales et al. 2007
Hyptis atrorubens	Rhysipolis spp.	Braconidae	
Hyptis capitata	Brachymeria sp.	Chalcididae	Aldaba et al. 1997
τιγριίο σαρπατά	Telenomus sp.	Scelionidae	
	Bachyacantha decora Casey	-	
	Chilocorus cacti L.	-	
	Coccinella maculata (De Geer)	-	
	Cycloneda sanguinea limbifer Casey	-	
	Diomus ochroderus (Mulsant)	-	
	Diomus roseicollis (Mulsant)	-	
	Psyllobora sp.	-	
	Scymnus distinctus Casey	Coccinellidae	
	Apanteles sp.	Braconidae	
Parthenium hysterophorus	Lasioglossum sp.	-	Alonso et al. 2019
пувилорпогав	Campsomeris trifasciata (Fab.)	Scoliidae	
	Zanysson armatus (Cresson)	Sphecidae	
	Pachodynerus nasidens (Latreille)	Vespidae	
	Apis melifera L.	Apidae	
	Brachymeria flavipes (Fab.)	-	
	Brachymeria ovata (Say)	-	
	Brachymeria incerta (Cresson)	Chalcididae	
	Conura feromata (Fabricius)	-	
	Conura sp.	-	

Arvense	Insecto benéfico	Familia	Fuente
	Brachymeria hammari (Cresson)	-	
	Coleomegilla cubensis Casey	Coccinellidae	
	Cycloneda sanguinea Limbifer	Coccinellidae	
Parthenium	Orius insidiosus Say	Anthocoridae	
hysterophorus	Zelus longipes (L.)	Reduviidae	Blanco y Leyva 2013
	Coleomegilla cubensis Casey	Coccinellidae	
	<i>Cycloneda sanguinea</i> Limbifer	Coccinellidae	
	Chysoperla sp.	Chrysopidae	
	Rhysipolis sp.	Braconidae	
Sida rhombifolia	Cotesia sp.	Braconidae	Aldaba et al. 1997
	Spilochalcis sp.	Chalcididae	
	Zelus longipes L.	Reduviidae	
	Calosoma sp.	Carabidae	Blanco y Leyva 2009
	Doru sp.	Forficullidae	
Sorghum halepense	Coleomegilla cubensis Casey	Coccinellidae	
(L.)	Orius insidiosus Say	Anthocoridae	Diamas villaviva 2012
	Cycloneda sanguinea Limbifer	Coccinellidae	Blanco y Leyva 2013
	Zelus longipes (L.)	Reduviidae	
	Eretmocerus sp.	Chalcididae	
700 mays	Trichogramma sp.	Chalcididae	Blanco y Leyva 2009
Zea mays	Eretmocerus sp.	Chalcididae	

Fuente: Elaboración propia.

Cuadro 11. Métodos de control que ofrece LAICA para el manejo de poblaciones de plaga en el cultivo de caña de azúcar según Salazar *et al.* (2016).

Método de control Plaga Labranza Tolerancia Prácticas Biológico Químico Trampas Físico Feromonas varietal culturales de suelo Ácaros Χ Χ Áfidos Χ Χ Χ Barrenador Χ Χ común Barrenador Χ coralillo Barrenador Χ Χ Χ gigante Chicharra Χ Χ Χ Chinche de Χ Χ Χ encaje Cigarrita Χ Χ antillana Cogollero Χ Χ Χ Χ Χ Comején Χ Χ Χ Escama Χ Χ Χ Escarabajo Escarabajo Χ Χ de la caña Falso Χ Χ medidor **Jobotos** Χ Χ Χ Χ Χ Χ **Picudos** Χ Χ Χ Salivazo Χ Χ Χ Χ Χ Χ Χ Saltamontes Χ Χ

Cuadro 12. Lista de especies de arvenses identificadas en las fincas Porvenir y San Pedro, Pérez Zeledón entre febrero y noviembre del 2021.

Familia	Nombre científico	Fin	са
Tummu	Nombre denance	San Pedro	Porvenir
Acanthaceae	Blechum pyramidatum	X	
Amaranthaceae	Cyathula prostrata	X	
	Caladium bicolor	X	
Araceae	Monstera sp.	X	
	Xanthosoma sp.	X	
Asparagaceae	Dracaena trifasciata		Χ
	Ageratum conyzoides	Χ	Χ
	Bidens pilosa		Χ
	Chromolaena odorata	Χ	
	Conyza apurensis	Χ	
	Conyza sp.	Χ	
	Crassocephalum crepidioides		X
Asteraceae	Elephantopus mollis	Χ	
	Emilia fosbergii	X	Х
	Emilia sonchifolia	Χ	Х
	Hyptis capitata		X
	Isocarpha oppositifolia		Х
	Melanthera nivea	Χ	
	Spermacoce latifolia		X
	Sphagneticola trilobata		Х

Familia	Nombre científico	Fin	ca	
ramma	Nombre cientifico	San Pedro	Porvenir	
Commolinace	Commelina diffusa	Х	Х	
Commelinaceae	Commelina erecta	Χ	Χ	
Convolvulaceae	lpomoea nil	Χ		
Cucumbitacea	Cayaponia racemosa		Х	
Cucurbitaceae	Momordica charantia	Х		
	Cyperus laxus	Х		
Cyperaceae	Cyperus sp.	Х	Х	
	Kyllinga brevifolia		Х	
	Acalypha arvensis	Χ		
Euphorbiaceae	Croton smithianus		Х	
	Croton trinitatis	Х	Х	
	Phyllanthus urinaria		Х	
	Chamaecrista sp.		Х	
	Desmodium abscends	Χ	Χ	
Горогоо	Desmodium tortuosum	Χ	Χ	
Fabaceae	Xylopia annonaceae		Χ	
	Pueraria montana		Χ	
	Zornia reticulata		Χ	
Gesneriaceae	Chrysothemis	X		
Gestienaceae	friedrichsthaliana	^		
	Hyptis brevipes		Χ	
Lamiaceae	Hyptis capitata	Χ	Χ	
	Marsypianthes chamaedrys	Χ	Χ	
Malvaceae	Sida rhombifolia		Χ	

Familia	Nombre científico	Fin	са	
i aiiiiia	Nombre cientineo	San Pedro	Porvenir	
	Sida sp.		Х	
Marantaceae	Calathea crotalifera	Χ		
iviarantaceae	Calathea sp.		Χ	
	Clidemia hirta	Χ		
Melastomataceae	Mitracarpus hirtus	Χ		
	Tibouchina urvilleana	Χ		
Oxalidaceae	Oxalis barrelieri	Χ	Χ	
Piperaceae	Piper umbellatum		X	
	Brachiaria radicans	Χ		
	Digitaria decumbens		X	
	Digitaria pentzii		X	
	Digitaria sanguinalis	Χ	X	
	Digitaria sp.	Х	X	
	Eriochloa mollis	Х		
	Homolepsis aturensis	Х		
Dagasa	Panicum laxum	Χ	Х	
Poaceae	Paspalum conjugatum	Χ	Х	
	Paspalum dilatatum	Х		
	Paspalum nutans	Χ	X	
	Paspalum paniculatum	Χ	X	
	Paspalum sp.	Χ	X	
	Paspalum virgatum	Χ	Х	
	Rhynchelytrum repens	Χ		
	Rottboellia cochinchinensis	Х		

Nombre científico	Finca			
Nombre clemanco	San Pedro	Porvenir		
Setaria parviflora		Х		
Gouania lupuloides	Χ	Χ		
Hemidiodia ocymifolia	Χ	Χ		
Mitracarpus hirtus		X		
Oldenlandia corymbosa		X		
Richardia scabra	Χ	Χ		
Spermacoce latifolia	Χ	Χ		
Scoparia dulcis	Χ	Χ		
Solanum americanum		Χ		
Solanum torvum	Χ			
	Gouania lupuloides Hemidiodia ocymifolia Mitracarpus hirtus Oldenlandia corymbosa Richardia scabra Spermacoce latifolia Scoparia dulcis Solanum americanum	Nombre científico Setaria parviflora Gouania lupuloides X Hemidiodia ocymifolia X Mitracarpus hirtus Oldenlandia corymbosa Richardia scabra X Spermacoce latifolia X Scoparia dulcis X Solanum americanum		

Fuente: Elaboración propia.

Cuadro 13. Lista de familias de insectos identificadas en las fincas Porvenir y San Pedro, Pérez Zeledón entre febrero y noviembre del 2021.

Orden	Familia	Hábito	Número de individuos	
Ordon	i diiiiid	Tidolo	Porvenir	San Pedro
Arachnida	Indeterminada	Depredador	47	24
Blattodea	Blatellidae	Saprófito	1	-
	Chrysomelidae	Fitófago y saprófito	7	5
	Meloidae	Fitófago	1	-
Coleoptera	Anthicidae	Omnívoro	-	1
	Bruchidae	Fitófago	1	1
	Buprestidae	Fitófago	1	-

Orden	Familia	Hábito		Número de	individuos
Orden	i anima	Tidollo	_	Porvenir	San Pedro
	Cantharidae	Fitófago		3	12
	Carabidae	Depredador parasitoide	у	1	-
	Chrysomelidae	Fitófago saprófito	у	35	48
	Cleridae	Depredador		-	1
	Coccinellidae	Depredador		8	10
	Cucujidae	Depredador saprófito	у	-	1
	Curculionidae	Fitófago saprófito	у	2	19
	Indeterminada	Indeterminado		1	-
	Mordellidae	Depredador, saprófito fitófago	у	1	3
	Silvanidae	Saprófito		-	1
	Staphylinidae	Saprófito		2	-
	Agromyzidae	Fitófago		-	3
	Bibionidae	Saprófito		2	-
Diptera	Cecidomyiidae	Depredador, parasitoide, saprófito fitófago	у	66	115
	Ceratopogonidae	Parasitoide, depredador hematófago	у	76	163

Orden	Familia	Hábito		Número de	individuos
Orden	i aiiiiia	Habito	_	Porvenir	San Pedro
	Chironomidae	Depredador y saprófito	У	20	11
	Chloropidae	Depredador, parasitoide, saprófito y fitófago	у	156	186
	Culicidae	Depredador y saprófito	y	1	-
	Dolichopodidae	Depredador		35	18
	Drosophilidae	Depredador, saprófito y fitófago	y	3	7
	Empididae	Depredador		9	1
	Ephydridae	Depredador, parasitoide, saprófito y fitófago	у	14	8
	Indeterminada	Indeterminado		1	8
	Lauxaniidae	Saprófito		4	3
	Micropezidae	Saprófito		-	1
	Mycetophilidae	Saprófito		1	3
	Periscelididae	Fitófago y saprófito	y	2	3
	Phoridae	Depredador, parasitoide,		13	22

Orden	Familia Hábito	Háhito		Número de individuos	
		павію		Porvenir	San Pedro
		saprófito fitófago	У		
	Psychodidae	Saprófito hematófago	у	1	6
	Richardidae	Saprófito		1	2
	Scatopsidae	Saprófito		-	1
	Sciaridae	Saprófito		29	73
	Simuliidae	Saprófito hematófago	у	2	1
	Sphaeroceridae	Saprófito		19	16
	Syrphidae	Polinizador		2	2
	Tephritidae	Fitófago		-	1
	Tipulidae	Depredador fitófago	у	2	15
	Delphacidae	Fitófago		1	-
	Membracidae	Fitófago		2	-
	Miridae	Fitófago		2	1
	Aetalionidae	Fitófago		1	-
	Alydidae	Fitófago		3	3
Hemiptera	Anthocoridae	Depredador		1	1
	Aphididae	Fitófago		4	-
	Aradidae	Fitófago		1	-
	Berytidae	Fitófago		-	1
	Cercopidae	Fitófago		5	18
	Cercopidae	Fitófago		2	-

Orden	Familia	Hábito		Número de individuos	
		парію		Porvenir	San Pedro
	Cicadellidae	Fitófago		315	254
	Cicadellidae	Fitófago		-	1
	Coreidae	Fitófago		2	1
	Curculionidae	Fitófago saprófito	у	-	1
	Delphacidae	Fitófago		10	12
	Dyctiopharidae	Fitófago		-	3
	Indeterminada	Fitófago		82	26
	Lygaeidae	Depredador fitófago	у	9	6
	Membracidae	Fitófago		13	17
	Miridae	Fitófago		46	38
	Pentatomidae	Fitófago		16	12
	Reduviidae	Depredador		3	8
Hymenoptera	Braconidae	Parasitoide		3	3
	Apidae	Polinizador		5	1
	Braconidae	Parasitoide		19	29
	Chalcididae	Parasitoide		4	6
	Diapriidae	Parasitoide		2	7
	Dryinidae	Parasitoide		1	
	Encyrtidae	Parasitoide		3	
	Eulophidae	Parasitoide		9	9
	Eurytomidae	Parasitoide		3	
	Figitidae	Parasitoide		3	15

Orden	Familia	Hábito	Número de individuos	
		Habito	Porvenir	San Pedro
	Formicidae	Omnívoro	28	25
	Halictidae	Polinizador	3	1
	Ichneumonidae	Parasitoide	3	2
	Indeterminada	Indeterminado		1
	Mymaridae	Parasitoide	11	6
	Perilampidae	Parasitoide		1
	Pompilidae	Depredador, parasitoide	2	1
	Pteromalidae	Parasitoide	11	16
	Scelionidae	Parasitoide	23	13
	Torymidae	Parasitoide		1
	Vespidae	Depredador y fitófago	1	
Lepidoptera	Indeterminada	Fitófago	13	11
	Acrididae	Fitófago	1	4
	Gryllidae	Fitófago	33	26
Orthoptera	Indeterminada	Fitófago	7	10
	Tetrigidae	Fitófago	1	2
	Tettigoniidae	Fitófago	4	
Psocoptera	Indeterminada	Fitófago y saprófito		1
Trichoptera	Indeterminada	Saprófito		2
Trysanoptera	Indeterminada	Depredador, saprófito y fitófago		2
		morago		

Orden	Familia	Hábito	Número de individuos	
			Porvenir	San Pedro
Indeterminado	Indeterminada	Indeterminado	24	55
Total			999	1054

Fuente: elaboración propia