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Abstract

This thesis addresses the challenge of verifying familial relationships through facial
features, which is often complicated by age-related variations. Traditional kinship
verification models struggle to account for these changes, resulting in decreased
accuracy. Accurate kinship verification is crucial for various applications, including
forensic investigations, family reunion efforts, and social media analysis to mention
some implementations of kinship verification. However, traditional kinship
verification models struggle to account for these changes, resulting in decreased
accuracy. To tackle this, the objective was to enhance kinship verification by
integrating age transformation techniques into a deep learning model. The
proposed solution involved applying the LATS (Learnable Age Transformation
Synthesis) algorithm to transform images into different age ranges, making familial
traits more recognizable. A deep learning model using a Siamese network
architecture was trained on the Families in the Wild (FIW) dataset, with age
transformations applied at 5, 15, and 30 years to address the model’s ability to
identify kinship relationships of mother, father and children. The model was
evaluated using accuracy, Fl-score, and Mean Squared Error (MSE) across different
transformation scenarios. The results showed an overall accuracy of 87 %, with the
best performance in father-children relationships at a 5-year transformation and in
mother-children relationships at a 15-year transformation, demonstrating the

model’s effectiveness in capturing age-specific familial traits.
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Chapter 1

Introduction




The ability to verify kinship relationships through facial features has significant
implications in various fields, such as forensics, social media analysis, and family
reunification efforts. Despite the advancements in facial recognition technology, it
remains a challenging problem, primarily due to the variations in facial features
caused by aging. When families are separated due to wars, natural disasters, or
adoption, accurately identifying familial relationships can play a crucial role in
reuniting individuals with their loved ones. This research addresses the critical
challenge of how age-related transformations affect the reliability of kinship
verification systems, especially when comparing parents with their younger
children. The complexity of facial changes over time, combined with factors such as
genetics and environmental influences, makes this task even more complicated.

Different studies have highlighted that traditional kinship verification models
often fail to consider the dynamic nature of facial aging, leading to inaccuracies in
identifying kin relationships. According to [1], facial features can change significantly
over time, resulting in decreased performance when algorithms attempt to match
family members across different age ranges. This limitation emphasizes the necessity
for developing advanced models that can adapt to age variations. Hence, there’s a
clear need to address how these age-related changes influence kinship verification to
enhance the reliability of these systems.

The main objective of this thesis is to enhance kinship verification by integrating
age transformation techniques with deep learning models, aiming to capture familial
characteristics across different age ranges more effectively. This integration aims to

capture familial face features across different age ranges, making kinship verification



more robust and reliable. The proposed approach seeks to transform facial images
into three specific age ranges—>5, 15, and 30 years—based on medical evidence that
suggests similarities in facial features between parents and children become more
apparent when both are within the same age range. By addressing this age gap, the
model will be able to identify familial relationships more accurately.

The proposed solution involves using the LATS (Learnable Age Transformation
Synthesis) algorithm to transform facial images, thereby capturing more
recognizable familial facial features across different age ranges. This
transformation, combined with a deep learning architecture based on a Siamese
network, enables the model to handle variations in facial features due to aging. To
optimize the model’s performance, the is employed to fine-tune hyperparameters,
ensuring the most effective configuration for each scenario.

The validation process involves testing on the Families in the Wild (FIW) dataset,
one of the largest publicly available datasets for kinship verification. The model’s
effectiveness is evaluated using metrics such as accuracy, F1-score, and Mean Squared
Error (MSE), providing a comprehensive analysis of its performance.

The contributions of this thesis are as follows:

= Integration of Age Transformation Techniques: This work incorporates
age transformation techniques into kinship verification, providing a new

approach to addressing age-related variations in facial features.

= Optimization through Hyperparameter Tuning: The use of ensures that

the model is optimized for performance.



= Validation through Case Studies: By applying the model to age
transformation scenarios, the research demonstrates the practical utility of
age transformation techniques in kinship verification, offering valuable

insights for future applications.

= Improved Accuracy in Kinship Verification: The proposed model
demonstrates its effectiveness in handling age-related variations in familial
facial features, achieving high accuracy in kinship verification across different

age ranges.

In summary, this thesis aims to contribute to the field of kinship verification by
offering an approach that integrates age transformation techniques with deep learning

and also offers more insides for future research in the kinship verification area.



1.1. Problem

1.1. Problem

is the process of determining familial relationships based on facial features. It
plays a crucial role in various applications such as family reunification, forensic
investigations, and understanding social connections. However, recognizing kinship
through facial features presents unique challenges that are not typically
encountered in general face recognition tasks. One of the main challenges is the age
gap between family members, as facial features naturally change over time due to
aging. This means that the facial resemblance between parents and their children
may become less obvious as the years pass, making it harder to identify the kinship
relation. Additionally, variations in facial expressions, lighting conditions, and even
lifestyle factors can further complicate the verification process, requiring more
sophisticated techniques to accurately capture and analyze these familial traits.
Therefore, addressing these challenges is essential to improving the accuracy and
reliability of kinship verification systems, particularly in situations where accurate
identification can have significant personal or societal impacts.

According to Wang, Ding, and Fu, Yun (2019) the generational is a big
challenge due to differences in changes corresponding to facial features affected by
time. Traditional algorithms failed to take into consideration these age-related
transformations on face features, as a result the accuracy decreased when
comparing older parents with young children|2|. Research has shown that changes
in age impacts directly the reliability of the , one example of age gap is that siblings
tend to share more similar facial features compared to their parents where face

features are different due to age differences and accuracy is higher for sibling pairs



1.1. Problem

than for parent-child pairs due to the features in faces that changes with time|3].
Cross-generation feature learning is a process in the area that leverages interaction
between features from different generations to better understand kinship. The main
challenge with this technique is that it requires large and diverse datasets, which in
the kin image processing area is a top issue due to the lack of big datasets made of
real families[4].

Integrate age transformation into the verification process is another technique to
address the issue. By transforming images into ages between 15 and 19 where all
family member will have same features gives the model the ability to recognize
kinship cross different ages but, it represents a computational challenge due to the
time in processing the images|1].

The problem relies on build a robust and accurate model that accounts for age gap
between family members and also that address the computational challenge. This
work concentrates in use of image processing techniques to transform families
photos to a certain age (it is proposed to convert them to 5, 15 and 30) and also
combine model tuning methodologies such as to improve the metrics of the
algorithm. The hypothesis aims to improve the metrics of the algorithm compared
with the conventional image analysis model by combining the mentioned
techniques.// In summary, involves determining familial relationships based on
facial features, but it faces challenges such as age gaps between family members.
Research indicates that traditional algorithms often fail to account for age-related
changes in facial features, leading to reduced accuracy, particularly when

comparing older parents with young children. Sibling pairs typically have higher



1.2. Document Structure

verification accuracy due to their more similar facial features. Cross-generation
feature learning and age transformation techniques have been proposed to address
these issues. However, these methods require large datasets and present
computational challenges.  This work focuses on using image processing to
transform family photos to certain ages and applying model tuning methodologies
to enhance the accuracy of kinship verification algorithms. The goal is to improve
the algorithm’s performance compared to conventional models by integrating these

advanced techniques.

1.2. Document Structure

This document aims to present the research and findings on kinship verification
using age transformation techniques and deep learning models. Each section is
structured to provide a clear understanding of the study, from the foundational
concepts to the final conclusions.

The Theoretical Framework chapter introduces the key theoretical concepts that
are necessary to understand this research. It also provides an overview of the related
work, showcasing the existing approaches and methods that have been developed in
this field.

In the Hypothesis and Objectives chapter shows the main hypothesis of this
research, along with a clear description of the objectives and what this work aims to
deliver. This section also outlines the scope of the study.

The Methodology chapter highlights the experimental setup, explaining the



1.2. Document Structure

design of the experiment using a test case design methodology. This section gives a
detailed look into the process behind the research.

Next, the Design chapter provides insight into how the implementation was
carried out. It discusses the technical aspects of the work, including the design
choices and how everything was put together.

The Results chapter presents the outcomes of the experiments, showing the data
collected during the study. The Discussion chapter then dives into analyzing these
results, helping to make sense of what they mean and how they contribute to the
overall research.

Finally, Conclusions and Future Work wraps up the document with the
conclusions from the research, highlighting the main findings. It also includes

suggestions for future work.



Chapter 2

Theoretical Framework




2.1. Kinship Verification

This section explores key concepts such as , identification, and classification,
which are essential for analyzing relationships between individuals. It also dives into
the concepts of facial vectors, architectures, ReLU activation functions, and Multi-
Layer Perceptrons (MLPs). The aim of this section is to provide a comprehensive

understanding of how these components interact and function within a model.

2.1. Kinship Verification

The objective behind is to identify whether two persons have a kin relationship|5]
where a DNA analysis is the most effective way to accomplish this process but,
sometimes is not applicable (like looking for missing people) and also it comes with
a cost.

Human face is important and part of [6], that is one of the reasons why this area
has become popular in the image analysis using computational models, making facial
analysis a valuable alternative for [6]. The human face carries a wealth of information
that reflects genetic traits, making it possible to identify familial connections based
on facial similarities. This has led to increased interest in using computational models

and image analysis techniques to study kinship relationships.

2.2. Kinship Identification

Kinship identification is the process of determining the specific type of kinship
relationship between two individuals|7|. Unlike general kinship verification, which

only establishes whether a familial connection exists, kinship identification goes a

10



2.3. Kinship Classification

step further by specifying the exact relationship, such as mother-son,
mother-daughter, or sibling connections. This task is more complex because it
requires the model to distinguish between various familial ties, which may have
subtle differences in facial features. The ability to accurately identify the type of
kinship is crucial for applications that require detailed family mapping, such as
genealogical studies, family reunification efforts, and personalized social media
experiences. For instance, recognizing whether an image shows a mother-son or a
mother-daughter relationship involves detecting nuanced differences in facial
structures, expressions, and other inherited traits that are characteristic of these
specific relationships. By focusing on identifying these particular connections,
kinship identification helps provide a more comprehensive understanding of how

family traits are passed down through generations.

2.3. Kinship Classification

Kinship classification aims to identify the specific family to which an individual
belongs. Unlike kinship verification and identification, which focus on determining
familial relationships between pairs of individuals, kinship classification deals with
assigning a person to a particular family group|7|. This process involves analyzing
facial features and patterns that are shared among family members, allowing the
model to classify individuals into their corresponding family. This area of research is
particularly useful in cases such as finding the families of missing children or reuniting

individuals with their biological families after being separated due to adoption. For

11



2.4. Siamese Network

instance, in situations where children have been displaced or separated from their
families, kinship classification can help match them to their relatives by comparing

their facial features with those of potential family members.

2.4. Siamese Network

To compare two inputs and determine their similarity, Siamese networks are the
right type of neural network architecture where a Siamese Network has two identical
subnetworks that share the same weights and parameters. The idea behind this
design is that each subnetwork processes one of the input images to produce an output
vector; then, the two vectors are compared using a distance metric to determine the
similarity between the two inputs.

The Siamese networks learn discriminative feature space by implementing a
contrastive loss function during training. The Contrastive loss function will
minimize the distance between embeddings of similar pairs and maximize the
distance between embeddings of dissimilar pairs. Due to this feature, Siamese
networks are ideal for managing a verification task where the main objective is to
determine if the two inputs are from the same class. The idea of Siamese networks
was introduced in 1994 by Bromley et al. in their seminal paper[8].

The initial use of Siamese networks was applied to signature verification, but
later it was used in numerous applications in diverse fields of pattern recognition like
where it proves to be a powerful tool due to its capacity to capture features that

indicate kin relationships|7].

12



2.5. ResNet (Residual Network)

The versatility of the Siamese networks allows them to meet specific needs of
different applications, which makes them a valuable tool in the machine learning area.
For example, the study by Lu et al. (2017) is a good example of deep learning metric
for due to the capacity of Siamese networks to learn meaningful and discriminative
features. This is achieved by mapping the facial images of related individuals closer

together in the feature space, improving the accuracy while verifying kinship[9].

2.5. ResNet (Residual Network)

Residual Networks is a deep neural network architecture that manages the
training process of deep networks, it works with residual connections that allow the
network to learn residual functions instead of approximating the underlying
mapping.

That means that, instead of trying directly to learn from the function H(x)
where it is the desired output of a layer, residual connections learn from the
difference between H(x) and x, expressed as F(x)=H(x)-x. Then the output of a
layer becomes the sum of the original input x and the residual function F(x),
returning H(x)=F(x)+x.

ResNet50 is a variant of ResNet architecture consisting of 50 layers. Two of its
main features are the balance between model complexity and computational cost.
Also, the ResNet50 is a popular choice for different computer tasks like image
classification, object detection, and feature extraction.

The ResNet concept is introduced by the authors in their seminal paper, where

13



2.6. Triplet Loss Function

they demonstrate the effectiveness in image recognition task[10].

2.6. Triplet Loss Function

Triplet loss is a loss function commonly used in Siamese neural networks for
learning embeddings where it learns a feature space where the distance between
embeddings of similar instances is minimized, while the distance between embeddings

of dissimilar instances is maximized|1].

Function is triplet loss = max(0, d(a, p) — d(a,n) + «) where:

d(a,p) is the distance between the anchor a and the positive example p in the feature space,
d(a,n) is the distance between the anchor a and the negative example n in the feature space, and
« is a positive margin to ensure effective learning without trivial solutions.

The function max(0,z) is known as the hinge loss function.

It ensures penalization only occurs when d(a,n) is less than d(a,p) + a.

For facial , triplet loss helps in effectively discriminating between kin and non-kin
faces. Abbas and Shoaib[1] utilized age transformation and along with triplet loss

for .

14



2.7. Hyperparameter Tuning

2.7. Hyperparameter Tuning

Hyperparameters are parameters applied to the learning process of the machine
learning models, being external to the model where these cannot change during the
learning process but are used during learning.These parameters are set before the
training, playing a crucial role in controlling the behavior of the algorithm and the
structure of the model[10].

They can be categorized into two main types: model and algorithm. Model
hyperparameters set the architecture of the model, such as the number of layers in a
neural network, the number of units per layer, and the activation function that will
be used. Algorithm hyperparameters work directly with the learning process. Some
examples are the learning rate, batch size, the number of epochs, and optimization
techniques. The use of these parameters will help to improve the performance of the
model since they can affect the ability of learning[11].

The main objective of hyperparameters is to find the best combination that
maximizes the model’s performance on a validation set. Some techniques for
hyperparameter tuning include grid search, random search, and evolutionary
algorithms. Effective tuning can lead to improvements in the model accuracy,

robustness, and efficiency][7].

2.8. Keras Tuner

Keras Tuner is a library designed to implement easily the process of used in

machine learning models where the hyperparameters play a crucial role in controlling

15



2.9. Available datasets

the behavior of the algorithm and the structure of the model[10]. They aim to find
the best combination of hyperparameters to optimize the performance of the machine
learning process. One of the main features of Keras Tuner is that it can be easily
integrated with the Keras models. The idea is that users can define their models in
Keras and implement Keras Tuner to explore different hyperparameter combinations.

The integration between Keras models and the Keras Hyperparameters allows
a smooth workflow where users can focus on the model while Keras Tuner takes
ownership of the hyperparameter management.

Multiple search algorithms are supported, like Random Search, Bayesian
optimization, and Hyperband. This work focuses on Random Search, which is a
simple and effective method that explores the hyperparameter space by selecting

different combinations|12].

2.9. Available datasets

When studying , different datasets are available for research proposes. FEach
dataset offers unique features and challenges. This section provides a brief overview
of the modes commonly used datasets in literature where it is highlighted their
characteristics. It is important to understand the datasets for better understanding

of available data and shape the development of future models.
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2.9.1. Cornell Kin Face

It is the first database created for , it was created by Fang, Tang, Snavely, and
Chen [13] from the University of Cornell. The database has 150 pains of a total of
300 images with variations in demographic attributes. The database contains pairs
of relations like father and son in 40%, father and daughter 13%, mother and son
and mother and daughter in a 26%. One big issue this database contains is the poor
amount of images to train the models. The size of the images is 100px x 100px, and

all images are in a .jpeg format.

2.9.2. UB KinFace

This database was proposed by Shao, Xia, and Fu[l4] and contains a total of
600 images. The images belong to 200 families, which have images of a child, a
young parent, and an old parent. It was the first dataset to include variations in age
between children and their parents. It contains 91 images for father and son relation,
79 images for father and daughter, 15 images for mother and son and 21 images for

mother and daughter. Images are in 127px x 100px and are in the .jpeg format.

2.9.3. Kinfacel and Kinfacell

This database is proposed by Lu, Wang, and Shan|[15]. Both datasets include
images from the web captured under uncontrolled environments meaning gestures,
demographic attributes, light, background, expressions and partial occlusions are

natural from the original picture. This database contains 4 kin relations, 156 relations
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for father and son, 134 for father and daughter, 116 for mother and son, and 127
mother and daughters of kinship pairs. The Kinfacell was enlarged with celebrities
images as well their children or parents making this dataset grown in 250 images for
each kin relation (F-D, F-S, M-D, M-S). The format of the images are .jpeg and the

size is 64px x 64px.

2.9.4. Family 101

This dataset was proposed by Fang [16] after proposing Cornell’s dataset. The
dataset contains 14,816 images with 101 different family trees where 206 are nuclear
families, 607 are individuals images. It was created from public families, and it has
four kinship relations where 213 are father and son, 147 are father and daughter, 184
are mother and son and 148 belongs to the relation between mother and daughter.It
is the first large-scale dataset of families across several generations, the image size is

150px x 150px and are in .jpeg format.

2.9.5. Families in the Wild (FIW)

This is the biggest dataset for kinship image analysis. This database contains
300 families where 1828 are family members and, 10255 are the images in total. The
number of images per member differs a lot, an example is not the same amount of
images that exist for a father than the amount of images his son has. Majority of
the members has less than 10 image examples more than 250 people has only 1 or 2

image example, and a few ones have more than 20 examples|17].
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2.9.6. WVU Kinship Video Database

The dataset contains video clips of individuals and kin relations, where data is
divided between testing and training. The dataset for each individual contains frames
extracted from the videos, where it has 141 videos for training and 214 videos for
testing. It has seven types of kin-pair relations which includes mother and daughter in
21.28%, mother and son 7.80%, father and daughter 16.31%, father and son 21.28%),
brother and brother 11.34%, sister and sister 13.47% and finally bother and sister
8.52%. The dataset has a lack of cross gender relations such as mother and son and
brother and sister. It also contains extreme pose variations, making the underlying

data distribution highly complex to learn.|[18].

2.10. Related Work

This section presents a review of current state-of-the-art work related with . It
explores various approaches and methodologies that have been developed to
address the complexities of identifying familial relationships through facial
recognition. Existing and recent literature in the field of are briefly explained to
understand key areas for the foundation of this research such as integration of deep
learning techniques, the use of age transformation methods, and the application of
advanced neural network architectures such as and . It also examines studies that
have utilized the dataset, providing insights into the benchmarks and evaluation

metrics used.
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2.10.1. Methodologies

Research in the area has gained popularity with the increasing use of machine
learning techniques for face recognition. In recent years, more researchers have
shown interest in the unique challenges that presents. Various studies have
explored different methods and approaches to tackle this problem.

Liang et al. [19] addressed the issue by introducing a weighted graph
embedding-based metric learning approach that captures the relational structure of
facial features within a family. Their method effectively analyzed the complex
relationships between facial characteristics in family members.

Dong, Pun, and Zhang [4], in their work on cross-generation feature interaction
learning for , aimed to bridge the generational gap by enhancing the model’s ability
to recognize kinship across different ages. Although their approach showed promising
results, it required extensive parameter tuning and was prone to overfitting, especially
when applied to smaller or less diverse datasets.

Zheng and Hu [6] proposed a novel technique that compared input images against
a reference list of known kin relationships, offering an alternative way to enhance the
accuracy of kinship verification. In another study, Zheng et al. [20] introduced age-
uniform feature learning for , which aimed to standardize the ages of family members
in images, making the verification process more efficient and accurate.

Dehshibi and Shanbehzadeh [21] explored the use of cubic norm and kernel-based
bi-directional PCA to incorporate age-awareness into , addressing the age variation
challenge. Meanwhile, Wang et al. [5] worked on cross-generation using a sparse

discriminative metric, enhancing the model’s ability to handle age differences but
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requiring careful parameter tuning and significant computational resources.

Laiadi et al. [22] approached by utilizing discriminative subspaces of color
components, leveraging color information to improve the verification process.
Similarly, Sellam and Azzoune |[23]| introduced the neighborhood min distance
descriptor for , focusing on minimizing the distance between facial features of
related individuals.

Liang et al. [24] presented a method using deep relational features to verify
kinship, emphasizing the role of deep learning techniques in this field. Their approach
effectively extracted and compared relational features to improve accuracy.

El Houda Bouakal et al. [2] proposed a system based on color space analysis,
aiming to enhance accuracy by examining different color spaces in facial images. Zhu
et al. [3] introduced distance and direction-based deep discriminant metric learning,
which focused on improving the model’s discriminative power by considering the
distance and direction between facial features.

Lu, Hu, and Tan [9] applied discriminative deep metric learning for face and
, leveraging deep learning techniques to boost verification accuracy. Sinha, Vatsa,
and Singh [25] developed FamilyGAN, a generative adversarial network designed to
generate kin face images, thereby improving through synthetic data augmentation.

Dornaika, Arganda-Carreras, and Serradilla [26] explored transfer learning and
feature fusion, combining pre-trained models with features from multiple sources for

Oruganti et al. [27] introduced a deep learning model using childhood images,
focusing on improving accuracy by leveraging images at different ages.

Abbas and Shoaib [1] proposed using age transformation combined with a Siamese
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network, aiming to improve verification by matching images of individuals at similar
ages. Xu and Shang [28| introduced a method that used structured similarity fusion
to enhance kinship measurement on facial images.

Zhang et al. [29] explored supervised contrastive learning for facial kinship
recognition, while Qin et al. [30] presented tri-subject kinship verification to
understand family dynamics by considering relationships between three individuals.

Dahan, Keller, and Mahpod [31]| introduced a kin-verification model using
multi-set learning and local features, and Goyal and Meenpal [32] focused on
multi-level dictionary pair learning for images of varying resolutions in . Zhao et al.
[33] proposed learning a multiple kernel similarity metric, using multiple kernels to
enhance verification.

Yan, Lu, and Zhou [34] presented a prototype-based discriminative feature
learning technique, while Li et al. [35] developed Kinnet, a fine-to-coarse deep
metric learning approach. Wang et al. [7] introduced kinship identification through
joint learning using ensembles.

He et al. [10] contributed by introducing deep residual learning for image
recognition, showing potential in kinship verification. Taigman et al. [36] proposed
DeepFace to bridge the gap to human-level face verification, while Schroff et al. [11]
introduced FaceNet, a unified embedding for face recognition and clustering.

Significant progress has been made in the field of | there are still challenges, such
as the need for larger datasets, computational demands, and sensitivity to image
quality. This research contributes to the field by integrating age transformation

techniques with model tuning methodologies, aiming to improve kinship verification
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across different age groups. The proposed algorithm is validated using the dataset,

addressing key gaps and enhancing model performance.

2.10.2. Comparative Analysis of Current Kinship Verification

Methods

Kinship verification is a challenging task due to the complexities associated with
facial variations across different age groups. Several methods have been proposed to
address these challenges, each with unique strengths and weaknesses.

The following table summarizes the key methods, highlighting their approaches,
strengths, and weaknesses. This comparative analysis will serve as a foundation for
understanding how the proposed model fits within the broader context of kinship
verification research.

The objective of this analysis is to understand how each method tackles the
inherent complexities of kinship verification, such as age transformations, variations
in pose, lighting conditions, and the ability to generalize across different family

structures.
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Table 2.1: Comparative Analysis of Kinship Verification Methods

Reference | Method Strengths Weaknesses
[21] Cubic Norm and
Kernel-based Bi- = [ncorporates age = May struggle with real-
directional PCA information time applications due to
» BEffective dimensionality computational complexity
reduction s Performance might be

dataset-dependent

Cross-
Generation
Kinship
Verification

with Sparse
Discriminative
Metric

» Effective in handling cross-

generation variations

= Sparse representation

reduces overfitting

Sparse models can be

sensitive to noise

Requires careful tuning of

hyperparameters

Continued on next page
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Reference | Method Strengths Weaknesses
6] Kinship
Verification » Simple and interpretable » Limited scalability to large
i datasets
via- Reference » Effective for small datasets
List Comparison = May not capture complex
kinship relationships
[19] Weighted Graph

Embedding-
Based Metric

Learning

= Captures complex
relationships through

graph embeddings

= Robust to variations in pose

and expression

= Computationally intensive

» Requires high-quality graph

construction

Continued on next page
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Reference | Method Strengths Weaknesses

4] Cross-
Generation » Handles  cross-generation » Potentially high model
Feature variations effectively complexity
Interaction . .

= Learns robust feature = Requires substantial

L i ) ) .
carning mteractions training data

[20] Age-uniform

Feature

Learning

s Uniform features reduce

age-related discrepancies

= Improved generalization

across age groups

= May mnot perform well
with  non-uniform  age

distributions

» Requires careful feature

extraction

Continued on next page
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Reference | Method Strengths Weaknesses
[22] Discriminative
Subspaces » Leverages color information » Limited to color images
f 1 effectively '
© Color = May struggle with grayscale
Components = Simple implementation or low-quality images
[23] Neighborhood

Min Distance

Descriptor

Effective for fine-grained

kinship relationships

Robust to small variations

Sensitive to outliers

Limited scalability

Continued on next page
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Reference | Method Strengths Weaknesses
[24] Deep Relational
Features » Powerful feature extraction = Requires extensive

with deep learning

= High accuracy on large

datasets

computational resources

= Potential overfitting on

small datasets
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2.10.3. Gap Analysis of Current Kinship Verification

Methods

The models present on the state-of-the-art in the kinship verification area presents
some gaps that authors requires to address in further investigations. Here some of

the gaps found after an analysis of them:

» High Computational Complexity: Many methods, such as those using
deep learning and complex models (e.g., Cubic Norm and Kernel-based
Bi-directional PCA, Weighted Graph Embedding-Based Metric Learning), are

computationally intensive and not suitable for real-time applications.

» Sensitivity to Noise and Outliers: Techniques like sparse discriminative
metric learning and neighborhood min distance descriptor are sensitive to noise

and outliers, which can affect their robustness and accuracy.

» Dependency on Large Datasets: Several methods (e.g., Discriminative
Deep Metric Learning, Deep Relational Features) require extensive training
datasets to perform well, limiting their applicability when large labeled datasets

are unavailable.

= Complex Model Architectures: Methods such as Distance and Direction
Based Deep Discriminant Metric Learning and Cross-Generation Feature
Interaction Learning have complex architectures, making them difficult to

implement and maintain.

» Limited Generalizability: @ Many approaches, including age-specific
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methods like Age-uniform Feature Learning, may not generalize well across

diverse datasets or varying age distributions.

Dependence on High-Quality Inputs: Methods that rely on color
components or specific image qualities (e.g., Discriminative Subspaces of
Color Components, Color Spaces Analysis) are limited when dealing with

grayscale or low-quality images.

Stability and Training Issues: GAN-based methods like FamilyGAN can
be unstable during training, requiring careful tuning and substantial

computational resources.

Complex Feature Fusion and Selection Processes: Techniques that
involve feature fusion (e.g., Transfer Learning and Feature Fusion) or require
careful prototype selection (e.g., Prototype-Based Discriminative Feature

Learning) can be complex and time-consuming.

High Computational Costs: Many advanced methods incur high
computational costs, limiting their practicality for widespread or real-time

use.

While significant advancements have been made in the field of kinship

verification, the current methods still face a range of challenges that limit their

effectiveness and practicality. Issues such as high computational complexity,

sensitivity to noise, dependence on large datasets, and difficulties in generalizability

hinder the application of these models in real-world scenarios. Moreover, the
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reliance on high-quality inputs and the complexity of model architectures further
restrict their adaptability across diverse datasets and conditions. Addressing these
gaps is essential for developing more efficient, scalable, and accurate kinship

verification models that can be applied across various contexts.

2.10.4. Areas for Further Research and Innovation

Some areas for further research and innovation are mentioned on the available
research studies. This analysis groups the most mentioned areas for improvement

based on the consulted work in which this thesis was based.

= Improving Computational Efficiency: Developing more efficient
algorithms and models that reduce computational burden without
compromising accuracy. This includes simplifying model architectures and

optimizing computational processes.

= Enhancing Noise Robustness: Creating techniques that are more robust to
noise and outliers, improving the reliability and accuracy of kinship verification

methods.

= Scalability with Limited Data: Innovating methods that perform well even
with smaller datasets, through techniques such as data augmentation, transfer

learning, and few-shot learning.

= Generalization Across Diverse Datasets: Ensuring that models
generalize well across diverse datasets and varying conditions, such as

different age distributions and image qualities.
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= Versatile Feature Extraction: Developing automated and accurate feature
extraction methods that work well across various image types, including

grayscale and low-quality images.

» Stabilizing GAN Training: Enhancing the stability of GAN training
processes to ensure consistent performance and reducing the computational

requirements for training GANS.

» Simplifying Feature Fusion Processes: Simplifying the processes involved
in feature fusion and selection to make these techniques more accessible and

less time-consuming.

= Reducing Computational Costs: Innovating ways to reduce the
computational costs associated with advanced kinship verification methods,

making them more practical for real-time and widespread use.

= Automating Hyperparameter Tuning: Developing automated
hyperparameter tuning processes to improve model performance without

extensive manual intervention.

» Leveraging Unlabeled Data: Utilizing semi-supervised or unsupervised
learning techniques to make use of unlabeled data, thereby enhancing the

training process and model robustness.

Different areas are identified for further research and innovation highlight the need
for advancements that address the limitations and challenges currently faced in

kinship verification. Improving computational efficiency, enhancing noise
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robustness, and ensuring scalability with limited data are critical steps toward
making these models more practical for real-world applications. Additionally,
focusing on generalization, versatile feature extraction, and stabilizing training

processes will contribute to developing more adaptable and reliable models.
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Hypothesis and Objectives
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3.1. Hypothesis

This chapter presents the principal components that guide the research conducted
in this thesis. It begins by outlining the hypothesis, which addresses the inherent
challenges of kinship verification when faced with significant variations in age, pose,
and facial features. Then, it presents details the objectives of the research and finally,
outlines the deliverables associated with each specific objective and concludes with

a summary of the scope and limitations of the research.

3.1. Hypothesis

Variations in age, pose and face features are some challenges when accurate
kinship verification from images comes into the picture. Traditional models often
struggle with these differences and leaves them out of the scope during developing.
The hypothesis proposes that using image processing techniques to age-transform
family images, combined with model tuning methodologies like Keras Tuner, will
improve kinship verification metrics compared to conventional models.  This
approach aims to provide a more consistent basis for verification, enhancing
accuracy and reliability. The hypothesis for this research effort reads as follows:

The use of image processing techniques to transform images of families to a certain
age, combined with model tuning methodologies such as Keras Tuner, will improve
the metrics of the kinship verification algorithm compared with the conventional

image analysis model.
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3.2. Objectives

The approach present by this work aims to provide a solution for the aging
challenge found in facial feature differences when working with . Significant age
differences between family member tend to complicate the verification process. A
deep learning algorithm for  that mixes age transformation method with
hyperparameter tuning techniques is presented to face the aging challenge when
face features changes. The next objectives are guide to fulfill all requirements in

the kinship verification research area.

3.2.1. Main Objective

To propose a deep learning algorithm that addresses the analysis and
recognition that improves metrics through the integration of age transformation
techniques applied to the family images and model tuning methodologies when
significant age differences between family member complicates the verification

process.

3.2.2. Specific Objectives

1. To determine the limitations within the research area with the aim of finding

areas for improvement.

2. To design a algorithm integrating age transformation techniques and model

tuning that enhances the algorithm capability to identify familiar relationships.
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3. To evaluate the results of the proposed algorithm by implementing metrics

applied to scenarios that focus on age transformation and model tuning using

the Families in the Wild (FIW) dataset.

3.2.3. Deliverables

This section groups the key deliverables associated with each specific objective

defined in this work. Each deliverable is aligned with the objectives to ensure that

the research objectives are comprehensively addressed and that the outcomes are

clearly documented.

Table 3.1: Deliverables in Kinship Verification Research

Objective

Deliverable

Description

Identify limitations within
the kinship verification field

for improvement.

Comparative Analysis Report

Detailed  comparison of  current
kinship verification methods, including

strengths and weaknesses.

Gap Analysis Report

Documentation of main gaps in
existing kinship verification methods,
identifying areas requiring further

research and innovation.

Continued on next page
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Objective

Deliverable

Description

Design a kinship verification
algorithm integrating age
transformation techniques
and model tuning to enhancg
the ability to identify familig

relationships.

Y

—

Preprocessed Dataset

Cleaned and preprocessed subset of the
Families in the Wild (FIW) dataset.
Includes quality selection, resizing,
normalization, and age transformation
using the Life Span Age Transformation

Synthesis (LATS) technique.

Thesis  Document  (Model

Implementation Report)

Detailed design of the kinship
verification algorithm, including
the Siamese Network Architecture,

feature extraction methods, and triplet
loss function implementation.  Also
includes the hyperparameter tuning

process using Keras Tuner.

Source Code of the Proposed

Model Implementation

Complete source code of the kinship

verification algorithm.

Evaluate the proposed
algorithm using evaluation
metrics applied to scenarios
with age transformation and
model tuning using the
Families in the Wild (FIW)

dataset.

Thesis Document (Training

and Evaluation Report)

Documentation of the training process

of the Siamese model, including
evaluation results using accuracy, F1-
score, and Mean Squared Error (MSE)
metrics, with performance analysis
presented through charts, graphs, and

tables.

Continued on next page
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Objective Deliverable

Description

Thesis Document (Analysis,

Results, and Conclusions)

Comprehensive  analysis  of  the
experiment results, discussion of the
findings and implications, conclusions,

and recommendations for future work.

Paper Draft

Includes the abstract, introduction,
methodology, results, and conclusions
for a potential research  paper

submission.

3.2.4. Scope

The scope of this thesis is defined by the objectives set to address the challenges

in the kinship verification area. This work aims to implement a deep learning

algorithms that incorporate age transformation techniques to improve the accuracy

and efficiency of kinship verification models. The scope of this work covers the

following key areas, each aligned with the objectives outlined in this thesis:

1. Development of a deep learning algorithm for kinship verification that

integrates age transformation techniques and model tuning methodologies.

2. Application of the proposed algorithm to a subset of the Families in the Wild

(FIW) dataset, focusing on scenarios with significant age differences between

family members.

3. Evaluation of the algorithm’s performance using established metrics such as
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accuracy, Fl-score, and Mean Squared Error (MSE).

4. Comparative analysis of the proposed algorithm against conventional kinship
verification models, identifying areas of improvement and highlighting the

advantages of the new approach.

5. Documentation of the research process, including the design, implementation,
and evaluation of the algorithm, to provide a comprehensive guide for future

studies in the kinship verification area.

By working on these areas, the research aims to make a contribution to the field
of kinship verification, offering insights into the application of age transformation

techniques in deep learning.
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To investigate the hypothesis, a case study was conducted to assess the metrics
of the proposed deep learning algorithm. A case study is a research method used to
investigate phenomena within their real-life context, particularly when the
boundaries between phenomenon and context are not clearly evident. This method
is particularly useful for exploring, describing, or explaining complex software
engineering issues through detailed contextual analysis of a limited number of
events or conditions and their relationships[37].

A case study contains different areas that need to be followed: Background, Design,
Case Selection, Data Collection, Analysis, Validity and Limitations. Here is a

summary of each area:
= Background

e The research is structured around key questions addressing challenges in
kinship verification, particularly when there’s an age gap between family
members. It investigates how current models manage aging-related
changes in facial features and explores the integration of age
transformation techniques with model tuning in a deep learning
framework. The study also considers how to validate the proposed

algorithm using the Families in the Wild (FIW) dataset.
= Design

e The experimental design is structured to meet the research objectives.
It involves selecting appropriate methods for data extraction, processing,

and pre-processing, as well as implementing techniques to achieve final
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results and evaluating the outcomes.
= Case Selection

e To enhance the kinship verification algorithm, the model is trained under
different scenarios, incorporating age transformation and hyperparameter
tuning. The selection of cases involves transforming images to different

age ranges and adjusting model parameters to optimize performance.
= Data Collection

e The research utilizes the FIW dataset, which contains a vast collection of
family images across generations. A subset of families is selected based on
specific criteria to ensure data quality. The data is processed to remove
low-quality images and organized into a simplified structure to facilitate

model training.
= Analysis

e The model is evaluated under different scenarios that include age
transformation and model tuning. Metrics such as accuracy, Fl-score,
and MSE are used to measure performance, with results presented for

easy comparison.
= Validity and Limitations

e The validity of the research is assessed in terms of internal, external,

construct, and reliability. Internal validity is ensured through
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cross-validation,  while external validity acknowledges dataset
limitations.  Construct validity is established through the use of
established techniques and metrics. Reliability is achieved through
multiple validation techniques and recognized metrics. The limitations
of the FIW dataset, such as unbalanced and low-quality images, are also
discussed, highlighting the need for manual data cleaning and the

challenges of image transformation.

4.1. Experiment Design

The Experiment Design section outlines the methodological approach used to
validate the proposed kinship verification algorithm. This section details the dataset
preparation, age transformation techniques, and evaluation metrics applied, ensuring

a robust and replicable framework.

4.1.1. Background

To structure the experiments, the following questions were formulated to work as

the backbone structure:

= What are the common challenges faced in when there is a significant age gap

between family members?
= How do current models handle changes in facial feature due to aging?

= How can the integration of age transformation techniques with model tuning
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methodologies be effectively implemented in a deep learning framework?

= How can the proposed algorithm be validated and tested using the Families in

the Wild (FIW) dataset?

The guiding questions will help on the design, conducting and analyze process of the

experiments ensuring the right path to approach this work objectives.

4.1.2. Design

The experimental design addresses each objective. It details the process and
techniques to be used during the experimental phase. It involves selecting the right
process to extract information from the current state of the art, process the collected
data and pre-process it. Also, it covers the techniques to implement in order to

obtain final results and the evaluation methodology.

4.1.3. Objective 1: Determine the Limitations within the

Research Area
4.1.3.1. Literature Review

A literature review is a method to group information and highlight insights from
existing research that provides a solid foundation to understand the current state of
the art. It is a good technique to guide new investigation, identify gaps and areas
that require further investigation. By reviewing different studies, it can be identified
the latest research and methodologies used in the desired field to investigate[10].

A comprehensive review of existing research in the field of was performed, focusing

45



4.1. Experiment Design

on the main techniques, datasets and evaluation metrics. These are the request

questions in which the literature review extraction was based:
» What are the main facial recognition techniques used in ?
= What is the configuration implemented to perform the accuracy tests?

s Which datasets were used and its main characteristics?

Academic databases such as SCOPUS, IEEE Xplore, Google Scholar, and Springer

was used to find relevant papers and articles.

4.1.3.2. Comparative analysis

A comparative analysis of methods was conducted to identify the main challenges

and limitations that this area presents. With this analysis:
= Strengths of common techniques would be identified.
= Weaknesses of common techniques would be identified.
This comparison will provide a deep understanding of limitations and challenges in
the area and how they can be address.
4.1.3.3. Identify main gaps

The main objective is to reveal areas where current methods fails based on the
comparative analysis. By identifying the gaps, areas that require further research
and innovation was pointed out. By highlighting these gaps, new research can be

proposed to focus on these areas and develop new solution like the one proposed
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in this work, where merging age transformation techniques and methods like will

provide an innovative solution to .

4.1.4. Objective 2: Design a Algorithm Integrating Age

Transformation Techniques and Model Tuning
4.1.4.1. Data Processing

The database that was use is Families in the Wild (FIW) which is a large scale
database of kinship images designed to research on the and recognition areas. The
FIW database consist of an extensive collection of family images cross multiple
generations. It includes family relationships such as parent-child, siblings, which
enables the development of kinship algorithms|[17]. Since the database has 300
families, was used a subgroup of 144. Selected families are based on amount of
pictures on each family member (need to have more than 1 picture in each
member).

Preprocessing steps such as manual selection of quality images, resize and
normalization was conduced to prepare them for the model. Age Transformation
was implemented by using the Life Span Age Transformation Synthesis (LATS)
technique to transform images to target ages of 5, 15, and 30 years. This age
transformation technique was used due to its ability of addressing variations in age

images|[1].
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4.1.4.2. Siamese Model Input

As input for the Siamese model was used a triplet vector where entries are anchor
image, positive image, and negative. The anchor image was varied between mother
and father. When the anchor is the mother, the real father was replaced with a
father from a different family. Similarly, when the father is the anchor, the mother
was replaced with a mother from a different family. Multiple triplet sets was created
from the selected families to ensure a comprehensive training dataset. Triples was
used due to their capability of training deep networks by helping them to learn
embeddings that discriminate between kin and no kin relationships by maximizing
the distances between anchor-negative and minimizing distances between anchor-

positive [9].

4.1.4.3. Feature Extraction

The feature extraction was in charge of the Architecture, where two identical
subnetworks share weights. Each subnetwork was capable of extracting features
from the input triplet vectors. Each subnetwork is a ResNet50 which is pretrained
on ImageNet dataset. ResNet50 is a variant of the RestNet network. ResNet was
used because it offers strong performance cross different computer vision task because
it learns hierarchical representation, and it can skip connections through its residual

connections between layers, making it effective and facilitate the training process|17].
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4.1.4.4. Training and Loss Function

A function was implemented by the Siamese models to leverage feature
recognition across images, where the proposed Siamese model process as input a
triplet feature vector. This loss function technique is utilized in diverse studies on
such as those by Zheng et al. [6], Liang et al. [4], and Lu et al. [12] where the
function improves the accuracy and reliability.

The triplet loss function enhances the model’s ability to learn discriminative
embeddings by minimizing distances between images of the same family members
(anchor-positive pairs) and maximizing distances between images of unrelated

people (anchor-negative pairs). Here is the triplet loss function that was used:

L(A, P,N) = max(|| f(A) = f(P)||* = [lf(A) = f(N)|[* + margin, 0)

= A, P, and N represent the anchor image, positive image, and negative image.
» f(-) is the feature embedding function learned by the Siamese network.

= |- ||? is the squared Euclidean distance between the embeddings of the anchor

and positive images, and between the anchor and negative images.

= margin is a hyperparameter that specifies the separation threshold or margin

between the embeddings of positive and negative pairs.

» max(-, 0) makes sure that the loss is only computed when the distance between
the embeddings of the anchor and positive pairs is greater than the distance

between the embeddings of the anchor and negative pairs plus the margin.
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In the training phase, the model will computed iteratively the loss using the defined
function, and then wuses this loss to adjust the model’s weights through
backpropagation and Adam optimization algorithm. Adam optimization was used
due to its effectiveness in also, the robustness and adaptability of this algorithm
achieves high accuracy in recognizing familiar relationships due to its ability to

learn discriminative features|9, 19].

4.1.5. Objective 3: Evaluate the Metrics of the Proposed
Algorithm by Evaluating Scenarios Focusing on Age

Transformation and Model Tuning Utilizing the
Families in the Wild (FIW) Dataset

4.1.5.1. Evaluation

To evaluate the model’s performance, these was the metrics to use:
= Accuracy
= F'l-score

These metrics was applied since they are the most commonly used in state-of-the-art
research. To ensure that the tuning process is not causing overfitting on the model,

the Mean Square Error (MSE) was used for evaluation.
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4.1.5.2. Results

Evaluation results was present using different methods like graphs, tables and
chats as needed. Additionally, it was summarized the key findings by using the
evaluation results. Also, it was discussed the improvements made by the proposed

approach, challenges and future work.

4.1.6. Case Selection

To improve the metrics of the algorithm, the model was trained on different
scenarios that cover the aging transformation on images and the . In this section,

the case selections are explained.

4.1.6.1. Age Transformation

To transform the images, the Life Span Age Transformation Synthesis (LATS)

technique was used|38]. Selected families were transformed into this age ranges:
1. Images are transformed into age of 5.
2. Images are transformed into age of 15.
3. Images are transformed into age of 30.

As input for the Siamese model was used a triplet vector where entries are anchor
image, positive image and negative. The anchor image was varied between mother
and father. When anchor is the mother, the real father was replaced with a father

from a different family. Same way, when father is the anchor, mother was replaced
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with a mother from a different family. In this way, one portion of reliability was

cover in the model. The children images was the positive entry for all cases.

4.1.6.2. Hyperparameter Tuning

During training, the model was tuned using the Keras Tuner. The search strategy
was Random Search applied to the . The maximum amount of learning trials is
proposed to be 5 and a minimum of 1 execution per trial. The activation function
that was used on the deep layers was Rectified Linear Unit(ReLU). According to
state of the art, ReLU is the most used activation function on models.

The following hyperparameter set up was tested on each scenario:

4.1.6.3. Convolutional Filter Tuning

The objective is to find the optimal number of filters in the convolutional layers
on the based model. The base model is a ResNet50 pre-trained using the ImageNet
dataset. The output of it is a flatten layer. The based model was tuned from 32 to

256 with a step of 32.

4.1.6.4. Dense Layer Units Tuning

The objective is to find the optimal number of dense units and convolutional filter
in the model. The number of dense unit hyperparameter was set on the ResNet50
network, where the first deep layer was tuned with a number of units from a range
of 32 to 512 with a step of 128. The second deep layer was tuned with a number of

units from a range of 32 to 256 with a step of 128. The output layer is a dense layer
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with 256 units.

4.1.7. Data Collection

Families in the Wild (FIW) is the database that was used. This is the biggest
dataset for kinship image analysis. This database contains 300 families where 1828
are family members and, 10255 are the images in total. The dataset was reduced to

144 families. Data were process before start the testing and use of the model:

1. For each family is required a manual innervation where bad quality photos are
going to be removed. Blur pictures, profile faces and use of hats, sunglasses or

wigs were considered as delete criteria.

2. Originally, FWI dataset has a file structure where family members are stored
in different directories. The file structure was changed to match a simpler
structure where all children were stored in a directory call K, mother images
in an M directory, father in F, mother from a different family was stored on

NM directory and NF for father from a different family.

3. Mother and father from a different family were copied to each family to provide

the negative image that is needed for the triplets.

4. Images stored in M, F, NM and NF was balanced to match the same amount
of images as the total of kids files. This step prevents to have triplets with no

mother nor father and guarantee reliability in the model.
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5. All pictures was transformed into ages of 5, 15 and 30 years old using the Life

Span Age Transformation Synthesis (LATS)|38] technique.
6. The new dataset once is cleaned was stored in a public GitHub account.
7. The pictures was resized to 200x200 pixels using RGB as scale.

8. The 80% of the images was used as the training dataset and the left 20% as

the validation dataset.

4.1.8. Analysis

The proposed model was evaluated by using different scenarios that include age
transformation and model tuning. The scenarios will run in the dataset . The results
of these metrics was shown using graphs and tables for easy comparison. For the
proposed model, these was the metrics to use since are the most common metrics

used in the state-of-the-art for research:

4.1.8.1. Accuracy

This metric was used to measure the proportion of correctly identified kinship
pairs over other evaluated pairs. This metric has been used in models, where it is
used to evaluate kinship model performance in different scenarios|30, 35].

4.1.8.2. Fl-score

A high Fl-score indicates a balanced performance of the model in identifying

kinship pairs. Studies demonstrate the importance of Fl-score in ensuring robust
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performance in models, where both false positives and false negatives need to be

minimized |29, 32].

4.1.8.3. Mean Squared Error (MSE)

Using MSE helps in ensuring that the model tuning process does not lead to
overfitting. It provides a quantitative measure to track the errors during training
and testing phases, ensuring that the model generalizes well to unseen data. This

metric is particularly useful in tuning processes|1].

4.1.9. Validity

Validity is important in research to determine credibility of the findings. For
this work, credibility of all output data from the experiments was assessed in four

different dimensions: internal, external, construct and reliability.

4.1.9.1. Internal Validity

To prove and sustain internal validity of obtain data after execute the
experiments on the proposed model, a 5-fold cross-validation was performed. 5-fold
cross-validation allows comprehensive assessment of the model’s capabilities, where
each fold serves as a validation set once, and the rest of the folds are the training
set|3]. This makes sure that all data points are used both training and validation
and obtain reliable estimate of model’s performance and helps to reduce
overfitting[26, 32|. These were the steps to perform the 5-fold validation on each

proposed age transformation scenario(5, 15, 30):
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1. The selected 144 families was shuffled to ensure randomness.

2. The dataset was divided into five folds. Since there are 144 families, each fold

will have 28 families.

3. Each fold was used as the validation dataset, while the rest of the four folds
was the testing dataset. Accuracy, F1l-sore and MSE was recorded for each fold

iteration.

4. Finally, an average was computed, taking as input the results of each metric

from the five folds to get a final result.

It is important to point out that the families on the database was manually select and
requires a manual preprocessing to filter images with poor quality. The database will
also be transformed by using the LATS technique|[38|. Since hyperparameter tuning
was part of the training, it was considered as a possible variant of the results. That
is why it was taken into consideration to not cause noise on the final results. The

same hyperparameters was used on each fold.

4.1.9.2. External Validity

Due to the scope of this investigation, the evaluation of the proposed model is
conduced on database subset. This dataset is being used by different research in
area, making it a widely recognized dataset[17]. However, using a subset of this
dataset causes a limitation related with the findings which may not be directly
generalizable to other kin datasets such as Cornell dataset.

This work aims to approach the age gap challenge in but, limitation of external
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validity due to data limitation is acknowledged. The findings of this work still
offers significant contributions to the kinship field. Future work looks to extend the
evaluation to more datasets to validate and generalize the results. The reason

behind the use of a subset of 144 families is driven by these considerations:

= Analyze and processing all the families from the Families in the Wild database
requires computational resources and time using the proposed scenarios for age
transformation and . That is why focusing on a subset allows more manageable

data for processing and evaluation.

» Families in the Wild (FIW) database contains poor quality images which are
incompatible with the LATS age transformation technique that was used. A
manual filter needs to be performed in order to select the best images per
family. That is why a manual process filtering will focus on a subset of the

database.

= The manual filtering process will consider to include diverse families, including
diverse age ranges, amount of images per family member and image quality

which will allow robustness on the results.

= By limiting the dataset, the evaluation of the proposed model was conducted
in different scenarios. This approach will allow more detailed analysis that will

help to identify capabilities and ares of improvement.
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4.1.9.3. Construct Validity

To ensure that the proposed model effectively evaluates by integrating age
transformation and model tuning methodologies, these are the proposed areas to

address:

4.1.9.4. Relation between facial features and kin verification

This work is based in the premise that thought facial features can be analyzed
and determine the kinship relationships. This is covered by the theoretical
background supported by the state-of-the-art analysis for facial recognition and .
Studies has shown that certain facial features are indicative of familiar
relationships, demonstrating the effectiveness of discriminative deep learning metric

techniques in capture of features for [4, 9].

4.1.9.5. Age Transformation

The approach of using an age transformation techniques to mitigate the variation
in facial features due to aging is aligned with the theoretical understanding that
facial features change over time and, transforming images to a certain age range can

improve verification accuracy|l, 5, 20].

4.1.9.6. Model Tuning

This work aims to use as model tuning methodologies to ensue that the algorithm
is optimized for performance according to the proposed scenarios. There is evidence

that suggests is important for enhancing the performance of machine learning models
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[9, 19, 26].

4.1.9.7. Use of established techniques

The implementation of established techniques like Siamese Networks, Life Span
Age Transformation Synthesis (LATS) and ResNetb0 architecture ensures that
constructs are measured using validated and reliable methods from the related

research|1, 24, 29, 32].

4.1.9.8. Evaluation of metrics

The performance of the proposed model was evaluated by using the most popular
metrics implemented in research: accuracy, F1-score and Mean Square Error (MSE).
These metrics are used and accepted in the machine learning field and provide robust

performance measure in verifying kinship relations|4, 5, 9].

4.1.9.9. Reliability

The methods and metrics used in this work to ensure reliability are covered by
different testing scenarios. Each scenario aims to ensure quality and integrity of each

result by applying multiple validation techniques, such as:

s 5-fold cross-validation, which will help to mitigate the risk of overfeeding by
the use of and ensuring that the model’s performance is not dependent on a

particular set of data thanks to the implementation of folds.

= Implementation of standard metrics like accuracy, F1-score and Mean Squared

Error (MSE) to evaluate the proposed model.
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The use of folds and recognized metrics will affirm the reliability of the proposed

model, ensuring that the final results are trusted, ensuring that the model’s

performance is evaluated comprehensively, allowing to capture different aspects of

the model’s behavior across various data splits.

4.1.10. Limitations

Families in the Wild (FIW) dataset has several limitations such as unbalanced

images and poor quality. Manual intervention is required to clean the data that was

used.

These are some of the limitations that has been identified:

Not all images could be transformed, resulting in some individuals having only
one image that could not be transformed or a few poorly transformed images

unsuitable for kinship relationship analysis.

The FIW database contains low-quality images, with side poses, dark glasses,

patches, etc., which affect the transformation.

Human intervention is required to clean the database before transformation,
which may leave some images that are not good or result in the elimination of

high-quality images.

The database contains many relationships per family. In some families, like
F0004, there are grandchildren, which introduces additional mother-child
relationships. There are also siblings within a family where one of the siblings

is the parent, resulting in in-law relationships.
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= Some individuals have photos from their infancy, which do not transform well

into adult images. Research has shown that transforming images of infants
into adult faces is particularly challenging where the shape and appearance of
a baby’s face can change drastically by adulthood, making it difficult to model
and predict these changes accurately. Real-life photos of children are tough to
age-progress due to factors like variable lighting, expressions, and the baby-
like characteristics of faces. It’s especially hard to produce accurate images for
children younger than age 5, as their facial features closely resemble that of a

baby and change significantly as they grow older|39].

When cleaning the original database, some individuals are left with only one
image because the others were of poor quality. In some cases, the database

only includes one photo per individual, and it may be of poor quality.

These limitations highlight certain challenges encountered when working with the

FIW dataset, such as occasional image quality issues and the need for manual data

cleaning. Despite these challenges, the dataset remains a rich resource for kinship

verification research.
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This chapter details the developed algorithm and mechanisms designed to
evaluate the proposed hypothesis.  The contents of this section provide a
comprehensive description of the methodology, model architecture, and
hyperparameter tuning techniques utilized in the experimental process. FEach
aspect of the model’s design is explained to demonstrate how the model was

planned and structure to meet the objectives and prove the hypothesis.

5.1. Proposed algorithm

This section presents the proposed algorithm for kinship verification using deep
learning techniques integrated with age transformation. The objective is to create
a model that can check if people pictures are kin related or not. The algorithm is
based on the use of the Families in the Wild (FIW) dataset, which serves as the base
for training and validating the model. The proposed model leverages the ResNet50
architecture as an embedding model in a Siamese Network, with hyperparameter
tuning to enhance the model’s performance.

Diagram 5.1 shows a visual representation of the proposed model, where the
process begins with the data preparation stage and the FIW dataset is cleaned and
organized to suit the needs of the model. This includes managing image quality,
age transformations, and organizing the data into appropriate categories. Once data
preparation is complete, the next phase involves building the embedding model using
ResNet50, which extracts crucial features from the facial images. These features are

then processed through the Siamese Network, where the model learns to distinguish
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ResNet50 .
Data_ fgs : Triplets as input extracts Triplet I_'OSS
preparation Transformation CAETRIOh Function

Siamese Network

|

KIN / NO KIN

Figure 5.1: Representation of the proposed model.

between familial and non-familial relationships using triplet loss.
A detailed explanation of each step of the algorithm, including data
preparation, embedding model construction, and the complete Siamese Network

model, is provided in the following subsections.

5.1.1. Data preparation

The Families in the Wild dataset is the one selected to run the proposed model.
This dataset contains more than 1000 families but, not all of them are eligible to be
used as part of testing and validation for the proposed model. The photos’ database
contains many low-quality images, such as those with side poses, dark glasses, or
patches,; all of which affect the transformation. Additionally, the database contains
a variety of relationships per family, including complex ones such as grandchildren
or in-laws making it out of the scope of relations since the proposal covers mother-
children and father-children ones. Some individuals have childhood photos that don’t

transform well into adult images, and after cleaning, some individuals are left with
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only a single image, often of poor quality. In some cases, the database itself provides
only one photo per individual, which may also be of low quality and to run the model
we need the major amount of photos per family member. After the manual clean
up of the photos, the transformation of each age range happens using the LATS
algorithm. The images must then be reorganized to optimize the model’s input. The

methods developed to handle data preparation are explained below:

createDirs(familiesDir)

This method is responsible for creating directories for each family in the dataset.
Specifically, it organizes the family into subdirectories for different relationships:
"K" (kids), "M" (mother), "F" (father), "NM" (negative mother), and "NF" (negative

father). These directories will hold the respective images for further processing.

organizePhotosInDirs(photosDir, csvMatrix)

This method processes the images according to relationships defined in a CSV
file that comes as part of the Families in the Wild dataset and organizes them into
the appropriate directories created by createDirs. It filters images that lack an
"Age" attribute in their filename and moves valid images to the subdirectories based

on family relationships (e.g., "M", "F", "K").

removeDirs(familiesDir)

This method iterates through the dataset to identify and remove any empty family

directories after the images have been processed. It specifically looks for directories
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matching a pattern (e.g., "*MIDx") and deletes them if they are empty.

createNoMomDad (familiesDir)

The createNoMomDad function deals with the creation of "No Mother" or "No
Father" images for families that lack parental images. It duplicates mother and
father images from other families into the appropriate directories for families that
don’t have such images. If the last family in the dataset lacks parental images, the

function copies the parents from the first family.

balanceData(familiesDir)

The balanceData method is used to balance the dataset by ensuring that the
number of mother and father images matches the number of kid images in each family.
If the number of images in any category is less than the number of kid images, the
method copies existing images to match the count. If there are too many images, it
randomly removes images to balance the dataset.

Once the images are clean and organized, the dataset to train the model needs
to be created based on the subset taken from the Families in the Wild dataset.
This dataset has the characteristic that it needs to arrange the images into the input
triplets [anchor, positive, negative| using an RGB channel and resize them to 200x200
pixels. To manage this, the methods explained below were created to support the

dataset creation process:
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preprocess_image (filename)

The preprocess_image function is responsible for loading an image, converting
it to the appropriate data type, resizing it, and returning the preprocessed image.
First, the image is loaded using tf.io.read_file(). It is then decoded into a tensor
using tf.image.decode_jpeg(). The image is converted to a float32 data type using
tf.image.convert_image_dtype() for compatibility with neural networks. Lastly,

the image is resized to the target shape (200x200) using tf.image.resize().

preprocess_triplets(anchor, positive, negative)

The preprocess_triplets function processes three images corresponding to the
anchor, positive, and negative inputs for the Siamese network. It takes the filenames
of these images as inputs and uses the preprocess_image() function to load and
preprocess each image. This function returns a tuple containing the preprocessed

anchor, positive, and negative images.

5.1.1.1. Image Loading and Organization into Triplets

The code block for image loading and organization into triplets iterates over
family directories, loading images corresponding to different family members such as
fathers, mothers, and children. Based on the family member, the images are added to
respective lists, including fatherImages, motherImages, and kidsImages. Once all
images are loaded, datasets for the anchor, positive, and negative samples are created
using tf.data.Dataset.from_tensor_slices(). The datasets are then combined

using tf.data.Dataset.zip() to form a dataset of triplets. Finally, the dataset is
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preprocessed by mapping the preprocess_triplets() function, ensuring that each

triplet of images is correctly formatted and preprocessed for model input.

5.1.1.2. Dataset Splitting and Batching

After creating the dataset of triplets, the dataset is split into training and
validation sets. The training set comprises 80% of the dataset, while the validation
set is 20%, and the splitting is done using the functions’ dataset.take() and
dataset.skip(). The training and validation datasets are batched with a batch
size of 3. To improve data loading performance, prefetching is applied using

train_dataset.prefetch().

5.1.2. ResNetb50 embedded model

The proposal for the Siamese Neural Network architecture for kinship
verification is build on top of a ResNet50 architecture that works as the embedding
model in the Siamese Network, which objective is to extract the features. The
Siamese network, which computes the distance between anchor, positive, and
negative image embeddings. The model uses hyperparameter tuning to fine-tune
both convolutional and dense layers on ResNet50, making it adaptable for kinship
verification tasks. The custom training loop ensures that the model optimizes the
triplet loss, making it effective in distinguishing between related and unrelated

individuals. The proposed model is explained in detail in the next subsections.
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5.1.2.1. Embedding model

The embedding model plays a crucial role in the kinship verification process, as
it is responsible for transforming input images into a feature vector (embedding)
that captures the essential characteristics of the image. These feature vectors are
numerical representations that encapsulate the unique attributes of an individual’s
facial features, such as the shape, texture, and distinct patterns that are important
for identifying familial relationships. In this research, a ResNet50-based architecture
is used as the backbone of the embedding model, which extract high-level features
from facial images. Algorithm 1 shows a pseudocode of the structure created to
handle the ResNet50 networks in charge of the feature extraction.

Below, subsections explain in detail the pseudocode showed in Algorithm 1.

5.1.2.2. Pre-trained Base Model (ResNet50)

The embedding model uses ResNet50, a deep CNN pre-trained on the ImageNet
dataset, as the base model. ResNet50 is chosen for its powerful feature extraction
capabilities and is configured with include_top=False, which means that the fully
connected layers at the top are removed to allow custom layers to be added. The

input shape is set to (200, 200, 3) to handle RGB images of size 200x200.
5.1.2.3. Additional Convolutional Layers

After the ResNetb0 base, the code adds additional tunable convolutional layers:

» hp_conv_filters is a tunable hyperparameter that defines the number of

filters in each convolutional layer, ranging from 32 to 256 with steps of 32.
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Algorithm 1 Pseudo Code for Embedding Model with Hyperparameter Tuning

Input: Input: Hyperparameters hp, Target Shape target shape
Output: Output: Trained Embedding Model
Step 1: Initialize base CNN using ResNet50 pre-trained on ImageNet

Step 2: Add tunable convolutional layers
2.1: Choose number of convolutional filters from range [32, 256]
2.2: Apply 2D with chosen filters and ReLU activation
2.3: Apply 2D
2.4: Add a second 2D layer with the same number of filters
2.5: Apply 2D

Step 3: Flatten the output of the convolutional layers

Step 4: Add the first Dense (fully connected) layer
4.1: Choose the number of units from range [32, 512]

4.2: Apply layer with chosen units and RelLU activation
4.3: Apply

Step 5: Add the second Dense layer
5.1: Choose the number of units from range [32, 256]
5.2: Apply layer with chosen units and RelLU activation
5.3: Apply
Step 6: Add output layer with 256 units
Step 7: Set trainable layers in the base CNN starting from ’convb blockl out’

Step 8: Return the embedding model
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= Each convolutional layer uses a filter size of (3, 3) and the activation function

is chosen as relu from a list of possible activation functions.

= Two max-pooling layers are added after each convolutional layer to reduce the
spatial dimensions of the feature maps.
5.1.2.4. Dense Layers

= hp_unitsD1 defines the number of neurons in the first Dense layer, ranging

from 32 to 512. It uses relu as the activation function.

= hp_unitsD2 is another tunable hyperparameter for the second Dense layer,

with values ranging from 32 to 256. It uses relu activation.

= Batch normalization is applied after each Dense layer to stabilize and speed up
training.
5.1.2.5. Output Layer and Trainable Layers

The final output of the embedding model is a 256-dimensional feature vector. The
last few layers of ResNet50, starting from conv5_blockl_out, are set to be trainable
while the rest are frozen. This allows the model to fine-tune the deeper layers while

preserving the pre-trained weights in earlier layers.

5.1.3. Siamese Network Model

The Siamese network is created using the anchor, positive, and negative image

inputs where and the distances computed by the Distance Layer are the output of the
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Siamese network. The Siamese network model consists of inputs anchor, positive,
negative which forms the triplet and outputs the pair of distances [ap distance,
an_ distance| for each triplet, this means that for the triplet with index N the results
of the distances meaning is kin or not are going to be ap distance|N]| for the result
of anchor and positive and an_distance|N| for the result of the anchor and negative.
A Siamese Model Class was created to manage different activities inside the model.
Some of these activities are build the model with the ResNet50 model which works
as the embedded model to extract the features, it also defines the distance layer
for computing the embedding differences, it defines the input layers for positive,
negative and anchor, it computes the distances between the embedding and creates

and compiles the Siamese Network model.

5.1.4. Siamese Model Class

The Siamese Model class defines the training loop and the computation of the
triplet loss. This loss function helps the model learn to minimize the distance between
the anchor-positive pair and maximize the distance between the anchor-negative pair.

Algorithm 2 shows the pseudocode of the proposed Siamese model.
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Algorithm 2 Pseudo Code for Siamese Network with ResNet50 Embedding

Input: Hyperparameters hp, Triplet inputs: anchor, positive, negative
Output: Trained Siamese model

Step 1: Build Embedding Model with ResNet50

embedding < build embedding model(hp)

Step 2: Define Distance Layer for Computing Embedding Differences
ap_ distance < tf.reduce sum(tf.square(anchor — positive))

an_ distance < tf.reduce sum(tf.square(anchor — negative))

return (ap distance,an _distance)

Step 3: Define Input Layers for Anchor, Positive, and Negative

anchor _input < layers.Input(shape = (target shape + (3,)))
positive__input < layers.Input(shape = (target shape + (3,)))
negative input < layers.Input(shape = (target shape + (3,)))

Step 4: Compute Distances between Embeddings
distances < ()

(embedding(resnet.preprocess _input(anchor _input)),
embedding(resnet.preprocess _input(positive input)),
embedding(resnet.preprocess input(negative input)))

Step 5: Create Siamese Network Model
siamese__network < Model(inputs = [anchor _input, positive _input,
negative _input|, outputs = distances)

Step 6: Define the Siamese Model Class
siamese network, margin=0.5

Initialize loss tracker and accuracy tracker
train_step(data)

Start gradient tape

loss + Compute triplet loss from data
accuracy < Compute accuracy from data
Apply gradients to model weights

Update loss and accuracy metrics

return tracked metrics

Step 7: Compile the Siamese Model

siamese__model < SiameseM odel(siamese _network)
stamese__model — siamese _model.compile(optimizer
Adam(0.0001), metrics[accuracy])

Step 8: Return the Compiled Sidihese Model
| return siamese model
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The SiameseModel class defines the main architecture for the Siamese
network used in the proposed kinship verification model. This class inherits from
the Keras Model class, which allows custom behavior for training and testing loops.
The primary objective of this class is to compute the triplet loss based on the
embeddings of anchor, positive, and negative images, and to optimize the model
using this loss.

The class is initialized with two primary components: the siamese_network
and the margin. The siamese_network represents the core model responsible for
generating the embeddings of the anchor, positive, and negative samples, and for
computing the distances between the anchor-positive and anchor-negative pairs. The
margin is a hyperparameter used in the triplet loss function to define how much closer
the anchor-positive pair should be compared to the anchor-negative pair.

The key method in the class is train_step. In this method, the triplet loss
is computed during the training process. A GradientTape is used to record the
operations and compute the loss. The gradients of the loss with respect to the
model’s weights are then computed. These gradients are applied to update the
model’s parameters using the specified optimizer.

The test_step method is similar to the train_step, but it is used during the
evaluation phase on validation or test data. This function computes the loss and
accuracy without updating the model weights.

The _compute_loss method calculates the triplet loss. This loss is defined as the
difference between the anchor-positive distance and the anchor-negative distance,

enforced by the margin parameter. The result is passed through the tf.maximum
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function to ensure non-negative values, thereby preventing the loss from going below
Zero.

The _compute_accuracy method computes the accuracy by comparing the
anchor-positive distance with the anchor-negative distance. If the anchor-positive
distance is smaller than the anchor-negative distance, the prediction is considered
correct.

Finally, the metrics property returns the loss and accuracy trackers, which keep
track of the average values for the loss and accuracy during training or testing.

The SiameseModel is compiled with the Adam optimizer and the model is set

to track accuracy as an evaluation metric.

5.1.4.1. Distance Layer

The Distancelayer is a custom layer that computes the Euclidean distance

between the embeddings of the anchor-positive and anchor-negative image pairs:

s [t calculates the squared difference between the anchor and positive

embeddings, and between the anchor and negative embeddings.

» The distances (ap_distance and an_distance) are the output of the Siamese

network.

5.1.4.2. Loss Function

The triplet loss is defined as:

L(A, P,N) = max (||f(A) — f(P)|* = lf(A) = f(N)||* + margin, 0) (5.1)
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where f(A), f(P), and f(N) are the embeddings of the anchor, positive, and negative
images, respectively, and margin is a hyperparameter that defines how much larger
the distance between the anchor-negative pair should be compared to the anchor-

positive pair.

5.2. Model Compilation

The SiameseModel class is compiled with the Adam optimizer and accuracy as the
evaluation metric. The model is trained with a custom training loop, which applies
the triplet loss to optimize the Siamese network. It also calls the hyperparameter
tunning while training on folds and after the model is trained and when model predict
is called, the F1-Socre method is used to get the values for each fold. The next

sections explain in detail the used tuning and the F1-Score function implemented.

5.2.1. Hyperparameter Tuning

The hyperparameter tuning process in the proposed model is managed through
the function that creates the ResNet50 where some hyperparameters from the
dense layers are tuned using Keras Tuner. This allows for an automated search to
find the best set of hyperparameters for the model. First, the number of filters in
the convolutional layers is a tunable hyperparameter. This is defined with
hp.Int(’conv_filters’, min_value=32, max_value=256, step=32). It
searches for the optimal number of filters (within the range of 32 to 256) to apply

to the convolutional layers, allowing flexibility in learning capacity. Next, the

76



5.2. Model Compilation

activation function for the convolutional layers is also tunable, with relu being the
available option. This is specified with hp.Choice(’conv_activation’,
values=[’relu’]). The goal here is to choose the optimal activation function that
will best help the model learn non-linear relationships in the data. Additionally,
the number of neurons in the dense layers is a tunable hyperparameter. For the
first dense layer, hp.Int(’unitsD1’, min_value=32, max_value=512,
step=128) allows for a range of 32 to 512 units. For the second dense layer,
hp.Int(’unitsD2’, min_value=32, max_value=256, step=128) defines the
search space from 32 to 256 units. This flexibility allows the model to search for
the best configuration in terms of complexity and capacity in the dense layers. To
stabilize and speed up the training process, Batch Normalization is applied after
each dense layer. This helps improve convergence and ensures that the model
generalizes better by mnormalizing the activations. The hyperparameter
optimization is carried out using the Random Search strategy in Keras Tuner.
During training, the model is built 3 times with different hyperparameter
combinations, and performance (measured by validation accuracy) is evaluated to
find the best-performing set of hyperparameters. Each of these 3 times the model is
trained during 15 ephocs. This is the Python code used to start the tuning search

using the RandomSearch method provided by Keras Tuner:

Listing 5.1: Model Tuning for the Current Fold

\# Define the model tuning for the current fold

tuner = RandomSearch (
build_siamese_model, # Assuming build siamese model is defined elsewhere
objective—’val_accuracy’,
max_trials=3, # Adjust based on your needs

executions_per_trial=1,
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directory=f’my_dir_fold_{fold}’,
project_name—=f’siamese_network_fold_{fold}’

# Perform the hyperparameter search on the current fold
\tuner.search(train_fold, epochs=15, validation_data=val_fold, verbose=1)

Finally, once the optimal hyperparameters are determined, the embedding
model is integrated into the Siamese network. This ensures that the chosen
hyperparameters contribute to effective and accurate kinship verification in the

Siamese network model.

5.2.2. F1-Score method

The F1-Score is an essential metric in evaluating the performance model network.
The proposed model used it for the kinship verification tasks as a manner to check the
models’ behavior. The implemented F1-Score method evaluates the model’s ability to
distinguish between related (anchor-positive) and unrelated (anchor-negative) pairs
based on their distances. The function evaluateModel takes three main inputs:
the trained Siamese model, a dataset of triplets consisting of anchor, positive, and
negative images, and a threshold value used to classify whether pairs of images
are related or not which is set to 0.5. The model processes the input triplets by
predicting two distance values: the anchor-positive distance (ap_distance) and the
anchor-negative distance (an_distance). These distances represent how similar the
anchor image is to the positive image and how dissimilar the anchor is from the
negative image, respectively.

For each triplet, the function compares the anchor-positive distance with the

threshold. If the distance is smaller than the threshold, the model predicts that the
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images are related, and the predicted label is 1. But, if the anchor-negative distance is
greater than the threshold, the model predicts that the images are unrelated, and the
predicted label is 0. The ground truth values are set as 1 for the anchor-positive pairs
(since they are related) and 0 for the anchor-negative pairs (since they are unrelated).
Once the true and predicted labels have been generated for the entire dataset, the
F1-Score is computed. Algorithm 3 shows a pseudocode of the implemented method.

The F1-Score is a measure that balances both precision and recall, making it
particularly useful in scenarios such as kinship verification, where both false positives

and false negatives must be minimized. The F1-Score is calculated using the formula:

Fl— 9« precision X recall

precision + recall
Precision is the fraction of true positive predictions out of all positive predictions
made by the model, while recall is the fraction of actual positive pairs correctly
identified by the model. The final F1-Score provides a comprehensive evaluation of

the model’s performance across each fold in the cross-validation process.
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Algorithm 3 Pseudo Code for F1-Score applied to Siamese Network

Input: Dataset of triplets (anchor, positive, negative), trained Siamese model,
threshold

Output: F1-Score for each fold

Function evaluateModel (model, dataset, threshold):
Initialize empty lists: y_true and y_pred

for batch in dataset do
Extract anchor, positive, and negative images from the batch

(ap_distance,an_distance) <— model.predict([anchor, positive, negative])

for i in range(len(ap_distance)) do

Append 1 to y_true for positive pair (anchor-positive)
if ap_distance[i] < threshold then
| Append 1 to y_pred

end

else
| Append 0 to y_pred

end

Append 0 to y_true for negative pair (anchor-negative)

if an_distance[i] > threshold then
| Append 1 to y_pred kinship

end

end

Append 0 to y_pred

end

Compute the F1-Score using y_true and y_pred
return F'1-Score

The pseudocode of Algorithm 3 enables the calculation of the F1-Score for each
fold during cross-validation, allowing for a detailed assessment of the model’s ability
to generalize to unseen data. By measuring the model’s performance in distinguishing
between related and unrelated pairs, the F1-Score provides a valuable metric for

evaluating the effectiveness of the Siamese network in kinship verification tasks.
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5.3. Limitations and Requirements

The kinship verification model developed for the Families in the Wild (FIW)
dataset faces several key limitations, primarily stemming from the quality and
balance of the dataset itself. The FIW dataset is highly unbalanced, with
significant variation in the number of images available for each family and
individual. Additionally, many images in the dataset are of poor quality, including
issues like side poses, dark glasses, and patches that obscure key facial features.
These factors make it challenging to apply transformation techniques effectively
across the dataset, limiting the model’s capacity to consistently analyze kinship
relationships.

Another significant challenge is the need for manual intervention during data
cleaning. Given the inconsistent quality of the images, the data preparation process
requires extensive human oversight to filter out low-quality images and ensure that
only suitable images are used for training and validation. This manual curation,
however, can sometimes lead to the exclusion of high-quality images, and in some
cases, unsuitable images may still be retained due to the complexity of the dataset.
Moreover, the presence of multiple types of relationships within a single family, such
as grandparents, in-laws, and siblings, introduces further complexity, as the model
must account for these varying relational dynamics.

The transformation of images, particularly from infancy to adulthood, poses
additional difficulties. Some individuals in the dataset may have only a single
image, and others may have images from infancy that do not transform well into

adult representations, resulting in a lack of suitable data for certain subjects. In
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such cases, the model may struggle to generalize effectively. These limitations
highlight the need for a robust approach that can handle the dataset’s variability
and maintain performance despite the challenges associated with poor-quality
images and diverse familial relationships.

The requirements for the kinship verification model using the Families in the Wild
(FIW) dataset are centered around the need for high-quality, balanced image data
and effective preprocessing techniques. The model requires a substantial amount
of images per individual to accurately learn kinship relationships, as well as the
ability to handle varying facial features across age transformations. Preprocessing is
critical to remove noise and artifacts from the images, ensuring that facial features
are clearly visible for analysis. Additionally, the model necessitates computational
resources capable of efficiently training deep convolutional networks, such as GPUs,
given the complexity of the ResNet50 architecture and the need for hyperparameter
tuning through methods like RandomSearch. Lastly, the dataset must be cleaned to
eliminate low-quality or irrelevant images, ensuring the model has the most suitable
data for kinship verification tasks.

Some technical requirements where the model was run were:

1. Personal computer with Linux or Windows operating system with access to

internet.

2. A Google Colab Pro account with 215.74 compute units available, a T4 High

RAM instance running Python3.

3. Open source Frameworks for deep learning, such as TensorFlow Keras and Life
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Span Age Transformation Synthesis (LATS).

4. A GitHub account to store the data and trained models.

5.4. Implementation

The implementation of the proposed kinship verification model is available in
the GitHub repository https://github.com/ppiedra/FIWDatabase.git. Clone this
repository to have access to all the necessary code and datasets used in this research
to train the Siamese neural network model, and evaluate its performance. Appendix
section 9 has information of the required branch and what it contains. The URL
to the repository and branch https://github.com/ppiedra/FIWDatabase/tree/
final. The model takes 1 hour to run on each transformed dataset based on the
proposed evaluation set up, more information about the evaluation mode can be

found in 6.
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Chapter 6

Results
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6.1. Kinship Verification Model Evaluation

This chapter presents the results obtained from evaluating the proposed kinship
verification model across different age transformation scenarios. The evaluation was
conducted using a 5-fold cross-validation strategy applied on the transformed
dataset where relations father-children and mother-children were tested across age
transformation scenarios of 5, 15, and 30 years. Each scenario provides insights into
how well the model adapts to variations in age transformations and familial
features. The findings and observations from this chapter are further discussed and

analyzed in the Discussion chapter.

6.1. Kinship Verification Model Evaluation

To ensure the robustness and reliability of the proposed model, a comprehensive
evaluation was conducted using a 5-fold cross-validation strategy. This approach is
chosen to enhance the internal wvalidity of the results obtained from the
experiments. By employing 5-fold cross-validation, the entire dataset is partitioned

into five distinct subsets or "folds,"

with each fold serving as a validation set once
while the remaining folds form the training set. This procedure allows every data
point to be utilized for both training and validation purposes, thereby providing a
more reliable estimate of the model’s performance and helping to mitigate
overfitting risks [3, 26, 32|.

The evaluation is performed across different age transformation scenarios (5, 15,

30 years) applied for the father-children and mother-children relations. Diagram 6.1

captures the steps part of the evaluation. More detail of each step is explained below:
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Training fold Tramning fold

e 'E')atas'Et Trainingfold  Training fold . :
shuffled e CVidedin5- R . S Validation fold
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15 epochs to train the model

3 times to tunning hyperparameters

MES, F1-Scare, Accuracy recorded

Figure 6.1: Evaluation process of proposed model.

The selected 144 families from the dataset will be shuffled to ensure randomness

and avoid any bias.

The dataset was divided into five folds, with each fold containing around 28
families. This division ensures that the model is trained and validated on

different subsets of data in each iteration.

In each fold iteration, one fold served as the validation set, while the other
four folds were used as the training set. The performance metrics, including
Accuracy, Fl-score, and Mean Squared Error (MSE), were recorded for each

fold iteration.

After all five iterations, the results of each metric from the folds were averaged

to obtain a final performance estimate for the model.
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Kinship Verification Model Evaluation

= Each fold runs on 15 epochs to train the model.

= Each fold tries the hyperparameter adjustment 3 times.

= To complete the analysis, all five folds were evaluated based on the metrics

obtained, including accuracy, Fl-score, and MSE. The fold with the best

performance and the most effective hyperparameter combination was selected.

The LATS technique was employed to transform the database, contributing to the

age transformation scenarios. Then, the hyperparameters that were tuned are:

= conv_filters

This indicates the number of convolutional filters used in the convolutional
layers of the neural network. Convolutional filters are responsible for detecting

features in the input images, such as edges and textures.

conv__activation: ’relu’

This specifies the activation function used in the convolutional layers. ’relu’
stands for Rectified Linear Unit, which is a common activation function in
neural networks. The ReLU function outputs the input directly if it is
positive; otherwise, it outputs zero. This helps the model learn complex
patterns while maintaining computational efficiency and avoiding issues like
vanishing gradients. It was selected as a default value for the ResNet50

model.

unitsD1

This denotes the number of neurons in the first dense (fully connected) layer
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6.1. Kinship Verification Model Evaluation

of the neural network. Dense layers are used to combine features extracted by

convolutional layers and perform the final classification or regression tasks.

= unitsD2
This indicates the number of neurons in the second dense layer of the ResNet50
network. Like the first dense layer, this layer also contributes to processing the

extracted features before the output layer.

These are the results categorized by relationship type (father-children and mother-
children) and the different age transformation scenarios (5, 15, and 30 years). Each
scenario provides insights into how the proposed model performs under different age

transformations and hyperparameter tuning.

6.1.1. Kinship relation father-children

The analysis results for the relation father-children applied into the proposed
kinship verification model provides insights of how the model relates the images by
using the face features transformed into different ages. By applying the model to
images with varying age transformations (5, 15, and 30 years), it aims to understand
how well the model can generalize and maintain accuracy when faced with the natural

aging process.

6.1.1.1. 5 years Image Transformation Scenario

For the 5 years image transformation, the best performance happened in fold

four, with the next results:
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= [t presents an accuracy of 0.85.

= The hyperparameter tuning for the convolutional filters used in the ResNet50

network shows that the model uses 96 filters.

» For the value of neurons selected for the first dense layer (unitsD1) the model

was tuned with 160 neurons.

» The number of neurons selected on the second dense layer (unitsD2) the model

was tuned with 160 neurons as well.

Table 6.1 shows the hyperparameter tuning folds values used during the
training of the proposed kinship verification model. The columns show the values
of convolutional filters, the activation function used in the convolutional layers and
the number of neurons in the first and second dense layer of ResNet50 network.
The convolutional filters on fold 2 were the lowest with 64 while the highest was

used in fold 5 with 224.

Table 6.1: Hyperparameter values for 5 years old transformation

Fold | conv_filters | conv activation | unitsD1 | unitsD2
1 128 relu 288 32
2 64 relu 288 160
3 128 relu 288 32
4 96 relu 160 160
5 224 relu 32 32

Figure 6.2 shows the accuracy obtained on each fold. The lowest achieved
accuracy happened in fold 3 where the model got a 0.75 meaning the

hyperparameter combination might affect the ability to generalize kinship
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verification while 0.85 was the highest accuracy shown in fold 4 where the model

successfully learned the relationship between age-transformed image and face kin

features.

0.200

0.875

0.850 A

0.825 A

Accuracy

0.775 7

0.750

0.725 A

0.700

Accuracy 5 year transformation escenario peer fold

0.800 A

Fold 1 Fold 2 Fold 3
Folds

T T
Fold 4 Faold 5

Figure 6.2: Hyperparameter values for each fold in the father-children 5-year
transformation scenario.

Table 6.2: Average validation metrics across all folds

Metric Average Value
Average Validation F1-Score 0.65
Average Validation MSE 0.37
Average Validation Accuracy 0.69

Table 6.2 shows the average validation metrics for the model’s performance across

all the five folds, where F1-Score average was 0.65 indicating the balance between

precision and recall, 0.37 was the average MES showing the prediction error where
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lower values near 0 means better performance and the validation accuracy of 0.69
indicating the average of folds to identify correctly kinship relationships.
6.1.1.2. 15 years Image Transformation Scenario

For the 15-year image transformation, the best fold was the number four, with

the following results:

The model achieved an accuracy of 0.80.

The hyperparameter tuning for the convolutional filters used in the ResNet50

network shows that the model uses 256 filters.

For the first dense layer (unitsD1), the model was tuned with 288 neurons.

The second dense layer (unitsD2) utilized 32 neurons.

Table 6.3 summarizes the hyperparameter tuning folds values used during the
training of the proposed kinship verification model when images were transformed
to 15 years old. The columns show the values of convolutional filters, the activation
function used in the convolutional layers and the number of neurons in the first and
second dense layer of ResNet50 network. The convolutional filters on fold 2 were the
lowest with 32 while the highest was used in fold 4 and 5 with 256.

Figure 6.3 shows the accuracy obtained for each fold in the 15-year transformation
scenario. The lowest accuracy was observed in Fold 2 and 3, where the model achieved
both 0.75. The highest accuracy occurred in Fold 4, where the model reached about

0.80. In table 6.4 presents the average validation metrics across all folds for the 15-
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Table 6.3: Hyperparameter values for each fold

Fold | conv_filters | conv activation | unitsD1 | unitsD2
1 64 relu 288 32
2 32 relu 288 160
3 96 relu 160 160
4 256 relu 288 32
5 256 relu 416 32

—_— Accuracy 15 year transformation escenario peer fold
0.875 1
0.850 A
0.825 A
Fry
g 0.800
B
0.775
0.750 A
0.725 A
0.700

T T T T T
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Folds

Figure 6.3: Hyperparameter values for each fold in the father-children 15-year
transformation scenario.

year age transformation scenario. The average validation F1-Score is 0.65, indicating
a balance between precision and recall. The average validation Mean Squared Error
(MSE) is 0.39, reflecting the model’s prediction average error in all folds.The average
validation accuracy stands at 0.68, meaning the model correctly predicts kinship

relationships in 68% of cases through all the folds in average.
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Table 6.4: Average validation metrics across all folds

Metric Average Value
Average Validation F1-Score 0.65
Average Validation MSE 0.39
Average Validation Accuracy 0.68

6.1.1.3. 30 years Image Transformation Scenario

For the 30-year image transformation, the best fold was the number 4, with the

following results:

= The model achieved an accuracy of 0.82.

= The hyperparameter tuning for the convolutional filters used in the ResNet50
network shows that the model uses 64 filters, enabling it to capture a wide

range of patterns and details from the input data.

» For the first dense layer (unitsD1), the model was tuned with 288 neurons,
allowing it to capture a broad spectrum of feature combinations for more

detailed decision-making.

» The second dense layer (unitsD2) utilized 160 neurons. This configuration
indicates that the model is designed to be deep enough to handle complex

tasks by learning multiple levels of abstraction from the input data.

Table 6.5 summarizes the hyperparameter tuning folds values used during the
training of the proposed kinship verification model when images were transformed

to 30 years old. The columns show the values of convolutional filters, the activation
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function used in the convolutional layers and the number of neurons in the first and

second dense layer of ResNet50 network.

Table 6.5: Hyperparameter values for each fold

Fold | conv_filters | conv_activation | unitsD1 | unitsD2
1 96 relu 160 32
2 64 relu 288 32
3 128 relu 288 160
4 64 relu 288 160
5 256 relu 288 32

The results of the accuracy for each fold are show in figure 6.4:

Accuracy 30 year transformation escenario peer fold
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0.700

Faold 3 Fold 4 Fold 5

Folds

Fold 1 Fold 2

Figure 6.4: Hyperparameter values for each fold in the father-children 30-year
transformation scenario.

The average values for the metrics F1-Score, MSE, and accuracy are shown in

table 6.6:

94



6.1. Kinship Verification Model Evaluation

Table 6.6: Average validation metrics across all folds

Metric Average Value
Average Validation F1-Score 0.71
Average Validation MSE 0.35
Average Validation Accuracy 0.80

Fold 4 achieved the highest scores in accuracy, also it showed a low MES indicating
that the model effectively learned significant age transformation patterns without
overfitting. Overall, the model performed well with 30-year transformations, showing

noticeable improvements in both training and validation accuracy over the epochs.

6.1.2. Kinship relation mother-children

The results of the mother-children relationship in the kinship verification model
shows how facial features change across different age transformations. The model
was tested using images transformed by 5, 15, and 30 years, applying the LATS
algorithm to transform the images. The goal was to evaluate how well the proposed

model could identify kinship when facial features change over time due to aging.

6.1.2.1. Mother-Children 5 Years Image Transformation Scenario

For the 5-year age transformation applied to the mother-children relationship, the

model’s best performance was achieved in fold four, with the following key results:
= The highest accuracy achieved was 0.87.

= The ResNet50 network was tuned to utilize 160 convolutional filters, enabling

the model to capture various facial features and details from the images,
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facilitating better kinship identification.

» The first dense layer (unitsD1) was configured with 160 neurons, providing the
model with the capacity to process a wide range of feature combinations, which

might enhance its decision-making capabilities.

» The second dense layer (unitsD2) used 160 neurons, which added depth to the
model, helping it to handle more complex tasks for the kinship verification

task.

Table 6.7 presents the hyperparameters used for the mother-children 5-year
transformation scenario. The folds displayed varying values for convolutional filters,
activation functions, and the number of neurons across both dense layers of the
ResNetb0 network. Such variations across folds demonstrate that the model
captures different levels of features, with more filters detecting complex patterns
and fewer filters identifying simpler ones. The ReLU activation function remains
consistent across folds, providing non-linearity and computational efficiency. The
number of neurons in the dense layers also varies, reflecting adjustments in the

model’s capacity to process feature combinations.

Table 6.7: Results of hyperparameter values for each fold 5 years old mother-
children kinship verification

Fold | conv_filters | conv_activation | unitsD1 | unitsD2
1 64 relu 288 160
2 160 relu 416 160
3 160 relu 32 160
4 160 relu 160 160
5 224 relu 288 32
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Figure 6.5 illustrates the accuracy obtained in each fold for the 5-year
transformation scenario. The lowest accuracy was recorded in fold 3 with a value of
0.78, suggesting that certain hyperparameter combinations may affect the model’s
ability to generalize well for kinship verification. Fold 4 achieved the highest
accuracy of 0.87, which means that in this point the combination of
hyperparameters made the model improve the facial feature relation between

mother and its children.

Accuracy 5 year transformation escenario peer fold
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Figure 6.5: Accuracy across folds for 5-year age transformation in the mother-
children relationship.

Table 6.8 presents the average validation metrics for the 5-year age transformation
scenario. The model’s average validation F1-Score was 0.60. The Mean Squared

Error (MSE) averaged 0.36, indicating the model’s low prediction error, and the
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validation accuracy stood at 0.70, demonstrating consistent performance in correctly
identifying mother-child kinship relationships.

Table 6.8: Average validation metrics across all folds for 5-year mother-children age
transformation scenario.

Metric Average Value
Average Validation F1-Score 0.60
Average Validation MSE 0.36
Average Validation Accuracy 0.70

6.1.2.2. Mother-Children 15 Years Image Transformation Scenario

For the 15-year age transformation applied to the mother-children relationship,

the model’s best performance was achieved in fold four, with the following key results:
» The highest accuracy achieved was 0.89.

= The ResNet50 network was tuned to utilize 192 convolutional filters, enabling

the model to capture a wide range of patterns and details from the images.
» The first dense layer (unitsD1) was configured with 416 neurons.

» The second dense layer (unitsD2) was configured with 32 neurons.

Table 6.9 provides the hyperparameter tuning values for each fold in the mother-
children 15-year transformation scenario. The values of convolutional filters, the
activation function used in the convolutional layers, and the number of neurons in
the first and second dense layers of the ResNet50 network are displayed. All folds
have different hyperparameter combinations, which makes a slight variation in the

accuracy results.
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Table 6.9: Results of hyperparameter values for each fold in the mother-children
15-year transformation scenario.

Fold | conv_filters | conv activation | unitsD1 | unitsD2
1 32 relu 288 32
2 192 relu 416 32
3 128 relu 160 32
4 224 relu 416 160
5 128 relu 228 32

Figure 6.6 presents the accuracy obtained across all folds in the 15-year
transformation scenario. The lowest accuracy was achieved in folds 4 and 1, where
the model reached 0.83 and 0.84. The highest accuracy was achieved in fold 2 with
a value of 0.89.
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Figure 6.6: Accuracy across folds for 15-year age transformation in the mother-
children relationship.
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Table 6.10 provides the average validation metrics across all folds for the 15-
year transformation scenario. The average validation F1-Score is 0.65, indicating the
model’s ability to balance precision and recall across the dataset. The Mean Squared
Error (MSE) averaged 0.35, representing the model’s prediction error, while the
average validation accuracy was 0.77, indicating that the model correctly predicted
kinship relationships in approximately 77% of cases.

Table 6.10: Average validation metrics across all folds for 15-year mother-children
age transformation scenario.

Metric Average Value
Average Validation F1-Score 0.65
Average Validation MSE 0.35
Average Validation Accuracy 0.77

6.1.2.3. Mother-Children 30 Years Image Transformation Scenario

For the 30-year age transformation applied to the mother-children relationship,

the model’s performance results are as follows:

The highest accuracy achieved was 0.88.

The ResNet50 network was tuned with 96 convolutional filters, allowing the

model to extract significant features from the transformed images.

The first dense layer (unitsD1) was configured with 416 neurons.

The second dense layer (unitsD2) was configured with 32 neurons.

Table 6.11 presents the hyperparameter tuning values for each fold in the mother-

children 30-year transformation scenario. Each fold had different combinations of
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Kinship Verification Model Evaluation

convolutional filters and neurons in the dense layers, contributing to slight variations

in accuracy results.

Table 6.11: Hyperparameter values for each fold in the mother-children 30-year

transformation scenario.

Fold | conv_filters | conv_activation | unitsD1 | unitsD2
1 96 relu 416 32
2 64 relu 32 32
3 224 relu 288 32
4 192 relu 32 160
5 64 relu 288 160

Figure 6.7 presents the accuracy obtained across all folds in the 30-year
transformation scenario. The highest accuracy was recorded in fold 1, with a value
of 0.88, while fold 5 had the lowest accuracy at 0.82.

Table 6.12 provides the average validation metrics across all folds for the
30-year transformation scenario. The average validation F1-Score was 0.66. The
Mean Squared Error (MSE) averaged 0.33, representing the model’s prediction
error, while the average validation accuracy was 0.78, indicating that the model

correctly predicted kinship relationships in approximately 78% of cases.

Table 6.12: Average validation metrics across all folds for the 30-year mother-
children age transformation scenario.

Metric Average Value
Average Validation F1-Score 0.66
Average Validation MSE 0.33
Average Validation Accuracy 0.78
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Figure 6.7: Accuracy across folds for the 30-year age transformation in the mother-
children relationship.
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This section aims to provide a comprehensive analysis of the results shown in
chapter Results. The obtained information from the kinship verification models
across various age transformation scenarios examines the metrics observed during the
training and validation phases. The results show how different age transformations,
relationship types, and folds contributed to obtain results to discuss the model’s

performance compared with the state-of-the-art.

7.0.1. Father-Children kinship verification analysis

The analysis of the kinship verification model for the father-children relationship
across different age transformation scenarios (5, 15, and 30 years) provides insights
into the model’s ability to generalize and maintain accuracy when faced with varying
degrees of facial aging. In the 5-year image transformation scenario, the model
achieved its highest accuracy of 0.85 in Fold 4, using 96 convolutional filters and 160
neurons in both dense layers (unitsD1 and unitsD2). This configuration allowed the
model to capture changes in facial features associated with a 5-year age difference
effectively, suggesting that the model is able to identifying kinship when the images
have younger age differences. 5, 15, and 30 years age ranges were chosen based on
medical evidence suggesting that facial features between parents and their children
tend to be similar when both are in the same age range. Using photographs of
children at one, ten, and twenty years of age and their parents, Christenfeld & Hill
[40] reported that people can match fathers to 1-year-olds, consistent with the idea
that babies resemble their fathers. It is also proved that childish facial features are

more likely to identify kinship and this can be confirmed with the test that was run
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where it was found that between transforming images in age ranges of 5, 15 and 30
the kinship verification results better when images are transformed to 5 years old
showing that childish facial features are a good technique when researching on kin
relations. The consistent performance metrics in this scenario highlight the model’s
capacity to generalize across the dataset despite minor variations in facial features.
However, the average validation accuracy across all folds was 0.69, with an F1-Score
of 0.65 and MSE of 0.37, indicating some variability in performance, possibly due to
the less pronounced aging effects. As the age transformation increased to 15 years,
the model’s best accuracy in Fold 4 was 0.80, with 256 convolutional filters and 288
neurons in the first dense layer and a reduced number of 32 neurons in the second
dense layer. The average validation accuracy was slightly lower at 0.68, with an
F1-Score of 0.65 and MSE of 0.39 which might suggest that the model might have
some difficulty generalizing to more complex or diverse cases. These values show that
while the model does a decent job, it still struggles with predicting accurately when
the data is more challenging. The higher MSE indicates that there are some errors in
the predictions, and the model could improve with better tuning or adjustments to
handle these cases more effectively. The 30-year transformation scenario presented
the most considerable challenge due to the extensive changes in facial features over
time, yet the model achieved its highest accuracy of 0.82 in Fold 4, with a different
configuration of 64 convolutional filters and 288 and 160 neurons in the dense layers.
The average validation accuracy for this scenario was 0.80, with an F1-Score of 0.71
and MSE of 0.35. The most effective kinship verification was observed in the 5-

year scenario, where younger aging transformations made it easier for the model to
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determine familial relationships.

Table 7.1: Comparison of Father-Children Relationship Accuracy Across Different
Kinship Verification Models

Reference Model/Approach Accuracy
[21] Cubic Norm and Kernel-based Bi-directional PCA 0.78
6] Kinship Verification via Reference List Comparison 0.82
[19] Weighted Graph Embedding-Based Metric Learning 0.79
4] Cross-Generation Feature Interaction Learning 0.83
[20] Age-uniform Feature Learning 0.76
[22] Discriminative Subspaces of Color Components 0.77
[23] Neighborhood Min Distance Descriptor 0.74
Proposed Model | Kinship Verification with Age Transformation 0.85

Table 7.3 shows a comparison with the state-of-the-art models where it is used
age transformation as based to find kinship verification, while table 7.4 shows a
comparison of the proposed model with other kinship verification models that also
utilize age transformation. It can be pointed out that the proposed model, which
incorporates age transformation techniques within a convolutional neural network
(ResNet50) applied into a Siamese network, is specifically designed to enhance the
kinship verification process by transforming facial images across different ages. This
method allows the model to capture subtle changes in facial features due to aging,
resulting in a high accuracy of 0.85 for the father-children relationship. This
performance surpasses that of the "Kinship Identification using Age Transformation
and Siamese Network" model, which achieved an accuracy of 0.78. Although the
Siamese Network approach is effective in learning pairwise similarities, it does not
explicitly focus on capturing age-specific transformations in a robust manner and
also this research is using all the Families in the Wild dataset while the proposed

model was trained with a subset of it. Similarly, the "Cross-Generation Feature
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Interaction Learning" model, which focuses on learning interactions between
features across different generations, achieved an accuracy of 0.83. While this
approach does consider age-related changes, it does not apply explicit age
transformations to the images, which may limit its ability to handle the nuanced
variations in facial features over time as the proposed model does. Additionally, the
"Age-uniform Feature Learning" model, which focus on learning features consistent
across different ages to neutralize the age effect, achieved an accuracy of 0.76. This
approach aligns with the concept of age transformation but focuses on maintaining

feature uniformity rather than directly modeling transformations.

Table 7.2: Comparison of Father-Children Relationship Accuracy for Models Using
Age Transformation

Reference Model/Approach Accuracy
[1] Kinship Identification using Age Transformation and Siamese Network 0.78
[4] Cross-Generation Feature Interaction Learning 0.83
[20] Age-uniform Feature Learning 0.76
Proposed Model | Kinship Verification with Age Transformation 0.85

7.0.2. Mother-Children kinship verification analysis

The analysis of the kinship verification model for the mother-daughter
relationship across various age transformation scenarios (5, 15, and 30 years)
provides valuable insights into the model’s ability to handle facial aging while
maintaining accurate kinship identification. In the 15-year transformation
scenario, the model achieved its highest accuracy of 0.89 in Fold 4, utilizing 160
convolutional filters and 416 neurons in the first dense layer (unitsD1) and 160

neurons in the second dense layer (unitsD2). This configuration allowed the model
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to capture the subtle facial features typically associated with a 5-year difference,
demonstrating its capacity to effectively identify kinship when the facial aging
effect is minimal. As medical research has suggested, facial features between
parents and children tend to be more recognizable when the age difference is
relatively small. Christenfeld & Hill [40] reported that people are better able to
identify kinship between parents and younger children, which is consistent with the
model’s higher accuracy in the 5-year transformation scenario.

For the 5-year transformation, the model achieved its highest accuracy of
0.88, with 192 convolutional filters and 416 neurons in the first dense layer. This
adjustment in the network architecture reflects the need to capture more significant
changes in facial features over time. While the model remains effective at
identifying kinship, the challenge of facial feature variation due to more pronounced
aging becomes evident in this scenario, as indicated by a slight decrease in
performance metrics. The average validation accuracy was 0.77, with an
F1-Score of 0.65, and MSE of 0.35. These metrics show that the model can still
generalize well across different data subsets but faces challenges when dealing with
more noticeable facial aging effects.

In the 30-year transformation scenario, the model achieved its highest
accuracy of 0.88 in Fold 1, with 96 convolutional filters and 416 neurons in the
dense layers. This indicates that, despite the significant facial changes over a
30-year period, the model is still capable of capturing familial resemblance, though
the overall performance showed signs of strain due to the complexity of handling

such extensive age transformations. The average validation accuracy across all
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folds was 0.78, with an F1-Score of 0.66 and an MSE of 0.33, showing that the
model performs adequately when tasked with identifying kinship in the presence of
more substantial facial variations.

Overall, the mother-daughter relationship scenario reinforces that the
model performs best when age transformations are minimal, allowing it to capture
familial resemblance more effectively. While the model remains robust even with
larger transformations, further optimizations would be beneficial to handle more
pronounced aging effects in the facial features, ensuring consistent accuracy across

all age ranges.

Table 7.3: Comparison of Mother-Children Relationship Accuracy Across Different
Kinship Verification Models

Reference Model/Approach Accuracy
[21] Cubic Norm and Kernel-based Bi-directional PCA 0.62
[5] Cross-Generation Kinship Verification with Sparse Discriminative Metric 0.80
[6] Kinship Verification via Reference List Comparison 0.69
[19] Weighted Graph Embedding-Based Metric Learning 0.82
[4] Cross-Generation Feature Interaction Learning 0.82
[20] Age-uniform Feature Learning 0.87
[22] Discriminative Subspaces of Color Components 0.84
[23] Neighborhood Min Distance Descriptor 0.83
Proposed Model | Kinship Verification with Age Transformation 0.89

Table 7.3 shows a comparison between the proposed model and other state-of-
the-art kinship verification models. The table shows that the proposed model for
kinship verification, which incorporates age transformation techniques, demonstrated
a strong performance with an accuracy of 0.89 for the mother-children relationship.
The proposed model shows the highest-performing approach among the rest of the

state-of-the-art models. This highlights the effectiveness of the proposed model in
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handling the task of identifying kinship relationships when facial features change due
to age progression.

When compared to earlier approaches like the Cubic Norm and Kernel-based Bi-
directional PCA, which achieved a much lower accuracy of 0.62, the proposed model
shows a substantial improvement. This increase in performance can be attributed to
the integration of age transformation, which enhances the model’s ability to capture
changes in facial features over time. Similarly, models like Cross-Generation Kinship
Verification with Sparse Discriminative Metric (0.80) and Kinship Verification via
Reference List Comparison (0.69) fall short of the accuracy achieved by the proposed
model, further demonstrating it got a better performance in dealing with age-based
facial feature transformations.

Other high-performing models, such as Age-uniform Feature Learning (0.87)
and Discriminative Subspaces of Color Components (0.84), also achieved
competitive results, but the proposed model’s use of explicit age transformations
offers an advantage. These transformations allow the model to better account for
the natural aging process, which is critical in kinship verification tasks involving
individuals of significantly different ages.

It is important to mention that many of the models referenced in this
comparison were tested on different datasets, including the Cornell, KinFaceW-I,
and KinFaceW-II datasets. These datasets, while widely used in kinship
verification research, present different challenges compared to the FIW dataset,
which was used to validate the proposed model. The FIW dataset includes a more

diverse set of familial relationships, making it a more challenging for kinship
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verification. Despite this, the proposed model’s ability to maintain high accuracy
demonstrates its robustness and adaptability to real-world kinship verification

tasks, where age progression plays a significant role.

Table 7.4: Comparison of Mother-Children Relationship Accuracy for Models Using
Age Transformation

Reference Model/Approach Accuracy
[1] Kinship Identification using Age Transformation and Siamese Network 0.74
[4] Cross-Generation Feature Interaction Learning 0.82
[20] Age-uniform Feature Learning 0.87
Proposed Model | Kinship Verification with Age Transformation 0.89

Table 7.4 compares the proposed model with other state-of-the-art models that
also includes image transformation as part of their solutions. The table illustrates
that the proposed model achieves an accuracy of 0.89 in the mother-children
relationship, better than the accuracies of models like Kinship Identification using
Age Transformation and Siamese Network (0.74) and Cross-Generation Feature
Interaction Learning (0.82). Both models have shown strong performances,
particularly in extracting features from transformed images. However, the proposed
model benefits from an enhanced architecture that combines age transformation
with a Siamese network tuned for discriminative feature extraction, allowing for
better recognition of familial relations, even across varying age gaps.

In comparison, the Age-uniform Feature Learning approach also achieves high
accuracy (0.87), emphasizing the importance of minimizing the age discrepancy
between parent and child images. This model implements a GAN-based
transformations to unify the age of the images, similar to the Life Span Age

Transformation (LATS) algorithm used in the proposed model, but the slight
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improvement in accuracy of the proposed model suggests a more effective handling
of age-related facial feature changes.

It’s also important to mention that the models Age-uniform Feature Learning
and Cross-Generation Kinship Verification, were tested on datasets like
KinFaceW-I, KinFaceW-II, and Cornell KinFace, which differ from the FIW
dataset used in the proposed model. This makes direct comparisons somewhat
challenging, as the data characteristics (e.g., resolution, pose variation, image
quality) vary across datasets. Despite this, the proposed model shows robust
performance across various mother-children relationships and demonstrates its

capacity to generalize well to the challenging FIW dataset.

7.0.3. General results analysis of the proposed model

In comparing the best accuracies achieved for the father-children and mother-
children relationships, it is observed different trends in performance depending on
the age transformation applied. For the father-children relationship, the highest
accuracy of 0.85 occurred when the images were transformed to represent a 5-year
age difference, as seen in Figure 7.1. In contrast, the mother-children relationship
achieved its best accuracy of 0.89 when the images were transformed to reflect a
15-year age difference, as seen in Figure 7.2.

One of the key factors influencing the accuracy of kinship verification models is
the age of the individuals being compared. Several studies have shown that facial
features of younger individuals tend to exhibit more childish characteristics, such

as rounder faces, larger eyes, and softer contours. These traits are typically less
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Figure 7.1: Best accuracy got on 5-years old transformation for relation Father-
Children

distinct and more similar across family members during early ages, making it easier
for models to detect familial resemblance. One study on kin recognition emphasizes
that kin are more likely to be recognized through phenotypic traits like facial features,
particularly when individuals are younger and share more similarities with their
family members [41]. Also, humans naturally have an enhanced ability to detect
relatedness based on facial features in younger individuals. This ability is due to
the fact that their features haven’t yet fully developed into distinct adult traits,
making familial resemblance more apparent [42]|. Studies also has shown how facial
resemblance plays a role in kinship recognition, indicating that younger individuals
exhibit more pronounced and distinguishable facial features that make it easier to

detect familial relationships [43]. Also, there is a study that explored children’s
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Figure 7.2: Best accuracy got on 15-years old transformation for relation Mother-
Children.

ability to detect kinship through facial resemblance, reinforcing the idea that facial
features of younger individuals are more recognizable and similar within families [44].

The image 7.3 shows the accuracy values got for each age transformation on the
father-children and mother-children relations. The model achieved the highest
accuracy of 0.85 in the 5-year transformation scenario for father-children
relationships.  This suggests that the model is most effective when the age
difference is minimal, allowing it to detect familial resemblance more accurately. As
the age transformation increased to 15 years, the accuracy dropped to 0.80. This

decline indicates that the model finds it more challenging to identify kinship
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Figure 7.3: Comparison of Father-Mother accuracy through age transformations.

features as the age gap increases, likely due to more pronounced changes in facial
features over time. Interestingly, the accuracy improved slightly to 0.82 in the
30-year transformation scenario, suggesting that the model could still capture some
key familial features despite significant aging effects.

In contrast to the father-children results, image 7.3 shows that the
mother-children relationship showed the highest accuracy in the 15-year
transformation scenario, achieving 0.89. This result suggests that the model is
better at capturing familial features in this scenario, possibly due to more
pronounced maternal facial traits becoming evident as children age, this result
could be related with studies that support the idea that humans possess the ability
to detect kinship through facial traits, emphasizing that these abilities may be
affected by the degree of relatedness and could be more pronounced when it comes

to maternal features as individuals age [45]. This finding aligns with the concept

115



that the model is better at capturing familial features, especially maternal traits, as

children grow older, as seen in the 5 years transformation shown on figure 7.4.

Figure 7.4: Transformation mother-kid to 5 years old.

The accuracy in the 5-year transformation scenario was slightly lower at 0.87.
Despite this, it still demonstrates the model’s ability to detect kinship relationships
effectively when the age difference is minimal. The accuracy remained high at 0.88
in the 30-year transformation scenario, indicating that the model maintained strong
performance despite the larger age gap.

The notion that facial features are more similar in early ages is also supported
by studies which suggests that younger individuals retain features that are less
altered by external factors such as lifestyle or environmental exposure. In that way,
when comparing kinship relations at younger ages, models are more likely to detect
similarities in these neutral, “childish” facial features [40]. Kin recognition signals

are more evident in younger faces, which supports the notion that kinship
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verification is more effective when using images of individuals at an earlier age, as
facial features are less altered by external factors [46].

Given this, it is logical to suggest that kinship verification models perform more
effectively when images from earlier ages are used like 5 years old or 15 years old as
proved using the proposed model, as they are less impacted by variations introduced
by aging. The results from the proposed model validate the fact that young features
in faces makes easier to check for kin relations, as it was achieved higher accuracy in

detecting kinship when younger age transformations were applied to the images.

7.0.4. Contributions

Some of the highlights of the analysis and contributions of this research are listed:

= The proposed model demonstrates improvements in accuracy while handling
age-related variations, where the highest accuracy of 0.85 occurred when the
images were transformed to represent a 5H-year age difference in father-children
relation while, the mother-children relationship achieved its best accuracy of

0.89 when the images were transformed to reflect a 15-year age difference.

= The model effectively captures changes in facial features with a 5-year and 15-
year age difference, making it suitable for identifying kinship with younger age

differences.

» The model effectively captures changes in facial features when there is a 5-
year and 15-year age difference, making it particularly suitable for identifying

kinship relations with younger age groups. This result aligns with theories such
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as those of Christenfeld & Hill [40], who suggested that youthful facial features
are easier to match with parents. Their research demonstrated that people
could accurately pair fathers with their 1-year-old children, underscoring the

advantage of using youthful features for kinship verification.

The approach of applying direct age transformations proves to be more effective
in kinship verification, as it provides a detailed and dynamic understanding of
how aging impacts facial features, allowing for more accurate identification of

familial relationships across different age spans.

The model performs optimally when images are transformed to represent a
5-year age difference in father-children relations and a 15-year age difference
in mother-children relations. These findings suggest that youthful and
adolescent facial features are more reliable for kinship verification than older
ones. The ability of the model to effectively distinguish familial traits in early

and adolescent stages strengthens its reliability across varying age groups.

The proposed approach of applying direct age transformations proved to be
more effective than other state-of-the-art models for kinship verification. By
focusing on dynamic facial feature changes caused by aging, the model allows
for more precise identification of familial relationships across different age
ranges. This is especially evident when compared with other models, as seen

in Table 7.5, where the proposed model achieved a global accuracy of 0.87.

Additionally, the model benefits from using a comprehensive dataset (FIW),

which contains diverse family relations and is tested across various familial
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scenarios. This enhances the model’s generalization capabilities and practical

application, making it a valuable contribution to the field of kinship verification.

Table 7.5: Comparison of Global Accuracy Across Different Kinship Verification
Models

Reference Model/Approach Accuracy
[21] Cubic Norm and Kernel-based Bi-directional PCA 0.78
6] Kinship Verification via Reference List Comparison 0.82
[19] Weighted Graph Embedding-Based Metric Learning 0.79
[4] Cross-Generation Feature Interaction Learning 0.83
[20] Age-uniform Feature Learning 0.76
[22] Discriminative Subspaces of Color Components 0.77
[23] Neighborhood Min Distance Descriptor 0.74
[24] Deep Relational Features 0.81
Proposed Model | Kinship Verification with Age Transformation (Proposed Model) 0.87

The contributions of this work underscore its significance in advancing the field
of kinship verification, particularly in its ability to handle age-related variations
with improved accuracy. The proposed model demonstrated improves in accuracy,
achieving a 0.85 in father-children relationships with a 5-year age difference and 0.89
in mother-children relationships with a 15-year difference. This reflects the model’s
strength in identifying kinship in younger age groups, aligning with theories that
suggest youthful facial features are more indicative of familial ties. The model present
a global accuracy of 0.87 which in comparison to similar models that implements
age transformation improved this aspect. Additionally, the use of the FIW dataset
highlights the model’s versatility and its potential to generalize across diverse family
relationships, making it a valuable and innovative contribution to the field of kinship

verification.
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7.0.5. Limitations

The limitations encountered during the development of the proposed kinship
verification model reflect some challenges inherent in working with real-world data.
While these factors had an impact on the overall analysis, they also provided
insights into areas for future refinement. The FIW dataset, for example, had some
instances of incomplete or lower-quality images, which influenced the
transformation process. Additionally, the complexity of diverse family relationships
in the dataset introduced certain challenges when focusing specifically on
mother-children and father-children relationships. Despite these aspects, the
model’s ability to adapt and perform effectively underscores its potential and offers
valuable learning experiences for future improvements.

The discussion presented highlights the strengths, contributions, and challenges
of the proposed kinship verification model across different age transformation
scenarios. The model demonstrated strong performance in identifying familial
relationships, particularly in younger age transformations, reinforcing the
effectiveness of incorporating age progression techniques and the fact that kin
features are more likely to be similar between family members when photos are at
young ages. One of the key contributions of this research is the model’s ability to
handle age-related variations, capturing changes in facial features with 5-year and
15-year age differences, which proved to be effective for kinship verification in
younger age groups. This aligns with studies suggesting that youthful features are
more indicative of familial relationships, as demonstrated by the high accuracy

achieved in father-children and mother-children scenarios. Despite certain
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limitations, such as data quality issues and the manual intervention on the
database to select the best images, the model’s enhanced generalization capabilities
and use of the comprehensive FIW dataset make it a valuable contribution to the

field of kinship verification research.
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Chapter 8

Conclusions and Future Work
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8.1. Conclusions

This chapter presents the final conclusions obtained through the research effort
and the future work that can be derived. Through the obtained results are
highlighted, the model’s strengths and limitations in identifying father-children and
mother-children pairs under different conditions, contributing to a deeper

understanding of its robustness and adaptability in real-world applications.

8.1. Conclusions

This work introduced a kinship verification model that integrates age
transformation techniques with deep learning, specifically applied to the Families in
the Wild (FIW) dataset. The results demonstrate that incorporating age
transformations significantly enhances the model’s ability to capture familial
features, achieving notable success in identifying kinship relationships across the
age ranges of 5, 15 and 30 years. The results show that the model exceeds in
father-children relationships with a 5-year transformation and mother-children
relationships with a 15-year transformation. This reveals that age transformation
techniques are important in highlighting distinct familial features that changes
during the years.

One of the key achievements of this study was confirming that age transformation
plays a vital role in kinship verification, offering an approach to understanding how
familial features evolve with time. The model’s success in capturing these features
reaffirms studies suggesting that kinship similarities are more apparent at certain

ages, especially when comparing younger individuals. This finding is supported by
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the higher accuracy rates observed in the 5-year and 15-year transformations.

The proposed approach was proven to be more effective than other state-of-
the-art methods, achieving a competitive an accuracy of 0.87. This suggests that
incorporating age-related changes into the learning process offers a deeper insight
into familial resemblance, which leads to more accurate verification.

Additionally, the model’s robustness across different age transformation scenarios
highlights its potential applicability to real-world scenarios where kinship verification
is needed. By leveraging the comprehensive FIW dataset, which contains diverse
family images, the model shows strong accuracy, making it a valuable contribution
to the field of kinship verification research.

For each of the specific objectives proposed in this research, the next list
summarizes the key findings and insights obtained per objective, demonstrating

how the proposed model effectively addressed the goals of this study.

= Objective 1: To determine the limitations within the kinship verification

research area with the aim of finding areas for improvement.

e The research identified that one of the primary limitations in the kinship
verification field is the challenge of accurately capturing familial features
across different age ranges, as many existing models struggle to account
for the natural aging process. This gap shows the need for integrating age
transformation techniques to improve model performance, as evidenced by

the results of the proposed approach in handling age-related variations.

e Another significant limitation found was the quality and diversity of

available datasets, which often contain images with poor resolution,
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inconsistent poses, or varying lighting conditions.  Addressing this
limitation through the proposed model’s use of age transformation and
model tuning techniques demonstrated that it is possible to improve

kinship verification accuracy despite dataset constraints.

s Objective 2: To design a kinship verification algorithm integrating age
transformation techniques and model tuning that enhances the algorithm’s

capability to identify familial relationships.

e The proposed algorithm successfully integrated age transformation
techniques, which enhanced its ability to identify familial relationships
more accurately, especially in the 5-year and 15-year transformations for
father-children and mother-children. This integration allowed the model
to capture changes in facial features that traditional models may
overlook, proving the effectiveness of incorporating age transformation in

kinship verification tasks.

e Model tuning played a crucial role in enhancing the algorithm’s
performance, enabling it to adapt to different familial features across
different age ranges. This tuning process demonstrated that carefully
adjusting model parameters can significantly improve kinship verification

outcomes.

= Objective 3: To evaluate the results of the proposed algorithm by
implementing metrics applied to scenarios that focus on age transformation

and model tuning using the Families in the Wild (FIW) dataset.
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8.2. Future Work

e The evaluation using the FIW dataset showed that the proposed algorithm
achieved competitive accuracy compared to state-of-the-art models, with
a global accuracy of 0.87. This result confirms that the integration of
age transformation and model tuning is effective in improving kinship

verification performance.

e The metrics applied in different age transformation scenarios revealed
that the model is most effective in younger age ranges, particularly in
the b5-year and 15-year transformations for father-children and
mother-children relation, where it captured familial relationships with
high accuracy. This finding validates the hypothesis that age
transformation techniques, combined with model tuning, can

significantly enhance the accuracy of kinship verification models.

This work presents results that fit with the proposed objectives, also it
effectively demonstrated the importance of integrating age transformation
techniques for enhancing kinship verification, reinforcing the idea that early-age
facial features, especially in the 5- and 15-year transformations, are more easily
recognized by models as kinship indicators showing a clear improvement over

state-of-the-art methods.

8.2. Future Work

The proposed kinship verification model has shown significant progress, but

there are areas where further exploration and refinement could lead to even more
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8.2. Future Work

robust and accurate results. Given the limitations encountered during this study,
including the use of a single dataset and certain architectural constraints, future
work can address these areas to enhance the model’s performance and scope.
Expanding the research to cover more datasets, relationships, and advanced
methodologies would provide a different perspective on how kinship can be verified
across different populations and conditions. Some of the ideas to expand in future

research are listed:

= Larger datasets: Utilize larger datasets with better image quality could
significantly enhance the model’s robustness and performance.Neural
networks tend to perform better with more data, as it reduces the risk of
overfitting and allows the model to learn from a wider range of examples [5].
Creating a new family relation dataset with high-quality images would
provide more training data, leading to improved accuracy and generalization.
Data augmentation could also be employed to artificially increase dataset
size, which has been shown to enhance model performance in various deep

learning tasks [6].

= Include different kinship relations: Including other kinship relationships
like siblings or grandparents would offer new insights into how familial
features manifest across different family relations. Include different family
relations helps in developing models that are more capable of handling
complex relationships, as different family members share varying degrees of

similarity [19].
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= Addressing dataset quality: Implementing advanced data augmentation
techniques can improve image quality and help the model handle poor-quality
images more effectively. Data augmentation strategies, such as adding noise,
adjusting brightness, or using GANs (Generative Adversarial Networks) to
generate higher-quality images, have been proven to enhance model
performance [22]. These techniques could reduce the impact of low-quality

images and improve the overall accuracy of kinship verification.

» Incorporating additional features: Combining facial features with other
biometric data, such as voice or gait, can provide a more comprehensive
understanding of kinship verification. Research has shown that multimodal
biometric systems are often more accurate than single-modality systems, as
they provide complementary information. Integrating multiple features would
likely increase the model’s robustness and improve its kinship verification

capabilities [23].

= Work with different age ranges below 5 years: It was proved that early
facial features are better to find kin relations in between family members and
also, it was tested in this research the scenarios of 5, 15 and 30 years. This
work aims to keep research on early ages above years, it was proved that 5
years transformation was better than older ages so, test on ages around 1 to 5

years will be an option of accuracy improvement.

» Improve the hardware where the model was tested: This work was

tested on a Colab instance. Figure 9.1 shows the configuration used during the
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evaluation process. The Colab instance runs with Python3, a T4 GPU and
High-RAM activated. Initial work on the research used a free Colab account
but, it does not support the training process due to hardware lack. Some
improvements with better processing will be increasing the amount of epochs
and amount of convolutional layers on the ResNet50 model. Same with the
amount of trials when working with the model tuning, it can be increased to

more than 3 trials.

How to address dataset challenges, include multiple family relationships and
mix different features not just facial ones applied on a model that uses age
transformation and hyperparameter tuning is a proposing direction for future
research. As a final note, it is suggested that the Master’s Program in Computer
Science consider opportunities to strengthen research infrastructure, which is
essential for the development of projects like this one. Lack of infrastructure such
as servers and data storage are crucial to improve the results of research. Likewise,
reinforcing the commitment and support of the program’s advisors is important, as
their guidance and encouragement are decisive elements that help students progress

and successfully complete their research and finally graduate from this program.
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9.1. Source Code

9.1. Source Code

Database and code can be found in this GitHub repository by clone it using the
web URL https://github.com/ppiedra/FIWDatabase.git. The URL to the
repository and branch https://github.com/ppiedra/FIWDatabase/tree/final.
This repository is divided into four branches: main, backup, testing and final. Use

e L L
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Python 3 -

Hardware accelerator (%)

O cru O awmoery (O L4GPU (@) TaGRU
O Teuvzs
nigh-rant (@)

Figure 9.1: Colab Pro configuration.

final branch to copy the latest version of the code and dataset. The branch comes

with the next data:

FinalReports: this directory is used by the model to store the final reports at
the end of each fold.

» train-faces: This is the original Families in the Wild dataset.

» train-faces30Clean: This is the 144 families cleaned manually. Here the original

photos with poor quality were removed.

» train-facesAge<5,15,30>B1: are the databases transformed into the ages 5, 15

and 30 using the LATS transformation algorithm.
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9.1. Source Code

» cleancodekinshipidentificationusingsiamesenetwork.py: is the model’s code, use

Colab Pro to run it.

» train-pairs.csv: the original csv used by Families in the Wild dataset to match

photos with families. It also dictates the relations each photo has in the family.

Figure 9.1 shows the configuration used during the evaluation process. The Colab
instance runs with Python3, a T4 GPU and High-RAM activated. Initial work on
the research used a free Colab account but, it does not support the training process

due to hardware lack.
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