TEC Tecnologico
de Costa Rica

Unsupervised Optical Flow With
Globally Optimized Cost Volume

THESIS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE

AUTHOR: JENNIFER CABALLERO SOLIS

ADVISOR: FrRANcCISCO J. TORRES RoJAS, PH.D.

JUNE 13, 2024



Tecnolbgico
de Costa Rica

TEC

Escuela de Computacidn
Unldad de Posgrado

ACTA DE APROBACION DE TESIS

Unsupervised Optical Flow With Globally Optimized Cost Volume

Por: Jennifer Caballero Solis

TRIBUNAL EXAMINADOR

2

Dr. Franckeé Torres Rojas
Profesor Asesor

/ I

MSc. I}e'nrln Sanchez Herrera MScahfarTD Madrigal Solano
Lector Externo

Profesor Leclor

i

Dra.-lng.‘»umana Sancho Chavarria
Presidente, Tribunal Evaluador Tesls
Programa Maestria en Computacién

13 de junlo, 2024

Seameduih |

h
Bensane Escaneado con CamScanner






Abstract

A wide variety of applications rely on computer vision to recover properties of the
3D world from 2D input images. Optical flow is a fundamental task for applications
that require motion estimation. Large displacements and repetitive patterns in the

images make optical flow estimation a challenging problem.

Deep learning has pushed the state-of-the-art on various computer vision tasks,
including optical flow estimation. To our knowledge, the supervised learning models
have achieved the best performance in optical flow estimation. Supervised learning
requires large datasets with ground truth for training, but real image datasets for
optical flow are scarce and hard to generate, consequently models are trained with

synthetic images instead.

Datasets with real images for unsupervised learning of optical flow estimation are
abundant and easy to obtain, as ground truth is not required. Images of the same
domain can be used for inference and training of the optical flow estimation model
with unsupervised learning. For these reasons, unsupervised learning of optical flow

estimation is an interesting research field.

In this study, we investigate two potential enhancements for the UFlow model,
an unsupervised learning optical flow estimation model, with the aim of achieving
improved accuracy in scenarios involving large displacements (40 pixels or more).
Our focus centers on refining the performance of the model by addressing the cost

volume layer.
Our contributions are:

1. The implementation of global cost volume computation for UFlow and its

evaluation in the two higher levels of the feature pyramid.
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2. The integration of globally optimized cost volume (GOCor) with UFlow and

its evaluation.
3. The evaluation of the combined effects of global cost volume and GOCor.

We discovered that the usage of global cost volume and GOCor increases significantly
the computational requirements to train and infer the optical flow, namely the GPU
memory required. The results obtained indicate that the concurrent use of GOCor
and global cost volume does not yield gains in the optical flow estimation for large

displacements, but the sole use of GOCor does.
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Chapter 1

Introduction

Computer vision aims to recover physical scene properties from images. Shape, il-
lumination, and color distributions are used to describe and reconstruct the world
we see [25]. The estimation of optical flow from images is a fundamental problem
in computer vision and also an essential capability of any robotic system [11]. Ap-
plications that use optical flow for motion analysis include action recognition [20],
video encoding [9], visual odometry, depth estimation [33], structure from motion
[19], and object segmentation and tracking [I§]. Given that optical flow is a funda-
mental building block in computer vision, improvements in its estimation benefits

many applications [g].

From the seminal work of Horn and Schunk 40 years ago [5], optical flow estimation
has been an active research field with steady progress [23]. When a 3D scene is
projected into the 2D image plane, depth and other information from the 3D scene
is lost, causing ambiguity in computer vision tasks [3]. In addition, occlusions,
illumination changes, and large displacements are among the challenges in optical
flow estimation [29]. Fast and large motion of the camera and scene can lead to
large displacements of pixels between consecutive frames, an usual problem in many

applications like advanced driving assistance systems (ADAS) [17].
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In recent years, the performance of optical flow estimation has improved dramatically
using deep learning techniques [8]. In some cases, the deep learning approach has
set a new state-of-the-art, providing better results than traditional computer vision

approaches in tasks like image classification, such as AlexNet in 2012 [10].

In 2015, FlowNet [4] demonstrated that optical flow could be estimated using con-
volutional neural networks (CNNs) and supervised learning. Although supervised
learning methods to estimate optical low outperform unsupervised, the second is an
interesting field of research because of the availability of the datasets required. Su-
pervised training needs large datasets with ground truth, however, these are scarce
and difficult to generate from real image videos, thus previous works have used
synthetic images datasets [26]. In contrast, real image sequences for training unsu-
pervised optical flow estimation are abundant and easy to generate [§] since it does
not require labeled ground truth. For applications that perform inference of optical
flow from real image sequences, relying on networks trained with synthetic datasets
causes domain mismatch [8]. This problem can be circumvented in unsupervised

learning models.

1.0.1 Problem Statement

The cost volume has become a fundamental block of deep learning models in com-
puter vision [28] to establish a correlation between image feature maps (extracted us-
ing CNNs). Often, the cost volume is computed locally to reduce the computational
load required during training and inference. In the local cost volume computation,
each feature map component is correlated with only a small neighborhood of the
second feature map. If the correspondence between the features is out of the search
window of the second feature map due to large displacements, then the cost volume
will fail to register the similarity. If the cost volume is computed globally, besides

the additional computational load, repetitive patterns in the images can cause am-
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biguous confidences affecting the final optical flow estimation. As repetitive patterns
are usually present in both input images, a model could leverage this information to

filter the incorrect correspondences improving the cost volume output, as proposed

in GOCor [2§].

The cost volume layer is used in both supervised and unsupervised models, however,

in this work we are interested in unsupervised models.

To push the state-of-the-art in unsupervised learning of optical flow, we address
the problem of large displacements, improving the cost volume layer. This research
evaluates two key optimizations to the cost volume layer of an unsupervised learning
model: replacing local cost volume by global cost volume in the higher levels of the
feature pyramid and using the GOCor module to replace the traditional computation
of the cost volume. Our study aims to contribute to the optical flow estimation for
large displacements, which is a common problem in many use-cases. Our research
has the potential enhance the results of other computer vision applications employing

optical flow and conducting inference on non-synthetic images.

1.0.2 Outline

Chapter 2 reviews the background knowledge on optical flow and models for learning
optical flow. In chapter 3, we detail the research hypothesis and the objectives.
Chapter 4 presents the methodology used for this research. In chapter 5, we provide

the research results and analysis. Chapter 6 presents the conclusions of this study.

10



Chapter 2

Background

2.1 Optical Flow

The American psychologist James Gibson introduced the concept of optical flow in
his study of the visual perception of space in 1940, he argued that the retinal images
perceived through the eyes are related to the motion and the changes in gradients
of light [I5]. In 1981, Horn and Schunck [5] defined optical flow as “the distribution

of apparent velocities of movement of brightness patterns in an image”.

Consider two consecutive images, I; captured at t = 1 and I, captured at ¢ = 2 as
depicted in the figure 2.1 In this scenario, the color pattern moved between the
images due to camera motion, scene motion, or both. For each pixel in Iy, optical
flow estimation attempts to find its new location in I,. The estimation of optical
flow assumes brightness constancy -that the brightness of the corresponding pixels

is the same in both images-, and that the motion is small.

Brightness constancy and smoothness (small motions) are two core assumptions for
optical flow estimation [5]. Equation captures the brightness assumption, where

(x,y) is the pixel position in [, and (u,v) is the flow vector between I; and I5.

11
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Figure 2.1: Consecutive images

Il(x+u,y+v) - IQ(xay) =0

(2.1)

Figure shows an example of optical flow estimation, where the 2D image plane

origin is on the top left corner of the image, and the same brightness pattern observed

in I; has moved two pixels in the x axis positive direction and one pixel in the y

axis negative direction in I5. The optical flow field contains the 2D motion vectors

(u,v) for all the image pixels.

X | X |

<

T T

A)
m'
Flow field between | and |,

Figure 2.2: Optical flow field

Optical flow estimation is an underconstrained problem [25], it attempts to recover

12
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two values (u and v) with one equation.

The optical flow estimation field research has shown steady progress [23] since Horn
and Schunck’s original formulation in 1981 [5]. More recently the use of convolutional
neural networks (CNNs) to estimate optical flow has outperformed former techniques

[41.

To our knowledge, the best performing model for optical flow estimation to date [21]
uses supervised learning. Supervised learning schemes to train CNNs depend on the
availability of large datasets annotated with ground truth [32]. Labeled datasets for
optical flow are scarce and difficult to generate for real scenes which leads to the use

of computer generated synthetic datasets [§].

On the other hand, unsupervised learning approaches can count on abundant data
as they are trained to optimize a proxy objective [§] instead of depending on the
ground truth information. The subsequent sections offer information about the
supervised and unsupervised training approaches for optical flow estimation, delve
into previous work on enhancements to the cost volume layer and present details

about the datasets available for evaluating optical flow estimation.

2.2 Datasets

Among the most popular datasets for optical flow training and evaluation are KITTI
2015 [16], Sintel [2], and Flying Chairs [4]. KITTI 2015 is a dataset focused on au-
tonomous driving applications that augmented semi-dense flow fields using dispar-
ity maps from 3D information obtained with laser scans [16]. Sintel is a computer
generated dataset that contains large motions, blur, atmosferic effects, and other
components that challenge optical flow estimation [2]. Flying Chairs is a synthetic

dataset that uses chairs rendered on top of random images [4].

Typically, the endpoint error (EPE) serves as a metric to assess the quality of an

13
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optical flow estimate. The endpoint error is calculated by averaging the Euclidean
distance between the ground truth optical flow and the estimation for each pixel
across all image pixels. [35]. EPE provides information on how close is the estimated

optical flow to the ground truth.

2.3 Supervised Learning of Optical Flow Estima-
tion

In 2015, a CNN based model called FlowNet [4] used supervised learning of optical
flow to achieve better results than state-of-the-art methods in the Flying Chairs

dataset. FlowNet architecture was trained end-to-end as shown in figure [2.3]

convolutional
network

Figure 2.3: End-to-end optical flow training
Source: [4]

Previous work successfully addressed the problem of learning features from images
with CNNs, such as AlexNet in 2012 [10]. However, optical flow estimation requires
feature matching in addition to feature extraction. In 2015, FlowNet pioneered the

utilization of CNNs for feature matching [4].

In 2018, Sun et al. combined multi-scale (pyramidal) approach, image warping, and
cost volume, also called domain knowledge techniques, in a CNN-based model that
achieved state-of-the-art results for optical flow estimation trained with supervised

learning. This model called PWC-Net [24] had fewer hyperparameters than other

14
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state-of-the-art models and similar accuracy. The following subsections provide more

detail about the domain techniques integrated by PWC-Net and its architecture.

2.3.1 Multi-scale (Pyramid)

In images with large displacements, the optical flow can be estimated and refined at
different resolutions, this is called coarse to fine (multi-resolution) estimation [23].
Image pyramids can be built halving their resolution, at each level, the downscaled
image has a quarter of the pixels than the previous level [25], as shown in figure
In a pyramidal approach, the optical flow is estimated first at the higher pyramid

level that has the smallest resolution and then refined in the lower levels with higher

resolutions.
AN
A \
coarse M\ =2
N\
/
medium / h \ I=1
AN
/]
N\
/ \
fine /=0
/
Al ) Y

Figure 2.4: Image pyramid
Source: [25]

2.3.2 Image Warping

Image warping deals with geometric transformations that redefine the spatial re-
lationship between the points in the image [30]. Each pixel from the input image

f(z,y) located at (z,y) is mapped to a different position determined by the transfor-

15
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mation h(z,y), as in equation . A transformation example is shown in the figure
where the red and green pixels are mapped to different positions according to
h(z,y). Rotation, scaling and translation are common transformations in image

processing.

g9(z,y) = f(h(z,y)) (2.2)

\

f(x.y) a(x.y)

Figure 2.5: Example of an image geometric transformation

In the context of optical flow, warping is used to apply the estimated optical flow
between the images. Consider two consecutive input images I1(x,y) and Is(z,y),
each of size Wz H, and the estimated forward dense flow field between these images
Fio(z,y) of size WxHz2. Then for each pixel of I; located at (z,y) there is one
vector in F} o(z,y) that describes the motion of that pixel with respect to I, and
the flow field Fj2(z,y) can be used to warp I, toward I; and evaluate how much

the warped image resembles ;.

2.3.3 Cost Volume

A cost volume is built by matching two feature maps F; and F3y and storing the
cost for associating each pixel in F} to each pixel in Fy [24]. CNN-based feature
extractors generate several maps per image. Consider the figure 2.6, each CNN
extracts d feature maps from each input image, and the pixel value of the maps at

(x,y) is a vector of size d (each component represents the result of the filters applied

16
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by the CNN centered in that pixel). The global cost volume is the scalar product
of each vector of Fy at (i,7) with each vector of Fy at (m,n) where 0 <i,m < W,
0<jn< Hand 0 < k< D with D=W x H, according to equation [28].
Algorithm [I] shows the pseudocode to compute the global cost volume, a five level

nested loop with a computational complexity O(H?*W?3d).

LX)

C(F,F)

Cost
Volume

C(i, j, k)

Figure 2.6: Global cost volume computation

17
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Algorithm 1: Global cost volume

for j <+ 0 to H do

for i <+~ 0 to W do

k <« 0;

for n +— 0 to H do

for m <~ 0 to W do
for p < 0 to d do

C(iaja k)+ = Fl(l7]vp> * FQ(mvnap);

end
k+=1
end
k+=1
end
end

end

The cost volume can also be computed for a neighborhood of pixels instead of the
whole size of the F; feature maps, this is called local cost volume and is computed
with equation as well, but in this case D = 52 [28] where S is the size of search
neighborhood as illustrated in image This approach, also called local cost vol-
ume, requires less computational resources than the global approach, but may not
detect large displacements if the correspondence is out of the search neighborhood.
Algorithm [2] shows the pseudocode to compute the local cost volume, with a com-

putational complexity O(HW S%d).

18
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Cost
Volume

A CNN

Figure 2.7: Local cost volume computation

Algorithm 2: Local cost volume

for j < 0 to H do
for + <+ 0 to W do
k + 0;
for n < (j - [£]) to (j + [£]) do
for m + (i — [2]) to (i+ |5]) do
for p < 0 to d do
C(i,j, k)+ = Fi(i, j,p) * F2(m,n, p);

end
k+ =1,
end
k+ =1,
end
end

end

19
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[HTMLJ409DAB Pyramid level (1) | Number of filters (d)
1 16
[ITML]9ECFDY 2 32
3 64
[ITML]9ECFD7 4 96
) 128
[ITML]9ECED7 6 192

Table 2.1: PWC-Net filters per pyramid level

2.3.4 PWC-Net

Figure illustrates the architecture of PWC-Net for two feature pyramid levels.
To extract features, PWC-Net takes as input a RGB image pair and applies the same
set of filters to each. A different amount of filters is applied to each pyramid level as
shown in table this determines the number of activation maps obtained on each
pyramid level. All filters have a dimension of d x 3 x 3, where d is the amount of
activation maps of each level. The filter is applied with a step of 2 in the horizontal
and vertical directions, thus downsampling the input to half its resolution at each

pyramid level. These set of filters correspond to the feature extraction CNNs.

Feature

57-: Pyramids
I ’ : Flow Field Flow Field

A ; b atl=1 at1=0

,,,,,
i 1

:
ik

HiEH

{ |
. i A

1L Flow | Upsample Flow
| b Estimator ¢ Estimator

Figure 2.8: PWC-Net Architecture

For all levels, except the lower pyramid level, the previous level optical flow is up-

20
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[HTML]409DAB Convolutional Layer | Number of feature channels
1 128
[HTML]9ECFD7 2 128
3 96
[HTML|9ECFD7 4 64
5 32

Table 2.2: PWC-Net flow estimator feature channels per flow estimator CNN layer

[HTML]409DAB Convolutional Layer | Dilation constant (k)
1 1
[ATML]9ECFD?7 2 >
3 4
[ATML]9ECED7 4 8
5) 16
[ITML]9ECEFDY 6 1
7 1

Table 2.3: PWC-Net context network dilation constants per level

sampled and used to warp the second image toward the first image. The warped
image is then used to compute the local cost volume for that level. All the flow esti-
mators, except for the lower level, take the level cost volume output along with the
feature pyramids for that level as inputs for the flow estimator. The flow estimator

is a 5 layer CNN with a fixed amount of feature channels for all levels detailed in

table .21

Finally, PWC-Net uses a feed-forward CNN that has 7 layers to scale the flow field
to the corresponding pyramid level, known as the context network. The design of
this network is based on dilated convolutions with filters of size kx3x3 where k is

the dilation constant. Table [2.3] shows the dilation constants used by PWC-Net.

2.4 Globally Optimized Cost Volume

The cost volume represents the matching confidences between two feature maps,
however, when the input images have repetitive textures with very similar appear-

ance there can be high correlation values between multiple incorrect locations in

21
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the cost volume [28]. Consider /; and I, images shown in figure ideally the
correlation between the green patch from I; and the red patch of I should have
the highest correlation of their feature maps, however, there are other parts of the

images with very similar patterns that also show a high correlation.

High

I - I
Low

I, I, Actual correlation

uonea1I0d

Figure 2.9: Feature correlation

Source: [28]

The ideal correlation is shown in figure [2.10] where there is only a high correlation

value for I; green patch and it is in the location of 5 red patch.

High

Low

() I Ideal correlation

uonealiod

Figure 2.10: Ideal feature correlation
Source: [28]
Given that the repetitive patterns that cause the ambiguity in the correlation with

I, usually are also in I3, GOCor [2§] proposes to use this information to generate

a filtered map w* that takes into account this information to improve the result of

the cost volume as shown in figure [2.11

The filtered map w is obtained according to equation[2.4] The filter P takes as input

the feature maps from both images, F} and F3 and adjusts the set of hyperparameters

22
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Filter predictor P

wt

w' vy L i
Optimization

4 4 ‘

Cw* F,)

\ 4
A 4

Initialization

Figure 2.11: Model with GOCor
Source: [28]
0 to minimize a loss function in the forth pass of the model, this includes training

and inference.

w* = Py(F, Fy) = argminL(w; Fy, Fy, 0) (2.4)

The loss function has two components, each associated to an input feature map plus

a regularization prior term as shown in equation [2.5, where )y is a learnable weight.

L(w; Fy, F,0) = Li(w; F1, 0) + Ly(w; Fy, 0) + || Aw||? (2.5)

The loss for the first feature map is given by and where 1y is a learnable
target confidence that uses the euclidean distance between two feature map regions,
i,j that corresponds to the the map value that is being correlated Fj(i,j) and k,l
any location in Fj. v’ and v~ are penalization weights for positive and negative

correlation values. 7 = 0 and 7 = 0.1 are used in [2§].

Ly(w; By, 0) = [loy(Clw, Fr); v, 07) = yo(V/ (i — k)2 + (5 — D) (2.6)

23
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vt — o~ vt v
ry(eivto) = L (@ -+ (27)

For the second feature map loss, a convolution is performed between a learnable 4D

kernel Ry and the correlation between the second feature map F, and the model w.

Ly(w; Fy,0) = || Ry * C(w, ) ||? (2.8)

All GOCor hyperparameter learning is based on stochastic gradient descend based
on the network training loss. GOCor has been tested with supervised PWC-Net
and showed a substancial enhancement for the Sintel dataset on regions with pixel

velocities of more than 40 pixels, with a reduction of 1.2 pixels in the endpoint error.

2.5 Unsupervised Learning of Optical Flow Esti-
mation

Unsupervised learning models are trained without ground truth data [I], instead a
proxy objective function must be defined to optimize the CNNs hyperparameters.
In 2020, Jonschkowski et al. presented UFlow [8], a PWC-Net based unsupervised
learning framework that analyzed a set of components to determine which are key
for unsupervised optical flow performance. The key components considered on the
objective function for UFlow are occlusion aware photometric consistence, smooth-
ness and self-supervision. The following subsections present these components in

more detail and offers the architectural details of UFlow.

2.5.1 Occlusion Estimation

Consider figure [2.12] there are some pixels on [; that do not appear on I, such as

the blue shirt cyclist that is hidden by the red shirt cyclist. For these pixels there
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are no correspondences that can be established between the images, this is called

occlusion [§].

Figure 2.12: Large displacements, occluded regions and texture repetition in con-
secutive frames
Source: Video by Kim Dae Jeung from https://pixabay.com

2.5.2 Photometric Loss

The photometric loss is the measurement of the difference between the first image
and the second image warped toward the first according to the estimated optical

flow [32] and this difference must be minimized to ensure photometric consistency.

2.5.3 Smoothness Loss

In addition to brightness constancy, Horn and Schunck [5] introduced the smoothness
constraint. Smoothness enforces that neighboring pixels move similarly, thus have
similar flow vectors. Then the smoothness loss is a measurement of the difference of

the flow predictions for neighboring pixels [32].

2.5.4 Self-supervision

The optical flow estimated by a model can be used as ground truth to refine the
estimation for a more difficult pair of images created by adding noise to the original

image pair, as in SelFlow [13].
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2.5.5 UFlow

UFlow uses a shrinked version of PWC-Net with 5 pyramid levels and 32 channels in
all levels, this is to compensate for the additional memory requirements of unsuper-
vised learning due to bi-directional losses, occlusion estimation and self-supervision
[§]. In addition, UFlow randomly drops the flow estimation and pass the upscaled
flow directly to the next level, this is called level dropping represented in figure [2.13
with the purple block connected to the current level flow estimator output and to
the previous level upsampled flow with the green dashed arrow. UFlow also adds
a residual connection from the previous level flow estimator output to the current

level flow estimator shown with a red dashed arrow in figure [2.13

Feature

r /; Pyramids
[ i ! Flow Field Flow Field
A atl=1 atl=0

,,,,,,

; :</ !
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Figure 2.13: UFlow warping, cost volume and flow block

Using census loss for the photometric loss computation, UFlow reached FlowNet2
[6] supervised net performance for the KITTI 2015 dataset. For the Sintel dataset,
the census loss also showed better results. For occlusion masking, the forward-
backward approach showed the best results. Cost volume is computed locally in a
929 neighborhood. In supervised learning of optical flow studies, the loss is typ-

ically computed until the lower pyramid level. For unsupervised learning models
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for optical flow estimation, this leads to problems in the higher levels parameter
learning, specifically vanishing feature activations, causing very small values on the
cost volume. To address this, the cost volume is normalized using the sample mean

; and standard deviation o; of the feature maps at each level as in equation

(F1<i7j) - Ml)TF2(m7n> — M2
g1 (o)

C(i, j, k) =

(2.9)

2.6 Related Work

The advantages offered by unsupervised models for optical flow estimation, as op-
posed to supervised models, have fueled a surge in studies published in this field
during the recent years. In this section, we summarize the publications within our

knowledge that are related to our investigation.

In UPFlow [14], the authors enhance unsupervised optical flow learning by improving
feature extraction. Our work diverges in that we explore modifications for the feature

correlation layer, with no adjustments made to the feature extraction network.

The research conducted by Zhang et al. [34] divides the optical estimation in two
1-D separate problems consequently separating the cost volume in one volume for
the horizontal estimation and other for vertical estimation. In contrast, our study
maintains the architecture of the 2D flow estimator without modification and con-

centrates solely on enhancements to the cost volume.

Stone et al. [22] utilize a RAFT-based [27] model architecture adapted for unsuper-
vised learning and leverages on multi-frame flow refinement to improve the optical
flow estimates among other ideas. The work of Liu et al. [I2] employs a data distilla-
tion approach to unsupervised learning of optical flow. In [7], occlusion consistency
is enforced using self-supervision. Notably, all three of these works utilize the tradi-

tional cost volume layer, which stands in contrast to the approach employed in our
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research.

GMFlow [31] leverages a transformer network to augment the extracted features and
entirely substitutes the local correlation with global matching. While their approach
addresses a similar problem to our work, it employs a supervised learning model,

presenting a distinction from our methodology.
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Chapter 3

Hypothesis and Objectives

3.0.1 Hypothesis

The optical flow estimation for large displacements can be improved using global
cost volume instead of local cost volume. However, as the global cost volume in-
creases the computational requirements, a trade-off is to use global cost volume in
the higher levels of the feature map and local cost volume in the lower levels. In
addition, repetitive patterns are a problem for local and global cost volume layers,
and for both cases GOCor can be used to improve the confidences of the cost volume

output. Based on these ideas, our hypothesis is:

The optical flow estimation endpoint error for large displacements (40 pixels or
more), with the UFlow model, can be reduced by at least 1.2 pixeléﬂ using global
cost volume on the two higher layers of the feature pyramids, and GOCor on

all pyramid levels.

“Based in the results of [2§]
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3.0.2 Objectives
General Objective

Reduce the large displacements average endpoint error of the optical flow estimation

using a model that integrates GOCor cost volume and global cost volume.

Specific Objectives

1. Determine the additional computational load required to compute the cost
volume globally in the two higher levels of the feature pyramids for UFlow

and the endpoint error improvement for large displacements.

2. Integrate GOCor into the UFlow model and evaluate the improvement to the

optical flow estimation for large displacements.

3. Evaluate the optical flow estimation endpoint error for large displacements
using both GOCor and global cost volume for the two higher levels of the

feature pyramids of UFlow.
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Chapter 4

Methodology

This chapter outlines the methodology employed in the experiments conducted and

describes the metrics utilized to validate the hypothesis.

4.1 Model

The unsupervised learning model selected for the experiments is UFlow, incorpo-
rating the components that demonstrated the most favorable results for the Sintel
dataset evaluation in [§]. In addition, we employ the GOCor module as presented

in Truong et al. [28] to enhance the cost volume block of the UFlow model.

4.2 Dataset

We use 1593 RGB images of size 1024 x 448 from the Sintel Final dataset for training
and evaluation with the default train-test data split. The Sintel Final dataset pro-
vides 1041 images for training with ground truth flow and 552 images for evaluation
without ground truth flow. We selected the Sintel Final dataset for training and
evaluation instead of the Sintel Clean dataset because the Final pass includes blur

and atmospheric effects, making it more challenging than the Clean pass[2] and a
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closer approximation to real world images.

4.3 Training

The training of the UFlow model does not rely on the ground truth flow, thus we
conduct the training on the test split of the dataset and assess performance on the
training split, following a practice commonly observed in other studies. UFlow is
trained by minimizing a loss function composed by three terms: the photometric

loss, the smoothness regularization loss and the self-supervision loss as shown in

equation [4.1] respectively.

'C(D’ 0) = wphoto['photo + wsmoothﬁsmooth + wselfﬁself (41)

For the photometric loss term, a constant weight of wppe0 = 1 is used throughout all
the training process. For the smoothness regularization term, first order smoothness
is used with a constant weight of 2 and a constant smoothness edge-weight of 150.
Self-supervision is disabled for the initial half of the training process (wsy = 0) and

it is incremented linearly to 0.3 over the subsequent 10% of the training steps.

In addition to the parameters described above, UFlow implementation offers several
other parameters that can be adjusted to fine-tune the training strategy. Table

provides a description of the parameters deemed relevant for this work.

Due to the memory constraints of the GPUs employed in this work, we use batch
size 1 consistently throughout all experiments and scale down the input images res-

olution from 1024 x 448 to 512 x 224.
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[HTMLJ409DAB  Pa-

rameter

Description

num_train_steps

The number of iterations or updates made to the
model during the training stage.

batch_size

The number of images to process before updating
the model

geometric_augmentation

Whether to augment the training dataset with
vertical /horizontal flips.

selfsup_after_num_steps

Whether to enable the self supervision feature af-
ter a number of training steps.

selfsup_ramp_up_steps

The number of training steps in which the self
supervision weight is increased linearly by 0.3.

weight _selfsup

The initial weight for self supervision.

weight_photo

The weight for the photometric loss.

weight_smoothl

The weight for the first order smoothness loss.

weight_smooth2

The weight for the second order smoothness loss.

lambda

The edge-weight for the smoothness

gpu_learning_rate

The learning rate.

Ir_decay_after_num _steps

The number of training steps after which the
learning rate value decays.

Ir_decay _steps

The number of training steps in which the learning
rate is decayed.

Ir_decay_type

The function to be used for learning rate decay.

Table 4.1: UFlow Training Parameters

In [§], the UFlow training with batch size of 1 was conducted over 1200 epochs, ech
epoch consisting of 1000 training steps. In our work, we opted to reduce the training
steps to 120 epochs in the initial trials and further down to 50 epochs in the later
experiments. This adjustment was made to align with the computational capabili-
ties of the machines utilized in our research, as training for 1200 epochs would have
been impractical in our case due to the considerable time it takes on the machines

employed in this work.

In alignment with the techniques that yielded the most favorable results in the work
of Jonschkowski et al. [8], we enable augmentations to the training set: random
swapping of color channels, hue shifting and vertical/horizontal flipping and the

learning rate (how much weights change on each iteration of backpropagation) is set
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initially to 17 and decayed exponentially after % of the total training steps.

Table presents the training parameters values used in the experiments trained
for 120 epochs and Table shows the values used in the experiments trained for

50 epochs.

It is a common practice to pre train the network on a different dataset before the
training with Sintel, as in [2§] and [§], in this study, however, pre-training is omitted

with the aim of mitigating the computational demands required for each experiment.

[HTML]409DAB Parameter Value
num_train_steps 120 k
batch_size 1
geometric_augmentation True
selfsup_after_num_steps 60 k
selfsup_ramp_up_steps 12 k
weight_selfsup 0.3
weight_photo 1.0
weight_smoothl 4.0
weight_smooth?2 0
lambda 150
gpu_learning rate 0.0001
Ir_decay_after_num_steps 100 k
Ir_decay _steps 20 k
Ir_decay_type exponential

Table 4.2: UFlow Baseline parameters for training on Sintel Test Set for 120 epochs

4.4 Experiments

The experiments outlined in this research focus on the cost volume block within
the UFlow model. Our primary objective is to enhance the optical flow estimation

specifically for scenarios involving large displacements.

We evaluate three factors: the model architecture, the search neighborhood for the

cost volume and the number of training epochs.
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[HTML]409DAB Parameter Value
num_train_steps 50 k
batch_size 1
geometric_augmentation True
selfsup_after_num _steps 25 k
selfsup_ramp_up_steps 5k
weight_selfsup 0.3
weight_photo 1.0
weight_smooth1 4.0
weight_smooth?2 0
lambda 150
gpu_learning rate 0.0001
Ir_decay_after_num_steps 42 k
Ir_decay _steps 8k
Ir_decay _type exponential

Table 4.3: UFlow Baseline parameters for training on Sintel Test Set for 50 epochs

4.4.1 Model Architecture

Two levels of of model architecture are employed: the original architecture of UFlow

published in [§] and the UFlow augmented with the GoCor published in [2§].

4.4.2 Cost Volume Search Neighborhood

Two levels are used, local cost volume with a search neighborhood of 4 pixels and

global cost volume.

4.4.3 Number of Training Epochs

The initial experiments in this investigation endured training for 120 epochs. How-
ever, due to varying computational demands, some experiments were deemed im-
practical to train for the full 120 epochs with the hardware utilized in our work.
Consequently, all experiments were executed for 50 epochs instead, including the

experiments that were trained for 120 epochs initially.
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Tables and show the factor-levels possible combinations. We conducted
six experiments, the Baseline-120E and Baseline-50E experiments provide the

baseline results that we use to evaluate the improvements suggested in this research.

Experiments GCV-2Top-120E, GCV-2Top-50E and GoCor-All-50E aim to
assess the impact of modifying one of the factors, either model architecture or search
neighborhood of the cost volume, to a level different than the employed in baseline.
Experiment GCV-2Top-GoCor-All-50E assesses the combined effects of altering

both factors from the baseline.

[HTML]409DAB [HTMLJFFFFFF | Model Architecture
[HTML]939599 Search Neighborhood | [HTML]81d0db UFlow | [HTML]81d0db UFlow + GOC
[HTML]c7cadl Local S=4 Baseline-120E Not executed
[HTML]c7cadl Global GCV-2Top-120E Not executed

Table 4.4: Experiments trained for 120 epochs

[HTML]409DAB [HTML|FFFFFF | Model Architecture
[HTML]939599 Search Neighborhood | [HTML|81d0db UFlow | [HTML|81d0db UFlow + GOC
[HTML|c7cadl Local S=4 Baseline-50E GOCor-All-50E
[HTML]c7cadl Global GCV-2Top-50E GCV-2Top-GOCor-All-50E

Table 4.5: Experiments trained for 50 epochs

4.5 Limitations and Scope

4.5.1 Evaluation

The main objective of this work is aligned with reducing the average endpoint errors
in optical flow estimations, particularly for large displacements. For the purpose
of this study, we define large displacements as those with a ground truth optical
flow surpassing 40 pixels and evaluate the research hypothesis using this criteria. In
addition to assessing the endpoint error for large displacements, we gather additional
evaluation metrics to comprehensively analyze the broader impacts of the proposed

changes. These metrics are detailed in Table [4.6]
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[HTML]409DAB Metric | Description

EPE (pixels) Endpoint error, the difference between the pre-
dicted flow and the ground truth flow, computed
with the formula y/(up — u1)? + (vo — v1)2, where
(ug,vg) is the predicted flow and (uq,vp) is the
ground truth flow, averaged over all the frames.

sO-10 (pixels) Endpoint error of the pixels with ground truth
velocities less than 10 pixels, averaged over all the
frames.

s10-40 (pixels) Endpoint error of the pixels with ground truth

velocities between 10 and 40 pixels, averaged over
all the frames.

s40+ (pixels) Endpoint error of the pixels with ground truth
velocities greater than 40 pixels, averaged over all
the frames.

Average Training Step | The training step time averaged over all the steps.

Time (ms)

Average Inference Time | The optical flow inference time averaged over all

(ms) inferences for the images in the training dataset.

Table 4.6: Evaluation Metrics

The dataset selected for the evaluation is the Sintel Final training split. The training
split is used for evaluation because it provides ground truth that is used to com-
pute the estimation errors. Other datasets are available, however, we chose Sintel
Final because it comprises realistic effects such as motion blur, atmospheric effects
and large displacements (45 M pixels with velocity of more than 40 pixels between

consecutive frames throughout the 1041 images of the training split).

The endpoint error ground truth values are provided at the MPI Sintel Dataset
website. Table 4.5.1] shows the percentage of optical flow ground truth data points
available for each velocity category. The large displacements account for almost 10%

of the motion.

[HTML]409DAB heightCategory | Ground truth data points
s0-10 69%
s10-40 21.27%
s40+ 9.73%

Table 4.7: Percentage of data within each displacement category in the MPI Sintel
Dataset

37


http://sintel.is.tue.mpg.de/quant?metric_id=3&selected_pass=1
http://sintel.is.tue.mpg.de/quant?metric_id=3&selected_pass=1

Unsupervised Optical Flow With Globally Optimized Cost Volume

4.5.2 Computational Resources

We observed that the training process imposes a substantial demand on GPU re-
sources; rendering it impractical for execution in a personal laptop. Consequently, we
conducted both training and inference on servers equipped with powerful NVIDIA

GPUs. In our study, we used two machines with the specifications detailed in Table

4.8

[HTML]409DAB heightSpecification | Kabré Nukwa Server | Google Cloud Compute Instance
GPU NVIDIA Tesla K40c | NVIDIA L4

GPU Memory 12 GB 24 GB

CPU Intel Xeon (4 cores) | Intel Cascade Lake (4 vCPUs)
RAM 16 GB 16 GB

GPU compute capability 3.5 8.9

Table 4.8: Technical specifications of the servers used

Kabré Nukwa is a high-performance computing cluster facilitated at no cost by
the National Center for High Technology of Costa Rica (CeNAT) to Technological
Institute of Costa Rica students engaged in research. Users are subject to certain
limitations, including a maximum allowable time between 72 and 168 hours per
computational node and a cap of two nodes per person. Upon reaching the maximum
allocated time, the training process is halted, and the task is queued to resume
execution when the node becomes available again—once other users in the queue

have completed their allotted time slices.

We faced a limitation in the execution of GOCor on the Kabré Nukwa server: the
compute capability of the GPU is incompatible with the installation of the pre-built
software packages utilized by the GOCor implementation, thus we opt for using

Google Cloud Compute for the GOCor experiments.

We discovered that the GPU memory requirements for experiments incorporating
GOCor and global cost volume simultaneously, exceed the capacity of the Kabré

server. Consequently, we chose to utilize Google Cloud Compute for the training
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and inference of these cases. The Google Cloud Compute instances used incurred a

cost of $17.7 for each day of usage.

Both servers employed have a Linux based OS, and thus we use the top and nvidia-
smi commands to assess the CPU load, RAM usage, GPU utilization and GPU

memory usage.

To manage the cost associated with training the experiments on Google Cloud Com-
pute within budget, and the time required to train in Kabré within a reasonable

timeline, we impose the following constraints:
1. We use half image resolution in all our experiments (224x512).

2. We train experiments on the Kabré server for a maximum of 120 epochs, and
for experiments executed on the Google Cloud Compute instance, we limit the

training to a maximum of 50 epochs.

3. We skip pre-training.
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Chapter 5

Results and Analysis

5.1 Baseline

For the baseline experiments, the original UFlow model is used without changes to
the cost volume block. The results presented in this section serve as the reference

points for evaluating the efficacy of the improvements proposed in this work.

5.1.1 Baseline-120E and Baseline-50E

Tables [4.2]and [4.3] summarize the parameters used for this experiment. For Baseline-
120E, training was executed for 120 epochs each of 1000 steps on the Sintel final

dataset testing split, and for 50 epochs for each of the two Baseline-50E replicates.
Tables [5.1] and [5.2] show the training results.

Kabré Nukwa uses 100% of CPU load, and allocates 11.6GB of GPU memory for
both training and evaluation. The training demands almost 5GB of RAM, while the
evaluation uses around 2GB of RAM. The utilization of the GPU for the training is

of 70% and of 32% for the evaluation.

In the Google Cloud Compute case, the CPU usage behaves similarly in both training

and evaluation, with up to 126% of load. 22GB of GPU memory are allocated for
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both training and evaluation. The GPU utilization is of 14% for training and 3%

for evaluation. The RAM usage is of around 6GB for training and around 3GB for

evaluation.
[HTML]409DAB height| Metric | Result
Server Kabré Nukwa
Total Training Steps 120000
Total Training Time (h) 95
Average Step Time (ms) 2848
Final Epoch Total Loss 2.35

Table 5.1: Training results for baseline experiment with 120 epochs

[HTML]409DAB height‘ Metric ‘ 1! Replicate Result 274 Replicate Result
Server Google Cloud Compute | Kabré Nukwa

Total Training Steps 50000 50000

Total Training Time (h) 64 42

Average Step Time (ms) 4609 2925

Final Epoch Total Loss 2.41 2.4

Table 5.2: Training results for baseline experiments with 50 epochs

Figures [5.1], 5.2 and show the values of the losses in equation as the
training epochs increase. The photometric (Figure and smoothness (Figure
losses show the steepest decrease during the first 40 epochs of the training. The self-
supervision loss (Figure is zero in the first 60 epochs because self-supervision is
enabled only in the last 60 epochs of the training, where it shows a small decrease

from 0.05 to 0.045.

Tables 5.3l and [£.4] show the evaluation results.

[HTML]409DAB height| Metric || Result
EPE (pixels) 5.26
s0-10 (pixels) 2.38
s10-40 (pixels) 6.67
s40+ (pixels) 38.10
Average Inference Time (ms) 863

Table 5.3: Inference results for baseline experiment with 120 epochs
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Baseline - Photometric Loss per Epoch
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Figure 5.1: Baseline Training Photometric Loss per Epoch
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Figure 5.2: Baseline Training Smoothness Loss per Epoch
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Baseline - Self-Supervision Loss per Epoch
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Figure 5.3: Baseline Training Self-Supervision Loss per Epoch
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Figure 5.4: Baseline Training Total Loss per Epoch
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[HTML]409DAB height‘ Metric ‘ 1% Replicate Result | 2" Replicate Result
EPE (pixels) 5.78 5.08
s0-10 (pixels) 2.54 2.66
s10-40 (pixels) 7.03 7.26
s40+ (pixels) 41.30 41.4
Average Inference Time (ms) 728 445

Table 5.4: Inference results for baseline experiments with 50 epochs
5.2 Global Cost Volume

The implementation of global cost volume on the two highest pyramid levels (¢ = 3
and ¢ = 4) changes the dimensions of the cost volume tensor. For local cost volume,

the size of the output tensor is described in equation

Ol e RT*T*5 (5.1)

The baseline UFlow uses local cost volume with a search neighborhood S = 9,
therefore, the local cost volume tensor size for all pyramid levels is C¢ € R% > 81,
When the search neighborhood is expanded to the full image, then the global cost

volume tensor size is given by equation

g
X
Sl

Cl e RT*7x (5.2)

Table |5.5| shows the pyramid levels resolutions and the cost volume dimensions for
UFlow with global cost volume in the two highest pyramid levels. UFlow uses a
pyramid with the base level resolution that is a half of the input resolution and

computes the cost volume only for pyramid levels with ¢ > 0.

5.2.1 GCV-2Top-120E and GCV-2Top-50E

Tables [5.6] [5.7] and [5.9 present the training an inference results for the global

cost volume experiments respectively. The experiment with 50 epochs exhibits a

44



Unsupervised Optical Flow With Globally Optimized Cost Volume

[HTML]409DAB Pyramid level (¢) | Number of filters (d) | Width | Height | Cost volume size
0 32 512 224 -
[HTML|9ECFD7 1 32 256 112 256 x 112 x 81
2 32 128 96 128 x 56 x 81
[ITML]9ECFDT 3 32 64 28 | 64 x 28 x 1792
4 32 32 14 32 x 14 x 448

Table 5.5: Cost volume size per pyramid level

similar trend than the experiment with 120 epochs, as illustrated in Figures
and[5.8] The training process renders a CPU load of around 100%, a RAM usage

around 5GB, up to 75% of GPU utilization and reaches up to 11.63 GB of GPU

memory in the Kabré Nukwa server. The inference shows similar requirements in

all aspects but RAM, as it utilizes around 1.8GB.

[HTML]409DAB height| Metric |

Result

Server Kabré Nukwa
Total Training Steps 120000

Total Training Time (h) 135

Average Step Time (ms) 3996

Final Epoch Total Loss 2.36

Table 5.6: Training results for the GCV experiment with 120 epochs

[HTML]409DAB height| Metric |

15t Replicate Result

2nd Replicate Result

Server

Kabré Nukwa

Kabré Nukwa

Total Training Steps 50000 50000
Total Training Time (h) 66 82
Average Step Time (ms) 4556 4310
Final Epoch Total Loss 2.42 2.43

Table 5.7: Training results for the GCV experiments with 50 epochs

Tables 5.8 and 5.9 shows the evaluation results.

5.3 Local GOCor

In this section, we present the outcomes of integrating the GOCor module into all

the correlation levels.
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GCV on levels 3 and 4 - Photometric Loss per Epoch
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Figure 5.5: GCV Training Photometric Loss per Epoch
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Figure 5.6: GCV Training Smoothness Loss per Epoch

46



Unsupervised Optical Flow With Globally Optimized Cost Volume

GCV on levels 3 and 4 - Self-Supervision Loss per Epoch
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Figure 5.7: GCV Training Self-Supervision Loss per Epoch
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Figure 5.8: GCV Training Total Loss per Epoch
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[HTML]409DAB height| Metric |

Result

EPE (pixels)

5.59

s0-10 (pixels)

2.39

s10-40 (pixels)

6.61

s40+ (pixels)

40.38

Average Inference Time (ms)

905

Table 5.8: Evaluation results for the GCV experiment with 120 epochs

[HTML]409DAB height| Metric | | 1" Replicate Result | 2" Replicate Result
EPE (pixels) 5.91 2.8

s0-10 (pixels) 2.49 2.61

s10-40 (pixels) 7.01 7

s40+ (pixels) 41.63 40.76

Average Inference Time (ms) 1000 614

Table 5.9: Evaluation results for the GCV experiments with 50 epochs

5.3.1 GOCor-All-50E

The results for this experiment are presented in Tables and b.11} Figures

[5.10] [5.11] and [5.12] depict the training process.

For the training and inference of this experiment, we noticed a GPU utilization of

up to 100%, up to 127% of CPU load, and a GPU memory load of up to 22.39GB in

the Google Cloud Compute instance. Regarding the main memory usage, it reaches

up to 6.5GB of RAM during training and up to 3GB during evaluation.

[HTML]409DAB heightMetric | 1 Replicate Result 2nd Replicate Result
Server Google Cloud Compute | Google Cloud Compute
Total Training Steps 50000 50000

Total Training Time (h) 170 70

Average Step Time (ms) 12205 5426

Final Epoch Total Loss 2.47 2.54

Table 5.10: Training results for GOCor-All-50E experiments

Table 5.11] shows evaluation results.
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Local GOCor - Photometric Loss per Epoch
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Figure 5.9: GOCor-All-50E Training Photometric Loss per Epoch

Local GOCor - Smoothness Loss per Epoch
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Figure 5.10: GOCor-All-50E Training Smoothness Loss per Epoch
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Local GOCor - Self-Supervision Loss per Epoch
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Figure 5.11: GOCor-All-50E Training Self-Supervision Loss per Epoch
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Figure 5.12: GOCor-All-50E Training Total Loss per Epoch
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[HTML]409DAB heightMetric

15¢ Replicate Result

274 Replicate Result

EPE (pixels)

5.83

s0-10 (pixels) 3
$10-40 (pixels) 7.74
s40+ (pixels) 39.33
Average Inference Time (ms) | 10999

Table 5.11: Inference results for the GOCor-All-50E experiments

5.4 Global Cost Volume and GOCor

This section presents the results of using global cost volume on the two higher levels

of the feature pyramids concurrently with GOCor in all the pyramid levels.

5.4.1 GCV-2Top-GOCor-All-50E

The results for this experiment are presented in Tables [5.12] and [5.13]

Figures

[5.13] [5.14] [5.15] and [5.16] illustrate the evolution of the training process for these

experiments.

A GPU memory of around 22GB is required for this experiment. The utilization of

the GPU is of up to 100% with a CPU load of up to 126%. The maximum RAM

required is around 6GB for training and around 3GB for evaluation.

[HTML]409DAB heightMetric

1! Replicate Result

274 Replicate Result

Server

Google Cloud Compute

Google Cloud Compute

Total Training Steps

20000

50000

Total Training Time (h) 267 116
Average Step Time (ms) 19277 8352
Final Epoch Total Loss 2.47 2.54

Table 5.12: Training results for the GCV-2Top-GOCor-All-50E experiments

Table [5.13] shows evaluation results.
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GOCor + GCV - Photometric Loss per Epoch
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Figure 5.13: GCV-2Top-GOCor-All-50E Training Photometric Loss per Epoch

GOCor + GCV - Smoothness Loss per Epoch
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Figure 5.14: GCV-2Top-GOCor-All-50E Training Smoothness Loss per Epoch
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GOCor + GCV - Self-Supervision Loss per Epoch
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Figure 5.15: GCV-2Top-GOCor-All-50E Training Self-Supervision Loss per Epoch
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Figure 5.16: GCV-2Top-GOCor-All-50E Training Total Loss per Epoch
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[HTML]409DAB heightMetric

15¢ Replicate Result

274 Replicate Result

EPE (pixels)

6.26

6.04

s0-10 (pixels) 2.75 2.73
$10-40 (pixels) 7.4 7.28
s40+ (pixels) 41.87 41.19
Average Inference Time (ms) | 1253 7154

Table 5.13: Evaluation results for the GCV-2Top-GOCor-All-50E experiments

5.5 Analysis

5.5.1 Impact of the Reduction of the Number of Training

Epochs

We observed consistent patterns in Figures[5.4] and [5.8] where the total loss demon-
strated a sharp decrease in the initial 20 epochs, followed by a more gradual decline.
Notably, experiments trained for 50 epochs exhibited a slight increase in loss around

epoch 25, coinciding with the introduction of self-supervision.

In Tables 5.3 and [5.4] the results indicate a noteworthy improvement of 0.52 pixels
in average EPE and a substantial enhancement in the s40+ EPE metric by 3.2 pixels
when the training steps increased from 50 to 120 epochs for the baseline experiments.
However, experiments incorporating the global cost volume on the top two levels of
the feature pyramid showed more modest gains—0.32 pixels for average EPE and

1.25 pixels for large displacements—compared to baseline results as shown in Tables

(.8 and [5.9

Concerning the total training time, we observed a non-linear behavior, where certain
training epochs require notably more time than others. Examining the results for
global cost volume in Tables and as an example, both experiments were
conducted on the Kabré server but on distinct nodes. Interestingly, the average step
time is lower overall for the experiment with 120 epochs compared to the one with
50 epochs. In spite of the fact that the average training step time is lower in the

experiment with 120 epochs, opting for only 50 epochs cut down the training time by
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69 hours. In the case of the baseline experiments, although these were executed in
different servers, they exhibit a similar pattern to that of the the global cost volume

in terms of training time.

Despite the improvements observed with the increase in training epochs, we have
opted to maintain a 50-epoch training duration for subsequent experiments. This

decision answers to the limitation of keeping the training costs within constraints.

5.5.2 Impact of the global cost volume

The sole modification of replacing the local cost volume for global cost volume
in the correlation of the two higher levels of the feature pyramids does not yield

improvements in optical flow estimation for large displacements.

Indeed, the outcomes presented in Tables [5.4] and reveal a deterioration in the

error for large displacements, worsening by 0.33 pixels.

This finding indicates that a broader search window for the feature correlation in
the feature levels leads to an increase in the number of mismatched features. This
results confirms our initial intuition that the influence of the pattern repetition is
exacerbated by enlarging the correlation search window and the sole use of global

cost volume is not enough to improve the optical flow estimation results.

An interesting direction for future experimentation involves exploring the augmenta-
tion of the search window for correlation in the lower levels of the feature pyramids,
where there is greater image resolution, as opposed to the higher levels. This explo-
ration would aim to evaluate the effects of scaling on correlation mismatches caused

by pattern repetition.

Both Baseline-120E and GCV-2Top-120E are trained on the same server. We observe
that it takes around 40 hours more to train the experiment that implements global

cost volume as per the results presented in Tables [5.1] [5.2] and In addition,
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the inference time increased by 42 ms.

Both GCV-2Top and baseline trainings can be executed within the hardware capa-

bilities of the Kabré Nukwa server.

5.5.3 Impact of GOCor

The outcomes of employing local GOCor in the correlation of all pyramid layers, as
depicted in Table [5.11] reveal a significant improvement of 1.97 pixels in the optical
flow estimation for large displacements in comparison with the baseline experiment.
Surprisingly, the use of local GOCor led to degradation of the other endpoint error

metrics; nevertheless, the overall increase in the average EPE is of merely 0.05 pixels.

5.5.4 Combined impact of global cost volume and GOCor

Contrary to the initial intuition that formed the hypothesis of this study, the sub-
stitution of the local cost volume for the global cost volume in the correlation of
the two higher layers of the feature pyramids alongside GOCor does not result in
improvements in optical flow estimation for large displacements. In fact, we found
an increase of the endpoint error for large displacements of 0.57 with respect to the

baseline results.

Given that employing GOCor alone in all levels produced improved outcomes for
large displacements, we posit that utilizing an expanded search window in the two
top levels of the feature pyramid may contribute to an increased number of mis-
matches, due to scaled down pattern repetition. These mismatches could be prop-
agated by the model architecture to the lower levels of estimation, resulting in di-

minished results.

The GPU memory demanded to train the implementation of both GOCor and global
cost volume increases in contrast with the baseline, GOCor only and global cost

volume only experiments. We found that the concurrent use of both enhancements
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require more than 12GB of GPU memory.

5.5.5 Overall Comparison

Figure [5.17] illustrates the endpoint error results obtained for all the experiments
in this study. The use of local GOCor in all levels of the feature pyramids yields
an improvement in the optical flow estimation for large displacements, all the other

experiments show a deterioration in this metric.

Endpoint errors for all experiments trained for 50 epochs
Baseline-50E [ GCV-2Top-50E [ GOCor-All-50E GCY-2Top-GOCor-All-50E

50
40 M3 4187
30

20

578 6.26
0 ] |

s0-10 510-40 540+ EFE

EPE (pixels)

Figure 5.17: EPE for all the experiments

Interestingly, the local GOCor in all the pyramid levels also increase the endpoint

error for pixels with velocities between 10 and 40, however, the average EPE does

not show a substantial degradation.
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Chapter 6

Conclusions

In this investigation, we successfully incorporated the enhancements proposed and
assessed their influence on optical flow estimation, particularly for large displace-

ments. Our conclusions are as follows:

1. The results for Baseline and GCV-2Top experiments show that there is a
significant reduction of the EPE for large displacements with the increase of

the number of training epochs.

2. The sole use of global cost volume in the two higher layers of the feature

pyramids does not yield improvements in the endpoint errors.

3. The sole use of local gocor in all the pyramid layers leads to an improvement
in the estimation of optical flow for large displacements of 1.97 pixels, without

a significant degradation of the average EPE.

4. The concurrent utilization of GOCor and the global cost volume in the two
higher layers of the feature pyramid results in a deterioration of optical flow

estimation outcomes, refuting the hypothesis posited in this study.

5. A GPU with 12GB of memory is not enough to train the UFlow model aug-

mented with global cost volume and GOCor, a GPU of 24GB is recommended
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instead. In contrast, a GPU with 12GB of memory is adequate for training
and evaluating the model that integrates only the global cost volume in the

two higher layers of the feature pyramids.

6.0.1 Future work

We believe that an interesting avenue for a future study is the impact of variable

window sizes to find the optimal search window for each pyramid level.

We expected that increasing the window size, would reduce the optical flow estima-
tion error for large displacements, but the results indicate that no benefit is obtained
by this change. Perhaps this result indicates that each pyramid level can benefit
from a different window size, instead of a uniform larger window size. In higher lev-
els of the pyramid, the resolution of the image is lower, and a larger window might
increase the number of mismatched pixels. Therefore, a smaller window size in the
higher layers, might provide better results. In lower levels, the window size increase
might not lead to an increase in the pixel correspondence mismatches. Hence, we
can explore the appropriate window size for each pyramid level, and the impact on

the optical flow estimation.
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