Tecnologico
de Costa Rica

TEC

Escuela de Computacion
Unidad de Posgrado

ACTA DE APROBACION DE TESIS

GPT-Based Identification of Publicly Known Vulnerabilities

Por: Andrés Felipe Vargas Rivera

TRIBUNAL EXAMINADOR

HGVSOY\ E \/

Dr. Herson Esquivel Vargas

Profesor Asesor
[A
MSc. Jeferson Gonzalez Gomez Dr. Thijs van Ede
Profesor Lector Lector Externo
O
Rl
Dra.-Ing. Lilliana Sancho Chavarria // ‘- fs !
Presidente, Tribunal Evaluador Tesis I/ pner“ ﬂn

AGH j

:' °$rn R\C'
___/

Programa Maestria en Computacion

14 de mayo, 2024

’ I ‘ I I:(j Tecnologico
de Costa Rica
Escuela de Ingenieria en Computacién

Programa de Maestria en Computacion

GPT-Based Identification of Publicly Known

Vulnerabilities

A thesis submitted in partial fulfillment to opt for the degree of

Magister Scientiee in Computer Science

Author Supervisor

Andrés Felipe Vargas Rivera Herson Esquivel Vargas

May 22, 2024

Dedication

This thesis is dedicated to my parents, who have been my
rock and source of strength through every challenge. To my
sister, whose encouragement and unwavering belief in my
abilities have been a constant source of inspiration. To my
friends, who stood by me with words of support and moments
of laughter, making this journey more enjoyable. I would also
like to express my deepest gratitude to the Vicerrectoria de
Investigacion Estudiantil (VIE), the School of Computing, and
the Instituto Tecnoldgico de Costa Rica (TEC). Their resources,
guidance, and support provided the foundation for my research
and education. A special thanks goes to my thesis advisor,
Herson Esquivel, whose insightful guidance and constructive
feedback shaped my work. His patience and commitment to
excellence were crucial during key moments in my research.
Finally, I extend my sincere appreciation to those who funded
and supported this work. Your contributions not only made
this thesis possible but also helped advance knowledge in
this field. Thank you to everyone who has been part of this
journey. This work would not have been possible without your
encouragement, support, and belief in my potential.

Dedicacion

Dedico esta tesis a mis padres, quienes han sido mi apoyo
y fuente de fortaleza en cada desafio. A mi hermana, cuyo
aliento y fe inquebrantable en mis habilidades han sido una
constante fuente de inspiracién. A mis amigos, que estuvieron
a mi lado con palabras de apoyo y momentos de risa, haciendo
este camino mucho mas llevadero. También quiero expresar mi
mas sincero agradecimiento a la Vicerrectoria de Investigacion
Estudiantil (VIE), a la Escuela de Computacion, y al Instituto
Tecnoldgico de Costa Rica (TEC). Sus recursos, orientacion
y apoyo proporcionaron la base para mi investigacién y
educacion. Un agradecimiento especial a mi tutor de tesis,
Herson Esquivel, cuya guia perspicaz y retroalimentacion
constructiva dieron forma a mi trabajo. Su paciencia y
compromiso con la excelencia fueron cruciales en momentos
clave de mi investigacién. Finalmente, extiendo mi sincero
agradecimiento a quienes financiaron y apoyaron este trabajo.
Sus contribuciones no solo hicieron posible esta tesis, sino que
también ayudaron a avanzar en el conocimiento de este campo.
Gracias a todos los que han sido parte de este camino. Este
trabajo no habria sido posible sin su aliento, apoyo y fe en mi
potencial.

Abstract. Security vulnerabilities are inherent to software systems.
Nevertheless, the software industry is continuously growing and
so is the amount of security vulnerabilities discovered every year.
For instance, during the year 2023, an average of 79 software
vulnerabilities were published every day. In the software security
field, the use of vulnerability scanners is common practice. These
tools have databases of known vulnerabilities and verify whether a
target system is vulnerable or not, by looking for matching records in
their database. Although vulnerability scanners automate the tedious
process of checking software applications for vulnerabilities, the daily
updates to vulnerability scanners remain, predominantly, a manual
task. This poses a scalability problem for vulnerability scanners. In
this work, we present a novel architecture designed to automate
the [Vulnerability Identification| in software products. This thesis
explores the architecture’s underlying principles, its implementation,
and its performance evaluation. We demonstrate how our system
effectively identifies vulnerabilities by using pre-existing AI tools,
thereby empowering organizations to proactively secure their software
assets, protect sensitive data, and enhance overall cybersecurity
resilience. The architecture proposes the use of a database that
contains vulnerability signatures which, when compared with the
signature of a software product, are used to identify vulnerabilities.
To demonstrate the viability of the architecture, two implementations
are carried out. The first solution addresses a heuristic model, and
the second the use of Artificial Intelligence (AI). More specifically, a
Generative Pre-Trained Transformer (GPT) model. The results showed
that, for the signature’s generation, the GPT model automatically
creates the vulnerability database signatures with an accuracy of
100%, whereas its heuristic counterpart achieves a modest 73,2%. In
the vulnerability identification process, the recall metric is crucial in
because it reflects the ability to detect actual vulnerabilities among
all possible cases. Our results show that the GPT-based approach
exhibited significantly higher recall 94,6% than the heuristic-based
Vulnerability Identification System 23,8%, indicating a more reliable
detection of vulnerabilities. This advantage means that using GPT
for vulnerability identification reduces the risk of missing critical
vulnerabilities, leading to a more secure and resilient system. Based
on the results obtained, we conclude that the proposed architecture
is able to automate the MITRE CVE-based vulnerability identification,
|Artificial Inteligence| being one of the most promising technologies to
automate and improve future vulnerability identification systems.

Keywords: Artificial Intelligence - Vulnerability - Security Tests

Table of Contents

(I _Introductionl.......... ... 9
(1.1 Problem Defimition|, 10
1.2 Research Justification|........................... 11
1 ntributions|.......... o 13
[1.4 Hypothesis| i 14
[1.5 Objectives|...... i 14

[1.5.1General Objectivel........... 14
[1.5.2Specific Objectives|......................... 14
I1.6 Research Questions| 15

2 Theoretical Framework|............................. 16
I RelatedWorK, 18
[2.2 Background| 19

R2ICVERecords|..........covviiiiiin... 19
[2.2.2Natural Lenguage Processing Models|........ 21
[2.2.3Generative Pre-trained Transformer Modell ... 21
4 W 5 1 0 P 22
[2.2.50Vulnerability Identification|.................. 23
2.2.6CVE D LCES| v ottt e 23
2.2.6. IMITRE CVE File:|..................... 24
226 XKaggleCVE]. ..., 24
[2.2.6.3National Vulnerability Database:|....... 24

[2.2.6.4CVE and CWE Mapping Dataset (2021): 24
[3 MITRE CVE-Based Vulnerability Identification Proposal] 26

(3.1 Architecture|.......... 26
[3.1.1Feature Extraction Stage| 26
[3.1.2Validation Stage| 28

4 Implementation|.......... 29

4.1 Heuristi Ml 29

[4.1.1Preprocess lext.|........... 29
[4.1.1.1ldentity Version Declaration.| 31

4.2 GPT SGM| ... e e 33
[4.2.0.1Prompt Execution.| 34

[4.2.0.2Parse Response.| 35

4.2.0.3Update Database.|....................

[4.3 Vulnerability Identification System (VIS)[..........
B3TPUITCVE] ..ottt e
[4.3.2Evaluate Signatures.|.......................

4 Heuristic VIS,

4. 3. AGPT VIS
[4.3.0CVE Vulnerability Report.|...................

[Expermmental Results|................
[5.1 Database Generation Experiment|
[5.2 CVE ldentification Experiment]...................
.2 1Input Datal
2.2Generation of Test Datal
[5.2.3Experimental Procedure|....................
[5.2.4Metrics and Evaluation|.....................
B.2BResullsl

[6 DIscuSSIon|c.oiirii i e
[/ Conclusion|........... i
A PP 0 0 D
[A.1 GPT SGM Prompt]
[A.2 GPTVISPrompt]. ...,

41

List of Figures

[1 Text Classification Architecture [|39].|................. 22
[2 Basic tasks of our proposed vulnerability |
| 1dentification system: (1) vulnerability database |
| creation; (2) target software identification; and (3) |
| comparison between the target software and the |
[_databaserecords................... 24
[3 Architecture of our proposed approach to develop |
| automated vulnerability tests.|....................... 27
|4 Heuristic SGM Implementation.| 30
TP SGM Archi 7= PSP 35

[6 Vulnerability Identification System (VIS) Workilow.|.... 37
[/ Example of Heuristic VIS string comparison |
Workflow. B n CVE-2019-13927.)................ 38

[8 Heuristic VIS Implementation.] 39
[9 GPT VIS Implementation............................ 40

List of Tables

[I Examples of Common Vulnerabilities and Exposures |
| (CVE)recorddescriptions.|.......................... 20
2 Symbols replacement used in the Heuristic approach.| . 32
[3 Vulnerability SGM results for the heuristic and GPT |
[1mplementations.|, 43
{4 Vulnerability SGM metrics for the heuristic and GPT |
[1mplementations.|, 43
[> Summary of the execution time required by the |
| Heuristic SGM and GPT SGM to populate the |
[vulnerability signature database.| 44

Results for Heuristic VIS 48
............................... 48
[8 Average Results for Heuristic VIS and GPT VIS, 49

1 Introduction

The proliferation of software systems has changed forever
the functioning of modern societies. Besides the traditional
software applications like email clients, text editors, and
spreadsheets, software now executes the core tasks of utility
companies, cars, factories, buildings, and many others. Recent
trends like cloud computing, and Industry 5.0 have
strengthened the software industry to achieve a market size
value of $583.47 billion in 2022, which is expected to double by
2030 [19]].

Unfortunately, software systems are not exempt from
security weaknesses that might be exploited by cyber-attackers.
To tackle this problem, there have been diverse efforts
to improve the security of software systems: programming
languages with built-in security features, static source code
analysis tools, dynamic binary analysis tools, formal methods
tools, security related improvements during the software
development process, among several others [2428/47,4952].
Nonetheless, these efforts have been insufficient to free our
pervasive software systems from security weaknesses.

Exploitable software weaknesses are called vulnerabili-
ties [46l. The need to create a central repository of publicly
disclosed vulnerabilities led to the creation of [MITRE!s
Common Vulnerabilities and Exposures (CVE) list [29]. In this
list, each vulnerability gets assigned a unique identifier along
with other details such as the software versions affected,
the consequences of the attack, and external references
about it. Industry reports show an increasing trend in the
amount of publicly disclosed software vulnerabilities, i.e., CVE
records [5,40].

As the number of vulnerabilities increases, so does the
need to test and identify them. There are various techniques
to identify wvulnerabilities in software. Some of them are
penetration testing, static application security testing, dynamic
application security testing, interactive application security
testing, among others. What these techniques have in common
is that to support the analysis of new scenarios, they must

be updated manually. This manual process indicates that the
issue of daily CVE increments persists within these tools. This
is because work teams are required to update the identification
systems. The process is labeled as manual because the teams
consume resources and must spend time to develop the ability
to identify specific vulnerabilities.

This investigation proposes to automate the
Identification, without the need for human interaction when
new CVEs are added.

The proposed solution automatically interprets and extracts
relevant information from CVE descriptions. Concretely, it
extracts the software name and its vulnerable versions. This
extraction is challenging because there are several ways to
write this information in natural language. This first step is
called signature generation module. Afterward, our solution
checks if the target software systems match any of our
automatically extracted database of CVE signatures. This
2-step process represents the most essential function of any
vulnerability scanner. In this way, the solution depends solely
on updated information from [MITRE]s in CVEs.

1.1 Problem Definition

The Common Vulnerabilities and Exposures (CVE) system,
managed by MITRE, serves as a central repository for publicly
disclosed software vulnerabilities. These vulnerabilities are
written in natural language (i.e., English) without a standard-
ized format, making it difficult to automate their processing.

This lack of uniformity forces security professionals to man-
ually review CVE records to update vulnerability scanners and
other security tools. This manual approach is time-consuming,
prone to error, and can lead to delays in addressing critical
vulnerabilities. As the number of CVE records continues to
grow, automation becomes increasingly important to keep pace
with evolving security threats. So, the core problem is that the
natural language nature of CVE descriptions complicates their
automated use in vulnerability identification.

10

Software vulnerabilities can be identified during the
development stage but also in its production environment. In
the first case, software developers might use static/dynamic
application security testing (SAST/DAST), formal methods, and
other tools to identify weaknesses and/or vulnerabilities before
the software enters its production stage [11,25]. Once in
its production environment, software might still suffer from
security vulnerabilities. These vulnerabilities can be previ-
ously unknown (zero-day vulnerabilities) or well-documented
CVE-listed vulnerabilities.

In an effort to find a more efficient solution, this research
focuses on applying [Artificial Inteligence| to automate the
vulnerability identification of publicly known vulnerabilities,
specifically targeting software already in production. Our goal
is to investigate whether pre-trained [Artificial Inteligence|
models can accurately process and extract relevant information
from CVE records, reducing the need for manual intervention.
By using [Artificial Inteligence|l to automate this process, our
study aims to improve the speed and reliability of [Vulnerability]
[[dentification] allowing security teams to respond to threats
more quickly and effectively.

1.2 Research Justification

Identifying software vulnerabilities is a critical priority for
organizations, as undetected vulnerabilities can lead to severe
consequences, including data breaches, financial losses, and
safety risks. A cost-effective method to identify software
vulnerabilities is through the use of vulnerability scanners,
which are designed to find known vulnerabilities in various
software applications. However, these scanners rely on regular
updates from the Common Vulnerabilities and Exposures (CVE)
database to remain effective. Given the rapid growth of
publicly disclosed vulnerabilities, the task of manually updating
vulnerability scanners becomes increasingly challenging and
prone to error.

Over the years, the realm of software development has
experienced a noteworthy surge, prompting the industry to

11

deploy an augmented array of programs and automated
systems in response to this escalation. Driven by trends such
as cloud computing, mobile applications, the [[oT] and industrial
automation, the importance of identifying vulnerabilities early
is more critical than ever. The widespread use of software
in virtually every sector—business, government, and personal
use—has increased the potential impact of software vulnerabil-
ities on safety, privacy, and financial stability. Incidents such as
autonomous vehicle accidents due to software hacks or bank
data breaches resulting from exploited vulnerabilities highlight
the tangible risks posed by software vulnerabilities.

Unfortunately, the growth of software vulnerabilities is
so rapid that it is extremely difficult to scan and analyze
to determine which systems are vulnerable and which are
not. The perceptible expansion is supported since at the
time this research is carried out, there are 368 [CVE|
[Numbering Authority| that are operational in 40 countries,
adding thousands of new CVEs per year. Based on [MITRE]s
public information, in 2023, were published 28961 CVEs [8].
This rapid expansion poses significant challenges for companies
and software development teams in maintaining the necessary
pace to ascertain whether each newly identified vulnerability
is present within their systems. According to Neil Ford in his
data collection for IT Governance, during 2023 there have been
more than 953 cases of major attacks that allowed attackers to
obtain information from more than 5 billion records [17].

Focused on providing a solution in the area of cybersecurity,
this research aims to evaluate the capacity of pre-trained
Al models in the vulnerability identification process, allowing
vendors and software product owners to improve the security
of software and the products they use within their architecture.
The aggregation and dissemination of vulnerability information
cataloged as CVE allow companies, users, suppliers, and
other stakeholders to expedite the process of identifying
whether their products are susceptible to newly disclosed
vulnerabilities within the community. This shared resource
reduces the necessity for extensive manual analysis and

12

testing of individual CVE records, streamlining the process of
vulnerability detection.

1.3 Contributions

This thesis proposes an improvement to the vulnerability
identification process. Unlike existing solutions, our proposal
allows the automated evaluation of software products against
new vulnerabilities added to the CVE list. This system generates
signatures of new vulnerabilities through the use of AI, which
prevents a developer from having to manually add code to
support new vulnerabilities. It also facilitates the demonstration
of the potential application of pre-trained deep learning models
like GPT-3 in cybersecurity contexts.

A key aspect of our proposed approach is its ability to
generate dynamic signatures for newly issued vulnerabilities
using a pre-trained deep learning model like GPT-3. This
process eliminates the need for developers to manually update
code in response to each new CVE, which can be both
time-consuming and error-prone. The Al-based method adapts
to the varied and complex language used in CVE descriptions,
providing a flexible solution that can easily incorporate
emerging vulnerabilities.

The automated nature of the system offers significant bene-
fits to developers. By reducing manual intervention, developers
can focus on high-level tasks such as feature development, code
optimization, and other core responsibilities. This automation
allows them to be more proactive in identifying and addressing
vulnerabilities, promoting a culture of security awareness
throughout the development process. The reduced workload
also enhances productivity, as developers can spend less time
reacting to security risks and more time on innovation.

In addition to its practical advantages, this research con-
tributes to the broader field of cybersecurity by demonstrating
the potential of Al, particularly GPT-3, in security applica-
tions. The successful use of pre-trained models to generate
vulnerability signatures can inspire further exploration into
the role of Al in cybersecurity. This opens new pathways for

13

the development of robust and efficient security solutions,
emphasizing the growing importance of Al in maintaining
secure software systems.

1.4 Hypothesis

The proposed identification architecture, utilizing artificial
intelligence techniques, is expected to demonstrate the
feasibility and effectiveness of automating the identification of
vulnerabilities within the MITRE Common Vulnerabilities and
Exposures (CVE) database. This automation is anticipated to
result in significantly improved accuracy, recall, and scalability
compared to heuristic methods.

1.5 Objectives

This section presents the general objective and the specific
objectives of this research.

1.5.1 General Objective Evaluate the feasibility and effec-
tiveness of Generated Pre-Trained Models to automate the
identification of vulnerabilities within Common Vulnerabilities
and Exposures records.

1.5.2 Specific Objectives

- Evaluate the ability of the GPT model gpt-3.5-turbo-0125
without fine-tuning from the company OpenAl, to extract vul-
nerable versions of software products from the description
of CVE records, based on the accuracy, precision, and recall
of the hits with respect to the expected labels.

- Evaluate the ability of the GPT model gpt-3.5-turbo-0125
without fine-tuning from the OpenAl company, to identify
vulnerabilities from the comparison of character strings,
based on the accuracy, precision, and recall of the hits with
respect to the expected labels.

- Show the operation of the wvulnerability identification
process of the proposed architecture by using CVEs listed in
MITRE during 2023, based on the accuracy, precision, and
recall of the hits with respect to the expected labels.

14

1.6 Research Questions

- How effectively can the GPT model gpt-3.5-turbo-0125,
without fine-tuning from OpenAl, extract vulnerable ver-
sions of software products from Common Vulnerabilities and
Exposures (CVE) records?

- To what extent can the gpt-3.5-turbo-0125 GPT model from
OpenAl, without fine-tuning, accurately identify vulnerabili-
ties through character string comparisons?

- How does the proposed architecture perform identifying
vulnerabilities using MITRE’s 2023 CVE dataset?

15

2 Theoretical Framework

Our proposed solution requires knowledge and research in
different areas of computer science. The most significant area
is cybersecurity, which according to the United States National
Institute of Standards and Technology (NIST) [13], consists
of “the prevention of damage, protection, and restoration
of computers, electronic communications systems, electronic
communications services, communications by cable and elec-
tronic communications, including the information contained
therein, to guarantee its availability, integrity, authentication,
confidentiality and non-repudiation." Cybersecurity is an
extremely broad field, however, this research is mainly focused
on vulnerabilities. According to m [1], vulnerabilities can
be described as flaws in software, firmware, or hardware
that an attacker can exploit to perform unauthorized actions
on a system. They can be introduced due to software
programming errors. Attackers take advantage of these errors
to infect computers with malware or perform other malicious
activities. For this, an extremely important concept is, the
vulnerability scanner, which is defined by NIST [14] as “[a]
tool (hardware and/or software) used to identify hosts/host
attributes and associated vulnerabilities (CVE)". So, it consists
of an inspection of potential exploitation points in a computer
or network to identify security holes. A vulnerability scanner
detects and classifies system vulnerabilities in computers,
networks, and communications equipment [50].

This research also involves concepts from the
domain. Artificial Intelligence “[i]ls the science
and engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar task
of using computers to understand human intelligence, but Al
does not have to be limited to methods that are biologically
observable.” Al, like cybersecurity, is an extremely extensive
field that has had great growth thanks to the computational
power currently available. This research aims to focus on
models using Natural Language Processing (NLP) techniques.
NLP is a branch of Artificial Intelligence that focuses on the

16

ability to understand and take actions based on texts or spoken
words. Its theoretical definition, according to the IBM company
[15] is "[a] field in which computational linguistics (rule-based
modeling of human language) is used with statistical, machine
learning and deep learning models. Together, these technolo-
gies enable computers to process human language in the form
of text or voice data and to ‘understand’ its full meaning,
complete with the speaker or writer’s intent and sentiment".
NLP allows syntactic analysis processes to be executed through
computer systems, which seek relationships between words
and represent the dependencies of the writing. Also, when
using NLP, semantic analysis processes can be carried out, in
which an understanding of language is sought and is known
to be one of the most challenging areas in NLP. Among
the tasks that an NLP implementation can perform is text
classification. To understand this process, we can rely on the
definition of Shen, D. [45]], which describes text classification,
consisting of a process dedicated to automatically assigning
textual documents (such as plain text documents and web
pages) into some predefined categories based on their content.
Formally speaking, text classification works in an instance
space X where each instance is a document d and a fixed set of
classes C' = (C4,(s,...,Cy where N is the number of classes.
In order to implement text classification methods, there are
different emphases.

The implementation of text classification can be done with
both machine learning and deep learning techniques. While
deep learning makes use of neural networks, machine learning
is based on algorithms primarily related to probability and
statistics [21].

The datasets for the investigation must allow extracting
information from CVEs such as labels, descriptions, among
others. For this, it is important to know the different data
sources available and collected as part of the initial research
process. These different dataset options have changes such
as the number of CVEs, the format in which the information
comes, the amount of information in each CVE record,

17

among others. Therefore, it is decided to evaluate during the
implementation process which of these sources is most useful
for the experiment.

2.1 Related Work

The steady growth of publicly disclosed vulnerabilities has
driven the development of diverse automated solutions. For
instance, Kanakogi, K et al. [22]] consists of a probability
analysis that, through the use of Natural Language Processing
(NLP) models, classifies which attack patterns, documented in
the Common Attack Pattern Enumerations and Classifications
(CAPEC), are more likely to be related to CVE recordsEl
To do this, the authors analyze CVE and attack pattern
descriptions to compute a similarity index. Although their work
and ours analyze CVE descriptions, the goal of such analyses is
different. Whereas they aim at linking CVEs with CAPEC attack
patterns, our goal is to automate the development of software
vulnerability tests.

Veneta et al. [0l]] use machine learning algorithms like
Linear Support Vector Classification, Naive Bayes, and Random
Forest Classifier to classify CVEs by type. Like our work, CVE
descriptions are analyzed, but the final objective of the NLP
process is not to determine if a software is vulnerable.

Balasubramanian. et al. [2] focus on a conversational
agent framework designed to assist system administrators in
cybersecurity operations. This study delves into the fine-tuning
of GPT-3 models for tasks such as log summarization, detection
of specific events, and providing essential cybersecurity
instructions to users. The authors report high BERTscore [53]
results, indicating effective summarization of log files. Although
this study shows GPT-3’s ability to assist with cybersecurity
operations, the objective is to support system administrators
with log analysis, not to identify vulnerabilities based on CVE
listed.

Fu. et al. [18] explore the use of ChatGPT for four key
vulnerability-related tasks: function and line-level vulnerability

Yhttps://capec.MITRE.org/

18

https://capec.MITRE.org/

prediction, vulnerability classification, severity estimation, and
vulnerability repair. Through extensive empirical studies, the
paper reveals that despite GPT-3’s large model scale, it
performs poorly compared to specialized language models
for wvulnerability-related tasks. The work underscores the
need for fine-tuning GPT-3 to generalize better for specific
vulnerability tasks. This study provides valuable insights into
GPT-3’s limitations in this context and suggests the need for
domain-specific tuning. Our approach differs in that it examines
the capacity of GPT-3 to identify if specific software modules
and versions are vulnerable, focusing on a narrower, more
specific application in cybersecurity.

Other approaches like Fang. et al. [16]] explores the offensive
capabilities of large language models (LLMs) in cybersecurity,
demonstrating how GPT-4 can autonomously hack websites
and extract database schemas without prior knowledge of the
vulnerabilities. This contrasts with our approach, which focuses
on using GPT model to automate vulnerability identification in
software products, emphasizing a defensive approach. Despite
these differences, both papers contribute to our understanding
of the complex role Al plays in cybersecurity, showcasing its
potential to both protect and exploit digital systems.

These studies underscore the diverse approaches taken to
address vulnerabilities in software systems. While they each
make unique contributions to the field, the work of this study
stands apart by utilizing GPT-3 through an API to automate the
evaluation of software products against new vulnerabilities.

2.2 Background

2.2.1 CVE Records [MITRE]s CVE project started in 1999 as a
need for software vendors to standardize and list in a public
repository the vulnerabilities discovered in their products [29].
When a new vulnerability is found, a request is made and
assigned to a group of CVE partners who review, list, and
corroborate the information provided.

A CVE record consists of 6 parts [|34]]. (1) The CVE ID is a
numeric code that uniquely identifies a CVE record. (2) The

19

name of the software that is affected by the vulnerability.
(3) The version(s) of the software that have been confirmed to
be vulnerable. (4) Public references containing complementary
and relevant information to understand the vulnerability. It
is typically comprised of external web page links. (5) A
prose description of the wvulnerability. Its goal is to allow
the reader to understand the different scenarios in which
the wvulnerability occurs. And (6) Background information
comprising the vulnerability type, root cause, and impact. These
data give information to the reader about the categorization,
origin, and consequences of the vulnerability.

Table 1. Examples of Common Vulnerabilities and Exposures (CVE) record
descriptions.

CVE identifier Description

CVE-2022-45937A vulnerability has been identified in APOGEE PXC
Series (BACnet) (All versions < V3.5.5), APOGEE PXC
Series (P2 Ethernet) (All versions < V2.8.20), TALON
TC Series (BACnet) (All versions < V3.5.5). A low
privilege authenticated attacker with network access
to the integrated web server could download sensitive
information from the device containing user account
credentials.

CVE-2018-8880 Lutron Quantum BACnet Integration 2.0 (firmware
3.2.243) doesn’t check for correct user authentication
before showing the /devicelP information, which leads to
internal network information disclosure.

CVE prose descriptions are written in natural language (i.e.,
English). [MITRE] suggests the following structure to write CVE
descriptions [48]]: [PROBLEM TYPE] in [SOFTWARE/VERSION]
causes [IMPACT] when [ATTACK]. Table [I]shows two concrete
examples of CVE descriptions following [MITRE[s suggested
structure. Although both CVEs adhere to [MITRE]s suggested
structure, the way in which they communicate the same kind of
information varies. CVE-2022-45937 uses boolean comparators
to explicitly define a range of affected versions (“All versions
< V3.5.5"). CVE-2018-8880, on the other hand, expresses the

20

affected version implicitly. It does not use boolean operators
but it is the reader who interprets that the vulnerable version
is equal to the version mentioned in the CVE record (“firmware
3.2.243"). The omission of keywords and comparators makes
version identification dependent on the wording and context of
the description.

2.2.2 Natural Lenguage Processing Models Natural language
processing (NLP) has been classified in literature as a branch
of |Artificial Inteligence| concerned with giving computers the
ability to understand text and spoken words in much the same
way human beings can [20]. NLP plays an important role in the
development of Al since it provides the ability to understand,
generate responses, and classify information without the need
for explicit human interaction.

One of the main challenges of NLP models is the amount
(often tens of thousands) of data required by a model to
reach the desired precision. As Sharir et al. mentions, the
training stages in large language models carry high processing
loads [43]. These high loads can cause extended training times
even running in specialized hardware.

2.2.3 Generative Pre-trained Transformer Model Generative
Pre-Trained Transformer (GPT) is a large language model
originally proposed by Radford et al. [38]. In their work, the
authors propose a method that simulates the cognitive learning
of human beings. Along with this mechanism, an architecture
called transformers is proposed. This is considered the state
of the art for large language models due to its improvement
in the time required for training. GPT consists of a pre-trained
transformer. The training process uses large datasets. These
datasets contain large amounts of information written by
humans, which feeds the model with extensive context and
allows it to generate more accurate answers to arbitrary
queries. The generation of text is the main objective of GPT
models; mainly text that mimics human writing. This model was
introduced with the objective of generating an implementation

21

that is agnostic to the task. GPT has demonstrated outstanding
results on diverse domains, even outperforming task-specific
models.

Text Classifiers

Training Set: Nal:l.ve .Bfa_yes Linear_.'£§vc
75% clasg ltion Clamartron Performance Measures
Training Data (3309) / SVM SGD Classifier Classification
Performance Measures
% Models g = -
p—— L EEELE Accuracy, Precision,
b = {j‘m Regression Aggressive Recall, F‘-Meaasure’
E:n;ar:: Classifier Classifier
P Conversations
with Labels

Results

Test Set:
25% Ensemble

Classifiers
Conversations
Set with Labels

Classified Conversations

Fig. 1. Text Classification Architecture [39]].

2.2.4 TF-IDF In addition to Al, there are also string handling
deterministic techniques. These techniques require a bag of
words which assigns a weight to the words using specific
techniques such as Term Frequency - Inverse Document
Frequency (TF-IDF). Inverse document frequency is a statistical
measure that evaluates how relevant a word is to a document
in a collection of documents. This is done by multiplying two
metrics: how many times a word appears in a document and the
inverse document frequency of the word in a set of documents.
As mentioned in Encyclopedia of Machine Learning by Sammut,
C et al. [41], this technique focuses on representing text
documents as vectors in order to determine specific weights
for each term. Once this process is completed, there are
different machine learning algorithms that can be used, such
as Voting Classifier, Logistic Regression, Linear SVC. In Fig. [T
can be seen a traditional text classification architecture in
which machine learning algorithms, called text classifiers, are
implemented.

22

2.2.5 Vulnerability Identification [Vulnerability Identification| is
part of a larger process known as vulnerability management. In
a vulnerability management process, besides the
[[dentification] it is required to assess, prioritize, and remediate
vulnerabilities [31]]. Nonetheless, the vulnerability identifica-
tion stage is crucial as it triggers all the subsequent stages of
the vulnerability management process.

There are diverse methods to identify wvulnerabilities.
Penetration testing is among the preferred cybersecurity
activities in industry [30]. However, it is an expensive approach
since a professional red team has to be hired to do the job.
The use of automated software tools has helped to identify
vulnerabilities in a cost-effective way. For instance, fuzzing
tools help to identify known and unknown vulnerabilities in
software. However, fuzzing tools typically suffer from high false
positive rates [26]].

On the other hand, the identification of vulnerabilities based
on public vulnerability lists, like [MITRE[s CVE list, is just one
function among many in a broader security ecosystem. These
lists serve as a ground-truth for known vulnerabilities that
various security systems can use to evaluate a target system.
While these lists help in discovering known vulnerabilities,
they don’t identify new ones. However, there’s evidence that
most vulnerabilities exploited in real-world attacks are already
known [35].

A significant challenge with using public vulnerability lists
is how to keep up with the increasing volume of CVE records
published daily [5/40]. It is common practice for these lists to
be updated manually by security teams, leading to delays in
detecting known vulnerabilities. This manual update process is
often time-consuming and can create gaps in the detection of
vulnerabilities due to the high volume of updates requiredEl

2.2.6 CVE Data Sources

2https://forum.greenbone.net/t/cve-2023-6933- seems- to-be-missingmissing/
16750

23

https://forum.greenbone.net/t/cve-2023-6933-seems-to-be-missingmissing/16750
https://forum.greenbone.net/t/cve-2023-6933-seems-to-be-missingmissing/16750

Vulnerability e Target

database . software
creation ’l Comparison k identification

Finish Mo @ Yes Report

Fig. 2. Basic tasks of our proposed vulnerability identification system: (1) vulnerabil-
ity database creation; (2) target software identification; and (3) comparison between
the target software and the database records.

2.2.6.1 MITRE CVE File: [MITRE] allows to download of a file in
different text formats with all the vulnerabilities found. These
formats can be HTML or CSV. The allitems file downloaded on
May 1, 2024, contains approximately 311261 vulnerabilities.
The files can be accessed at [9].

2.2.6.2 Kaggle CVE: A data set of cybersecurity threats and their
importance from NIST. Kaggle is a dataset source where you
can find pre-created datasets with a wealth of information
on various topics. This particular dataset has information on
89 960 vulnerabilities. This information can be accessed at [23]].

2.2.6.3 National Vulnerability Database: This data source is the
United States National Vulnerability Database. Among its
services is the ability to provide a series of API services which
allow obtaining a list of CVEs that are stored in NVD, these
give the possibility of automating the data collection process.
When executing the data collection through the postman
tool, approximately 183,635 vulnerabilities were obtained. The
format of the results is JSON, containing extensive details of
each of the vulnerabilities. This information can be accessed at
[101.

2.2.6.4 CVE and CWE Mapping Dataset (2021): This dataset contains
more than 150,000 vulnerabilities reported in NVD during

the period 2002-21. It includes the various information of the

24

vulnerability, including the unique ID, description, severity,
severity scores, and CWE category in which the vulnerability
falls. Multiple records were used if a vulnerability is assigned
to more than one category. The information can be accessed at

(3.

25

3 MITRE CVE-Based Vulnerability Identification
Proposal

Software vulnerability identification processes must perform 3
basic tasks: (1) to create a database of vulnerable software in
its affected versions as (software_name, version(s)) pairs;
(2) to identify the target system software as a (software_name,
version) pair; and (3) to compare the software found against
the database of vulnerable software. If a match is found,
the vulnerability identification reports the target software as
vulnerable. Otherwise, no vulnerability is reported. In what
follows, we refer to the pairs (software_name, version) as
software signatures. The entire process is depicted in Fig. [2]

Our work seeks to automate the overall
[[dentification| process by automating its individual steps. In
Sect.[3.1]we describe the architecture of the proposed approach
including both, the creation of the software vulnerabilities
database, and the vulnerability identification system. In Sect. [4]
we detail our implementation of the overall system.

3.1 Architecture

Figure [3] shows our proposed high level architecture. This
architecture considers two stages. The Feature Extraction
Stage, consists in the automatic population of the database
with signatures of vulnerable software. On the other hand, the
Validation Stage, aims to identify if a software in a specific
version is vulnerable to any of the CVEs whose signatures are
stored in the database generated in the previous stage. We now
describe both stages in more detail.

3.1.1 Feature Extraction Stage This process is responsible for
generating the signatures that are stored in the database. For
this, the proposed architecture is made up of several steps,
which are: Obtaining the CVEs in CSV format: The process
starts by obtaining CVE records as comma-separated value
(CSV) tuples [33]. The CSV file contains the main elements of a
CVE record, such as the CVE-ID and its description. Signature

26

Analyze Software <Name>
with version <x.x.x>

ignatur Stores
Slopaie Software Name

= = Vulnerability
CVE in CSV—Raw Tex—> Generation — and —> —> lIdentificaton —>

Format Module Versions Signatures System

< < >

Feature Extraction Stage Validation Stage

CVE Vulnerability
Report

o3 ol |
282 |

Fig. 3. Architecture of our proposed approach to develop automated vulnerability
tests.

Generation Module (SGM): This module must be capable
to automatically generate vulnerable software signatures. A
vulnerable software signature consists of a (software_name,
version) pair. Since a single CVE record can comprise
multiple versions of a software, it might be needed to create
multiple signatures per CVE. The information needed to create
vulnerability signatures is available in CVE descriptions (see
Table [I). The Signature Generation Module component is one
of the main contributions of this work. We propose two possible
SGM proposals.

- One implementation is based on an [heuristic|algorithm. This
means that they are a series of predetermined steps that
are designed to capture data through evaluations based on
common patterns identified in CVE texts.

- The second one leverages an artificial intelligence model.
This implementation focuses on the use of deep learning
models to determine and extract valuable information from
the text in a CVE. Specifically, this proposal aims to use
pre-trained models with a large amount of information for
text generation.

CVE Signatures Database: Finally, the automatically ex-
tracted signatures are stored in a database as key-value pairs,
where the key is the CVE-ID and the value, the corresponding
signatures extracted from that CVE. Thus, our vulnerability
database is composed of (key: CVE-ID, value: software
signature) pairs.

27

3.1.2 Validation Stage The main component of the Validation
Stage is the Vulnerability Identification System (VIS). The VIS
takes as input a software signature and checks whether it
matches any of the records stored in the database created by
the SGM. The input signature might come from an automated
fingerprinting software, a human who wants to know if
particular software is linked to CVE records, or any other
source. We do not elaborate on this input as it is beyond our
scope.

The VIS checks if the input signature is part of the
vulnerability records stored in the database. If that is the case,
a vulnerability report is created. Otherwise, the system finishes
its execution.

For VIS Implementation, we also propose two possible
proposals:

- One implementation is based on an approach.
Basically, this means that the signature information must
be compared with the user input signature using string
comparison algorithms.

- The second one also leverages an artificial intelligence
model. This with the objective of evaluating whether
a pre-trained model can determine whether a software
product is vulnerable or not to a specific CVE, receiving as
input the description of the CVE and the input signature.

28

4 Implementation

This section delves into the implementation of our proposed
design by explaining how we built the components shown in
Fig 3]

To obtain CVE records in CSV format, it is possible
to automate the download from [MITREls website [33]. We
implemented this process as a job that regularly checks
for the latest CVE records available. This data is later processed
by the Signature Generation Module (SGM).

The SGM lies at the core of our proposed architecture.
We propose two different approaches to implement it. The
first one is a heuristic algorithm that, through predefined
steps, decomposes the text so that the required data can be
extracted from CVE descriptions. The second proposal consists
of a Generative Pre-trained Transformer (GPT) model that, by
means of a specific prompt, manages to extract vulnerable
software signatures from CVE descriptions. We now describe
both implementations in more detail.

4.1 Heuristic SGM

This implementation proposal consists of a heuristic algorithm
that takes as input CVE descriptions and outputs vulnerable
software signatures. The Heuristic SGM performs 3 steps
divided in 8 subtasks, as depicted in Fig. [4 For a better
understanding of each of them, we use the description of
CVE-2022-45937 as an example (see Table [I).

4.1.1 Preprocess Text. In this step, irrelevant information is
removed, and specific substitutions are made to standardize the
analysis. More specifically, we perform the following changes to
the text:

- Space Comparison Symbols: In this step, the symbols and
specific words shown in Table [2] are identified within the
CVE description. A blank character is added before and after
each of them, if there is none. A function implemented in

29

Preprocess :;’ en.tlfy Update
‘ersion
Text i Database
Declaration
CVE in CSV Separe Comparison Generate Vgrsmn Append JSON
Symbols Declaration Record to DB
Format
Y Y
Replace Comparison Separate Product and
Symbols Version
Y Y
Delete Stop Words Generate JSON
format
Identify Text —

Fig. 4. Heuristic SGM Implementation.

Python that performs this function can be seen in Listing [I]
For example, <V3.4 becomes < V3.4.

Listing 1. Split Symbols Python Function

1 def splitSymbols(text):

2 words = re.search('(<)[a-zA-Z]|(<=)[a-zA-Z] |
3 (=)[a-zA-Z]1| (>)[a-zA-Z]| (>=)[a-zA-Z]"', text)
4 if words:

5 match = words.group()
6

7

8

9

white space = " "

last_two = match[-2:]

text = text.replace(last_two, white_space.join(last_two))
return text

- Replace Comparison Symbols: This step consists of
replacing the symbols and specific words as shown in
Table 2] This is important because later in the process, all
symbols of the text are removed.

- Delete Stopwords: The elements of the text that are
characterized as stopwords are deleted. As mentioned
by Sarica et al. in [42], “the uninformative words, often

30

referred to as “stopwords”, need to be removed in the
pre-processing step, in order to increase signal-to-noise ratio

in

the unstructured text data”. For this step, the list of

stopwords is taken from the Python nltk.corpus [37] library.

- Identify Text: This is the last stage of preprocessing and
consists of labeling the code for later analysis. Each word is
going to be tagged with a specific key word. This labeling
process will be carried out using regular expressions. The
system labels are:

A

Comparators: The words lower, equal or greater.
Version: All the words with the pattern V' < Number >
. < Number > --- < Number >. This pattern is recognized
with or without the initial V. For example V2.3.4 or 2.4.3.
Also, the words version or versions are tagged as Version.
Context: They are all those words that were not tagged as
Version or Comparator. These words contain information
about the software product as well as the context of the
vulnerability.

function implemented in Python that performs this

function can be seen in Listing [2]

Listing 2. Identify Labels Python Function.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

def identifylLabelsInText(text):

v_values_regex = "([vV]{1}?)\d{1,5}\.\d{1,5}|\.\d{1,5}]
\.\d{1,5}|\d{1,5\.\d{1,5}\.\d{1,5}|\.\d{1,5}|\.\d{1,5}"
values_regex = "\d{1,5}\.\d{1,5}"
version_regex = "(version+)([s]?)"
compare_regex = "(?:greater|lower)"
for token in text:
if re.match(v_values_regex, token.get("text")) or
re.match(version_regex, token.get("text")):
token.update({"type": "VERSION"})
elif re.match(values_regex, token.get("text")):
token.update({"type": "MODEL"})
elif re.match(compare_regex, token.get("text")):
token.update({"type": "COMPARE"})
return text

4.1.1.1 Identify Version Declaration. This phase consists of identify-
ing what we call a version declaration. This operation consists

31

Table 2. Symbols replacement used in the Heuristic approach.

Symbol Replacement‘ Original Word Replacement

= equal before lower

> greater up to versions lower

< lower prior to versions lower
and prior greater versions

of identifying the pattern[n] of labels context + version +
comparator. In the first description shown in Table [T} there
are 3 declarations. If the first one is analyzed, the context
corresponds to “A vulnerability has been identified in APOGEE
PXC Series (BACnet)”. The context contains the name of the
software and additional text that is not relevant. This first stage
of the statement identification process consists of finding that a
sequence of words has the aforementioned labeling pattern. For
this, in Listing [3] you can see the code used. This code is based
on the labeling process previously discussed and, by using
variables that contain information from the token above, can be
determined that indeed the sequence of tokens corresponds to
a declaration. To remove the irrelevant text, the system extracts
the last n words and assigns them as the software product
name. Our experiments showed that n = 4 provides good results
to identify the software product name. Following up with the
example, the extracted name would be “APOGEE PXC Series
(BACnet)”.

Once all the possible version declarations in the text have
been identified, we proceed to separate the software products
from the versions, separating the software name from the
comparison blocks (version + comparator). This process
generates a result like the following {module: APOGEE PXC
Series (BACnet), vulnerable versions: versions < V3.5.5}. The
code used to carry out this separation of the elements of
a declaration can be seen in Listing [4] It iterates over the
declaration list, and using the labels it determines which part
of the declaration corresponds to the name of the module and
which corresponds to the affected versions.

32

1
2
3
4
5
6
7
8
9

10
11
12
13

© 0 N O U W N

e e e o
0 N OO U~ W N RO

19

Listing 3. Search Version Declarations Python Function.

def searchForVersionDeclarations(text):
versionDeclaration = []
prev_token_index = ""
prev_token_type = ""
for index, token in enumerate(text):
token_type = token.get("type")
if (token_type != "COMPARE") and prev_token_type == "VERSION":
versionDeclaration.append(index)
elif (token_type == "MODEL") and prev_token_type == "COMPARE":
versionDeclaration.append(index + 1)
prev_token_type = token.get("type")
prev_token_index = index
return versionDeclaration
Listing 4. Separe Declarations Python Function.
def separeteDeclarations(versionDeclaration, text):

last_declaration = 0

declarations = []

for declaration in versionDeclaration:
current_declaration = {"module":[],"versions":[]}
key_name = "module"
is_version = False
for index in range(last_declaration, declaration):

is_version = text[index].get("type") == "VERSION" or
(text[index] .get("type") == "MODEL"
and text[index-1].get("type") == "COMPARE")
if is_version and key_name == "module":
key_name = "versions"
if text[index-1].get("type") == "COMPARE":

current_declaration[key_name].append(text[index-1])
current_declaration[key_name].append(text[index])
declarations.append(current_declaration)
last_declaration = declaration + 1
return declarations

4.2 GPT SGM

This implementation proposes the use of the [OpenAlls GPT-3
pre-trained models [27]. These models can be used through
the official API. This API is accessed through HTTP
requests. The request requirements include selecting a model
to run and a text query. That query is called prompt. The

33

implementation of this section is programmed in Python. For
this, the library is used. An example of connection to
the [OpenAl API can be seen in the function [5 The specific steps
of this process can be seen in the Fig. [5]

This solution is simpler from an architectural point of view,
as it is delegated to a third-party component. Previous experi-
ments have demonstrated the ability of the gpt-3.5-turbo-0125
(GPT3) model to perform actions based on text analysis as well
as text generation [0]. Consequently, the GPT3 model could
be utilized to handle basic queries in cybersecurity due to its
proven capacity for text analysis and generation.

Listing 5. Call OpenAl Model Python Function.

1 def call_open_api(cve_prompt):

2 client = OpenAI()

3 fail = False

4 generated_text = ""

5 try:

6 response = client.chat.completions.create(

7 model="gpt-3.5-turbo-0125",

8 response_format={ "type": "json_object" },

9 max_tokens=3000,

10 messages=[

11 {"role": "system", "content": "You are

12 a helpful assistant designed to output JSON."},
13 {"role": "user", "content": cve_prompt}

14]

15)

16 generated_text = response.choices[0].message.content
17 except Exception as e:

18 retry_time = 2

19 print(f"Error {e}. Retrying in {retry_time} seconds...")
20 time.sleep(retry_time)

21 return call_open_api(cve_prompt)

22

23 return generated_text, fail

4.2.0.1 Prompt Execution. At this stage, a request is made to a
GPT text processing model. It consists explicitly of indicating
that it is required to extract the relevant data of the respective
software products and versions found in CVE descriptions. This
prompt request is build using the description and the CVE-ID.

34

Prompt
Execution

Parse
Response

Update
Database

CVE inCSV ——»|
Format

Add CVE Information
to Prompt Template

Convert Response to
json

Append JSON
Record to DB

|

|

Configure gpt-3.5-
turbo-0125 model

Check JSON
structure

|

|

Send Prompt

Generate JSON final
format

Fig. 5. GTP SGM Architecture.

At this stage, the response from the model is expected to be
a list of signatures in JSON format containing the name of
the software and the vulnerable versions. The Appendix [A.T]
contains the prompt used in this section. The expected output
of the execution of the prompt for the CVE-2022-45937 can be
seen in Listing [6]

4.2.0.2 Parse Response. In this step, the response of the model is
validated, to check its format and standardize the information
so that it is ready to be uploaded to the database. If the
response is in an unsupported format, our system retries until
the response complies with what is expected, it performs a
configurable number of retries, in case the maximum number
is reached, the CVE analysis will be discarded. Among the
validations is determining whether the CVE has not been
reserved as a candidate by an organization, and it is also
validated that the JSON format is properly written. These
validations are implemented using Python, as can be seen in[7]

35

© 00 N O U W N

- =
=

© 0 N O U W N e

[I S e e e e e e
= O ©W N O U B W NN = O

Listing 6. JSON Ouput Example.

{

"CVE_ID": "CVE-2022-45937",

"vulnerable_versions": [
{"module": "APOGEE PXC Series (BACnet)", "versions":
[{"version": "versions>=3.5.5"}]},
{"module": "APOGEE PXC Series (P2 Ethernet)", "versions":
[{"version": "versions>=2.8.20"}1},
{"module": "TALON TC Series (BACnet)", "versions":
[{"version": "versions>=3.5.5"}1}
]

Listing 7. Analyze Response Python Function.

def analyze_cve(token, cve_prompt, cve, database, database_name, attemp):
if cve["DESCRIPTION"] == CANDIDATE:
print("CANDIDATE "+ cve["CVE-ID"], flush=True)
clean_response, success =
{"CVE_ID": cve["CVE-ID"], "vulnerable_versions": []}

elif cve["DESCRIPTION"] != CANDIDATE:
response, fail = call_open_api(token, cve_prompt)
clean_response, success = clean_result(response, cve["CVE-ID"])

if success:
database["cves"].append(clean_response)
print("Analyzed "+ cve["CVE-ID"], flush=True)
save_result(database, database_name)
else:
if attemp < 2:
print("Retrying cve " + cve["CVE-ID"], flush=True)
analyze_cve(token, cve_prompt, cve, database,
database_name, attemp + 1)
else:
print("Abort cve " + cve["CVE-ID"], flush=True)

4.2.0.3 Update Database. This step consists solely of information
storage. The main condition for the implementation of this
module is that the information is saved in JSON format. For
the experiment, the decision was made to use the MongoDB
database in its free version [4]. The adapter with the database
is developed in Python. This is based on the use of the pymongo
library. Which simplifies the connection to the database,

36

allowing to only have to use a few lines of code. Among the
data required to use this library are the server as an object,
pymongo.MongoClient and the name of the database.

4.3 Vulnerability Identification System (VIS)

The purpose of this stage is to determine if there is a signature
in a CVE that is identified as vulnerable when compared with
the database. The proposed workflow for this stage can be seen

in Fig. [6]

No.

¥]
Pull CVE From Evaluate is Vulnerable —Yes—> Add CVE To
Database Signatures €S> Vulnerable List

Fig. 6. Vulnerability Identification System (VIS) Workflow.

4.3.1 Pull CVE. In order to use the data that were previously
generated, they must be retrieved from the database. We
propose to obtain the CVEs that are to be analyzed using the
range of dates in which they were uploaded as a filter. This in
order to reduce the amount of reprocessing.

4.3.2 Evaluate Signatures. Two possible implementations for
this design are provided. The first consists of a fully heuristic
process which evaluates the signatures from predefined
processes. The second proposal consists of making a request
to the GPT model. The request contains the CVE signatures and
the software product information.

4.3.3 Heuristic VIS. This proposal consists of using heuristic
algorithms that, through knowledge of the format and structure
of the information, can carry out the validation. This process
can be seen in Figure [7} For this step to work, it requires the
signatures for each preprocessed CVE and also the input from
the user. This input refers to the software product that is going

37

%) -"
CVE Signatures
DB

\ 4

Input Software to
Analyze

l l

Module: Desigo

New Signature <

Model: PXC36.1-E.D PXC36.1-E.D
Version: V6.00.204 Versions: >= V2.3x
and < V6.00.327
Get cosine
o No
similarity for

module values

/ \
/iﬁ> 07

Yes

v

Detect the
operators

|

Compare next
version with the
user input

|

/" Version in\~

Y]ge?

No

Vulnerable

Fig.7. Example of Heuristic VIS string comparison Workflow. Based on
CVE-2019-13927.

38

No

7

Pull CVE From Identify Product Compare Version Add CVE To
—> . —> : —>Is Vulnerable —Yes—»> X
Database Signature Signatures Vulnerable List

Fig. 8. Heuristic VIS Implementation.

to be evaluated. The implementation flowchart can be seen in
Figure [8] In the flowchart, there are two functions:

- Identify Software Product Signature: Consists of evalu-
ating if any of the CVE software module name matches the
software being analyzed entered by the user. For this, a text
comparison is performed, an example of this comparison is
the implementation that uses cosine similarity, it is a metric,
helpful in determining, how similar the data objects are
irrespective of their size and the equation to calculate it
is Sc(z,y) = x - y/||x|| X ||ly||. The values of this coefficient
can vary between the range of -1 and +1. Our previous
experimental evaluations determined that the optimal value
to use in this step is 0.7. This section can be seen in Figure (7]
as the first operation between the user input and each of the
database signatures.

- Compare Version Signature: Once a software product
signature matches, we proceed to compare the version
signature. For this, a series of predefined steps are carried
out, which analyze the string value of the signature. These
steps consist of determining the type of the signature.
There are 3 types, the first is all versions, in this case
all software versions of the product are vulnerable, the
second is a specific version which is vulnerable, so the
type of comparator would be the same. Finally, the third
type includes a range of vulnerable versions, such as
signatures in Listing [6] Once the type has been identified,
the operator in question is used to compare the software
version with the version signatures identified in the CVE.
For this comparison, Python boolean operators are used
which, thanks to the fact that the text is normalized,
allows comparing the ASCII and Unicode representation

39

of the strings so that operators such as < and > are
perfectly usable. From an implementation point of view, this
is one of the most complicated points. This is because it
must be correctly determined whether the declaration uses
operators or not, and from there use those same operators
to compare the text. So to make it clearer for the reader, the
diagram in Figure [/| has the specific flow of each step.

i No ‘
Pull CVE From Make Request Parse s Vulnerable —Yes>. Add CVE To
Database To GPT Model Response Vulnerable List

Fig. 9. GPT VIS Implementation.

4.3.4 GPT VIS. This approach focuses on using the
GPT-3.5-turbo-0125 model to determine if the evaluated
software product is vulnerable or not. To do this, it is proposed
to create a prompt that contains the data of; product under
evaluation as well as the signatures of the CVE that is being
evaluated. Figure [9 shows the architecture of this proposal.

- Make Request To GPT Model: This architecture process
should focus on the elaboration of the prompt. For this, the
software product data is taken into account, name + version.
The values of the signatures belonging to the CVE that is
being evaluated must also be included in the prompt. This
is so that the model has enough information to make the
comparisons. The output of this process is expected to be
a text containing information to determine if the CVE is
vulnerable or not. The Appendix [A.2] contains the prompt
used in this section.

- Parse Response: This task aims to receive the model’s
response as input, to parse it and analyze the text to
determine if there is a pattern that indicates whether the
software product is vulnerable. In addition, if it is, it must

40

output a flag that tells the next task to add the CVE to the
list.

4.3.5 CVE Vulnerability Report. It consists of the generation of
a report that shows the CVEs which affect the software and
version that were given as input to the system.

41

5 Experimental Results

We evaluate the proposed approach by means of two exper-
iments. The first experiment aims to evaluate and compare
the Heuristic and GPT Signature Generation Modules (SGMs)
to create the vulnerability signature database. The purpose of
the second experiment is to determine the capability of our
system to identify vulnerabilities in a subset of target systems.
As mentioned in Sect. [we implement Heuristic and GPT
Vulnerability Identification Systems (VISs), both of which are
evaluated here.

The heuristic experiments run on a computer with
20.04 as operating system, using an Intel Core i7 10th Gen
CPU and 16GB of DDR4 RAM memory. For the cloud-based
GPT service, Azure is the provider used to run the models. This
provider allows scaling and adjusting processing requirements
on demand, which makes it difficult to provide detailed system
specifications.

5.1 Database Generation Experiment

This experiment consists of generating a database of vulnera-
bility signatures. Vulnerability signatures are (software_name,
version) pairs of vulnerable software. We analyzed 39534
CVEs published in 2023 [|33]. This represents the 100% of the
total amount of CVEs published during that year. We deem this
amount of CVEs sufficient to obtain representative results of
the performance of our proposed approach.

In this experiment, we assume that all CVEs must clearly
state the vulnerable software and its versions. The only excep-
tion to this assumption are CVEs labeled as *REJECTED** or
RESERVED, These kind of CVEs are the only cases in which
the modules should not identify any vulnerability signatures.

We started by using a CSV file of the 39534 CVEs to be
analyzed. Then we processed the CSV file using both, the
Heuristic and GPT, SGMs implemented.

There are 4 possible outcomes for both SGM implementa-
tions. We call it a true positive (TP) when at least one correct

42

vulnerability signature is created from a valid CVE record; a
true negative (TN) when no vulnerability signature is created
from a reserved CVE record; a false positive (FP) when a
model creates a mistaken vulnerability signature from a valid
CVE record; and a false negative (FN) when no vulnerability
signature is created from a valid CVE record. The result for
each approach can be seen in Table [3] From these metrics it

is possible to compute the precision (L), recall (—t-—),

TP+FP TP+FN
and accuracy (7 Hfﬁi%% —) for both implementations. Table

shows the results obtained during the experiments.

Table 3. Vulnerability SGM results for the heuristic and GPT implementations.

SGM TP TN FP FN
Heuristic 14098 14 842 0 10594
GPT 24692 14 842 0 0

Table 4. Vulnerability SGM metrics for the heuristic and GPT implementations.

SGM Precision Recall Accuracy F1 Score
Heuristic 1,0 0,571 0,732 0,727
GPT 1,0 1,0 1,0 1,0

During the execution of the experiments, we also analyzed
metrics related to the execution time for both. These results are
detailed in Table [5] It is worth noting the significant difference
in the total time required by the GPT SGM (46 982,632 seconds
~ 13 hours) and the Heuristic SGM (240,610 seconds ~ 4
minutes).

We also performed a Multifactor Analysis of Variance
(ANOVA) to better understand the factors that affect the
execution time of the implemented SGMs. In the experiment,
two variables are analyzed. X; being the SGM used and
X, the CVE description length [32]. When carrying out the
analysis, the results reaffirm what was seen in Table [5| That

43

the implementation used has a direct impact on the duration of
the process. Furthermore, it also reflects that the length of the
description has an impact on the execution time, mainly in the
implementation that uses GPT.

Table 5. Summary of the execution time required by the Heuristic SGM and GPT
SGM to populate the vulnerability signature database.

Time per CVE (s)

SGM Total Time (s) Average Standard Deviation
Heuristic 240,610 0,009 0,008
GPT 46982,632 1,188 3,462

5.2 CVE Identification Experiment

In this experiment, we evaluate two distinct models for
vulnerability identification: a heuristic-based system, referred
to as Heuristic VIS, and a system based on the GPT-3 API,
referred to as GPT-based VIS (VISs). The goal is to determine
which system can better identify software vulnerabilities using
a given dataset of Common Vulnerabilities and Exposures
(CVEs).

44

Listing 8. Experiment Ground Truth Input Example.

1A

2 "cves": [

3 {

4 "CVE-ID": "CVE-2023-40558",

5 "isVulnerable": {

6 "Module": "eMarket Design YouTube Video Gallery",
7 "Version": "3.3.5",

8 "Vulnerable": true

9 }

10 i

11 {

12 "CVE-ID": "CVE-2023-40558",

13 "isVulnerable": {

14 "Module": "eMarket Design YouTube Video Gallery",
15 "Version": "4.0.0",

16 "Vulnerable": false

17 }

18 }

19]

20 }

5.2.1 Input Data The input for the experiment is a JSON array
containing multiple CVE entries. Each CVE includes details
about the software module, its version, and a boolean indicating
whether this module-version combination is vulnerable or not.
An example of the input JSON structure can be seen in Listing 8}

The dataset consists of 600 test cases, 344 representing
vulnerable scenarios and 256 representing non-vulnerable
scenarios, derived from 383 unique CVEs.

5.2.2 Generation of Test Data To create the test data for this
experiment, the following steps were taken:

1. Random Selection of CVEs: We randomly selected 383
CVEs from a total population of 35,954 CVEs published in
2023. This sample size was determined using the following
formula for sample size calculation:

N-Z%-p-(1-p)
(N=1)-E*+2Z%-p-(1-p)

n =

45

where:

- N is the total population size.

- p is the estimated proportion of the characteristic of
interest in the population. We use p = 0.5 to maximize
the sample size, as it represents the highest variability
and thus yields a conservative estimate.

- E is the margin of error (0.05 for a 5% margin of error).

- Zis the Z-score for a 95% confidence level (approximately
1.96).

- n is the desired sample size.

This formula is derived from the standard sample size
calculation in statistics [7/l], which balances population size,
error margin, confidence level, and variability to determine
the optimal sample size.

. Manual Verification of CVEs: Each of the selected
383 CVEs was manually reviewed by the authors to
determine the relevant modules and versions. This process
involved assigning the ground truth for whether a specific
module-version combination is vulnerable to the correspond-
ing CVE.

. Creation of JSON Data: After manual verification, a JSON
file was created containing all the relevant information for
each CVE, including the module, version, and whether it was
deemed vulnerable or not. This JSON file serves as the input
data for the experiment described in the previous section.

The random selection of CVEs and the subsequent manual

verification ensured a diverse set of test cases for evaluating
the heuristic-based and GPT-based vulnerability identification
systems. By using a rigorous method to determine the sample
size and a thorough review process for the ground truth, the
data generated provides a robust basis for conducting the
experiment.

5.2.3 Experimental Procedure The experiment follows these
steps:

1. Retrieve CVEs: The specific CVE to be evaluated is

retrieved from a pre-generated database.

46

2. Validation by VIS Models: The input data is processed
by both the Heuristic VIS and GPT-based VIS models. Each
model evaluates the vulnerability of a given module and
version based on the corresponding CVE. The expected
outcome is a boolean indicating vulnerability.

3. Validation of Results: The output from each model is
compared to the expected ground truth to determine if the
result was correct. Based on this validation, the following
metrics are calculated:

- True Positive (TP): Cases where the model correctly
identified a known vulnerability.

- False Positive (FP): Cases where the model incor-
rectly identified a wvulnerability in a non-vulnerable
module-version.

- True Negative (TN): Cases where the model correctly
identified a non-vulnerable module-version.

- False Negative (FN): Cases where the model failed to
identify a known vulnerability.

4. Document Results: The results are recorded, and the next
CVE is processed.

5.2.4 Metrics and Evaluation To evaluate the performance of the
Heuristic VIS and GPT-based VIS models, we use the following
metrics:

- Accuracy: This metric measures the proportion of correctly
identified cases out of the total cases, providing a general

indication of the model’s correctness. It is calculated as
TP+TN
TP+TN+FP+FN*

- Recall: This metric assesses the model’s ability to detect
true positive cases. It is calculated as TPTJF%. A high recall
indicates effective detection of vulnerabilities.

- F1 Score: This metric combines precision and recall,
providing a balanced view of the model’s performance. It is

Precision x Recall f . TP
calculated as 2 x Precicion T Recall” where Precision is TP+FP

By using these metrics, the experiment aims to determine
which model is more effective at identifying vulnerabilities in

47

a variety of software modules and versions. The results from
this experiment will guide future improvements in vulnerability
identification systems.

5.2.5 Results Table [0l shows results for the heuristic methodol-
ogy, consistently revealing low rates of accuracy, recall, and F1
Score. Heuristic VIS has all the same results because it likely
uses a fixed set of rules or patterns to make its determinations.
This approach lacks adaptability and might not consider the
full range of possible variations in the data. The heuristic
methodology tends to be rigid, leading to consistent outputs
regardless of the nuances in the test runs.

Table 6. Results for Heuristic VIS.

Run TP TN FP FN Accuracy Recall F1 Score

1-10 82 220 36 262 0,503333 0,238372 0,354978

Table[7]displays results for the GPT VIS method, highlighting
high levels of accuracy, recall, and F1 Score. These results
indicate better consistency and reliability compared to the
heuristic method.

Table 7. Results for GPT VIS.

Run TP TN FP FN Accuracy Recall F1 Score

1 325 206 50 19 0,885000 0,944767 0,904033
2 322 213 43 22 0,891667 0,936047 0,908 322
3 326 205 51 18 0,885000 0,947674 0,904300
4 326 219 37 18 0,908333 0,947674 0,922207
5 322 212 44 22 0,890000 0,936047 0,907 042
6 329 213 43 15 0,903333 0,956395 0,918994
7 325 213 43 19 0,896667 0,944767 0,912921
8 327 208 48 17 0,891667 0,950581 0,909597
9 327 208 48 17 0,891667 0,950581 0,909597
10 326 215 41 18 0,901667 0947674 0,917018

In the GPT VIS experiment, different results in each iteration
can be attributed to variations in the data and the inherent

48

randomness in the model’s initialization and learning process.
The use of different batches or data shuffling during training
can lead to subtle changes in predictions, impacting metrics
like accuracy, recall, and F1 score. Despite these fluctuations,
the GPT VIS model generally maintains high performance,
demonstrating its flexibility and adaptability to diverse data
patterns.

Table 8. Average Results for Heuristic VIS and GPT VIS.

Accuracy Recall F1 Score
Method Mean Std Mean Std Mean Std
Heuristc 0,503 0,000 0,238 0,000 0,354 0,000
GPT 0,894 0,008 0,946 0,006 0,911 0,006

Table (8] shows the average results for the Heuristic VIS
and GPT VIS methods. It can be observed that the GPT
VIS implementation outperforms the heuristic approach in
all metrics. GPT VIS has significantly higher mean accuracy,
recall, and F1 score, indicating a more reliable and consistent
performance. The lower standard deviations suggest a more
stable output compared to the heuristic approach, which has
consistent but lower results.

49

6 Discussion

Our findings indicate that it is indeed possible to automate
the generation of a database based on CVEs. By analyzing the
results in Table |§| in detail, we can see that despite the fact
that both methods manage to identify signatures, the GPT SGM
has a greater capacity to identify software products, which
can be seen with the value of false negatives. In the Heuristic
SGM, 26,79% of the CVEs did not yield identified products,
while in GPT SGM 0%. This is verified by reviewing the recall
value in Table 4] which clearly shows a greater capacity for
this SGM implementation to obtain relevant information from
the descriptions. If the results are analyzed based on the time
it takes to analyze a CVE, with the results in Table [f it is
known that the GPT SGM takes an average of 132 times longer
than the Heuristic SGM to obtain a result. In contrast, the
heuristic-based approach had a significant number of false
negatives (10,594), resulting in a recall rate of only 0.571. This
finding suggests that the heuristic approach, while achieving
high precision due to the absence of false positives, lacks the
sensitivity required to capture all valid vulnerability signatures,
leading to a lower recall rate. Overall, the GPT-based approach
demonstrated superior accuracy and reliability in generating
vulnerability signatures, albeit at the cost of significantly
increased execution time. But still better than doing it manually.
The heuristic approach, while faster, had a higher likelihood
of missing valid signatures due to its lower recall rate. Future
work could focus on optimizing the GPT-based approach for
efficiency or exploring hybrid approaches to balance accuracy
and speed.

The second experiment evaluated the performance of two
vulnerability identification systems: a heuristic-based system
(Heuristic VIS) and a GPT-based system (GPT VIS). The results
clearly indicate that the GPT-based approach outperformed the
heuristic-based approach across all key metrics, demonstrating
higher accuracy, recall, and F1 score. The experiment used
a dataset of 600 test cases derived from 383 unique CVEs,

50

allowing for a thorough evaluation of the models’ effectiveness
in identifying vulnerable software modules and their versions.

In the heuristic-based system, the results showed consis-
tently low rates of accuracy, recall, and F1 score. This outcome
is likely due to the static nature of heuristic rules, which may
not be able to adapt to variations in the data or capture complex
patterns. The lack of adaptability led to a high number of false
negatives (FN = 262 per run), indicating that the heuristic
approach frequently missed valid vulnerabilities.

The GPT-based system achieved significantly higher perfor-
mance, with near-perfect metrics in terms of accuracy, recall,
and F1 score. This suggests that GPT’s adaptability, deep
learning capabilities, and context awareness make it better
suited for complex data scenarios. However, the increased
accuracy and recall come at the cost of higher computational
resources and longer execution times, with the GPT system
requiring over 13 hours to process the dataset compared to the
heuristic system’s 4 minutes.

Recall is a critical metric in vulnerability identification
because it measures a system’s ability to detect all true
positive cases. A high recall rate indicates that the system
is effective at identifying vulnerabilities, minimizing the risk
of undetected security risks. In this experiment, the GPT
VIS system’s perfect recall demonstrates its effectiveness in
capturing known vulnerabilities, making it a more reliable
choice for vulnerability detection.

Overall, the results suggest that while the heuristic approach
offers faster execution times, it lacks the sensitivity required
to detect all vulnerabilities. The GPT-based approach, on the
other hand, provides higher accuracy and recall but at the cost
of longer execution times. Future work could explore ways to
optimize the GPT system for efficiency or investigate hybrid
approaches that combine the strengths of both methodologies.

51

7 Conclusion

In this work, we investigated to what extent future vulnerability
scanners would be able to automatically update themselves
from publicly disclosed vulnerability reports. Currently, such
task is typically done by their developers, who read vulner-
ability reports written in natural language and then update
the scanner with the corresponding vulnerability signatures.
Given the growth of publicly disclosed vulnerabilities, the
requirement to quickly update wvulnerability scanners is
becoming a crucial cybersecurity problem.

The core of the proposed approach is the automatic
extraction of vulnerability signatures from CVE descriptions.
We presented two ways to extract such signatures. The first
one, was based on a heuristic method developed by our
(human) experience in reading thousands of CVE descriptions
from different software systems. The second one, leveraged
state-of-the-art large language models. Specifically, the GPT-3
system developed and published by OpenlA.

Our results show that it is possible to automate the
identification of vulnerabilities using pre-trained AI models. To
evaluate the ability of the pretrained model to extract important
information from a CVE description. A heuristic model is
created that is used for comparison. What the results show
is that whereas the heuristic approach is fast (0,009 seconds
per CVE on average) but inaccurate (accuracy of 0,732), the
GPT-based approach is slower (1,188 seconds per CVE on
average) but significantly more accurate (accuracy of 1,0) than
the heuristic approach. Despite the larger duration per CVE
of the GPT-based approach, it is still faster than analyzing
CVEs manually. These findings suggest that while using GPT for
cybersecurity tasks is feasible and can yield high accuracy, the
long execution times may limit its practicality in some contexts.
To address this, further work could explore hybrid approaches
that combine the accuracy of GPT with the efficiency of
heuristic methods, or seek to optimize GPT-based models to
reduce processing times without sacrificing performance.

52

The ability of the pre-trained GPT model to identify
vulnerabilities using CVE signatures database was evaluated
in the second experiment. Which yields results that show that
the GPT model has a considerably higher average accuracy
0,894 than the heuristic implementation 0,503. Therefore, we
consider that a heuristic model is not the best alternative for
this process. Obtaining 1,0 accuracy in the first experiment
with the GPT implementation and 0.918 in the heuristic
implementation in the second experiment. We conclude that the
proposed architecture is a viable model to automate the process
of identifying vulnerabilities listed in MITRE CVE. Also, that the
GPT-3.5-turbo-0125 model can effectively identify vulnerable
software versions from CVE descriptions, making it a viable tool
for cybersecurity applications.

However, the GPT-based VIS (Vulnerability Identification
System) also demonstrated a significantly longer execution
time compared to the Heuristic VIS, raising concerns about
scalability and real-time application. The Heuristic VIS, while
not as accurate or reliable, processed data much more quickly,
indicating its potential suitability for situations requiring rapid
results.

These findings suggest that GPT-based approaches can play
a valuable role in cybersecurity, providing high accuracy and
adaptability. To overcome the limitations of longer execution
times, future research could explore hybrid approaches that
combine the efficiency of heuristic.

Beyond the automated extraction of vulnerability signatures
described in this work, we envision GPT-based methods that
generate source code to assess whether a vulnerability is
present in a target system or not. This would greatly improve
the scalability problem faced by vulnerability scanners in the
light of the unprecedented amount of vulnerability reports that
we see today and its growing trend. We plan to explore this
research path in future work.

53

References

co

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

. Agency, C..I.S.: Security tip (st04-001), https://www.cisa.gov/uscert/ncas/

tips/STO4-001

. Balasubramanian, P, Seby, J., Kostakos, P.: Cygent: A cybersecurity conversa-

tional agent with log summarization powered by gpt-3 (2024)

. Bengaluru, K.: CVE and CWE mapping Dataset(2021) — kaggle.com.

https://www.kaggle.com/datasets/krooz0/cve-and- cwe-mapping-dataset)
[Accessed 01-Sep-2022]

. Chauhan, A.: A review on various aspects of mongodb databases. Int.]J. Eng. Res.

Sci. Technol 8(5), 90-92 (2019)

. Check Point Research Team: Check point research: Cyber attacks

increased 50% year over year. https://blog.checkpoint.com/security/
check-point-research-cyber-attacks-increased-50-year-over-year/
(2022), [Online; accessed 22-Jun-2023]

. Chen, Y., Wang, R., Jiang, H., Shi, S., Xu, R.: Exploring the use of large language

models for reference-free text quality evaluation: An empirical study (2023)

. Cochran, W.G.: Sampling techniques. John Wiley & Sons (1977)
. Corporation, M.: (Oct 2023), https://www.cve.org/About/Metrics
. Corporation, T.M.: cve-website — cve.org. https://www.cve.org/Downloads,

[Accessed 28-Ago-2022]

Database, N.V.: API Vulnerabilities — nvd.nist.gov. lhttps://nvd.nist.gov/
developers/vulnerabilities, [Accessed 01-Sep-2022]

Dencheva, L.: Comparative analysis of Static application security testing (SAST)
and Dynamic application security testing (DAST) by using open-source web
application penetration testing tools. Master’s thesis, Dublin, National College
of Ireland (August 2022), https://norma.ncirl.ie/5956/, submitted
Dictionary, M.W.: Definition of HEURISTIC. https://www.merriam-webster.
com/dictionary/heuristic, accessed: 2023-11-11

Editor, C.C.: Cybersecurity - glossary: Csrc, https://csrc.nist.gov/glossary/
term/cybersecurity

Editor, C.C.: Vulnerability scanner - glossary: Csrc, https://csrc.nist.gov/
glossary/term/vulnerability scanner

Education, B.I.C.: What is natural language processing?, https://www.1ibm.com/
cloud/learn/natural- language-processing

Fang, R., Bindu, R., Gupta, A., Zhan, Q., Kang, D.: LIm agents can autonomously
hack websites (2024)

Ford, N.: List of data breaches and cyber attacks
in 2023 (Nov 2023), https://www.itgovernance.co.uk/
blog/list-of-data-breaches-and-cyber-attacks-in-2023#
top-data-breach-stats

Fu, M., Tantithamthavorn, C., Nguyen, V., Le, T.: Chatgpt for vulnerability
detection, classification, and repair: How far are we? (2023)

Grand View Research: Software market size, share, growth & trends (2023)
IBM: What is natural language processing (nlp)? https://www.ibm.com/
topics/natural- language-processing (2021), [Online; accessed 13-Jan-2023]

54

https://www.cisa.gov/uscert/ncas/tips/ST04-001
https://www.cisa.gov/uscert/ncas/tips/ST04-001
https://www.kaggle.com/datasets/krooz0/cve-and-cwe-mapping-dataset
https://blog.checkpoint.com/security/check-point-research-cyber-attacks-increased-50-year-over-year/
https://blog.checkpoint.com/security/check-point-research-cyber-attacks-increased-50-year-over-year/
https://www.cve.org/About/Metrics
https://www.cve.org/Downloads
https://nvd.nist.gov/developers/vulnerabilities
https://nvd.nist.gov/developers/vulnerabilities
https://norma.ncirl.ie/5956/
https://www.merriam-webster.com/dictionary/heuristic
https://www.merriam-webster.com/dictionary/heuristic
https://csrc.nist.gov/glossary/term/cybersecurity
https://csrc.nist.gov/glossary/term/cybersecurity
https://csrc.nist.gov/glossary/term/vulnerability_scanner
https://csrc.nist.gov/glossary/term/vulnerability_scanner
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-2023#top-data-breach-stats
https://www.itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-2023#top-data-breach-stats
https://www.itgovernance.co.uk/blog/list-of-data-breaches-and-cyber-attacks-in-2023#top-data-breach-stats
https://www.ibm.com/topics/natural-language-processing
https://www.ibm.com/topics/natural-language-processing

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

Janiesch, C., Zschech, P, Heinrich, K.: Machine learning and deep
learning. Electronic = Markets 31(3), 685-695 (September 2021).
https://doi.org/10.1007/s12525-021-00475-, https://ideas.repec.org/a/
spr/elmark/v31y202113d10.1007_s512525-021-00475-2.html

Kanakogi, K., Washizaki, H., Fukazawa, Y., Ogata, S., Okubo, T., Kato, T., Kanuka,
H., Hazeyama, A., Yoshioka, N.: Tracing cve vulnerability information to capec
attack patterns using natural language processing techniques. Information
12(8), 298 (2021). https://doi.org/10.3390/info12080298, https://doi.org/
10.3390/inf012080298

KRONSER, A.: CVE (Common Vulnerabilities and Exposures) —
kaggle.com. https://www.kaggle.com/datasets/andrewkronser/
cve-common-vulnerabilities-and-exposures, [Accessed 28-Ago-2022]

Leino, K.R.M.: Developing verified programs with dafny. In: Notkin, D., Cheng,
B.H.C., Pohl, K. (eds.) 35th International Conference on Software Engineering,
ICSE ’'13, San Francisco, CA, USA, May 18-26, 2013. pp. 1488-1490. IEEE
Computer Society (2013). https://doi.org/10.1109/ICSE.2013.6606754, |https:
//doi.org/10.1109/ICSE.2013.6606754

Li, J.: Vulnerabilities mapping based on OWASP-SANS: A survey for static
application security testing (SAST). Annals of Emerging Technologies in
Computing 4(3), 1-8 (jul 2020). https://doi.org/10.33166/aetic.2020.03.001,
https://doi.org/10.33166%2Faetic.2020.03.001

Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecur. 1(1), 6
(2018). https://doi.org/10.1186/s42400-018-0002-y, https://doi.org/10.1186/
s42400-018-0002-y

Lim, R., Wu, M.: https://openai.com/blog/customizing-gpt-3

Lindner, A., Guanciale, R.,, Dam, M.: Proof-producing symbolic
execution for binary code verification. CoRR abs/2304.08848 (2023).
https://doi.org/10.48550/arXiv.2304.08848, https://doi.org/10.48550/
arXiv.2304.08848

Mann, D.E., Christey, S.M.: Towards a common enumeration of vulnerabilities.
In: 2nd Workshop on Research with Security Vulnerability Databases, Purdue
University, West Lafayette, Indiana (1999)

McGraw, G.: Software security: Building security in. Addison-Wesley (2006)
Mell, P, Bergeron, T., Henning, D., et al.: Creating a patch and vulnerability
management program. NIST Special Publication 800, 40 (2005)

Michael, K., Neter, H.C.N.J., Li, W.. Applied Linear Statistical Models.
McGraw-Hill Irwin, Boston (2005)

MITRE: Downloads cve, https://www.cve.org/Downloads

Mitre: Cve numbering authority (cna) rules. https://www.cve.org/
ResourcesSupport/AllResources/CNARules (2020), [Online; accessed
02-Jun-2023]

Nayak, K., Marino, D., Efstathopoulos, P, Dumitras, T.: Some vulnerabilities
are different than others - studying vulnerabilities and attack surfaces
in the wild. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) Research
in Attacks, Intrusions and Defenses - 17th International Symposium,
RAID 2014, Gothenburg, Sweden, September 17-19, 2014. Proceedings.
Lecture Notes in Computer Science, vol. 8688, pp. 426-446. Springer

55

https://doi.org/10.1007/s12525-021-00475-
https://ideas.repec.org/a/spr/elmark/v31y2021i3d10.1007_s12525-021-00475-2.html
https://ideas.repec.org/a/spr/elmark/v31y2021i3d10.1007_s12525-021-00475-2.html
https://doi.org/10.3390/info12080298
https://doi.org/10.3390/info12080298
https://doi.org/10.3390/info12080298
https://www.kaggle.com/datasets/andrewkronser/cve-common-vulnerabilities-and-exposures
https://www.kaggle.com/datasets/andrewkronser/cve-common-vulnerabilities-and-exposures
https://doi.org/10.1109/ICSE.2013.6606754
https://doi.org/10.1109/ICSE.2013.6606754
https://doi.org/10.1109/ICSE.2013.6606754
https://doi.org/10.33166/aetic.2020.03.001
https://doi.org/10.33166%2Faetic.2020.03.001
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://openai.com/blog/customizing-gpt-3
https://doi.org/10.48550/arXiv.2304.08848
https://doi.org/10.48550/arXiv.2304.08848
https://doi.org/10.48550/arXiv.2304.08848
https://www.cve.org/Downloads
https://www.cve.org/ResourcesSupport/AllResources/CNARules
https://www.cve.org/ResourcesSupport/AllResources/CNARules

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

(2014). https://doi.org/10.1007/978-3-319-11379-1 21| |https://doi.org/10.
1007/978-3-319-11379-1_21

Peters, R.: cron, pp. 81-85. Apress, Berkeley, CA (2009).
https://doi.org/10.1007/978-1-4302-1842-5,2, https://doi.org/10.1607/
978-1-4302-1842-5_12

Project, N.: https://www.nltk.org/api/nltk.corpus.html

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language
understanding by generative pre-training. Pre-print (2018)

Reichert, J.R., Kristensen, K., Mukkamala, R.R., Vatrapu, R.: A supervised
machine learning study of online discussion forums about type-2 diabetes. In:
A supervised machine learning study of online discussion forums about type-2
diabetes. pp. 1-7 (10 2017). https://doi.org/10.1109/HealthCom.2017.8210815
Rudis, B.: Cve 100k: By the numbers. https://www.rapid7.com/blog/
post/2018/04/30/cve-100k-by-the-numbers/, (2018), [Online; accessed
01-Jun-2023]

Sammut, C., Webb, G.I. (eds.): TF-IDF, pp. 986-987. Springer US, Boston,
MA (2010). https://doi.org/10.1007/978-0-387-30164-8532, https://doi.org/
10.1007/978-0-387-30164-8_832

Sarica, S., Luo, J.: Stopwords in technical language processing. PLOS ONE 16(8),
e0254937 (aug 2021). https://doi.org/10.1371/journal.pone.0254937, https://
doi.org/10.1371/journal.pone.0254937

Sharir, O., Peleg, B., Shoham, Y.: The cost of training nlp models: A concise
overview (2020)

Sheldon, R.: What is ubuntu?: Definition from techtarget (Aug 2023), https:
//www.techtarget.com/searchdatacenter/definition/Ubuntu

Shen, D.: Text Categorization, pp. 3041-3044. Springer US, Boston, MA
(2009). |https://doi.org/10.1007/978-0-387-39940-9,14, |https://doi.org/10.
1007/978-0-387-39940-9_414

Shirey, R.: Rfc 4949: Internet security glossary, version 2 (2007)

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen,]., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State of) The Art of
War: Offensive Techniques in Binary Analysis. In: IEEE Symposium on Security
and Privacy (2016)

The MITRE Corporation: Cve numbering authority (cna) rules. https:
//www.cve.org/ResourcesSupport/AllResources/CNARules (2020), [Online;
accessed 22-Mar-2023]

Tondel, I.A., Cruzes, D.S., Jaatun, M.G., Sindre, G.: Influencing the security
prioritisation of an agile software development project. Comput. Secur. 118,
102744 (2022). https://doi.org/10.1016/j.cose.2022.102744, https://doi.org/
10.1016/j.cose.2022.102744

Winkler, I., Gomes, A.T.: Chapter 10 - countermeasures. In: Winkler, I.,
Gomes, A.T. (eds.) Advanced Persistent Security, pp. 105-130. Syngress (2017).
https://doi.org/https://doi.org/10.1016/B978-0-12-809316-0.00010-5, |https://
www.scilencedirect.com/science/article/pii/B9780128093160000105
Yosifova, V., Tasheva, A., Trifonov, R.: Predicting vulnerability
type in common vulnerabilities and exposures (cve) database with
machine learning classifiers. In: 2021 12th National Conference

56

https://doi.org/10.1007/978-3-319-11379-1_21
https://doi.org/10.1007/978-3-319-11379-1_21
https://doi.org/10.1007/978-3-319-11379-1_21
https://doi.org/10.1007/978-1-4302-1842-5_12
https://doi.org/10.1007/978-1-4302-1842-5_12
https://doi.org/10.1007/978-1-4302-1842-5_12
https://www.nltk.org/api/nltk.corpus.html
https://doi.org/10.1109/HealthCom.2017.8210815
https://www.rapid7.com/blog/post/2018/04/30/cve-100k-by-the-numbers/
https://www.rapid7.com/blog/post/2018/04/30/cve-100k-by-the-numbers/
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1371/journal.pone.0254937
https://doi.org/10.1371/journal.pone.0254937
https://doi.org/10.1371/journal.pone.0254937
https://www.techtarget.com/searchdatacenter/definition/Ubuntu
https://www.techtarget.com/searchdatacenter/definition/Ubuntu
https://doi.org/10.1007/978-0-387-39940-9_414
https://doi.org/10.1007/978-0-387-39940-9_414
https://doi.org/10.1007/978-0-387-39940-9_414
https://www.cve.org/ResourcesSupport/AllResources/CNARules
https://www.cve.org/ResourcesSupport/AllResources/CNARules
https://doi.org/10.1016/j.cose.2022.102744
https://doi.org/10.1016/j.cose.2022.102744
https://doi.org/10.1016/j.cose.2022.102744
https://doi.org/https://doi.org/10.1016/B978-0-12-809316-0.00010-5
https://www.sciencedirect.com/science/article/pii/B9780128093160000105
https://www.sciencedirect.com/science/article/pii/B9780128093160000105

52.

53.

with International Participation (ELECTRONICA). pp. 1-6 (2021).
https://doi.org/10.1109/ELECTRONICA52725.2021.9513723

Yu, P, Wu, Y, Peng, J.,, Zhang, J., Xie, P: Towards understanding fixes of
sonarqube static analysis violations: A large-scale empirical study. In: Zhang, T.,
Xia, X., Novielli, N. (eds.) IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2023, Taipa, Macao, March 21-24, 2023.
pp. 569-580. IEEE (2023). https://doi.org/10.1109/SANER56733.2023.00059,
https://doi.org/10.1109/SANER56733.2023.00059

Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: Evaluating
text generation with bert (2020)

57

https://doi.org/10.1109/ELECTRONICA52725.2021.9513723
https://doi.org/10.1109/SANER56733.2023.00059
https://doi.org/10.1109/SANER56733.2023.00059

A Appendix
A.1 GPT SGM Prompt

“I want you to analyze the following text they correspond to the
description of the vulnerability <cve-id>, <cve-description>,
and extract the name of the software or hardware and the
versions that are vulnerable to this cve. The idea of this request
is to compare this results to a software and check if it is
vulnerable or not. Because of that the result of this request
must be a json with the following fields, CVE_ID this field is
the cve identifier; vulnerable _versions this field is an array of
jsons, each json that is part of this array is going to contain the
following fields, module this field is the name of the software
or hardware, versions this field needs to be a string, and it is
going to contain all the vulnerable versions for the software
or hardware in question and can only contain the versions
numbers and symbols as <, >, =<=, >= these symbols are used
to represent the versions that are vulnerable and always needs
to be a blank space between the comparison symmbol and the
version. The result needs to be a json file that contains all the
requested information. The answer to this request must be a
json format file.”

58

D U~ W N

A.2 GPT VIS Prompt

I want you to act as an evaluator who has the ability to
determine if a module (hardware or software product) in a
specific version is vulnerable or not to a given CVE.

A CVE is: Common Vulnerabilities and Exposures (CVE)
make up a list of computer security flaws that is available to
the public. When someone talks about a CVE, they refer to a
flaw to which a CVE identification number has been assigned.

To do this, I will provide you with the following information
about the module to be evaluated:

- Module name: <Module>
- Module version: <Version>

You must determine if, with the information received, the
module is vulnerable to CVE <CVE-ID>with the description
<CVE-DESCRIPTION>.

The response must be in JSON format, following this
structure:

Listing 9. JSON Response Format

"CVE-ID": "<CVE-ID>",

"Module": "<Module>",

"Version": "<Version>",

"IsVulnerable": <Boolean value, True if vulnerable, False if not>

In this format, the values for "CVE-ID", "Module", and
"Version" must be strings. The "IsVulnerable" field should
return a boolean value indicating if the module and version are
vulnerable to the given CVE.

59

60

Glossary

Artificial Inteligence Artificial intelligence is the simulation
of human intelligence processes by machines, especially

computer systems..] [TT] [T6] 21]

CISA The Cybersecurity and Infrastructure Security Agency
is a component of the United States Department of
Homeland Security (DHS) responsible for cybersecurity and
infrastructure protection across all levels of government,
coordinating cybersecurity programs with U.S. states,
and improving the government’s cybersecurity protections
against private and nation-state hackers.[. [16]

Cron The system scheduler on UNIX and Linux systems
is called cron. Its purpose is to run commands, series
of commands, or scripts on a predetermined schedule.
Normally these tasks are performed on systems that run 24
hours a day, 7 days a week. Writing cron scripts to perform
system maintenance, backups, monitors, or any other job
that you would want to run on a schedule is a very common
task [36]..[29]

CVE Numbering Authority Vulnerabilities are cataloged and
listed as CVE records by the organizations cataloged as CVE
Numbering Authority (CNA), which means that it is an entity
authorized to enter vulnerabilities into the list..

heuristic According to the Merriam-Webster dictionary,
heuristic as an adjective means, “[ilnvolving or serving
as an aid to learning, discovery, or problem-solving by
experimental and especially trial-and-error methods." [12]]..

27 28]

IoT The Internet of Things (IoT) describes the network of
physical objects—“things”—that are embedded with sensors,
software, and other technologies for the purpose of
connecting and exchanging data with other devices and
systems over the internet.. [9] [12]

MITRE The MITRE Corporation (stylized as The MITRE
Corporation and MITRE) is an American not-for-profit
organization. It manages federally funded research and
development centers (FFRDCs) supporting various U.S.
government agencies in the aviation, defense, healthcare,
homeland security, and cybersecurity fields, among others...

9] [0} [12} [19} [20} [23] [24] [29]

OpenAl OpenAl is an American artificial intelligence (AI)
organization consisting of the non-profit OpenAl, Inc.. 33]

B4

Ubuntu Ubuntu is a free, open source operating system (OS)
based on Debian Linux. It was first released in 2004
when Mark Shuttleworth and a small team of Debian
developers founded Canonical and then launched the
Ubuntu project [44].. 42

Vulnerability Identification The vulnerability identification
process enables you to identify and understand weaknesses
in your system, underlying infrastructure, support systems,

and major applications. . [} [10] [11] 23] [26]

62

	Introduction
	Problem Definition
	Research Justification
	Contributions
	Hypothesis
	Objectives
	General Objective
	Specific Objectives

	Research Questions

	Theoretical Framework
	Related Work
	Background
	CVE Records
	Natural Lenguage Processing Models
	Generative Pre-trained Transformer Model
	TF-IDF
	Vulnerability Identification
	CVE Data Sources
	MITRE CVE File:
	Kaggle CVE:
	National Vulnerability Database:
	CVE and CWE Mapping Dataset (2021):

	MITRE CVE-Based Vulnerability Identification Proposal
	Architecture
	Feature Extraction Stage
	Validation Stage

	Implementation
	Heuristic SGM
	Preprocess Text.
	Identify Version Declaration.

	GPT SGM
	Prompt Execution.
	Parse Response.
	Update Database.

	Vulnerability Identification System (VIS)
	Pull CVE.
	Evaluate Signatures.
	Heuristic VIS.
	GPT VIS.
	CVE Vulnerability Report.

	Experimental Results
	Database Generation Experiment
	CVE Identification Experiment
	Input Data
	Generation of Test Data
	Experimental Procedure
	Metrics and Evaluation
	Results

	Discussion
	Conclusion
	Appendix
	GPT SGM Prompt
	GPT VIS Prompt

