TEC Tecnologico
de Costa Rica

COMPUTING ENGINEERING DEPARTMENT
MASTER OF SCIENCE IN COMPUTER SCIENCE

On the Feature Space and Architecture of
ABM Frameworks

A thesis submitted in partial fulfilment to opt for the degree of

Magister Scientie in Computer Science

ADVISOR:
Ignacio Trejos-Zelaya, M.Sc.

AUTHOR:
Luis Carlos Lara Lépez SCIENTIFIC ADVISORS:

Santiago Nunez-Corrales, Ph.D.
José Helo-Guzman, Ph.D.

September 2024

Escuela de Ingenieria en Computacion

Unidad de Posgrado

TEC Tecnolodgico
de Costa Rica

ACTA DE APROBACION DE TESIS

On the Feature Space and Architecture of ABM Frameworks

JOSEELIAS fFirmado

digitalmente por
HELO JOSE ELIAS HELO
GUZMAN GUZMAN (FIRMA)

Fecha:2024.11.13

(FIRMA) 13:26:33 -06'00'

Por: LARA LOPEZ LUIS CARLOS

TRIBUNAL EXAMINADOR

IGNACIO Firmado

digitalmente por

TREJOS IGNACIO TREJOS
ZELAYA ZELAYA (FIRMA)

Fecha: 2024.11.13

(FIRMA) 11:34:23 -06'00'

MSc. Ignacio Trejos Zelaya

Dr. José E. Helo Guzman
Profesor Lector

s

Profesor Asesor

Santiago Digitally signed by
Santiago Nunez-
Nunez- Corrales
Date: 2024.11.13
Corrales 14:53:19 -06'00'

Dr. Santiago Nufiez Corrales
Lector Externo

LILIANA SANCHO CHAVARRIA (FIRMA)
PERSONA FISICA, CPF-03-0257-0983.

Fecha declarada: 14/11/2024 09:57:43 AM
Esta es una representacién gréafica Unicamente,
verifique la validez de la firma.

Dra.-Ing. Lilliana Sancho Chavarria
Presidente, Tribunal Evaluador Tesis
Programa Maestria en Computacion

12 de Noviembre, 2024

This work is licensed under a license.

To my beloved wife Maria del Mar and our children
Baruc, Isaac, Maripaz, Natanael & Agnes. They are life
itself.

A mi amada esposa Maria del Mar y a nuestros hijos
Baruc, Isaac, Maripaz, Natanael & Agnes. Ellos son la
vida misma.

No time, no space
Another race of vibrations
The sea of the simulation

Keep your feelings in memory
I love you, especially tonight

Franco Battiato, No time no space

Acknowledgements

First of all, thanks to the Divine Providence which allowed me to have a beautiful
family, a fulfilling life, gave me the opportunity, time and energy to study my Master’s
degree and complete this thesis.

My full appreciation and devotion to my wife, she was always there when I needed
her, took great care of the kids alone in the long hours of my research and held me
together every single time I had chosen to quit.

I would like to thank professors Ignacio Trejos-Zelaya, Santiago Nunez-Corrales, and
José Helo-Guzman, for all the valuable advice they provided, and for their observations
and feedback during the development of this research effort.

Also thanks to all professors from TEC, classmates, coworkers and friends who

helped me complete this work. It could not have been done without all your support.

Abstract

Agent Based Modeling (ABM) is a computational paradigm for simulating the actions
and interactions of autonomous agents (both individual or collective entities such as
organizations or groups) to understand the behavior of a system and the underlying
laws governing its outcomes. For the conclusions reached via this technique to be valid,
the agent population in the ABM should be representative of — and commensurate
with — the population size and rule set under study. Moreover, since the systems
under study are complex and hence many of their possible behaviors are unknown,
simulations should be executed several times to identify average (and representative)
behaviors. From a computational perspective, most research reported in the literature
has focused on the impact of performance, scalability and visual representations on the
quality of the scientific outcomes obtained with ABM.

The present work details an Feature Space Maturity Model (FSMM) which includes
significant sections usually overlooked in current ABM frameworks. Advances in Computer
Science and the advent of more powerful hardware make it possible to define a reference
architecture capable of supporting — at the framework level — robust computational
properties, a set of essential features leading to correctness and fidelity to reality.

The purpose of this work is manifold. First, it introduces a maturity model for
formal assessments of the feature space of ABM and evaluates the five most used ABM
frameworks. Second, it proposes a macroscopic analysis of different implementations
as a correctness mechanism. Third, it identifies and proposes a reference architecture
based on the frameworks reviewed. Finally, it provides a Proof of Concept (POC)
implementation based on the reference architecture to evaluate its quality according to

the FSMM.

Contents

List of Figures Xi
List of Tables xiii
Acronyms 1
1 Introduction 3
1.1 Problem description 6

1.2 Related Worko 8
1.3 Hypothesis 10

2 Conceptual Framework 11
2.1 General ABM Concepts 12
2.2 Typesofa ABM 14
2.3 Complexity and emergent behavior in ABM 14
2.4 Macroscopic Statistical Analysis and fidelity to reality 16
2.5 Counterfactuals in ABM 18
2.6 The need for ABM frameworks 18
2.7 Framework limitations 19

3 ABM Feature Space Maturity Model 21
3.1 Simulation features 22
3.1.1 Usability 22

3.1.2 Basic framework functionality 22

3.1.3 Locality 23

3.1.4 Agent Management 24

3.1.5 Forcefields 25

3.2 Interrogation capabilitieso Lo 26
3.2.1 Visualization o 26

3.2.2 Statistical support for model attributes 26

vil

3.2.3 Support for macroscopic statistical analysis. 27

3.2.4 Nearly decomposable system view 28
3.3 Research supporting features 28
3.3.1 Graphsupport 29
3.3.2 Utility features 29
3.3.3 Counterfactual support 31
Experiments on Frameworks 32
4.1 Frameworks to be evaluatedo 33
4.1.1 NetLogo 33
4.1.2 MASON 34
4.1.3 Repast 34
4.1.4 Mesa 34
4.1.5 Agentsjl 35
4.2 Experiments 35
4.2.1 Sugarscape Model oo 35
4.2.2 PredPrey Model 40
4.2.3 Confounding galore in Pandemic times 43
4.2.4 Economic Wealth Inequity (Pareto Principle) 46
4.2.5 Correlating experiments and feature scoring 49
Results & Discussion 51
5.1 Sugarscape Model 52
5.1.1 NetLogo 53
5.1.2 MASON 54
5.1.3 Repast o 55
5.1.4 Mesa 56
5. 1.5 Agents.jl 57
5.2 PredPrey Model 58
5.21 NetLogo 59
5.2.2 MASON 60
5.23 Repast 61
524 Mesa 62
52,5 Agentsjl 63
5.3 Pandemics Model 64
5.3.1 NetLogo 65
5.3.2 MASON 67
5.3.3 Repast 69
5.34 Mesa 71
535 Agentsjl 73
5.4 Pareto Model 76
5.4.1 NetLogo 7
5.4.2 MASON 78
54.3 Repast 79

5.4.4 Mesa 80

6

7

8

54.5 Agentsjl

5.5 Macroscopic Statistical Analysis & Specification Fidelity
5.5.1 Histogram
5.5.2 Coefficient of Variation
5.5.3 Fréchet Distance
554 Anovaand F-Test

5.6 Discussion

Feature Space Maturity Scoring

6.1 Simulation Features

6.2 Interrogation Capabilities

Architecture of ABM Frameworks

7.1 Studied Architectures
7.1.1 NetLogo
7.1.2 MASON
7.1.3 Repast
714 Mesa
715 Agentsjl

7.2 Proposed Architecture Principles

7.3 Reference Architecture
7.3.1 Environmento
7.3.2 Patch
7.3.3 Agent
7.3.4 Vertex e
7.3.5 Relation
7.3.6 Directededge L
7.3.7 UML diagramso

7.4 Complete Entity Type Description
7.4.1 Environmento
742 Entity ...
7.4.3 Patch
744 Agent ...
7.4.5 Vertex
7.4.6 Abstract Relation
747 Relation
7.4.8 Directed Edgeo
749 Global Methods

AB-X: POC for the Reference Architecture

81 AB-XDesign
8. 1.1 Overview
8.1.2 Main simulation classes
8.1.3 Coding snippets

81.4 Ulscreenshots

8.2 AB-X Results

8.2.1 Sugarspace in AB-X o oo
8.2.2 PredPreyin AB-X
8.2.3 Pandemicsin AB-X
8.2.4 Paretoin AB-X
8.3 Macroscopic Statistical Analysis & Specification Fidelity
8.3.1 Histogram
8.3.2 Coefficient of Variation
8.3.3 Fréchet Distance L.
834 ANOVA and F-Test.
8.4 AB-X FSMM Scoring
8.4.1 Simulation Features
8.4.2 Interrogation Capabilities
8.5 AB-X Future featureso

9 Conclusions

10 Future work

References

List of Figures

4.1
4.2

5.1
5.2
2.3
5.4
2.5
2.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
0.15
5.16
5.17
5.18
5.19
5.20
0.21
0.22
5.23
5.24
2.25
5.26

Simulation Features exercised by experiment 50
Interrogation Capabilities Features exercised by experiment 50
Sugarscape on NetLogo 53
Sugarscape over MASON 54
Sugarscape over Repast 55
Sugarscape over Mesao 56
Sugarscape over Agents.jl Lo Y
PredPrey over NetLogo 59
PredPrey over MASON 60
PredyPrey over Repast 61
PredPrey over Mesa 62
PredPrey over Agents.jl 63
Pandemics over NetLogo 65
Pandemics over NetLogo using reported data 66
Pandemics over MASON 67
Pandemics over MASON using reported data 68
Pandemics over Repast L 69
Pandemics over Repast using reported data 70
Pandemics over Mesa oo 71
Pandemics over Mesa using reported data 72
Pandemics over Agents.jl 74
Pandemics over Agents.jl using reported data 75
Pareto over NetLogo o 7
Pareto over MASON 78
Pareto over Repast L 79
Pareto over Mesa 80
Pareto over Agents.jl L 81
Histogram for rounds L 82

x1

5.27 Histogram for coins ownership by top 20% of agents 83

5.28 Histogram for tiles ownership by top 20% of agents 83
6.1 FSMM Score 94
7.1 UML Diagram of top ABM elements 107
7.2 Architecture of the framework as services 109
8.1 Execution screen showing simulation running 125
8.2 Figure shows the view-port of the agent leaving a stroke and also keep
changing color 130
8.3 Image shows the view-port generated by AB-X with realistic planet orbits132
8.4 Histogram rendered after several steps 133
8.5 This figure shows a custom chart with a line decoration added programatically 134
8.6 Figure showing the editing screen 135
8.7 Execution screen showing simulation running 136
8.8 Execution screen showing unit test results 136
8.9 Sugarscape over AB-X 138
8.10 PredPrey over AB-X 139
8.11 Pandemics over AB-X 140
8.12 Pandemics over AB-X using reported data 141
8.13 Paretoon AB-X 142
8.14 Histogram for rounds including AB-X 143
8.15 Histogram for coins including AB-X, 144
8.16 Histogram for tiles including AB-X 144

8.17 FSMM including AB-X 151

List of Tables

4.1
4.2

5.1
5.2
2.3
5.4
2.5
2.6
5.7

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

Simulation features exercised per experiment
Interrogation capabilities exercised per experiment

Coefficient of variation for three chosen macroscopical observables . . .
Fréchet distance for histograms of rounds to complete experiment
Fréchet distance for histograms of top 20% coins ownership
Fréchet distance for histograms of top 20% tiles onwership
P-value for F-test for histograms of rounds to complete experiment
P-value for F-test for histograms of top 20% of coin ownership
P-value for F-test for histograms of top 20% of tiles ownership

Simulation Features Score
Interrogation capabilities Score

Required attributes for the environment type
Required methods for the environment type (1/2)
Required methods for the environment type (2/2)
Required attributes for all sub types of entity
Required methods for all sub types of entity
Required attributes for all sub types of entity
Required methods for the patch type
Required attributes for the agent type
Required methods for the agent type (1/2)
Required methods for the agent type (2/2)
Required attributes for all sub types of entity
Required methods for the vertices
Required attributes for all sub types of abstract relation
Required methods for all sub types of abstract relation
Required attributes for all relations
Required attributes for all relations

xiii

7.17 Required attributes for all Global Methods 120

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Coefficient of variation, including AB-X results, for three chosen macroscopically

observables 145
Fréchet distance for histograms of rounds to complete experiment . . . 146
Fréchet distance for histograms of top 20% coins ownership 146
Fréchet distance for histograms of top 20% tiles onwership 146
P-value for F-test for histograms of rounds to complete experiment . . 148
P-value for F-test for histograms of top 20% of coin ownership 148
P-value for F-test for histograms of top 20% of tiles ownership 149
Simulation Features Score including AB-X 150

Interrogation capabilities Score including AB-X 150

Acronyms

ABM Agent Based Modeling

API Application Programming Interface

CSV Comma-separated values

CV Coeflicient of variation

DES Discrete-event simulation

DSL Domain Specific Language

EBM Equation-Based Modeling

FPS Frames per Second

FSMM Feature Space Maturity Model

GOL Game of Life

HPC High Performance Computing

IDE Integrated Development Environment

1

MEF Minimally Effective Framework

MVC Model-View-Controller

NPI Non-Pharmaceutical Interventions

OO Object-Oriented

OS Operating System

POC Proof of Concept

REPL Read-Eval-Print Loop

SD System Dynamics

SI International Unit System

SDL Specification and Description Language

SNT Social Network Theory

UTI User Interface

UML Unified Modeling Language

CHAPTER 1

Introduction

“All the world’s a stage. And all the

men and women merely Players”

William Shakespeare, As You Like It

ABM is a computational model for simulating the actions and interactions of autonomous

agents (both individual or collective entities such as organizations or groups) in order
to understand the average behavior of a system and what governs its outcomes [68].
ABM differentiates itself from top-down simulation techniques like Equation-Based
Modeling (EBM), Discrete-event simulation (DES) or System Dynamics (SD) because,
in ABM, the models are built bottom up, defining only the agents and environment
rules but not defining explicitly the behavior of the complex system. Such behavior
emerges from the agents’ interactions [59].

The methodological effectiveness of ABMs for complexity science [54], particularly
in generative social science [26], resides in their ability to reproduce emergent behavior
observed in — or expected from — real systems with relative ease [59]: ABMs abstract
phenomena bottom-up. Top-down methods — i.e., equations-based modeling, dynamical
systems, discrete event simulation — carry the burden of overly detailed specification.
Obtaining meaningful results requires extensive parameterization, a process whose
complexity becomes unmanageable for relatively small numbers of interacting entities
— which forces the use of formal and numerical approximations. An even more striking
limitation of top-down models is their opaqueness in terms of how micro-scale agent
actions contribute to macro-scale observables, in stark contrast to what ABMs can
achieve [81]. It is then no surprise for top-down models to be agentized — e.g., [85; 78; 8]
- to then be able to answer questions pertaining to emergence.

A typical model-building exercise starts by specifying the structure, dynamics and
interactions of autonomous agents (e.g., individuals, groups, organizations) based on
prior evidence and its synthesis into a set of quantified relations. This process of
abstraction results in a conceptual model stated in terms of interactions between classes
of agents, and between classes of agents and their simulated environment when the latter
is modeled. Naturally, the selection and prioritization of features changes the degree

of representativeness of the model to what is being modeled, otherwise known as its

fidelity to reality [70], hard to assert for any given model. Since the latter may be
too stringent a target, most ABMs aim to reproduce archetypal features of systems
stated in terms of trajectories follow by agents and observables, as well as distributions
of events during simulation time. In principle, once the abstract specification that
serves as the blueprint for an ABM has solidified, the phenomenological outcome of
any simulation should not depend on the particular computational implementation as
determined by individual ABM frameworks despite non-functional differences such as
runtime performance [3].

To produce reliable predictions, simulations in an ABM should match the target
system size and rule set and should be executed several times to identify mean behaviors
[10]. In order to achieve this level of efficiency, several ABM frameworks provide only
limited simulation capabilities and typically use a standard programming language such
as Java to implement the simulation behavior [56].

With the advance of Computer Science and the advent of more powerful hardware,
we put forward that it is possible to define a reference architecture for ABM that
supports, with robust computational properties, the essential features leading to correctness
and fidelity to reality. ABM frameworks that follow this architecture could bring
significant benefits to the research community and the general public, such as simplifying
the development and maintenance of models using ABM, making them less error-prone,
more accurate and credible, democratizing ABM’s usage and increasing its value as a
scientific tool. Some of the essential features for an ABM framework include advanced
simulation functionalities, interrogation capabilities, and counterfactual support. The
feature space could be further split into sub-criteria [8].

The objective of this work is manifold. First, it provides a maturity model for a
systematic assessment review of the feature space. Second, it proposes an approach
to validate the fidelity of the implementation to the specification in the overall picture

of fidelity to reality. Also, it provides an initial reference architecture, with robust

1.1. PROBLEM DESCRIPTION

computational properties, that ranks high in that maturity model. Finally, it creates a
POC which follows the reference architecture to facilitate its evaluation. The structure
of this thesis proposal is as follows. Other sections of this Introduction include a state-
of-the-art ABM conceptual framework in subsection 1.2, related work in subsection
1.3, problem description in subsection 1.4, and hypothesis in subsection 1.5. Chapter
2 explains the objectives and contributions of the research, including its scope and
limitations. Chapter 3 presents our Feature Space Maturity Model. Chapter 4 puts
forward a Reference Architecture for Agent Based Modeling. Chapter 5 describes four
experiments carried on each of five leading ABM frameworks, plus the POC ABM
framework implementation. Chapter 6 exhibits and discusses the results obtained in
the experimentation. The experiments’ results and the experimentation process enable
us to score the ABM frameworks and the POC, which is the subject of Chapter 7.

Chapter 8 concludes and Chapter 9 outlines avenues for future work.

1.1 Problem description

Some of the most important deficiencies identified in ABM frameworks is the lack
of both a FSMM and a reference architecture. This leads to several issues, including
the inability to rank frameworks based on simulation capabilities, and the need to start
from scratch the specification of future ABM frameworks. This work proposes designing
an initial maturity model, and use it for creating a reference architecture and a small
POC implementation to validate its quality.

The FSMM follows the facilitator-based approach of Nunez-Corrales and Gasser
[72], which is the capability of the framework to provide a desired feature, from (0) no
facilitators, (1) facilitators need technical involvement for each case, (2) mature general
facilitators require low technical involvement to (3) facilitators require no technical

involvement. The FSMM consists of three sections: simulation features, interrogation

1.1. PROBLEM DESCRIPTION

capability, and research supporting features, as defined previously. The sections are
split into basic features. There are examples or descriptions to illustrate what it means
for a framework to be assessed at some level for each feature.

The proposed reference architecture aims to achieve a high score in every feature of
the FSMM while providing robust computational properties. Finally, a small POC has
been developed to evaluate the reference architecture. The evaluation was performed
by comparing four representative — and exemplar — models implemented in the POC

versus implementations built in the other five ABM frameworks under study.

1.2. RELATED WORK

1.2 Related Work

Research works around different aspects of ABM are continuously published. Performance
and scalability are some of the most studied topics [55]. Nunez-Corrales and Gasser
[72] provide a scoring approach for the easiness of running social science simulations
when access to cyber-infrastructure is available. They follow a systematic approach
and propose an ideal framework called Minimally Effective Framework (MEF). They
also scored five of the most used frameworks (which includes Swarm and Repast, also
scored in this thesis) and assert that a new type of framework is needed for fully
realizing the potential of agent-based modeling and simulation in Computational Social
Science. While they realized the need for scoring other areas, their focus was mainly
on simulations over High Performance Computing (HPC). They used the concept of
facilitator, a way in the framework to achieve certain behavior and propose an approach
of scoring from 0 (no facilitators) to 3 (facilitators require no technical involvement)
depending on the maturity of the evaluated feature in the framework. This scoring
approach has also been followed in the FSMM developed in this work.

Kravari and Bassiliades [52] present a broad review of several agent platforms and
realizes the need for a scoring system applicable to ABM frameworks which includes
usability, operating ability, pragmatics, and security management. Overall, the authors
surveyed 24 frameworks. Its main drawback is that the survey is relatively shallow and
does not provide insights for enhancements. A similar review was performed by Abar
et al. [1] which surveyed more than 80 frameworks.

Works such as [89] and [96] have argued on the importance of a Domain Specific
Language (DSL) for ABM. Nevertheless, a pure functional approach has limited
adoption [90]. Also, the Object-Oriented (OO) approach matches better the general
concept of an agent which is an entity that does things to things [21]. Montanola-Sales
et al., in their 2013 review of ABM for the Social Sciences [65], confirm one of the

main challenges of social simulation is to find a methodology capable of improving

1.2. RELATED WORK

communication between people related to the construction of a simulation model.
They proposed Unified Modeling Language (UML), Petri Nets and Specification and

Description Language (SDL) as approaches to code the logic of model [65]

1.3. HYPOTHESIS

1.3 Hypothesis

It is possible to identify a feature space leading to correctness and fidelity to reality
in ABM frameworks. Furthermore, it is possible to define a reference architecture with

robust computational properties which supports that feature space.

10

CHAPTER 2

Conceptual Framework

11

“All models are wrong, but some are

useful.”

George Box, Science and statistics

2.1. GENERAL ABM CONCEPTS

The use of ABM is heterogeneous. There are researchers whose research goals
revolve around the design of various types of agents. In this case, the role of simulation
is to validate the future operation of physical or virtual agents [10]. On the other hand,
there are researchers whose goal is not agent design per se but rather the agent design
is a means to develop simulations that can lead to a better understanding of a global or
emergent phenomenon associated with complex adaptive systems [58]. The subsections
in this chapter identify several concepts around ABM to validate the need for a FSMM
to evaluate current frameworks and the necessity of a reference architecture which could

be used as a baseline for future framework implementations.

2.1 General ABM Concepts

ABM consists of three main aspects: the agents, the environment, and the rules
or interactions. Hossein et al. mention four types of agents in an increasing level of

complexity [82]:

e Reflective or myopic agents, which are very simple if-then agents so that if they

face situation A, they immediately do action B.

e Utility-based agents are very similar to the reflective ones, but they have a utility

function that they do want to maximize in every case.

e Goal-based agents are an advanced form of utility-based function because they

have a goal that dictates their actions.

e Adaptive agents are the most advanced form because they possess enough cognitive
capabilities to change their actions in similar conditions, based on prior experience.
E.g. if they do action A in situation B and lose some payoffs when they face

situation B again, they don‘t do action A according to their prior experiences.

12

2.1. GENERAL ABM CONCEPTS

The environment is where the artificial social life of the agents unfolds [28]. Environments

come in three different major forms:

e Spatial environment The spatial environment is often a 2D/3D continuous
plane or discrete lattice on a sphere or toroidal topology. There are models which
do not require spatial environment simulation, like pure networks simulations.
Simulations where users do interact within the spatial environment are called

space-aware, and are the main concern of this work.

e Networked environment In real-world situations, such as socio-economic settings,
agents have more networked interactions than spatial (geographical) interactions.
Using network structures as an ABM environment provides ample opportunities

to synthesize Social Network Theory (SNT) with ABM.

e Mixed environment Here, both spatial and network pieces coexist in the environment.

There are five basic classes of interactions [101]:

Agent-self: an agent checks its internal states and decides according to them.
e Environment-self: are when areas of the environment alters or changes itself.

e Agent-agent: are usually the most important type of action within ABMs and

most of the emergent behaviors originate from this type of interaction.

e Environment-agent: happen when the agent manipulates or examines an area
of the world in which it exists, or when the environment in some way observes or

alters the agent‘s internal states

e Environment-environment: between different areas of the environment; these

are probably the least commonly used interaction type in ABM.

13

2.2. TYPES OF A ABM

2.2 Types of a ABM

There are several definitions of ABM based on the complexity of the models they
can handle. It would be senseless to spend time defining and implementing a FSMM
for the most basic ABM approaches (as they could be trivially modeled in any ABM

framework). Macal [59] provides four definitions in increasing complexity:

e An individual ABM is one in which the agents in the model are represented

individually and have diverse characteristics.

e An autonomous ABM is one in which the individual agents have internal behaviors
that allow them to be autonomous, able to sense whatever condition occurs within

the model at any time and to act with the appropriate behavior in response.

e An interactive ABM is one in which autonomous agents interact with other

agents and with the environment.

e An adaptive ABM or dynamically constrained is one in which the interacting,
autonomous agents change their behaviors during the simulation, as agents learn,
encounter novel situations, or as populations adjust their composition to include
larger proportions of agents who have successfully adapted. It is also possible for

the rules of the environment to change during the simulation.

The aim of this work is to identify a FSMM and a reference architecture for the

most complex version of ABMs, the dynamically constrained ones.

2.3 Complexity and emergent behavior in ABM

There is substantial literature about complexity and emergent behavior. For the
purposes of this work, we will only mention two topics related to ABM: the architecture

of complexity and emergent behavior [20]. First, the architecture of complexity indicates

14

2.3. COMPLEXITY AND EMERGENT BEHAVIOR IN ABM

that complexity is usually structured in a hierarchical way and, in many cases, there is
a massive repetition of simpler structures [86].

Also, in most cases it seems that complex structures are achieved by starting with
a simple stable state and modifying it. One way to identify a sub-system in this
hierarchy is the use of nearly decomposable matrices, which are matrices that describe
the relationship between elements of a system. They are organized in a way where
highly interacting elements are grouped closely and poorly interacting elements are far
away, whereby islands of interaction may be identified as a sub-system.

Another essential concept in “complexity science” is “emergence” or emergent behavior
[6] [95]. Topics such as the emergence of cultural norms or institutions from the
interactions of individuals’ activities are critical and not well addressed by other competing
modeling formalism. Emergence is fundamentally a multi-resolution concept with, as
has been noted, micro-motives leading to macro-behaviors [84] [41]. Thus, emergence
can be characterized by a measure of macroscopic behavior achieving a threshold value
in a simulation built from microscopic behavior [38]. The initial approaches to ABM
only generated the agent metrics for a person to analytically identify if there was an
emergent behavior. While human insight should not be underestimated, the amount of
data that ABM simulations may generate is vast, and most of it is useless, limiting the
ability of a human to reason about emergent behavior [42].

One of the most important reasons for using ABM is the impossibility — for economical
or ethical reasons — to have the critical amount of participants required to observe
emergent behaviors, which could be very different from behaviors exhibited by few
participants [39]. One example of this is the Ultimatum game, in which one party, the
proposer, is endowed with a sum of money. The proposer is tasked with splitting it
with another party, the responder. Once the proposer communicates their decision, the
responder may accept it or reject it. If the responder accepts, the money is split as per

the proposal; if the responder rejects, both players receive nothing. Both parties know

15

2.4. MACROSCOPIC STATISTICAL ANALYSIS AND FIDELITY TO REALITY

in advance the consequences of the responder accepting or rejecting the offer.

If the parties are played by two individual players, the proposer will usually propose
a fair (50/50 or just a slightly bigger part for the proposer) out of fear of the responder
rejecting the proposal (in that case both get nothing) if the responder does not feel it
just [40]. Nevertheless, if parties are played by a huge amount of interconnected players,
an emergent behavior of accepting a hugely unequal proposal will appear. It could be
said that functional but highly unequal societies can be compared to the responder

party accepting the unfair proposal.

2.4 Macroscopic Statistical Analysis and fidelity to
reality

ABMs function as an in silico laboratory in which the researcher inputs agent
characteristics, specifies initial conditions, applies rules for agent-agent interactions,
and programs static or transient rules to move among model states.

For non trivial models they are many ways to implement its agents’ behaviors.
Researchers, who wish to maximize the understanding of a complex system as clearly
as they possibly can, must introduce several behaviors for its agents, to identify which
ones match better empirical macroscopic results. This approach is called a pluralistic
methodology and has been mentioned by several authors [33].

Comparisons metrics for some macroscopic simulation are desired, disregarding the
models’ internal dynamics. For example, there could be two models to measure a
pandemics contagion rate, but the first one is much more resource-consuming than
the second one because it simulates human behavior in more detail. If the identified
contagion rates of both models are similar, regardless of the implementation, it can be
said the models are macroscopic comparable, and the second one will be desired for

large-scale simulations as it is less resource-consuming.

16

2.4. MACROSCOPIC STATISTICAL ANALYSIS AND FIDELITY TO REALITY

Another important concept in ABM is fidelity to reality, which can be seen as
a two blocks chain, with fidelity of the specification to reality and fidelity of the
implementation to the specification. The first point is not developed in this work
but there are several papers about this topic like [80].

For the second point, it is important to mention that there is no such thing as “the
test” to validate (increase the confidence that an inference about a simulated process
is correct for the actual specification) a implementation [44].

One way to tackle correctness and fidelity to the specification is to use macroscopic
statistical analysis over multiple implementations of of the same specifications in different
frameworks. To do that, a list of quantitative macroscopic observables needs to be
defined which should be provided by each implementation. Then, for each implementation,
the simulation can be run several times to obtain statistical behaviors of each observable.

Observables can be gathered via different approaches. An observable could be an
environment value, the aggregate of an agent’s values or some ratio when the simulation
completes or reaches a milestone. It could also be the amount of rounds it took to reach
some specific status.

When statistical behavior of an observable differs among implementations, it could
be seen as as an alert for one or more of the implementations not following the specification
correctly in some desired area. Likewise, consistent statistical behavior among implementations
increases the confidence that all of the implementation follow the specification correctly.

In this work, macroscopic statistical analysis was used to validate that for one of
the experiments, all implementation produced the same statistical behavior for three

defined macroscopic observables in 10,000 executions of the Pareto experiment.

17

2.5. COUNTERFACTUALS IN ABM

2.5 Counterfactuals in ABM

Counterfactual reasoning closely relates to ABMs. Concretely, counterfactuals provide
baselines used to evaluate possible alternatives to life events that may occur or have
already occurred; something that is contrary to what actually happened [79]. Based on
this point of view, counterfactual support means the ability of the ABM framework to
compare outcomes of simulations under different input parameters (collectively referred
to as a “treatment”) from any number of hypothetical scenarios [61]. A specific example
of counterfactual support in ABM will be the case where a model starts with an initial
setting, and at some specific point of the simulation, it branches into two different
simulations, the first one following one set of settings and the second one following a
different set.

One example where branching could be useful is the example where the model needs
to reach some desired state before two or more rules are applied. For example, in the
case of the COVID-19 contagion rate model, it might be desired to branch the model
by applying different restriction rules with different levels of enforcement at different
moments of the epidemic to explore the evolution of the contagion rate.

In summary, macroscopic comparisons are useful to compare desired outputs of
models with different inner implementations and comparable initial states and counterfactuals
are useful to compare desired outputs of models with similar inner implementations but

different settings.

2.6 The need for ABM frameworks

While there are famous agent-based models like Game of Life (GOL) which can
be easily coded in any non-trivial programming language [35], the facts are that many
social models are so complex that implementing them from scratch will not be feasible.

Most ABM share a common feature space, which makes it desirable to have general

18

2.7. FRAMEWORK LIMITATIONS

support for modeling. One of the earlier examples of this support is the Simula 67
programming language, developed in the mid-1960s and widely used for research by the
1970s. It was the first language aimed at automating step-by-step agent simulations [71],
and was released along with other useful features like objects, classes, and inheritance,
yet it was a programming language, not a framework, and had important limitations to
implement non-trivial models.

ABM frameworks were developed to reduce the semantic gap between model specifications
and programming language capabilities. Over the years, numerous ABM frameworks
have been created to meet various modeling needs, ranging from lightweight frameworks
with limited simulation capabilities to highly sophisticated ones with custom languages
tailored for simulation. Despite the availability of many ABM frameworks today,
there is no agreed-upon formal specification for the ABM feature space. This lack of
standardization hinders the ability to compare different frameworks effectively. Frameworks
that rank higher on the FSMM are expected to facilitate more robust ABM development
and achieve higher fidelity to real-world scenarios. Additionally, a FSMM could serve
as a baseline for future specifications of ABM frameworks. The next section presents
a list of the most critical elements of the feature space for ABM frameworks, identified

during the preparatory work.

2.7 Framework limitations

Some of the most important identified deficiencies in ABM frameworks is the lack of
both a FSMM and a reference architecture. This leads to several issues, including the
inability to rank frameworks based on simulation capabilities, and the need to start the
specification of future ABM frameworks from scratch. This work proposes designing
an initial maturity model, and use it for creating a reference architecture and a small

POC implementation to validate its quality.

19

2.7. FRAMEWORK LIMITATIONS

Usually, maturity models have six maturity level per focus area [9]. Nevertheless
some levels, like repeatable and managed, apply only to organizations, not to specific
software systems. Therefore, our proposal for the FSMM will follow the facilitator-
based approach of Nunez-Corrales and Gasser [72|, which is the capability of the
framework to provide a desired feature, from (0) no facilitators, (1) facilitators need
technical involvement for each case, (2) mature general facilitators require low technical
involvement, to (3) facilitators require no technical involvement. The FSMM consists of
three sections: simulation features, interrogation capability, and counterfactual support,
as defined previously. The sections are split into basic features. Examples or descriptions
are provided to illustrate what it means for a framework to be assessed at some level
for each feature.

The proposed reference architecture aims to achieve a high score in every feature
of the FSMM while providing robust Computational properties. Finally, a small POC
has been developed to evaluate the reference architecture. The evaluation consists of
comparing four representative models implemented in the POC versus implementations

built in the other five ABM frameworks under study.

20

CHAPTER 3

ABM Feature Space Maturity Model

21

“Humans are good at discerning
subtle patterns that are really there,
but equally so at imagining them

when they are altogether absent”

Carl Sagan, Contact

3.1. SIMULATION FEATURES

The FSMM proposed in this work has three sections: simulation features, interrogation
capabilities, and research supporting features. These features may overlap, yet an effort

has been made to reduce the overlapping between them.

3.1 Simulation features

Simulation features are the most important criterion in the FSMM. The primary
goal is to identify fundamental features that enable a clear implementation of models
and ensure high fidelity to reality.

A standard high-level programming language like Java, without any third-party
libraries, would be considered a framework scoring 0 in all categories.

The simulation section contains six features, as follows:

3.1.1 Usability

Usability was included to reflect how easy it is for an average user to install and
use the framework. Although it is not formally part of the simulation category, it was

added due to its significant impact on the overall use of the framework.
0. No way to install. User needs to compile from source code. Very limited documentation.
1. Difficult to install, important stability issues. Basic documentation.
2. Generally stable but some minor stability issues. Useful and well-written documentation.

3. The framework is stable and easy to install on Windows/Linux/Mac. Documentation

describes all functionalities, and includes several working examples.

3.1.2 Basic framework functionality

This topic relates to the baseline simulation features which are provided by the

framework and are used in a wide array of cases, like data processing and communication

22

3.1. SIMULATION FEATURES

with external tools. It also includes features which could help validating whether a
model or simulation is acceptable for use for a specific purpose [83]. They include
debugging tools like visualization, breakpoints, execute while some expression is true —

all of which contribute to increase the accuracy of the model [5].

0. Basically no support of standard framework functionalities. No support for random
distributions, no ability to save simulation status. No support to read, write

structured data files like CSV or JSON. No ability to stop simulation.
1. Ability to read, write files. Tools to handle structured data like CSV, JSON files.

2. Ability to communicate with other tools for sending and receiving data, like

http/https support.

3. Ability to run simulation for certain amount of steps or while a condition is true.

Ability to pause simulation interrogate agents or the environment.

3.1.3 Locality

Agents should be space-aware and should have a direction and perspective of their
environment: front, sides and back. Spaces could be continuous or discrete. The
expected space shapes are planes, cylinders and torus. Any agent can be in only one
point/cell at a time and is considered to be at the center of the point/cell. On their
round, the agents can modify only their visible surroundings. This is useful for avoiding
global effects which could affect the simulation quality. Also there could be inaccessible

regions i.e. Agent can not move to that region.

0. All locality concepts needs to be implemented, agents do not have front, no
support for neighborhood access. No support for space concept (neither grid
nor continuous).

1. Basic locality functionality, like support to translate position to torus, tube, plane.

23

3.1.

SIMULATION FEATURES

2. Support for spaces of both grid and continuous types.

3. Agents can move forward, backward, rotate. The space shape could be square,

tube, torus. Space could be grid or continuous or both.

A radial neighborhood of range r consist of a list of elements with the euclidean

distance <r.

A Moore neighborhood defined on a two-dimensional square lattice and is composed
of a central cell and the eight cells that surround it. An extension of this definition
is the Moore neighborhood of range r. It means the set of points at a Chebyshev

distance of < r [99].

A von Neumann neighborhood (or 4-neighborhood) is classically defined on a two-
dimensional square lattice and is composed of a central cell and its four adjacent
cells. An extension of this definition is the von Neumann neighborhood of range

r. It means the set of points at a Manhattan distance of < r [100].

3.1.4 Agent Management

Agent management corresponds to the ability to handle the administration of agents,

including the creation, destruction and — after the agent dies — its remaining management.

0. No agent concept, agents concept needs to be implement from scratch using other

concepts like structures or objects.

. There is a basic concept of agents. Agent can be created but extra structures or

logic is required to manage them. Agents need to be added to the scheduler and

logic is required to move them in the grid, specially in a seamless grid.

. Full fledged support for agent management. Agent creation adds agents to the

space and an agent death removes the agent from the space. There is the concept

of agent type: the ability to list all live agents by their types. Move actions move

24

3.1.

SIMULATION FEATURES

agents in space without need for extra structures. There are abilities to search

nearby agents using radial, Moore and von Neumann neighborhood approaches.

. There is a standard way of communicating between agents in the mail-box approach

[17] where the sender sends the message during its turn and the receiver will see
all available messages (in its mail-box) at the beginning of its turn. There may

be two types of messages: one-to-one and broadcasting.

3.1.5 Force fields

Force fields are not very common in ABM and are used only in very specific

simulations [60]. Nevertheless, they are a powerful tool and it is plausible that its

lack of use is not related to their benefits, but more probably to their general lack of

support in well-known ABM Frameworks.

0. No force fields concept. To calculate forces extra data structures and algorithms

(coding) are required.

. Basic support of force fields concept. Ability define a force field emission point

and ability to calculate distance (shortest distance in seamless grids like torus

grid) and angle from any point to the force field point.

. Agent and environment can assign and reset force fields naturally. Forces have

type and force intensity can grow or decay linearly or quadratically. Multiple
types of forces and each emission point could have either positive or negative
values. The average of forces of the same type can be calculated in any point of
the space (including seamless grids like the torus). Forces can have a radial range

limit.

. Ability to visualize forces as bump/heat maps with varying level of detail. Ability

to show or hide forces by type/layer.

25

3.2. INTERROGATION CAPABILITIES

3.2 Interrogation capabilities

Interrogation capability is the second most important criterion in the FSMM, especially
interrogation support around the concept of “emergent” behavior. Statistically, we
understand macroscopic support as the ability to define a set of metrics that will be
persisted while the rest of the simulation data will be discarded. Also, macroscopic
metrics may be defined regardless of the micro-motives implementation. If sets of
metrics are implemented for two or more models, they are considered macroscopic-

comparable for interrogation. For this criterion, the four features considered are:

3.2.1 Visualization

Visualization for ABM, or any simulation in general, is a very important requirement,
as the amount of data generated by the simulation is huge. Visualization is also useful

tool for debugging the model.
0. No visualization support. Data needs to be displayed using third party libraries.
1. Limited visualization tools. Usually slow, poorly designed but functional.

2. Fast, well documented visualization. Ability to disable visualization globally

during execution

3. Comprehensive and well-documented visualization support, ability to visualize
both detailed and statistical data. Ability define visualization layers by agent,

items and force field attributes.

3.2.2 Statistical support for model attributes

Statistical support for model attributes: It is the ability of the framework to define

and track a set of metrics for a single execution and discard the rest of the data.

26

3.2. INTERROGATION CAPABILITIES

0. No statistical tools. All stats needs to be calculated and charted using third party

tools.

1. Basic support for statistical analysis. The main expected metrics are average,
moving average, standard deviation, maximum, minimum, 95 and 99 percentiles

(and in general the nth percentile). Basic ability to create charts.

2. Well documented and easy way to create and configure charting (ability to define

title, axis data, minimum and maximum for grid, etc).

3. Support for powerful statistics tools which behave like consumers to create correlation

graphs.

3.2.3 Support for macroscopic statistical analysis

Support for macroscopic statistical analysis of observables in different implementations.
With this analysis it is possible to identify specification deviations of different implementations.
Identifying and fixing those deviations should, in turn, increase the overall fidelity
to reality of the implementation. Macroscopic statistical analysis includes standard
statistical comparisons between two or more simulations, F-test, histograms and ANOVA

[66].

0. Single execution only. All stats will need to be saved manually in any execution

for further comparison.

1. Execute two simulations at a time and compare macroscopic observables using

and F-test in real-time.

2. Create and orchestrate multiple simulations on different runners. Compare statistical

behavior of macroscopic observables using histograms or ANOVA.

27

3.3. RESEARCH SUPPORTING FEATURES

3. Tools to collect, reconcile and statistically analyse the behavior of macroscopic
observables of different simulations. Those results would likely be stored in files

and could be created by implementations in different frameworks.

3.2.4 Nearly decomposable system view

There should be a way to identify regions of the model which high internal interactions

and poor external ones.

0. No concept of nearly decomposable system view. Identification of high internal

and poor external interaction needs to be implemented manually.

1. Ability to identify regions with high amount of physically close agents in any

space type (torus, plane, tube).
2. Ability to identify highly interacting agents through messages.

3. Ability to visualize using tools like heat-maps to distinguish the highly interacting

regions.

3.3 Research supporting features

Research supporting features consists of a set of three features. As far as we
know, their support is lacking in ABM frameworks. Such support might benefit ABM
frameworks to reduce the semantic gap between the specification and the implementation.
They are graph support, counterfactual and utility features.

Due the novelty and complexity of implementing experiments which require these
features, they will not be used as scoring topics, but are briefly described here as a

basis for further research.

28

3.3. RESEARCH SUPPORTING FEATURES

3.3.1 Graph support

Graph theory offers a wide range of tools and metrics for analyzing networks. These
can be applied to understand various properties of the agent network, such as centrality,
clustering, and path lengths, which can provide insights into the dynamics of the
modeled system. [73].

Graph support in ABM makes it applicable to a wider range of fields, such as
sociology, epidemiology, economics, ecology, and engineered complex systems — where
network structures are fundamental. This broad applicability enhances the utility and

relevance of ABM.

0. There is not support for graphs, neither logically, nor in visualization.

1. Basic graph capabilities, including weighted graph, and path finding; ability to

visualize graphs and relations as arrows or lines.

2. Ability to assign agents to graph edges, not only to the grid. Ability to have
graph edges following a curve. Ability to set the percentage of the edge covered

by the agent.

3. Environment with Multi-grid support. Edges can move agent from between grids
and grids could be stacked to simulate buildings floors, section of space stations,

etc.

3.3.2 Utility features

For experiment implementation it is usually required to have a map to translate
experiment types and magnitudes to implementation values, which could generate
friction during the implementation. It is expected that providing a way to implement

the experiment closer to the specification will lead to a higher fidelity to the specification.

29

3.3. RESEARCH SUPPORTING FEATURES

0. There is not support for research supporting features, there is the need for a map

to translate specification values to implementation values.

1. Basic support for units of measurement, like ability to define rounds in time
scales (seconds, minutes, hours), distances in metric units (centimeters, meters,
etc), and other like temperatures, light intensity, etc. Provide basic arithmetic
using translation features like "3 m + 50 cm” are ”3.5 m”. It should also validate
the data types involved in sub-expressions and throw an error for expressions like

”3s+3m”.

2. Ability to define resources, and query them using set theory methods. This
simple idea could easily represent complex behavior. For example, in the second
experiment — the Pred-Prey —, defining the behavior of the wolf with the rabbits

in sight may be that the wolf will walk in direction to the closest rabbit.

wolf = self

visible = {r : rabbits|dist(wolf, r) < wolf.vision}

chosen : visible ® V7 : visible e dist(wolf, chosen) < dist(wolf, r)

3. Ability to define an environment with several layers of grids. Each grid could
have inaccessible cells, whcih means agents should not be able to move into that
cell, nor used in any way during the simulation (like finding neighbors through
that cell). Grids could be standard square grid or have a more complex layout

like a Voronoi topology [16].

30

3.3. RESEARCH SUPPORTING FEATURES

3.3.3 Counterfactual support

Counterfactual is a relatively new idea for ABM and — as far as we know — its
support is nonexistent in ABM frameworks. This is the ability in the framework to
define two or more execution of the same model with different initial parameters, or
to branch a new executions from a previous one with new set of parameters. Then it
would be possible to perform some macroscopic comparisons among those executions.

Model branching for multiple possible worlds generation: This is the ability to
describe a trigger where a simulation will split into two or more simulations, each of
them with the same initial history but with new parameters. Because of the risk of

branch explosion, control settings, like max amount of branches, should be provided.

0. Single model during whole simulation. Model branching at the beginning or

during execution needs to be completely implemented from zero.

1. Ability to save a simulation status then, in a different process read, pre-process

and run the updated model.

2. Ability to orchestrate multiple executions in a list of runners with their initial set

of parameters.

3. Ability to branch a model when some rule has been activated (triggered). Ability
to manage executions and orchestrate executions in new runners. Ability to

remove macroscopic similar executions (those having similar macroscopic behavior).

31

CHAPTER 4

Experiments on Frameworks

32

“Divide each difficulty into as many
parts as is feasible and necessary to

resolve it.”

René Descartes, Discourse on

Method

4.1. FRAMEWORKS TO BE EVALUATED

This chapter starts by describing the representative ABM frameworks to be evaluated,

followed by a detailed description of each experiment performed during our research.

4.1 Frameworks to be evaluated

The research approach followed resembles a waterfall. There were three main
stages: research around the feature space needed to create the FSMM, then designing a
reference architecture with robust Computational Properties, and finally, the evaluation
of the reference architecture performed via the POC and in-silico experiments.

During this research, five ABM frameworks were chosen to be evaluated according
the Feature Space Maturity Model because of their usage share in ABM related research,
documentation quality, historical importance, and ease of access. Swarm was one of
theABM Frameworks initially considered for evaluation. Swarm [18] was released on
November 1997 and its last stable release (version 2.4.1) is of April 2009. Due to the
high number of incompatibilities, we decided to drop it early in the research.

The ABM frameworks selected for this research are: NetLogo, MASON, Repast,

Mesa, and Agents.jl. A short description of each one follows.

4.1.1 NetLogo

NetLogo is a multi-agent programmable modeling environment. It is used by hundreds
of students, teachers, and researchers worldwide. It was developed for domain experts
without a programming background to model related phenomena [101]. It was first
released on 1999 and its most recent stable version was 6.3.0 released on 8 December

2021.

33

4.1. FRAMEWORKS TO BE EVALUATED

4.1.2 MASON

MASON is a fast discrete-event multi-agent simulation library core written in Java
which is a well known and powerful programming language [37]. It is designed to be
the foundation for large custom-purpose Java simulations, and also to provide sufficient
functionality for many lightweight simulation needs [56]. MASON Stands for Multi-
Agent Simulator Of Neighborhoods (or Networks). It is intended to provide a core of
facilities useful for the Social Sciences as well as to other agent-based modeling fields
such as Artificial Intelligence and Robotics. The latest release of MASON was version
20 on August, 2019 and requires the agents to be developed in Java. Simulations need
to extend from the class sim.engine.SimState; being just a library, it requires steps

management to be handled by the developer.

4.1.3 Repast

The Repast Suite is a family of advanced, free, and open-source agent-based modeling
and simulation platforms that have been under continuous development for over 20
years. Its most used version is Repast Simphon 2.10.0, released on 22 December 2022.
Repast is a richly interactive and easy-to-learn Java-based modeling toolkit that is
designed for use on workstations and small computing clusters [69].

Repast uses Groovy — a wrapper over the Java programming language [7] usually
distributed as a Plug-In for the Eclipse Integrated Development Environment (IDE)
Open Source Platform [15]. While not explicitly mentioned in their documentation, it

appears that Repast re-implements all of NetLogo’s calls.

4.1.4 Mesa

Mesa is a modular ABM framework for building, analyzing, and visualizing agent-

based models. Mesa is written in Python [93] and keeps its modeling, analysis, and

34

4.2. EXPERIMENTS

visualization components separate — though they are intended to work together. Most
models consist of one class to represent the model itself; one class (or more) for agents;
a scheduler to handle time (order in which the agents act), and possibly a space for the
agents to inhabit and move through [50].

There is a module which allows Mesa to run as a server and the Ul can be displayed

in a standard browser like Firefox [67].

4.1.5 Agents.jl

Agents.jl is a framework for ABM fully implemented in Julia, a modern and powerful
programming language [13] for high-performance computing. It’s a free, open source,
transparent, intuitive and simple-to-learn high quality software, with extensive documentation.
It is modular and has a function-based design. It supports many types of space:

arbitrary graphs, regular grids, continuous space, or even instances of Open Street

Map. [22].

4.2 Experiments

During this work, four experiments were performed, each one covering different
combinations of features used in ABM. The experiments are: Sugarscape, Pred-Prey,

Pareto Principle, and Covid propagation model.

4.2.1 Sugarscape Model

Sugarscape is a model for artificially intelligent agent-based social simulation following
some or all rules presented by Joshua M. Epstein & Robert Axtell in their book Growing
Artificial Societies [27]. There are several variants but all Sugarscape models include the
agents (inhabitants), the environment (a two-dimensional grid), and the rules governing

the interaction of the agents with each other and the environment.

35

4.2. EXPERIMENTS

The original model is based on a 51x51 cell grid, where every cell can contain
different amounts of sugar (or spice). In every step, agents look around, find the closest
cell filled with sugar, move, and metabolize. They can leave pollution, die, reproduce,
inherit sources, transfer information, trade or borrow sugar, generate immunity, or
transmit diseases - depending on the specific scenario and variables defined at the set-
up of the model. Sugar in simulation could be seen as a metaphor for resources in an
artificial world through which the examiner can study the effects of social dynamics

such as evolution, marital status, and inheritance on populations [27].

What is modeled?

As mentioned, this model may grow huge, so the basic model is a 150x200 torus
grid with 150 agents of both sexes (75 males and 75 females) randomly scattered in
the grid. Agents can overlap in the grid and can choose to reproduce, which always
succeeds. Offspring are considered adults immediately after being spawned and will
have in average half of their parents values but same energy as the mother.

Agents consume sugar of just one grid per round and have the ability to look for
mates and sugar based on sight which is the same as speed (i.e. in their turn the can
walk as far as they can see), consume sugar based on metabolism, and have a growing
probability of dying of natural causes (also the agent could also die if its sugar is less
than its metabolism).

Therefore the agents have 5 main static parameters, normalized for simplicity

e Max-Energy: A value from 0 to 1, indicates the max allowed energy the agent
can consume. It is assigned randomly using the Normal curve, average 0.9 and

standard deviation 0.1 .

e Metabolism: The energy the agent consumes per round. It is assigned randomly

using the Normal curve, with average 0.2 and standard deviation of 0.1.

36

4.2. EXPERIMENTS

e Range: a value which indicates how much the agent can see and move in the grid.
It is assigned randomly using the Normal curve, with average 10 and standard

deviation of 1.0.

e Mate-need-grow-rate: A value which indicates the grow of the need to mate per
round. It is assigned randomly using the Normal distribution, average is 0.1 and

standard deviation is 0.01 .

e Death-grow-rate: A value from 0 to 0.1 It indicates the grow of the natural death
rate. It is assigned randomly using the Normal distribution, average in 0.09 and

with standard deviation 0.01 .

Those four parameters are floating-point values and are to be assigned randomly to the
first agents and be averaged for offspring.

Therefore, the agents have 3 counter parameters, which accumulate during execution

e Curr-Energy: A value from 0 to Max-Energy: It shrinks per round based on the
metabolism and grows based in the energy consumed in the patch. New agents
start with Max-Energy, and for spawned agents, the start of Curr-Energy/2 of

their mother.

e Mate-need: A value from 0 to 1. It indicates the need to mate per round. It
starts in 0 and grows by Mate-need-grow-rate. It is reset to 0 if the agent mates

successfully.

e Natural-death-rate: A value from 0 to 1. It indicates the probability of death, it

grows by turn based on the death-grow-rate.

There is a difference in the use of Mate-need: for male agents it indicates the need
to search for a female to mate. For females, it indicates their acceptance of a mating
proposal.

The environment is divided in patches and each patch has 3 parameters

37

4.2. EXPERIMENTS

e Max-FEnergy: A value from 0 to 1, indicates the max allowed energy an agent can
consume in this patch. It is assigned randomly using normal curve, average 0.9

and standard deviation 0.1 .

e Grow-Rate: A wvalue from 0 to 1. The energy the path grows per round. It
is assigned randomly using the Normal curve, with average 0.04 and standard

deviation of 0.001.

e Curr-Energy: A values from 0 to Max-Energy. It grows by grow-rate and shrinks

if consumed by and agent.

There is an important concept of mating decisions which is used for both males and
females, but in different ways. The mating decision threshold is based on the amount of
stored energy (Curr-Energy / Metabolism) and the Mate-need value. The probability

to choose mating grows with the mate-need and stored energy.

Mate_probability = Stored_Energy x Mate_need

There is a small difference in males and female behaviors The rules of the agents

are as follows:

e At the beginning of a round, a male agent will decide whether he looks for a female
to mate with, based on the mating probability. If mating is chosen, the male agent
will look for any available female within his range of action and, if found, he will
go and propose mating; if rejected, he will feed from that patch if available, but if
consummated, he will skip feeding as courtesy for the impregnated female. In the
case where no female is found, the male agent will choose a random direction and
will go that way as far as he can, in pursuit of a female, once he reaches there, he
will feed from that patch. If he chooses feeding instead of mating, it will follow

the standard feeding process.

38

4.2. EXPERIMENTS

e The female accepting of rejecting a mate offer is also based on the mating decision.

e At the beginning of a round of an impregnated female, she will spawn a new agent
with its 5 parameters set based on her own and the father’s parameters, using
a Normal curve of avg 0.5 and 0.1 of standard deviation and its sex chosen at
random. Then it will consume half of its Curr-Energy. After that, it will follow
the standard feeding process. A non-impregnated female agent will just follow

the standard feeding process.

The standard feeding process consists of choosing the patch with the highest amount
of sugar; if there is a tie, the agent will go to the first one found, get there and consume
sugar until Curr-Energy reaches Max-Energy.

Sugar will be refilled at a fixed rate in each grid but will not accumulate if unused.

What is monitored?

Being an evolution approach it is interesting to measure the average of agents
parameters, it is expected that Max-Energy, Range grow while Metabolism and Death-
grow-rate shrink in average.

The Mate-need-grow-rate is more tricky as in both extreme values could cause
population collapse. A high value could cause death by starvation in both males
searching for females and in females giving birth. A value too low will cause a lack

of new spawned agents.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Sugarscape experiment helps evaluate the following features of the

simulation criterion:

e Usability

e Basic framework functionality

39

4.2. EXPERIMENTS

e Locality
e Agent management

Modeling the Sugarscape experiment helps evaluate the interrogation capabilities

criterion as per the following features:
e Visualization

e Statistical support for model attributes.

4.2.2 PredPrey Model

The Lotka—Volterra equations, also known as Predator-Prey (Pred-prey for short)
equations, are a pair of first-order nonlinear differential equations, frequently used to
describe the dynamics of biological systems in which two species interact, one as a
predator and the other as prey. The model makes several assumptions that might not
be valid. In general, the approach can apply to “organic systems” using a plant species
and a herbivorous animal species as an example.

The advantage of this model is that both the behavior of the predators and prey

are related to a single set of equations, shown next:

dx
i ar — By
dy
o =0Ty =y

where:

x is the number of prey (for example, rabbits), y is the number of some predator
dy dx

for example, wolves); — and — represent the instantaneous growth rates of the two
dat " dt &

40

4.2. EXPERIMENTS

populations; t represents time, and parameters «, 3, 9, 7 are positive real numbers

describing the interaction of the two species.

What is modeled?

As mentioned, the model grows quickly, so the basic model is a 500x500 torus grid
with 25 wolves and 250 rabbits. Both wolves and rabbits reproduce asexually. Rabbits
reproduce exactly after 15 rounds and predators reproduce after a successful hunt. If
in its turn a predator can reach a rabbit, it will kill (eat) it by going next to it.

There is no overlapping restriction for the grid and both wolves and rabbits could
see any agent in a radius of 20 units around them and move a maximum distance of
10 units. Wolves will die if they do not eat in ten rounds (time to live goes to 10 after
eating a rabbit and decreases each turn the wolf does not eat). There is no metabolism
for rabbits, their only mission is to escape wolves.

Both wolves and rabbits will be guided by forces. Forces are appliedby agents only
in their visible radius.

Rabbits have four forces

Desired force: A force of defined random intensity from 0 to 1 which continuously

changes each round (up to 45°, from 22.5° left to 22.5° right).

e Flock force: A force to be near to its flock. It grows linearly to the euclidean

distance of each rabbit and has a initial intensity of 1.

e Personal space force: A force against being to near to other rabbits. It falls

linearly to the euclidean distance and has a initial intensity of 40.

e Fear force: A force against the predators. Its intensity is 200 and doesn’t fall and

is 0 if there is no visible wolf.

Wolves have three different behaviors

41

4.2. EXPERIMENTS

e No rabbit in sight: When there is no rabbit in vision range, the wolf will walk

their maximum distance in random direction in search for rabbits.

e Rabbits in sight but not one in reach: When there are one or more rabbits in
sight but not in walking distance, the wolf will walk in direction to the closest

rabbit.

e At least one rabbit within reach: When there is a rabbit in walking distance, the
wolf will go next to rabbit and eat it. The rabbit dies and the time to live of the

wolf goes back to the maximum of 10 turns.

What is the goal of the simulation?

We seek to evaluate several criteria of the FSMM concept, specially forces in the
ABM frameworks and try to validate the amount of predators and preys that follow the
Lotka—Volterra equations. Data collected per round will be the amount of live wolves

and rabbits and their relative percentages to the total population.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Pred-prey experiment helps evaluate the following features of the

simulation criterion:

e Usability

Basic framework functionality

Locality

Agent management

Force fields

Modeling the Pred-prey experiment helps evaluate the interrogation capabilities

criterion on these features:

42

4.2. EXPERIMENTS

e Visualization
e Statistical support for model attributes.

e Nearly decomponsable system view

4.2.3 Confounding galore in Pandemic times

The global impact of COVID-19 has been profound, and it is still a public health
threat even with the current generation of vaccines. The Imperial College of London
developed a model around the so-called Non-Pharmaceutical Interventions (NPI) —
aimed at reducing contact rates in the population and thereby reducing transmission
of the virus. Their results drove the behavior or several countries during the peak
of the pandemic. They conclude that the effectiveness of any one intervention in
isolation is likely to be limited, requiring multiple interventions to be combined to
have a substantial impact on transmission [31].

Another main difficulty in addressing the pandemic was the significant amount
of misleading information around the disease [32]. Due the global impact of social
networks, this experiment focuses on modeling three main options on a pandemic, the
best case with only good NPI and first generation of vaccines, one with worst case, with
only contagion-increasing measures, and one where users decide to use different options

and influence others.

What is modeled?

This model can grow quickly, so the basic model is a list of 100x100 tiles. Each tile
has one agent. On every round, each agent has and initial 21% probability to get sick.
Each agent has one measure to lower its probability in 10% to become sick (using a face
mask) and two measures to increase its probability to become sick in 10% (say being

less careful by believing it is immune due to wearing amulets), and a measure which

43

4.2. EXPERIMENTS

does not have any effects (say drinking a glass of orange juice daily).

So the minimum probability to get sick is 1% and the maximum is 21%, yet agents
do not know a-priori which measures are useful and which measures are useless. Agents
do not die and only get sick for the duration of the round.

Each agent has an initial trust level for each measure from 0% to 100%, where 0%
means total lack of trust and 100% means total trust, and chooses to use the measure
depending on random chance being lower of trust level.

Each agent also has a list of 10 forwarding message friends and can have 0 or more
receiving message friends. The messages contains trust % for each of the available
measures.

At the beginning of the turn, each agent consumes all its incoming messages together
with the incoming friends’ trust level, if any, then re-balances its trust levels using a
weighted average. A weighted average is a average where some data points contribute
more than others [12]. The simulation will be run twice, the trust contribution of the
influencers in the first round will be only 2% of the weighted average and in the second
round it will be 3% .

Then, the agent decides which measure it will use for the round. Then its sickness
probability and sickness status are calculated.

If the agent gets sick, it again re-balances its trust level by lowering its trusts by
20% in the measure it is using and increases its trusts by 1% for the measures it is
not using. In the case they do not get sick, they increase by 10% their trusts for the
measures they are using and lower by 1% the trusts for the measures they are not using.

Finally, at the end of its round, the agent forwards its new trust level to its 10
forwarding friends.

The simulation is run for 1200 rounds, and the data to be plotted is the average
trust level of each of the four measures.

For this experiment, the initial trust level and influencers for the agents should be

44

4.2. EXPERIMENTS

collected from a http call to a Web service which sends a JSON file with the trust level
for the 10,000 participating agents. Also at the end of a simulation, each framework
should send a JSON file indicating the average % of agents which got sick per round.

The format for the incoming JSON message is:

[
{
"inactiveReinforce": 1,
"activeReinforce": 10,
"juice": x,
"amulet": y,
"mask": z
"influences": [
{
"agent": id,
"power": power®tol
| P
]
Founs
]

X, y, z and w are integers from 0 to 100, the value agent is an id of the influencer
and the power is the power of the influencer over the agent.

The format for the outgoing JSON message is

{

framework":x,

sickRatio": [v1,y¥2,...,¥1250]
}

Here, x is the framework name and each y is the sick ratio per round.

The color schema of the agent is thus: the more brightness the less the chance of
getting sick. If the agent chooses the risk lowering options and did not choose the risk
increasing option it will be very bright, and the other-way around it will be very dark.
Choosing the effect-less measurement will change the tint from green to orange.

The srever for this experiment was implemented here http://localhost:9000/
stats?size=SIZE&influencerCount=INFLUENCER_COUNT‘, where SIZE is the amount
of agents and INFLUENCER_COUNT indicates how many agents each agent will

influence.

45

http://localhost:9000/stats?size=SIZE&influencerCount=INFLUENCER_COUNT`
http://localhost:9000/stats?size=SIZE&influencerCount=INFLUENCER_COUNT`

4.2. EXPERIMENTS

What is the goal of the simulation?

The goal of the simulation is to understand the basics of confounding variables
in infection dynamics. It is also used to exercise the ability of the frameworks to

communicate with other tools using the standard http protocol.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Confounding galore experiment helps evaluate the following features

from the simulation criterion:
e Usability
e Basic framework functionality

e Agent management

From the interrogation capability criterion, these are the features to be evaluated:
e Visualization

e Statistical support for model attributes

4.2.4 Economic Wealth Inequity (Pareto Principle)

The Pareto principle states that for many outcomes, roughly 80% of consequences
come from 20% of causes (the “vital few”). Other names for this principle are the 80/20
rule, the law of the vital few, or the principle of factor sparsity. It is based on the works
of Italian economist Vilfredo Pareto, who wrote about the 80/20 connection while at
the University of Lausanne. In his first work, Pareto showed that approximately 80%
of the land in Italy was owned by 20% of the population [75]. An example is in the 1992
United Nations Development Program Report, which showed that the distribution of
global income is very uneven, with the richest 20% of the world’s population receiving

82.7% of the world’s income which follows Pareto’s principle [92].

46

4.2. EXPERIMENTS

This inequality in the wealth distribution seems to emerge inevitably in interacting
environments even in initial equitable starting conditions due to the statistical mechanics
of populations and Gini coefficient [102]. The Gini coefficient measures the inequality

among the values of a frequency distribution, such as levels of wealth [36].

What will be modeled?

As mentioned, this model could grow huge, so the basic model will be similar to
a Monopoly game. It will be a 100x100 grid with 100 agents. Each tile has a cost to
buy (in coins) and will bring a rent for the owner if another agent steps in. Each agent
starts with no coins but will collect a static number of 75 coins per turn.

The rent per tile is calculated from a random number between 1 and 50 coins, and
the cost of purchasing will be that value multiplied by ten. Those values do not change
during a simulation execution.

Tiles can only belong to one agent, and during its turn, the agent first will collect
the static 75 coins, then it will move to another tile in a random position. If the tile
is not owned, and the agent has enough money to buy it, it will buy it. If the tile is
owned and the agent can pay the rent, it will pay it to the owner of the tile.

Finally if the agent cannot pay the rent, it will have to pay an initial amount using
its available coins, and then, pay the rest by giving the tile owner some tiles it owns.
It could be that agent’s tiles cannot match the missing rent, then the agent will have
to surrender all its tiles, but the rest of the rent will be forgiven. There is also the case
were the list of surrendered tiles will exceed the cost of the missing rent pay, but the
owner will not pay the change.

Calculating the list of tiles to pay the rest of the rent, where the excess is minimal, is
a optimization variant of the subset sum problem, which is a known NP-hard problem
[51], therefore a quick (greedy) approximating algorithm will be used. First the agent

tiles are sorted based on its cost from cheaper to more expensive. Iteratively, they tiles

47

4.2. EXPERIMENTS

will be added to an initially empty bag until the amount is reached or exceeded; thus,
the cheaper tiles will be removed while the amount exceeds the rent cost.

After the tile is purchased, or the rent is paid, if the agent has enough coins, it can
upgrade its properties by paying the current cost, this duplicates both the cost and
the rent. The agents will upgrade from their cheaper to the more expensive properties.
Agents do not die and no more agents are added during the simulation. The goal of
each agent is to buy as many tiles as it can.

This experiment does have a natural end when there are no more available tiles (for
buying(. This experiment should be run a thousand times with varying values for the
tiles.

What is the goal of the simulation? The goal of the simulation is twofold, the
first is to confirm the Pareto principle at the end of the simulation. Data collected
contains the final ratio of both coins and land owned by each agent.

Secondly, we want to validate fidelity to the specification of the five implementations
through Macroscopic statistical analysis. For each framework, three macroscopic observable
values will be collected for 10 000 executions. They are the amount to rounds to
complete the experiments, the percentage of coins of the top 20% richer agents, and
the percentage of tiles owned by the top 20% land owner agents.

These values will be plotted in three histograms. With one series for each framework,
we aim to validate they were implemented identically and exercise the idea of statistical

validation of (otherwise) indistinguishable models.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Pareto experiment help evaluate the following features from the simulation

criterion
e Usability

e Basic framework functionality

48

4.2. EXPERIMENTS

From the interrogation capability criterion, the Pareto experiment aims to evaluate

the following features:

e Visualization

e Statistical support for model attributes

e Support for macroscopic statistical analysis of compatible models

4.2.5 Correlating experiments and feature scoring

The experiments were designed in such a way for them to be useful for scoring the

features in the FSMM. This relationship is depicted in the following table.

Experiment Sugarscape | PredPrey | Pareto | Pandemics
Usability v v v v
Basic framework functionalities v v v v
Locality v v

Agent management v v v
Force fields v

Table 4.1: Simulation features exercised per experiment

Experiment Sugarscape | PredPrey | Pareto | Pandemics
Visualization v v v v
Statistical support for v v v v
model attributes
Macroscopic statistical v
analysis
Nearly decomposable
System view v

Table 4.2: Interrogation capabilities exercised per experiment

49

4.2. EXPERIMENTS

The relationships between experiments and criteria of the FSMM are illustrated in

the following Venn diagrams.

Simulation Features

Sugarscape PredPrey

Force
fields

Agent
Mgmt Basic
Framework
Functionality

Usability

Pandemics Pareto

Figure 4.1: Simulation Features exercised by experiment

Similarly for each interrogation capability the Venn diagram is

Interrogation capability

Sugarscape PredPrey

Statistics

Visualization

Macroscopic
Statistic

Pandemics Pareto

Figure 4.2: Interrogation Capabilities Features exercised by experiment

20

CHAPTER b

Results & Discussion

o1

“Done is better than perfect. ”

Sheryl Sandberg, Lean In: Women,

Work, and the Will to Lead

5.1. SUGARSCAPE MODEL

5.1 Sugarscape Model

This section presents the results of the Sugarscape experiment implementation. An
analysis of each criterion per experiment, per framework, is provided.

As mentioned in the experiment descriptionm only three graph per simulation were
included in this document. Other graphs where used during the development and

debugging of the simulation.

52

5.1. SUGARSCAPE MODEL

5.1.1 NetLogo

Sugarscape as defined in the experiment is implemented in NetLogo in this URL
https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Sugarscape/.

The implementation required a single experiment NetLogo file which contains both
the User Interface (UI) and behavior specs. This was straightforward due Basic
framework functionality already provided by the framework, with only two types
of agents (breeds in NetLogo jargon), males and females, and heavy use of provided
Locality and Agent management functionality. The Visualization of the agents
was also available since the beginning; it can be disabled to speed up simulation.

Debugging was done using several tools including graphs. As defined in the experiments,
only Model statistics are shown in the final report; these include average agent energy,
live count and average patch energy .

The most challenging aspect was the semantics difference from the usual OO approach.

In general, the Usability of the tool was really good.

Avg Agent Energy
1 M Energy

size

Figure 5.1: Sugarscape on NetLogo

93

https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Sugarscape/

5.1. SUGARSCAPE MODEL

5.1.2 MASON

Sugarscape as defined in the experiment is implemented in MASON in this URL
https://gitlab.com/msc_tesis/MASON/-/tree/main/Sugarscape

The experiment was implemented in nine standard Java classes using the MASON
jar file libraries. Four classes were utilities, implementing missing Agent management
functionalities, three for agents behaviors, one for the environment and a final one
encapsulating ‘boiler plate’ code for the UL

The implementation required several utility classes. The minimalist approach of the
framework lacks of tools for Locality. Tough not rigorously measured, the execution
was probably the fastest one, which helped with the Usability and takes advantage of
the ample support for the Java environment to implement Basic framework functionality.
As the MASON framework is just a Java library, the experiment was developed in the
Netbeans IDE[4].

Visualization capabilities were acceptable out of the box. Model statistics
including average agent energy, live count and average patch energy — as shown below

— were straightforward to implement.

Tira,
Allves

Energy

Ell o]

Figure 5.2: Sugarscape over MASON

o4

https://gitlab.com/msc_tesis/MASON/-/tree/main/Sugarscape

5.1. SUGARSCAPE MODEL

5.1.3 Repast

Sugarscape as defined in the experiment is implemented in Repast in this URL
https://gitlab.com/msc_tesis/Repast/-/tree/main/Sugarscape.

Sugarscape was implemented using a customized Eclipse version which works as
the IDE for Basic framework functionality. Eight Groovy files were created, one
utility, three for the agents, one for the environment and the final three were ‘boiler
plate’ code for configuration and Ul specification. Repast generates boiler plate code in
Java to handle the simulation. It creates the code during file creation and code change.
The main drawback of Repast is Usability, because the generated code may get stale
quickly and affect its underlying Eclipse Platform. A full project clean was required
every hour or so to avoid IDE crashes, also Visualization speed was noticeably slow.

Given that Repast follows NetLogo’s approach, most of the logic was taken from
the NetLogo version, updating the code to follow Groovy’s syntax. As in NetLogo,
Locality and Agent management was handled by the framework.

Model statistics were slightly harder to handle than in NetLogo for Repast requires

a data producer and a graph description; the Ul to define them failed from time to time.

Ava Agent Fnorgy

............

v [+ v

Figure 5.3: Sugarscape over Repast

95

https://gitlab.com/msc_tesis/Repast/-/tree/main/Sugarscape

5.1. SUGARSCAPE MODEL

5.1.4 Mesa

Sugarscape as defined in the experiment is implemented in Mesa in this URL https:
//gitlab.com/msc_tesis/Mesa/-/tree/main/Sugarscape.

As Mesa is just a collection ofPpython classes, the experiment was implemented
in the Community version of IntelliJ[47]. It was implemented using five Python files.
They were one utility file to implement Locality functionality, one file for the agent
behavior, one for the patch behavior, one for the simulation and Agent management
and one to specify the Ul

Even while distributed in five files, this was the implementation which required the
smallest amount of code (less than 15 kb) and it benefits from the huge support for the
Python environment to implement Basic framework functionality.

The main Usability drawback was that the convoluted connection between the Ul
and the back-end makes the simulationVisualization very slow when the Ul is enabled.
Model statistics including average agent energy, live count and average patch energy

— as shown — were easy to implement.

Figure 5.4: Sugarscape over Mesa

26

https://gitlab.com/msc_tesis/Mesa/-/tree/main/Sugarscape
https://gitlab.com/msc_tesis/Mesa/-/tree/main/Sugarscape

5.1. SUGARSCAPE MODEL

5.1.5 Agents.jl

Sugarscape as defined in the experiment is implemented in Agents.jl in this URL
https://gitlab.com/msc_tesis/Agents.jl/-/tree/main/Sugarscape.

It was implemented using five Julia files. They were two utility files, including
Locality logic, one file for the agent behavior, one for the simulation and one to specify
the Ul. As a Julia package, it benefits from the support for the Julia environment to
implement Basic framework functionality, including the Microsoft Visual Studio
Code [64] using the Julia extension [49] which supports debugging.

There were two major Usability drawbacks. The first was that the startup time
was very slow (about 2 minutes). This was somehow mitigated using a Operating
System (OS) dependent cache (which takes about 5 minutes to create) and using an
interactive command-line (called Read-Eval-Print Loop (REPL)), with some limitations
(a change in the structure specs will require a new session). The other drawback is the
lack of ability to specify multiple axis for the Model statistics graph using the default
Application Programming Interface (API).

Visualization capabilities were limited and there was a bug in Agent management,
which breaks the framework when the agent size is a function (instead of static value)

and agents are removed during the experiment.

\vg age nerg)
DU

[= sraanaiiiil
oo
e e .
2o%e | | gas
PRI

ral 2

100 200 300 400 500

Figure 5.5: Sugarscape over Agents.jl

27

https://gitlab.com/msc_tesis/Agents.jl/-/tree/main/Sugarscape

5.2. PREDPREY MODEL

5.2 PredPrey Model

This section presents the results of the PredPrey experiment implementation, along
with an analysis of each criterion per experiment for each framework.
While in most of the cases, there were wolves and rabbits at the end of the 1000

rounds, there were four possible outcomes for this experiment
e Population collapse where wolves eat all rabbits and die of starvation
e All Wolves die of starvation but some rabbits survive and reproduce continuously

e Wall stability where wolves and rabbits form two columns, the wolves one chasing

the rabbit ones. This formation allowed continuous growth of both types of agents.
e Fireworks, where packets of rabbits grew and were eventually attacked by wolves

For the two latter outcomes, which were the most common ones, there were sections
of highly interacting agents which should have been detected, but no framework provided

Nearly decomposable system view capabilities.

o8

5.2. PREDPREY MODEL

5.2.1 NetLogo

PredPrey, as defined in the experiment, is implemented in NetLogo in this URL
https://gitlab.com/msc_tesis/NetLogo/-/blob/main/PredPrey/.

The implementation required a single experiment file which is a NetLogo specs
and contains both the Ul and behavior specs, specially Force fields logic as it is not
provided by the framework.

The implementation was straightforward with only two types of agents (called breeds
in NetLogo jargon), rabbits and wolves using Locality and Agent management
functionality already provided. Only two Model statistic graphs were added, the
alive count and the percentage of rabbits vs wolves.

Visibility capabilities were used, specially the direction of agents using the triangle
shape. The most challenging Usability aspect was that the semantics is different from
the usual OO approach. A major drawback is the limited amount of debugging tools,
which may slow down bigger simulation endeavours, yet for this experiment the provided

Basic framework functionality was good enough.

Rabbits vs Wolf Count
2500 ORabbits
W wolves

2004

n 10
il i I'l

fl
‘w A/‘

|
Y A ol Y Y,
t‘ - ot
0. s wvm \(‘,,/' \W/ an’fﬂ‘-f ___r
0 1000

7 Wt

Rabbits vs Wolf Percentage
100 CORabbits %
W wolves %

| | f
f\ p i q‘ \ \HI

il i Ll

\ ﬂ il Ml Mo

\ .‘] h IIHL “‘11'“ | H.}M
L"MJ“\ F ! L ‘” A '” “
fﬂl/ll 'T \ 4
0 ""-‘I

Figure 5.6: PredPrey over NetLogo

29

https://gitlab.com/msc_tesis/NetLogo/-/blob/main/PredPrey/

5.2. PREDPREY MODEL

5.2.2 MASON

PredPrey, as defined in the experiment, is implemented in MASON in this URL
https://gitlab.com/msc_tesis/MASON/-/tree/main/PredPrey.

The experiment was implemented in nine standard Java classes using the MASON
jar file libraries. Four classes were utilities, including vector functions for Force fields,
three for agents behaviors (the base agent class, one for the rabbits and another one for
wolves), one for the environment and a the final one was ’boiler plate’ code for the UL
Stability of the framework over Netbeans was good for the whole experiment, which
confirms MASON Usability.

The implementation required several utility class events to complete Locality functionality,
due to the minimalist approach of the framework, yet it has the advantage of the vast
support for the Java environment to implement Basic framework functionality.
One interesting Agent management limitation is that the removeSteppable method
does not remove the agent until the full round is complete, therefore, a boolean rabbit
variable isDead was required to avoid using a death prey.

Only two Model statistic graphs were added, the alive count and the percentage
of rabbits vs wolves. A limitation for Visibility was the missing capability to draw a

shape, like a triangle, to show which direction the agent was facing.

AAAAA

oooooooooooo
AAAAA
nnnnnnnnn

I fily il
il il AtV

‘ ‘J‘JH\H‘;‘\ Ay
R T

| I
i

(K

i

Figure 5.7: PredPrey over MASON

60

https://gitlab.com/msc_tesis/MASON/-/tree/main/PredPrey

5.2. PREDPREY MODEL

5.2.3 Repast

PredPrey, as defined in the experiment, is implemented in Repast in this URL
https://gitlab.com/msc_tesis/Repast/-/blob/main/PredPrey/.

The implementation required eight Groovy files and two Java files, including a vector
class to handle Force fields.

Because of Repast origins, most of the Basic framework functionality was
implemented based on the NetLogo version, updating the code to follow Groovy’s
syntax. Also, as in NetLogo, Locality and Agent management was handled by
the framework.

There were several Usability issues, for example, Repast creates helper classes
during coding which needs to be re-synchronized using the clean/rebuild option from
time to time. When using Java 11, several random incompatibilities started to appear
at execution time; the only solution was to move the framework to Java 17.

Visibility performance was very poor compared to the NetLogo/MASON version.
As with previously mentioned frameworks, only two Model statistic graphs were

added, the alive count and the percentage of rabbits vs wolves.

ReLogo: ReLogo Default Display
= 2 A

Agent Count

‘./ VA w JU\O

TICk Count

Percentage

)

5"4 I"»,"MM L}V WJ:/}.%:{

Tlck Counl
Rabbits - Wol]

Figure 5.8: PredyPrey over Repast

61

https://gitlab.com/msc_tesis/Repast/-/blob/main/PredPrey/

5.2. PREDPREY MODEL

5.2.4 Mesa

PredPrey, as defined in the experiment, is implemented in Mesa in this URL https:
//gitlab.com/msc_tesis/Mesa/-/blob/main/PredPrey/.

The implementation required 5 files, including a vector utility to simulate the Force
fields, one file for Locality functionality, one for both agents behavior, one for the
simulation and Agent management, and finally one for UI specs. As a Python
library, it benefits from the support for the Python environment to implement Basic
framework functionality

The implementation was straightforward, with only two types of agents: rabbits
and wolves. Only two Model statistic graphs were added, the alive count and the
percentage of rabbits vs wolves.

The most challenging Usability aspect was the incredibly slow speed of the Ul in the
browser which makes testing really difficult. Also Visibility functionality was limited
and getting an acceptable screen rendering required manual adjustment, including

zooming out on a scaled canvas — worked only on Google Chrome.

Figure 5.9: PredPrey over Mesa

62

https://gitlab.com/msc_tesis/Mesa/-/blob/main/PredPrey/
https://gitlab.com/msc_tesis/Mesa/-/blob/main/PredPrey/

5.2. PREDPREY MODEL

5.2.5 Agents.jl

PredPrey, as defined in the experiment, is implemented in Agents.jl in this URL
https://gitlab.com/msc_tesis/Agents.jl/-/tree/main/PredPrey

The experiment was implemented in four standard Julia files using the Agents.jl
libraries, including a class to handle Locality capabilities. It used the complex number
data type to simulate the Force fields. As a Julia package, it benefits from the support
for the Julia environment to implement Basic framework functionality.

There were several Usability issues during the implementation, including the lack
of backward compatibility of system images from Julia 1.9 and 1.10 and some bugs
in Agent management when the size is a function and agents are removed. Also
Visibility performance was very poor compared to NetLogo/MASON.

It was impossible to visualize Model statistic on two axes with the provided APIL.

1000
8
2
]
=
°

= 500
<

0

500 4

400

300

200

100

80 2
spu @ 1 S
2 60
3
sleep @ 0.0 §
40
stej run rese clear
0
st

model model model data 20

500 1000
tep

Figure 5.10: PredPrey over Agents.jl

63

https://gitlab.com/msc_tesis/Agents.jl/-/tree/main/PredPrey

5.3. PANDEMICS MODEL

5.3 Pandemics Model

In this section the results of the Pandemics experiment implementation, along with

analysis of each criterion per experiment, for each framework, is provided.

64

5.3. PANDEMICS MODEL

5.3.1 NetLogo

The COVID-19 pandemic, as defined in the experiment, is implemented in NetLogo
in this URL https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Pandemics/.

The implementation required a single experiment file which is a NetLogo specs
and contains both the Ul and behavior specs. This was straightforward due Basic
framework functionality being already provided by the frameworkd, using the standard
NetLogo turtles. The Visualization of the agents was also available since the beginning,
with the ability to disable it to speed up simulation.

The most challenging aspect was that the semantics is different from the conventional
OO approach. In general, the Usability of the tool was really good. One limitation
was that the http requests were poorly documented and the post call did not support
more than 1500 sets of values, even using the multipart structure which should support
several megabytes of data.

We used the provided Agent management capabilities to locate one user per cell
in the grid but had to implement the required mailbox approach.

The following figure shows the two rounds of the simulation on NetLogo with 2%

and 3% of agent trust provided by influencers.

2% Influence by Influencers 3% Influence by Influencers

Figure 5.11: Pandemics over NetLogo

65

https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Pandemics/

5.3. PANDEMICS MODEL

We are interested in reviewing Model statistics, including the sick ratio and trust
level differences among the two rounds. In the first round, influencers provide a 2%
agent trust, whereas in the second round, they only offer an additional percent point of
trust. Interestingly, despite this expected small difference, in the second round agents
do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from NetLogo.

Sick Ratio. 2% Influence by Influencers Sick Ratio. 3% Influence by Influencers
35 35
30 0
25 25
20 20
F 15 £ 15 \ MWNH“WHWMMW
10 10
5 5
o p—— 0
1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1 101 201 301 401 501 601 701 801 901 1001 1101 12
Rounds Rounds
Juice Trust. 2% Influence by Influencers Juice Trust. 3% Influence by Influencers
100 100
B0 80
60 60
I F a0
20 20
0 1]
1 101 200 301 401 501 601 701 801 901 1001 1101 1201 1 101 201 301 401 501 601 701 801 901 1001 1101 12
Rounds Rounds
Amulet Trust. 296 Influence by Influencers Amulet Trust. 3% Influence by Influencers
100 100
B0 80
60 60 /
R g o
20 20
0 0
1 101 201 301 401 501 601 701 @801 901 1001 1101 1201 1 101 201 301 401 501 601 701 801 901 1001 1101 1
Rounds Rounds
Mask Trust. 2% Influence by Influencers Mask Trust. 3% Influence by Influencers
100 100
80 80
60 60
£ 4 5w
20 20
o 0
1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1 101 201 301 401 501 601 701 801 901 1001 1101 120:

Rounds Rounds

Figure 5.12: Pandemics over NetLogo using reported data

66

5.3. PANDEMICS MODEL

5.3.2 MASON

The COVID-19 pandemic, as defined in the experiment, is implemented in MASON
in this URL https://gitlab.com/msc_tesis/MASON/-/blob/main/Pandemics/.

The implementation required seven experiment files, three for logic, one for the Ul
and for handling multipart post. This was straightforward due to Basic framework
functionality being already provided by the Java environment, using known libraries
like those for JSON handling. The Visualization of the agents was also available since
the beginning, being completely fluid even for 10000 agents.

There wasn’t any particular technical challenge and in general the Usability of the
tool was really good. One limitation was the http multipart post functionality was
lacking from the standard Java libary, so it was built for the Java client.

We used the provided Agent management capabilities to locate one user per cell
in the grid but had to implement the required mailbox approach.

The first chart shows the two rounds of the simulation over MASON with 2% and

3% of agent trust provided by influencers.

2% Influence by Influencers 3% Influence by Influencers

Parent - o x Parent - o %

T C#bh A sl “r

L4l

Figure 5.13: Pandemics over MASON

67

https://gitlab.com/msc_tesis/MASON/-/blob/main/Pandemics/

5.3. PANDEMICS MODEL

Similar to NetLogo, we are interested in reviewing Model statistics, including sick
ratio and trust level differences among the two rounds. In the first round, influencers
provide a 2% agent trust, whereas in the second round, they only offer an additional

percent point of trust. Interestingly, despite this expected small difference, in the second

round the agents do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from MASON.

Sick Ratio. 2% Influence by Influencers
35

25
10

1 101 201 301 401 501 601 701 801

Rounds

801 1001 1101 1201

Juice Trust. 2% Influence by Influencers

1 101 201 301 401 501 601 701 801

Rounds

%01 1001 1101 1201

Amulet Trust. 226 Influence by Influencers

100
B0
60
g o
- \
0
1 101 201 301 401 501 601 701 801 901 1001 1101 1201

Rounds

Mask Trust. 2% Influence by Influencers

—

1 101 201 301

100

%
= B & 2 8

401 501 601 701

Rounds

B01 901 1001 1101 1201

Sick Ratio. 3% Influence by Influencers
35
0
25

20
£ 15 \H1HJ#_*-T4n-ihﬂnhmunhhi1-mr-fiimh-r—1nmkrnn.ruur'dwhnru#m

10

0
1 101 201 301 401 501 601 701 801

Rounds

901 1001 1101 1201

Juice Trust. 3% Influence by Influencers

1 101 201 301 401 501 601 7VO1

Rounds

801 901 1001 1101 1201

Amulet Trust. 3% Influence by Influencers

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

Rounds

Mask Trust. 3% Influence by Influencers

1 101 201 301 401 501 601

Rounds

701 801 901 1001 1101 1201

Figure 5.14: Pandemics over MASON using reported data

68

5.3. PANDEMICS MODEL

5.3.3 Repast

The COVID-19 pandemic, as defined in the experiment, is implemented in Repast
in this URL https://gitlab.com/msc_tesis/Repast/-/blob/main/Pandemics/.

The implementation required five experiment files, plus hundreds of automatically
created maintenance files. The main files we the agent Groovy file, the simulation
Groovy file, and the Ul specs files. There were two helper java files, a required utility file
and one for handling multipart post. It was straightforward due to Basic framework
functionality being already provided by the Java environment, using known libraries
like those for JSON handling. The Visualization of the agents was also available since
the beginning, being fluid even for 10000 agents.

The main challenge for the Usability of the tool is the fact that there is a need
to keep cleaning the environment to avoid stale autogenerated Java classes and that
reporting specs is not performed through code but in the UI which can get convoluted.
Another limitation was that the http multipart post functionality was lacking from the
standard Java library, so it was built for the Java client.

We used the provided Agent management capabilities to locate one user per cell
in the grid but had to implement the required mailbox approach.

The first chart shows the two rounds of the simulation over Repast with 2% and 3%

of agent trust provided by influencers.

2% Influence by Influencers 3% Influence by Influencers

Figure 5.15: Pandemics over Repast

69

https://gitlab.com/msc_tesis/Repast/-/blob/main/Pandemics/

5.3. PANDEMICS MODEL

Similar to NetLogo and MASON, we are interested in reviewing we are interested

in reviewing two Model statistics: the sick ratio and trust level differences among

the two rounds. In the first round, influencers provide a 2% agent trust, whereas in

the second round, they only offer an additional percent point of trust. Interestingly,

despite this expected small difference, in the second round agents do not discover that

the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from Repast.

Sick Ratio. 2% Influence by Influencers
£

30
25
20
£ 15
10

5

0

1 101 201 301 401 501 601 701 801 901 1001 1101 1201
Rounds
Juice Trust. 2% Influence by Influencers

100
80

60

F 4
20

0

1 101 201 301 401 501 601 701 801 901 1001 1101 1201
Rounds
Amulet Trust. 2% Influence by Influencers

100
80
60
F o4
20
0

1 101 201 301 401 501 601 701 801

Rounds

901 1001 1101 1201

Mask Trust. 2% Influence by Influencers

—

1 101

100

%
= 8 5 3 8

201 301 401 501 601 701 801

Rounds

%01 1001 1101 1201

Sick Ratio. 3% Influence by Influencers
35
30
25
20

ES 15\‘“"’Mwmmh-m~mnmmnm«u_t-mm

10

0
1 101 201 301 401 501 601

Rounds

701 801 901 1001 1101 1201

Juice Trust. 3% Influence by Influencers
0

1 101 201

100

%
B & 8 8

301 401 501 601 701 801

Rounds

901 1001 1101 1201

Amulet Trust. 3% Influence by Influencers

1 101 201 301 401 501 601

Rounds

701 801 901 1001 1101 1201

Mask Trust. 3% Influence by Influencers

—

1 101 201

= B & 3 0B

301 401 501 601 701 801 901 1001 1101 1201

Rounds

Figure 5.16: Pandemics over Repast using reported data

70

5.3. PANDEMICS MODEL

5.3.4 Mesa

The COVID-19 pandemic, as defined in the experiment, is implemented in Mesa in
this URL https://gitlab.com/msc_tesis/Mesa/-/blob/main/Pandemics/.

The implementation required seven experiment files, three for logic, one for the UL
It was straightforward due to Basic framework functionality being already provided
by the Python environment, using known libraries like those for JSON handling. There
were no communication capabilities between agents which is a part of the Agent
Management topic. The Visualization of the agents was also available since the
beginning, being fluid even for 10000 agents.

There wasn’t any technical challenge. In general, the Usability of the framework
was really good. The speed of display is slow, therefore only the final step was displayed.

The first chart shows the two rounds of the simulation on Mesa with 2% and 3% of

agent trust provided by influencers.

2% Influence by Influencers 3% Influence by Influencers

Figure 5.17: Pandemics over Mesa

71

https://gitlab.com/msc_tesis/Mesa/-/blob/main/Pandemics/

5.3. PANDEMICS MODEL

Similar to the other frameworks, we are interested in reviewing the sick ratio and
trust level differences among the two rounds. In the first round, influencers provide a
2% agent trust, whereas in the second round, they only differ in one additional percent
point of trust. Interestingly, despite this small difference, in the second round agents
do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from Mesa.

Sick Ratio. 2% Influence by Influencers Sick Ratio. 3% Influence by Influencers
35 35

30 30
25 25
20 20
£ 15 2 15 WWWMMMMMW
10 10
5
0 0
1 100 201 301 401 501 601 701 801 901 1001 1101 1201 1 101 201 301 401 501 601 701 801 901 1001 1101 1201
Rounds Rounds
Juice Trust. 296 Influence by Influencers Juice Trust. 3% Influence by Influencers
100 100
80 80
60 60
R g o
] 20
0 0
1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1 101 201 301 401 501 601 701 601 901 1001 1101 1201
Rounds Rounds
Amulet Trust. 2% Influence by Influencers Amulet Trust. 3% Influence by Influencers
100 100
80 80
60 60 u//—‘_"_"-_'—
R g o
2 20
0 0
1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1 1001 201 301 401 501 601 701 801 901 1001 1101 1201
Rounds Rounds
Mask Trust. 2% Influence by Influencers Mask Trust. 3% Influence by Influencers
100 100
80 80
60 60
g o £ a0
2 20
0 0
1 101 2001 301 401 501 601 701 BOL 901 1001 11001 1201 1 101 201

301 401 501 601 701 801 901 1001 1101 1201

Rounds Rounds

Figure 5.18: Pandemics over Mesa using reported data

72

5.3. PANDEMICS MODEL

5.3.5 Agents.jl

The COVID-19 pandemic, as defined in the experiment, is implemented in Agents.jl
in this URL https://gitlab.com/msc_tesis/Agents.jl/-/blob/main/Pandemics/.

The implementation required five experiment files, three for logic, one for the Ul
and one to handle command line simulation. The implementation had to be written
two times as the Makie UI support couldn’t handle all users. So for the Ul shown in the
following section, we used a smaller 85x85 grid (instead of the 100x100 expected grid).
The reports were done using a command-line only version with the expected grid size.
Basic Framework Functionality was provided by the Julia environment, including
using known libraries like JSON & HTTP. The Visualization was really slow even
when using a version that was only 64% the size of the other frameworks

Provided Agent Management capabilities like placing agents in the coordinate
were not used due to memory issues in Julia. The main Usability challenge was the
unexpected Julia memory issue which was not present in previous experiments.

The first chart shows the two rounds of the simulation over Julia, with a smaller
grid (85x85) than with the other implementations (100x100) due the memory issues
with Julia. The results of the 1200 steps with 2% and 3% of agent trust were provided

by GUI-less execution of the experiment with the full grid.

73

https://gitlab.com/msc_tesis/Agents.jl/-/blob/main/Pandemics/

5.3.

PANDEMICS MODEL

2% Influence by Influencers 3% Influence by Influencers

25 50 75 25 50

Figure 5.19: Pandemics over Agents.jl

74

75

5.3. PANDEMICS MODEL

We are interested in reviewing Model statistics, including the sick ratio and trust
level differences among the two rounds. In the first round, influencers provide a 2%
agent trust, whereas in the second round, they offer an additional percent point of trust.
Interestingly, despite this small difference, in the second round agents do not discover
that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from Agents.jl.

Sick Ratio. 2% Influence by Influencers Sick Ratio. 3% Influence by Influencers
35 35
30 30
25 25
0 20
15 £ 15 \-,. PRI T ppaa— .
M
10 10
5 5
0 L 0
1 101 200 301 401 501 601 701 8Ol 90l 1001 1101 1201 1 101 201 301 401 501 601 701 8Ol 901 1001 1101 1201
Rounds Rounds
Juice Trust. 2% Influence by Influencers Juice Trust. 3% Influence by Influencers
100 S 100
80 80
60 60
2 4 £ 4
20 20
0 0
1 100 201 301 401 501 601 701 801 901 1001 1101 1201 1 100 200 301 401 501 601 701 801 801 1001 1101 120!
Rounds Rounds
Amulet Trust. 2% Influence by Influencers Amulet Trust. 3% Influence by Influencers
100 100
80 20
60 60 /,_,.——-———
2 4 # o
20 20
0 0
1 101 201 301 401 501 €01 701 801 901 1001 1101 1201 1 101 200 301 401 501 601 701 801 901 1001 1101 1201
Founds Rounds
Mask Trust. 2% Influence by Influencers Mask Trust. 3% Influence by Influencers
100 100
80 0
60 0
Y 2 5
2 1]
0 0
1 101 201 301 401 51 601 701 801 901 1001 1101 1201 1 101 201 301 401 501 €01 701 801 901 1001 1101 1201

Rounds Rounds

Figure 5.20: Pandemics over Agents.jl using reported data

75

5.4. PARETO MODEL

5.4 Pareto Model

This section shows the results of the Pareto experiments, along with analysis of each
criterion per experiment, for each framework.

For this experiment, due its quick run and natural stop, the simulations were
run 10000 times to collect macroscopically comparable data and to validate that all
implementations of the experiments are statistically identical.

At the end of the experiments, we perform an analysis of the macroscopic observables

— for each framework.

76

5.4. PARETO MODEL

5.4.1 NetLogo

Pareto, as defined in the experiment, is implemented in NetLogo in this URL https:
//gitlab.com/msc_tesis/NetLogo/-/blob/main/Pareto/.

The implementation required a single experiment file which contains both the Ul
and behavior specs. No external add-ons were required as NetLogo provided all required
Basic Framework Functionality.

The implementation was straightforward, with only one type of agent. Visualization
was very fast, and for the Model statistic only the cumulative curve in decreasing
order (the Pareto curve) for the owned tiles and coins was added.

A Comma-separated values (CSV) file data for the Macroscopic statistic analysis
was created using provided file saving functionality. FEach line contains the three
macroscopic observables defined in the specification. The simulation was run 10000
times. As NetLogo does not support multiple executions, in order to simulate the Pareto
model all executions were done in a loop which reset the values. For this experiment
the Usability was good enough. As with previous experiments, the main challenge in

NetLogo was its convoluted syntax.

Cumulative
100 M Tiles
[Gold Coins

s SN,
v R
ll_:'lfi..'l'{!.;ll ¥ ’0 Agents 100

Figure 5.21: Pareto over NetLogo

7

https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Pareto/
https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Pareto/

5.4. PARETO MODEL

5.4.2 MASON

Pareto, as defined in the experiment, is implemented in MASON in this URL https:
//gitlab.com/msc_tesis/MASON/-/blob/main/Pareto/.

The implementation required five Java files, which contains both the Ul and behavior
specs. No external jar files were required as Netbeans provided the Basic framework
functionality.

The implementation was straightforward, with only one type of agent. Visualization
was very fast, and for the Model statistic only the cumulative curve in decreasing
order (the Pareto curve) for the owned tiles and coins was added. There was a minor
limitation to draw the 20/80 lines, so two series were added to draw those lines.

A CSV file data for the Macroscopic statistic analysis using standard Java
file system support. Each line containing the three macroscopic observables defined
in the specification. The simulation was run 10000 times. Because of Java following
the OO paradigm, it was very natural to create and execute the simulation objects
independently. If desired, it is simple to modify each simulation execution independently.

For this experiment the Usability was good, especially the speed of headless executions.

. L
Pareto I~
== Coins == Parsto = Tile = Pareto

85
80
85
80
75
70
B85

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Agents =

Figure 5.22: Pareto over MASON

78

https://gitlab.com/msc_tesis/MASON/-/blob/main/Pareto/
https://gitlab.com/msc_tesis/MASON/-/blob/main/Pareto/

5.4. PARETO MODEL

5.4.3 Repast

Pareto, as defined in the experiment, is implemented in Repast in this URL https:
//gitlab.com/msc_tesis/Repast/-/blob/main/Pareto/.

The implementation required five Groovy files, plus 100+ files created by the Eclipse
framework. Basic framework functionality, like debugging capabilities, were provided
by Eclipse, whereas Visualization of not time-based graphs are not possible in the
current version Repast. One Model statistic graph required to visually identify the
Pareto behavior was the cumulative of coins and tiles. Yet, in order to create it, the
data was stored in a CSV file and then post-processed as a graph in a LibreOffice Calc
worksheet [34], a third party tool.

A CSV file data was produced for the Macroscopic statistic analysis using the
standard Java file system support. Each line contains the three macroscopic observables
defined in the specification. The simulation was run 10000 times. For this experiment
the Usability was very poor, as it was required to clone a version of a previous
experiment, given that the Eclipse plugin started experiencing issues creating new
simulation projects from scratch. While Repast seems to provide the functionality
to run multiple iterations at the same time, the documentation was lacking and the
behavior seemed intricate. In order to perform the simulation, all executions were done

in a loop which reset the values, and a checkbox to run 10000 times was added to the

UL

Cumulative

ke

MR E R B R O R N

Agents

Figure 5.23: Pareto over Repast

79

https://gitlab.com/msc_tesis/Repast/-/blob/main/Pareto/
https://gitlab.com/msc_tesis/Repast/-/blob/main/Pareto/

5.4. PARETO MODEL

5.4.4 Mesa

Pareto, as defined in the experiment, is implemented in Mesa in this URL https:
//gitlab.com/msc_tesis/Mesa/-/blob/main/Pareto/.

The implementation required four Python files, including the Pareto main file,
one for the tile, a visualization helper and one for the agent. Basic framework
functionality, like debugging capabilities, were provided by IntelliJ. Visualization of
graphs which are not time-based are not possible in the current version Mesa. One
Model statistic graph required to visually identify the Pareto behavior was the
cumulative of coins and tiles; in order to create it, the data was stored in a CSV
file and then post-processed as a graph in a LibreOffice Calc sheet [34], a third party
tool.

A CSV file data was generated for the Macroscopic statistic analysis using
standard Python file system support. Each line contains the three macroscopic observables
defined in the specification. The simulation was run 10000 times. Given the class-based
OO being present in the Python programming language, it was really natural to create
and execute the simulation objects. If desired, it is uncomplicated to modify each
simulation execution independently.

For this experiment the Usability was poor for the Ul as it was too slow, but

acceptable during the headless 10000 iterations.

[Fronespersecns B g 5

Current Step: 1

Cumulative

100
% /
80
70 /

60 Coins

50 — Tiles
s 0 —— Pareto
—— Pareto

30
20
10

0

SOORDPEIEDNRIFOEVCDE TP

Agents

Figure 5.24: Pareto over Mesa

80

https://gitlab.com/msc_tesis/Mesa/-/blob/main/Pareto/
https://gitlab.com/msc_tesis/Mesa/-/blob/main/Pareto/

5.4. PARETO MODEL

5.4.5 Agents.jl

Pareto, as defined in the experimen,t is implemented in Agents.jl in this URL https:
//gitlab.com/msc_tesis/Agents.jl/-/blob/main/Pareto/.

The implementation required several Julia files, which contains both the Ul and
behavior specs. No external Julia modules files were required as MS Code provided
Basic framework functionality — such as debugging.

The implementation was straightforward, with only one type of agent. Visualization
was very fast. As with Repast and Mesa, only time aggregate graphs are allowed in
Agents.jl. The expected Model statistic was the cumulative curve in decreasing order
(the Pareto curve) for the owned tiles and coins, and had to be saved in a file to be
plotted afterward by a third party tool.

A CSV file data for the Macroscopic statistic aAnalysis was created, using
Julia’s standard file system support. Each line contains the three macroscopic observables
defined in the specification. The simulation was run 10000 times. Because of its
functional approach, it was natural to create and execute simulations in Julia. If desired,
it is easy to modify each simulation execution independently. For this experiment the
Usability was good, specially the speed of headless executions.

100

Cumulative

80 100
90 /
80

80 70 /

60
50 — Tiles

40 g 40 — Pareto
—— Pareto

Coins

30
20
10

0

20

YVOYEPRIERPRILEEOLTEHP

Agents
20 40 60 80 100

spu []

sleep @

Figure 5.25: Pareto over Agents.jl

81

https://gitlab.com/msc_tesis/Agents.jl/-/blob/main/Pareto/
https://gitlab.com/msc_tesis/Agents.jl/-/blob/main/Pareto/

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

5.5 Macroscopic Statistical Analysis & Specification
Fidelity

Regarding the Pareto simulation, for each execution, three macroscopic observables
were included in a CSV file. These files where then processed by a script to create
histograms, where each series represents a framework.

Using this approach, we were able to identify few deviations of some implementations
with respect to the specification — which were not apparent a priori — like sorting the

of the tiles based on price when settling an outstanding debt or improving a tile.

5.5.1 Histogram

After performing the necessary corrections, the histograms show that the macroscopic
observables of all versions are statistically indistinguishable, which supports the argument
that all implementations follow the specification. Some highlights for each histogram

are mentioned below.

Histogram of rounds count to complete simulation

1800
1600 A

1400 /.\ :\\

1200 7: A NetLogo

w00 f \.t MASON
800 | \ == Repast
600 \ —— Mesa
400 F :

- Agents.]l
200 T W =
0 L \1\“ -;—: sie=2s » _v/‘

e
O © O O O O O S OO ©
S P P P PP PSSP SIS
I N N S N - S I - Sl)

simulations

Rounds to complete

Figure 5.26: Histogram for rounds

Notice the tail after 2500 rounds. This is due the fact that each tile needs to be

purchased to complete the simulation, but agents can only reach a tile by chance, which

82

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

could create iterations with more than 5000 steps.

Pareto Coins Histogram

Histogram of % of coin ownership by top 20% at end of simulation

2500
2000
NetLogo
o 1500 MASON
S —— Repast
g —»— Mesa
% 1000 Agents.
I*
500 e
- g
F = = =
0 =3

52.5 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 85 87.5 90 92.5 95 97.5100

% of coin ownership by top 20% of agents

Figure 5.27: Histogram for coins ownership by top 20% of agents

Coins ownership are clearly around 80% but there is a hump of scenarios where the
20% or less of the agents owned the 100% of the coins. This could be caused by the
rule of settlement, where even when an agent had an outstanding debt of one coin it
needs to surrender a whole tile. Then the agents which hoard most of tiles will reap

more of the rent benefits.

Pareto Tiles Histogram

Histogram of % of tiles ownership by top 20% at end of simulation

1400
1200

1000
NetLogo

MASON
== Repast
=—p— Mesa

Agents.jl

800

600

simulations

400

0
9P 0 PP 0P NC DO PO OO D OO DO PO
G Wp? WP Fg2 FY2 QP Py Cp? P g2 $Y® £g? Fy° P

% of tiles ownership by top 20% of agents

Figure 5.28: Histogram for tiles ownership by top 20% of agents

Tiles ownership are clearly around 70-80% but there is a hump in scenarios where

83

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

the 20% or less of the agents owned the 100% of the tiles. Similar to coin ownership,
this could be caused by the hard rule of settlement where even when an agent had a
outstanding debt of one coin it needs to surrender a whole tile, which seems to lead to

some agents hoarding most of tiles in some executions.

5.5.2 Coefficient of Variation

In order to compare the macroscopic of the observables, we calculated the coefficient
of variation for each framework. The Coefficient of variation (CV) is a standardized
measure of dispersion of a probability distribution or frequency distribution. [29]

The CV is defined as the ratio of the standard deviation ¢ to the mean pu:

o

V=", (5.1)

For the five frameworks, the calculated CV for the three histograms (round count
to completion, top 20% ownership of coins, top 20% of tiles ownership) is shown in the

following table

Engine | Rounds to finish | Pareto Coins | Pareto Tiles
NetLogo 0.011 0.016 0.027
MASON 0.010 0.016 0.027
Repast 0.011 0.015 0.025
Mesa 0.011 0.016 0.028
Agents.jl 0.010 0.016 0.028

Table 5.1: Coefficient of variation for three chosen macroscopical observables

As CV is a unit-less measure, it is particularly useful for comparing variability across
datasets with different units or scales. In the example, it shows almost identically values
for almost all implementation with a small difference in Repast, specially the CV of the

Pareto Tiles.

84

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

This difference can be seen in the histogram as well, and could be due to a small

difference in the model or in the random number generators of Repast.

5.5.3 Fréchet Distance

The Fréchet distance is a measure of similarity between curves that takes into
account the location and ordering of the points along monotonic (not moving backwards)

curves [24]. The formula for the continuous Fréchet distance is

F(A, B) = inf max{d(A(«(t)), B(5(t)))}

a,B te[0,1] (5-2)
The discrete Fréchet distance is calculated using the above formulae for all points
of two curves. The Fréchet distance between axis/frameworks of the three histograms
(round count to completion, top 20% ownership of coins, top 20% of tiles ownership)
were calculated. While there are techniques to approach Fréchet distance efficiently
[25], the general formula was used, because of the few number of points in the curves.
The implementation of the discrete Fréchet distance is located here https://gitlab.

com/msc_tesis/StatisticalComparison.

Fréchet distance for rounds, largest values are marked with *.

Table 5.2: Fréchet distance for histograms of rounds to complete experiment

Fréchet distance for histogram of top 20% coin ownership, largest values are marked

with *.

NetLogo | MASON | Repast | Mesa | Agents.jl
NetLogo 0.0 68.0 87.0%* 44.0 68.0
MASON 68.0 0.0 114.0% | 72.0 95.0
Repast 87.0%* 114.0%* 0.0 130*.0 | 102.0*
Mesa 44.0 72.0 130.0* 0.0 97.0
Agents.jl 68.0 95.0 102.0* | 97.0 0.0

85

https://gitlab.com/msc_tesis/StatisticalComparison
https://gitlab.com/msc_tesis/StatisticalComparison

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

Fréchet distance for histogram of top 20% tile ownership, largest values are marked

NetLogo | MASON | Repast | Mesa | Agents.jl
NetLogo 0.0 89.0 299.0% | 38.3 46.0
MASON 89.0 0.0 388.0% | 97.0 43.0
Repast 299.0 388.0%* 0.0 291.0*% | 345.0*
Mesa 38.32 97.0 291.0* 0.0 54.0
Agents.jl 46.0 43.0 345.0% | 54.0 0.0

Table 5.3: Fréchet distance for histograms of top 20% coins ownership

with *.
NetLogo | MASON | Repast | Mesa | Agents.jl
NetLogo 0.0 75.0 180.0* 33.1 41.6
MASON 75.0 0.0 255.0% | 69.0 57.0
Repast 180.0%* 255.0* 0.0 186.0% | 198.0*
Mesa 33.1 69.0 186.0%* 0.0 31.0
Agents.jl 41.6 57.0 198.0% | 31.0 0.0

Table 5.4: Fréchet distance for histograms of top 20% tiles onwership

It clearly shows a difference in Repast implementation. It is interesting to notice

that rounds also seem to exhibit the same behavior, because
e Agents do not expire and there is not concept of debts.
e The rent per tile is calculated from a random number between 1 and 50 coins.
e At the beginning of the round each agent collects 75 coins.

These rules indicate that the number of rounds should be very close if there is

regularity in:
e The basic experiment setup and behavior are consistent among implementations.

e The underlying pseudo-random generation.

86

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

If the issue is the first point, it indicates the difficulty to develop simulations in
Repast, as the code was checked several times without identifying any difference against
the others implementations.

In the other case, it points at deficiencies in Repast’s pseudo-random generation

mechanism.

5.5.4 Anova and F-Test

Both ANOVA and F-test provide a p-value [45]. In null-hypothesis significance
testing, where the null hypothesis is Hy : pu1 = ps, the p-value is the probability of
obtaining test results at least as extreme as the result actually observed, under the
assumption that the null hypothesis is correct [14].

A very small p-value means that such an extreme observed outcome would be very
unlikely under the null hypothesis, and the null hypothesis is rejected, so that means
are significantly different.

The ANOVA was applied to all the values in the histograms (round count to
completion, top 20% ownership of coins, top 20% of tiles ownership) and F-Tests were
applied the each pair of histograms.

The usual notation of * is followed
*0.01 < p<0.05
0.001 < p <0.01
R p < 0.001

The results are shown in the following tables.

87

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

Rounds to completion
The p-value for the ANOVA was 0.180 which is more than 0.05 which fail to reject
null hypothesis, means are not significantly different. Nevertheless for F-Test between

frameworks the results is

NetLogo | MASON | Repast | Mesa | Agents.jl
NetLogo - 0.291 0.275 | 0.893 | 0.376
MASON 0.291 - 0.027* | 0.224 0.852
Repast 0.275 0.027* - 0.331 | 0.041%*
Mesa 0.893 0.224 0.331 - 0.297
Agents.jl | 0.376 0.852 0.041* | 0.297 -

Table 5.5: P-value for F-test for histograms of rounds to complete experiment

Here it can be seen that for rounds, the results of Repast are statistically significantly

different for Agents.jl and MASON.

Top 20% of coin ownership
The p-value for the ANOVA was < 107> which rejects the null hypothesis, and
indicates the means for the histograms of the top 20% of coin ownership, are significantly

different. The F-Tests between frameworks the results are

NetLogo MASON Repast Mesa Agents.jl
NetLogo - 0.860 < 1075%F* 0.669 0.459
MASON 0.860 - < 1070k 0.800 0.571
Repast | < 1075%%% | < 1(075%** - < 107FFF | < 1O TFHF
Mesa 0.669 0.800 < 1070k - 0.755
Agents.jl 0.459 0.571 < 10Ok 0.755 -

Table 5.6: P-value for F-test for histograms of top 20% of coin ownership

Here it can be seen that for the top 20% of coin ownership, the results of Repast

are statistically significantly different from all the other frameworks.

88

5.5. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

Top 20% of tiles ownership
The p-value for the ANOVA was< 10~° which rejects null hypothesis, and indicates
the means of the histograms for the op 20% of tile ownership, are significantly different.

The F-Tests between frameworks the results are

NetLogo MASON Repast Mesa Agents.jl
NetLogo - 0.423 < 1070k 0.494 0.388
MASON 0.423 - < 10Ok 0.909 0.949
Repast | < 1075%%% | < 1(075%** - < 1072FFF | < O TOFHF
Mesa 0.494 0.909 < 1070k - 0.859
Agents.jl 0.388 0.949 < 1075Fx* 0.859 -

Table 5.7: P-value for F-test for histograms of top 20% of tiles ownership

Here it can be seen that for the top 20% of tiles ownership, the results of Repast
are statistically significantly different from all the other frameworks.

These results keep indicating a consistency issue in Repast which could be caused by
a underlying problem related to pseudo-random number generation or in the experiment

setup and behavior, which was has not been identified even after several code reviews.

89

5.6. DISCUSSION

5.6 Discussion

The first version of this project contained several more features for each section.
After a rigorous review, they were simplified and streamlined to avoid overlapping.
The nine identified features where chosen so as to minimize their overlap and make it
feasible to score them independently.

In this work four experiment were proposed to exercise each framework. The set
of experiments covers several common aspects of ABM in general, but left out some
topics. One important topic which could be included in a updated version of the FSMM
is graph support. Graphs can be implemented in any language, and their visualization
might be useful for developing certain types of ABM models.

About the chosen frameworks, both MASON and NetLogo left a good impression
after experimentation. Mesa and Repast left a troublesome impression due to speed
and stability. Especifically, the MASON framework appears to be far more stable and
fast compared to the other ones.

While NetLogo was overall the most capable framework, it was challenging to write
some behaviors, especially because the only available data structure was the LISP style
list and not common ones like maps. Additionally, the product was designed for the
simulation to be in a single file which could be challenging for bigger projects.

Agents.jl was somewhat disappointing because it has some basic deficiencies in
rendering. Also, the simulation uses GIMakie which hid some failures and makes it
hard to debug. Another issue was that starting simulation required at least 3 minutes of
prepossessing in a high-end laptop. Starting with a ‘precooked’ environment decreased
this time but did not remove it. Other frameworks started almost immediately.

For Mesa the cumbersome integration between the web front-end and the back-end
server made the simulation and development very slow. It was so slow to the point
that some experiments, only the last image (screenshot) was rendered. That was not

an issue for the other frameworks.

90

5.6. DISCUSSION

In the case of Repast, the challenge was that it was a Plug-In for Eclipse IDE
which has had stability issues. It also created lots of helper files which were need for
simulation but have to be recreated continuously as the source code changed. At one
point the whole IDE stopped working to create new projects; to create new projects it

was required to start from a previous project folder.

91

CHAPTER 6

Feature Space Maturity Scoring

92

“To push anything back into the
past is equivalent to reducing it to
its simplest elements. Traced as far
as possible in the direction of their
origins, the last fibres of the human
aggregate are lost to view and are
merged in our eyes with the very

stuff of the universe.”

Pierre Teilhard de Chardin, The

Phenomenon of Man

6.1. SIMULATION FEATURES

6.1 Simulation Features

The following shows the scoring for the two subsections of the FSMM which were
evaluated for each of the five frameworks.

Remember the scoring was based per item in a scale from 0 to 3 following the
facilitator approach from [72].

The scores for the simulation features of the frameworks is based on their performance
on the four experiments. Categories of the FSMM are mapped to the scores obtained

by each framework; the results are shown in the following table.

Category NetLogo | MASON | Repast | Mesa | Agents.jl
Usability 3 3 1 2 1
Basic Framework 3 3 3 3 3
Functionalities

Locality 3 2 3 2 3
Agent Management 2 2 2 2 1
Force Fields 0 0 0 0 1
Summary 11 10 9 9 9

Table 6.1: Simulation Features Score

6.2 Interrogation Capabilities

The scores for the interrogation features of the FSMM for the frameworks is are

based on the four experiments. The results are shown in the following table.

93

6.2. INTERROGATION CAPABILITIES

Category NetLogo | MASON | Repast | Mesa | Agents.jl
Visualization 3 3 2 2 1
Statistical support for 3 3 3 3 3
model attributes

Macroscopic statistical 2 2 2 2 2
analysis

Nearly decomposable 0 0 0 0 0

System view

Summary 8 8 7 7 6

Table 6.2: Interrogation capabilities Score

Based on those scores, we can create a quadrant-like graph with the top right being
the best scored and the bottom left being the worst scored. This quadrant shows the

superiority of NetLogo and MASON over the other freely available frameworks.

Feature Space Maturity Model

Framework Score Comparison

12
2
B
g 10 NetLogo
8 MASON
c 8 A Repast
-8 'Y > Mesa
% Agents.jl
s °© '
£
= 4

7 8 9 10 11 12 13 14

Simulation Features

Figure 6.1: FSMM Score

94

CHAPTER [

Architecture of ABM Frameworks

“ All the efforts of the human mind
cannot exhaust the essence of a

single fly.”

Thomas Aquinas

95

7.1. STUDIED ARCHITECTURES

Software architecture is critical in ABM because it defines the structural organization
of a system, guiding how different components interact and ensuring the system’s
scalability, maintainability, and performance. In ABM, the architecture helps manage
the complexity of simulating large numbers of autonomous agents with unique behaviors
and interactions. Without a well-designed architecture, the ABM framework can suffer
from inefficiencies, poor performance, and difficulties in integrating new features or
scaling to more complex simulations.

A well-structured software architecture impacts several quality attributes of an ABM
system. For instance, scalability is essential when simulating thousands or even millions
of agents, and a poorly designed architecture may lead to performance bottlenecks as
the system grows. Modularity and maintainability are also critical because they allow
developers to update or replace parts of the simulation without affecting the entire
system. Furthermore, reusability of components — such as agent behavior libraries or
environmental models — can be enhanced with a flexible architecture, making it easier
to apply the framework to different simulation contexts.

The architecture also influences the reliability and efficiency of an ABM system.
Clear communication paths between agents and a robust management of agent lifecycles
are essential to ensure the accuracy of the simulation results. Poorly designed architectures
can lead to issues such as deadlock, inefficient resource usage, or inaccurate modeling
of agent interactions, which ultimately degrade the overall quality of the simulation.

In this chapter, we first present summaries of the architectures of the five ABM
Frameworks studied in this research, then we state a set of architectural principle, and

finally posit a proposed reference architecture for ABM.

7.1 Studied Architectures

This section briefly summarizes the architecture of the five studied ABM Frameworks.

96

7.1. STUDIED ARCHITECTURES

7.1.1 NetLogo

NetLogo adopted the basic design principle from the Logo language of “low threshold,
no ceiling”. Low threshold means new users, including those who never programmed
before, should find it easy to get started. No ceiling means the language shouldn’t be
limiting for advanced users.

Efficiency is always a vital goal for NetLogo as a multi-agent system development
framewok, since many researchers would want to do large numbers of long model runs
with as many agents as they can.

NetLogo is a complete system, not just a library. Just as important as the program
itself is the materials it comes with. Developers devoted almost as much development
effort to the Models Library as to the NetLogo software system.

The Models Library contains more than 140 pre-built simulations that can be
explored and modified.

All of the models include an explanation of the subject matter, the rules of the
simulation and suggestions for activities, experiments, and possible extensions. To aid
learning and encourage good programming practice, the code for the simulations is well

commented and as elegantly written as developers could make it [91].

7.1.2 MASON

MASON had several design goals from the very beginning. First, MASON was
designed to have a small, high-performance, self-contained simulation core so that many
models could be run in parallel, or could involve up to millions of agents. Second,
MASON was designed to produce guaranteed identical results regardless of architecture
when possible. Third, MASON was created with a Model-View-Controller (MVC)
architecture with complete separation between the model and the visualization, and
with model serialization. Fourth, as it came from the robotics community, MASON

was meant to support a wide range of visualization facilities, including both 2D and 3D

97

7.1. STUDIED ARCHITECTURES

support. Fifth, MASON was designed to be very easily modified and extended.

Roughly following an MVC architecture, MASON can be broken into two pieces.
The first part is the model (the simulation proper) and the second part is the visualization.
Unless one chooses to have model objects display themselves, the model and visualization
are entirely separated, enabling model serialization and the removal or reinstatement
of the visualization mid-run [57].

This separation of logic and visualization allowed to quickly run the Pareto experiment
in parallel without the need of a Ul

MASON is not a executable program but a library. Yet, this is not a major issue,
due the plethora of Java editing tools available like NetBeans or IntelliJ. Also this
library approach allows the tool to be quickly reused in virtualized or containerized

environments like Docker [23].

7.1.3 Repast

Repast architecture was supposedly designed to be flexible, extensible, and easy
to use, allowing for the development of complex agent-based simulations. The key
components of the Repast architecture include:

Agents: The core of any ABM. In Repast, agents are objects that represent entities
in the model. They have states, behaviors, and interactions with other agents and the
environment. Agents are typically implemented as Java or C# classes, depending on
the version of Repast being used.

Environment: The space in which agents operate. Repast supports various types
of environments, including grids, continuous spaces, and networks (graphs). The environment
provides the context for agent interactions and movement.

Scheduler: Manages the simulation’s execution timeline. The scheduler handles
the timing of agent actions and events, ensuring that the simulation progresses in a

coherent and controlled manner. It can be used to schedule actions at specific times or

98

7.1. STUDIED ARCHITECTURES

with specific intervals.

Data Collection and Analysis: Repast includes tools for collecting and analyzing
data generated during the simulation. This can include logging agent states, interactions,
and other relevant metrics. The collected data can be used for post-simulation analysis
and visualization.

Visualization: Provides graphical representations of the simulation state and agent
behaviors.

Repast uses a DSL called ReLogo based on Logo and using the Groovy dynamic
language. This was chosen supposedly due the ease of use of the Logo programming
language and its associated programming idioms [74].

Repast is not an executable program but an Eclipse plug-in. While this should be
an advantage in theory, in practice Repast is constrained by the stability or instability

of Eclipse releases — which recently has shown some instabilities.

7.1.4 Mesa

Mesa is an Agent-Based Modeling Framework with tries to fill the missing ABM for
Python.

Mesa allows users to quickly create agent-based models using built-in core components
(such as agent schedulers and spatial grids) or customized implementations; visualize
them using a browser-based interface; and analyze their results using Python’s data
analysis tools.

Designing a new framework from the ground up also allows the developers to
implement features not found in existing frameworks. For example, other ABM frameworks
tend to use a single agent activation regime by default; in Mesa, there are several agent

schedulers and require the modeler to specify which one should be used [62].

99

7.1. STUDIED ARCHITECTURES

7.1.5 Agents.jl

Agents.jl is a pure Julia framework for ABM. The basic ideas of the Agents.jl

architecture are:

e Agents are defined as Julia structs or mutable structs, which can hold any
attributes needed for the simulation. Agent behavior is encapsulated in functions

that define how agents interact with each other and the environment.

e Julia handles three spaces.

— GridSpace: A discrete grid where agents occupy specific cells. It can be

one-dimensional, two-dimensional, or multi-dimensional.

— ContinuousSpace: A continuous space where agents can move freely in

any direction. It allows for more granular control over agent positioning.

— GraphSpace: A space based on graph structures, allowing agents to occupy
nodes and move along edges. Useful for modeling networks and other relational

structures.

e The model in Agents.jl is a container that holds the agents, the space, and any

additional parameters or data structures needed for the simulation.

e Julia has a Discrete Event Scheduler which handles the execution of agent
actions. It allows for scheduling actions at specific times or in specific sequences
and includes tools for collecting data during the simulation, such as agent states,

interactions, and aggregate statistics.

Agents.jl is not and executable program but rather a Julia library. Editing needs
to be done by a third party program. Currently the most important Julia editing tool

is Visual Studio Code by Microsoft.

100

7.2. PROPOSED ARCHITECTURE PRINCIPLES

7.2 Proposed Architecture Principles

If the Feature Space describes which features should the ABM have, the Computational
Properties describe how they should be implemented. The Computational Properties
of an ABM framework architecture should enable the ease of use of the framework,
understood as the capability of a user to readily and successfully perform tasks with
a product without the need for advanced explanation and an instruction manual [77].
In the case of ABM frameworks, the concept could be refined further as the ability to
develop or update a model in the most natural way without having to struggle with the
underlying the framework’s implementation.

The principles that we kept in mind when developing the architecture were

e Stability & Maintainability: Stability means that the framework can be used
without constant crashing. Maintainability is an important quality attribute for
almost every software product. Maintenance is considered an expensive phase in
the software development life cycle as it consumes most of the effort allocated
to the software system [97]. Similarly, models coded in ABM frameworks most
probably will be modified and refined during their lifetime. While maintainability
has many facets, this thesis will only focus on the tools that the framework
provides to create a maintainable model, including tools that help create comments

and semantic validations. In the provided FSMM this topic relates to Usability.

e Readability: According to Popper, science becomes possible because a thesis
can be linguistically presented and thus critically assessed, becoming an object
so it can be tested or falsified by others [76]. Similarly, an implementation of a
model should be easily readable for its quality and intent to be correctly assessed.
The most important aspect for good readability in ABM are the rules of both the
agent and the environment. In the provided FSMM this is topic also relates to

Usability.

101

7.2. PROPOSED ARCHITECTURE PRINCIPLES

e Implementation: The complexity of implementing a model in a ABM framework
should be similar to the complexity of describing the model in a formal way.
The fewer artifacts and boilerplate code required from the underlying technology
the better. In the provided FSMM this topic relates to Basic framework

functionality.

e Syntax expressiveness: due to its expressiveness power, text is the standard
way to code agent and environment behavior. This behavior language should have
enough expressive power to support the simulation requirements in a natural way
and avoid negative impact in the code quality [11]. Expressiveness also measures
how much can be expressed in the ABM framework without changing its internal
implementation. In general, there should be a way to implement any new arbitrary
complex behavior without having to change the source code of the ABM [30].
In the provided FSMM this topic relates to the Agent management and the

Locality simulation features.

e Visualization: The framework should be able to present a graphical representation
of the model with minimal configuration from the developer [53]. While visualizations
of very large models might be too expensive and of limited value, they are one of

the most useful tools in the development and debugging of a model.

e Service Oriented: Due to the raise of cloud computation and the nature of the
ABM simulations, which are in most the cases computationally intensive (and
costly) and required to be run several times, it is expected the framework to be

used as collection of services.

Based on those five principles, the next section develops a proposed reference architecture.

102

7.3. REFERENCE ARCHITECTURE

7.3 Reference Architecture

The following reference architecture is defined for 2-dimensions, discrete time ABM
frameworks with a homogeneous, single-layered grid. While 3-dimensions simulation
share many similarities, they are much more resource consuming andm for many cases,
they may be modeled in a 2-dimensions framework. While this architecture could be
used as a initial research point for continuous-time frameworks, it is not intended for
them.

For the sake of clarity and simplicity only two types of composite structures are
described: a sorted list (called array) and unsorted list (called set). There is a special
case of Matrix for the grid which may be seen as a array of array of patches. In both
cases they do not allow duplicates and use the j; notation to indicate the type of the
components.

It is expected that the architecture should have at least these 3 main top-level types
of entities: the environment, the entities and the relations. The entities can be split in
three sets: the patches, the agents and the vertices. The relations can be split also in

two: logic relations and directed edges. Therefore there are 6 main types of entities:

e Environment

Entity: Patch

Entity: Agent

Entity: Vertex

Abstract relation: Relation

Abstract relation: Directed Edge

While the description follows an OO approach, it should be general enough to be

used by non-OO implementations. Implementation details are purposefully left vague,

103

7.3. REFERENCE ARCHITECTURE

as developers should be able to decide about them. Description and interaction among

the defined types are explained in the following paragraphs:

7.3.1 Environment

There is only one environment per simulation and there should be ways to define
custom behavior for the environment step. Environments need to have a grid of patches
which could have one of three topologies: plane, or cylinder (wrapped horizontally) or
a torus shape (wrapped both horizontally and vertically).

There should be a list of drawing layers, and each entity should be assigned to a
single layer. It should be able to request the environment to create an image for the

requested drawing layers with a provided scale.

7.3.2 Patch

A patch is a building block for the model. The most common shapes are squares.
While some ABM frameworks allow using a different morphology for patches (like
triangle or hexagon) their value is limited, and behavior provided by those non-standard
morphologies should be covered with square patches plus directed edges.

A patch should be considered a 1 x 1 tile. For an environment with a grid width of
w and a height of h there should be w x h patches. A patch can contain an unlimited
amount of agents and vertices. There should be a way to interrogate the patch to collect
both its agents and vertices.

There is a subtle case when an agent is on an edge, but not (in itself) on the patch.
The agent’s coordinates are bounded with reference to a place within the patch. Thus,
there should also be a way to identify agents above the patch (by virtue of them being
on an edge).

There should be a way to assign custom behavior and attributes to the patch and,

given a patch, there should be a way to identify its neighbors using the environment

104

7.3. REFERENCE ARCHITECTURE

topology and one of the three neighbors metrics (radial, Moore or von Neumann). For

visualization purposes there should be a way to define the color of a patch.

7.3.3 Agent

Agents are the foundations of ABM. An agent is considered dimensionless but for
visualisation purposes, there should be a way to assign it a shape, color and size.

There should be two ways to create a agent: the environment spawns it or a parent
agent hatches it. It is expected that when a parent hatches a child, the child location
matches the parent location.

An agent needs to be on a patch or on a edge. There should be a way to identify
where the agent is, its xy coordinates and, if it is in a edge, the position in the edge
(0 in source, 1 in destination). As mentioned above, there should be a way to collect
agents on or above a patch.

There should be a way to assign custom behavior and attributes to the agent, and
there should be a way to define the default behavior entry point of each model step.

There should be a way for agents to die. After an agent dies, all of its framework-

defined relations should be dropped and it should not be accessible using the framework’s

APL

7.3.4 Vertex

Vertices are considered dimensionless. For visualisation purposes, there should be a
way to assign them shape, color and size. They are the end points (source or destination
or both) of edges. There should be a way to assign custom behavior and attributes to
a vertex. They can be created, moved or destroyed by the environment.

A vertex needs to be assigned to a patch with some specific coordinates but they
could be modified during the simulation. Once a vertex is destroyed, all of its framework-

defined relations should be dropped and it should not be accessible via the framework’s

105

7.3. REFERENCE ARCHITECTURE

APL

7.3.5 Relation

A relation is a way in which several entities link to each other. They usually connect
distinct entities but some associate an entity with itself. The arity of a relation is
the number of entities it connects. The direction of a relation is the order in which
the elements are related to each other. The converse of a relation carries the same
information and has the opposite direction [43].

For this ABM framework architecture the arity of a relation will be always 2
(an origin and a destination), it should have a name and could be bidirectional or
unidirectional. While it might be useful in some cases to simplify the architecture there

could not be two or more relations with the same name, origin and destination.

7.3.6 Directed edge

Directed edges, or edges for short, are a special type of unidirectional relation, only
connecting vertices and could be considered part of the topology as agents can be
removed from the patches grid and added to an edge.

There should be a way to add custom attributes to edges, and there should be a
well-known weight attribute which is useful in several cases to indicate some cost of
using that edge — e.g. to traverse the edge from origin vertex will be 100% of the cost,
but traversing from the middle will be 50%. Usually the cost is expected to be linear

to the distance but other implementations could choose a different cost function.

7.3.7 UML diagrams

The following diagABM.

106

7.3. REFERENCE

ARCHITECTURE

Relation

+ origin: Entity
+ dest: Entity
+ bidirectional: Boolean

2

«abstract»
Entity

+id: Int

+ env: Environment

+ color: Color

+ customAttrs: Object

+ relations: Set<Relation>

Extends + Xy(): coords
Extends
|
Vertex Patch
+ edges: Set<Edge> + agents: Set<Agent>
+ shape: Shape + vertices: Set<Vertex>
+ layer: string *

+ patch: Patch

+ destroy(): type

+ setXY(x: Double, y: Double):
void

+ connect(vertex:Vertex): Edge
+ setPatch(patch: Patch): void

2 *

+ moore(d: Double): Set<Patch>

«abstract»
Abstract Relation

Extends—[>| + customAttrs: Object

+ vonNeumann(d: Double): Set<Patch>

+ radius(r: Double): Set<Patch>

*

Environment

+ grid: Matrix<Patch>
+ agents: Set<Agent>
+ vertices: Set<Vertex>
+ layers: Set<String>

+ complete: Boolean

+ customAttrs: Object

+ createGrid(x: Int, y: topology: Topogy):void

+ spawn(): Agent

+ crateVertex(): Vertex

+ step(Settings): void

+ screenshot(layers:Array<String>): Img

+ screenshot(layers:Array<String>,
coord: Coordinates): Img

+ agentsinRadius(coord: Coordinates,
radius: Double): Map<Agents>

+ verticesInRadius(coord: Coordinates,
radius: Double): Map<Entities>

+ entitiesInRadius(coord: Coordinates,
radius: Double): Map<Entities>

0..1

+ name: String
+ visible: boolean

+ destroy(): void

Extends

Directed Edge

+ weight: Double

+ origin: Vertex

+ dest: Vertex

+ agents: Set<Agent>
+ layer: String

Extends

*
Agent

+ shape: Shape
+ size: Double
+ layer: String
+ patch: Patch
* | + edge: Edge
+ dir: Direction
+ visible: Boolean

+ die(): void
+ currPatch(): Patch
+ currEdge(): Edge
+ penDown(color. Color): void
+ penUp(): void
+ fd(dist: Double): void
+ moveToXY(x: Double,
y: Double): void
+ setPatch(patch: Patch): void
+ setXY(x: Double,
* y: Double): void
+ setEdge(edge: Edge): void
+ setProgress(Double): void
+ agentsinRadius(double):
Set<Agent>
+ hatch(): Agent
+ step(Settings):void
+ costTo(vertex: Vertex)
+ costTo(agent: Agent)
+ agentsinCost(double):
Set<Agent>
+ vertexInCost(double):
Set<Vertex>

Figure 7.1: UML Diagram of top ABM elements

107

7.3. REFERENCE ARCHITECTURE

The diagram that follows presents a services architecture for an ABM Framework.
It consists of six initial services, colored in green, four external services, colored in blue,

with the final Ul colored in orange. The internal services in bottom-up order are:

e Repository Service: A simple service which can process repository request (list
files of a folder, read & write files, etc.). This service should have a back-end

client to a distributed version control system.

e Container provider Service: This service should be able to create virtual machines

which will run the ABM Framework.
o ABM Framework: This service is the actual framework detailed above.

e Executions Manager: This service should keep track of running simulations and

request the Container provider service to start and stop machines.

e Request Broker Service: This service works like a reverse proxy [63], it is a server
that sits in front of web servers and forwards requests from the UI to the rest of

the services.

The external services are services which don’t need to be developed but can use

already existing products, with varying customizations. They are:

e Static Files Manager: A simple resources container which request static resources

(like html, js, json files) as required.

e Version Control System: A Distributed version control system that tracks versions
of files. It is often used to control source code by of a development team. The

most used one currently is Git.

e Container: A container is similar to a virtual machine which has its operating

system, except that unlike virtual machines they don’t simulate the entire computer,

108

7.3. REFERENCE ARCHITECTURE

but rather create a sand boxed environment that pretends to be a virtual machine.

The most used one currently are Docker containers [23].

e Container Manager: A tool which can manage (create, destroy, scale) containers.

Currently the most used one is Kubernetes.

> ul
Request Broker Static Files
. <« .
Service Provider
Repository Executions
Service Manager Container
Provider
i I Service
, ABM
Version Control Framework
System
(Likely Gitlab) T
Container

(Likely Docker)

] !

Container Manager
(Likely Kubernetes)

Figure 7.2: Architecture of the framework as services

109

7.4. COMPLETE ENTITY TYPE DESCRIPTION

7.4 Complete Entity Type Description

The following tables describe attributes and methods which should be implemented
by each instance type. We describe the attributes, not because they should be visible,
but as supporting documentation for the implementation. It is up to the developers
to identify the best way to present the attributes, depending on the case and chosen
computer language, it could be using setter or getter methods, public attributes, fully
private only for internal use, etc.

The final field in the attributes indicates whether the attribute is not expected to
change. For container structures this means the container is not expected to change,

but its content still could change.

7.4.1 Environment

The following table describes the required environment attributes:

Name Type Final | Usages

grid Matrix<Patch> | Yes Grid used to locate agents.

agents Set<Agent> Yes List of live agents.

vertices Set<Vertex> Yes List of valid vertices.

layers Set< String> Yes List of visibility layers.

complete Boolean No Indicate if a simulation reached
completion criteria.

customAttrs | Object No Simulation specific attributes.

Table 7.1: Required attributes for the environment type

The environment provides the methods with the InRadius suffix (entitiesInRadius,
and its siblings methods) to identify all entities inside a radius of a xy point. They
include agents off the grid and over an edge but which still are inside that radius. To
identify all entities in the grid inside a radius, the valid method is entitiesInRadius for

a given entity class.

110

7.4. COMPLETE ENTITY TYPE DESCRIPTION

The following table describes the required environment methods:

Name Input Output Description
createGrid** x: Int, y: Int, void Creates a grid with square
t: Topology, topology of x by y. Topology
Patch sub-type would not wrap (a plane), or
could wrap vertically
(cylinder) or could wrap
both vertically and
horizontally (torus).
spawn** Agent sub-type | Agent Creates an agent.
createVertex™** Vertex sub-type | Vertex Creates a vertex.
step™ Settings void Trigger steps in all its
agents and also its
own step behavior.
screenshot layers: Img A rendered image of the
Array<String> selected layers for
the whole grid.
screenshot layers: Img A rendered image of the
Array<String> selected layers for the
coord: selected subgrid.
Coordinates
agentsInRadius coord: Set Finds all agents which lay
Coordinates, <Agent> | around coord with a radial
radius: Double distance < radius whether
they are in grid of in a edge.
verticesInRadius | coord: Set Finds all vertices which lay
Coordinates, <Agent> | around coord with a radial

radius: Double

distance < radius whether

they are in the grid or at an edge.

Table 7.2: Required methods for the environment type (1/2)

111

7.4. COMPLETE ENTITY TYPE DESCRIPTION

patchesInRadius | coord: Set Finds all patches which its
Coordinates, <Agent> | center lay around coord with a
radius: Double radial distance < radius.
entitiesInRadius | coord: Set Finds all entities which lay
Coordinates, <Agent> | around coord with a radial
radius: Double distance < radius whether
they are in grid of in a edge.

Table 7.3: Required methods for the environment type (2/2)

Notes:

* There should be a way to add custom behavior for the environment for the step
method.

** If there are ways to define sub types of patches, vertices or agents, there should

be a way to define the sub-type at the moment of creating them.

7.4.2 Entity

The following table describes the required attributes by all sub types of entity:

Name Type Final | Usages

id Int Yes Unique identification number.

env Environment Yes Parent environment.

color Color No Color used for rendering.

customAttrs Object No Simulation specific attributes.
outgoingRels | Set<Relation> | Yes List of outgoing relations for this entity.
incomingRels | Set<Relation> | Yes List of incoming relations for this entity.

Table 7.4: Required attributes for all sub types of entity

The entity provides the method entitiesinRadius (and its siblings methods) to
identify all entities in the grid inside a radius of a xy point. They do not include

agents off the grid and over an edge but which still are inside that radius. To identify

112

7.4. COMPLETE ENTITY TYPE DESCRIPTION

those, the valid method is entitiesInRadius from the environment class.

The following table describes the required methods by all sub types of entity:

Name Input Output Description
xy none Coordinates | The coordinates of the entity
in the grid.
agentsInRadius* coord: Set Finds all agents which lay
Coordinates, <Agent> around coord with a radial
radius: Double distance < radius if
they are in grid.
verticesInRadius®* | coord: Set Finds all vertices which lay
Coordinates, <Agent> around coord with a radial
radius: Double distance < radius if
they are in grid.
patchesInRadius* | coord: Set Finds all patches which its
Coordinates, <Agent> center lay around coord with a
radius: Double radial distance < radius.
entitiesInRadius* | coord: Set Finds all entities which lay
Coordinates, <Agent> around coord with a radial
radius: Double distance < radius if
they are in grid.
distanceTo** dest: Entity Double Distance from this entity to
dest entity.
Table 7.5: Required methods for all sub types of entity
Notes:

* If the entity is outside the grid (only agents could be) the method will throw an

exception.

4 If either this entity or the dest entity is outside the grid (only agents could be)

the method will throw an exception.

113

7.4. COMPLETE ENTITY TYPE DESCRIPTION

7.4.3 Patch

The following table describes the required attributes for the patches:

Name Type Final | Usages

agents Set<Agent> | Yes List of agents inside the patch.

vertices | Set<Vertex> | Yes List of vertices inside the patch.

Table 7.6: Required attributes for all sub types of entity

The following table describes the required methods for the patches:

Name Input Output Description

moore size: Int Set<Patch> | List of patches with Moore
distance < size.
vonNeumann | size: Int Set<Patch> | List of patches with von
Neumann distance < size.
radius size: Double | Set<Patch> | List of patches where

distance to its center < size.

Table 7.7: Required methods for the patch type

114

7.4. COMPLETE ENTITY TYPE DESCRIPTION

7.4.4 Agent

The following table describes the required attributes for the agents:

Name | Type Final | Usages
shape | Shape No A shape for rendering.
size Double No The size for rendering.
layer String No A rendering layer. If the requested
screenshot did not request the agent’s
layer, the agent will not be rendered.
patch | Patch No The patch where the agent is located, if any.
edge Directed Edge | No The vertex where the agent if located, if any.
dir Direction No The direction of the agent.
visible | Boolean No If the agent should be rendered,
even if the agent’s layer was requested.

Table 7.8:

Required attributes for the agent type

The following table describes the required methods for the agents:

115

7.4. COMPLETE ENTITY TYPE DESCRIPTION

Name Input Output | Description
die none void Agent is removed from live agents.
From the scheduler.
All its relations are dropped.
currPatch none Patch The current patch or null if the
void agent is located in an edge
currEdge none Edge The current edge of null if the
void agent is located in the grid
penDown color: Color | void Agent will leave a trace when moving (by
the fd, moveToXY methods). It should be
rendered on the agent layer. There could be
and optional render color and line thickness.
penUp void Agent will stop leaving a trace when moving.
fd dist: Double | void The agent moves forward by some distance.
Will stop if it reaches a topology boundary.
For agent in edge max distance is 1.
moveToXY | coord: void Move agent to the to XY position
Coordinates Can also be used if the agent is on an edge
to move it back to the grid. It is important
to mention it should be the shortest distance
which could be achieved by wrapping in
some topology.
setPatch patch: Patch | void Teleport agent to the center of the patch.

Can also be used if the agent is on an edge,
to put it back to the grid. This method does

not leave a trace, even with penDown.

Table 7.9: Required methods for the agent type (1/2)

116

7.4. COMPLETE ENTITY TYPE DESCRIPTION

Name Input Output Description
setXY coord: void Teleport agent to the xy position in
Coordinates the grid. Can also be used if the agent
is at an edge to put it back to the grid.
It is important for this method not
to leave a trace even with penDown.
setEdge edge: Edge | void Moves agent off the grid or other
edge and puts it in the defined edge,
in the origin vertex.
setProgress™ progress: void Set the progress of this agent in the
Double edge. 0 means agent is at the origin
vertex, 1 means at the destination vertex.
hatch agent Agent Create a new agent in the same spot
sub-type * of the original agent.
step™** settings: void Triggers the agent step behavior.
Object
costTo** dest: Double Calculate lowest cost to reach dest
entity from the current position
of the agent in the edge.
agentsInCost* | maxCost: Set List of agents which have a
Double <Agent> | distance cost lower than maxCost
vertexInCost* | maxCost: Set List of vertices which have a
Double <Agent> | distance cost lower than maxCost
Table 7.10: Required methods for the agent type (2/2)
Notes:

* If the agent is on the grid, not in an edge, this method will fail.

** If the agent or the dest entity are on the grid, not in an edge, this method will

fail.

*** There should be a way to add custom behavior for the step method in agents.

117

7.4. COMPLETE ENTITY TYPE DESCRIPTION

7.4.5 Vertex

The following table describes the required attributes for the vertices:

Name Type Final | Usages

originOf | Set<Edge> | Yes The list of edges which have this
vertex as origin.

destOf Set<Edge> | Yes The list of edges which have this
vertex as destination.

shape Shape No A shape for rendering.

layer String No A rendering layer. If the requested
screenshot did not request the vertex’s
layer, the agent will not be rendered.

patch Patch No The patch where the vertex is located.

Table 7.11: Required attributes for all sub types of entity

The following table describes the required methods for the vertices:

Name Input Output | Description
destroy | none void Destroy this vertex, including incoming
and outgoing relations and directed edges.
setXY coord: void Sets the xy in position in the grid.
Coordinates
connect | dest: Vertex | Edge Creates a directed edge with this vertex
as the origin and dest as the destination

Table 7.12: Required methods for the vertices

7.4.6 Abstract Relation

The following table describes the required attributes for all sub types of abstract

relation:

118

7.4.

COMPLETE ENTITY TYPE DESCRIPTION

Name Type Final | Usages
name String Yes A name for this relation.
visible Boolean | No Toggle for this relation to be rendered.
customAttrs | Object No Simulation-specific attributes.
Table 7.13: Required attributes for all sub types of abstract relation

The following table describes the required methods for all sub types of abstract

relation:

Name

Input

Output

Description

destroy

none

void

Destroy this abstract relation

Table 7.14: Required methods for all sub types of abstract relation

7.4.7 Relation

The following table describes the required attributes for relations:

Name Type Final | Usages

origin Entity Yes The origin of this relation.

dest Entity Yes The destination of this relation.

bidirectional | Boolean | Yes If the direction is bidirectional, i.e. There is another

relation with same name but with switched origin and
destination values. When changing values in one relation,
it changes values in the other, and if one relation

is dropped, the other gets dropped automatically.

Table 7.15: Required attributes for all relations

7.4.8 Directed Edge

The following table describes the required attributes for directed edges:

119

7.4. COMPLETE ENTITY TYPE DESCRIPTION

Name | Type Final | Usages
weight | Double No The weight of the edge. Used
to define a traverse cost.
origin | Vertex Yes The origin vertex.
dest Vertex Yes The destination vertex.
agents | Set<Agents> | Yes All agents in this edge.
layer String No The drawing layer when rendering.

Table 7.16: Required attributes for all relations

7.4.9 Global Methods

Global methods are useful to implement required behavior not related to the interaction

in the simulation. The following table describes some required global methods:

Name Input Output Description
processReq | req: HttpResponse | Process a http request
HttpRequest and returns a http response
addTest name: String | void Adds a test which will
behavior: be execute later.
Function
runTests none results Run all provided tests and
report returns a success/failures report
readFile name: String | binary Reads a file and returns
its contents.
writeF'ile name: String | void Writes contents to the
data: binary specified file.
deleteFile name: String | void Deletes a file.

Table 7.17: Required attributes for all Global Methods

120

CHAPTER 8

AB-X: POC for the Reference Architecture

‘To Avoid Criticism, Say Nothing,

Do Nothing, Be Nothing.”

Aristotle

121

8.1. AB-X DESIGN

8.1 AB-X Design

AB-X is a POC of the defined reference architecture. It is located here https:
//gitlab.com/msc_tesis/AB-X/. The following subsections describe its design and

the current implementation status.

8.1.1 Overview

For AB-X, several goals were considered, including: match the proposed architecture
as closely as possible, create a product which followed the architectural goals, keep the
framework simple and maintainable, have a simple yet powerful syntax, make it efficient
in execution and amenable to develop it very quickly.

Based on those requirements the following design decisions were taken:

e The simulation language should have a simple syntax, basic typing support and

admitting operator overloading.
e The framework has to be developed over a well-supported, mature technology.

e The POC should be fully service-oriented and every behavioral aspect should be

modifiable using code.
e The presentation layer should be web-based.

e There has to be support to mathematical concepts such as sets and complex

numbers — out of the box.

e Useful examples are as important as the framework itself.

Based on those premises, the language to be used for the simulation framework
will be a slightly modified version of JavaScript. JavaScript is a high-level, just-in-

time compiled language that conforms to the ECMAScript standard [46]. The two

122

https://gitlab.com/msc_tesis/AB-X/
https://gitlab.com/msc_tesis/AB-X/

8.1. AB-X DESIGN

modifications to be made on JavaScript’s core are: the ability to validate functions
input and output types, and the ability to perform custom classes operator overloading.

The framework was developed as two services: an editing service and an execution
service. The architecture states the idea of an execution broker as a third service;
however, due the scope of this POC, this service was not developed as part of this
research. The editing service is in charge of also managing the execution service.

The baseline technology was Java using the GraalVM JDK. GraalVM is a advanced
JDK which supports native JavaScript very efficiently and allows for operator overloading
[87]. On top of it, the underlying technology of the services was Spring Boot. Spring
Boot is an open-source Java-based framework used to create stand-alone, production-
grade services or applications quickly and with minimal configuration [98].

For the web presentation layer three main libraries were used. The main Ul layout
and functionality was done using EasyUl. EasyUI is a collection of user interface
components based on jQuery, designed to simplify the development of web applications
[48]. The Ace editor, an embeddable code editor written in JavaScript, was used for text
highlighting — it can be easily embedded in any web page and JavaScript application [2].
Finally, for the charts, Charts.JS was used: a simple yet flexible JavaScript charting
library for the modern web [19].

When a user wants to run a model, they first select a runner (in this POC the only
runner is localhost), then they need to select the baseline model file. Then they may
choose two types of execution: standard (enforces typing protection but is resource
consuming) or performance (low in resource consumption but does not validate types).

While users can create several environments in the same execution (for example to
execute unit test) there is only on environment which is sync-up with the Ul and is
accessed through the global methods setEnv, getEnv and stepEnv which respectively
sets, gets and process one step of the global environment.

Finally users need to choose which type of execution they want:

123

8.1. AB-X DESIGN

e Evaluate: will process the chosen file. If in the file the user sets the global
environment, then the user could use the buttons to execute step by step or

continuously.

e Run simulation: will perform the Evaluate process and then it will start a thread
which triggers the stepEnv method continuously. A stepEnv without the global
environment or with a completed global environment will return false and will

stop the continuous execution thread.

e Execute tests: will perform the Evaluate process, and then it will do a runTests
method which should run all defined tests and provide a report of success and

failures.

There is the concept of a paused session, where there is no thread which keeps
running the global stepEnv method. The UI provides the functionality to pause or
terminate a session when the simulation is running continuously. A paused simulation
can be also terminated, restarted, or execute just one step. A terminated simulation
will release all allocated resources.

There is also the ability to interrogate the global environment using getEnv() method
plus some query over the environment. The result is transformed to string and presented
in the UL

The following image shows the workflow of simulation in AB-X in the three possible
execution types. The blue elements are the simulation type, the purple ones are

processing sections and the yellow ones are decision sections.

124

8.1.

AB-X DESIGN

Evaluate

Execution
Type

r Standard Performance —¢

Clean type specs
Add validations

Clean type specs

v

Process Main File

v

Initial Environment

|

Are
Eteis Yes»< there more
2 _|
CEES test?

Yes

! |

Process next
No test

Yes simulation?

v

Is
simulation
complete?

- Yes Compute Report

|
No

4

— Process next
step v

@

Figure 8.1: Execution screen showing simulation running

125

8.1. AB-X DESIGN

It is worth mentioning that AB-X implements a research-supporting feature which
was proposed but not evaluated in the FSMM and therefore not added to the original
reference architecture. This feature is the basic support for units of measurement
including distance (meter based) and time (second based) and plane angles (radian
based) out of the box. Examples of units were added in the companion documentation

and in the coding snippets section.

8.1.2 Main simulation classes

The AB-X simulation service the AB-X Framework’s main component. This service
is in charge of preprocessing description files and contains all simulation logic. The

following subsections describe the main classes of this framework.

StringProcessor.java & TypingSupport.java

While AB-X syntax is JavaScript based, AB-X framework supports typed variables
for inputs and output. These classes allow the typing by consuming original files
and output post-processed files which will have type support removed and optional
validation.

This transformer maintains exact lines so debugging becomes easier. For example,

this input:

function isZero(element: Number) :Booleand
return element === 5

}

When type validations is enforced, it becomes:

function isZero(element){assertValidInstances ([[element , Number
11) ;return _assertType().setType(Boolean).evaluate = (
function (){
return element === 0
)

}) .apply(this,arguments) ;}

Yet, the user never sees this temporarily generated file. In the case of errors being

126

8.1. AB-X DESIGN

detected, the user will see the error in the expected line. Suppose the isZero is in file

Test.js, then if invoked with a string "hi” the error will be shown:

hi is not of function Number ()
at <js> assertIsInstance0f (Utils.js:135:4300-4337)
at <js> assertValidInstances(Utils.js:143:4455-4498)
at <js> x(Test.js:1:42-76)

If performance is requested, it becomes:

function isZero(element){
return element === ;

}

Entity.js

Is a JavaScript class which matches closely the entity super type in the reference
architecture. It is a constructor: it expects the environment and has the methods to
create, get and drop relations with other Entities.

It has a method to define the zy which needs to be implemented by sub-classes.

ABMAgent.js

It is a JavaScript class which matches closely the Agent type defined in the reference
architecture. It extends from Entity as expected from the OO paradigm. The constructor
also allows to identify the class subtype which is used in the grid to enable searching
by agent type.

Subclasses of ABMAgent.js are expected to override behavior of two main methods,
the setup for initialization purposes and step which is called automatically by the

framework in each round.

ABMPatch.js

This is a JavaScript class which matches closely the Patch type defined in the

reference Architecture. A simulation can extend from this class to add custom methods.

127

8.1. AB-X DESIGN

ABMVertex.js

This is a JavaScript class which matches the vertex type defined in the reference
Architecture, but it is yet to be completed. The missing features are related to edge

management.

ABMEdge.js

This is a JavaScript class which matches the vertex type defined in the reference
Architecture, but it is yet to be completed. The novel approach is related to the ability
to remove an agent from the grid and add it to the edge and the opposite: moving from

the edge to the grid.

ABMGrid.js & Grid.java

While the initial reference architecture does not explicitly split environment vs grid,
there are several grid specific functionalities in the environment, which can be isolated
in a single class. In AB-X that grid functionality is split between ABMGrid.js and
ABMGrid.java. The first is a JavaScript class which matches the grid functionality
without the neighbor searching capability; this was written in ABMGrid.java to speed

it up.

ABMEnv.js

This is a JavaScript class which matches the Environment type defined in the
reference Architecture. Forward thinking on the ability to have multilayered grids,
the entire grid capability was designed in the grid classes described above. This class
can be extended by a simulation and it is expected to override the setup method with

custom simulation behavior.

128

8.1. AB-X DESIGN

ABMChart.js

Chart is a container which is filled with data from the simulation. It does some
preprocessing of the data before sending it to the UI where it is rendered by the Chart.js
library. There are two subtypes: one for the time/round and one for histograms. Both
charts expect a function which provides data for the chart. The time based chart will
collect data after each round but for histogram and custom chart the simulation needs
to call sampleHistograms and sampleCharts respectively.

Example of use of Charts are shown in the following coding snippets section.

8.1.3 Coding snippets

The are over 80 examples provided out of the box with AB-X, in addition to the
four FSMM experiments. They range from set examples to unit test to full simulation
like the Inner Solar System and GOL example. The following examples can be found
in the source code and were chosen to identify key sections of the AB-X product.

Add a simple text with one assertion:

addTest ("Expected Success", ()=>{
Assertions.assertTrue (true);

DN

A simple agent which walks 2 units and rotates 25° degrees each round

class WalkingAgent extends ABMAgent{

setup O {
this.counter = O0;
this.aliveStrokeSteps = 100;
this.color = namedColor("green");

this.pen.width=4;
this.penDown () ;

this.shape = "delta";

}

step () {
this.rotateDeg (25);
this.fw(2);

}

129

8.1. AB-X DESIGN

Figure 8.2: Figure shows the view-port of the agent leaving a stroke and also keep

changing color

A planet agent, which will rotate certain degrees around a star. Using type and

International Unit System (SI) units.

enableSIDistance (true) ;
enableSIAngle (true);
enableSITime (true) ;
let systemSize=500%*Gm;
class Planet extends ABMAgent{
setup(label:String, dist:UnitSystem,size:Number,
angularVelocity:UnitSystem, color):Planet{
this.label = label;

this.setLocation(systemSize/2+dist,systemSize/2);

this.angularVelocity = angularVelocity;
this.size = size;

this.color = color;

this.penDown () ;

return this;

}

rotate (sun:Star, time:UnitSystem){
const angle = this.angularVelocity*time;
this.rotateAround (sun,angle)

}

The environment describing the setup method is creating each planet agent.

130

8.1. AB-X DESIGN

class Space extends ABMEnv {

sun;
setup O {
this.patches () .each(patch=>
patch.color=namedColor ("black"));
this.sun = this.spawn(Star).setup("Sun");
const fullCircle = 360*deg;
this.sun.createRelation("planet", this.mercury = this.
spawn (Planet) .
setup("Mercury", 52.2%Gm,2,fullCircle/(88*day),
namedColor ("gray")));
this.sun.createRelation("planet", this.venus = this.
spawn (Planet) .
setup("Venus", 107*Gm,5,fullCircle/(225*day) ,namedColor (
"cyan")));
this.sun.createRelation("planet", this.venus = this.
spawn (Planet) .
setup("Earth", AU,5,fullCircle/(365*day) ,namedColor ("
blue")));
this.sun.createRelation("planet", this.mars = this.spawn
(Planet) .
setup("Mars", 208*Gm,3,fullCircle/(687+*day),namedColor ("
red")));
}

step(delta:UnitSystem){
this.sun.starStep(delta);

}
}
Calling the environment and setting it as a global environment
space = new Space().setupEnv(

{w:systemSize ,h:systemSize,"delta":day})
setEnv (space) ;
setScale (2)

The graphical output of this code will generate a realistic representation of the orbits

of the inner solar system around the Sun.

131

8.1. AB-X DESIGN

|
|
Tr--1 Broury
|

Figure 8.3: Image shows the view-port generated by AB-X with realistic planet orbits

Creating a simulation video using standard 24 Frames per Second (FPS) cinematic

rate

include ("{script}/model. js");
const env = new ModelEnv () ;
env.setupEnv (

{w: 80, h: 40, gridType:"torus",agents:10});
writeImg("{script}/Result.png",env.getImg (10, ["baseline"]));
startVideoRecording ("{script}/Result .mp4","24");
for (let i = 0; i < 240;++1i) {

env.envStep () ;

appendImg (env.getImg (10, ["baseline"]));

}

closeVideoStream() ;

132

8.1. AB-X DESIGN

Code for handling a histogram chart with 25 slots

class HistogramExampleEnv extends ABMEnv {
setup (specs: Object) A{
this.addHistogram("Normal 100 samples per step", ()=>{

const values = [];
for (let i = 1; i <= 100;++i){
values.push(randomNormal (100,50));
}
return values;
},"addAl1l") .setSlots (25) .setXAxis ("Normal Curve").
setLimits (-100,300) ;

}

step OA
this.sampleHistograms () ;
this.setPaused (true);

+

setEnv(new HistogramExampleEnv ().setupEnv ({}));

MNormal 100 samples per step

Mormal 100 samples per step
60
50

40

Count

Mormal Curve

Histogram

Figure 8.4: Histogram rendered after several steps

133

8.1. AB-X DESIGN

The following section of code shows how to add custom lines to any graph, in order

to identify boundary or other important values.

setup (specs: Object):void {

this.addChart ("Always 100", { "randData":(): Array=> {

const values = [];
for (let i = -lim; i <= lim; ++i) {
values.push(-i+random());

}
return values;

}

},"replace", () :Array=>{

const values = [];

for (let i = -1lim; i <= 1lim; ++i) {
values.push(i);

}

return values;
}) .setXAxis("Rand Values").
setXLimits(-1lim-1,1im+1,10).
setYLimits (-1im-1,1im+1,10).
addLine ([0.5,0,0.5,1] ,namedColor ("black")).

getSeries ("randData") .setColor (namedColor ("green"))

Adding 10 samples per step

Adding 10 samples per step

Rand Values

[——1 randData

Figure 8.5: This figure shows a custom chart with a line decoration added

programatically

134

8.1. AB-X DESIGN

There are many more illustrative examples which come with AB-X. The snippets

shown here were included to describe both the power and simplicity of the syntax.

8.1.4 UI screenshots

The following image shows an editing page with the default work folder pointing to

a folder containing all the scripts.

Framework || Execution || Settings

Workspace
File

File «
Select model
Name

- C1models

Example Library
Name
- CJAgents
- JCSV
> £3Charting & Distributions
- £3Colors
- £1Game Of Life
- 1Img & Video
- C1Include Support
- CJInner Solar System
- £3Math
- C1Movement

. 3 Nearest Agent

Size

Size

«

«

Example: Hello World.js Simulation »
println("What a wonderful world!"); [HSISIEERRNNI

localhost v

Choose optimization level:

Standard hd

Choose execution type:

Run Simulation v

Figure 8.6: Figure showing the editing screen

The following image shows the execution of the PredPrey experiment in the execution

screen. On the bottom left there is a text box which allows the user to input a query

and JavaScript and get the Text response.

135

8.1. AB-X DESIGN

The following image shows the results of some unit test, with statistics

and failures.

Framework | Execution || Settings
Control «||ur Charts »

Choose runner: Alive agents

Alive agents

localhost

Current step 59. Env Ready

Ul enabled: ON
PNG
List of layer

baseline |ON

Charts enabled: [ON

getEnv().agentSet{Rabbit].size()

Result
o Console Output v

Running evaluate
Optimization level chosen performance
Model file is /models/PredPrey/PredPrey.js

Figure 8.7: Execution screen showing simulation running

Framework | Execution || Settings
Control « |1 «
- [=}
Choose runner: B =
s =2
localhost “
Total 8. Success: 6. Failures:2
4
1
Ulenabled: |[ON PNG | [[°
List of layer
Charts enabled: |ON
Console Output ¥

Running test

Optimization level chosen standard

Model example is Test & Assertions.js

Test Expected Success: Success.
Result Test Expected Success 1: Success.

Test Expected Success 2: Success.

Test Expected Success 3 k

Test Expected Successs 4: Success.

Test Expected Failure: Failure: org.opentest4j.AssertionFailedError: expecte

Test Expected Failure 1: Failure: org.opentest4j AssertionFailedError: expec

Test Expected Same: Success.

Total tests: 8

Total success: 6

Tatal failnrac: 7

Figure 8.8: Execution screen showing unit test results

136

of successes

8.2. AB-X RESULTS

8.2 AB-X Results

This subsection describes the implementation of the four experiments requested
for the scoring of the FSMM: Sugarscape, Pred-Prey, Pandemic and Pareto. Only the
graphs requested for the experiment were included in this document. Additional graphs
where used during development and debugging of each simulation — but are not shown
here.

For the Pareto experiment, the macroscopic statistical analysis was performed, this

time using the facilities provided in the AB-X implementation.

137

8.2. AB-X RESULTS

8.2.1 Sugarspace in AB-X

Sugarscape, as defined in the experiment, is implemented in AB-X in this URL
https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Sugarscape.

The implementation used four source files and an extra for video recording. It was
straightforward due to the Basic framework functionality being already provided
by the AB-X framework, with a basic agent called SgAgent, with two subclasses —
for males and females. There was heavy use of the provided Locality and Agent
management functionality. The Visualization of the agents was also available since
the beginning, with the ability to disable it to speed up simulation.

Statistical Support including average agent energy, where added easily, including
live count and average patch energy, which are shown in the final report.

The Ul was smooth except when agent count exceeded 10000. Yet, even then it
took about two seconds to complete a step. The Usability of the tool provided a
good experience, as the framework responded quickly, it facilitated debugging using

the standard option during development, and it ran fast with the performance option.

gent Energ)

RN

vvvvvvvvvvv

. A Enengy

Figure 8.9: Sugarscape over AB-X

138

https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Sugarscape

8.2. AB-X RESULTS

8.2.2 PredPrey in AB-X

PredPrey, as defined in the experiment, is implemented in AB-X in this URL https:
//gitlab.com/msc_tesis/abx-fsmm/-/tree/main/PredPrey.

The implementation required four files: one for rabbits, one for wolves, one for the
environment and Ulm and one for the simulation specs. Force fields logic was readily
implemented using provided Locality and complex number support.

The implementation was straightforward, with only two types of agents using the
Agent management functionality provided. Only two Model statistics graphs were
added, the alive count and the percentage of rabbits vs wolves.

Visualization capabilities were used, using the delta shape for showing the direction
of agents . Basic framework functionality was good, including the method to get
agents in radius by class and nearest agent functionality. Usability was particularly
good, as the framework responded quickly, and it was easy to debug using the standard
option and it ran fast with the performance option.

Alive agenis

: ! b 3 &
: s A

Agent Percentage

Figure 8.10: PredPrey over AB-X

139

https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/PredPrey
https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/PredPrey

8.2. AB-X RESULTS

8.2.3 Pandemics in AB-X

Pandemics, as defined in the experiment, is implemented in AB-X in this URL
https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pandemics.

The implementation required four experiment files, two for logic, and one for each
influence power level. It was straightforward due to the Basic framework functionality,
including its http capabilities. The Visualization of the agents was also available since
the beginning, being completely fluid even for 10000 agents.

There wasn’t any technical challenge. In general, the Usability of the tool was
very satisfactory. We used the provided Agent management capability of relations
to handle the mailbox trust approach.

The first chart shows the two rounds of the simulation on AB-X with 2% and 3%

of agent trust provided by influencers.

2% Influence by Influencers 3% Influence by Influencers

Figure 8.11: Pandemics over AB-X

140

https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pandemics

8.2. AB-X RESULTS

Similar to NetLogo, we are interested in reviewing Model statistics, including sick

ratio and trust level differences among the two rounds. In the first round, influencers

provide a 2% agent trust, whereas in the second round, they only offer an additional

percent point of trust. Interestingly, despite this apparently small difference, in the

second round agents do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from AB-X.

Sick Ratio. 2% Influence by Influencers

35

30

25

20

F 15
10

5

;/

Rounds

Juice Trust. 2% Influence by Influencers
100

: e

1 101 201 300 401 501 601 701 801 901 1001 1101 1201

= 2 & 2 B

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

Rounds

Amulet Trust. 2% Influence by Influencers

80
60
F a0
20\
0
1 101 201 301 401 501 601

Rounds

Mask Trust. 206 Influence by Infuencers

%
= B &8 8 B

701 801 901 1001 1101 1201

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

Rounds

Sick Ratio. 3% Influence by Influencers
35
30
25
20
15 WWW%MW
10

5

0
1 101 201 301 401 501 601 701 BO1 901 1001 101 1201

Rounds

Juice Trust. 3% Influence by Influencers
100

o

40

20

0
1 101 201 301 401 501 601 701 801 901 1001 1101 1201

Rounds

Amulet Trust. 3% Influence by Influencers

1 101 201 301 401 501 601 701 801 901 1001 1101 1201
Rounds

Mask Trust. 3% Influence by Influencers

o B & 8 8

1 101 201 301 401 5001 601 701 801 901 1001 1101 1201
Rounds

Figure 8.12: Pandemics over AB-X using reported data

8.2. AB-X RESULTS

8.2.4 Pareto in AB-X

Pareto, as defined in the experiment, is implemented in AB-X in this URL https:
//gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pareto.

The implementation required four JavaScript files which contains both the UI and
behavior specs. There was a testing file added. No external files were required as AB-X
provided the Basic framework functionality.

The implementation was straightforward with only one type of agent called Player.
Visualization was very fast, and for the Model statistic only the cumulative curve
in decreasing order (the Pareto curve) for the owned tiles and coins was added. It was
simple to add guide lines in AB-X.

A CSV data file was generated for the Macroscopic statistical analysis using
standard AB-X file system support. Each line contains the three macroscopic observables
defined in the specification. The simulation was ran 10000 times. Because of AB-X’s OO
paradigm, it was natural to create and execute the simulation objects independently.
If desired, it is straightforward to modify each simulation execution independently. For

this experiment, AB-X’s Usability was good, especially its ability to create tests.

Figure 8.13: Pareto on AB-X

142

https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pareto
https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pareto

8.3. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

8.3 Macroscopic Statistical Analysis & Specification

Fidelity

8.3.1 Histogram

The histogram depicted on Figure 8.14 shows that the macroscopic comparables of
AB-X versus all other versions behave statistically identical, which supports the goal

of all implementations following the specification.

Histogram of rounds count to complete simulation

1800
1600 ;/‘_\ -
1400 ‘\\i
1200 ?': —— AB-X
g 1000 f \ NetLogo
g 80 | '_ MASON
=== Repast
£ 600 N\ P
I+ x § === Mesa
400 r B Agents.jl
200 — Ry =
ok Bl o o T
® & & . & & S .S S
S P L &S S P PF PSS
RN N O R - AT - S <

Rounds to complete

Figure 8.14: Histogram for rounds including AB-X

Similar to other frameworks, AB-X exhbits a tail after 2500 rounds. This is because
each tile needs to be purchased to complete the simulation, but agents can only reach

a tile by chance, which could create iterations with more than 5000 steps.

143

8.3. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

Pareto Coins Histogram

Histogram of % of coin ownership by top 20% at end of simulation

2500
2000
== AB-X
NetLogo

g 1500 MASON
e —i— Repast
=
E 1000 —>=Mesa
g Agents. |

—

S = ‘
500 / -~ — ——r
p
=
Og—a

52.5 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 85 87.5 90 92.5 95 97.5100

% of coin ownership by top 20% of agents

Figure 8.15: Histogram for coins including AB-X

As expected, in AB-X implementation coins ownership are clearly around 80% and
it also has a hump where the 20% or less of the agents owned the 100% of the coins.

This hump was also observed in the previous implementations.

Pareto Tiles Histogram

Histogram of % of tiles ownership by top 20% at end of simulation

1400
1200

== AB-X
NetLogo
MASON

== Repast

= Mesa
Agents.jl

1000

800

600

simulations

400

200

5 D0 DD, D D, BB DD
~bé\A’\/\q’A’\,\»\A%%¢~Q}q§\~‘§é]"@é\-,&@

% of tiles ownership by top 20% of agents

Figure 8.16: Histogram for tiles including AB-X

Similar to previous implementations, tiles ownership are clearly around 70-80%, and
again, there is the hump where the 20% or less of the agents owned the 100% of the

tiles.

144

8.3. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

8.3.2 Coeflicient of Variation

For the six frameworks, the calculated CV for the three histograms (round count
to completion, top 20% ownership of coins, top 20% of tiles ownership) is shown in the

following table.

Framework | Rounds to finish | Pareto Coins | Pareto Tiles
AB-X 0.010 0.016 0.027
NetLogo 0.011 0.016 0.027
MASON 0.010 0.016 0.027
Repast 0.011 0.015 0.025
Mesa 0.011 0.016 0.028
Agents.jl 0.010 0.016 0.028

Table 8.1: Coefficient of variation, including AB-X results, for three chosen
macroscopically observables

As CV is a unit-less measure, it is particularly useful for comparing variability
across datasets with different units or scales. The example shows nearly identical values
for almost all implementations, including AB-X — with a small difference in Repast,

specially in the CV of the Pareto Tiles.

8.3.3 Fréchet Distance

The discrete Fréchet distance is calculated using a formula explained in Chapter 6.
The Fréchet distances between axis/frameworks of the three histograms (round count
to completion, top 20% ownership of coins, top 20% of tiles ownership) were calculated.
While there are techniques to approach Fréchet distance efficiently [25], the general
formula was used, because of the small number of points in the curves.

Fréchet distance for rounds follows. Largest values are marked with *.

145

8.3. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

AB-X | NetLogo | MASON | Repast | Mesa | Agents.jl
AB-X 0.0 43.0 49.0 73.0* 65.0 60.0
NetLogo | 43.0 0.0 68.0 87.0%* 44.0 68.0
MASON | 49.0 68.0 0.0 114.0% | 72.0 95.0
Repast | 73.0* 87.0%* 114.0%* 0.0 130*.0 | 102.0%*
Mesa 65.0 44.0 72.0 130.0* 0.0 97.0
Agents.jl | 60.0 68.0 95.0 102.0* | 97.0 0.0

Table 8.2: Fréchet distance for histograms of rounds to complete experiment

Fréchet distance for histogram of top 20% coin ownership follows. Largest values

are marked with *.

AB-X | NetLogo | MASON | Repast | Mesa | Agents.jl
AB-X 0.0 39.0 50.0 338.0% | 47.0 42.0
NetLogo | 39.0 0.0 89.0 299.0* | 38.3 46.0
MASON | 50.0 89.0 0.0 388.0% | 97.0 43.0
Repast | 338.0% | 299.0 388.0%* 0.0 291.0% | 345.0%*
Mesa 47.0 38.32 97.0 291.0* 0.0 54.0
Agents.jl | 42.0 46.0 43.0 345.0% | 54.0 0.0

Table 8.3: Fréchet distance for histograms of top 20% coins ownership

Fréchet distance for histogram of top 20% tile ownership follows. Largest values are

marked with *.

AB-X | NetLogo | MASON | Repast | Mesa | Agents.jl
AB-X 0.0 30.0 54.0 201.0 38.08 44.2
NetLogo | 30.0 0.0 75.0 180.0* | 33.1 41.6
MASON | 54.0 75.0 0.0 255.0% | 69.0 57.0
Repast | 201.0* | 180.0* 255.0%* 0.0 186.0* | 198.0*
Mesa 38.1 33.1 69.0 186.0%* 0.0 31.0
Agents.jl | 44.2 41.6 57.0 198.0% | 31.0 0.0

Table 8.4: Fréchet distance for histograms of top 20% tiles onwership

146

8.3. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

The values clearly show that AB-X results are similar to the previous implementations,

excepting the unidentified differences in Repast’s implementation.

8.3.4 ANOVA and F-Test

As mentioned in chapter 6, both ANOVA and F-test provide a p-value [45]. In null-
hypothesis significance testing, where the null hypothesis is Hy : 1 = g, the p-value
is the probability of obtaining test results at least as extreme as the result actually
observed, under the assumption that the null hypothesis is correct [14]. Here, extreme
means further away from what would be expected under the null hypothesis.

The ANOVA was applied to all the values in the histograms now also including the
AB-X implementation (round count to completion, top 20% ownership of coins, top
20% of tiles ownership) and the F-Test was applied the each pair of histograms.

The usual notation of * is followed:
*0.01 < p<0.05
*0.001 < p < 0.01
i p < 0.001

The results are shown in tables below.

Rounds to completion

The p-value for the ANOVA was 0.273, that is more than 0.05, which fails to reject
the null hypothesis and means there are not significant differences. Nevertheless, for

F-Test between frameworks the results were below 0.05.

147

8.3. MACROSCOPIC STATISTICAL ANALYSIS & SPECIFICATION FIDELITY

AB-X | NetLogo | MASON | Repast | Mesa | Agents.jl
AB-X - 0.997 0.268 0.258 | 0.892 | 0.353
NetLogo | 0.997 - 0.291 0.275 | 0.893 | 0.376
MASON | 0.268 0.291 - 0.027* | 0.224 0.852
Repast | 0.258 0.275 0.027* - 0.331 | 0.041*
Mesa 0.892 0.893 0.224 0.331 - 0.297
Agents.jl | 0.353 0.376 0.852 0.041* | 0.297 -

Table 8.5: P-value for F-test for histograms of rounds to complete experiment

Here it can be seen that for rounds, the results of Repast are statistically significantly

different for Agents.jl and MASON.

Top 20% of coin ownership

The p-value for the ANOVA was < 107° which rejects null hypothesis, and indicates

the means for the histograms of the top 20% of coin ownership, are significantly different.

The F-Tests between frameworks the results are

AB-X NetLogo MASON Repast Mesa Agents.jl
AB-X - 0.870 0.733 < 1075%** 0.552 0.363
NetLogo 0.870 - 0.860 < 1075%%* 0.669 0.459
MASON 0.733 0.860 - < 1075%** 0.800 0.571
Repast | < 1075%#% | < [5%kk | < Dk } < 105k | o 1Rk
Mesa 0.552 0.669 0.800 < 1075%** - 0.755
Agents.jl 0.363 0.459 0.571 < 1075%%* 0.755 -

Table 8.6: P-value for F-test for histograms of top 20% of coin ownership

Here it can be seen that for the top 20% of coin ownership, the results of Repast

are statistically significantly different for all the other frameworks.

148

8.4. AB-X FSMM SCORING

Top 20% of tiles ownership

The p-value for the ANOVA was< 10~° which rejects null hypothesis, and indicates

the means of the histograms for the op 20% of tile ownership, are significantly different.

The F-Tests between frameworks the results are

AB-X NetLogo MASON Repast Mesa Agents.jl
AB-X - 0.777 0.603 < 10O 0.687 0.560
NetLogo 0.777 - 0.423 < 107oFF* 0.494 0.388
MASON 0.603 0.423 - < 1070FH* 0.909 0.949
Repast | < 1075%%% | < 10=0%#k | < =5k } < 10-B¥kk | o 1Bkk
Mesa 0.687 0.494 0.909 < 107 - 0.859
Agents.jl 0.560 0.388 0.949 < 107OFF* 0.859 -

Table 8.7: P-value for F-test for histograms of top 20% of tiles ownership

Here it can be seen that for the top 20% of tiles ownership, the results of Repast

are statistically significantly different for all the other frameworks.

These results keeps indicating a consistency issue in Repast which could be caused

by a underlying issue related to pseudo-random generation or in the experiment setup

and behavior which has not being identified even after several code reviews.

8.4 AB-X FSMM Scoring

The following are the scoring for the two subsectionss of the FSMM which were

evaluated for each of the five frameworks and AB-X.

8.4.1 Simulation Features

The score for the simulation features of the FSMM for the frameworks based on the

four experiments are shown in the following table.

149

8.4. AB-X FSMM SCORING

Category NetLogo | MASON | Repast | Mesa | Agents.jl | AB-X
Usability 3 3 1 2 1 3
Basic Framework 3 3 3 3 3 3
Functionalities

Locality 3 2 3 2 3

Agent Management 2 2 2 2 1 2
Force Fields 0 0 0 0 1 2
Summary 11 10 9 9 9 13

Table 8.8: Simulation Features Score including AB-X

8.4.2 Interrogation Capabilities

The score for the interrogation features of the FSMM for the frameworks based on

the four experiments are shown in the following table.

Category NetLogo | MASON | Repast | Mesa | Agents.jl | AB-X
Visualization 3 3 2 2 1 3
Statistical support for 3 3 3 3 3 3
model attributes

Macroscopic statistical 2 2 2 2 2 3
analysis

Nearly decomposable 0 0 0 0 0 1
System view

Summary 8 8 7 7 6 10

Table 8.9: Interrogation capabilities Score including AB-X

Based on those scores, we can create a quadrant-like graph with the top right being
the best scored and the bottom left being the worst scored. In this quadrant we see
that AB-X performed better in the FSMM. It is worth noting that the FSMM scoring
did not include research supporting features due to the almost universal lack of support

in current frameworks. Yet, some of those features (such as utility features) were

150

8.4. AB-X FSMM SCORING

purposefully added in AB-X. Had those features been included in the scoring, it is
expected AB-X should have scored higher.

Feature Space Maturity Model

Framework Score Comparison

12
2
% W AB-X
3 10 = NetLogo
8 MASON
c 8 A Repast
-g 'Y > Mesa
g Agents.|l
s ° '
£
- 4

7 8 9 10 11 12 13 14

Simulation Features

Figure 8.17: FSMM including AB-X

151

8.5. AB-X FUTURE FEATURES

8.5 AB-X Future features

The following list present a list of improvements (in decreasing order of importance)

which are required to transform the AB-X POC into a full fledged product:

e Finalize Vertex-Edge support: Vertex-Edge support was not in the featured experiments
for scoring the FSMM. One of the most important reasons was that none of the
ABM framework studied seems to support it directly and therefore requesting
it would not make much sense. Nevertheless, the idea of taking agents outside
of the square grid and putting them on the edges would facilitate simulating
several behaviors without the need for a full 3D framework, as elsewhere in this
document. One of the main forward-looking improvements for AB-X would be to

fully implement the Vertex-Edge support as described in the architecture chapter.

e Two important missing services are the Containers and the Executions manager.
Those needs are handled by the default service which limits the execution to the
local computer. Once completed, those services will allow AB-X to be used in a

distributed environment like a University or research center.

e Repository support: Another missing service is the repository service which should
provide the ability to select an arbitrary location in the local disk, or to save
resources in a folder backed by a versioning system. Right now, files are saved in
a folder relative to the product location. While this can be used for work, most
of the enterprise-ready products are expected to have this support implemented

by default.

e Optimizations: While parts of the grid were developed in Java to avoid the cost
to have them in pure JavaScript, there are still many improvements which can be
done, specially in the neighbor algorithm which are very slow when compared to

NetLogo’s.

152

8.5. AB-X FUTURE FEATURES

e Editor capabilities: Currently, AB-X handles only JavaScript syntax, nevertheless
the underlying ACE editor could handle other text files. Also the UI is expected
to handle other file types, like showing images, videos or the ability to download

binary files.

e Editor customization: While AB-X Ul is green with a black editor, its underlying
libraries jEasyUIl and ACE support varied color schemes: this may be quickly
added to the UL

e Headless charting support: Charts are generated in the Ul by the JS libraries
which allows interactive use by the developers but sometimes it might be desirable

to have charts generated without the need of the UI.

153

CHAPTER 9

Conclusions

154

‘The last will be first, and the first

last.”

Jesus of Nazareth, Matthew 20:16

Reflecting on the work developed in this project, we can split the conclusions into
two realms: the technical one and the simulation one. The technical conclusions will
comprise the proposed FSMM and the proposed architecture.

Regarding the FSMM we can conclude:

e While use of ABM has slowed somewhat in recent years, this research technique
has important advantages over other top-down simulation techniques like EBM,
DES or SD, due to is superior visibility and its ability to incorporate contrasting

behavior.

e To score an ABM Framework, performance alone is not enough and a more

comprehensive approach should be considered.

e We proposed our FSMM as an initial approach to score ABM frameworks. We
knew that some topics in the FSMM would overlap, as they are interrelated

concepts. An effort was made to minimize overlapping.

o After performing the experiments we reckon that the three most important topics

in the FSMM were usability, basic framework functionalities, and visualization.

e While visibility and the other six topics can be implemented, usability and basic
framework functionalities are foundational capabilities and need to be provided

by the framework themselves.

e The proposal for our FSMM should be able to cover the spectrum from a high

level computer language to a highly robust, fully-fledged ABM framework.

e There were important weaknesses in usability and visualization in the Repast,
Mesa and Agents.jl frameworks, which is of concern because they are commonly

used ABM frameworks.

e Only NetLogo and MASON scored highest in the top 3 items of the FSMM, which

points to their current popularity.

155

e We proposed a statistical method to validate the functional equivalence of two or
more implementation of the same experiment specification. Using it, we verified
that for one of the proposed validation experiments (the Pareto experiment) five

of our six implementations are statistically equivalent.

e Using statistical tools, we observed that the Repast implementation did not
behave as the other implementations. Even after several hours of debugging we
couldn’t figure out the reason for its slight but statistically confirmed difference

in behavior.

e Many architectural approaches might not be able to reach facilitator level 3 in all

topics of the FSMM.

e The FSMM could be used as a starting research point for the development of
new ABM Frameworks because it could help identify desired features and avoid

overlooking required ones.
e An architecture approach may be chosen so as to simplify its implementation.

e While not commonly used today, proposed research supporting features might
become highly relevant in the future of ABM frameworks as they furnish ways to

define complex behavior in a powerful declarative way.
On the architectural approach for the FSMM we can conclude:

e The reference architecture was designed to provide insights on some of the most
common challenges in ABM simulation and to cover most of the current needs

regarding ABMs.

e The core principles (stability, maintainability, readability, syntax expressiveness,
visualization and service oriented) laid out in this document should allow for an
iterative ABM framework implementation in reasonable periods of time by a small

team (the POC was developed in four months by one developer).

156

e The proposed reference architecture provides a high-level reference for future
ABM framework architecture or implementations. It defines the system structure,
its principles, and should help guiding the development process, ensuring that key

architectural decisions are consistent, easy to understand and maintain.

e The proposed reference architecture was designed to open a door to future enhancement
for ABM Frameworks. One example is the concept of allowing agents off the grid
into a vertex. This could open the door for realistic, complex non- adjacent

topologies for location-aware simulations.

e AB-X is a POC of the ABM reference architecture. While incomplete, it fared
better (obtained higher marks) than other evaluated ABM frameworks, which
strongly corroborates the main tenet of our research: that it is possible to build
an architecture with robust computational properties which supports an ABM
feature space that helps develop simulations whose correctness can be ascertained

while achieving high fidelity to reality.
For ABM in general we can conclude:

¢ ABM Frameworks are powerful tools for simulating and analyzing complex systems
composed of interacting agents. Their main advantage resides in the relative ease
of applying their ability to reproduce emergent behavior observed in or expected

from real systems.

e ABM Frameworks allow to shrink the semantic gap between their specification
and their implementation. One way to close this gap is by providing a set of
essential features, leading to correctness and fidelity to reality, as well as other
benefits to the research community, including the ability for no-programmers to

develop or validate their simulations.

e ABM simulation is a valid research tool in multiple science fields such as Economics,

Sociology, Epidemiology, and Environmental Science, which allow capturing complex

157

interactions, exploring multiple scenarios with flexibility, develop counterfactual

outcomes — therefore it is valuable to promote and democratize them.

158

CHAPTER 10

Future work

159

‘Men at some time are masters of
their fates. The fault, dear Brutus,
is not in our stars, But in ourselves,

that we are underlings.”

William Shakespeare, Julius Caesar.

Act 1

While performing our research we identified some important themes for future work

on the FSMM, including;:

e The approach for the FSMM is a simple score from 0 to 3 depending on the
facilitator level. While a powerful approach, an alternative is to research a
multidimensional table using a Maturity Model based on the Focus Area [94].
This approach could give finer granularity in certain aspects and would be highly

relevant in scoring the three identified foundational features.

e Each experiment provides a list of features it is intended to score. Nevertheless, it
should be possible to improve the experiment documentation to make them more
robust for scoring the FSMM. For example, each experiment description might
provide a table or rubric detailing a minimum set of expected features to achieve

a certain score.

e Using macroscopic analysis of statistical observables helps to identify differences
between multiple implementations of a simulation. For this work, four experiments
were implemented in five different frameworks, though only the Pareto experiment
was subject to the process of collecting observables for statistical analysis. It
is desirable to apply similar macroscopic analyses to identify deviation in the

remaining experiments and, if found, correct them.

e [t is interesting to continue research to identify why out of the 5 implementations

of the Pareto experiment only Repast produced a statistically different results.

e Each of the experiments, even small, produced interesting results. One of the
most striking behaviors observed was in the Pandemics experiment. There, the
change in one percent point in the influencers increased the trust in a counter-
productive measure (wearing the amulet). It will be interesting to compare this

experiment with similar problems.

160

e While not scored in this document, the defined research supporting features
might be highly important in the future as they close the semantic gap between
specification and implementation. A future version of the FSMM scoring should
include those features in some way; this may require adding new experiments or

modifying some of the provided experiments to explicitly score them according to

the evolved FSMM.

About the reference architecture and its POC implementation it is worth to consider:

e There are several topics related to the POC in the previous AB-X Future features
section, one them is the limited support of directed edges. It might be useful to

complete the feature, based on the reference architecture.

e While not split in the reference architecture it becomes apparent in the development
of the POC than the environment and the grid are separate entity types which

could come apart in a refinement of the reference architecture.

e One interesting idea is for agents to jump off the grid into a vertex. This could
be further developed by allowing a generalization of the topology into a more
complex one — which would be useful for space-aware simulations, while avoiding

the cost of a full 3D environment.

e An alternate topology would be a homogeneous multilayered grid where some
tiles of layers could be connected by edges. This topology would enable more
natural simulation of buildings. Yet another topology would be a heterogeneous
multilayered one which could be used to simulate a complex of buildings, a section

of a city or even a full one, space stations, and battleground fields — among others.

161

References

[1] Abar, S., Theodoropoulos, G. K., Lemarinier, P., and O’Hare, G. M. (2017). Agent
based modelling and simulation tools: A review of the state-of-art software. Computer
Science Review, 24:13-33.

[2] Ajax.org (2023). ACE (Ajaz.org Cloud9 Editor). https://ace.c9.i0/.

[3] Antelmi, A., Cordasco, G., D’Ambrosio, G., De Vinco, D., and Spagnuolo, C. (2022).
Experimenting with agent-based model simulation tools. Applied Sciences, 13(1):13.

[4] Apache-Software-Foundation (2000). Netbeans.
https://netbeans.apache.org/front /main/.

[5] Balci, O. (1997). Verification validation and accreditation of simulation models. In
Proceedings of the 29th Conference on Winter Simulation, WSC 97, page 135-141,
USA. IEEE Computer Society.

[6] Bankes, S. C. (2002). Agent-based modeling: A revolution? Proceedings of the
National Academy of Sciences, 99(suppl_3):7199-7200.

[7] Barclay, K. A. and Savage, W. J. (2007). Groovy programming : an introduction
for java developers.

[8] Batool, A., Bashir, M., Babar, M., Sohail, A., and Ejaz, N. (2021). Effect
or program constructs on code readability and predicting code readability using
statistical modeling. Foundations of Computing and Decision Sciences, 46:127-145.

[9] Becker, J., Knackstedt, R., and Poeppelbuss, J. (2009). Developing maturity models
for it management. Business & Information Systems Engineering, 1:213-222.

[10] Bellifemine, F. L., Caire, G., and Greenwood, D. (2008). Developing Multi-Agent
Systems with JADE. John Wiley.

[11] Berger, E., Hollenbeck, C., Maj, P., Vitek, O., and Vitek, J. (2019). On the impact
of programming languages on code quality. ACM Transactions on Programming
Languages and Systems (TOPLAS), 41:1 — 24.

162

https://ace.c9.io/

[12] Bevington, P. and Robinson, D. (2003). Data Reduction and Error Analysis for
the Physical Sciences. McGraw-Hill Education.

[13] Bezanson, J., Karpinski, S., Shah, V. B.; and Edelman, A. (2012). Julia: A fast
dynamic language for technical computing. arXiv preprint arXiv:1209.5145.

[14] Brenneman, J. (2020). Experimental design. J. Qual. Technol., 52(4):423-424.
[15] Burnette, E. (2005). Eclipse ide pocket guide.

[16] Burrough, P. A., McDonnell, R. A., and Lloyd, C. D. (2015). Principles of
geographical information systems. Oxford University Press, London, England, 3
edition.

[17] Cao, J., Feng, X., Lu, J., and Das, S. (2002). Mailbox-based scheme for mobile
agent communications. Computer, 35(9):54-60.

[18] Catalin Balan, G. (2009). MASON: A Java Multi-Agent Simulation Library.

[19] Chart.js Team (2023). Chart.js: Simple yet flexible JavaScript charting for
designers & developers. https://www.chartjs.org/.

[20] Chibbaro, S., Rondoni, L., and Vulpiani, A. (2022). Probability, Typicality
and Emergence in Statistical Mechanics, pages 339-360. Springer International
Publishing, Cham.

[21] Crooks, A. and Metcalf, S. (2021). Introduction to agent-based models.

[22] Datseris, G., Vahdati, A. R., and DuBois, T. C. (2022). Agents.jl: a performant
and feature-full agent-based modeling software of minimal code complexity.

SIMULATION, 0(0):003754972110688.

[23] Docker (2013). Docker: Accelerated, containerized application development.
Available at https://www.docker.com/, Accessed on: 2024-06-27.

[24] Dowson, D. and Landau, B. (1982). The fréchet distance between multivariate
normal distributions. Journal of Multivariate Analysis, 12(3):450-455.

[25] Eiter, T. and Mannila, H. (1994). Computing discrete frechet distance.

[26] Epstein, J. M. (2012). Generative social science: Studies in agent-based
computational modeling. Princeton University Press.

[27] Epstein, J. M. and Axtell, R. (1996). Growing Artificial Societies: Social Science
from the Bottom Up. Brookings Institution Press.

[28] Epstein, J. M. and Axtell, R. L. (2006). Artificial societies and generative social
science. Artificial Life and Robotics, 1:33-34.

[29] Everitt, B. S. (1998). Cambridge dictionary of statistics. Cambridge University
Press, Cambridge, England.

163

https://www.chartjs.org/

[30] Felleisen, M. (1991). On the expressive power of programming languages. Science
of Computer Programming, 17(1):35-75.

[31] Ferguson, N. (2020). Report 9: Impact of non-pharmaceutical interventions (NPIs)
to reduce COVID19 mortality and healthcare demand.

[32] Ferreira Caceres, M. M., Sosa, J. P., Lawrence, J. A., Sestacovschi, C., Tidd-
Johnson, A., Rasool, M. H. U., Gadamidi, V. K., Ozair, S., Pandav, K., Cuevas-
Lou, C., Parrish, M., Rodriguez, 1., and Fernandez, J. P. (2022). The impact of
misinformation on the COVID-19 pandemic. AIMS Public Health, 9(2):262-277.

[33] Feyerabend, P. K. (2010). Against Method. Verso Books, London, England, 4
edition.

[34] Foundation, T. D. (2020). Libreoffice calc.

[35] Gardner, M. (1970). Mathematical games: the fantastic combinations of john
conway’s new solitaire game “life”. Scientific American, 223(October):120-123.

[36] Gini, C. (1921). Measurement of inequality of incomes. The Economic Journal,
31(121):124-126.

[37] Gosling, J., Joy, B., Steele, G. L., Bracha, G., and Buckley, A. (2014). The Java
Language Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition.

[38] Gupta, S. and Ray, A. (2009). Statistical Mechanics of Complex Systems for
Pattern Identification. Journal of Statistical Physics, 134(2):337-364.

[39] Harari, Y. N. (2017). Homo Deus: A Brief History of Tomorrow. HarperCollins.

[40] Harsanyi, J. C. (1961). On the rationality postulates underlying the theory of
cooperative games. The Journal of Conflict Resolution, 5(2):179-196.

[41] Hoel, E. P. (2017). When the map is better than the territory. Entropy, 19(5).

[42] Hoel, E. P., Albantakis, L., and Tononi, G. (2013). Quantifying causal emergence
shows that macro can beat micro. Proceedings of the National Academy of Sciences,

110(49):19790-19795.

[43] Hood, P. M. (2004). Aristotle on the Category of Relation. University Press of
America, Lanham, MD.

[44] Horn, R. L. V. (1971). Validation of simulation results. Management Science,
17(5):247-258.

[45] Howell, D. C. (2002). Statistical methods for psychology. Wadsworth Publishing
Company.

[46] International, E. (2020). Ecmascript@®) 2025 language specification.

164

[47] Jetbrains (2000). Intellij. idea. https://www.jetbrains.com/help/idea/discover-
intellij-idea.html.

[48] jQuery EasyUI Team (2023). jQuery FasyUI https://wuw.jeasyui.com/.

[49] JuliaLang (2020). Julia extension for microsoft visual studio code. https://

marketplace.visualstudio.com/items?itemName=julialang.language-julia.
Accessed November 7, 2023.

[50] Kazil, J., Masad, D., and Crooks, A. (2020). Utilizing Python for agent-based
modeling: The Mesa framework. In Thomson, R., Bisgin, H., Dancy, C., Hyder, A.,
and Hussain, M., editors, Social, Cultural, and Behavioral Modeling, pages 308-317,
Cham. Springer International Publishing.

[51] Kleinberg, J. and Tardos, E. (2005). Algorithm Design. Pearson, Upper Saddle
River, NJ.

[52] Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of
Artificial Societies and Social Stmulation, 18.

[53] Lange, P., Weller, R., and Zachmann, G. (2016). Graphpool: A high performance
data management for 3D simulations. Proceedings of the 2016 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation.

[54] Li Vigni, F. (2021). Regimes of evidence in complexity sciences. Perspectives on
Science, 29(1):62-103.

[55] Lorig, F., Dammenhayn, N., Miiller, D.-J., and Timm, I. (2015). Measuring and
comparing scalability of agent-based simulation frameworks.

[56] Luke, S. (2019). Multiagent simulation and the MASON library. George Mason
University (CC).

[57] Luke, S., Simon, R., Crooks, A., Wang, H., Wei, E., Freelan, D., Spagnuolo, C.,
Scarano, V., Cordasco, G., and Cioffi, C. (2019). The mason simulation toolkit: Past,
present, and future.

[58] Macal, C. and North, M. (2007). Agent-based modeling and simulation: Desktop
ABMS. Proceedings - Winter Simulation Conference, pages 95—106.

[59] Macal, C. M. (2016). Everything you need to know about agent-based modelling
and simulation. Journal of Simulation, 10(2):144-156.

[60] Maclay, G. J. and Ahmad, M. (2021). An agent based force vector model of
social influence that predicts strong polarization in a connected world. PLoS One,
16(11):€0259625.

[61] Marshall, B. D. L. and Galea, S. (2014). Formalizing the role of agent-based
modeling in causal inference and epidemiology. Am J Epidemiol, 181(2):92-99.

165

https://www.jeasyui.com/
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia

[62] Masad, D. and Kazil, J. (2015). Mesa: An agent-based modeling framework.

[63] MDN Web Docs (2023). Proxy servers and tunneling. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling. Accessed:
2024-07-26.

[64] Microsoft Corporation (2015). Microsoft visual studio code. https://code.
visualstudio.com/. Accessed November 7, 2023.

[65] Montanola-Sales, C., Rubio-Campillo, X., Cela-Espin, J.-M., Casanovas, J., and
Kaplan-Marcusan, A. (2014). Overview on agent-based social modelling and the use
of formal languages. Formal Languages for Computer Simulation: Transdisciplinary
Models and Applications, pages 333-377.

[66] Montgomery, D. (2008). Design and Analysis of Experiments. John Wiley & Sons.
[67] Mozilla-Foundation (2003). Mozilla firefox. Accessed November 7, 2023.

[68] Niazi, M. (2011). Agent-based computing from multi-agent systems to agent-based
models: A visual survey: Scientometrics: Vol 89, no 2.

[69] North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M.,
and Sydelko, P. (2013). Complex adaptive systems modeling with Repast Simphony.
Complex Adaptive Systems Modeling, 1(1):3.

[70] Nunez-Corrales, S., Friesen, M., Mudigonda, S., Venkatachalapathy, R., and
Graham, J. (2021). In-silico models with greater fidelity to social processes: towards
abm platforms with realistic concurrency. In Proceedings of the 2020 Conference of
The Computational Social Science Society of the Americas, pages 155-169. Springer.

[71] Nygaard, K. and Dahl, O.-J. (1978). The Development of the SIMULA Languages,
page 439-480. Association for Computing Machinery, New York, NY, USA.

[72] Nunez-Corrales, S. and Gasser, L. (2018). Scalable social simulation: Evaluation
of current frameworks and a new approach. In Proceedings of the 2018 International

Conference on Social Computing, Behavioral-Cultural Modeling, € Prediction and
Behavior Representation in Modeling and Simulation (SBP-BRiMS 2018).

[73] of Mathematics, E. (2024). Graph theory.

[74] Ozik, J., Collier, N. T., Murphy, J. T., and North, M. J. (2013). The relogo agent-
based modeling language. In 2013 Winter Simulations Conference (WSC), pages
1560-1568. IEEE.

[75] Pareto, V. (1964). Cours D’économie Politique. Librairie Droz.

[76] Popper, K. (1972). Objective Knowledge: An Evolutionary Approach. Number p.
727 in Objective Knowledge: An Evolutionary Approach. Clarendon Press.

166

https://developer.mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling
https://developer.mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling
https://code.visualstudio.com/
https://code.visualstudio.com/

[77] Privitera, M. B. (2005). What is easy of use? Industrial Designers Society of
America.

[78] Robertson, D. A. (2016). Agent-based models and behavioral operational research.
Behavioral Operational Research: Theory, Methodology and Practice, pages 137-159.

[79] Roese, N. J. (1997). Counterfactual thinking. Psychological Bulletin, 121:133-148.

[80] Roza, M., Voogd, J., Jense, H., and Gool, P. (2011). Fidelity requirements
specification: A process oriented view.

[81] Sabzian, H., Shafia, M. A., Bonyadi Naeini, A., Jandaghi, G., and Sheikh,
M. J. (2018a). A review of agent-based modeling (abm) concepts and some of its
main applications in management science. Interdisciplinary Journal of Management
Studies (Formerly known as Iranian Journal of Management Studies), 11(4):659-692.

[82] Sabzian, H., Shafia, M. A., Bonyadi Naeini, A., Jandaghi, G., and Sheikh,
M. J. (2018b). A review of agent-based modeling (ABM) concepts and some of its
main applications in management science. Iranian Journal of Management Studies,
11(4):659-692.

[83] Sargent, R. (2000). Verification, validation and accreditation of simulation models.
In 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165), volume 1,
pages 50-59 vol.1.

[84] Schelling, T. C. (1980). Micromotives and macrobehavior. Norton.

[85] Seagren, C. W. (2011). Examining social processes with agent-based models. The
Review of Austrian Economics, 24:1-17.

[86] Simon, H. A. (1991). The Architecture of Complexity, pages 457-476. Springer
US, Boston, MA.

[87] Sipek, M., Mihaljevic, B., and Radovan, A. (2019). Exploring aspects of polyglot
high-performance virtual machine graalvm.

[88] Stevenson, J. C. (2021). Agentization of two population-driven models of
mathematical biology. In Conference of the Computational Social Science Society
of the Americas, pages 176-189. Springer.

[89] Thaler, J. (2020). Investigating the use of pure functional programming for agent-
based simulation. PhD thesis, University of Nottingham, UK.

[90] Thaler, J., Altenkirch, T., and Siebers, P.-O. (2018). Pure functional epidemics:
An agent-based approach. In Proceedings of the 30th Symposium on Implementation
and Application of Functional Languages, IFL 2018, page 1-12, New York, NY, USA.
Association for Computing Machinery.

[91] Tisue, S. (2004). Netlogo: Design and implementation of a multi-agent modeling
environment.

167

[92] Todaro, M. P. (1992). Review of Human Development Report 1992 by United
Nations Development Programme. Population and Development Review, 18(2):359—
363.

[93] Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA.

[94] van Steenbergen, M., Bos, R., Brinkkemper, S., van de Weerd, 1., and Bekkers,
W. (2010). The design of focus area maturity models. In Winter, R., Zhao, J. L.,
and Aier, S., editors, Global Perspectives on Design Science Research, pages 317-332,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[95] Varley, T. F. (2020). Causal emergence in discrete and continuous dynamical
systems.

[96] Vendrov, I., Dutchyn, C., and Osgood, N. D. (2014). Frabjous: A declarative
domain-specific language for agent-based modeling. In Kennedy, W. G., Agarwal,
N., and Yang, S. J., editors, Social Computing, Behavioral-Cultural Modeling and
Prediction, pages 385-392, Cham. Springer International Publishing.

[97] Vern, R. and Dubey, S. K. (2014). Evaluating the maintainability of a software
system by using fuzzy logic approach. International Journal of Information
Technology and Computer Science, T:67-72.

[98] Walls, C. (2016). Spring Boot in Action. Manning Publications Co.

[99] Weisstein, E. W. (n.d.a). Moore neighborhood. From MathWorld-A Wolfram Web
Resource.

[100] Weisstein, E. W. (n.d.b). von neumann neighborhood. From MathWorld-A
Wolfram Web Resource.

[101] Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling:
Modeling Natural, Social, and Engineered Complex Systems with NetLogo. The MIT
Press. The MIT Press, Cambridge.

[102] Yakovenko, V. M. and Rosser, J. B. (2009). Colloquium: Statistical mechanics of
money, wealth, and income. Reviews of Modern Physics, 81(4):1703-1725.

168

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem description
	Related Work
	Hypothesis

	Conceptual Framework
	General ABM Concepts
	Types of a ABM
	Complexity and emergent behavior in ABM
	Macroscopic Statistical Analysis and fidelity to reality
	Counterfactuals in ABM
	The need for ABM frameworks
	Framework limitations

	ABM Feature Space Maturity Model
	Simulation features
	Usability
	Basic framework functionality
	Locality
	Agent Management
	Force fields

	Interrogation capabilities
	Visualization
	Statistical support for model attributes
	Support for macroscopic statistical analysis
	Nearly decomposable system view

	Research supporting features
	Graph support
	Utility features
	Counterfactual support

	Experiments on Frameworks
	Frameworks to be evaluated
	NetLogo
	MASON
	Repast
	Mesa
	Agents.jl

	Experiments
	Sugarscape Model
	PredPrey Model
	Confounding galore in Pandemic times
	Economic Wealth Inequity (Pareto Principle)
	Correlating experiments and feature scoring

	Results & Discussion
	Sugarscape Model
	NetLogo
	MASON
	Repast
	Mesa
	Agents.jl

	PredPrey Model
	NetLogo
	MASON
	Repast
	Mesa
	Agents.jl

	Pandemics Model
	NetLogo
	MASON
	Repast
	Mesa
	Agents.jl

	Pareto Model
	NetLogo
	MASON
	Repast
	Mesa
	Agents.jl

	Macroscopic Statistical Analysis & Specification Fidelity
	Histogram
	Coefficient of Variation
	Fréchet Distance
	Anova and F-Test

	Discussion

	Feature Space Maturity Scoring
	Simulation Features
	Interrogation Capabilities

	Architecture of ABM Frameworks
	Studied Architectures
	NetLogo
	MASON
	Repast
	Mesa
	Agents.jl

	Proposed Architecture Principles
	Reference Architecture
	Environment
	Patch
	Agent
	Vertex
	Relation
	Directed edge
	UML diagrams

	Complete Entity Type Description
	Environment
	Entity
	Patch
	Agent
	Vertex
	Abstract Relation
	Relation
	Directed Edge
	Global Methods

	AB-X: POC for the Reference Architecture
	AB-X Design
	Overview
	Main simulation classes
	Coding snippets
	UI screenshots

	AB-X Results
	Sugarspace in AB-X
	PredPrey in AB-X
	Pandemics in AB-X
	Pareto in AB-X

	Macroscopic Statistical Analysis & Specification Fidelity
	Histogram
	Coefficient of Variation
	Fréchet Distance
	ANOVA and F-Test

	AB-X FSMM Scoring
	Simulation Features
	Interrogation Capabilities

	AB-X Future features

	Conclusions
	Future work
	References

