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Abstract

Agent Based Modeling (ABM) is a computational paradigm for simulating the actions

and interactions of autonomous agents (both individual or collective entities such as

organizations or groups) to understand the behavior of a system and the underlying

laws governing its outcomes. For the conclusions reached via this technique to be valid,

the agent population in the ABM should be representative of – and commensurate

with – the population size and rule set under study. Moreover, since the systems

under study are complex and hence many of their possible behaviors are unknown,

simulations should be executed several times to identify average (and representative)

behaviors. From a computational perspective, most research reported in the literature

has focused on the impact of performance, scalability and visual representations on the

quality of the scientific outcomes obtained with ABM.

The present work details an Feature Space Maturity Model (FSMM) which includes

significant sections usually overlooked in current ABM frameworks. Advances in Computer

Science and the advent of more powerful hardware make it possible to define a reference

architecture capable of supporting – at the framework level – robust computational

properties, a set of essential features leading to correctness and fidelity to reality.

The purpose of this work is manifold. First, it introduces a maturity model for

formal assessments of the feature space of ABM and evaluates the five most used ABM

frameworks. Second, it proposes a macroscopic analysis of different implementations

as a correctness mechanism. Third, it identifies and proposes a reference architecture

based on the frameworks reviewed. Finally, it provides a Proof of Concept (POC)

implementation based on the reference architecture to evaluate its quality according to

the FSMM.
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8.3 Fréchet distance for histograms of top 20% coins ownership . . . . . . . 146
8.4 Fréchet distance for histograms of top 20% tiles onwership . . . . . . . 146
8.5 P-value for F-test for histograms of rounds to complete experiment . . 148
8.6 P-value for F-test for histograms of top 20% of coin ownership . . . . . 148
8.7 P-value for F-test for histograms of top 20% of tiles ownership . . . . . 149
8.8 Simulation Features Score including AB-X . . . . . . . . . . . . . . . . 150
8.9 Interrogation capabilities Score including AB-X . . . . . . . . . . . . . 150



Acronyms

ABM Agent Based Modeling

API Application Programming Interface

CSV Comma-separated values

CV Coefficient of variation

DES Discrete-event simulation

DSL Domain Specific Language

EBM Equation-Based Modeling

FPS Frames per Second

FSMM Feature Space Maturity Model

GOL Game of Life

HPC High Performance Computing

IDE Integrated Development Environment

1



MEF Minimally Effective Framework

MVC Model-View-Controller

NPI Non-Pharmaceutical Interventions

OO Object-Oriented

OS Operating System

POC Proof of Concept

REPL Read-Eval-Print Loop

SD System Dynamics

SI International Unit System

SDL Specification and Description Language

SNT Social Network Theory

UI User Interface

UML Unified Modeling Language

2



CHAPTER 1

Introduction

“All the world’s a stage. And all the

men and women merely Players”

William Shakespeare, As You Like It

3



ABM is a computational model for simulating the actions and interactions of autonomous

agents (both individual or collective entities such as organizations or groups) in order

to understand the average behavior of a system and what governs its outcomes [68].

ABM differentiates itself from top-down simulation techniques like Equation-Based

Modeling (EBM), Discrete-event simulation (DES) or System Dynamics (SD) because,

in ABM, the models are built bottom up, defining only the agents and environment

rules but not defining explicitly the behavior of the complex system. Such behavior

emerges from the agents’ interactions [59].

The methodological effectiveness of ABMs for complexity science [54], particularly

in generative social science [26], resides in their ability to reproduce emergent behavior

observed in – or expected from – real systems with relative ease [59]: ABMs abstract

phenomena bottom-up. Top-down methods – i.e., equations-based modeling, dynamical

systems, discrete event simulation – carry the burden of overly detailed specification.

Obtaining meaningful results requires extensive parameterization, a process whose

complexity becomes unmanageable for relatively small numbers of interacting entities

– which forces the use of formal and numerical approximations. An even more striking

limitation of top-down models is their opaqueness in terms of how micro-scale agent

actions contribute to macro-scale observables, in stark contrast to what ABMs can

achieve [81]. It is then no surprise for top-down models to be agentized – e.g., [85; 78; 88]

- to then be able to answer questions pertaining to emergence.

A typical model-building exercise starts by specifying the structure, dynamics and

interactions of autonomous agents (e.g., individuals, groups, organizations) based on

prior evidence and its synthesis into a set of quantified relations. This process of

abstraction results in a conceptual model stated in terms of interactions between classes

of agents, and between classes of agents and their simulated environment when the latter

is modeled. Naturally, the selection and prioritization of features changes the degree

of representativeness of the model to what is being modeled, otherwise known as its
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fidelity to reality [70], hard to assert for any given model. Since the latter may be

too stringent a target, most ABMs aim to reproduce archetypal features of systems

stated in terms of trajectories follow by agents and observables, as well as distributions

of events during simulation time. In principle, once the abstract specification that

serves as the blueprint for an ABM has solidified, the phenomenological outcome of

any simulation should not depend on the particular computational implementation as

determined by individual ABM frameworks despite non-functional differences such as

runtime performance [3].

To produce reliable predictions, simulations in an ABM should match the target

system size and rule set and should be executed several times to identify mean behaviors

[10]. In order to achieve this level of efficiency, several ABM frameworks provide only

limited simulation capabilities and typically use a standard programming language such

as Java to implement the simulation behavior [56].

With the advance of Computer Science and the advent of more powerful hardware,

we put forward that it is possible to define a reference architecture for ABM that

supports, with robust computational properties, the essential features leading to correctness

and fidelity to reality. ABM frameworks that follow this architecture could bring

significant benefits to the research community and the general public, such as simplifying

the development and maintenance of models using ABM, making them less error-prone,

more accurate and credible, democratizing ABM’s usage and increasing its value as a

scientific tool. Some of the essential features for an ABM framework include advanced

simulation functionalities, interrogation capabilities, and counterfactual support. The

feature space could be further split into sub-criteria [8].

The objective of this work is manifold. First, it provides a maturity model for a

systematic assessment review of the feature space. Second, it proposes an approach

to validate the fidelity of the implementation to the specification in the overall picture

of fidelity to reality. Also, it provides an initial reference architecture, with robust
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1.1. PROBLEM DESCRIPTION

computational properties, that ranks high in that maturity model. Finally, it creates a

POC which follows the reference architecture to facilitate its evaluation. The structure

of this thesis proposal is as follows. Other sections of this Introduction include a state-

of-the-art ABM conceptual framework in subsection 1.2, related work in subsection

1.3, problem description in subsection 1.4, and hypothesis in subsection 1.5. Chapter

2 explains the objectives and contributions of the research, including its scope and

limitations. Chapter 3 presents our Feature Space Maturity Model. Chapter 4 puts

forward a Reference Architecture for Agent Based Modeling. Chapter 5 describes four

experiments carried on each of five leading ABM frameworks, plus the POC ABM

framework implementation. Chapter 6 exhibits and discusses the results obtained in

the experimentation. The experiments’ results and the experimentation process enable

us to score the ABM frameworks and the POC, which is the subject of Chapter 7.

Chapter 8 concludes and Chapter 9 outlines avenues for future work.

1.1 Problem description

Some of the most important deficiencies identified in ABM frameworks is the lack

of both a FSMM and a reference architecture. This leads to several issues, including

the inability to rank frameworks based on simulation capabilities, and the need to start

from scratch the specification of future ABM frameworks. This work proposes designing

an initial maturity model, and use it for creating a reference architecture and a small

POC implementation to validate its quality.

The FSMM follows the facilitator-based approach of Nuñez-Corrales and Gasser

[72], which is the capability of the framework to provide a desired feature, from (0) no

facilitators, (1) facilitators need technical involvement for each case, (2) mature general

facilitators require low technical involvement to (3) facilitators require no technical

involvement. The FSMM consists of three sections: simulation features, interrogation
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1.1. PROBLEM DESCRIPTION

capability, and research supporting features, as defined previously. The sections are

split into basic features. There are examples or descriptions to illustrate what it means

for a framework to be assessed at some level for each feature.

The proposed reference architecture aims to achieve a high score in every feature of

the FSMM while providing robust computational properties. Finally, a small POC has

been developed to evaluate the reference architecture. The evaluation was performed

by comparing four representative – and exemplar – models implemented in the POC

versus implementations built in the other five ABM frameworks under study.
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1.2. RELATED WORK

1.2 Related Work

Research works around different aspects of ABM are continuously published. Performance

and scalability are some of the most studied topics [55]. Núñez-Corrales and Gasser

[72] provide a scoring approach for the easiness of running social science simulations

when access to cyber-infrastructure is available. They follow a systematic approach

and propose an ideal framework called Minimally Effective Framework (MEF). They

also scored five of the most used frameworks (which includes Swarm and Repast, also

scored in this thesis) and assert that a new type of framework is needed for fully

realizing the potential of agent-based modeling and simulation in Computational Social

Science. While they realized the need for scoring other areas, their focus was mainly

on simulations over High Performance Computing (HPC). They used the concept of

facilitator, a way in the framework to achieve certain behavior and propose an approach

of scoring from 0 (no facilitators) to 3 (facilitators require no technical involvement)

depending on the maturity of the evaluated feature in the framework. This scoring

approach has also been followed in the FSMM developed in this work.

Kravari and Bassiliades [52] present a broad review of several agent platforms and

realizes the need for a scoring system applicable to ABM frameworks which includes

usability, operating ability, pragmatics, and security management. Overall, the authors

surveyed 24 frameworks. Its main drawback is that the survey is relatively shallow and

does not provide insights for enhancements. A similar review was performed by Abar

et al. [1] which surveyed more than 80 frameworks.

Works such as [89] and [96] have argued on the importance of a Domain Specific

Language (DSL) for ABM. Nevertheless, a pure functional approach has limited

adoption [90]. Also, the Object-Oriented (OO) approach matches better the general

concept of an agent which is an entity that does things to things [21]. Montañola-Sales

et al., in their 2013 review of ABM for the Social Sciences [65], confirm one of the

main challenges of social simulation is to find a methodology capable of improving
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1.2. RELATED WORK

communication between people related to the construction of a simulation model.

They proposed Unified Modeling Language (UML), Petri Nets and Specification and

Description Language (SDL) as approaches to code the logic of model [65]
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1.3. HYPOTHESIS

1.3 Hypothesis

It is possible to identify a feature space leading to correctness and fidelity to reality

in ABM frameworks. Furthermore, it is possible to define a reference architecture with

robust computational properties which supports that feature space.

10



CHAPTER 2

Conceptual Framework

“All models are wrong, but some are

useful.”

George Box, Science and statistics
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2.1. GENERAL ABM CONCEPTS

The use of ABM is heterogeneous. There are researchers whose research goals

revolve around the design of various types of agents. In this case, the role of simulation

is to validate the future operation of physical or virtual agents [10]. On the other hand,

there are researchers whose goal is not agent design per se but rather the agent design

is a means to develop simulations that can lead to a better understanding of a global or

emergent phenomenon associated with complex adaptive systems [58]. The subsections

in this chapter identify several concepts around ABM to validate the need for a FSMM

to evaluate current frameworks and the necessity of a reference architecture which could

be used as a baseline for future framework implementations.

2.1 General ABM Concepts

ABM consists of three main aspects: the agents, the environment, and the rules

or interactions. Hossein et al. mention four types of agents in an increasing level of

complexity [82]:

• Reflective or myopic agents, which are very simple if-then agents so that if they

face situation A, they immediately do action B.

• Utility-based agents are very similar to the reflective ones, but they have a utility

function that they do want to maximize in every case.

• Goal-based agents are an advanced form of utility-based function because they

have a goal that dictates their actions.

• Adaptive agents are the most advanced form because they possess enough cognitive

capabilities to change their actions in similar conditions, based on prior experience.

E.g. if they do action A in situation B and lose some payoffs when they face

situation B again, they don‘t do action A according to their prior experiences.
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2.1. GENERAL ABM CONCEPTS

The environment is where the artificial social life of the agents unfolds [28]. Environments

come in three different major forms:

• Spatial environment The spatial environment is often a 2D/3D continuous

plane or discrete lattice on a sphere or toroidal topology. There are models which

do not require spatial environment simulation, like pure networks simulations.

Simulations where users do interact within the spatial environment are called

space-aware, and are the main concern of this work.

• Networked environment In real-world situations, such as socio-economic settings,

agents have more networked interactions than spatial (geographical) interactions.

Using network structures as an ABM environment provides ample opportunities

to synthesize Social Network Theory (SNT) with ABM.

• Mixed environmentHere, both spatial and network pieces coexist in the environment.

There are five basic classes of interactions [101]:

• Agent-self : an agent checks its internal states and decides according to them.

• Environment-self : are when areas of the environment alters or changes itself.

• Agent-agent: are usually the most important type of action within ABMs and

most of the emergent behaviors originate from this type of interaction.

• Environment-agent: happen when the agent manipulates or examines an area

of the world in which it exists, or when the environment in some way observes or

alters the agent‘s internal states

• Environment-environment: between different areas of the environment; these

are probably the least commonly used interaction type in ABM.
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2.2. TYPES OF A ABM

2.2 Types of a ABM

There are several definitions of ABM based on the complexity of the models they

can handle. It would be senseless to spend time defining and implementing a FSMM

for the most basic ABM approaches (as they could be trivially modeled in any ABM

framework). Macal [59] provides four definitions in increasing complexity:

• An individual ABM is one in which the agents in the model are represented

individually and have diverse characteristics.

• An autonomousABM is one in which the individual agents have internal behaviors

that allow them to be autonomous, able to sense whatever condition occurs within

the model at any time and to act with the appropriate behavior in response.

• An interactive ABM is one in which autonomous agents interact with other

agents and with the environment.

• An adaptive ABM or dynamically constrained is one in which the interacting,

autonomous agents change their behaviors during the simulation, as agents learn,

encounter novel situations, or as populations adjust their composition to include

larger proportions of agents who have successfully adapted. It is also possible for

the rules of the environment to change during the simulation.

The aim of this work is to identify a FSMM and a reference architecture for the

most complex version of ABMs, the dynamically constrained ones.

2.3 Complexity and emergent behavior in ABM

There is substantial literature about complexity and emergent behavior. For the

purposes of this work, we will only mention two topics related to ABM: the architecture

of complexity and emergent behavior [20]. First, the architecture of complexity indicates
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2.3. COMPLEXITY AND EMERGENT BEHAVIOR IN ABM

that complexity is usually structured in a hierarchical way and, in many cases, there is

a massive repetition of simpler structures [86].

Also, in most cases it seems that complex structures are achieved by starting with

a simple stable state and modifying it. One way to identify a sub-system in this

hierarchy is the use of nearly decomposable matrices, which are matrices that describe

the relationship between elements of a system. They are organized in a way where

highly interacting elements are grouped closely and poorly interacting elements are far

away, whereby islands of interaction may be identified as a sub-system.

Another essential concept in “complexity science” is “emergence” or emergent behavior

[6] [95]. Topics such as the emergence of cultural norms or institutions from the

interactions of individuals’ activities are critical and not well addressed by other competing

modeling formalism. Emergence is fundamentally a multi-resolution concept with, as

has been noted, micro-motives leading to macro-behaviors [84] [41]. Thus, emergence

can be characterized by a measure of macroscopic behavior achieving a threshold value

in a simulation built from microscopic behavior [38]. The initial approaches to ABM

only generated the agent metrics for a person to analytically identify if there was an

emergent behavior. While human insight should not be underestimated, the amount of

data that ABM simulations may generate is vast, and most of it is useless, limiting the

ability of a human to reason about emergent behavior [42].

One of the most important reasons for using ABM is the impossibility – for economical

or ethical reasons – to have the critical amount of participants required to observe

emergent behaviors, which could be very different from behaviors exhibited by few

participants [39]. One example of this is the Ultimatum game, in which one party, the

proposer, is endowed with a sum of money. The proposer is tasked with splitting it

with another party, the responder. Once the proposer communicates their decision, the

responder may accept it or reject it. If the responder accepts, the money is split as per

the proposal; if the responder rejects, both players receive nothing. Both parties know
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2.4. MACROSCOPIC STATISTICAL ANALYSIS AND FIDELITY TO REALITY

in advance the consequences of the responder accepting or rejecting the offer.

If the parties are played by two individual players, the proposer will usually propose

a fair (50/50 or just a slightly bigger part for the proposer) out of fear of the responder

rejecting the proposal (in that case both get nothing) if the responder does not feel it

just [40]. Nevertheless, if parties are played by a huge amount of interconnected players,

an emergent behavior of accepting a hugely unequal proposal will appear. It could be

said that functional but highly unequal societies can be compared to the responder

party accepting the unfair proposal.

2.4 Macroscopic Statistical Analysis and fidelity to

reality

ABMs function as an in silico laboratory in which the researcher inputs agent

characteristics, specifies initial conditions, applies rules for agent-agent interactions,

and programs static or transient rules to move among model states.

For non trivial models they are many ways to implement its agents’ behaviors.

Researchers, who wish to maximize the understanding of a complex system as clearly

as they possibly can, must introduce several behaviors for its agents, to identify which

ones match better empirical macroscopic results. This approach is called a pluralistic

methodology and has been mentioned by several authors [33].

Comparisons metrics for some macroscopic simulation are desired, disregarding the

models’ internal dynamics. For example, there could be two models to measure a

pandemics contagion rate, but the first one is much more resource-consuming than

the second one because it simulates human behavior in more detail. If the identified

contagion rates of both models are similar, regardless of the implementation, it can be

said the models are macroscopic comparable, and the second one will be desired for

large-scale simulations as it is less resource-consuming.
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2.4. MACROSCOPIC STATISTICAL ANALYSIS AND FIDELITY TO REALITY

Another important concept in ABM is fidelity to reality, which can be seen as

a two blocks chain, with fidelity of the specification to reality and fidelity of the

implementation to the specification. The first point is not developed in this work

but there are several papers about this topic like [80].

For the second point, it is important to mention that there is no such thing as “the

test” to validate (increase the confidence that an inference about a simulated process

is correct for the actual specification) a implementation [44].

One way to tackle correctness and fidelity to the specification is to use macroscopic

statistical analysis over multiple implementations of of the same specifications in different

frameworks. To do that, a list of quantitative macroscopic observables needs to be

defined which should be provided by each implementation. Then, for each implementation,

the simulation can be run several times to obtain statistical behaviors of each observable.

Observables can be gathered via different approaches. An observable could be an

environment value, the aggregate of an agent’s values or some ratio when the simulation

completes or reaches a milestone. It could also be the amount of rounds it took to reach

some specific status.

When statistical behavior of an observable differs among implementations, it could

be seen as as an alert for one or more of the implementations not following the specification

correctly in some desired area. Likewise, consistent statistical behavior among implementations

increases the confidence that all of the implementation follow the specification correctly.

In this work, macroscopic statistical analysis was used to validate that for one of

the experiments, all implementation produced the same statistical behavior for three

defined macroscopic observables in 10,000 executions of the Pareto experiment.
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2.5. COUNTERFACTUALS IN ABM

2.5 Counterfactuals in ABM

Counterfactual reasoning closely relates to ABMs. Concretely, counterfactuals provide

baselines used to evaluate possible alternatives to life events that may occur or have

already occurred; something that is contrary to what actually happened [79]. Based on

this point of view, counterfactual support means the ability of the ABM framework to

compare outcomes of simulations under different input parameters (collectively referred

to as a “treatment”) from any number of hypothetical scenarios [61]. A specific example

of counterfactual support in ABM will be the case where a model starts with an initial

setting, and at some specific point of the simulation, it branches into two different

simulations, the first one following one set of settings and the second one following a

different set.

One example where branching could be useful is the example where the model needs

to reach some desired state before two or more rules are applied. For example, in the

case of the COVID-19 contagion rate model, it might be desired to branch the model

by applying different restriction rules with different levels of enforcement at different

moments of the epidemic to explore the evolution of the contagion rate.

In summary, macroscopic comparisons are useful to compare desired outputs of

models with different inner implementations and comparable initial states and counterfactuals

are useful to compare desired outputs of models with similar inner implementations but

different settings.

2.6 The need for ABM frameworks

While there are famous agent-based models like Game of Life (GOL) which can

be easily coded in any non-trivial programming language [35], the facts are that many

social models are so complex that implementing them from scratch will not be feasible.

Most ABM share a common feature space, which makes it desirable to have general
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2.7. FRAMEWORK LIMITATIONS

support for modeling. One of the earlier examples of this support is the Simula 67

programming language, developed in the mid-1960s and widely used for research by the

1970s. It was the first language aimed at automating step-by-step agent simulations [71],

and was released along with other useful features like objects, classes, and inheritance,

yet it was a programming language, not a framework, and had important limitations to

implement non-trivial models.

ABM frameworks were developed to reduce the semantic gap between model specifications

and programming language capabilities. Over the years, numerous ABM frameworks

have been created to meet various modeling needs, ranging from lightweight frameworks

with limited simulation capabilities to highly sophisticated ones with custom languages

tailored for simulation. Despite the availability of many ABM frameworks today,

there is no agreed-upon formal specification for the ABM feature space. This lack of

standardization hinders the ability to compare different frameworks effectively. Frameworks

that rank higher on the FSMM are expected to facilitate more robust ABM development

and achieve higher fidelity to real-world scenarios. Additionally, a FSMM could serve

as a baseline for future specifications of ABM frameworks. The next section presents

a list of the most critical elements of the feature space for ABM frameworks, identified

during the preparatory work.

2.7 Framework limitations

Some of the most important identified deficiencies in ABM frameworks is the lack of

both a FSMM and a reference architecture. This leads to several issues, including the

inability to rank frameworks based on simulation capabilities, and the need to start the

specification of future ABM frameworks from scratch. This work proposes designing

an initial maturity model, and use it for creating a reference architecture and a small

POC implementation to validate its quality.
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2.7. FRAMEWORK LIMITATIONS

Usually, maturity models have six maturity level per focus area [9]. Nevertheless

some levels, like repeatable and managed, apply only to organizations, not to specific

software systems. Therefore, our proposal for the FSMM will follow the facilitator-

based approach of Núñez-Corrales and Gasser [72], which is the capability of the

framework to provide a desired feature, from (0) no facilitators, (1) facilitators need

technical involvement for each case, (2) mature general facilitators require low technical

involvement, to (3) facilitators require no technical involvement. The FSMM consists of

three sections: simulation features, interrogation capability, and counterfactual support,

as defined previously. The sections are split into basic features. Examples or descriptions

are provided to illustrate what it means for a framework to be assessed at some level

for each feature.

The proposed reference architecture aims to achieve a high score in every feature

of the FSMM while providing robust Computational properties. Finally, a small POC

has been developed to evaluate the reference architecture. The evaluation consists of

comparing four representative models implemented in the POC versus implementations

built in the other five ABM frameworks under study.
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CHAPTER 3

ABM Feature Space Maturity Model

“Humans are good at discerning

subtle patterns that are really there,

but equally so at imagining them

when they are altogether absent”

Carl Sagan, Contact
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3.1. SIMULATION FEATURES

The FSMM proposed in this work has three sections: simulation features, interrogation

capabilities, and research supporting features. These features may overlap, yet an effort

has been made to reduce the overlapping between them.

3.1 Simulation features

Simulation features are the most important criterion in the FSMM. The primary

goal is to identify fundamental features that enable a clear implementation of models

and ensure high fidelity to reality.

A standard high-level programming language like Java, without any third-party

libraries, would be considered a framework scoring 0 in all categories.

The simulation section contains six features, as follows:

3.1.1 Usability

Usability was included to reflect how easy it is for an average user to install and

use the framework. Although it is not formally part of the simulation category, it was

added due to its significant impact on the overall use of the framework.

0. No way to install. User needs to compile from source code. Very limited documentation.

1. Difficult to install, important stability issues. Basic documentation.

2. Generally stable but some minor stability issues. Useful and well-written documentation.

3. The framework is stable and easy to install onWindows/Linux/Mac. Documentation

describes all functionalities, and includes several working examples.

3.1.2 Basic framework functionality

This topic relates to the baseline simulation features which are provided by the

framework and are used in a wide array of cases, like data processing and communication
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3.1. SIMULATION FEATURES

with external tools. It also includes features which could help validating whether a

model or simulation is acceptable for use for a specific purpose [83]. They include

debugging tools like visualization, breakpoints, execute while some expression is true –

all of which contribute to increase the accuracy of the model [5].

0. Basically no support of standard framework functionalities. No support for random

distributions, no ability to save simulation status. No support to read, write

structured data files like CSV or JSON. No ability to stop simulation.

1. Ability to read, write files. Tools to handle structured data like CSV, JSON files.

2. Ability to communicate with other tools for sending and receiving data, like

http/https support.

3. Ability to run simulation for certain amount of steps or while a condition is true.

Ability to pause simulation interrogate agents or the environment.

3.1.3 Locality

Agents should be space-aware and should have a direction and perspective of their

environment: front, sides and back. Spaces could be continuous or discrete. The

expected space shapes are planes, cylinders and torus. Any agent can be in only one

point/cell at a time and is considered to be at the center of the point/cell. On their

round, the agents can modify only their visible surroundings. This is useful for avoiding

global effects which could affect the simulation quality. Also there could be inaccessible

regions i.e. Agent can not move to that region.

0. All locality concepts needs to be implemented, agents do not have front, no

support for neighborhood access. No support for space concept (neither grid

nor continuous).

1. Basic locality functionality, like support to translate position to torus, tube, plane.
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3.1. SIMULATION FEATURES

2. Support for spaces of both grid and continuous types.

3. Agents can move forward, backward, rotate. The space shape could be square,

tube, torus. Space could be grid or continuous or both.

A radial neighborhood of range r consist of a list of elements with the euclidean

distance ≤ r.

A Moore neighborhood defined on a two-dimensional square lattice and is composed

of a central cell and the eight cells that surround it. An extension of this definition

is the Moore neighborhood of range r. It means the set of points at a Chebyshev

distance of ≤ r [99].

A von Neumann neighborhood (or 4-neighborhood) is classically defined on a two-

dimensional square lattice and is composed of a central cell and its four adjacent

cells. An extension of this definition is the von Neumann neighborhood of range

r. It means the set of points at a Manhattan distance of ≤ r [100].

3.1.4 Agent Management

Agent management corresponds to the ability to handle the administration of agents,

including the creation, destruction and – after the agent dies – its remaining management.

0. No agent concept, agents concept needs to be implement from scratch using other

concepts like structures or objects.

1. There is a basic concept of agents. Agent can be created but extra structures or

logic is required to manage them. Agents need to be added to the scheduler and

logic is required to move them in the grid, specially in a seamless grid.

2. Full fledged support for agent management. Agent creation adds agents to the

space and an agent death removes the agent from the space. There is the concept

of agent type: the ability to list all live agents by their types. Move actions move
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3.1. SIMULATION FEATURES

agents in space without need for extra structures. There are abilities to search

nearby agents using radial, Moore and von Neumann neighborhood approaches.

3. There is a standard way of communicating between agents in the mail-box approach

[17] where the sender sends the message during its turn and the receiver will see

all available messages (in its mail-box) at the beginning of its turn. There may

be two types of messages: one-to-one and broadcasting.

3.1.5 Force fields

Force fields are not very common in ABM and are used only in very specific

simulations [60]. Nevertheless, they are a powerful tool and it is plausible that its

lack of use is not related to their benefits, but more probably to their general lack of

support in well-known ABM Frameworks.

0. No force fields concept. To calculate forces extra data structures and algorithms

(coding) are required.

1. Basic support of force fields concept. Ability define a force field emission point

and ability to calculate distance (shortest distance in seamless grids like torus

grid) and angle from any point to the force field point.

2. Agent and environment can assign and reset force fields naturally. Forces have

type and force intensity can grow or decay linearly or quadratically. Multiple

types of forces and each emission point could have either positive or negative

values. The average of forces of the same type can be calculated in any point of

the space (including seamless grids like the torus). Forces can have a radial range

limit.

3. Ability to visualize forces as bump/heat maps with varying level of detail. Ability

to show or hide forces by type/layer.
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3.2 Interrogation capabilities

Interrogation capability is the second most important criterion in the FSMM, especially

interrogation support around the concept of “emergent” behavior. Statistically, we

understand macroscopic support as the ability to define a set of metrics that will be

persisted while the rest of the simulation data will be discarded. Also, macroscopic

metrics may be defined regardless of the micro-motives implementation. If sets of

metrics are implemented for two or more models, they are considered macroscopic-

comparable for interrogation. For this criterion, the four features considered are:

3.2.1 Visualization

Visualization for ABM, or any simulation in general, is a very important requirement,

as the amount of data generated by the simulation is huge. Visualization is also useful

tool for debugging the model.

0. No visualization support. Data needs to be displayed using third party libraries.

1. Limited visualization tools. Usually slow, poorly designed but functional.

2. Fast, well documented visualization. Ability to disable visualization globally

during execution

3. Comprehensive and well-documented visualization support, ability to visualize

both detailed and statistical data. Ability define visualization layers by agent,

items and force field attributes.

3.2.2 Statistical support for model attributes

Statistical support for model attributes: It is the ability of the framework to define

and track a set of metrics for a single execution and discard the rest of the data.
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0. No statistical tools. All stats needs to be calculated and charted using third party

tools.

1. Basic support for statistical analysis. The main expected metrics are average,

moving average, standard deviation, maximum, minimum, 95 and 99 percentiles

(and in general the nth percentile). Basic ability to create charts.

2. Well documented and easy way to create and configure charting (ability to define

title, axis data, minimum and maximum for grid, etc).

3. Support for powerful statistics tools which behave like consumers to create correlation

graphs.

3.2.3 Support for macroscopic statistical analysis

Support for macroscopic statistical analysis of observables in different implementations.

With this analysis it is possible to identify specification deviations of different implementations.

Identifying and fixing those deviations should, in turn, increase the overall fidelity

to reality of the implementation. Macroscopic statistical analysis includes standard

statistical comparisons between two or more simulations, F-test, histograms and ANOVA

[66].

0. Single execution only. All stats will need to be saved manually in any execution

for further comparison.

1. Execute two simulations at a time and compare macroscopic observables using

and F-test in real-time.

2. Create and orchestrate multiple simulations on different runners. Compare statistical

behavior of macroscopic observables using histograms or ANOVA.
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3. Tools to collect, reconcile and statistically analyse the behavior of macroscopic

observables of different simulations. Those results would likely be stored in files

and could be created by implementations in different frameworks.

3.2.4 Nearly decomposable system view

There should be a way to identify regions of the model which high internal interactions

and poor external ones.

0. No concept of nearly decomposable system view. Identification of high internal

and poor external interaction needs to be implemented manually.

1. Ability to identify regions with high amount of physically close agents in any

space type (torus, plane, tube).

2. Ability to identify highly interacting agents through messages.

3. Ability to visualize using tools like heat-maps to distinguish the highly interacting

regions.

3.3 Research supporting features

Research supporting features consists of a set of three features. As far as we

know, their support is lacking in ABM frameworks. Such support might benefit ABM

frameworks to reduce the semantic gap between the specification and the implementation.

They are graph support, counterfactual and utility features.

Due the novelty and complexity of implementing experiments which require these

features, they will not be used as scoring topics, but are briefly described here as a

basis for further research.
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3.3.1 Graph support

Graph theory offers a wide range of tools and metrics for analyzing networks. These

can be applied to understand various properties of the agent network, such as centrality,

clustering, and path lengths, which can provide insights into the dynamics of the

modeled system. [73].

Graph support in ABM makes it applicable to a wider range of fields, such as

sociology, epidemiology, economics, ecology, and engineered complex systems – where

network structures are fundamental. This broad applicability enhances the utility and

relevance of ABM.

0. There is not support for graphs, neither logically, nor in visualization.

1. Basic graph capabilities, including weighted graph, and path finding; ability to

visualize graphs and relations as arrows or lines.

2. Ability to assign agents to graph edges, not only to the grid. Ability to have

graph edges following a curve. Ability to set the percentage of the edge covered

by the agent.

3. Environment with Multi-grid support. Edges can move agent from between grids

and grids could be stacked to simulate buildings floors, section of space stations,

etc.

3.3.2 Utility features

For experiment implementation it is usually required to have a map to translate

experiment types and magnitudes to implementation values, which could generate

friction during the implementation. It is expected that providing a way to implement

the experiment closer to the specification will lead to a higher fidelity to the specification.
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0. There is not support for research supporting features, there is the need for a map

to translate specification values to implementation values.

1. Basic support for units of measurement, like ability to define rounds in time

scales (seconds, minutes, hours), distances in metric units (centimeters, meters,

etc), and other like temperatures, light intensity, etc. Provide basic arithmetic

using translation features like ”3 m + 50 cm” are ”3.5 m”. It should also validate

the data types involved in sub-expressions and throw an error for expressions like

”3 s + 3 m”.

2. Ability to define resources, and query them using set theory methods. This

simple idea could easily represent complex behavior. For example, in the second

experiment – the Pred-Prey –, defining the behavior of the wolf with the rabbits

in sight may be that the wolf will walk in direction to the closest rabbit.

wolf = self

visible = {r : rabbits|dist(wolf, r) ≤ wolf.vision}

chosen : visible • ∀ r : visible • dist(wolf, chosen) ≤ dist(wolf, r)

3. Ability to define an environment with several layers of grids. Each grid could

have inaccessible cells, whcih means agents should not be able to move into that

cell, nor used in any way during the simulation (like finding neighbors through

that cell). Grids could be standard square grid or have a more complex layout

like a Voronoi topology [16].
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3.3.3 Counterfactual support

Counterfactual is a relatively new idea for ABM and – as far as we know – its

support is nonexistent in ABM frameworks. This is the ability in the framework to

define two or more execution of the same model with different initial parameters, or

to branch a new executions from a previous one with new set of parameters. Then it

would be possible to perform some macroscopic comparisons among those executions.

Model branching for multiple possible worlds generation: This is the ability to

describe a trigger where a simulation will split into two or more simulations, each of

them with the same initial history but with new parameters. Because of the risk of

branch explosion, control settings, like max amount of branches, should be provided.

0. Single model during whole simulation. Model branching at the beginning or

during execution needs to be completely implemented from zero.

1. Ability to save a simulation status then, in a different process read, pre-process

and run the updated model.

2. Ability to orchestrate multiple executions in a list of runners with their initial set

of parameters.

3. Ability to branch a model when some rule has been activated (triggered). Ability

to manage executions and orchestrate executions in new runners. Ability to

remove macroscopic similar executions (those having similar macroscopic behavior).
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CHAPTER 4

Experiments on Frameworks

“Divide each difficulty into as many

parts as is feasible and necessary to

resolve it.”

René Descartes, Discourse on

Method
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This chapter starts by describing the representative ABM frameworks to be evaluated,

followed by a detailed description of each experiment performed during our research.

4.1 Frameworks to be evaluated

The research approach followed resembles a waterfall. There were three main

stages: research around the feature space needed to create the FSMM, then designing a

reference architecture with robust Computational Properties, and finally, the evaluation

of the reference architecture performed via the POC and in-silico experiments.

During this research, five ABM frameworks were chosen to be evaluated according

the Feature Space Maturity Model because of their usage share in ABM related research,

documentation quality, historical importance, and ease of access. Swarm was one of

theABM Frameworks initially considered for evaluation. Swarm [18] was released on

November 1997 and its last stable release (version 2.4.1) is of April 2009. Due to the

high number of incompatibilities, we decided to drop it early in the research.

The ABM frameworks selected for this research are: NetLogo, MASON, Repast,

Mesa, and Agents.jl. A short description of each one follows.

4.1.1 NetLogo

NetLogo is a multi-agent programmable modeling environment. It is used by hundreds

of students, teachers, and researchers worldwide. It was developed for domain experts

without a programming background to model related phenomena [101]. It was first

released on 1999 and its most recent stable version was 6.3.0 released on 8 December

2021.
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4.1.2 MASON

MASON is a fast discrete-event multi-agent simulation library core written in Java

which is a well known and powerful programming language [37]. It is designed to be

the foundation for large custom-purpose Java simulations, and also to provide sufficient

functionality for many lightweight simulation needs [56]. MASON Stands for Multi-

Agent Simulator Of Neighborhoods (or Networks). It is intended to provide a core of

facilities useful for the Social Sciences as well as to other agent-based modeling fields

such as Artificial Intelligence and Robotics. The latest release of MASON was version

20 on August, 2019 and requires the agents to be developed in Java. Simulations need

to extend from the class sim.engine.SimState; being just a library, it requires steps

management to be handled by the developer.

4.1.3 Repast

The Repast Suite is a family of advanced, free, and open-source agent-based modeling

and simulation platforms that have been under continuous development for over 20

years. Its most used version is Repast Simphon 2.10.0, released on 22 December 2022.

Repast is a richly interactive and easy-to-learn Java-based modeling toolkit that is

designed for use on workstations and small computing clusters [69].

Repast uses Groovy – a wrapper over the Java programming language [7] usually

distributed as a Plug-In for the Eclipse Integrated Development Environment (IDE)

Open Source Platform [15]. While not explicitly mentioned in their documentation, it

appears that Repast re-implements all of NetLogo’s calls.

4.1.4 Mesa

Mesa is a modular ABM framework for building, analyzing, and visualizing agent-

based models. Mesa is written in Python [93] and keeps its modeling, analysis, and
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visualization components separate – though they are intended to work together. Most

models consist of one class to represent the model itself; one class (or more) for agents;

a scheduler to handle time (order in which the agents act), and possibly a space for the

agents to inhabit and move through [50].

There is a module which allows Mesa to run as a server and the UI can be displayed

in a standard browser like Firefox [67].

4.1.5 Agents.jl

Agents.jl is a framework for ABM fully implemented in Julia, a modern and powerful

programming language [13] for high-performance computing. It’s a free, open source,

transparent, intuitive and simple-to-learn high quality software, with extensive documentation.

It is modular and has a function-based design. It supports many types of space:

arbitrary graphs, regular grids, continuous space, or even instances of Open Street

Map. [22].

4.2 Experiments

During this work, four experiments were performed, each one covering different

combinations of features used in ABM. The experiments are: Sugarscape, Pred-Prey,

Pareto Principle, and Covid propagation model.

4.2.1 Sugarscape Model

Sugarscape is a model for artificially intelligent agent-based social simulation following

some or all rules presented by Joshua M. Epstein & Robert Axtell in their book Growing

Artificial Societies [27]. There are several variants but all Sugarscape models include the

agents (inhabitants), the environment (a two-dimensional grid), and the rules governing

the interaction of the agents with each other and the environment.
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The original model is based on a 51x51 cell grid, where every cell can contain

different amounts of sugar (or spice). In every step, agents look around, find the closest

cell filled with sugar, move, and metabolize. They can leave pollution, die, reproduce,

inherit sources, transfer information, trade or borrow sugar, generate immunity, or

transmit diseases - depending on the specific scenario and variables defined at the set-

up of the model. Sugar in simulation could be seen as a metaphor for resources in an

artificial world through which the examiner can study the effects of social dynamics

such as evolution, marital status, and inheritance on populations [27].

What is modeled?

As mentioned, this model may grow huge, so the basic model is a 150x200 torus

grid with 150 agents of both sexes (75 males and 75 females) randomly scattered in

the grid. Agents can overlap in the grid and can choose to reproduce, which always

succeeds. Offspring are considered adults immediately after being spawned and will

have in average half of their parents values but same energy as the mother.

Agents consume sugar of just one grid per round and have the ability to look for

mates and sugar based on sight which is the same as speed (i.e. in their turn the can

walk as far as they can see), consume sugar based on metabolism, and have a growing

probability of dying of natural causes (also the agent could also die if its sugar is less

than its metabolism).

Therefore the agents have 5 main static parameters, normalized for simplicity

• Max-Energy: A value from 0 to 1, indicates the max allowed energy the agent

can consume. It is assigned randomly using the Normal curve, average 0.9 and

standard deviation 0.1 .

• Metabolism: The energy the agent consumes per round. It is assigned randomly

using the Normal curve, with average 0.2 and standard deviation of 0.1.
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• Range: a value which indicates how much the agent can see and move in the grid.

It is assigned randomly using the Normal curve, with average 10 and standard

deviation of 1.0.

• Mate-need-grow-rate: A value which indicates the grow of the need to mate per

round. It is assigned randomly using the Normal distribution, average is 0.1 and

standard deviation is 0.01 .

• Death-grow-rate: A value from 0 to 0.1 It indicates the grow of the natural death

rate. It is assigned randomly using the Normal distribution, average in 0.09 and

with standard deviation 0.01 .

Those four parameters are floating-point values and are to be assigned randomly to the

first agents and be averaged for offspring.

Therefore, the agents have 3 counter parameters, which accumulate during execution

• Curr-Energy: A value from 0 to Max-Energy: It shrinks per round based on the

metabolism and grows based in the energy consumed in the patch. New agents

start with Max-Energy, and for spawned agents, the start of Curr-Energy/2 of

their mother.

• Mate-need: A value from 0 to 1. It indicates the need to mate per round. It

starts in 0 and grows by Mate-need-grow-rate. It is reset to 0 if the agent mates

successfully.

• Natural-death-rate: A value from 0 to 1. It indicates the probability of death, it

grows by turn based on the death-grow-rate.

There is a difference in the use of Mate-need: for male agents it indicates the need

to search for a female to mate. For females, it indicates their acceptance of a mating

proposal.

The environment is divided in patches and each patch has 3 parameters
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• Max-Energy: A value from 0 to 1, indicates the max allowed energy an agent can

consume in this patch. It is assigned randomly using normal curve, average 0.9

and standard deviation 0.1 .

• Grow-Rate: A value from 0 to 1. The energy the path grows per round. It

is assigned randomly using the Normal curve, with average 0.04 and standard

deviation of 0.001.

• Curr-Energy: A values from 0 to Max-Energy. It grows by grow-rate and shrinks

if consumed by and agent.

There is an important concept of mating decisions which is used for both males and

females, but in different ways. The mating decision threshold is based on the amount of

stored energy (Curr-Energy / Metabolism ) and the Mate-need value. The probability

to choose mating grows with the mate-need and stored energy.

Mate probability = Stored Energy ∗Mate need

There is a small difference in males and female behaviors The rules of the agents

are as follows:

• At the beginning of a round, a male agent will decide whether he looks for a female

to mate with, based on the mating probability. If mating is chosen, the male agent

will look for any available female within his range of action and, if found, he will

go and propose mating; if rejected, he will feed from that patch if available, but if

consummated, he will skip feeding as courtesy for the impregnated female. In the

case where no female is found, the male agent will choose a random direction and

will go that way as far as he can, in pursuit of a female, once he reaches there, he

will feed from that patch. If he chooses feeding instead of mating, it will follow

the standard feeding process.
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• The female accepting of rejecting a mate offer is also based on the mating decision.

• At the beginning of a round of an impregnated female, she will spawn a new agent

with its 5 parameters set based on her own and the father’s parameters, using

a Normal curve of avg 0.5 and 0.1 of standard deviation and its sex chosen at

random. Then it will consume half of its Curr-Energy. After that, it will follow

the standard feeding process. A non-impregnated female agent will just follow

the standard feeding process.

The standard feeding process consists of choosing the patch with the highest amount

of sugar; if there is a tie, the agent will go to the first one found, get there and consume

sugar until Curr-Energy reaches Max-Energy.

Sugar will be refilled at a fixed rate in each grid but will not accumulate if unused.

What is monitored?

Being an evolution approach it is interesting to measure the average of agents

parameters, it is expected that Max-Energy, Range grow while Metabolism and Death-

grow-rate shrink in average.

The Mate-need-grow-rate is more tricky as in both extreme values could cause

population collapse. A high value could cause death by starvation in both males

searching for females and in females giving birth. A value too low will cause a lack

of new spawned agents.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Sugarscape experiment helps evaluate the following features of the

simulation criterion:

• Usability

• Basic framework functionality
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• Locality

• Agent management

Modeling the Sugarscape experiment helps evaluate the interrogation capabilities

criterion as per the following features:

• Visualization

• Statistical support for model attributes.

4.2.2 PredPrey Model

The Lotka–Volterra equations, also known as Predator-Prey (Pred-prey for short)

equations, are a pair of first-order nonlinear differential equations, frequently used to

describe the dynamics of biological systems in which two species interact, one as a

predator and the other as prey. The model makes several assumptions that might not

be valid. In general, the approach can apply to “organic systems” using a plant species

and a herbivorous animal species as an example.

The advantage of this model is that both the behavior of the predators and prey

are related to a single set of equations, shown next:

dx

dt
= αx− βxy

dy

dt
= δxy − γy

where:

x is the number of prey (for example, rabbits), y is the number of some predator

(for example, wolves);
dy

dt
and

dx

dt
represent the instantaneous growth rates of the two
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populations; t represents time, and parameters α, β, δ, γ are positive real numbers

describing the interaction of the two species.

What is modeled?

As mentioned, the model grows quickly, so the basic model is a 500x500 torus grid

with 25 wolves and 250 rabbits. Both wolves and rabbits reproduce asexually. Rabbits

reproduce exactly after 15 rounds and predators reproduce after a successful hunt. If

in its turn a predator can reach a rabbit, it will kill (eat) it by going next to it.

There is no overlapping restriction for the grid and both wolves and rabbits could

see any agent in a radius of 20 units around them and move a maximum distance of

10 units. Wolves will die if they do not eat in ten rounds (time to live goes to 10 after

eating a rabbit and decreases each turn the wolf does not eat). There is no metabolism

for rabbits, their only mission is to escape wolves.

Both wolves and rabbits will be guided by forces. Forces are appliedby agents only

in their visible radius.

Rabbits have four forces

• Desired force: A force of defined random intensity from 0 to 1 which continuously

changes each round (up to 45º, from 22.5º left to 22.5º right).

• Flock force: A force to be near to its flock. It grows linearly to the euclidean

distance of each rabbit and has a initial intensity of 1.

• Personal space force: A force against being to near to other rabbits. It falls

linearly to the euclidean distance and has a initial intensity of 40.

• Fear force: A force against the predators. Its intensity is 200 and doesn’t fall and

is 0 if there is no visible wolf.

Wolves have three different behaviors
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• No rabbit in sight: When there is no rabbit in vision range, the wolf will walk

their maximum distance in random direction in search for rabbits.

• Rabbits in sight but not one in reach: When there are one or more rabbits in

sight but not in walking distance, the wolf will walk in direction to the closest

rabbit.

• At least one rabbit within reach: When there is a rabbit in walking distance, the

wolf will go next to rabbit and eat it. The rabbit dies and the time to live of the

wolf goes back to the maximum of 10 turns.

What is the goal of the simulation?

We seek to evaluate several criteria of the FSMM concept, specially forces in the

ABM frameworks and try to validate the amount of predators and preys that follow the

Lotka–Volterra equations. Data collected per round will be the amount of live wolves

and rabbits and their relative percentages to the total population.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Pred-prey experiment helps evaluate the following features of the

simulation criterion:

• Usability

• Basic framework functionality

• Locality

• Agent management

• Force fields

Modeling the Pred-prey experiment helps evaluate the interrogation capabilities

criterion on these features:
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• Visualization

• Statistical support for model attributes.

• Nearly decomponsable system view

4.2.3 Confounding galore in Pandemic times

The global impact of COVID-19 has been profound, and it is still a public health

threat even with the current generation of vaccines. The Imperial College of London

developed a model around the so-called Non-Pharmaceutical Interventions (NPI) –

aimed at reducing contact rates in the population and thereby reducing transmission

of the virus. Their results drove the behavior or several countries during the peak

of the pandemic. They conclude that the effectiveness of any one intervention in

isolation is likely to be limited, requiring multiple interventions to be combined to

have a substantial impact on transmission [31].

Another main difficulty in addressing the pandemic was the significant amount

of misleading information around the disease [32]. Due the global impact of social

networks, this experiment focuses on modeling three main options on a pandemic, the

best case with only good NPI and first generation of vaccines, one with worst case, with

only contagion-increasing measures, and one where users decide to use different options

and influence others.

What is modeled?

This model can grow quickly, so the basic model is a list of 100x100 tiles. Each tile

has one agent. On every round, each agent has and initial 21% probability to get sick.

Each agent has one measure to lower its probability in 10% to become sick (using a face

mask) and two measures to increase its probability to become sick in 10% (say being

less careful by believing it is immune due to wearing amulets), and a measure which
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does not have any effects (say drinking a glass of orange juice daily).

So the minimum probability to get sick is 1% and the maximum is 21%, yet agents

do not know a-priori which measures are useful and which measures are useless. Agents

do not die and only get sick for the duration of the round.

Each agent has an initial trust level for each measure from 0% to 100%, where 0%

means total lack of trust and 100% means total trust, and chooses to use the measure

depending on random chance being lower of trust level.

Each agent also has a list of 10 forwarding message friends and can have 0 or more

receiving message friends. The messages contains trust % for each of the available

measures.

At the beginning of the turn, each agent consumes all its incoming messages together

with the incoming friends’ trust level, if any, then re-balances its trust levels using a

weighted average. A weighted average is a average where some data points contribute

more than others [12]. The simulation will be run twice, the trust contribution of the

influencers in the first round will be only 2% of the weighted average and in the second

round it will be 3% .

Then, the agent decides which measure it will use for the round. Then its sickness

probability and sickness status are calculated.

If the agent gets sick, it again re-balances its trust level by lowering its trusts by

20% in the measure it is using and increases its trusts by 1% for the measures it is

not using. In the case they do not get sick, they increase by 10% their trusts for the

measures they are using and lower by 1% the trusts for the measures they are not using.

Finally, at the end of its round, the agent forwards its new trust level to its 10

forwarding friends.

The simulation is run for 1200 rounds, and the data to be plotted is the average

trust level of each of the four measures.

For this experiment, the initial trust level and influencers for the agents should be
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collected from a http call to a Web service which sends a JSON file with the trust level

for the 10,000 participating agents. Also at the end of a simulation, each framework

should send a JSON file indicating the average % of agents which got sick per round.

The format for the incoming JSON message is:

x, y, z and w are integers from 0 to 100, the value agent is an id of the influencer

and the power is the power of the influencer over the agent.

The format for the outgoing JSON message is

Here, x is the framework name and each y is the sick ratio per round.

The color schema of the agent is thus: the more brightness the less the chance of

getting sick. If the agent chooses the risk lowering options and did not choose the risk

increasing option it will be very bright, and the other-way around it will be very dark.

Choosing the effect-less measurement will change the tint from green to orange.

The srever for this experiment was implemented here http://localhost:9000/

stats?size=SIZE&influencerCount=INFLUENCER_COUNT‘, where SIZE is the amount

of agents and INFLUENCER COUNT indicates how many agents each agent will

influence.
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What is the goal of the simulation?

The goal of the simulation is to understand the basics of confounding variables

in infection dynamics. It is also used to exercise the ability of the frameworks to

communicate with other tools using the standard http protocol.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Confounding galore experiment helps evaluate the following features

from the simulation criterion:

• Usability

• Basic framework functionality

• Agent management

From the interrogation capability criterion, these are the features to be evaluated:

• Visualization

• Statistical support for model attributes

4.2.4 Economic Wealth Inequity (Pareto Principle )

The Pareto principle states that for many outcomes, roughly 80% of consequences

come from 20% of causes (the “vital few”). Other names for this principle are the 80/20

rule, the law of the vital few, or the principle of factor sparsity. It is based on the works

of Italian economist Vilfredo Pareto, who wrote about the 80/20 connection while at

the University of Lausanne. In his first work, Pareto showed that approximately 80%

of the land in Italy was owned by 20% of the population [75]. An example is in the 1992

United Nations Development Program Report, which showed that the distribution of

global income is very uneven, with the richest 20% of the world’s population receiving

82.7% of the world’s income which follows Pareto’s principle [92].
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This inequality in the wealth distribution seems to emerge inevitably in interacting

environments even in initial equitable starting conditions due to the statistical mechanics

of populations and Gini coefficient [102]. The Gini coefficient measures the inequality

among the values of a frequency distribution, such as levels of wealth [36].

What will be modeled?

As mentioned, this model could grow huge, so the basic model will be similar to

a Monopoly game. It will be a 100x100 grid with 100 agents. Each tile has a cost to

buy (in coins) and will bring a rent for the owner if another agent steps in. Each agent

starts with no coins but will collect a static number of 75 coins per turn.

The rent per tile is calculated from a random number between 1 and 50 coins, and

the cost of purchasing will be that value multiplied by ten. Those values do not change

during a simulation execution.

Tiles can only belong to one agent, and during its turn, the agent first will collect

the static 75 coins, then it will move to another tile in a random position. If the tile

is not owned, and the agent has enough money to buy it, it will buy it. If the tile is

owned and the agent can pay the rent, it will pay it to the owner of the tile.

Finally if the agent cannot pay the rent, it will have to pay an initial amount using

its available coins, and then, pay the rest by giving the tile owner some tiles it owns.

It could be that agent’s tiles cannot match the missing rent, then the agent will have

to surrender all its tiles, but the rest of the rent will be forgiven. There is also the case

were the list of surrendered tiles will exceed the cost of the missing rent pay, but the

owner will not pay the change.

Calculating the list of tiles to pay the rest of the rent, where the excess is minimal, is

a optimization variant of the subset sum problem, which is a known NP-hard problem

[51], therefore a quick (greedy) approximating algorithm will be used. First the agent

tiles are sorted based on its cost from cheaper to more expensive. Iteratively, they tiles
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will be added to an initially empty bag until the amount is reached or exceeded; thus,

the cheaper tiles will be removed while the amount exceeds the rent cost.

After the tile is purchased, or the rent is paid, if the agent has enough coins, it can

upgrade its properties by paying the current cost, this duplicates both the cost and

the rent. The agents will upgrade from their cheaper to the more expensive properties.

Agents do not die and no more agents are added during the simulation. The goal of

each agent is to buy as many tiles as it can.

This experiment does have a natural end when there are no more available tiles (for

buying(. This experiment should be run a thousand times with varying values for the

tiles.

What is the goal of the simulation? The goal of the simulation is twofold, the

first is to confirm the Pareto principle at the end of the simulation. Data collected

contains the final ratio of both coins and land owned by each agent.

Secondly, we want to validate fidelity to the specification of the five implementations

through Macroscopic statistical analysis. For each framework, three macroscopic observable

values will be collected for 10 000 executions. They are the amount to rounds to

complete the experiments, the percentage of coins of the top 20% richer agents, and

the percentage of tiles owned by the top 20% land owner agents.

These values will be plotted in three histograms. With one series for each framework,

we aim to validate they were implemented identically and exercise the idea of statistical

validation of (otherwise) indistinguishable models.

Which criteria of the FSMM can this experiment help evaluate?

Modeling the Pareto experiment help evaluate the following features from the simulation

criterion

• Usability

• Basic framework functionality
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From the interrogation capability criterion, the Pareto experiment aims to evaluate

the following features:

• Visualization

• Statistical support for model attributes

• Support for macroscopic statistical analysis of compatible models

4.2.5 Correlating experiments and feature scoring

The experiments were designed in such a way for them to be useful for scoring the

features in the FSMM. This relationship is depicted in the following table.

Experiment Sugarscape PredPrey Pareto Pandemics

Usability ✓ ✓ ✓ ✓

Basic framework functionalities ✓ ✓ ✓ ✓

Locality ✓ ✓

Agent management ✓ ✓ ✓

Force fields ✓

Table 4.1: Simulation features exercised per experiment

Experiment Sugarscape PredPrey Pareto Pandemics

Visualization ✓ ✓ ✓ ✓

Statistical support for ✓ ✓ ✓ ✓

model attributes

Macroscopic statistical ✓

analysis

Nearly decomposable

System view ✓

Table 4.2: Interrogation capabilities exercised per experiment
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The relationships between experiments and criteria of the FSMM are illustrated in

the following Venn diagrams.

Figure 4.1: Simulation Features exercised by experiment

Similarly for each interrogation capability the Venn diagram is

Figure 4.2: Interrogation Capabilities Features exercised by experiment
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CHAPTER 5

Results & Discussion

“Done is better than perfect. ”

Sheryl Sandberg, Lean In: Women,

Work, and the Will to Lead
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5.1. SUGARSCAPE MODEL

5.1 Sugarscape Model

This section presents the results of the Sugarscape experiment implementation. An

analysis of each criterion per experiment, per framework, is provided.

As mentioned in the experiment descriptionm only three graph per simulation were

included in this document. Other graphs where used during the development and

debugging of the simulation.
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5.1.1 NetLogo

Sugarscape as defined in the experiment is implemented in NetLogo in this URL

https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Sugarscape/.

The implementation required a single experiment NetLogo file which contains both

the User Interface (UI) and behavior specs. This was straightforward due Basic

framework functionality already provided by the framework, with only two types

of agents (breeds in NetLogo jargon), males and females, and heavy use of provided

Locality and Agent management functionality. The Visualization of the agents

was also available since the beginning; it can be disabled to speed up simulation.

Debugging was done using several tools including graphs. As defined in the experiments,

onlyModel statistics are shown in the final report; these include average agent energy,

live count and average patch energy .

The most challenging aspect was the semantics difference from the usual OO approach.

In general, the Usability of the tool was really good.

Figure 5.1: Sugarscape on NetLogo
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5.1.2 MASON

Sugarscape as defined in the experiment is implemented in MASON in this URL

https://gitlab.com/msc_tesis/MASON/-/tree/main/Sugarscape

The experiment was implemented in nine standard Java classes using the MASON

jar file libraries. Four classes were utilities, implementing missingAgent management

functionalities, three for agents behaviors, one for the environment and a final one

encapsulating ‘boiler plate’ code for the UI.

The implementation required several utility classes. The minimalist approach of the

framework lacks of tools for Locality. Tough not rigorously measured, the execution

was probably the fastest one, which helped with the Usability and takes advantage of

the ample support for the Java environment to implementBasic framework functionality.

As the MASON framework is just a Java library, the experiment was developed in the

Netbeans IDE[4].

Visualization capabilities were acceptable out of the box. Model statistics

including average agent energy, live count and average patch energy – as shown below

– were straightforward to implement.

Figure 5.2: Sugarscape over MASON
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5.1.3 Repast

Sugarscape as defined in the experiment is implemented in Repast in this URL

https://gitlab.com/msc_tesis/Repast/-/tree/main/Sugarscape.

Sugarscape was implemented using a customized Eclipse version which works as

the IDE for Basic framework functionality. Eight Groovy files were created, one

utility, three for the agents, one for the environment and the final three were ‘boiler

plate’ code for configuration and UI specification. Repast generates boiler plate code in

Java to handle the simulation. It creates the code during file creation and code change.

The main drawback of Repast is Usability, because the generated code may get stale

quickly and affect its underlying Eclipse Platform. A full project clean was required

every hour or so to avoid IDE crashes, also Visualization speed was noticeably slow.

Given that Repast follows NetLogo’s approach, most of the logic was taken from

the NetLogo version, updating the code to follow Groovy’s syntax. As in NetLogo,

Locality and Agent management was handled by the framework.

Model statistics were slightly harder to handle than in NetLogo for Repast requires

a data producer and a graph description; the UI to define them failed from time to time.

Figure 5.3: Sugarscape over Repast
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5.1.4 Mesa

Sugarscape as defined in the experiment is implemented in Mesa in this URL https:

//gitlab.com/msc_tesis/Mesa/-/tree/main/Sugarscape.

As Mesa is just a collection ofPpython classes, the experiment was implemented

in the Community version of IntelliJ[47]. It was implemented using five Python files.

They were one utility file to implement Locality functionality, one file for the agent

behavior, one for the patch behavior, one for the simulation and Agent management

and one to specify the UI.

Even while distributed in five files, this was the implementation which required the

smallest amount of code (less than 15 kb) and it benefits from the huge support for the

Python environment to implement Basic framework functionality.

The main Usability drawback was that the convoluted connection between the UI

and the back-end makes the simulationVisualization very slow when the UI is enabled.

Model statistics including average agent energy, live count and average patch energy

– as shown – were easy to implement.

Figure 5.4: Sugarscape over Mesa
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5.1.5 Agents.jl

Sugarscape as defined in the experiment is implemented in Agents.jl in this URL

https://gitlab.com/msc_tesis/Agents.jl/-/tree/main/Sugarscape.

It was implemented using five Julia files. They were two utility files, including

Locality logic, one file for the agent behavior, one for the simulation and one to specify

the UI. As a Julia package, it benefits from the support for the Julia environment to

implement Basic framework functionality, including the Microsoft Visual Studio

Code [64] using the Julia extension [49] which supports debugging.

There were two major Usability drawbacks. The first was that the startup time

was very slow (about 2 minutes). This was somehow mitigated using a Operating

System (OS) dependent cache (which takes about 5 minutes to create) and using an

interactive command-line (called Read-Eval-Print Loop (REPL)), with some limitations

(a change in the structure specs will require a new session). The other drawback is the

lack of ability to specify multiple axis for the Model statistics graph using the default

Application Programming Interface (API).

Visualization capabilities were limited and there was a bug inAgent management,

which breaks the framework when the agent size is a function (instead of static value)

and agents are removed during the experiment.

Figure 5.5: Sugarscape over Agents.jl
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5.2 PredPrey Model

This section presents the results of the PredPrey experiment implementation, along

with an analysis of each criterion per experiment for each framework.

While in most of the cases, there were wolves and rabbits at the end of the 1000

rounds, there were four possible outcomes for this experiment

• Population collapse where wolves eat all rabbits and die of starvation

• All Wolves die of starvation but some rabbits survive and reproduce continuously

• Wall stability where wolves and rabbits form two columns, the wolves one chasing

the rabbit ones. This formation allowed continuous growth of both types of agents.

• Fireworks, where packets of rabbits grew and were eventually attacked by wolves

For the two latter outcomes, which were the most common ones, there were sections

of highly interacting agents which should have been detected, but no framework provided

Nearly decomposable system view capabilities.
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5.2.1 NetLogo

PredPrey, as defined in the experiment, is implemented in NetLogo in this URL

https://gitlab.com/msc_tesis/NetLogo/-/blob/main/PredPrey/.

The implementation required a single experiment file which is a NetLogo specs

and contains both the UI and behavior specs, specially Force fields logic as it is not

provided by the framework.

The implementation was straightforward with only two types of agents (called breeds

in NetLogo jargon), rabbits and wolves using Locality and Agent management

functionality already provided. Only two Model statistic graphs were added, the

alive count and the percentage of rabbits vs wolves.

Visibility capabilities were used, specially the direction of agents using the triangle

shape. The most challenging Usability aspect was that the semantics is different from

the usual OO approach. A major drawback is the limited amount of debugging tools,

which may slow down bigger simulation endeavours, yet for this experiment the provided

Basic framework functionality was good enough.

Figure 5.6: PredPrey over NetLogo
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5.2.2 MASON

PredPrey, as defined in the experiment, is implemented in MASON in this URL

https://gitlab.com/msc_tesis/MASON/-/tree/main/PredPrey.

The experiment was implemented in nine standard Java classes using the MASON

jar file libraries. Four classes were utilities, including vector functions for Force fields,

three for agents behaviors (the base agent class, one for the rabbits and another one for

wolves), one for the environment and a the final one was ’boiler plate’ code for the UI.

Stability of the framework over Netbeans was good for the whole experiment, which

confirms MASON Usability.

The implementation required several utility class events to complete Locality functionality,

due to the minimalist approach of the framework, yet it has the advantage of the vast

support for the Java environment to implement Basic framework functionality.

One interesting Agent management limitation is that the removeSteppable method

does not remove the agent until the full round is complete, therefore, a boolean rabbit

variable isDead was required to avoid using a death prey.

Only two Model statistic graphs were added, the alive count and the percentage

of rabbits vs wolves. A limitation for Visibility was the missing capability to draw a

shape, like a triangle, to show which direction the agent was facing.

Figure 5.7: PredPrey over MASON

60

https://gitlab.com/msc_tesis/MASON/-/tree/main/PredPrey


5.2. PREDPREY MODEL

5.2.3 Repast

PredPrey, as defined in the experiment, is implemented in Repast in this URL

https://gitlab.com/msc_tesis/Repast/-/blob/main/PredPrey/.

The implementation required eight Groovy files and two Java files, including a vector

class to handle Force fields.

Because of Repast origins, most of the Basic framework functionality was

implemented based on the NetLogo version, updating the code to follow Groovy’s

syntax. Also, as in NetLogo, Locality and Agent management was handled by

the framework.

There were several Usability issues, for example, Repast creates helper classes

during coding which needs to be re-synchronized using the clean/rebuild option from

time to time. When using Java 11, several random incompatibilities started to appear

at execution time; the only solution was to move the framework to Java 17.

Visibility performance was very poor compared to the NetLogo/MASON version.

As with previously mentioned frameworks, only two Model statistic graphs were

added, the alive count and the percentage of rabbits vs wolves.

Figure 5.8: PredyPrey over Repast
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5.2.4 Mesa

PredPrey, as defined in the experiment, is implemented in Mesa in this URL https:

//gitlab.com/msc_tesis/Mesa/-/blob/main/PredPrey/.

The implementation required 5 files, including a vector utility to simulate the Force

fields, one file for Locality functionality, one for both agents behavior, one for the

simulation and Agent management, and finally one for UI specs. As a Python

library, it benefits from the support for the Python environment to implement Basic

framework functionality

The implementation was straightforward, with only two types of agents: rabbits

and wolves. Only two Model statistic graphs were added, the alive count and the

percentage of rabbits vs wolves.

The most challengingUsability aspect was the incredibly slow speed of the UI in the

browser which makes testing really difficult. Also Visibility functionality was limited

and getting an acceptable screen rendering required manual adjustment, including

zooming out on a scaled canvas – worked only on Google Chrome.

Figure 5.9: PredPrey over Mesa
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5.2.5 Agents.jl

PredPrey, as defined in the experiment, is implemented in Agents.jl in this URL

https://gitlab.com/msc_tesis/Agents.jl/-/tree/main/PredPrey

The experiment was implemented in four standard Julia files using the Agents.jl

libraries, including a class to handle Locality capabilities. It used the complex number

data type to simulate the Force fields. As a Julia package, it benefits from the support

for the Julia environment to implement Basic framework functionality.

There were several Usability issues during the implementation, including the lack

of backward compatibility of system images from Julia 1.9 and 1.10 and some bugs

in Agent management when the size is a function and agents are removed. Also

Visibility performance was very poor compared to NetLogo/MASON.

It was impossible to visualize Model statistic on two axes with the provided API.

Figure 5.10: PredPrey over Agents.jl
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5.3 Pandemics Model

In this section the results of the Pandemics experiment implementation, along with

analysis of each criterion per experiment, for each framework, is provided.
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5.3.1 NetLogo

The COVID-19 pandemic, as defined in the experiment, is implemented in NetLogo

in this URL https://gitlab.com/msc_tesis/NetLogo/-/blob/main/Pandemics/.

The implementation required a single experiment file which is a NetLogo specs

and contains both the UI and behavior specs. This was straightforward due Basic

framework functionality being already provided by the frameworkd, using the standard

NetLogo turtles. TheVisualization of the agents was also available since the beginning,

with the ability to disable it to speed up simulation.

The most challenging aspect was that the semantics is different from the conventional

OO approach. In general, the Usability of the tool was really good. One limitation

was that the http requests were poorly documented and the post call did not support

more than 1500 sets of values, even using the multipart structure which should support

several megabytes of data.

We used the provided Agent management capabilities to locate one user per cell

in the grid but had to implement the required mailbox approach.

The following figure shows the two rounds of the simulation on NetLogo with 2%

and 3% of agent trust provided by influencers.

Figure 5.11: Pandemics over NetLogo
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We are interested in reviewing Model statistics, including the sick ratio and trust

level differences among the two rounds. In the first round, influencers provide a 2%

agent trust, whereas in the second round, they only offer an additional percent point of

trust. Interestingly, despite this expected small difference, in the second round agents

do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from NetLogo.

Figure 5.12: Pandemics over NetLogo using reported data
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5.3.2 MASON

The COVID-19 pandemic, as defined in the experiment, is implemented in MASON

in this URL https://gitlab.com/msc_tesis/MASON/-/blob/main/Pandemics/.

The implementation required seven experiment files, three for logic, one for the UI

and for handling multipart post. This was straightforward due to Basic framework

functionality being already provided by the Java environment, using known libraries

like those for JSON handling. The Visualization of the agents was also available since

the beginning, being completely fluid even for 10000 agents.

There wasn’t any particular technical challenge and in general the Usability of the

tool was really good. One limitation was the http multipart post functionality was

lacking from the standard Java libary, so it was built for the Java client.

We used the provided Agent management capabilities to locate one user per cell

in the grid but had to implement the required mailbox approach.

The first chart shows the two rounds of the simulation over MASON with 2% and

3% of agent trust provided by influencers.

Figure 5.13: Pandemics over MASON
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Similar to NetLogo, we are interested in reviewing Model statistics, including sick

ratio and trust level differences among the two rounds. In the first round, influencers

provide a 2% agent trust, whereas in the second round, they only offer an additional

percent point of trust. Interestingly, despite this expected small difference, in the second

round the agents do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from MASON.

Figure 5.14: Pandemics over MASON using reported data
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5.3.3 Repast

The COVID-19 pandemic, as defined in the experiment, is implemented in Repast

in this URL https://gitlab.com/msc_tesis/Repast/-/blob/main/Pandemics/.

The implementation required five experiment files, plus hundreds of automatically

created maintenance files. The main files we the agent Groovy file, the simulation

Groovy file, and the UI specs files. There were two helper java files, a required utility file

and one for handling multipart post. It was straightforward due to Basic framework

functionality being already provided by the Java environment, using known libraries

like those for JSON handling. The Visualization of the agents was also available since

the beginning, being fluid even for 10000 agents.

The main challenge for the Usability of the tool is the fact that there is a need

to keep cleaning the environment to avoid stale autogenerated Java classes and that

reporting specs is not performed through code but in the UI which can get convoluted.

Another limitation was that the http multipart post functionality was lacking from the

standard Java library, so it was built for the Java client.

We used the provided Agent management capabilities to locate one user per cell

in the grid but had to implement the required mailbox approach.

The first chart shows the two rounds of the simulation over Repast with 2% and 3%

of agent trust provided by influencers.

Figure 5.15: Pandemics over Repast
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Similar to NetLogo and MASON, we are interested in reviewing we are interested

in reviewing two Model statistics: the sick ratio and trust level differences among

the two rounds. In the first round, influencers provide a 2% agent trust, whereas in

the second round, they only offer an additional percent point of trust. Interestingly,

despite this expected small difference, in the second round agents do not discover that

the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from Repast.

Figure 5.16: Pandemics over Repast using reported data
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5.3.4 Mesa

The COVID-19 pandemic, as defined in the experiment, is implemented in Mesa in

this URL https://gitlab.com/msc_tesis/Mesa/-/blob/main/Pandemics/.

The implementation required seven experiment files, three for logic, one for the UI.

It was straightforward due to Basic framework functionality being already provided

by the Python environment, using known libraries like those for JSON handling. There

were no communication capabilities between agents which is a part of the Agent

Management topic. The Visualization of the agents was also available since the

beginning, being fluid even for 10000 agents.

There wasn’t any technical challenge. In general, the Usability of the framework

was really good. The speed of display is slow, therefore only the final step was displayed.

The first chart shows the two rounds of the simulation on Mesa with 2% and 3% of

agent trust provided by influencers.

Figure 5.17: Pandemics over Mesa
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Similar to the other frameworks, we are interested in reviewing the sick ratio and

trust level differences among the two rounds. In the first round, influencers provide a

2% agent trust, whereas in the second round, they only differ in one additional percent

point of trust. Interestingly, despite this small difference, in the second round agents

do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from Mesa.

Figure 5.18: Pandemics over Mesa using reported data
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5.3.5 Agents.jl

The COVID-19 pandemic, as defined in the experiment, is implemented in Agents.jl

in this URL https://gitlab.com/msc_tesis/Agents.jl/-/blob/main/Pandemics/.

The implementation required five experiment files, three for logic, one for the UI

and one to handle command line simulation. The implementation had to be written

two times as the Makie UI support couldn’t handle all users. So for the UI shown in the

following section, we used a smaller 85x85 grid (instead of the 100x100 expected grid).

The reports were done using a command-line only version with the expected grid size.

Basic Framework Functionality was provided by the Julia environment, including

using known libraries like JSON & HTTP. The Visualization was really slow even

when using a version that was only 64% the size of the other frameworks

Provided Agent Management capabilities like placing agents in the coordinate

were not used due to memory issues in Julia. The main Usability challenge was the

unexpected Julia memory issue which was not present in previous experiments.

The first chart shows the two rounds of the simulation over Julia, with a smaller

grid (85x85) than with the other implementations (100x100) due the memory issues

with Julia. The results of the 1200 steps with 2% and 3% of agent trust were provided

by GUI-less execution of the experiment with the full grid.
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Figure 5.19: Pandemics over Agents.jl
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We are interested in reviewing Model statistics, including the sick ratio and trust

level differences among the two rounds. In the first round, influencers provide a 2%

agent trust, whereas in the second round, they offer an additional percent point of trust.

Interestingly, despite this small difference, in the second round agents do not discover

that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from Agents.jl.

Figure 5.20: Pandemics over Agents.jl using reported data
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5.4 Pareto Model

This section shows the results of the Pareto experiments, along with analysis of each

criterion per experiment, for each framework.

For this experiment, due its quick run and natural stop, the simulations were

run 10000 times to collect macroscopically comparable data and to validate that all

implementations of the experiments are statistically identical.

At the end of the experiments, we perform an analysis of the macroscopic observables

– for each framework.
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5.4.1 NetLogo

Pareto, as defined in the experiment, is implemented in NetLogo in this URL https:

//gitlab.com/msc_tesis/NetLogo/-/blob/main/Pareto/.

The implementation required a single experiment file which contains both the UI

and behavior specs. No external add-ons were required as NetLogo provided all required

Basic Framework Functionality.

The implementation was straightforward, with only one type of agent. Visualization

was very fast, and for the Model statistic only the cumulative curve in decreasing

order (the Pareto curve) for the owned tiles and coins was added.

A Comma-separated values (CSV) file data for theMacroscopic statistic analysis

was created using provided file saving functionality. Each line contains the three

macroscopic observables defined in the specification. The simulation was run 10000

times. As NetLogo does not support multiple executions, in order to simulate the Pareto

model all executions were done in a loop which reset the values. For this experiment

the Usability was good enough. As with previous experiments, the main challenge in

NetLogo was its convoluted syntax.

Figure 5.21: Pareto over NetLogo
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5.4.2 MASON

Pareto, as defined in the experiment, is implemented in MASON in this URL https:

//gitlab.com/msc_tesis/MASON/-/blob/main/Pareto/.

The implementation required five Java files, which contains both the UI and behavior

specs. No external jar files were required as Netbeans provided the Basic framework

functionality.

The implementation was straightforward, with only one type of agent. Visualization

was very fast, and for the Model statistic only the cumulative curve in decreasing

order (the Pareto curve) for the owned tiles and coins was added. There was a minor

limitation to draw the 20/80 lines, so two series were added to draw those lines.

A CSV file data for the Macroscopic statistic analysis using standard Java

file system support. Each line containing the three macroscopic observables defined

in the specification. The simulation was run 10000 times. Because of Java following

the OO paradigm, it was very natural to create and execute the simulation objects

independently. If desired, it is simple to modify each simulation execution independently.

For this experiment theUsability was good, especially the speed of headless executions.

Figure 5.22: Pareto over MASON
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5.4.3 Repast

Pareto, as defined in the experiment, is implemented in Repast in this URL https:

//gitlab.com/msc_tesis/Repast/-/blob/main/Pareto/.

The implementation required five Groovy files, plus 100+ files created by the Eclipse

framework. Basic framework functionality, like debugging capabilities, were provided

by Eclipse, whereas Visualization of not time-based graphs are not possible in the

current version Repast. One Model statistic graph required to visually identify the

Pareto behavior was the cumulative of coins and tiles. Yet, in order to create it, the

data was stored in a CSV file and then post-processed as a graph in a LibreOffice Calc

worksheet [34], a third party tool.

A CSV file data was produced for the Macroscopic statistic analysis using the

standard Java file system support. Each line contains the three macroscopic observables

defined in the specification. The simulation was run 10000 times. For this experiment

the Usability was very poor, as it was required to clone a version of a previous

experiment, given that the Eclipse plugin started experiencing issues creating new

simulation projects from scratch. While Repast seems to provide the functionality

to run multiple iterations at the same time, the documentation was lacking and the

behavior seemed intricate. In order to perform the simulation, all executions were done

in a loop which reset the values, and a checkbox to run 10000 times was added to the

UI.

Figure 5.23: Pareto over Repast
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5.4.4 Mesa

Pareto, as defined in the experiment, is implemented in Mesa in this URL https:

//gitlab.com/msc_tesis/Mesa/-/blob/main/Pareto/.

The implementation required four Python files, including the Pareto main file,

one for the tile, a visualization helper and one for the agent. Basic framework

functionality, like debugging capabilities, were provided by IntelliJ. Visualization of

graphs which are not time-based are not possible in the current version Mesa. One

Model statistic graph required to visually identify the Pareto behavior was the

cumulative of coins and tiles; in order to create it, the data was stored in a CSV

file and then post-processed as a graph in a LibreOffice Calc sheet [34], a third party

tool.

A CSV file data was generated for the Macroscopic statistic analysis using

standard Python file system support. Each line contains the three macroscopic observables

defined in the specification. The simulation was run 10000 times. Given the class-based

OO being present in the Python programming language, it was really natural to create

and execute the simulation objects. If desired, it is uncomplicated to modify each

simulation execution independently.

For this experiment the Usability was poor for the UI, as it was too slow, but

acceptable during the headless 10000 iterations.

Figure 5.24: Pareto over Mesa
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5.4.5 Agents.jl

Pareto, as defined in the experimen,t is implemented in Agents.jl in this URL https:

//gitlab.com/msc_tesis/Agents.jl/-/blob/main/Pareto/.

The implementation required several Julia files, which contains both the UI and

behavior specs. No external Julia modules files were required as MS Code provided

Basic framework functionality – such as debugging.

The implementation was straightforward, with only one type of agent. Visualization

was very fast. As with Repast and Mesa, only time aggregate graphs are allowed in

Agents.jl. The expected Model statistic was the cumulative curve in decreasing order

(the Pareto curve) for the owned tiles and coins, and had to be saved in a file to be

plotted afterward by a third party tool.

A CSV file data for the Macroscopic statistic aAnalysis was created, using

Julia’s standard file system support. Each line contains the three macroscopic observables

defined in the specification. The simulation was run 10000 times. Because of its

functional approach, it was natural to create and execute simulations in Julia. If desired,

it is easy to modify each simulation execution independently. For this experiment the

Usability was good, specially the speed of headless executions.

Figure 5.25: Pareto over Agents.jl
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5.5 Macroscopic Statistical Analysis & Specification

Fidelity

Regarding the Pareto simulation, for each execution, three macroscopic observables

were included in a CSV file. These files where then processed by a script to create

histograms, where each series represents a framework.

Using this approach, we were able to identify few deviations of some implementations

with respect to the specification – which were not apparent a priori – like sorting the

of the tiles based on price when settling an outstanding debt or improving a tile.

5.5.1 Histogram

After performing the necessary corrections, the histograms show that the macroscopic

observables of all versions are statistically indistinguishable, which supports the argument

that all implementations follow the specification. Some highlights for each histogram

are mentioned below.

Figure 5.26: Histogram for rounds

Notice the tail after 2500 rounds. This is due the fact that each tile needs to be

purchased to complete the simulation, but agents can only reach a tile by chance, which
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could create iterations with more than 5000 steps.

Figure 5.27: Histogram for coins ownership by top 20% of agents

Coins ownership are clearly around 80% but there is a hump of scenarios where the

20% or less of the agents owned the 100% of the coins. This could be caused by the

rule of settlement, where even when an agent had an outstanding debt of one coin it

needs to surrender a whole tile. Then the agents which hoard most of tiles will reap

more of the rent benefits.

Figure 5.28: Histogram for tiles ownership by top 20% of agents

Tiles ownership are clearly around 70-80% but there is a hump in scenarios where
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the 20% or less of the agents owned the 100% of the tiles. Similar to coin ownership,

this could be caused by the hard rule of settlement where even when an agent had a

outstanding debt of one coin it needs to surrender a whole tile, which seems to lead to

some agents hoarding most of tiles in some executions.

5.5.2 Coefficient of Variation

In order to compare the macroscopic of the observables, we calculated the coefficient

of variation for each framework. The Coefficient of variation (CV) is a standardized

measure of dispersion of a probability distribution or frequency distribution. [29]

The CV is defined as the ratio of the standard deviation σ to the mean µ:

CV =
σ

µ
. (5.1)

For the five frameworks, the calculated CV for the three histograms (round count

to completion, top 20% ownership of coins, top 20% of tiles ownership) is shown in the

following table

Engine Rounds to finish Pareto Coins Pareto Tiles

NetLogo 0.011 0.016 0.027

MASON 0.010 0.016 0.027

Repast 0.011 0.015 0.025

Mesa 0.011 0.016 0.028

Agents.jl 0.010 0.016 0.028

Table 5.1: Coefficient of variation for three chosen macroscopical observables

As CV is a unit-less measure, it is particularly useful for comparing variability across

datasets with different units or scales. In the example, it shows almost identically values

for almost all implementation with a small difference in Repast, specially the CV of the

Pareto Tiles.
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This difference can be seen in the histogram as well, and could be due to a small

difference in the model or in the random number generators of Repast.

5.5.3 Fréchet Distance

The Fréchet distance is a measure of similarity between curves that takes into

account the location and ordering of the points along monotonic (not moving backwards)

curves [24]. The formula for the continuous Fréchet distance is

F (A,B) = inf
α,β

max
t∈[0,1]

{d(A(α(t)), B(β(t)))} (5.2)

The discrete Fréchet distance is calculated using the above formulae for all points

of two curves. The Fréchet distance between axis/frameworks of the three histograms

(round count to completion, top 20% ownership of coins, top 20% of tiles ownership)

were calculated. While there are techniques to approach Fréchet distance efficiently

[25], the general formula was used, because of the few number of points in the curves.

The implementation of the discrete Fréchet distance is located here https://gitlab.

com/msc_tesis/StatisticalComparison.

Fréchet distance for rounds, largest values are marked with *.

NetLogo MASON Repast Mesa Agents.jl

NetLogo 0.0 68.0 87.0* 44.0 68.0

MASON 68.0 0.0 114.0* 72.0 95.0

Repast 87.0* 114.0* 0.0 130*.0 102.0*

Mesa 44.0 72.0 130.0* 0.0 97.0

Agents.jl 68.0 95.0 102.0* 97.0 0.0

Table 5.2: Fréchet distance for histograms of rounds to complete experiment

Fréchet distance for histogram of top 20% coin ownership, largest values are marked

with *.
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NetLogo MASON Repast Mesa Agents.jl

NetLogo 0.0 89.0 299.0* 38.3 46.0

MASON 89.0 0.0 388.0* 97.0 43.0

Repast 299.0 388.0* 0.0 291.0* 345.0*

Mesa 38.32 97.0 291.0* 0.0 54.0

Agents.jl 46.0 43.0 345.0* 54.0 0.0

Table 5.3: Fréchet distance for histograms of top 20% coins ownership

Fréchet distance for histogram of top 20% tile ownership, largest values are marked

with *.

NetLogo MASON Repast Mesa Agents.jl

NetLogo 0.0 75.0 180.0* 33.1 41.6

MASON 75.0 0.0 255.0* 69.0 57.0

Repast 180.0* 255.0* 0.0 186.0* 198.0*

Mesa 33.1 69.0 186.0* 0.0 31.0

Agents.jl 41.6 57.0 198.0* 31.0 0.0

Table 5.4: Fréchet distance for histograms of top 20% tiles onwership

It clearly shows a difference in Repast implementation. It is interesting to notice

that rounds also seem to exhibit the same behavior, because

• Agents do not expire and there is not concept of debts.

• The rent per tile is calculated from a random number between 1 and 50 coins.

• At the beginning of the round each agent collects 75 coins.

These rules indicate that the number of rounds should be very close if there is

regularity in:

• The basic experiment setup and behavior are consistent among implementations.

• The underlying pseudo-random generation.
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If the issue is the first point, it indicates the difficulty to develop simulations in

Repast, as the code was checked several times without identifying any difference against

the others implementations.

In the other case, it points at deficiencies in Repast’s pseudo-random generation

mechanism.

5.5.4 Anova and F-Test

Both ANOVA and F-test provide a p-value [45]. In null-hypothesis significance

testing, where the null hypothesis is H0 : µ1 = µ2, the p-value is the probability of

obtaining test results at least as extreme as the result actually observed, under the

assumption that the null hypothesis is correct [14].

A very small p-value means that such an extreme observed outcome would be very

unlikely under the null hypothesis, and the null hypothesis is rejected, so that means

are significantly different.

The ANOVA was applied to all the values in the histograms (round count to

completion, top 20% ownership of coins, top 20% of tiles ownership) and F-Tests were

applied the each pair of histograms.

The usual notation of * is followed

* 0.01 < p < 0.05

** 0.001 < p < 0.01

*** p < 0.001

The results are shown in the following tables.
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Rounds to completion

The p-value for the ANOVA was 0.180 which is more than 0.05 which fail to reject

null hypothesis, means are not significantly different. Nevertheless for F-Test between

frameworks the results is

NetLogo MASON Repast Mesa Agents.jl

NetLogo - 0.291 0.275 0.893 0.376

MASON 0.291 - 0.027* 0.224 0.852

Repast 0.275 0.027* - 0.331 0.041*

Mesa 0.893 0.224 0.331 - 0.297

Agents.jl 0.376 0.852 0.041* 0.297 -

Table 5.5: P-value for F-test for histograms of rounds to complete experiment

Here it can be seen that for rounds, the results of Repast are statistically significantly

different for Agents.jl and MASON.

Top 20% of coin ownership

The p-value for the ANOVA was < 10−5 which rejects the null hypothesis, and

indicates the means for the histograms of the top 20% of coin ownership, are significantly

different. The F-Tests between frameworks the results are

NetLogo MASON Repast Mesa Agents.jl

NetLogo - 0.860 < 10−5*** 0.669 0.459

MASON 0.860 - < 10−5*** 0.800 0.571

Repast < 10−5*** < 10−5*** - < 10−5*** < 10−5***

Mesa 0.669 0.800 < 10−5*** - 0.755

Agents.jl 0.459 0.571 < 10−5*** 0.755 -

Table 5.6: P-value for F-test for histograms of top 20% of coin ownership

Here it can be seen that for the top 20% of coin ownership, the results of Repast

are statistically significantly different from all the other frameworks.
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Top 20% of tiles ownership

The p-value for the ANOVA was< 10−5 which rejects null hypothesis, and indicates

the means of the histograms for the op 20% of tile ownership, are significantly different.

The F-Tests between frameworks the results are

NetLogo MASON Repast Mesa Agents.jl

NetLogo - 0.423 < 10−5*** 0.494 0.388

MASON 0.423 - < 10−5*** 0.909 0.949

Repast < 10−5*** < 10−5*** - < 10−5*** < 10−5***

Mesa 0.494 0.909 < 10−5*** - 0.859

Agents.jl 0.388 0.949 < 10−5*** 0.859 -

Table 5.7: P-value for F-test for histograms of top 20% of tiles ownership

Here it can be seen that for the top 20% of tiles ownership, the results of Repast

are statistically significantly different from all the other frameworks.

These results keep indicating a consistency issue in Repast which could be caused by

a underlying problem related to pseudo-random number generation or in the experiment

setup and behavior, which was has not been identified even after several code reviews.
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5.6 Discussion

The first version of this project contained several more features for each section.

After a rigorous review, they were simplified and streamlined to avoid overlapping.

The nine identified features where chosen so as to minimize their overlap and make it

feasible to score them independently.

In this work four experiment were proposed to exercise each framework. The set

of experiments covers several common aspects of ABM in general, but left out some

topics. One important topic which could be included in a updated version of the FSMM

is graph support. Graphs can be implemented in any language, and their visualization

might be useful for developing certain types of ABM models.

About the chosen frameworks, both MASON and NetLogo left a good impression

after experimentation. Mesa and Repast left a troublesome impression due to speed

and stability. Especifically, the MASON framework appears to be far more stable and

fast compared to the other ones.

While NetLogo was overall the most capable framework, it was challenging to write

some behaviors, especially because the only available data structure was the LISP style

list and not common ones like maps. Additionally, the product was designed for the

simulation to be in a single file which could be challenging for bigger projects.

Agents.jl was somewhat disappointing because it has some basic deficiencies in

rendering. Also, the simulation uses GlMakie which hid some failures and makes it

hard to debug. Another issue was that starting simulation required at least 3 minutes of

prepossessing in a high-end laptop. Starting with a ‘precooked’ environment decreased

this time but did not remove it. Other frameworks started almost immediately.

For Mesa the cumbersome integration between the web front-end and the back-end

server made the simulation and development very slow. It was so slow to the point

that some experiments, only the last image (screenshot) was rendered. That was not

an issue for the other frameworks.
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In the case of Repast, the challenge was that it was a Plug-In for Eclipse IDE

which has had stability issues. It also created lots of helper files which were need for

simulation but have to be recreated continuously as the source code changed. At one

point the whole IDE stopped working to create new projects; to create new projects it

was required to start from a previous project folder.
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CHAPTER 6

Feature Space Maturity Scoring

“To push anything back into the

past is equivalent to reducing it to

its simplest elements. Traced as far

as possible in the direction of their

origins, the last fibres of the human

aggregate are lost to view and are

merged in our eyes with the very

stuff of the universe.”

Pierre Teilhard de Chardin, The

Phenomenon of Man
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6.1 Simulation Features

The following shows the scoring for the two subsections of the FSMM which were

evaluated for each of the five frameworks.

Remember the scoring was based per item in a scale from 0 to 3 following the

facilitator approach from [72].

The scores for the simulation features of the frameworks is based on their performance

on the four experiments. Categories of the FSMM are mapped to the scores obtained

by each framework; the results are shown in the following table.

Category NetLogo MASON Repast Mesa Agents.jl

Usability 3 3 1 2 1

Basic Framework 3 3 3 3 3

Functionalities

Locality 3 2 3 2 3

Agent Management 2 2 2 2 1

Force Fields 0 0 0 0 1

Summary 11 10 9 9 9

Table 6.1: Simulation Features Score

6.2 Interrogation Capabilities

The scores for the interrogation features of the FSMM for the frameworks is are

based on the four experiments. The results are shown in the following table.
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Category NetLogo MASON Repast Mesa Agents.jl

Visualization 3 3 2 2 1

Statistical support for 3 3 3 3 3

model attributes

Macroscopic statistical 2 2 2 2 2

analysis

Nearly decomposable 0 0 0 0 0

System view

Summary 8 8 7 7 6

Table 6.2: Interrogation capabilities Score

Based on those scores, we can create a quadrant-like graph with the top right being

the best scored and the bottom left being the worst scored. This quadrant shows the

superiority of NetLogo and MASON over the other freely available frameworks.

Figure 6.1: FSMM Score
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CHAPTER 7

Architecture of ABM Frameworks

“ All the efforts of the human mind

cannot exhaust the essence of a

single fly.”

Thomas Aquinas
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Software architecture is critical in ABM because it defines the structural organization

of a system, guiding how different components interact and ensuring the system’s

scalability, maintainability, and performance. In ABM, the architecture helps manage

the complexity of simulating large numbers of autonomous agents with unique behaviors

and interactions. Without a well-designed architecture, the ABM framework can suffer

from inefficiencies, poor performance, and difficulties in integrating new features or

scaling to more complex simulations.

A well-structured software architecture impacts several quality attributes of an ABM

system. For instance, scalability is essential when simulating thousands or even millions

of agents, and a poorly designed architecture may lead to performance bottlenecks as

the system grows. Modularity and maintainability are also critical because they allow

developers to update or replace parts of the simulation without affecting the entire

system. Furthermore, reusability of components – such as agent behavior libraries or

environmental models – can be enhanced with a flexible architecture, making it easier

to apply the framework to different simulation contexts.

The architecture also influences the reliability and efficiency of an ABM system.

Clear communication paths between agents and a robust management of agent lifecycles

are essential to ensure the accuracy of the simulation results. Poorly designed architectures

can lead to issues such as deadlock, inefficient resource usage, or inaccurate modeling

of agent interactions, which ultimately degrade the overall quality of the simulation.

In this chapter, we first present summaries of the architectures of the five ABM

Frameworks studied in this research, then we state a set of architectural principle, and

finally posit a proposed reference architecture for ABM.

7.1 Studied Architectures

This section briefly summarizes the architecture of the five studied ABM Frameworks.
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7.1.1 NetLogo

NetLogo adopted the basic design principle from the Logo language of “low threshold,

no ceiling”. Low threshold means new users, including those who never programmed

before, should find it easy to get started. No ceiling means the language shouldn’t be

limiting for advanced users.

Efficiency is always a vital goal for NetLogo as a multi-agent system development

framewok, since many researchers would want to do large numbers of long model runs

with as many agents as they can.

NetLogo is a complete system, not just a library. Just as important as the program

itself is the materials it comes with. Developers devoted almost as much development

effort to the Models Library as to the NetLogo software system.

The Models Library contains more than 140 pre-built simulations that can be

explored and modified.

All of the models include an explanation of the subject matter, the rules of the

simulation and suggestions for activities, experiments, and possible extensions. To aid

learning and encourage good programming practice, the code for the simulations is well

commented and as elegantly written as developers could make it [91].

7.1.2 MASON

MASON had several design goals from the very beginning. First, MASON was

designed to have a small, high-performance, self-contained simulation core so that many

models could be run in parallel, or could involve up to millions of agents. Second,

MASON was designed to produce guaranteed identical results regardless of architecture

when possible. Third, MASON was created with a Model-View-Controller (MVC)

architecture with complete separation between the model and the visualization, and

with model serialization. Fourth, as it came from the robotics community, MASON

was meant to support a wide range of visualization facilities, including both 2D and 3D
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support. Fifth, MASON was designed to be very easily modified and extended.

Roughly following an MVC architecture, MASON can be broken into two pieces.

The first part is the model (the simulation proper) and the second part is the visualization.

Unless one chooses to have model objects display themselves, the model and visualization

are entirely separated, enabling model serialization and the removal or reinstatement

of the visualization mid-run [57].

This separation of logic and visualization allowed to quickly run the Pareto experiment

in parallel without the need of a UI.

MASON is not a executable program but a library. Yet, this is not a major issue,

due the plethora of Java editing tools available like NetBeans or IntelliJ. Also this

library approach allows the tool to be quickly reused in virtualized or containerized

environments like Docker [23].

7.1.3 Repast

Repast architecture was supposedly designed to be flexible, extensible, and easy

to use, allowing for the development of complex agent-based simulations. The key

components of the Repast architecture include:

Agents: The core of any ABM. In Repast, agents are objects that represent entities

in the model. They have states, behaviors, and interactions with other agents and the

environment. Agents are typically implemented as Java or C# classes, depending on

the version of Repast being used.

Environment: The space in which agents operate. Repast supports various types

of environments, including grids, continuous spaces, and networks (graphs). The environment

provides the context for agent interactions and movement.

Scheduler: Manages the simulation’s execution timeline. The scheduler handles

the timing of agent actions and events, ensuring that the simulation progresses in a

coherent and controlled manner. It can be used to schedule actions at specific times or
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with specific intervals.

Data Collection and Analysis: Repast includes tools for collecting and analyzing

data generated during the simulation. This can include logging agent states, interactions,

and other relevant metrics. The collected data can be used for post-simulation analysis

and visualization.

Visualization: Provides graphical representations of the simulation state and agent

behaviors.

Repast uses a DSL called ReLogo based on Logo and using the Groovy dynamic

language. This was chosen supposedly due the ease of use of the Logo programming

language and its associated programming idioms [74].

Repast is not an executable program but an Eclipse plug-in. While this should be

an advantage in theory, in practice Repast is constrained by the stability or instability

of Eclipse releases – which recently has shown some instabilities.

7.1.4 Mesa

Mesa is an Agent-Based Modeling Framework with tries to fill the missing ABM for

Python.

Mesa allows users to quickly create agent-based models using built-in core components

(such as agent schedulers and spatial grids) or customized implementations; visualize

them using a browser-based interface; and analyze their results using Python’s data

analysis tools.

Designing a new framework from the ground up also allows the developers to

implement features not found in existing frameworks. For example, other ABM frameworks

tend to use a single agent activation regime by default; in Mesa, there are several agent

schedulers and require the modeler to specify which one should be used [62].
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7.1.5 Agents.jl

Agents.jl is a pure Julia framework for ABM. The basic ideas of the Agents.jl

architecture are:

• Agents are defined as Julia structs or mutable structs, which can hold any

attributes needed for the simulation. Agent behavior is encapsulated in functions

that define how agents interact with each other and the environment.

• Julia handles three spaces.

– GridSpace: A discrete grid where agents occupy specific cells. It can be

one-dimensional, two-dimensional, or multi-dimensional.

– ContinuousSpace: A continuous space where agents can move freely in

any direction. It allows for more granular control over agent positioning.

– GraphSpace: A space based on graph structures, allowing agents to occupy

nodes and move along edges. Useful for modeling networks and other relational

structures.

• The model in Agents.jl is a container that holds the agents, the space, and any

additional parameters or data structures needed for the simulation.

• Julia has a Discrete Event Scheduler which handles the execution of agent

actions. It allows for scheduling actions at specific times or in specific sequences

and includes tools for collecting data during the simulation, such as agent states,

interactions, and aggregate statistics.

Agents.jl is not and executable program but rather a Julia library. Editing needs

to be done by a third party program. Currently the most important Julia editing tool

is Visual Studio Code by Microsoft.
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7.2 Proposed Architecture Principles

If the Feature Space describes which features should the ABM have, the Computational

Properties describe how they should be implemented. The Computational Properties

of an ABM framework architecture should enable the ease of use of the framework,

understood as the capability of a user to readily and successfully perform tasks with

a product without the need for advanced explanation and an instruction manual [77].

In the case of ABM frameworks, the concept could be refined further as the ability to

develop or update a model in the most natural way without having to struggle with the

underlying the framework’s implementation.

The principles that we kept in mind when developing the architecture were

• Stability & Maintainability: Stability means that the framework can be used

without constant crashing. Maintainability is an important quality attribute for

almost every software product. Maintenance is considered an expensive phase in

the software development life cycle as it consumes most of the effort allocated

to the software system [97]. Similarly, models coded in ABM frameworks most

probably will be modified and refined during their lifetime. While maintainability

has many facets, this thesis will only focus on the tools that the framework

provides to create a maintainable model, including tools that help create comments

and semantic validations. In the provided FSMM this topic relates to Usability.

• Readability: According to Popper, science becomes possible because a thesis

can be linguistically presented and thus critically assessed, becoming an object

so it can be tested or falsified by others [76]. Similarly, an implementation of a

model should be easily readable for its quality and intent to be correctly assessed.

The most important aspect for good readability in ABM are the rules of both the

agent and the environment. In the provided FSMM this is topic also relates to

Usability.
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• Implementation: The complexity of implementing a model in a ABM framework

should be similar to the complexity of describing the model in a formal way.

The fewer artifacts and boilerplate code required from the underlying technology

the better. In the provided FSMM this topic relates to Basic framework

functionality.

• Syntax expressiveness: due to its expressiveness power, text is the standard

way to code agent and environment behavior. This behavior language should have

enough expressive power to support the simulation requirements in a natural way

and avoid negative impact in the code quality [11]. Expressiveness also measures

how much can be expressed in the ABM framework without changing its internal

implementation. In general, there should be a way to implement any new arbitrary

complex behavior without having to change the source code of the ABM [30].

In the provided FSMM this topic relates to the Agent management and the

Locality simulation features.

• Visualization: The framework should be able to present a graphical representation

of the model with minimal configuration from the developer [53]. While visualizations

of very large models might be too expensive and of limited value, they are one of

the most useful tools in the development and debugging of a model.

• Service Oriented: Due to the raise of cloud computation and the nature of the

ABM simulations, which are in most the cases computationally intensive (and

costly) and required to be run several times, it is expected the framework to be

used as collection of services.

Based on those five principles, the next section develops a proposed reference architecture.
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7.3 Reference Architecture

The following reference architecture is defined for 2-dimensions, discrete time ABM

frameworks with a homogeneous, single-layered grid. While 3-dimensions simulation

share many similarities, they are much more resource consuming andm for many cases,

they may be modeled in a 2-dimensions framework. While this architecture could be

used as a initial research point for continuous-time frameworks, it is not intended for

them.

For the sake of clarity and simplicity only two types of composite structures are

described: a sorted list (called array) and unsorted list (called set). There is a special

case of Matrix for the grid which may be seen as a array of array of patches. In both

cases they do not allow duplicates and use the ¡¿ notation to indicate the type of the

components.

It is expected that the architecture should have at least these 3 main top-level types

of entities: the environment, the entities and the relations. The entities can be split in

three sets: the patches, the agents and the vertices. The relations can be split also in

two: logic relations and directed edges. Therefore there are 6 main types of entities:

• Environment

• Entity: Patch

• Entity: Agent

• Entity: Vertex

• Abstract relation: Relation

• Abstract relation: Directed Edge

While the description follows an OO approach, it should be general enough to be

used by non-OO implementations. Implementation details are purposefully left vague,
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as developers should be able to decide about them. Description and interaction among

the defined types are explained in the following paragraphs:

7.3.1 Environment

There is only one environment per simulation and there should be ways to define

custom behavior for the environment step. Environments need to have a grid of patches

which could have one of three topologies: plane, or cylinder (wrapped horizontally) or

a torus shape (wrapped both horizontally and vertically).

There should be a list of drawing layers, and each entity should be assigned to a

single layer. It should be able to request the environment to create an image for the

requested drawing layers with a provided scale.

7.3.2 Patch

A patch is a building block for the model. The most common shapes are squares.

While some ABM frameworks allow using a different morphology for patches (like

triangle or hexagon) their value is limited, and behavior provided by those non-standard

morphologies should be covered with square patches plus directed edges.

A patch should be considered a 1× 1 tile. For an environment with a grid width of

w and a height of h there should be w × h patches. A patch can contain an unlimited

amount of agents and vertices. There should be a way to interrogate the patch to collect

both its agents and vertices.

There is a subtle case when an agent is on an edge, but not (in itself) on the patch.

The agent’s coordinates are bounded with reference to a place within the patch. Thus,

there should also be a way to identify agents above the patch (by virtue of them being

on an edge).

There should be a way to assign custom behavior and attributes to the patch and,

given a patch, there should be a way to identify its neighbors using the environment
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topology and one of the three neighbors metrics (radial, Moore or von Neumann). For

visualization purposes there should be a way to define the color of a patch.

7.3.3 Agent

Agents are the foundations of ABM. An agent is considered dimensionless but for

visualisation purposes, there should be a way to assign it a shape, color and size.

There should be two ways to create a agent: the environment spawns it or a parent

agent hatches it. It is expected that when a parent hatches a child, the child location

matches the parent location.

An agent needs to be on a patch or on a edge. There should be a way to identify

where the agent is, its xy coordinates and, if it is in a edge, the position in the edge

(0 in source, 1 in destination). As mentioned above, there should be a way to collect

agents on or above a patch.

There should be a way to assign custom behavior and attributes to the agent, and

there should be a way to define the default behavior entry point of each model step.

There should be a way for agents to die. After an agent dies, all of its framework-

defined relations should be dropped and it should not be accessible using the framework’s

API.

7.3.4 Vertex

Vertices are considered dimensionless. For visualisation purposes, there should be a

way to assign them shape, color and size. They are the end points (source or destination

or both) of edges. There should be a way to assign custom behavior and attributes to

a vertex. They can be created, moved or destroyed by the environment.

A vertex needs to be assigned to a patch with some specific coordinates but they

could be modified during the simulation. Once a vertex is destroyed, all of its framework-

defined relations should be dropped and it should not be accessible via the framework’s
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API.

7.3.5 Relation

A relation is a way in which several entities link to each other. They usually connect

distinct entities but some associate an entity with itself. The arity of a relation is

the number of entities it connects. The direction of a relation is the order in which

the elements are related to each other. The converse of a relation carries the same

information and has the opposite direction [43].

For this ABM framework architecture the arity of a relation will be always 2

(an origin and a destination), it should have a name and could be bidirectional or

unidirectional. While it might be useful in some cases to simplify the architecture there

could not be two or more relations with the same name, origin and destination.

7.3.6 Directed edge

Directed edges, or edges for short, are a special type of unidirectional relation, only

connecting vertices and could be considered part of the topology as agents can be

removed from the patches grid and added to an edge.

There should be a way to add custom attributes to edges, and there should be a

well-known weight attribute which is useful in several cases to indicate some cost of

using that edge – e.g. to traverse the edge from origin vertex will be 100% of the cost,

but traversing from the middle will be 50%. Usually the cost is expected to be linear

to the distance but other implementations could choose a different cost function.

7.3.7 UML diagrams

The following diagABM.
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Figure 7.1: UML Diagram of top ABM elements
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The diagram that follows presents a services architecture for an ABM Framework.

It consists of six initial services, colored in green, four external services, colored in blue,

with the final UI colored in orange. The internal services in bottom-up order are:

• Repository Service: A simple service which can process repository request (list

files of a folder, read & write files, etc.). This service should have a back-end

client to a distributed version control system.

• Container provider Service: This service should be able to create virtual machines

which will run the ABM Framework.

• ABM Framework: This service is the actual framework detailed above.

• Executions Manager: This service should keep track of running simulations and

request the Container provider service to start and stop machines.

• Request Broker Service: This service works like a reverse proxy [63], it is a server

that sits in front of web servers and forwards requests from the UI to the rest of

the services.

The external services are services which don’t need to be developed but can use

already existing products, with varying customizations. They are:

• Static Files Manager: A simple resources container which request static resources

(like html, js, json files) as required.

• Version Control System: A Distributed version control system that tracks versions

of files. It is often used to control source code by of a development team. The

most used one currently is Git.

• Container: A container is similar to a virtual machine which has its operating

system, except that unlike virtual machines they don’t simulate the entire computer,

108



7.3. REFERENCE ARCHITECTURE

but rather create a sand boxed environment that pretends to be a virtual machine.

The most used one currently are Docker containers [23].

• Container Manager: A tool which can manage (create, destroy, scale) containers.

Currently the most used one is Kubernetes.

Figure 7.2: Architecture of the framework as services
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7.4 Complete Entity Type Description

The following tables describe attributes and methods which should be implemented

by each instance type. We describe the attributes, not because they should be visible,

but as supporting documentation for the implementation. It is up to the developers

to identify the best way to present the attributes, depending on the case and chosen

computer language, it could be using setter or getter methods, public attributes, fully

private only for internal use, etc.

The final field in the attributes indicates whether the attribute is not expected to

change. For container structures this means the container is not expected to change,

but its content still could change.

7.4.1 Environment

The following table describes the required environment attributes:

Name Type Final Usages

grid Matrix<Patch> Yes Grid used to locate agents.

agents Set<Agent> Yes List of live agents.

vertices Set<Vertex> Yes List of valid vertices.

layers Set< String> Yes List of visibility layers.

complete Boolean No Indicate if a simulation reached

completion criteria.

customAttrs Object No Simulation specific attributes.

Table 7.1: Required attributes for the environment type

The environment provides the methods with the InRadius suffix (entitiesInRadius,

and its siblings methods) to identify all entities inside a radius of a xy point. They

include agents off the grid and over an edge but which still are inside that radius. To

identify all entities in the grid inside a radius, the valid method is entitiesInRadius for

a given entity class.
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The following table describes the required environment methods:

Name Input Output Description

createGrid** x: Int, y: Int, void Creates a grid with square

t: Topology, topology of x by y. Topology

Patch sub-type would not wrap (a plane), or

could wrap vertically

(cylinder) or could wrap

both vertically and

horizontally (torus).

spawn** Agent sub-type Agent Creates an agent.

createVertex** Vertex sub-type Vertex Creates a vertex.

step* Settings void Trigger steps in all its

agents and also its

own step behavior.

screenshot layers: Img A rendered image of the

Array<String> selected layers for

the whole grid.

screenshot layers: Img A rendered image of the

Array<String> selected layers for the

coord: selected subgrid.

Coordinates

agentsInRadius coord: Set Finds all agents which lay

Coordinates, <Agent> around coord with a radial

radius: Double distance ≤ radius whether

they are in grid of in a edge.

verticesInRadius coord: Set Finds all vertices which lay

Coordinates, <Agent> around coord with a radial

radius: Double distance ≤ radius whether

they are in the grid or at an edge.

Table 7.2: Required methods for the environment type (1/2)
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patchesInRadius coord: Set Finds all patches which its

Coordinates, <Agent> center lay around coord with a

radius: Double radial distance ≤ radius.

entitiesInRadius coord: Set Finds all entities which lay

Coordinates, <Agent> around coord with a radial

radius: Double distance ≤ radius whether

they are in grid of in a edge.

Table 7.3: Required methods for the environment type (2/2)

Notes:

* There should be a way to add custom behavior for the environment for the step

method.

** If there are ways to define sub types of patches, vertices or agents, there should

be a way to define the sub-type at the moment of creating them.

7.4.2 Entity

The following table describes the required attributes by all sub types of entity:

Name Type Final Usages

id Int Yes Unique identification number.

env Environment Yes Parent environment.

color Color No Color used for rendering.

customAttrs Object No Simulation specific attributes.

outgoingRels Set<Relation> Yes List of outgoing relations for this entity.

incomingRels Set<Relation> Yes List of incoming relations for this entity.

Table 7.4: Required attributes for all sub types of entity

The entity provides the method entitiesInRadius (and its siblings methods) to

identify all entities in the grid inside a radius of a xy point. They do not include

agents off the grid and over an edge but which still are inside that radius. To identify
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those, the valid method is entitiesInRadius from the environment class.

The following table describes the required methods by all sub types of entity:

Name Input Output Description

xy none Coordinates The coordinates of the entity

in the grid.

agentsInRadius* coord: Set Finds all agents which lay

Coordinates, <Agent> around coord with a radial

radius: Double distance ≤ radius if

they are in grid.

verticesInRadius* coord: Set Finds all vertices which lay

Coordinates, <Agent> around coord with a radial

radius: Double distance ≤ radius if

they are in grid.

patchesInRadius* coord: Set Finds all patches which its

Coordinates, <Agent> center lay around coord with a

radius: Double radial distance ≤ radius.

entitiesInRadius* coord: Set Finds all entities which lay

Coordinates, <Agent> around coord with a radial

radius: Double distance ≤ radius if

they are in grid.

distanceTo** dest: Entity Double Distance from this entity to

dest entity.

Table 7.5: Required methods for all sub types of entity

Notes:

* If the entity is outside the grid (only agents could be) the method will throw an

exception.

** If either this entity or the dest entity is outside the grid (only agents could be)

the method will throw an exception.
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7.4.3 Patch

The following table describes the required attributes for the patches:

Name Type Final Usages

agents Set<Agent> Yes List of agents inside the patch.

vertices Set<Vertex> Yes List of vertices inside the patch.

Table 7.6: Required attributes for all sub types of entity

The following table describes the required methods for the patches:

Name Input Output Description

moore size: Int Set<Patch> List of patches with Moore

distance ≤ size.

vonNeumann size: Int Set<Patch> List of patches with von

Neumann distance ≤ size.

radius size: Double Set<Patch> List of patches where

distance to its center ≤ size.

Table 7.7: Required methods for the patch type
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7.4.4 Agent

The following table describes the required attributes for the agents:

Name Type Final Usages

shape Shape No A shape for rendering.

size Double No The size for rendering.

layer String No A rendering layer. If the requested

screenshot did not request the agent’s

layer, the agent will not be rendered.

patch Patch No The patch where the agent is located, if any.

edge Directed Edge No The vertex where the agent if located, if any.

dir Direction No The direction of the agent.

visible Boolean No If the agent should be rendered,

even if the agent’s layer was requested.

Table 7.8: Required attributes for the agent type

The following table describes the required methods for the agents:
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Name Input Output Description

die none void Agent is removed from live agents.

From the scheduler.

All its relations are dropped.

currPatch none Patch The current patch or null if the

void agent is located in an edge

currEdge none Edge The current edge of null if the

void agent is located in the grid

penDown color: Color void Agent will leave a trace when moving (by

the fd, moveToXY methods). It should be

rendered on the agent layer. There could be

and optional render color and line thickness.

penUp void Agent will stop leaving a trace when moving.

fd dist: Double void The agent moves forward by some distance.

Will stop if it reaches a topology boundary.

For agent in edge max distance is 1.

moveToXY coord: void Move agent to the to XY position

Coordinates Can also be used if the agent is on an edge

to move it back to the grid. It is important

to mention it should be the shortest distance

which could be achieved by wrapping in

some topology.

setPatch patch: Patch void Teleport agent to the center of the patch.

Can also be used if the agent is on an edge,

to put it back to the grid. This method does

not leave a trace, even with penDown.

Table 7.9: Required methods for the agent type (1/2)
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Name Input Output Description

setXY coord: void Teleport agent to the xy position in

Coordinates the grid. Can also be used if the agent

is at an edge to put it back to the grid.

It is important for this method not

to leave a trace even with penDown.

setEdge edge: Edge void Moves agent off the grid or other

edge and puts it in the defined edge,

in the origin vertex.

setProgress* progress: void Set the progress of this agent in the

Double edge. 0 means agent is at the origin

vertex, 1 means at the destination vertex.

hatch agent Agent Create a new agent in the same spot

sub-type * of the original agent.

step*** settings: void Triggers the agent step behavior.

Object

costTo** dest: Double Calculate lowest cost to reach dest

entity from the current position

of the agent in the edge.

agentsInCost* maxCost: Set List of agents which have a

Double <Agent> distance cost lower than maxCost

vertexInCost* maxCost: Set List of vertices which have a

Double <Agent> distance cost lower than maxCost

Table 7.10: Required methods for the agent type (2/2)

Notes:

* If the agent is on the grid, not in an edge, this method will fail.

** If the agent or the dest entity are on the grid, not in an edge, this method will

fail.

*** There should be a way to add custom behavior for the step method in agents.
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7.4.5 Vertex

The following table describes the required attributes for the vertices:

Name Type Final Usages

originOf Set<Edge> Yes The list of edges which have this

vertex as origin.

destOf Set<Edge> Yes The list of edges which have this

vertex as destination.

shape Shape No A shape for rendering.

layer String No A rendering layer. If the requested

screenshot did not request the vertex’s

layer, the agent will not be rendered.

patch Patch No The patch where the vertex is located.

Table 7.11: Required attributes for all sub types of entity

The following table describes the required methods for the vertices:

Name Input Output Description

destroy none void Destroy this vertex, including incoming

and outgoing relations and directed edges.

setXY coord: void Sets the xy in position in the grid.

Coordinates

connect dest: Vertex Edge Creates a directed edge with this vertex

as the origin and dest as the destination

Table 7.12: Required methods for the vertices

7.4.6 Abstract Relation

The following table describes the required attributes for all sub types of abstract

relation:
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Name Type Final Usages

name String Yes A name for this relation.

visible Boolean No Toggle for this relation to be rendered.

customAttrs Object No Simulation-specific attributes.

Table 7.13: Required attributes for all sub types of abstract relation

The following table describes the required methods for all sub types of abstract

relation:

Name Input Output Description

destroy none void Destroy this abstract relation

Table 7.14: Required methods for all sub types of abstract relation

7.4.7 Relation

The following table describes the required attributes for relations:

Name Type Final Usages

origin Entity Yes The origin of this relation.

dest Entity Yes The destination of this relation.

bidirectional Boolean Yes If the direction is bidirectional, i.e. There is another

relation with same name but with switched origin and

destination values. When changing values in one relation,

it changes values in the other, and if one relation

is dropped, the other gets dropped automatically.

Table 7.15: Required attributes for all relations

7.4.8 Directed Edge

The following table describes the required attributes for directed edges:
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Name Type Final Usages

weight Double No The weight of the edge. Used

to define a traverse cost.

origin Vertex Yes The origin vertex.

dest Vertex Yes The destination vertex.

agents Set<Agents> Yes All agents in this edge.

layer String No The drawing layer when rendering.

Table 7.16: Required attributes for all relations

7.4.9 Global Methods

Global methods are useful to implement required behavior not related to the interaction

in the simulation. The following table describes some required global methods:

Name Input Output Description

processReq req: HttpResponse Process a http request

HttpRequest and returns a http response

addTest name: String void Adds a test which will

behavior: be execute later.

Function

runTests none results Run all provided tests and

report returns a success/failures report

readFile name: String binary Reads a file and returns

its contents.

writeFile name: String void Writes contents to the

data: binary specified file.

deleteFile name: String void Deletes a file.

Table 7.17: Required attributes for all Global Methods
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CHAPTER 8

AB-X: POC for the Reference Architecture

‘To Avoid Criticism, Say Nothing,

Do Nothing, Be Nothing.”

Aristotle
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8.1 AB-X Design

AB-X is a POC of the defined reference architecture. It is located here https:

//gitlab.com/msc_tesis/AB-X/. The following subsections describe its design and

the current implementation status.

8.1.1 Overview

For AB-X, several goals were considered, including: match the proposed architecture

as closely as possible, create a product which followed the architectural goals, keep the

framework simple and maintainable, have a simple yet powerful syntax, make it efficient

in execution and amenable to develop it very quickly.

Based on those requirements the following design decisions were taken:

• The simulation language should have a simple syntax, basic typing support and

admitting operator overloading.

• The framework has to be developed over a well-supported, mature technology.

• The POC should be fully service-oriented and every behavioral aspect should be

modifiable using code.

• The presentation layer should be web-based.

• There has to be support to mathematical concepts such as sets and complex

numbers – out of the box.

• Useful examples are as important as the framework itself.

Based on those premises, the language to be used for the simulation framework

will be a slightly modified version of JavaScript. JavaScript is a high-level, just-in-

time compiled language that conforms to the ECMAScript standard [46]. The two
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modifications to be made on JavaScript’s core are: the ability to validate functions

input and output types, and the ability to perform custom classes operator overloading.

The framework was developed as two services: an editing service and an execution

service. The architecture states the idea of an execution broker as a third service;

however, due the scope of this POC, this service was not developed as part of this

research. The editing service is in charge of also managing the execution service.

The baseline technology was Java using the GraalVM JDK. GraalVM is a advanced

JDK which supports native JavaScript very efficiently and allows for operator overloading

[87]. On top of it, the underlying technology of the services was Spring Boot. Spring

Boot is an open-source Java-based framework used to create stand-alone, production-

grade services or applications quickly and with minimal configuration [98].

For the web presentation layer three main libraries were used. The main UI layout

and functionality was done using EasyUI. EasyUI is a collection of user interface

components based on jQuery, designed to simplify the development of web applications

[48]. The Ace editor, an embeddable code editor written in JavaScript, was used for text

highlighting – it can be easily embedded in any web page and JavaScript application [2].

Finally, for the charts, Charts.JS was used: a simple yet flexible JavaScript charting

library for the modern web [19].

When a user wants to run a model, they first select a runner (in this POC the only

runner is localhost), then they need to select the baseline model file. Then they may

choose two types of execution: standard (enforces typing protection but is resource

consuming) or performance (low in resource consumption but does not validate types).

While users can create several environments in the same execution (for example to

execute unit test) there is only on environment which is sync-up with the UI and is

accessed through the global methods setEnv, getEnv and stepEnv which respectively

sets, gets and process one step of the global environment.

Finally users need to choose which type of execution they want:
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• Evaluate: will process the chosen file. If in the file the user sets the global

environment, then the user could use the buttons to execute step by step or

continuously.

• Run simulation: will perform the Evaluate process and then it will start a thread

which triggers the stepEnv method continuously. A stepEnv without the global

environment or with a completed global environment will return false and will

stop the continuous execution thread.

• Execute tests: will perform the Evaluate process, and then it will do a runTests

method which should run all defined tests and provide a report of success and

failures.

There is the concept of a paused session, where there is no thread which keeps

running the global stepEnv method. The UI provides the functionality to pause or

terminate a session when the simulation is running continuously. A paused simulation

can be also terminated, restarted, or execute just one step. A terminated simulation

will release all allocated resources.

There is also the ability to interrogate the global environment using getEnv() method

plus some query over the environment. The result is transformed to string and presented

in the UI.

The following image shows the workflow of simulation in AB-X in the three possible

execution types. The blue elements are the simulation type, the purple ones are

processing sections and the yellow ones are decision sections.
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Figure 8.1: Execution screen showing simulation running
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It is worth mentioning that AB-X implements a research-supporting feature which

was proposed but not evaluated in the FSMM and therefore not added to the original

reference architecture. This feature is the basic support for units of measurement

including distance (meter based) and time (second based) and plane angles (radian

based) out of the box. Examples of units were added in the companion documentation

and in the coding snippets section.

8.1.2 Main simulation classes

The AB-X simulation service the AB-X Framework’s main component. This service

is in charge of preprocessing description files and contains all simulation logic. The

following subsections describe the main classes of this framework.

StringProcessor.java & TypingSupport.java

While AB-X syntax is JavaScript based, AB-X framework supports typed variables

for inputs and output. These classes allow the typing by consuming original files

and output post-processed files which will have type support removed and optional

validation.

This transformer maintains exact lines so debugging becomes easier. For example,

this input:

1 function isZero(element: Number):Boolean{

2 return element === 0 ;

3 }

When type validations is enforced, it becomes:

1 function isZero(element){assertValidInstances ([[ element ,Number

]]);return _assertType ().setType(Boolean).evaluate = (

function (){

2 return element === 0 ;

3 }).apply(this ,arguments);}

Yet, the user never sees this temporarily generated file. In the case of errors being
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detected, the user will see the error in the expected line. Suppose the isZero is in file

Test.js, then if invoked with a string ”hi” the error will be shown:

1 hi is not of function Number ()

2 at <js> assertIsInstanceOf(Utils.js :135:4300 -4337)

3 at <js> assertValidInstances(Utils.js :143:4455 -4498)

4 at <js> x(Test.js:1:42 -76)

If performance is requested, it becomes:

1 function isZero(element){

2 return element === 0 ;

3 }

Entity.js

Is a JavaScript class which matches closely the entity super type in the reference

architecture. It is a constructor: it expects the environment and has the methods to

create, get and drop relations with other Entities.

It has a method to define the xy which needs to be implemented by sub-classes.

ABMAgent.js

It is a JavaScript class which matches closely the Agent type defined in the reference

architecture. It extends from Entity as expected from the OO paradigm. The constructor

also allows to identify the class subtype which is used in the grid to enable searching

by agent type.

Subclasses of ABMAgent.js are expected to override behavior of two main methods,

the setup for initialization purposes and step which is called automatically by the

framework in each round.

ABMPatch.js

This is a JavaScript class which matches closely the Patch type defined in the

reference Architecture. A simulation can extend from this class to add custom methods.
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ABMVertex.js

This is a JavaScript class which matches the vertex type defined in the reference

Architecture, but it is yet to be completed. The missing features are related to edge

management.

ABMEdge.js

This is a JavaScript class which matches the vertex type defined in the reference

Architecture, but it is yet to be completed. The novel approach is related to the ability

to remove an agent from the grid and add it to the edge and the opposite: moving from

the edge to the grid.

ABMGrid.js & Grid.java

While the initial reference architecture does not explicitly split environment vs grid,

there are several grid specific functionalities in the environment, which can be isolated

in a single class. In AB-X that grid functionality is split between ABMGrid.js and

ABMGrid.java. The first is a JavaScript class which matches the grid functionality

without the neighbor searching capability; this was written in ABMGrid.java to speed

it up.

ABMEnv.js

This is a JavaScript class which matches the Environment type defined in the

reference Architecture. Forward thinking on the ability to have multilayered grids,

the entire grid capability was designed in the grid classes described above. This class

can be extended by a simulation and it is expected to override the setup method with

custom simulation behavior.
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ABMChart.js

Chart is a container which is filled with data from the simulation. It does some

preprocessing of the data before sending it to the UI where it is rendered by the Chart.js

library. There are two subtypes: one for the time/round and one for histograms. Both

charts expect a function which provides data for the chart. The time based chart will

collect data after each round but for histogram and custom chart the simulation needs

to call sampleHistograms and sampleCharts respectively.

Example of use of Charts are shown in the following coding snippets section.

8.1.3 Coding snippets

The are over 80 examples provided out of the box with AB-X, in addition to the

four FSMM experiments. They range from set examples to unit test to full simulation

like the Inner Solar System and GOL example. The following examples can be found

in the source code and were chosen to identify key sections of the AB-X product.

Add a simple text with one assertion:

1 addTest("Expected Success", ()=>{

2 Assertions.assertTrue(true);

3 });

A simple agent which walks 2 units and rotates 25º degrees each round

1 class WalkingAgent extends ABMAgent{

2 setup (){

3 this.counter = 0;

4 this.aliveStrokeSteps = 100;

5 this.color = namedColor("green");

6 this.pen.width =4;

7 this.penDown ();

8 this.shape = "delta";

9 }

10 step(){

11 this.rotateDeg (25);

12 this.fw(2);

13 }

14 }
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Figure 8.2: Figure shows the view-port of the agent leaving a stroke and also keep
changing color

A planet agent, which will rotate certain degrees around a star. Using type and

International Unit System (SI) units.

1 enableSIDistance(true);

2 enableSIAngle(true);

3 enableSITime(true);

4 let systemSize =500*Gm;

5 class Planet extends ABMAgent{

6 setup(label:String , dist:UnitSystem ,size:Number ,

7 angularVelocity:UnitSystem , color):Planet{

8 this.label = label;

9 this.setLocation(systemSize /2+dist ,systemSize /2);

10 this.angularVelocity = angularVelocity;

11 this.size = size;

12 this.color = color;

13 this.penDown ();

14 return this;

15 }

16 rotate(sun:Star , time:UnitSystem){

17 const angle = this.angularVelocity*time;

18 this.rotateAround(sun ,angle)

19 }

20 }

The environment describing the setup method is creating each planet agent.

130



8.1. AB-X DESIGN

1 class Space extends ABMEnv {

2 sun;

3 setup (){

4 this.patches ().each(patch=>

5 patch.color=namedColor("black"));

6 this.sun = this.spawn(Star).setup("Sun");

7 const fullCircle = 360* deg;

8 this.sun.createRelation("planet", this.mercury = this.

spawn(Planet).

9 setup("Mercury", 52.2*Gm ,2, fullCircle /(88* day),

namedColor("gray")));

10 this.sun.createRelation("planet", this.venus = this.

spawn(Planet).

11 setup("Venus", 107*Gm ,5, fullCircle /(225* day),namedColor(

"cyan")));

12 this.sun.createRelation("planet", this.venus = this.

spawn(Planet).

13 setup("Earth", AU ,5, fullCircle /(365* day),namedColor("

blue")));

14 this.sun.createRelation("planet", this.mars = this.spawn

(Planet).

15 setup("Mars", 208*Gm ,3, fullCircle /(687* day),namedColor("

red")));

16 }

17

18 step(delta:UnitSystem){

19 this.sun.starStep(delta);

20 }

21 }

Calling the environment and setting it as a global environment

1 space = new Space ().setupEnv(

2 {w:systemSize ,h:systemSize ,"delta":day})

3 setEnv(space);

4 setScale (2)

The graphical output of this code will generate a realistic representation of the orbits

of the inner solar system around the Sun.

131



8.1. AB-X DESIGN

Figure 8.3: Image shows the view-port generated by AB-X with realistic planet orbits

Creating a simulation video using standard 24 Frames per Second (FPS) cinematic

rate

1 include("{script }/ model.js");

2 const env = new ModelEnv ();

3 env.setupEnv(

4 {w: 80, h: 40, gridType:"torus",agents :10});

5 writeImg("{script }/ Result.png",env.getImg (10,["baseline"]));

6 startVideoRecording("{script }/ Result.mp4","24");

7 for (let i = 0; i < 240;++i) {

8 env.envStep ();

9 appendImg(env.getImg (10, ["baseline"]));

10 }

11 closeVideoStream ();
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Code for handling a histogram chart with 25 slots

1 class HistogramExampleEnv extends ABMEnv {

2 setup(specs: Object) {

3 this.addHistogram("Normal 100 samples per step", ()=>{

4 const values = [];

5 for (let i = 1; i <= 100;++i){

6 values.push( randomNormal (100 ,50));

7 }

8 return values;

9 },"addAll").setSlots (25).setXAxis("Normal Curve").

setLimits ( -100 ,300);

10 }

11 step(){

12 this.sampleHistograms ();

13 this.setPaused(true);

14 }

15 }

16 setEnv(new HistogramExampleEnv ().setupEnv ({}));

Figure 8.4: Histogram rendered after several steps
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The following section of code shows how to add custom lines to any graph, in order

to identify boundary or other important values.

1 setup(specs: Object):void { ...

2 this.addChart("Always 100", { "randData":(): Array=> {

3 const values = [];

4 for (let i = -lim; i <= lim; ++i) {

5 values.push(-i+random ());

6 }

7 return values;

8 }

9 },"replace", ():Array=>{

10 const values = [];

11 for (let i = -lim; i <= lim; ++i) {

12 values.push(i);

13 }

14 return values;

15 }).setXAxis("Rand Values").

16 setXLimits(-lim -1,lim+1 ,10).

17 setYLimits(-lim -1,lim+1 ,10).

18 addLine ([0.5,0 ,0.5,1], namedColor("black")).

19 getSeries("randData").setColor(namedColor("green"))

20 }

Figure 8.5: This figure shows a custom chart with a line decoration added
programatically
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There are many more illustrative examples which come with AB-X. The snippets

shown here were included to describe both the power and simplicity of the syntax.

8.1.4 UI screenshots

The following image shows an editing page with the default work folder pointing to

a folder containing all the scripts.

Figure 8.6: Figure showing the editing screen

The following image shows the execution of the PredPrey experiment in the execution

screen. On the bottom left there is a text box which allows the user to input a query

and JavaScript and get the Text response.
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Figure 8.7: Execution screen showing simulation running

The following image shows the results of some unit test, with statistics of successes

and failures.

Figure 8.8: Execution screen showing unit test results
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8.2 AB-X Results

This subsection describes the implementation of the four experiments requested

for the scoring of the FSMM: Sugarscape, Pred-Prey, Pandemic and Pareto. Only the

graphs requested for the experiment were included in this document. Additional graphs

where used during development and debugging of each simulation – but are not shown

here.

For the Pareto experiment, the macroscopic statistical analysis was performed, this

time using the facilities provided in the AB-X implementation.
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8.2.1 Sugarspace in AB-X

Sugarscape, as defined in the experiment, is implemented in AB-X in this URL

https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Sugarscape.

The implementation used four source files and an extra for video recording. It was

straightforward due to the Basic framework functionality being already provided

by the AB-X framework, with a basic agent called SgAgent, with two subclasses –

for males and females. There was heavy use of the provided Locality and Agent

management functionality. The Visualization of the agents was also available since

the beginning, with the ability to disable it to speed up simulation.

Statistical Support including average agent energy, where added easily, including

live count and average patch energy, which are shown in the final report.

The UI was smooth except when agent count exceeded 10000. Yet, even then it

took about two seconds to complete a step. The Usability of the tool provided a

good experience, as the framework responded quickly, it facilitated debugging using

the standard option during development, and it ran fast with the performance option.

Figure 8.9: Sugarscape over AB-X
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8.2.2 PredPrey in AB-X

PredPrey, as defined in the experiment, is implemented in AB-X in this URL https:

//gitlab.com/msc_tesis/abx-fsmm/-/tree/main/PredPrey.

The implementation required four files: one for rabbits, one for wolves, one for the

environment and UIm and one for the simulation specs. Force fields logic was readily

implemented using provided Locality and complex number support.

The implementation was straightforward, with only two types of agents using the

Agent management functionality provided. Only two Model statistics graphs were

added, the alive count and the percentage of rabbits vs wolves.

Visualization capabilities were used, using the delta shape for showing the direction

of agents . Basic framework functionality was good, including the method to get

agents in radius by class and nearest agent functionality. Usability was particularly

good, as the framework responded quickly, and it was easy to debug using the standard

option and it ran fast with the performance option.

Figure 8.10: PredPrey over AB-X
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8.2.3 Pandemics in AB-X

Pandemics, as defined in the experiment, is implemented in AB-X in this URL

https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pandemics.

The implementation required four experiment files, two for logic, and one for each

influence power level. It was straightforward due to theBasic framework functionality,

including its http capabilities. The Visualization of the agents was also available since

the beginning, being completely fluid even for 10000 agents.

There wasn’t any technical challenge. In general, the Usability of the tool was

very satisfactory. We used the provided Agent management capability of relations

to handle the mailbox trust approach.

The first chart shows the two rounds of the simulation on AB-X with 2% and 3%

of agent trust provided by influencers.

Figure 8.11: Pandemics over AB-X

140

https://gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pandemics


8.2. AB-X RESULTS

Similar to NetLogo, we are interested in reviewing Model statistics, including sick

ratio and trust level differences among the two rounds. In the first round, influencers

provide a 2% agent trust, whereas in the second round, they only offer an additional

percent point of trust. Interestingly, despite this apparently small difference, in the

second round agents do not discover that the amulet increases the risk of getting sick.

The following result charts depict data generated from a plot utilizing HTTP-

exported data from AB-X.

Figure 8.12: Pandemics over AB-X using reported data
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8.2.4 Pareto in AB-X

Pareto, as defined in the experiment, is implemented in AB-X in this URL https:

//gitlab.com/msc_tesis/abx-fsmm/-/tree/main/Pareto.

The implementation required four JavaScript files which contains both the UI and

behavior specs. There was a testing file added. No external files were required as AB-X

provided the Basic framework functionality.

The implementation was straightforward with only one type of agent called Player.

Visualization was very fast, and for the Model statistic only the cumulative curve

in decreasing order (the Pareto curve) for the owned tiles and coins was added. It was

simple to add guide lines in AB-X.

A CSV data file was generated for the Macroscopic statistical analysis using

standard AB-X file system support. Each line contains the three macroscopic observables

defined in the specification. The simulation was ran 10000 times. Because of AB-X’s OO

paradigm, it was natural to create and execute the simulation objects independently.

If desired, it is straightforward to modify each simulation execution independently. For

this experiment, AB-X’s Usability was good, especially its ability to create tests.

Figure 8.13: Pareto on AB-X
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8.3 Macroscopic Statistical Analysis & Specification

Fidelity

8.3.1 Histogram

The histogram depicted on Figure 8.14 shows that the macroscopic comparables of

AB-X versus all other versions behave statistically identical, which supports the goal

of all implementations following the specification.

Figure 8.14: Histogram for rounds including AB-X

Similar to other frameworks, AB-X exhbits a tail after 2500 rounds. This is because

each tile needs to be purchased to complete the simulation, but agents can only reach

a tile by chance, which could create iterations with more than 5000 steps.
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Figure 8.15: Histogram for coins including AB-X

As expected, in AB-X implementation coins ownership are clearly around 80% and

it also has a hump where the 20% or less of the agents owned the 100% of the coins.

This hump was also observed in the previous implementations.

Figure 8.16: Histogram for tiles including AB-X

Similar to previous implementations, tiles ownership are clearly around 70-80%, and

again, there is the hump where the 20% or less of the agents owned the 100% of the

tiles.
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8.3.2 Coefficient of Variation

For the six frameworks, the calculated CV for the three histograms (round count

to completion, top 20% ownership of coins, top 20% of tiles ownership) is shown in the

following table.

Framework Rounds to finish Pareto Coins Pareto Tiles

AB-X 0.010 0.016 0.027

NetLogo 0.011 0.016 0.027

MASON 0.010 0.016 0.027

Repast 0.011 0.015 0.025

Mesa 0.011 0.016 0.028

Agents.jl 0.010 0.016 0.028

Table 8.1: Coefficient of variation, including AB-X results, for three chosen
macroscopically observables

As CV is a unit-less measure, it is particularly useful for comparing variability

across datasets with different units or scales. The example shows nearly identical values

for almost all implementations, including AB-X – with a small difference in Repast,

specially in the CV of the Pareto Tiles.

8.3.3 Fréchet Distance

The discrete Fréchet distance is calculated using a formula explained in Chapter 6.

The Fréchet distances between axis/frameworks of the three histograms (round count

to completion, top 20% ownership of coins, top 20% of tiles ownership) were calculated.

While there are techniques to approach Fréchet distance efficiently [25], the general

formula was used, because of the small number of points in the curves.

Fréchet distance for rounds follows. Largest values are marked with *.
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AB-X NetLogo MASON Repast Mesa Agents.jl

AB-X 0.0 43.0 49.0 73.0* 65.0 60.0

NetLogo 43.0 0.0 68.0 87.0* 44.0 68.0

MASON 49.0 68.0 0.0 114.0* 72.0 95.0

Repast 73.0* 87.0* 114.0* 0.0 130*.0 102.0*

Mesa 65.0 44.0 72.0 130.0* 0.0 97.0

Agents.jl 60.0 68.0 95.0 102.0* 97.0 0.0

Table 8.2: Fréchet distance for histograms of rounds to complete experiment

Fréchet distance for histogram of top 20% coin ownership follows. Largest values

are marked with *.

AB-X NetLogo MASON Repast Mesa Agents.jl

AB-X 0.0 39.0 50.0 338.0* 47.0 42.0

NetLogo 39.0 0.0 89.0 299.0* 38.3 46.0

MASON 50.0 89.0 0.0 388.0* 97.0 43.0

Repast 338.0* 299.0 388.0* 0.0 291.0* 345.0*

Mesa 47.0 38.32 97.0 291.0* 0.0 54.0

Agents.jl 42.0 46.0 43.0 345.0* 54.0 0.0

Table 8.3: Fréchet distance for histograms of top 20% coins ownership

Fréchet distance for histogram of top 20% tile ownership follows. Largest values are

marked with *.

AB-X NetLogo MASON Repast Mesa Agents.jl

AB-X 0.0 30.0 54.0 201.0 38.08 44.2

NetLogo 30.0 0.0 75.0 180.0* 33.1 41.6

MASON 54.0 75.0 0.0 255.0* 69.0 57.0

Repast 201.0* 180.0* 255.0* 0.0 186.0* 198.0*

Mesa 38.1 33.1 69.0 186.0* 0.0 31.0

Agents.jl 44.2 41.6 57.0 198.0* 31.0 0.0

Table 8.4: Fréchet distance for histograms of top 20% tiles onwership
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The values clearly show that AB-X results are similar to the previous implementations,

excepting the unidentified differences in Repast’s implementation.

8.3.4 ANOVA and F-Test

As mentioned in chapter 6, both ANOVA and F-test provide a p-value [45]. In null-

hypothesis significance testing, where the null hypothesis is H0 : µ1 = µ2, the p-value

is the probability of obtaining test results at least as extreme as the result actually

observed, under the assumption that the null hypothesis is correct [14]. Here, extreme

means further away from what would be expected under the null hypothesis.

The ANOVA was applied to all the values in the histograms now also including the

AB-X implementation (round count to completion, top 20% ownership of coins, top

20% of tiles ownership) and the F-Test was applied the each pair of histograms.

The usual notation of * is followed:

* 0.01 < p < 0.05

** 0.001 < p < 0.01

*** p < 0.001

The results are shown in tables below.

Rounds to completion

The p-value for the ANOVA was 0.273, that is more than 0.05, which fails to reject

the null hypothesis and means there are not significant differences. Nevertheless, for

F-Test between frameworks the results were below 0.05.
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AB-X NetLogo MASON Repast Mesa Agents.jl

AB-X - 0.997 0.268 0.258 0.892 0.353

NetLogo 0.997 - 0.291 0.275 0.893 0.376

MASON 0.268 0.291 - 0.027* 0.224 0.852

Repast 0.258 0.275 0.027* - 0.331 0.041*

Mesa 0.892 0.893 0.224 0.331 - 0.297

Agents.jl 0.353 0.376 0.852 0.041* 0.297 -

Table 8.5: P-value for F-test for histograms of rounds to complete experiment

Here it can be seen that for rounds, the results of Repast are statistically significantly

different for Agents.jl and MASON.

Top 20% of coin ownership

The p-value for the ANOVA was < 10−5 which rejects null hypothesis, and indicates

the means for the histograms of the top 20% of coin ownership, are significantly different.

The F-Tests between frameworks the results are

AB-X NetLogo MASON Repast Mesa Agents.jl

AB-X - 0.870 0.733 < 10−5*** 0.552 0.363

NetLogo 0.870 - 0.860 < 10−5*** 0.669 0.459

MASON 0.733 0.860 - < 10−5*** 0.800 0.571

Repast < 10−5*** < 10−5*** < 10−5*** - < 10−5*** < 10−5***

Mesa 0.552 0.669 0.800 < 10−5*** - 0.755

Agents.jl 0.363 0.459 0.571 < 10−5*** 0.755 -

Table 8.6: P-value for F-test for histograms of top 20% of coin ownership

Here it can be seen that for the top 20% of coin ownership, the results of Repast

are statistically significantly different for all the other frameworks.
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Top 20% of tiles ownership

The p-value for the ANOVA was< 10−5 which rejects null hypothesis, and indicates

the means of the histograms for the op 20% of tile ownership, are significantly different.

The F-Tests between frameworks the results are

AB-X NetLogo MASON Repast Mesa Agents.jl

AB-X - 0.777 0.603 < 10−5*** 0.687 0.560

NetLogo 0.777 - 0.423 < 10−5*** 0.494 0.388

MASON 0.603 0.423 - < 10−5*** 0.909 0.949

Repast < 10−5*** < 10−5*** < 10−5*** - < 10−5*** < 10−5***

Mesa 0.687 0.494 0.909 < 10−5*** - 0.859

Agents.jl 0.560 0.388 0.949 < 10−5*** 0.859 -

Table 8.7: P-value for F-test for histograms of top 20% of tiles ownership

Here it can be seen that for the top 20% of tiles ownership, the results of Repast

are statistically significantly different for all the other frameworks.

These results keeps indicating a consistency issue in Repast which could be caused

by a underlying issue related to pseudo-random generation or in the experiment setup

and behavior which has not being identified even after several code reviews.

8.4 AB-X FSMM Scoring

The following are the scoring for the two subsectionss of the FSMM which were

evaluated for each of the five frameworks and AB-X.

8.4.1 Simulation Features

The score for the simulation features of the FSMM for the frameworks based on the

four experiments are shown in the following table.
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Category NetLogo MASON Repast Mesa Agents.jl AB-X

Usability 3 3 1 2 1 3

Basic Framework 3 3 3 3 3 3

Functionalities

Locality 3 2 3 2 3 3

Agent Management 2 2 2 2 1 2

Force Fields 0 0 0 0 1 2

Summary 11 10 9 9 9 13

Table 8.8: Simulation Features Score including AB-X

8.4.2 Interrogation Capabilities

The score for the interrogation features of the FSMM for the frameworks based on

the four experiments are shown in the following table.

Category NetLogo MASON Repast Mesa Agents.jl AB-X

Visualization 3 3 2 2 1 3

Statistical support for 3 3 3 3 3 3

model attributes

Macroscopic statistical 2 2 2 2 2 3

analysis

Nearly decomposable 0 0 0 0 0 1

System view

Summary 8 8 7 7 6 10

Table 8.9: Interrogation capabilities Score including AB-X

Based on those scores, we can create a quadrant-like graph with the top right being

the best scored and the bottom left being the worst scored. In this quadrant we see

that AB-X performed better in the FSMM. It is worth noting that the FSMM scoring

did not include research supporting features due to the almost universal lack of support

in current frameworks. Yet, some of those features (such as utility features) were
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purposefully added in AB-X. Had those features been included in the scoring, it is

expected AB-X should have scored higher.

Figure 8.17: FSMM including AB-X
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8.5 AB-X Future features

The following list present a list of improvements (in decreasing order of importance)

which are required to transform the AB-X POC into a full fledged product:

• Finalize Vertex-Edge support: Vertex-Edge support was not in the featured experiments

for scoring the FSMM. One of the most important reasons was that none of the

ABM framework studied seems to support it directly and therefore requesting

it would not make much sense. Nevertheless, the idea of taking agents outside

of the square grid and putting them on the edges would facilitate simulating

several behaviors without the need for a full 3D framework, as elsewhere in this

document. One of the main forward-looking improvements for AB-X would be to

fully implement the Vertex-Edge support as described in the architecture chapter.

• Two important missing services are the Containers and the Executions manager.

Those needs are handled by the default service which limits the execution to the

local computer. Once completed, those services will allow AB-X to be used in a

distributed environment like a University or research center.

• Repository support: Another missing service is the repository service which should

provide the ability to select an arbitrary location in the local disk, or to save

resources in a folder backed by a versioning system. Right now, files are saved in

a folder relative to the product location. While this can be used for work, most

of the enterprise-ready products are expected to have this support implemented

by default.

• Optimizations: While parts of the grid were developed in Java to avoid the cost

to have them in pure JavaScript, there are still many improvements which can be

done, specially in the neighbor algorithm which are very slow when compared to

NetLogo’s.
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• Editor capabilities: Currently, AB-X handles only JavaScript syntax, nevertheless

the underlying ACE editor could handle other text files. Also the UI is expected

to handle other file types, like showing images, videos or the ability to download

binary files.

• Editor customization: While AB-X UI is green with a black editor, its underlying

libraries jEasyUI and ACE support varied color schemes: this may be quickly

added to the UI.

• Headless charting support: Charts are generated in the UI by the JS libraries

which allows interactive use by the developers but sometimes it might be desirable

to have charts generated without the need of the UI.
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CHAPTER 9

Conclusions

‘The last will be first, and the first

last.”

Jesus of Nazareth, Matthew 20:16
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Reflecting on the work developed in this project, we can split the conclusions into

two realms: the technical one and the simulation one. The technical conclusions will

comprise the proposed FSMM and the proposed architecture.

Regarding the FSMM we can conclude:

• While use of ABM has slowed somewhat in recent years, this research technique

has important advantages over other top-down simulation techniques like EBM,

DES or SD, due to is superior visibility and its ability to incorporate contrasting

behavior.

• To score an ABM Framework, performance alone is not enough and a more

comprehensive approach should be considered.

• We proposed our FSMM as an initial approach to score ABM frameworks. We

knew that some topics in the FSMM would overlap, as they are interrelated

concepts. An effort was made to minimize overlapping.

• After performing the experiments we reckon that the three most important topics

in the FSMM were usability, basic framework functionalities, and visualization.

• While visibility and the other six topics can be implemented, usability and basic

framework functionalities are foundational capabilities and need to be provided

by the framework themselves.

• The proposal for our FSMM should be able to cover the spectrum from a high

level computer language to a highly robust, fully-fledged ABM framework.

• There were important weaknesses in usability and visualization in the Repast,

Mesa and Agents.jl frameworks, which is of concern because they are commonly

used ABM frameworks.

• Only NetLogo and MASON scored highest in the top 3 items of the FSMM, which

points to their current popularity.
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• We proposed a statistical method to validate the functional equivalence of two or

more implementation of the same experiment specification. Using it, we verified

that for one of the proposed validation experiments (the Pareto experiment) five

of our six implementations are statistically equivalent.

• Using statistical tools, we observed that the Repast implementation did not

behave as the other implementations. Even after several hours of debugging we

couldn’t figure out the reason for its slight but statistically confirmed difference

in behavior.

• Many architectural approaches might not be able to reach facilitator level 3 in all

topics of the FSMM.

• The FSMM could be used as a starting research point for the development of

new ABM Frameworks because it could help identify desired features and avoid

overlooking required ones.

• An architecture approach may be chosen so as to simplify its implementation.

• While not commonly used today, proposed research supporting features might

become highly relevant in the future of ABM frameworks as they furnish ways to

define complex behavior in a powerful declarative way.

On the architectural approach for the FSMM we can conclude:

• The reference architecture was designed to provide insights on some of the most

common challenges in ABM simulation and to cover most of the current needs

regarding ABMs.

• The core principles (stability, maintainability, readability, syntax expressiveness,

visualization and service oriented) laid out in this document should allow for an

iterative ABM framework implementation in reasonable periods of time by a small

team (the POC was developed in four months by one developer).
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• The proposed reference architecture provides a high-level reference for future

ABM framework architecture or implementations. It defines the system structure,

its principles, and should help guiding the development process, ensuring that key

architectural decisions are consistent, easy to understand and maintain.

• The proposed reference architecture was designed to open a door to future enhancement

for ABM Frameworks. One example is the concept of allowing agents off the grid

into a vertex. This could open the door for realistic, complex non- adjacent

topologies for location-aware simulations.

• AB-X is a POC of the ABM reference architecture. While incomplete, it fared

better (obtained higher marks) than other evaluated ABM frameworks, which

strongly corroborates the main tenet of our research: that it is possible to build

an architecture with robust computational properties which supports an ABM

feature space that helps develop simulations whose correctness can be ascertained

while achieving high fidelity to reality.

For ABM in general we can conclude:

• ABM Frameworks are powerful tools for simulating and analyzing complex systems

composed of interacting agents. Their main advantage resides in the relative ease

of applying their ability to reproduce emergent behavior observed in or expected

from real systems.

• ABM Frameworks allow to shrink the semantic gap between their specification

and their implementation. One way to close this gap is by providing a set of

essential features, leading to correctness and fidelity to reality, as well as other

benefits to the research community, including the ability for no-programmers to

develop or validate their simulations.

• ABM simulation is a valid research tool in multiple science fields such as Economics,

Sociology, Epidemiology, and Environmental Science, which allow capturing complex
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interactions, exploring multiple scenarios with flexibility, develop counterfactual

outcomes – therefore it is valuable to promote and democratize them.
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CHAPTER 10

Future work

‘Men at some time are masters of

their fates. The fault, dear Brutus,

is not in our stars, But in ourselves,

that we are underlings.”

William Shakespeare, Julius Caesar.

Act 1
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While performing our research we identified some important themes for future work

on the FSMM, including:

• The approach for the FSMM is a simple score from 0 to 3 depending on the

facilitator level. While a powerful approach, an alternative is to research a

multidimensional table using a Maturity Model based on the Focus Area [94].

This approach could give finer granularity in certain aspects and would be highly

relevant in scoring the three identified foundational features.

• Each experiment provides a list of features it is intended to score. Nevertheless, it

should be possible to improve the experiment documentation to make them more

robust for scoring the FSMM. For example, each experiment description might

provide a table or rubric detailing a minimum set of expected features to achieve

a certain score.

• Using macroscopic analysis of statistical observables helps to identify differences

between multiple implementations of a simulation. For this work, four experiments

were implemented in five different frameworks, though only the Pareto experiment

was subject to the process of collecting observables for statistical analysis. It

is desirable to apply similar macroscopic analyses to identify deviation in the

remaining experiments and, if found, correct them.

• It is interesting to continue research to identify why out of the 5 implementations

of the Pareto experiment only Repast produced a statistically different results.

• Each of the experiments, even small, produced interesting results. One of the

most striking behaviors observed was in the Pandemics experiment. There, the

change in one percent point in the influencers increased the trust in a counter-

productive measure (wearing the amulet). It will be interesting to compare this

experiment with similar problems.
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• While not scored in this document, the defined research supporting features

might be highly important in the future as they close the semantic gap between

specification and implementation. A future version of the FSMM scoring should

include those features in some way; this may require adding new experiments or

modifying some of the provided experiments to explicitly score them according to

the evolved FSMM.

About the reference architecture and its POC implementation it is worth to consider:

• There are several topics related to the POC in the previous AB-X Future features

section, one them is the limited support of directed edges. It might be useful to

complete the feature, based on the reference architecture.

• While not split in the reference architecture it becomes apparent in the development

of the POC than the environment and the grid are separate entity types which

could come apart in a refinement of the reference architecture.

• One interesting idea is for agents to jump off the grid into a vertex. This could

be further developed by allowing a generalization of the topology into a more

complex one – which would be useful for space-aware simulations, while avoiding

the cost of a full 3D environment.

• An alternate topology would be a homogeneous multilayered grid where some

tiles of layers could be connected by edges. This topology would enable more

natural simulation of buildings. Yet another topology would be a heterogeneous

multilayered one which could be used to simulate a complex of buildings, a section

of a city or even a full one, space stations, and battleground fields – among others.
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