
Maestrı́a en Computación, énfasis en Ciencias de la Computación

Escuela de Ingenierı́a en Computación

Guided Data Augmentation by Transfer
Function (GUIDATFUN)

Thesis director:
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Abstract

Deep Learning models are used in a wide variety of contexts, one of which is

the classification of medical images for the diagnosis or detection of deceases.

For the models to perform adequately great amounts of data to train them are

needed, nonetheless the lack of labeled data in the medical field is noticeable

due to the scarcity of medical professionals. To solve this other approaches lean

on transfer learning to gather data from different sources but often the distri-

bution between the clusters of data is too different causing accuracy issues for

the models. To solve the distribution mismatch this study proposes a scoring

base data augmentation policy called GUIDATFUN that measures the related-

ness between the source and the target datasets and then a transfer function

assigns an augmentation probability to the source images. The approach was

tested with four different transfer functions in the context of chest X-ray images

binary classification, the results showed that a supervised deep learning model

trained with the data generated employing the GUIDATFUN method measured

with statistical significance with a higher accuracy in comparison to trained with

regular data in the context of domain adaptation for medical images.

Keywords: deep learning, domain adaptation, data augmentation, medical

imaging.
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1. Introduction

1.1 Background

Nowadays the interaction between humans and computers is present in all as-

pects of life, generating a vast amount of information to analyze and make deci-

sions from. Machine Learning (ML) was born from pattern recognition and the

theory that computers can learn without being programmed to perform specific

tasks, especially if computers could learn from these data. Deep Learning(DL)

is a subset of machine learning, that differs from ML by using a complex struc-

ture of algorithms modeled based on the human brain enabling the processing

of unstructured data.

Over the last decade, DL has contributed to the development of effective

computer-aided diagnosis tools and more recently it has been applied to the de-

tection and classification of diseases by the analysis of medical images of patients

suffering from conditions such as cancer [1] and COVID-19 [2].

With DL comes a frequent problem, the lack of labeled data [3]. DL architec-

tures depend on using expensive labeled datasets to train models with millions

of parameters to estimate [4]. This problem is not unrelated to the medical field,

on the contrary, it is exacerbated because these labels must be generated by

highly qualified personnel such as radiologists, pathologists, etc. A couple of

approaches to solve this problem are Domain Adaptation and Data Augmenta-

tion.

Domain Adaptation is a subset of Transfer Learning that incurs into a simple

idea of obtaining more data from another domain, thus the data used to train

the DL model are a combination of a dataset called source and a second one

called target [5].

The problem with this approach is the differences between the source and

target, the data from the target could be a small set of observations from a spe-

cific hospital or clinic that cannot be combined with the source dataset due to
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the dissimilarity between patient features and imaging protocols [6], and accord-

ingly to [7] these variations should not be ignored because they could hinder the

performance of the model.

Other techniques [2] outside of transfer learning have these dissimilarities

between labeled and unlabelled datasets, to detect them they use the Maha-

lanobis distance that measures if the features of an image follow the distribution

of another group of images [8], if the differences are too wide they are called

out-of-distribution (OOD).

Another quite intuitive approach is to generate more data, a technique that

has been utilized for this purpose is data augmentation (DA), which is used

to increase the training dataset, as well as, make the DL model more robust to

different types of noise. [9]

This work presents an algorithm that qualifies the images from the source

dataset based on how closely they resemble the distribution of the target dataset

and by using this OOD score the images are then highly or weakly augmented

to generate more data, further referred to in this document as GUIded Data

Augmentation by Transfer FUNction (GUIDATFUN).

1.2 Problem Definition

The absence of data can hinder DL models [10] but more precisely can cause

overfitting. Overfitting happens when the model classifies the training data way

too well by memorizing the data patterns, the noise, and random fluctuations,

but when confronted with unseen data outside of training the model fails to

generalize resulting in poor performance as seen in [11].

Methods to generate more data such as Pseudo-label, data augmentation and

domain adaptation rely both on the cluster assumption (data points similar to

each other tend to form clusters) and the smoothness assumption (data points

close to each other are likely to have the same label) [12].

The problem to be addressed through this study is the differences in distri-

bution between the source and target in the context of domain adaptation, and

how the correct use of data with such differences for data augmentation could

Barnum F. Castillo Barquero
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lead to a better generalization of a deep learning model [13].

1.3 Objectives

Main Objective:

To develop a novel method using domain adaptation and data augmentation

for image classifiers, based on out-of-distribution scores in order to improve the

generalization of Deep Learning Models.

Specific objectives:

1. Devise a data augmentation policy method utilizing OOD score based on

the Mahalanobis distance.

2. Apply the proposed method and variations to the training data for a spe-

cific DL model.

3. Evaluate the proposed method in transfer learning using medical datasets

with artificially generated dissimilarities.

Barnum F. Castillo Barquero
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2.1 Conceptual Framework

Tom M. Mitchell [14] defines a computer which learns as:

Definition 1. Machine Learning (ML): A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E.

Translated to image classification, a model learns from images from a dataset,

performs a classification and learns from the experience. Now that the task

required by the model is determined, it is necessary to define what it means by

classification.

Definition 2. Classification model: a model f (x) = y assigns an input described

by x to a category identified by numeric code y ∈ K with K being the set of different

categories [4].

Moreover, the model is measured by its accuracy, that is the proportion of

examples for which the model produces the correct output, in this context the

correct classification. Thus the accuracy corresponds to a value 0 or 1, 1 if it is

correctly classified and 0 if it is not.

In addition, the experience is defined as the dataset D with n observations

called xi, thus D = {x0, x1, ..., xn}, for facility the datataset is defined as:

Definition 3. Dataset: D = {X, t} with X ∈ Rnxm being a matrix with n obser-

vations with each observation having m variables and t ∈ Rn the vector with n labels

associated to each observation.

Finally, to evaluate the model it is also necessary a test dataset with Dt =

{X′} of unseen examples for the model to predict [4].

Definition 4. Test dataset: Dt = {X′, t} with X′ being a matrix with unseen exam-

ples to the model and t the labels associated to each observation.
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(a) Overfitting (b) Appropriate capacity (c) Underfitting

Figure 2.1: Regularization [4]

.

A central problem in machine learning is how to make a model perform well

on the training data D, but also on new inputs Dt. Many strategies used in

machine learning are explicitly designed to reduce the test error, possibly at the

expense of increased training error. These strategies are known collectively as

regularization [4], a visual representation of this balance is presented in figure

2.1.

Definition 5. Regularization: The ability to perform well on previously unobserved

inputs [4].

Definition 6. Underfitting: occurs when the model is not able to obtain a sufficiently

low error value on the training dataset [4].

Definition 7. Overfitting: occurs when the gap between the training error and test

error is too large [4].

An ML model can be categorized by what kind of experience they are al-

lowed to have during the learning process: supervised, unsupervised and semi-

supervised.

Supervised learning model learns from a dataset containing observations x,

but each example is also associated with a label or target t ∈ K. Thus, the dataset

defined in 3 can now be defined as 8 [4].

Barnum F. Castillo Barquero
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Definition 8. Labeled dataset: Dl = {X, t} with X ∈ Rnl×m, t ∈ Rnl , Xl being the

matrix with all nl observations and t the nl labels associated to each observation.

Unsupervised learning experiences a dataset containing many features, then

learns by observing several unlabeled examples from Xu, and attempting to

implicitly or explicitly learn the probability distribution p(x), or some interesting

properties of that distribution [4].

Definition 9. Unlabeled dataset: Du = {U} with U ∈ Rnu×m being a matrix with

nu unlabeled observations.

A semi-supervised learning model is trained using a set of labeled obser-

vations Dl and a set of unlabelled observations Du with the total number of

observations n = nl + nu. Due to the difficulty of obtaining labeled data, the

number of unlabelled observations nu is considerably higher than the number

of labeled observations in most cases.

Neural Networks (NN) are learning algorithms inspired by the biological

brain, the concept started with the perceptron which can be viewed as the neuron

of the network (figure 2.2). A perceptron is a linear model designed to take a set

of m input values x0, . . . , xn and associate them with an output y. This model

would learn a set of weights w0, ..., wn to calibrate the desired activation value.

To extend the linear model to represent nonlinear functions it is also necessary

to apply a non-linear function ϕ called activation function [4].

Definition 10. Perceptron: ϕ( f (x, w)) = ϕ(wTx) with x, w ∈ Rm, x the features

vector and w the weights vector.

NNs are called networks because they are typically represented by combining

many different perceptrons. The model is associated with a directed acyclic

graph (figure 2.2) describing how the functions are composed together. For

example, f (x) = y could be composed by three layer with respective functions

f1, f2, and f3 connected in a chain, to form f (x) = f3( f2( f1(x))). In this case, f1

is called the input layer, f2 hidden layer, and f3 is the output layer.

Deep learning (definition 11) is a further subset of machine learning.

Barnum F. Castillo Barquero
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Output

Hidden

Input

Figure 2.2: Neural Network.

Definition 11. Deep learning (DL): Deep learning allows computational models that

are composed of multiple processing layers to learn representations of data with multiple

levels of abstraction [15].

If the hidden layer of an NN is composed of two or more layers the network

is defined as a Deep Neural Network (DNN) and the overall length of the chain

including the input and output layers gives the depth to the model [4].

Combining the definitions 2 and 10 with the previous concept a DNN can

be defined as 12 a composite function that depends on two input parameters to

give a category y.

Definition 12. Deep Neural Network (DNN): f (x, θ) = y with x ∈ X and θ being

the set of weights w associated to each neuron.

Most algorithm improvements involve optimization of some sort. Optimiza-

tion refers to the task of either minimizing or maximizing (denoted by *) of some

loss function L using gradient descent. Each model defines its own L functions

that best judge the data, and it will change depending on if the model is super-

Barnum F. Castillo Barquero
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Figure 2.3: CNN architecture example [16].

vised or unsupervised [4]. For an image classifier the definition 13 explains the

optimization L as the value of θ (definition 12) for which f (θ; x, y) attains its

minimum for an image x and a label y.

Definition 13. Loss function optimization: L = θ* = arg min f (θ; x, y)

Convolutional Neural Networks (definition 14) are a class of deep neural net-

works specifically designed to process and analyze data with a grid-like struc-

ture, such as images. They are particularly effective for tasks involving visual

data, including image classification, object detection, and image segmentation,

as example figure 2.3.

Definition 14. Convolutional Neural Networks (CNNs): are deep neural networks

that use convolution in place of general matrix multiplication in at least one of their

layers [4].

Definition 15. Residual Neural Networks (ResNets): Convolutional Neural Net-

work based that adds some skip-connections or recurrent units between blocks of convo-

lutional and pooling layers [17].

Barnum F. Castillo Barquero
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Figure 2.4: Transfer learning taxonomy [19].

In many real-world applications it is expensive to collect the needed data to

feed the models, in such cases, knowledge transfer or transfer learning between

task domains can be desirable.

Definition 16. Transfer Learning (TL): the ability of a system to recognize and apply

knowledge and skills learned in previous tasks to new tasks [18].

In the context of this study, the main focus is around domain adaptation,

while TL transfers the knowledge of a model over to another model with a

different task, domain adaptation is used to adapt a model to what it has never

seen before while maintaining the same task, figure 2.4.

Definition 17. Domain Adaptation (DoA): is the ability to apply an algorithm

trained in one or more ”source domains” to a different (but related) ”target domain”,

the tasks are the same but the domains are different [5].

By combining definition 8 and 17 the source dataset and target dataset are

defined as:

Definition 18. Source dataset: Ds = {S} with S ∈ Rns×m being a matrix with ns

observations of the source domain.

Barnum F. Castillo Barquero
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Definition 19. Target dataset: Dg = {G} with G ∈ Rng×m being a matrix with ng

observations of the target domain.

To improve a DL model further more data helps it to generalize better, but

as mentioned prior in the real world the amount of data is limited [3]. One way

to solve this problem is to create fake data and add it to the training set. This

approach is quite useful for an image classifier that needs to take a complicated

high dimensional input x and summarize it with a single category identity y.

One technique for this purpose is Data Augmentation (definition 20).

Definition 20. Data Augmentation (DA): consists of simple transformation B(x) =

x′ being x the input and x′ the modified input, for image classification this includes

moving the images a few pixels in each direction, rotating the image, etc [4].

Definition 21. Independent and Identically Distributed (IID) principle: a col-

lection of random variables is independent and identically distributed if each random

variable has the same probability distribution as the others and all are mutually indepen-

dent [12].

To train DL models the IID principle (definition 21) has to be taken into

consideration if not it could provoke a diminish in the accuracy [2,12]. According

to [2, 12] the type of violations to this principle can be categorized as:

• Feature distribution skew (covariate shift): A different distribution of the

features in the input observations versus the once observed in Ds, causing

a distribution mismatch, example figure 2.6.

• Label distribution skew (prior probability shift): The label imbalance be-

tween Ds and Dg, example figure 2.5.

• Same label, different features (concept drift): Two images could depict dif-

ferent stages in time but still have the same category, example image 2.7.

• Same features, different label (concept shift): This is associated to a shift

in the labels of Ds with respect to Dg for samples with the same features.

This is very related to the problem of noisy labeling.

Barnum F. Castillo Barquero



14 Literature Study

x

y

+

+

+

+

+ +

+ +

+
+

+

++
+

+

(a) Source with more red crosses labels

x

y

+
+

+

+
+

+

(b) Target with more green circles la-

bels

Figure 2.5: Probability shift example.

Source
Target

Figure 2.6: Covariate shift example, different distribution for datasets.

• Quantity skew: The dataset Ds contains observations with features that Dg

simply does not have.

To counter the effect of a distribution mismatch quantitative distance (def-

inition 22) metrics can be applied to different types of data to determine the

closeness between distributions.

Definition 22. Distances: measurements to calculate the similarity between data points

represented as M(x1, x2) [20]. For a distance M and three point x1, x2, x3 ∈ X the fol-

lowing following properties are satisfied:

• Non-negativity: M(x1, x2) ≥ 0.

• Identity of indiscernible: M(x1, x2) = 0 if and only if x1 = x2.

Barnum F. Castillo Barquero
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(a) Original Data at time t (b) Concept drift at time t + 1 (c) Concept drift at time t + 2

Figure 2.7: Concept drift example where the prediction on the original date is

no longer correct as time increases.

• Symmetry: M(x1, x2) = M(x2, x1).

• Triangle inequality: M(x1, x3) ≤ M(x1, x2) + M(x2, x3) the distance between

two points is less than or equal to the sum of the distances of a third point.

In the context of image classification a feature extractor (definition 23) is

necessary to transform the raw image data into a set of characteristics or features

that can be used for analysis. These features could be edges, textures, shapes,

colors, or more abstract representations learned by neural networks.

Definition 23. Feature Extractor: is a neural network or a part of a neural network

that processes raw image data and transforms it into a set of features, which are high-

level representations that capture important patterns, structures, and information in the

images [21]. Formally the extraction of the feature is represented as A(x) = h where x

is an image and h ∈ Re the features vector extracted from the image.

Once the features are extracted from the images, measuring the distance (fig-

ure 2.8) between these feature sets allows to quantify the similarity or dissimi-

larity between images.

2.2 Medical Imaging

DL models are used in a wide range of topics, one of the most prominent of

which is for medical applications. They are commonly used to make diagnoses

Barnum F. Castillo Barquero
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Figure 2.8: Visual representation of an example of distance measurement be-

tween three images and how the instance point could be representative of all the

features as a whole.
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and predictions implementing CNNs (definition 14) models trained with infor-

mation obtained from patients using different tools [22] such as:

• X-Ray radiography: is a diagnostic technique that uses high-energy electro-

magnetic radiation to penetrate solids and create images of internal struc-

tures. Example figure 2.9 a⃝.

• X-Ray computed tomography: is a diagnostic technology that combines

X-ray equipment with a computer to produce cross-sectional images of the

human body. Example figure 2.9 b⃝.

• Magnetic resonance imaging (MRI): technology that uses magnetic and ra-

dio frequency fields to create images of body tissues and monitor body

chemistry. It detects changes in proton density and magnetic spin relax-

ation times to visualize morphological alterations. Example figure 2.9 c⃝.

• Radionuclide imaging: technology that uses small amounts of radioactive

material to create images of internal body structures. The radioactive iso-

topes, administered via injection or orally, are absorbed by specific organs

or tissues, emitting signals detected by radiation detectors. Example figure

2.9 d⃝.

• Ultrasonography: technology that uses high-frequency sound waves to cre-

ate medical images by detecting echoes from body tissues, example figure

2.10 a⃝.

• Elastography: is a non-invasive imaging technique that assesses tissue stiff-

ness (elasticity) to detect abnormalities. It includes ultrasound, magnetic

resonance, optical, and tactile imaging. Example figure 2.10 b⃝.

• Optical imaging: is a noninvasive technology that uses light to visualize

cellular and molecular functions within the living body. It probes deep

tissues by detecting light interactions with tissue components, providing

contrast through exogenous agents or endogenous molecules. Example

figure 2.10 c⃝.

Barnum F. Castillo Barquero
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(a) X-Ray Radiography (b) X-Ray Computed Tomography

(c) Magnetic Resonance Imaging (d) Radionuclide Imaging

Figure 2.9: Medical images of lungs by different sources.

Barnum F. Castillo Barquero
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(a) Ultrasonography (b) Elastography

(c) Optical Imaging

Figure 2.10: Medical images by different sources.

This document focuses on 2D x-ray images due to their availability in a pro-

posal with domain adaptation (definition 17).

The persistent problem of obtaining data to train the models is present in

this field due to the fact that different sources are too different, for example

figure 2.9 where four images of the lungs are completely incompatible based

on the technology used causing one or more of the violations defined in 21

and producing a distribution mismatch as a result. Some of the reasons for

distribution mismatch in the context of medical imaging [6] are the following:

• Differences in imaging devices and protocols.

– Variability in equipment: different hospitals and clinics may use dif-

ferent models and brands of imaging devices, leading to variations in

image quality, resolution, and other characteristics.

– Imaging protocols: protocols for capturing images (e.g., settings on

the MRI machine, positioning of the patient) can vary between insti-

Barnum F. Castillo Barquero
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tutions, affecting the consistency of the images.

• Patient demographics.

– Age and gender: the patient population might differ in age, gender,

or other demographic factors, which can influence the appearance of

medical images.

– Health conditions: Variability in underlying health conditions and co-

morbidities can lead to differences in image characteristics.

• Geographic and environmental factors.

– Geographic differences: patients from different geographic regions

might have different prevalent diseases, which can affect the appear-

ance of medical images.

– Environmental factors: lifestyle and environmental exposures (e.g.,

smoking, diet, pollution) can also contribute to variations in medical

images.

• Data acquisition and annotation.

– Manual annotation variability: differences in how radiologists or tech-

nicians annotate images can introduce variability. This includes dif-

ferences in labeling styles, criteria for identifying regions of interest,

and inter-observer variability.

– Quality of data acquisition: variations in how data is collected, in-

cluding inconsistencies in following standardized protocols, can lead

to mismatches.

• Temporal changes.

– Technological advancements: over time, improvements in imaging

technology and techniques can lead to differences in images captured

at different times.

– Changes in population health: shifts in the health status of the popu-

lation, such as the prevalence of certain diseases, can also cause tem-

poral variability in medical images.

Barnum F. Castillo Barquero
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• Institutional practices.

– Differences in clinical practice: variations in clinical practices, such as

the frequency of follow-up scans, types of contrast agents used, and

pre-imaging preparations, can lead to distribution mismatches.

– Policy and regulations: differences in local regulations and institu-

tional policies regarding imaging practices can also contribute to vari-

ability.

2.3 State of the art

Several deep learning methods tackle low quantities of training data. This sec-

tion summarizes some important techniques and studies that are relevant to this

proposal.

2.3.1 Regularization Techniques

According to [23] regularization techniques can be classified into 13 broad cate-

gories:

• Data augmentation: regularization by data augmentation involves using

the transformations (definition 20) to create new training examples.

• Noise injection: adds noise to the input data or the model’s weights during

training. This can help the model become more robust to small variations

and prevent overfitting.

• Weight decay: adds a penalty to the loss function proportional to the

square of the magnitude of the weights.

• Dropout: randomly drops neurons during the training process.

• Drop connect: during training each weight can be randomly set to zero,

which helps in regularizing the model.

• Stochastic depth: involves randomly dropping entire layers during train-

ing.

Barnum F. Castillo Barquero
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• Early stopping: monitors the model’s performance on a validation set and

stops the training process when the performance stops improving.

• Label smoothing: softens the target labels by distributing a small portion

of the probability mass to all classes.

• Mixup: generates new training samples by taking convex combinations of

pairs of examples and their labels.

• Adversarial training: involves training the model on adversarial examples

inputs that have been slightly modified to fool the model.

• Architectural regularization: implicitly regularize the training process by

improving gradient flow and enabling the training of very deep networks

without suffering from the vanishing gradient problem.

• Jacobian regularization: reduces the sensitivity of the model’s outputs to

its inputs by penalizing the model’s predictions with respect to the inputs.

• Virtual adversarial training: uses virtually perturbed unlabeled examples

to regularize the model.

On the preliminary review of the existing literature there were limitations

found which, inside the context of domain adaptation, could cause issues when

training DL models. TODO: FALTAN REFERENCIAS

Data Augmentation

Basic augmentation techniques involve transforming an image to reposition its

points or manipulating its intensity values to create an augmented version.

These operations are applied to individual images from the existing dataset,

which are then added back to increase the dataset size.

Many studies employ small transformations to increase the training data,

for example, Shyamalee and Meedeniya [24] trained a CNN model with retinal

images for the diagnosis of glaucoma decease using augmented images with ro-

tation, shearing, zooming, flipping, and shifting. Dufumier et al. [24] displayed

the effectiveness of the augmentations rotation, random cropping, blurring, and

Barnum F. Castillo Barquero
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noise on MRI images to train CNN models for three classification tasks age pre-

diction, sex classification, and schizophrenia diagnosis. [25] applied a mixup

augmentation by combining images to generate new 2D CT images for pancreas

segmentation.

Data augmentation transformations by themself do not account for verifying

the IID principle (definition 21) thus if an out-of-distribution image is augmented

and added to the training data for a classification model it will harm its accuracy

[26].

A second approach for data augmentation in medical images involves Gen-

erative Adversarial Networks (GANs). GANs involve a generator G that creates

images conditioned on an input image, and a discriminator D that distinguishes

between real and generated images. The objective function combines a condi-

tional adversarial loss and a traditional L1 loss.

L = arg minG maxD LGAN(G, D) + λ LL1(G)

The generator aims to minimize this objective against an adversarial discrim-

inator that tries to maximize it. Additionally, an L1 loss is incorporated to ensure

the newly generated image is not too distinct from the real images and λ bal-

ances the two objectives.

Under this approach multiple works have been developed, Nishio et al. [27]

trained a 3D GAN model to generate CT images of lung nodules, Wu et al. [28]

used a GAN model to augment breast mammography images for the training of

an image classifier of breast cancer.

While GAN-based methods have demonstrated impressive results, they often

struggle with preserving image objects and maintaining translation consistency.

This limitation reduces their effectiveness for applications such as generating

large-scale training data across different domains [29].

A third approach called Variational Autoencoder (VAE) is a generative model

in machine learning that combines neural networks with variational inference. It

consists of an encoder, which maps input data to a latent space, and a decoder,

which reconstructs the data from the latent space. The [30] utilizes a modi-

fied version called Progressive Adversarial Variational Auto-Encoder (PAVAE) to
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generate realistic and diverse brain lesion images to expand the training dataset

for laser interstitial thermal therapy (LITT).

VAEs learn a useful latent representation and model global structure well but

have difficulty capturing small details and complex data distributions [31].

2.3.2 Domain Adaptation

For the purpose of the document the regularization techniques are focused on

the domain adaptation training with medical images, according to [32] domain

adaptation can be classified following this taxonomy:

• Model type: DoA methods are divided into shallow and deep based on

model complexity. Shallow domain adaptation relies on human-engineered

features and traditional machine learning, while deep DoA utilizes deep

learning models for end-to-end feature learning and training.

• Label availability: domain adaptation methods vary by the availability of

labeled data in the target domain. Supervised DoA uses a small amount of

labeled data, semi-supervised DoA combines labeled and unlabeled data,

and unsupervised DoA relies solely on unlabeled target data.

• Modality difference: DoA methods can address either single-modality,

where source and target share the same modality, or cross-modality, where

they differ (e.g., MRI to CT). Cross-modality DoA is more challenging due

to the different types of data involved.

• Number of sources: methods are classified based on the number of source

domains. Single-source DoA assumes one source domain, while multi-

source DoA involves multiple domains, increasing complexity due to data

heterogeneity.

• Adaptation step: DoA methods can be one-step, where adaptation occurs

directly between source and target, or multi-step, involving intermediate

domains to bridge significant distribution gaps.

A proposal to address the regularization problem is [33] a supervised and

shallow domain adaptation that adopted a weight decay strategy by assigned
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to the source domain different weights according to their relevance to the target

dataset for MRI scans of patients with Alzheimer’s disease. The learning task

involves minimizing the empirical risk by solving for the following loss function

Lθ:

Lθ = arg min ∑ p(x, y) L(x, y, w)

The p(x, y) represents the joint distribution over observations x and labels y

functioning as a weight regularizer added to the loss function Lθ by multiplying

the loss function L.

Other technique is [34] a supervised, shallow and multiple-source DoA used

to diagnose Autism spectrum disorder that instead of investing resources in

having a more similar source dataset to the target it converts both the source

and target into a common feature space. They transform multiple sources by

selecting one as the target and using a Low Rank transformation to create Latent

Representation Space (figure 2.11), then they train a model on this new data

with a common distribution. This transformation is learned by minimizing the

difference between source and target domains while preserving the structural

information of the data and can be mathematically represented as:

min
A,B

∥SA − GB∥2
F + λ(∥A∥∗ + ∥B∥∗)

Where A and B are the transformation matrices applied to source S and

target G, ∥ · ∥F denotes the Frobenius norm and ∥ · ∥∗ denotes the nuclear norm.

Although DoA has found multiple methods to resolve regularization between

source and target there are few studies that focus on augment source images in

the medical field. Basic data augmentation methods require validations to com-

ply with the IID principle, and advanced data augmentation methods involve

having sufficient data to train models that are not easy to obtain and the sources

differ from each other. Outside the medical field, there have been studies that

have enough information to combine both areas of DoA and data augmentation

by deep learning.

Huang et al. [29] uses a modified GAN model called AugGAN trained with

traffic images. By training a GAN on the source domain data, AugGAN gener-
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Figure 2.11: Distribution transformations applied to source and target with

method [34]

ates new data that has the same label as the source but the style and character-

istics of the target domain. The framework uses a cycle-consistent adversarial

network (CycleGAN) to ensure that the synthetic images remain true to their

original labels while adopting the style of the target domain. This is achieved

through a cycle-consistency loss, which ensures that an image translated to the

target domain and then back to the source domain remains unchanged. The syn-

thetic data generated by AugGAN is used to augment the training dataset. This

augmented dataset helps the model to learn features that are more generalizable

across both source and target domains.
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3. Scientific Proposal

To solve the problem (section 1.2) other approaches outside of transfer learning

were explored, one useful technique is out-of-distribution data filtering used in

semi-supervised deep learning [2], it assesses the distribution mismatch between

labeled and unlabelled datasets using the Mahalanobis distance (definition 22)

and filters the outliers that might harm the DL model accuracy before training.

A new technique to generate more relevant data by taking into consideration

an OOD scores based on a distance would ensure that the data from the source

dataset used for data augmentation would be drawn from the same probability

distribution as the target dataset. With this consideration, any deep learning

model for the classification of medical images or any other model with a heavy

constraint in training data for that matter could have improved accuracy.

3.1 Research questions

1. Based upon the OOD score can a data augmentation policy improve the

robustness of a supervised DL model when facing a distribution mismatch

between the source and target dataset?

2. What would be an effective transfer function to know the number of data

augmentations necessary for an image-based OOD score?

3. Is there an improvement to a supervised DL model by data augmenting

images with a high OOD score?

4. Is there an improvement to a supervised DL model by data augmenting

images with low OOD scores?
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Source S

Target G

1⃝ Feature Extractor

∀xi ∈ S : hs,i = A(xi)

∀xj ∈ G : hg,j = A(xj)

2⃝ Mahalanobis Distance

ci = M(hi, Hg)

3⃝ Transfer Function

p = R(c)

4⃝ Data Augmentation

S′ = B(S, p)

5⃝

Output

Hidden
Input

Figure 3.1: A summary of the workflow presented in this document. 1⃝ The

feature extractor extracts the features for each images in S and G individually

represented by hs,i and hg,j respectively. From the set formed by the features

extracted hg,j its probability distribution is defined as Hg. 2⃝ The Mahalanobis

distance calculates the score ci for each feature hs,i by comparing it versus all the

distribution of Hg. 3⃝ All the scores c are passed to the transfer function that

calculates the probability p for all the images of S. 4⃝ The Data Augmentation

augments the images of S following the probabilities p. 5⃝ The new data S′ and

target are used to train a supervised DL model.
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3.2 Proposed method

In terms of regularization this is a data augmentation technique (section 2.3.1)

aided with discernment for quality data from OOD data filtering (section 3) in

a domain adaptation setting with the characteristics of deep, supervised, single-

modality, single source and single step (section 2.3.2).

The proposed method is the GUIded Data Augmentation by Transfer FUNc-

tion (GUIDATFUN) policy to improve the robustness of a supervised DL model

by selecting and generating the appropriate data. To accomplish this GUIDAT-

FUN scores the source on how closely resembles the distribution of the target

dataset, the score is then passed to a transfer function that returns the augmenta-

tion probability of the image. The proposal is divided into four sequential steps

as exposed in figure 3.1: feature extractor, OOD score based on the Mahalanobis

distance, the transfer function, and finally data augmentation. The result of each

step is an input for the next.

3.2.1 Feature Extractor

The feature extractor (definition 23) selected is AlexNet a CNN (definition 14)

architecture developed by Krizhevsky [35] in 2012 for image classification tasks.

The architecture consists of a series of convolutional and max-pooling layers,

culminating in three fully connected layers. It features five convolutional layers,

making it relatively simple compared to later models. The network employs

Rectified Linear Units (ReLUs) as activation functions and dropout regulariza-

tion is utilized in the fully connected layers to mitigate overfitting (definition

7). AlexNet comprises 60 million parameters and 650000 neurons. The model is

presented in figure 3.2.

AlexNet has a low complexity and computational cost as described by [21]

and is pretrained with Imagenet [36] this is important so GUIDATFUN does not

add a significant computational time, hence the reason for its selection.

By adding to the definition 23 the extraction source S (definition 18) and

target (definition 19) images are defined as:
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Figure 3.2: AlexNet model architecture [35].

∀xi ∈ S : hs,i = A(xi) (3.1)

∀xj ∈ G : hg,j = A(xj) (3.2)

From the set formed by the features extracted hg,j its probability distribution

is defined as Hg.

3.2.2 Mahalanobis Distance

The Mahalanobis distance (definition 22) measures the separation between two

data points within the space defined by pertinent features [8].

Mahalanobis distance was chosen because it accounts for unequal variances

and correlations among features, it effectively evaluates distances by assigning

different weights to the features of data points making it robust against out-

liers. This consideration of correlations between features gives it and advantage

over other metrics such as Euclidean distance, Manhattan distance (L1 distance)

and Cosine Similarity [8]. In addition Mahalanobis distance is scale-invariant,

meaning it is not affected by the scale of the features [8].

Given two data points x1, x2 ∈ Rn their Mahalanobis distance can be calcu-

lated as follows:

√
(x1 − x2)TΣ−1(x1 − x2) = M(x1, x2) (3.3)
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For the calculation of the score x1 is replaced by the features extracted hs,i

(equation 3.1) and x2 is replaced by the probability distribution Hg (equation 3.2)

so that each image in the source dataset is compared against all the distribution

of G.

√
(hs,i −µg)TΣ−1(hs,i −µg) = M(hs,i, Hg) (3.4)

With µg ∈ Re is the vectors of the means from the ng extracted features hg,j,

Σ is the covariance matrix calculated out of Hg and T is the transpose operation.

ci = M(hs,i, Hg) (3.5)

With ci ∈ R+ (by non-negativity definition 22) is the individual score associ-

ated to each features extracted hs,i. To obtain all the scores the comparison has

to be made as described by:

∀hs,i ∈ Hns×e
s : ci = M(hs,i, Hg), where ci ∈ c (3.6)

With c ∈ Rns is the vector with the out-of-distribution scores attributed to

each element in S. When Mahalanobis distance score ci is closer to zero the

distribution of both elements is very similar, on the contrary, the farther the

value from zero the more different the distributions are.

3.2.3 Transfer Function

The transfer function is defined as p = R(c) where the input c is the vector with

the scores for each image in source S obtained from M in the step before and

p ∈ Rns is the vector with the augmentation probability of each image in the

source dataset.

This proposal focused on two transfer function implementations 1) a percentage-

wise step function subdivided into two named PercentageWisePositive and Per-

centageWiseNegative and 2) a decreasing linear function represented as Decreas-

ingLinear.

The PercentageWisePositive function (charted in figure 3.3) ranks the ns source

images from best to worst and it attributes a 100 augmentation probability to
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Figure 3.3: PercentageWisePositive transfer function.

the top 65% of images, on the contrary, to the other 35% of the worst images it

attributes a 0 augmentation probability. PercentageWiseNegative (charted in figure

3.4) is the inverse of PercentageWisePositive in which the 35% of images with the

worst scores are assigned a 100 augmentation probability and the other 65% a 0

augmentation probability.

The DecreasingLinear transfer function (charted in figure 3.5) assigns an aug-

mentation probability based on how well the score is, the worst score in c re-

ceives a 0% augmentation probability, as the score goes better the probability

rises, and a score of 0 receives a 100% augmentation probability. For example, if

the S dataset has two images, one is scored 300 and the second one 150 the latter

will receive a 50% probability to be augmented.

To assess the effect of the proposal two more transfer functions as baselines

were created NoneAugmentation (charted in figure 3.6) with augmentation prob-

ability of always zero and ConstantAugmentation (charted in figure 3.7) with aug-

mentation probability of always one.

3.2.4 Data Augmentation

With p the images are augmented based on their corresponding probability by

modifying the definition 20 to use it as an input, the resulting transformation

function is S′ = B(S, p) with S′ ∈ Rns′×m and ns ≤ ns′ to indicate that S′ contains

both the original images and the augmented ones.
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Figure 3.4: PercentageWiseNegative transfer function.
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Figure 3.5: DecreasingLinear transfer function.
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Figure 3.6: NoneAugmentation transfer function.
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Figure 3.7: ConstantAugmentation transfer function.

The Albumentations library [37] is used for the image augmentation. Albu-

mentations implements a long variety of image transform operations optimized

for performance, it is a powerful tool for different computer vision tasks, includ-

ing object classification, segmentation, and detection.

The following transformations were chosen because they do not change the

image meaning, which is necessary to avoid confusion for the SDL model but

the selection of the augmentations is application dependent thus for use in other

contexts a previous analysis is necessary [38].

• RandomCrop: resize the image but randomly choose how much will crop

the width and height.

• Resize: resize the image to a smaller size than the original.

• Rotate: rotate the image with a limit of 20 for the angle, more than that

would break the correct meaning.

• Blur: blurs the image with a limit blur of 5, more than that would be

difficult to recognize.

• OpticalDistortion: distorts the image of its rectilinear projection.

• GaussNoise: applies gaussian noise to the input image, in this case, the

variance range for noise (parameter var limit of GaussNoise function, the

higher the stronger the noise) is between 10 and 300.
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Figure 3.8: Transformations applied to an MNIST image.

• Emboss: it makes an emboss in the input image and overlays the result

with the original image.

• PixelDropout: it sets pixels in 0. In this case the dropout probability is

0.01, which differs from the probability of applying the transformation.

• Solarize: inverts all pixel values above a threshold.

When the function to augment images is called it augments the image with

one of the previous transformations selected randomly. Performing more than

one transformation could result in an incomprehensible image for the model.

Figure 3.8 shows the nine transformations applied to an MNIST [39] image

from the original to the subsequent transformations in the order explained prior.

3.3 Hypothesis

A supervised DL model trained with augmented data generated employing the

proposed method will measure with statistical significance a higher accuracy in

comparison to a supervised DL model trained with regular data in the context

of domain adaptation for medical images.

Barnum F. Castillo Barquero



36 Scientific Proposal

Experimental Factors Experimental Subject

Source (S) Contamination dataset (F) Contamination percentage (%) Transfer function (R(c))

Indiana Covid-19 China Covid-19 25 NoneAugmentation

Costa Rica Covid-19 CatsVsDogs 50 DecreasingLinear

Indiana Covid-19 with SnP PercentageWisePositive

Costa Rica Covid-19 with SnP PercentageWiseNegative

ConstantAugmentation

Table 3.1: Experiments design.

3.4 Experimental design

A first experimental control to assess the correct working of the OOD score

was made inducing ambiguity by comparing two semantically similar source

datasets against a target dataset.

For the second part to assess the effect of the augmented data by the pro-

posal on a supervised DL model’s accuracy the experiments were designed as a

multifactorial test. The proposal represented by the function O(S + F, G) = S′

received for each scenario the same target dataset G and source dataset S plus a

contamination dataset F in different degrees as described in table 3.1 to replicate

a distribution mismatch scenarios.

The training of the supervised DL model was made in a domain adaptation

setting where the model is trained first with the generated data S′ and secondly

with G. Once the model was trained it was used to categorize the images of

a subset of G called Dt (definition 4) with a size of 60 images, these images

are totally new to the model. The model was evaluated on its accuracy in each

scenario.

In table 3.1 the transfer function is the factor to study; source, contamination

dataset and contamination percentage are factors to consider. For each transfer

function there are 30 batches giving a total of 1800 data entries analyzed (3 ∗ 2 ∗
5 ∗ 30 ∗ 2 = 1800), for each batch the images for the source and contamination

datasets were selected randomly as a subset. In table 3.2 source, target, source

size and target size are constants throughout the scenarios.

The experiments do not include comparisons with other domain adaptation

proposals because these are very dependent on the type of data used to train
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Source (S) Target (G) Source Size (ns) Target Size (ng)

Indiana Indiana 100 142

Costa Rica Costa Rica 100 130

Table 3.2: Experiment constants.

Figure 3.9: MNIST dataset example.

them, so a model trained to categorize images to diagnose e.g. Alzheimer’s

disease is adjusted to work only in that environment. Likewise, the OOD filter-

ing proposals were made for semi-supervised deep learning models to compare

labeled and unlabeled images with each other, not a domain adaptation setting.

3.4.1 Testing Datasets

For the first part a experimental control of the experiments the datasets selected

were MNIST [39], handwritten numbers from 0 to 9 as the examples in figure

3.9, and SVHN [40], photos of house-numbered addresses as the examples in

figure 3.10. These were selected due to their simplicity where there are not too

many defining features and the similarity between them with the intention of

confusing the score implementation. Sources have 500 images each and target

has 500 images.

By the definition of the hypothesis in section 3.3 the proposal is meant for

medical images, specifically for the experiments the context selected is x-ray
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Figure 3.10: SVHN dataset example.

Datasets Indiana Covid-19 Costa Rica Covid-19 China Covid-19 CatsVsDogs Indiana Covid-19 with SnP Costa Rica Covid-19 with SnP

Resolution 1400 × 1400 1907 × 1791 1300 × 600 224 × 224 1400 × 1400 1907 × 1791

Description

Indiana Network for Patient

Care dataset combined with

Valencian Region Medical

Image COVID-19 dataset.

Costa Rican private clinic

images combined with Cohen

and Valencian Region Medical

Image COVID-19 dataset.

Chinese dataset with pediatric

images dataset combined with

Cohen and Valencian Region

Medical Image COVID-19 dataset.

Images of cats and dogs.
Indiana Covid-19 with gausian

noise.

Costa Rica Covid-19 with gausian

noise.

Figure 3.11: Experiment datasets.

image datasets related to Covid-19, the information of the datasets selected is

summarized in table 3.11. Two source datasets were selected:

• Indiana Covid-19 dataset: dataset created by [41] when images from In-

diana Network for Patient Care without any pathologies and Cohen and

Valencian Region Medical Image COVID-19 datasets are combined. The

images have a resolution of 1400 × 1400 pixels. Examples of this dataset

are in figure 3.12.

• Costa Rican Covid-19 dataset: dataset created by [41] when images from

a Costa Rican private clinic, Clinica Imagenes Medicas Dr. Chavarria

Estrada, and Cohen and Valencian Region Medical Image COVID-19 datasets

are combined. This dataset includes chest X-rays from 153 patients, aged

between 7 and 86 years. Among these patients, 63% are female and 37%

are male. Each image has a resolution of 1907 × 1791 pixels. Examples of

this dataset are in figure 3.13.

To replicate the distribution mismatches described in section 2.2 the source
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datasets are contaminated with the contamination dataset F based on the fol-

lowing testing categories:

• Distorted: this consists of the same source datasets Indiana Covid-19 and

Costa Rican Covid-19 with a heavy Gaussian Noise transformation with a

variance noise (parameter var limit of GaussNoise function, the higher the

stronger the noise) range between 1000 and 5000 applied. It is expected to

replicate a distribution mismatch using differences in imaging protocols.

Examples in figure 3.14.

• Similar: an unassociated medical center China COVID-19 dataset, dataset

created by [41] when images from a pediatric chinese dataset and Cohen

and Valencian Region Medical Image COVID-19 datasets are combined.

The patient sample consists of chinese children and the images have a

resolution of 1300 × 600 pixels. It is expected to replicate a distribution

mismatch using differences in patient demographics and imaging devices.

Examples in figure 3.15.

• Unrelated: a semantically distinct dataset of pets called CatsVsDogs [42]

is used and the images have a resolution of 224 × 224 pixels. The labels

of the cats are 0 the same as if the patient has not Covid-19 and the labels

of the dogs are 1 the same as if the patient has Covid-19. It is expected

to produce a heavy distribution mismatch by replicating a poor quality of

data acquisition. Examples in figure 3.16.

3.4.2 Model and Hyperparameters

The model selected to be trained is Resnet50 [17] a well established variation of a

Residual Neural Network (definition 15) with 50 layers deep commonly used for

image classification. The Resnet50 implementation of Pytorch was reused and

its architecture is displayed in figure 3.18. The input layer of the ResNet50 model

is arranged to receive images from the dataset with a resolution of 224× 224 and

the output layer was replaced so it could classify the images into two categories.
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(a) Without COVID-19 (b) Without COVID-19

(c) With COVID-19 (d) With COVID-19

Figure 3.12: Indiana COVID-19 dataset examples.
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(a) Without COVID-19 (b) Without COVID-19

(c) With COVID-19 (d) With COVID-19

Figure 3.13: Costa Rica COVID-19 dataset examples.
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(a) Indiana without COVID-19 (b) Costa Rica without COVID-19

(c) Indiana with COVID-19 (d) Costa Rica with COVID-19

Figure 3.14: SaltAndPepper noise dataset examples.
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(a) Without COVID-19 (b) Without COVID-19

(c) With COVID-19 (d) With COVID-19

Figure 3.15: China COVID-19 dataset examples.
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Figure 3.16: CatsVsDogs dataset example.

Learning Rate Momentum Batch Size Number of Epochs Weight Decay

0.01 0 32 10 0

Figure 3.17: Resnet50 hyperparameters used for the experiments.
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Figure 3.18: Resnet50 model architecture [17].

Source Mean Standard Deviation

MNIST 1376.378 1103.336

SVHN 1846.691 677.892

Table 3.3: Means and standard deviations for the OOD score of two sources

MNIST and SVHN with 500 images each compared separately against a target

MNIST.

The model’s weights were created randomly. For the training with S′ the

hyperparameters (table 3.17) were set with a learning rate of 0.01, momentum of

0, batch size of 32, number of epochs 10 and a weight decay of 0.

3.5 Results

The first part of the experiment results are presented in table 3.3 followed by

figure 3.19 where the means and confidence intervals of the same data are de-

picted.

The totality of the second part of the experiment results are presented in ta-

ble 3.4, each row represents an experiment scenario, its average accuracy with its

standard deviation and the transfer function with the highest accuracy is high-

lighted in bold. The transfer function performances of table 3.4 are exhibited in

figure 3.21, in addition the information is further split by contamination dataset

in figure 3.21, by contamination percentage in figure 3.22 and scenarios in figures

3.24, 3.25 and 3.26.
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Figure 3.19: Averages OOD score and 95% confidence intervals from two sources

MNIST and SVHN with 500 images each compared separately against a target

MNIST with 500 images, control experimental data in table 3.3.
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Scenarios Transfer Functions

Source (S) Contamination dataset (F) Target (G) Contamination percentage (%)
Decreasing

Linear

Percentage Wise

Positive

Percentage Wise

Negative

Constant

Augmentation

None

Augmentation

Unrelated

Indiana Covid-19 CatsVsDogs Indiana Covid-19 25 60.9 ± 16.5 52.2 ± 11.1 56.1 ± 12.5 55.4 ± 13.9 53.4 ± 12.9

Indiana Covid-19 CatsVsDogs Indiana Covid-19 50 53.6 ± 10.2 53.7 ± 10.9 52.8 ± 16.9 52 ± 7.7 53.2 ± 11.5

Costa Rica Covid-19 CatsVsDogs Costa Rica Covid-19 25 63.3 ± 19.6 53.2 ± 13.2 63.5 ± 16.7 60.8 ± 14.5 59.9 ± 17

Costa Rica Covid-19 CatsVsDogs Costa Rica Covid-19 50 58 ± 15.1 55.3 ± 12.1 56.4 ± 13.4 61.6 ± 17.3 52.6 ± 14

Similar

Indiana Covid-19 China Covid-19 Indiana Covid-19 25 71.2 ± 14.5 68.5 ± 16.4 64.2 ± 14.3 75.4 ± 12.5 66.6 ± 16.1

Indiana Covid-19 China Covid-19 Indiana Covid-19 50 73.2 ± 13 68.2 ± 13.3 66.9 ± 12.1 68.2 ± 13.4 67.7 ± 16.4

Costa Rica Covid-19 China Covid-19 Costa Rica Covid-19 25 82.6 ± 15.1 77.6 ± 16.8 82.8 ± 14.6 86.1 ± 13.1 66.3 ± 16.2

Costa Rica Covid-19 China Covid-19 Costa Rica Covid-19 50 76 ± 16.6 74 ± 14.9 72.6 ± 19.1 72.6 ± 18.7 65.1 ± 15

Distorted

Indiana Covid-19 Indiana Covid-19 with SnP Indiana Covid-19 25 61.3 ± 17.1 55.3 ± 10.4 59 ± 14.1 59.4 ± 11.9 52.4 ± 8.19

Indiana Covid-19 Indiana Covid-19 with SnP Indiana Covid-19 50 65.9 ± 15 54.5 ± 9.57 58.6 ± 13.7 60.4 ± 14.2 57.6 ± 14.9

Costa Rica Covid-19 Costa Rica Covid-19 with SnP Costa Rica Covid-19 25 84 ± 14.2 82 ± 16.8 79 ± 17.7 78.4 ± 19 63.6 ± 15.7

Costa Rica Covid-19 Costa Rica Covid-19 with SnP Costa Rica Covid-19 50 88.1 ± 11.6 80.6 ± 16.3 74.6 ± 19.2 82.4 ± 17.5 69.4 ± 16.4

Table 3.4: Accuracy means and standard deviations obtained from the Resnet50

model when trained with the parameters defined by each experimental scenario

(read from left to right) to classify the testing dataset. For each scenario 5 trans-

fer functions were run separately. Each box belonging to the transfer functions

represents 30 batches, for each batch the images for the source and contami-

nation datasets were selected randomly. The transfer function with the highest

accuracy average for each scenario is written in bold. Experiment scenarios de-

fined in table 3.1. The categories Unrelated, Similar and Distorted are defined in

subsection 3.4.1.

.
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Figure 3.20: Central points represent the average accuracy for each transfer func-

tion. Error bars represent the 95% confidence intervals of the means. All scenar-

ios in table 3.4 are gathered and grouped by transfer function.
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Figure 3.21: Central points represent the average accuracy for each transfer func-

tion. Error bars represent the 95% confidence intervals of the means. Data in

table 3.4 is grouped by transfer function and contamination dataset.

Barnum F. Castillo Barquero



50 Scientific Proposal

Con
sta

ntA
ugm

en
tat

ion

Decr
eas

ingL
inear

Non
eA

ugm
en

tat
ion

Perc
en

tag
eW

ise
Posi

tiv
e

Perc
en

tag
eW

ise
Neg

ati
ve

58

60

62

64

66

68

70

72

74

Transfer Functions

A
ve

ra
ge

A
cc

ur
ac

y

25%
50%

Contamination
Percentage

Figure 3.22: Central points represent the average accuracy for each transfer func-

tion. Error bars represent the 95% confidence intervals of the means. Data in

table 3.4 is grouped by transfer function and contamination percentage.
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Comparison Z P.unadj P.adj

ConstantAugmentation - DecreasingLinear −1.67737 9.35 × 10−2 1.04 × 10−1

ConstantAugmentation - NoneAugmentation 5.711395 1.12 × 10−8 5.60 × 10−8

DecreasingLinear - NoneAugmentation 7.38876 1.48 × 10−13 1.48 × 10−12

ConstantAugmentation - PercentageWiseNegative 1.744312 8.11 × 10−2 1.01 × 10−1

DecreasingLinear - PercentageWiseNegative 3.421677 6.22 × 10−4 1.24 × 10−3

NoneAugmentation - PercentageWiseNegative −3.96708 7.28 × 10−5 1.82 × 10−4

ConstantAugmentation - PercentageWisePositive 2.759861 5.78 × 10−3 8.26 × 10−3

DecreasingLinear - PercentageWisePositive 4.437226 9.11 × 10−6 3.04 × 10−5

NoneAugmentation - PercentageWisePositive −2.95153 3.16 × 10−3 5.27 × 10−3

PercentageWiseNegative - PercentageWisePositive 1.01555 3.10 × 10−1 3.10 × 10−1

Table 3.5: Dunn test results applied all scenarios in table 3.4 gathered and

grouped by transfer function. Comparison column lists the pairs of transfer

functions being compared. The Z column shows the Z-values that represent

how many standard deviations the observed difference is from the null hypoth-

esis of no difference between groups. P.unadj column shows the unadjusted

p-values for each comparison. The P.adj column provides the adjusted p-values

for multiple comparisons, these values have been adjusted using the Benjamini-

Hochberg method to control the false discovery rate, reducing the likelihood of

type I errors.
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Figure 3.23: Central points represent the median accuracy for each transfer func-

tion. Error bars represent the 95% confidence intervals of the medians. Text

labels indicate groups that are significantly different from each other based on

Dunn’s test results in table 3.5. Groups that share a letter are not significantly

different.
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Figure 3.24: Central points represent the average accuracy for each transfer func-

tion. Error bars represent the 95% confidence intervals of the means. The data

displayed are only the rows associated to Distorted in table 3.4, each line in the

legend indicates in this order the source, the contamination dataset and contam-

ination percentage.
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Figure 3.25: Central points represent the average accuracy for each transfer func-

tion. Error bars represent the 95% confidence intervals of the means. The data

displayed are only the rows associated to Similar in table 3.4, each line in the

legend indicates in this order the source, the contamination dataset and contam-

ination percentage.
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Figure 3.26: Central points represent the average accuracy for each transfer func-

tion. Error bars represent the 95% confidence intervals of the means. The data

displayed are only the rows associated to Unrelated in table 3.4, each line in

the legend indicates in this order the source, the contamination dataset and the

contamination percentage.

Barnum F. Castillo Barquero



56 Scientific Proposal

3.6 Results Analysis

The results for the OOD scores measurements displayed in table 3.3 and in figure

3.19 indicate that the OOD scores given to the MNIST source are statistically

different from the SVHN OOD scores given by the lack of overlap between the

confidence intervals, the MNIST OOD scores are on average 470.313 points lower

concluding that the out of distribution score was not confused by the test.

The data of the second part of the experiment did not pass the Levene test

check for homoscedasticity with a value of 1.301× 10−8, thus the non-parametric

statistical test Kruskal–Wallis was used followed by Dunn’s Kruskal-Wallis Mul-

tiple Comparisons test in combination with the analysis of means and standard

deviations.

The severity of the contamination heavily impacted the accuracy of the model

as expected presenting a mean accuracy close to 50% in some scenarios such as

with the contamination dataset CatsVsDogs with contamination percentages of

25 and 50 in table 3.4. The overall accuracy of the transfer functions in figure 3.20

indicates that DecreasingLinear is statistically different from NoneAugmentation,

PercentageWisePositive and PercentaWiseNegative and comparable to ConstantAug-

mentation, at the same time ConstantAugmentation, PercentageWisePositive and Per-

centaWiseNegative are comparable between them and statistically different from

NoneAugmentation, in both analysis it is confirmed that a transfer function is

statistically different from other by the lack of overlap between confidence in-

tervals. The Kruskal-Wallis test corroborates that there is a significant difference

between transfer functions with a p-value of 6.702 × 10−13.

The results of table 3.4 were further split into contamination datasets in fig-

ure 3.21. For the contamination dataset CatsVsDogs the PercentaWiseNegative

did not have much impact in comparison versus NoneAugmentation, the other

three functions had similar performances slightly above NoneAugmentation. For

the contamination dataset Indiana Covid-19 with SnP DecreasingLinear proved to

be above the rest of the functions, where ConstantAugmentation and Percentage-

WisePositive had similar accuracies and PercentaWiseNegative performed almost

identically to NoneAugmentation. For contamination dataset China Covid-19 De-
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creasingLinear and ConstantAugmentation are equivalent and both are above the

rest. For the contamination dataset Costa Rica Covid-19 with SnP had the high-

est accuracies, DecreasingLinear was considerably better than the rest, at the same

time a unique result occurs with PercentageWiseNegative performed as well as

ConstantAugmentation.

The results of table 3.4 were grouped by contamination percentage in figure

3.22, the functions had similar performances against themselves between the set-

tings of 25% and 50%, the DecreasingLinear when presented with a big difference

in the distribution as the case for 50% had a noticeable impact being superior

from the rest even ConstantAugmentation, PercentaWiseNegative too had a better

performance but for the 25%.

The results of the Dunn test in table 3.5, in which all the transfer functions

and baselines were compared against each other, are displayed in figure 3.23

with the addition of a Compact Letter Display comparison, DecreasingLinear and

ConstantAugmentation had the best results and belong to the same group A, Per-

centageWiseNegative was slightly better to have no significant difference with Con-

stantAugmentation belonging to group B but not good enough to separate from

group D with PercentageWisePositive, lastly NoneAugmentation had little to no

impact on the accuracy being alone in group C.

To know the effective transfer function for each testing category (described

previously in subsection 3.4.1) the transfer functions are further analyzed by

each scenario composed by the factors source, target, contamination dataset and

contamination percentage as presented in table 3.4.

• Similar: data displayed in figure 3.25.

– Contamination dataset China Covid-19 with contamination percent-

age 25%: when the similarity between source and target is small the

recommended transfer function is ConstantAugmentation followed by

DecreasingLinear indicating that when the distribution mismatch is low

the correct strategy is to augment without regard, this is true for both

Sources Costa Rica Covid-19 and Indiana Covid-19.

– Contamination dataset China Covid-19 with contamination percent-

age 50%: as the dissimilarity increased the DecreasingLinear took the
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first position and ConstantAugmentation the second one.

• Distorted: data displayed in figure 3.24, this presented a scenario in which

the variety in the augmentation was positive for the model having De-

creasingLinear as the best option for all scenarios in this category. For the

second-best transfer function they are as follows:

– Contamination dataset Costa Rica Covid-19 with SnP with contami-

nation percentage 25%: PercentageWiseNegative.

– Contamination dataset Costa Rica Covid-19 with SnP with contami-

nation percentage 50%: ConstantAugmentation.

– Contamination dataset Indiana Covid-19 with SnP with contamina-

tion percentage 25%: ConstantAugmentation

– Contamination dataset Indiana Covid-19 with SnP with contamina-

tion percentage 50%: ConstantAugmentation

• Unrelated: data displayed in figure 3.26, the performance for the model

was unfavorable as expected with the intense contamination from CatsVs-

Dogs, only in two scenarios a transfer function was slightly better than the

others:

– For source Costa Rica Covid-19 with contamination dataset CatsVs-

Dogs and contamination percentages 50%: ConstantAugmentation.

– For source Indiana Covid-19 with contamination dataset CatsVsDogs

and contamination percentages 25%: DecreasingLinear.

To answer the research questions in section 3.1 the results of the experiments

led to the following conclusions:

DecreasingLinear displayed to be better than NoneAugmentation in all scenar-

ios and as good as ConstantAugmentation with the added benefit of generating

between 20% to 30% fewer images than ConstantAugmentation, resulting in lower

training times for the model. When the gap in distribution closes the ConstantA-

ugmentation transfer function starts to produce better results, on the other side

when the gap in distribution is too wide the model’s accuracy is too impacted
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and there was no difference between the transfer functions. Since DecreasingLin-

ear favors the augmentation of images with a high score, within the context of

high distribution mismatch, it can be concluded it improves the supervised DL

model.

By the hypothesis defined in section 3.3 and the results it can be concluded

that the ResNet50 supervised DL model trained with the data generated employ-

ing GUIDATFUN method measured with statistical significance with a higher

accuracy in comparison to trained with regular data in the context of domain

adaptation for medical images. When contemplating the results as a whole this

was true for DecreasingLinear, PercentageWisePositive and PercentageWiseNegative

transfer functions.

3.7 Discussion

For the OOD data filtering technique [2] when the distribution mismatch is too

great the image is discarded entirely, one limitation to this approach is that

if there are few outliers in the unlabeled data the model will see little to no

improvement as described by [43], the GUIDATFUN has a great positive impact

on these scenarios. The unrelated testing category did not have improvement

from GUIDATFUN thus a combined approach that can discard harmful images

and weakly or strongly augment relevant images seems to be the way to go to

increase the flexibility, avoid overfitting and prone the model of mistakes in the

training data.

Domain adaptation for Alzheimer’s (section 2.3.2) disease diagnostics results

[33] showed (i) that training on only the target training set yields better results

than the naive combination (union) of source and target training sets and (ii) that

domain adaptation with instance weighting yields the best classification results.

This is supported by the fact that NoneAugmentation transfer function results

were close to 50% accuracy and that DecreasingLinear is the recommendation on

the majority of the scenarios but it is a new approach to avoid overfitting that

does not inquire on the modification of the model thus its flexibility.

For domain adaptation for Autism spectrum disorder (section 2.3.2) the im-
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plication of transforming features to align domains might reduce the discrimi-

native power of the features, especially if the transformation overly smooths or

generalizes the features, another ill effect is finding the optimal subspace can

be challenging and computationally expensive [34], for both is not the case for

GUIDATFUN which keeps the original images as well as the augmented and the

extraction of the feature space is made with an already pretrained model.

Even though PercentageWiseNegative and PercentageWisePositive had very com-

parable results PercentageWiseNegative augments 35% of the images versus the

65% PercentageWisePositive, further tests were PercentageWiseNegative augment

the 65% of the lower OOD scored images could favor its performance.

3.8 Future Work

There is still research to be done regarding the applicability of a data augmen-

tation policy for images with a low OOD score. Take the following context:

source and target datasets are x-ray images of lung cancer, the target has 90%

of advanced stages of the illness and the source has an 80% of premature cases

(concept shift), in this context it can be counterproductive to assign a low aug-

mentation probability to the images with a low score if the objective of the model

is to diagnose patients in all stages of the disease.

The testing size for GUIDATFUN was inspired by medical images and in this

context the quantity of training data is often limited thus the small size selected

for source and target in the experiments, remains to be seen if this approach

scales or diminishes with higher amounts of images.

The extraction of the features is made with AlexNet for its cheap computa-

tional cost but a more recent model such as DenseNet could be used to improve

the accuracy of the feature extractor and thus the out-of-distribution score at the

cost of computational resources.

One of the primary challenges in medical image research is the scarcity of

labeled data. To address this, recent studies have increasingly adopted unsuper-

vised domain adaptation methods, which allow models to be fine-tuned without

using labeled target data [32]. Future research could use GUIDATFUN to ad-
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dress the particular challenges for the context of unsupervised DA to address

the distribution mismatch between unlabeled source and unlabeled target data

to have a more balanced representation as a training dataset for an unsupervised

model.

Most DA methods are single-source, however real-world applications often

involve multiple source domains, such as data from various medical facilities.

Future work could investigate the application of GUIDATFUN on a multi-source

domain adaptation context where multiple sources could be augmented based

on how closely resemble the distribution of a single target dataset.

Given the transfer function designs of GUIDATFUN the quantity of neces-

sary augmented images are reduced in comparison with a classical approach

of data augmentation, for example PercentaWiseNegative only augmented 35%

of the images but had similar accuracies versus ConstantAugmentation. New

research question would be, how the selected images with a guided data aug-

mentation policy affects the training times for deep learning model?
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