

Proyecto:

Estimación del Límite Técnico permisible para la penetración de energías renovables y generación distribuida en el Sistema Eléctrico

Código:

VIE 5402-1341-1901

Departamento Académico Responsable:

Escuela de Ingeniería Electromecánica

Investigador Responsable:

Dr-Ing. Gustavo Adolfo Gómez Ramírez

Otros Investigadores:

M.Sc. Rebeca Solís Ortega

Informe Final

Índice

I.	Datos generales	3
2.	Cumplimiento de los objetivos	4
3.	Plan de difusión 3.1. Presentaciones	7 7 8
4.	Participación estudiantil	9
5.	Proyectos de Graduación	10
6.	Ejecución presupuestaria	10
7.	Limitaciones o problemas encontrados	10
8.	Observaciones generales y recomendaciones	11
9.	Anexos	11
	9.1. Anexo #1: Publicaciones	
	9.2. Anexo #2: Trabajos finales de graduación	
	9.3. Anexo #3: Difusión de Proyectos de Investigación	12

1. Datos generales

- 1. Código del Proyecto: VIE 5402-1341-1901
- 2. **Nombre del proyecto:** Estimación del Límite Técnico permisible para la penetración de energías renovables y generación distribuida en el Sistema Eléctrico.
- 3. Escuela responsable: Ingeniería Electromecánica.
- 4. Otras escuelas participantes: Matemática.
- 5. Instituciones participantes externas al ITCR:
 - Junta Administrativa del Servicio Eléctrico de Cartago (JASEC).
 - COOPESANTOS R.L.
 - Universidad Anhault, Alemania
 - Universidad de Concepción, Chile
- 6. Investigador coordinador: Dr-Ing. Gustavo Adolfo Gómez Ramírez
- 7. Investigadores colaboradores:
 - M.Sc. Rebeca Solís Ortega
- 8. Porcentaje de Avance: 100 %
- 9. **Período de ejecución:** 01/01/2023 al 31/12/2024

2. Cumplimiento de los objetivos

Objetivo general: Dimensionar la capacidad del Sistema Eléctrico Nacional en cuanto a una alta penetración de energías renovables y generación distribuida para la determinación de límites técnicos permisibles a partir del modelado y simulación de la Red de Transmisión y distribución.

Objetivo específico	Actividades	Productos	Fecha	Avance
OE1: Realizar el modelado de una red de distribución con todos los componentes a partir de herramientas de simulación para la determinación de las capacidades técnicas del sistema.	Obtener datos para la construcción de una red de distribución con la información proporcionada por las empresas distribuidoras.	 Modelo de una red de distribución. Matriz de escenarios de penetración de generación distribuida y 	03/23	100%
	Desarrollar estudios y análisis de flujos de potencia, análisis de perfiles de tensión a escenarios de integración de fuentes de generación distribuida a las redes de distribución construidas usando ETAP.	vehículos eléctricos en una red de distribución.	06/23	100%
OE2: Analizar los efectos de la penetración de energías renovables y generación distribuida en una red	Determinar capacidades máximas de transferencia de potencia en tramos de circuitos.	Límites Técnicos para una red de distribución.	09/23	100%
de distribución a partir del análisis de perfiles de tensión y cargabilidad de las líneas.	Determinar límites máximos y mínimos de perfiles de tensión ante la integración de generación distribuida y penetración de vehículos eléctricos.		12/23	100%

Objetivo específico	Actividades	Productos	Fecha	Avance
OE3: Estimar los efectos de la penetración de energías renovables y generación distribuida en la red de transmisión a partir del	Realizar estudios de flujos de potencia con perfiles a 24 horas de la integración de generación distribuida.	 Modelo de una red de transmisión. Matriz de escenarios de penetración de generación 	03/24	100%
análisis de la estabilidad.	Realizar estudios de análisis de estabilidad transitoria ante una alta penetración de generación distribuida y vehículos eléctricos simulando condiciones extremas de operación.	distribuida y vehículos eléctricos en una red de transmisión.	06/24	100%
OE4: Proponer una hoja de ruta para la integra- ción de generación dis- tribuida el sistema eléc- trico de potencia de Cos- ta Rica.	Determinar las condiciones extremas de operación a nivel del sistema de transmisión para maximizar la integración de generación distribuida y vehículos eléctricos bajo condiciones extremas de operación y en estado de contingencia.	 Límites Técnicos para una red de Transmisión. Hoja de Ruta para la integración de energías renovables y generación distribuida en Sistema Eléctrico Nacional. 	12/24	100%

A continuación, se muestran las publicaciones de referencias donde se evidencia el cumplimiento de cada uno de los objetivos.

Objetivo específico	Publicación de referencia	Cumpli- miento
OE1: Realizar el modelado de una red de distribución con todos los componentes a partir de herramientas de simulación para la determinación de las capacidades técnicas del sistema.	Solis-Ortega, R., Gómez Ramírez, G. A., Sáenz-González, K. J., Ellis-Rodríguez, A. J., & Navarro-Alpízar, W. J. (2025). Evaluación del comportamiento de la demanda en el modelado de las redes de distribución. Revista Tecnología En Marcha, 38(1), Pág. 115–127. https://doi.org/10.18845/tm.v38i1.7050	100 %
OE2: Analizar los efectos de la penetración de energías renovables y generación distribuida en una red de distribución a partir del análisis de perfiles de tensión y cargabilidad de las líneas.	Solis-Ortega, R., Gómez-Ramírez, G. A., Brenes-Fallas, D., Morales-Hernández, J. P., & Umaña-Mondragón, M. (2025). Modelado de Redes de Distribución usando ETAP. Revista Tecnología En Marcha, 38(2), Pág. 48–62. https://doi.org/10.18845/tm.v38i2.7104	100%
OE3: Estimar los efectos de la penetración de energías renovables y generación distribuida en la red de transmisión a partir del análisis de la estabilidad.	G. A. Gómez-Ramírez, L. García-Santander, M. Zubiaga Lazkano, and C. Meza, "Increasing Flexibility in Vulnerable Power Grids using Electrochemical Storage," Heliyon, vol. 10, no. 16, p. e35710, 2024. https://doi.org/10.1016/j.heliyon.2023.e22253	100%
OE4: Proponer una hoja de ruta para la integración de generación distribuida el sistema eléctrico de potencia de Costa Rica.	Gómez-Ramírez, G.A.; García-Santander, L.; Rojas-Morales, J.R.; Lazkano-Zubiaga, M.; Meza, C. Electrochemical Storage and Flexibility in Transfer Capacities: Strategies and Uses for Vulnerable Power Grids. Energies 2024, 17, 5878. https://doi.org/10.3390/en17235878	100%

Los trabajos finales de graduación que se detallan en la sección 5 contribuyen al cumplimiento del OE1 y OE2.

3. Plan de difusión

3.1. Presentaciones

Se refiere a actividades de divulgación científica como ponencias, charlas u otras similares.

Nombre	Tipo	Lugar y Fecha del evento	Comité científico
Resultados de la investigación aplicada: Ponencia para estudiantes de Escuela de Ingeniería Electromecánica (anexo 9.3)	Charla PELTEC	TEC, Campus Central Cartago, 14/11/2023	NO
Resultados de la investigación aplicada: Ponencia para académicos y otros interesados (anexo 9.3)	Coloquio Investigación en Ingeniería (Doctorado)	Edificio Schneider, Escazú, San José, 15/11/2023	NO
Miembros del Consejo de Escuela de Ingeniería Electromecánica	Presentación de informes semestrales.	Escuela de Ingeniería Electromecánica	NO
Ponencia para Universidad de Concepción-Chile	Congreso Internacional BioBío Energía 2024	3-4 de diciembre de 2024, Concepción, Chile	NO
Perspectivas integradas sobre la sostenibilidad energética: Vehículos eléctricos, energías renovables y mantenimiento predictivo.	Coloquios Virtuales de Matemática Aplicada	Lunes 13 de mayo de 2024. ITCR	NO

3.2. Artículos científicos

Nombre	Estado	Indexación	Revista	Comité científico
Electrochemical Storage and Flexibility in Transfer Capacities: Strategies and Uses for Vulnerable Power Grids	Publicado	Web of Science	MDPI-Energies	SI
Increasing Flexibility in Vulnerable Power Grids using Electrochemical Storage	Publicado	Web of Science	HELIYON	SI
Evaluación del comportamiento de la demanda en el modelado de las redes de distribución	Publicado	Scielo	Tecnología en Marcha	SI
Modelado de Redes de Distribución usando ETAP	Publicado	Scielo	Tecnología en Marcha	SI
El Futuro Energético de Costa Rica: Integración de Energías Renovables y Generación Distribuida	Publicado	No aplica	Pendiente de publicar	NO

4. Participación estudiantil

Durante el año 2023 se cuenta con los siguientes estudiantes para el desarrollo del proyecto:

No	Estudiante	Carné	Trabajo asignado	Condición
1	Diego Gómez Hidalgo	2021472926	Procesamiento de Datos	Ad-Honorem
2	Kervyn Sáenz González	2017146766	Análisis de Red-JASEC	Práctica de Especialidad
3	Alfredo Ellis Rodríguez	2018102438	Análisis de Red-JASEC	Práctica de Especialidad
4	William Navarro Alpízar	2017162301	Análisis de Red-COOPESANTOS	Práctica de Especialidad
5	Edgar Darío Brenes Fallas	2018067102	Análisis de Red-JASEC	Práctica de Especialidad
6	José Pablo Morales Hernández	2018172188	Análisis de Red-JASEC	Práctica de Especialidad
7	Marlon Umaña Mongragón	2018153886	Análisis de Red-COOPESANTOS	Práctica de Especialidad

5. Proyectos de Graduación

De acuerdo con la vinculación que se ha realizado con los estudiantes, se han logrado los siguientes trabajos de graduación:

No	Estudiante	Carné	Escuela	Anexo
1	Kervyn Sáenz González	2017146766	Ingeniería Electromecánica	ver enlace
2	Alfredo Ellis Rodríguez	2018102438	Ingeniería Electromecánica	ver enlace
3	William Navarro Alpízar	2017162301	Ingeniería Electromecánica	ver enlace
4	Edgar Darío Brenes Fallas	2018067102	Ingeniería Electromecánica	ver enlace
5	José Pablo Morales Hernández	2018172188	Ingeniería Electromecánica	ver enlace
6	Marlon Umaña Mongragón	2018153886	Ingeniería Electromecánica	ver enlace

Los trabajos Finales de Graduación evidencian el cumplimiento del objetivo específico 1 y 2.

6. Ejecución presupuestaria

De acuerdo con el oficio CIE-012-2023 para el proyecto **no cuenta** con presupuesto.

7. Limitaciones o problemas encontrados

Se logró avanzar sin contratiempos de acuerdo con lo planificado.

8. Observaciones generales y recomendaciones

Este es el **informe final** de ejecución del proyecto. Sin embargo, a pesar que cuando se planteó el proyecto, se mencionó que solo se iba a hacer una publicación, se lograron 4.

9. Anexos

A continuación se indica el detalle de los anexos, los cuales <u>sustituyen</u> al informe general denominado Documento 1.

9.1. Anexo #1: Publicaciones

- Solis-Ortega, R., Gómez Ramírez, G. A., Sáenz-González, K. J., Ellis-Rodríguez, A. J., & Navarro-Alpízar, W. J. (2024). Evaluación del comportamiento de la demanda en el modelado de las redes de distribución. Revista Tecnología En Marcha, 38(1), Pág. 115–127. https://doi.org/10.18845/tm.v38i1.7050
- Solis-Ortega, R., Gómez-Ramírez, G. A., Brenes-Fallas, D., Morales-Hernández, J. P., Umaña-Mondragón, M. (2025). Modelado de Redes de Distribución usando ETAP. Revista Tecnología En Marcha, 38(2), Pág. 48–62. https://doi.org/10.18845/tm.v38i2.7104
- 3. G. A. Gómez-Ramírez, L. García-Santander, M. Zubiaga Lazkano, and C. Meza, "Increasing Flexibility in Vulnerable Power Grids using Electrochemical Storage," Heliyon, vol. 10, no. 16, p. e35710, 2024. https://doi.org/10.1016/j.heliyon.2023.e22253
- Gómez-Ramírez, G.A.; García-Santander, L.; Rojas-Morales, J.R.; Lazkano-Zubiaga, M.; Meza, C. Electrochemical Storage and Flexibility in Transfer Capacities: Strategies and Uses for Vulnerable Power Grids. Energies 2024, 17, 5878. https://doi.org/10.3390/en17235878
- 5. Pendiente de publicar en InvestigaTEC

9.2. Anexo #2: Trabajos finales de graduación

- Sáenz González, K. (2023). Estudio del comportamiento de una red de distribución monofásica en 34, 5 kv para el análisis de la penetración de recursos distribuidos de generación solar en la red eléctrica de jasec, mediante la aplicación de la ley 10086. *Instituto Tecnológico de Costa Rica*. https://hdl.handle.net/2238/14440.
- 2. Ellis Rodríguez, A. (2023). Análisis de los efectos resultantes por la integración de una nueva planta de energía solar fotovoltaica a la red de distribución de Cocorí y la adquisición de un sistema de almacenamiento de energía para la gestión de la inyección de potencia. *Instituto Tecnológico de Costa Rica*. https://hdl.handle.net/2238/14455.

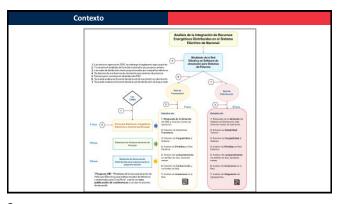
- 3. Navarro Alpízar, W. (2023). Estudio del comportamiento de una red de distribución en 19.9 kV para el análisis de la penetración de recursos distribuidos de generación solar en Coopesantos R.L. mediante la aplicación de la Ley 10086. *Instituto Tecnológico de Costa Rica*. https://hdl.handle.net/2238/14454.
- 4. Brenes Fallas, E. (2023). Modelado y simulación de una red de distribución en media tensión de Cartago para JASEC, de acuerdo con el cumplimiento de la Ley 10086. *Instituto Tecnológico de Costa Rica*. https://hdl.handle.net/2238/14946.
- 5. Umaña Mondragón, M. (2023). Evaluación del comportamiento de la red eléctrica de Coopesantos R.L mediante el análisis de la penetración de recursos distribuidos de generación solar, en sistemas de potencia conforme a la Ley 10086. *Instituto Tecnológico de Costa Rica*. https://hdl.handle.net/2238/14948.

9.3. Anexo #3: Difusión de Proyectos de Investigación

Anexo 1.1: Presentaciones en marco de coloquio en ingeniería.

Anexo 1.2: Listas de Asistencias.

Anexo 1.3: Presentaciones Congreso Internacional de Energía BioBío.

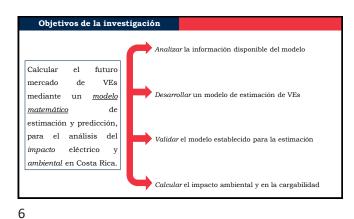


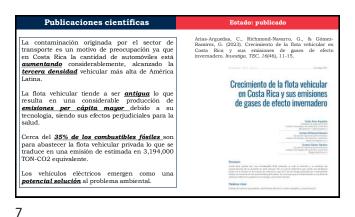
Agenda

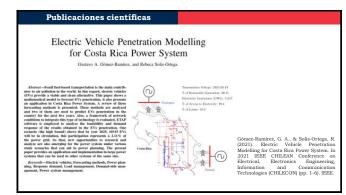
2

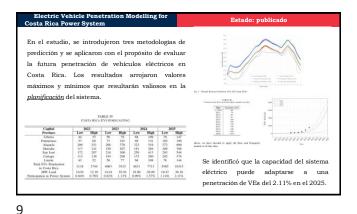
- **Proyecto 1:** Modelado de la futura penetración de Vehículos Eléctricos para realizar estudios de eléctricos y ambientales para Costa Rica (Finalizado 2020-2022).
- **Proyecto 2:** Estimación del Límite Técnico permisible para la penetración de energías renovables y generación distribuida en el Sistema Eléctrico (En curso 2023-2024).
- **Proyecto 3:** Mantenimiento predictivo: desarrollo de sistemas de diagnóstico y pronóstico (Aprobado 2024-<mark>2025</mark>).

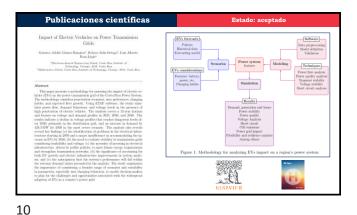
1

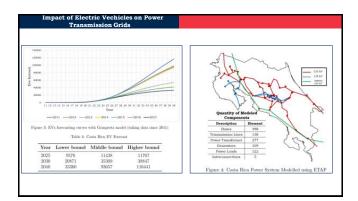


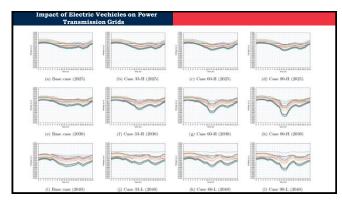

La generación eléctrica de Costa Rica ha La generación elèctrica de Costa Rica ha mantenido un enfoque sostenible y armonioso con el medio ambiente en los últimos años. La aprobación en 2021 de la Ley 10086 para Promover el Desarrollo de las Energias Renovables. El presente proyecto de investigación analiza la **penetración** de DER en el sistema de transmisión y distribución. Se considerarán escenarios que involucran generación para *autoconsumo* a partir de recursos fotovoltaicos y la integración de sistemas de almacenamiento en la red de transmisión y en las redes de distribución de las empresas participantes.

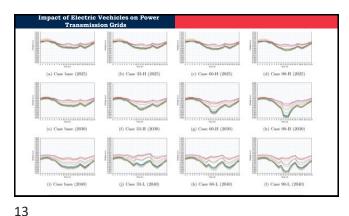

3


4









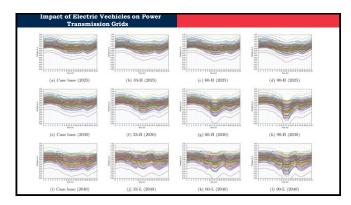
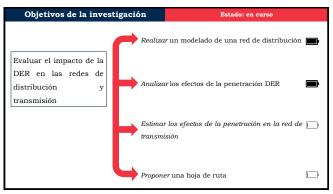
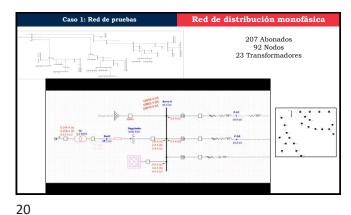



Table 6: Maximum Demand Reached and Capacity Increase in MW potencia en **perfiles de 24 horas**, evaluando la capacidad del sistema eléctrico en aspectos de <u>cargabilidad</u> para determinar la 2040 2025 2030 2040 tensión y demanda. Los resultados muestran **problemas** si no se Los resultados muestran problemas si no se hacen las inversiones necesarias en la infraestructura eléctrica antes del año 2030, y peor aún en el horizonte de 2040, se destaca la insuficiencia del sistema para contener la creciente flota de vehículos eléctricos. Entre las 11 hasta las 13 horas se prevé una mayor integración de vehículos eléctricos, aunque también son momentos en los que la aunque tambien son momentos en los que la generación solar en la región puede alcanzar niveles elevados. La gestión de la energía solar en estaciones de carga podría contribuir a suavizar la respuesta en la demanda.

Publicaciones científicas Resumen de publicaciones Arias-Arguedas, C., Richmond-Navarro, G., & Gómez-Ramirez, G. (2023). Crecimiento de la flota vehicular en Costa Rica y sus emisiones de gases de efecto invernadero. Investiga. TEC, 16(46), pág.11-15. G. A. Gómez-Ramírez and R. Solis-Ortega, "Electric Vehicle Penetration Modelling for Costa Rica Power System," 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaíso, Chile, 2021, pp. 1-6, doi: 10.1109/CHILECON54041.2021.9703070. Gomez Ramirez, Gustavo Adolfo and Solis-Ortega, Rebeca and Ross-Lépiz, Luis Alberto, **Impact of Electric Vechicles on Power Transmission Grids**. Available at SSRN: http://dx.doi.org/10.2139/ssrn.4467264

15

Proyecto 2: Estimación del Límite Técnico permisible para la penetración de DER Escuelas involucradas: Asistente: Diego Gómez Hidalgo • Escuela de Ingeniería Provectos de Graduación: Electromecánica · Escuela de Matemática Kervyn Sáenz González · Alfredo Ellis Rodríguez William Navarro Alpízar M.Sc. Gustavo Adolfo Gómez · José Pablo Morales Ramírez (coordinador) Edgar Brenes · M.Sc. Rebeca Solis Ortega · Marlon Umaña Instituciones participantes: JASEC COOPESANTOS R.L. Universidad Anhault, Alemania Universidad de Concepción, Chile



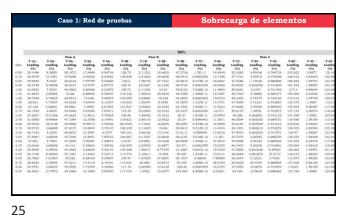
17 18

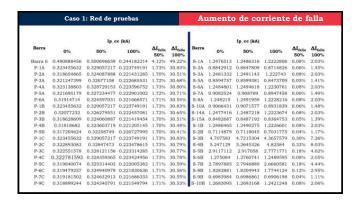
3

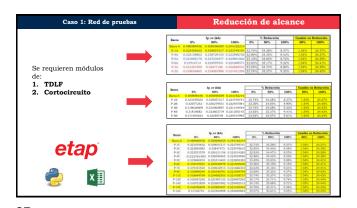
Trabajos finales de graduación

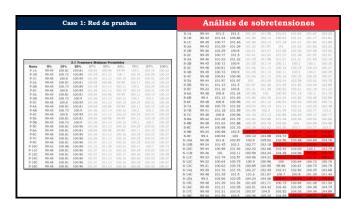
- Sáenz-González, K. J. (2023). Estudio del comportamiento de una red de distribución monofásica en 34, 5 kV para el análisis de la penetración de recursos distribuidos de generación solar en la red eléctrica de JASEC, mediante la aplicación de la Ley 10086.
- Ellis-Rodríguez, A. J. (2023). Análisis de los efectos resultantes por la integración de una nueva planta de energía solar fotovoltaica a la red de distribución de Cocorí y la adquisición de un sistema de almacenamiento de energía para la gestión de la inyección de potencia.
- Navarro-Alpizar, W. J. (2023). Estudio del comportamiento de una red de distribución en 19.9 kV para el análisis de la penetración de recursos distribuidos de generación solar en Coopesantos RL mediante la aplicación de la Ley 10086.

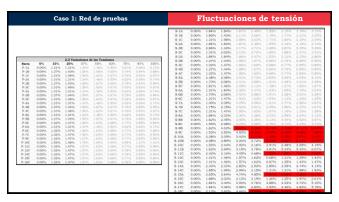
19

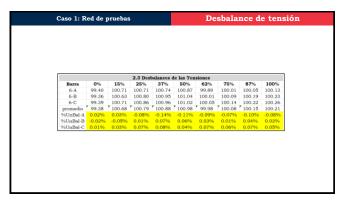

Caso 1: Red de pruebas	Aı	nálisis de sobretensiones
		-mandothadyddin
10 10 10 10 10 10 10 10 10 10 10 10 10 1		1 Art September 1 Ar
		Proceeding water and process
	200	
Fase A	Fase B	Fase C

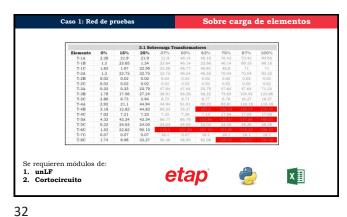

		Ca	so 1:	Red d	e prue	bas				Fl	uctu	acio	nes	de t	ensi	ón	
_		-			_			ΔV	de 0 a 5	0%							-
time	Barra 6 - Voltage (%)	P-6A - Votage (%)	P.5A - Voltage (N)	P-4A Votage (%)	S-SA - Votage (%)	S-1A - Voltage (%)	8-15A - Votage (%)	8-10A - Voltage (%)	S-YA- Votage (%)	P-1A - Voltage (%)	P-3A - Voltage (%)	F-2A -	S-14A - Voltage (%)	S-8A - Voltage (%)	S-6A Voltage (%)	S-SA - Voltage (%)	S-2A - Votage (%
0.00	1,219%	1.219%	1.220%			1,219%	1.220%		1,219%	1,220%	1,220%	Voltage (%)	1.220%	1.220%	1.220%	1,220%	1.220%
0.15	1217%	12179	1217%	1,220%	1,220%	1217%	1,217%	1,220%	1,216%	1,217%	1,217%	1,217%	1,217%	1,217%	1,217%	1217%	12175
0.18	1,210%	1,218%	1,210%	1,215%	1,210%	1,210%	1,218%	1,218%	1,215%	1,218%	1,210%	1,215%	1,218%	1,215%	1,219%	1,210%	1.216%
0.46	1218%	1,217%	1217%	1,216%	1.217%	1,216%	1.217%	1,216%	1217%	1.216%	1217%	1.217%	1.216%	1,216%	1.217%	1217%	1.216%
1.00	1,217%	1,217%	1,217%	1,217%	1,217%	1217%	1.217%	1.217%	1,217%	1,217%	1,217%	1.217%	1,217%	1.217%	1,217%	1217%	1.217%
1.15	1,212%	1,212%	1211%	1211%	1.212%	1,211%	1.212%	1.212%	1.212%	1.212%	1,211%	1.211%	1.211%	1.211%	1.212%	1.212%	1.212%
1.30	1,216%	1,216%	1,21976	1,216%	1,217%	1,216%	1,216%	1,219%	1,216%	1.219%	1,216%	1,216%	1,219%	1,216%	1.219%	1,217%	1,216%
1.45	1,204%	1,200%	1.204%	1,204%	1.204%	1,204%	1.204%	1,203%	1.204%	1.204%	1.204%	1,205%	1.204%	1.204%	1.204%	1.204%	1,200%
2.00	1211%	1,211%	1,217%	1,211%	1,270%	1,211%	1,211%	1,211%	1,211%	1,211%	1,211%	1,211%	1,211%	1,210%	1.231%	1,211%	1,211%
2.15	1,214%	1,212%	1,214%	1,214%	1.212%	1214%	1.214%	1,213%	1,214%	1.254%	1.214%	1.214%	1,214%	1,214%	1.212%	1,213%	1.254%
2.30	1,206%	1,307%	1.207%	1.207%	1.207%	1.207%	1.207%	1.207%	1,208%	1.208%	1.207%	1.207%	1.207%	1.207%	1.207%	1.207%	1.207%
2.45	1.200%	1.206%	1,205%	1.205%	1,206%	1.205%	1,200%	1,205%	1.205%	1.205%	1,205%	1.205%	1.205%	1.205%	1.209%	1.205%	1.205%
3.00	1213%	1,212%	1.2125	1,213%	1.213%	1.213%	1.212%	1.213%	1,212%	1.213%	1.213%	1.213%	1.213%	1.213%	1.213%	1.213%	1212%
3.15	1211%	1,210%	1,211%	1,211%	1,212%	1,211%	1,210%	1,211%	1,211%	1,211%	1,211%	1,210%	1,210%	1,210%	1.212%	1,210%	1,211%
3.20	1,211%	1,210%	1,211%	1,211%	1.211%	1,210%	1.211%	1,210%	1,210%	1.211%	1.211%	1,211%	1.210%	1211%	1.211%	1211%	1.211%
3.46	1,200%	1,209%	1,210%	1,210%	1,210%	1,2090s	1,209%	1,209%	1,209%	1,210%	1.210%	1.210%	1.210%	1.209%	1.253%	1.210%	1.204%
4.00	1.213%	1.213%	1.212%	1.213%	1.213%	1.213%	1.213%	1.212%	1.213%	1.213%	1.213%	1.213%	1.213%	1.213%	1.213%	1.213%	1.213%
4.15	1212%	1,211%	1,211%	1.212%	1,211%	1.212%	1.212%	1,211%	1.211%	1.212%	1,211%	5,211%	1.211%	1.212%	1.211%	1.212%	1.212%
4.30	1.220%	1,219%	1.220%	1.220%	1.220%	1.220%	1.220%	1.220%	.1.220%	1.220%	1.220%	1.220%	1.219%	1.219%	1.220%	1.219%	1.220%
4.45	1,223%	1.2235	1.223%	1,223%	1.223%	1,223%	1.223%	1.222%	1,222%	1.223%	1,223%	1.223%	1.222%	1,222%	1.223%	1.223%	1.222%
6.00	1,226%	1,226%	1,225%	1,225%	1,226%	1,226%	1.226%	1.226%	1.225%	1.226%	1.229%	1,226%	1.226%	1.225%	1.225%	1,226%	1.235%
5.15	1.221%	1,220%	1.220%	1220%	1.220%	1.220%	1.220%	1.220%	1.220%		1.220%	1.220%	1.220%	1.220%	1.220%	1221%	1.220%
5.30	1,215%	1,215%	1,215%	1,215%	1,213%	1,215%	1,215%	1,216%	1,215%	1.215%	1,215%	1,215%	1,215%	1.215%	1.215%	1.215%	1.215%
5.45	1.227%	1,225%	1.227%	1.227%	1.227%	1.227%	1.227%	1.227%	1.227%	1.227%	1.227%	1.227%	1.227%	1.227%	1.228%	1.227%	5.227%
0.00	1.224%		1.224%	1,224%	1.224%	1,224%	1.224%	1.224%	1,222%	1.224%	1.224%	1.224%	1.224%	1.224%	1.224%	1,224%	1,224%

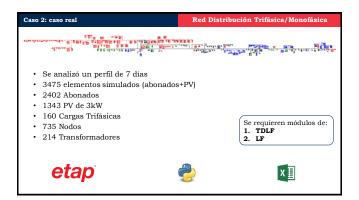

21 22

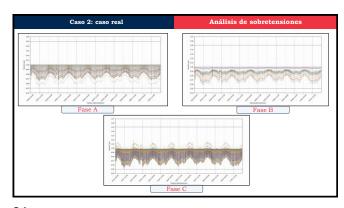

Caso 1: Red de pruebas											De	sba	lance	de t	ensić	n					
			0%		14. 1				50%					100%							
	Fase A	Fase B	Fase C		Barra-6		Fase A	Fase B	Fase C		Barra-6	0	Fase A	Fase B	Fase C		Barra-6				
time	Barra 6 - Voltage (%)	Barra 6 - Voltage (%)	Barra 6 - Voltage (%)	Ubalan ce-A	Ubalan ce-B	Ubalan ce-C	Barra 6 - Voltage (%)	Barra 6 - Voltage (%)	Barra 6 - Voltage (%)	Ubalan ce-A	Ubalan ce-B	Ubalam co-C	Barra 6 - Voltage (%)	Barra 6 - Voltage (%)	Barra 6 - Voltage (%)	Ubalan ce-A	Ubalan ce-B	Ubalas ce-C			
0.00	0.993544	0.988389	0.98986	0.30%	-0.22%	-0.07%	1,00566	1.00028	0.989058	0.73%	0.20%	-0.93%	0.993675	0.990278	0.989058	0.27%	-0.07%	-0.701			
0.15	0.993503	0.988437	0.990973	0.26%	-0.26%	0.00%	1.00559	1.80032	0.990209	0.69%	0.16%	-0.85%	0.993813	0.990056	0.990209	0.25%		-0.121			
0.30	0.993435	0.988292	0.990675	0.27%	-0.25%	-0.01%	1.00554	1.00018	0.989944	0.70%	0.16%	-0.86%	0.993641	0.99001	0.989944	0.25%	-0.12%	-0.131			
0.45	0.993743	0.988736	0.990626	0.27%	-0.23%	-0.04%	1.00583	1.00061	0.98997	0.70%	0.18%	-0.88%	0.99372	0.99054	0.98997	0.23%	-0.09%	-0.151			
1.00	0.993832	0.988576	0.99039	0.29%	-0.24%	-0.05%	1.00593	1.00045	0.989673	0.73%	0.18%	-0.90%	0.993866	0.9904	0.989671	0.26%	-0.09%	-0.171			
1.15	0.993677	0.988863	0.991023	0.25%	-0.23%	-0.02%	1.00572	1.00071	0.990335	0.68%	0.18%	-0.86%	0.993822	0.990435	0.990335	0.23%		-0.121			
1.30	0.993541	0.9885	0.990825	0.26%	-0.28%	-0.01%	1.00562	1.00038	0.990078	0.6996	0.17%	-0.86%	0.993767	0.990164	0.990078	0.25%	-0.12%	-0.131			
1.45	0.99393	0.989274	0.991227	0.25%	-0.22%	-0.03%	1.0059	1.00106	0.990633	0.67%	0.19%	-0.86%	0.993967	0.990689	0.990633	0.22%	-0.11%	-0.111			
2.00	0.993912	0.988883	0.990736	0.28%	-0.23%	-0.04%	1.00995	1.00072	0.990055	0.70%	0.18%	-0,89%	0.993978	0.990506	0.990055	0.25%	-0.10%	-0.15			
2.15	0.993463	0.988439	0.990771	0.26%	0.25%	0.01%	1.00552	1.0003	0.989986	0.69%	0.17%	0.86%	0.993824	0.98997	0.989986	0.26%	0.13%	0.131			
2.30	0.99375	0.989238	0.990891	0.29%	-0.21%	0.04%	1.00575	1.00105	0,990286	0.67%	0.20%	-0.88%	0.993743	0.99077	0.990286	0.22%	-0,08%	-0.131			
2.45	0.993795	0.989454	0.991347	0.23%		-0.02%	1.00577	1.00126	0.990796	0.65%	0.20%	-0.85%	0.993823	0.990854	0.990796	0.20%	-0.10%	-0.101			
3.00	0.994189	0.989175	0.990522	0.29%		-0.08%	1.00625	1.00103	0.98996	0.72%	0.20%	-0.91%	0.994019	0.990933	0.98996	0.24%	-0.07%	-0.171			
3.15	0.993936	0.989189	0.990837	0.26%	-0.22%	-0.05%	1.00597	1.00102	0.99018	0.69%	0.20%	-0.89%	0.993911	0.990851	0.99018	0.23%	-0.08%	-0.151			
3.30	0.994076	0.98927	0.990601	0.28%		-0.07%	1.00611	1.00109	0.989959	0.71%	0.20%	-0.91%	0.993933	0.991019	0.989959	0.23%	-0.06%	-0.173			
3.45	0.99386	0.988979	0.990612	0.27%	-0.22%	+0.05%	1.00588	1.0008	0.989944	0.70%	0.19%	-0.89%	0.993885	0.990593	0.989944	0.24%	-0.09%	-0.151			
4.00	0.993581	0.988688	0.991026	0.25%	-0.24%	-0.01%	1.00563	1.00055	0.990348	0.68%	0.17%	-0.85%	0.993769	0.99025	0.990348	0.23%	-0.12%	-0.111			
4.15	0.993777	0.988918	0.990826	0.26%	-0.23%	-0.04%	1.00582	1.00076	0.990126	0.69%	0.19%	-0.88%	0.993881	0.990535	0.990126	0.24%	-0.10%	-0.141			
4.30	0.994063	0.98842	0.990196	0.32%	-0.25%	-0.07%	1.00619	1.00031	0.989455	0.75%	0.17%	-0.92%	0.994025	0.990356	0.989455	0.28%	-0.09%	-0.181			
4.45	0.994018	0.988191	0.990194	0.32%	-0.26%	-0.06%	1.00617	1.0001	0.989422	0.76%	0.15%	-0.92%	0.994021	0.990213	0.989422	0.28%	-0.10%	-0.181			
5.00	0.992766	0.987455	0.991385	0.23%	-0.31%	0.09%	1.00494	0.999417	0.990431	0.67%	0.12%	-0.78%	0.993599	0.969008	0.990431	0.20%	-0.20%	-0.001			
5.15	0.993631	0.98826	0.990577	0.28%	-0.26%	-0.03%	1.00578	1.00016	0.989816	0,72%	0.16%	-0.88%	0.993881	0.990025	0.989816	0.27%	-0.12%	-0.141			
5.30	0.993581	0.98834	0.991071	0.26%	-0.27%	0.01%	1.00965	1.00021	0.990335	0.69%	0.15%	-0.84%	0.9930	0.98989	0.990335	0.25%	-0.15%	-0.101			
5.45	0.993027	0.987548	0.990285	0.28%	-0.28%	0.00%	1.00521	0.999503	0.989401	0.72%	0.15%	-0.87%	0.993504	0.989384	0.989401	0.28%	-0.14%	-0.145			
6.00	0.992929	0.987672	0.990563	0.26%	-0.27%	0.02%	1.00508	0.999613	0.989729	0.70%	0.15%	-0.84%	0.993476	0.989332	0.989729	0.27%	-0.15%	-0.11			

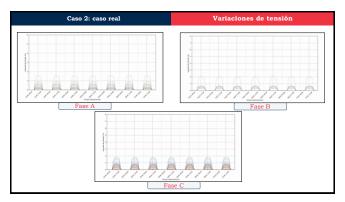


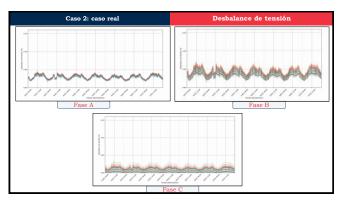


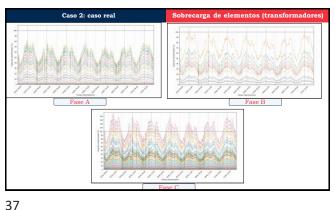


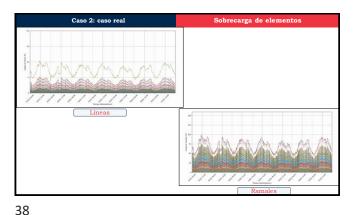


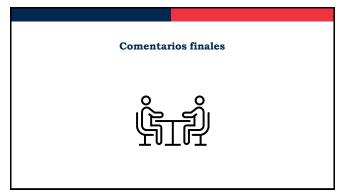












Proyecto 3: Mantenimiento predictivo: desarrollo de sistemas de diagnóstico y pronóstico. Escuelas involucradas: • Escuela de Ingeniería Electromecánica Equipo de Investigación: • Dr. Juan José Montero Jiménez (coordinador) • Dr. Juan José Rojas Hernández · M.Sc. Gustavo Adolfo Gómez Ramírez Instituciones participantes: ISAE-SUPAERO, Francia Universidad Anhault, Alemania UCR SOELMEC

39 40

41 42

Lista de asistentes

Evento: Coloquio de Ingeniería: "Resultados de investigación Doctoral del señor Gustavo Gómez

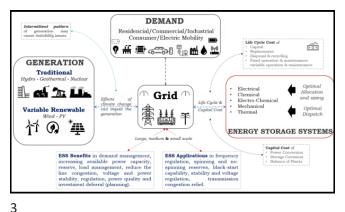
Número	Nombre	Empresa	Contacto	Firma
1	Seroio Pachero	CFS	sergio-pachemo ecfocra	- 4
2	Isaac Lucivano	ETAP	e etapion 1500/2. luero	1
3	Augo Castro	ETAP	hugo, castro estapo	1/6/10
4	Leslie González C.	ICE -DDC	Igonzalez a ice.go.co	Decolo
5	Janzala mera	ICE-DDC	9 morajidice.	gazera munas
6	Edwin Espinoza	Aresep	espinozame Q aresep.go.cr	34
7	Caterina Leandro S.	CŦS	Caterina. Leandro a Dolser	13.
8	Jose Pablo Mortinez Cost	ICE (b) Governous on	smortinese	#3

Número	Nombre	Empresa	Contacto	Firma
9	Oscar Campos Gonzáliz	ICE	0 campos g & 1 cf. 90.4 2000-7087	-
10	Juan Drego Rojes Varyas	ICE	jdrojas@ice.50.co	9 mg
11	Merro	Schneider	83165439	11.
12	Jerordo araya Formeca	Achneider Electric	general areyofonsecale	FNI
13	Theoryn Sienz Gintalez	Copelesca	7131 /724 Who a en 2 @ coopeluce.	1
14	Andry Dimence Oses	Coopelesce R.L	anjimenez@copelesco.co.co	Andrey J.O
15	Henry Guevara	Providencia Consultores	H. GUELA TA nguela TAR Trovissionaid - 8.	cr H
16	Sofio Rado Sdera	OFS	orle. cfs@cfscr.com	Egia Mirad
17	Maria Jusé conce Banants	CFS	mer.c. (www.Q(fser.e	- A

Número	Nombre	Empresa	Contacto	Firma
18	Digo Quiros	CFS	87090056	Ting Gury
19	Pedo Ramos	CFS	87090058	00
20	Konradians	SE	87296340	
21	Jaime Gonzál	ez ICE	88476720	l'e
22	Orego A. Opminguez.	Coopequonacosie	84792801	Ongo A. Domíngez
23	Yuri Alvoredo	Coopeyeneort	87183742	any
24	Jennifer Comarcin	Coopeguaracaste	6201 3095	A.
25	Tony Delgado Graja	MOPT	86843789	多级数
26	Swir Gentona Villah	CNFL	2295-5912	Aff.
27	Juan Minter Bolay	CUFL	8304 99 44	A

CFS

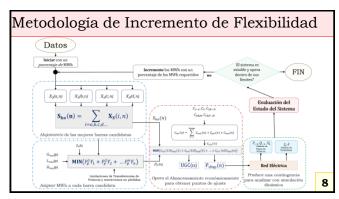
Número	Nombre	Empresa	Contacto	Firma
28	Roger Alonso González Solís	CNFL	2295 5732	07
29	Conos Luis Abarca Casconte	coopesantos	89262570	Cale pm Cla
30	Willam Navaro Alpisa	Cooperantes R.L.	60073888	A Must
31	Ronald Castillo Cruz	Cooperantos R.L	85827584	99
32	Roy Quiros Cedeño	CNFL	2295-5692	lewith
33	Alexander Ortega Burford	ICE LIMAT	88157068	damel
34	RodrigoRojas	ICE-UNA	88ZZ38Z4	11/17
35	Gerald Sata	ESPH	62241166	4
36	Auselo 66 mer.	ESPH	83366570	7


Número	Nombre	Empresa	Contacto	Firma
37	Luis GARUS Sontonon	Universions De Concepabr	Luis parciolida	cl M.
38	Martha Valorios	ALEMENCO HEENE	mvalor aggmail.com	10
40	Gustavo Obardo Vargas	ICE	gobandov@ice.go.cr	200
41				
42				
43				
44				
45				
46				

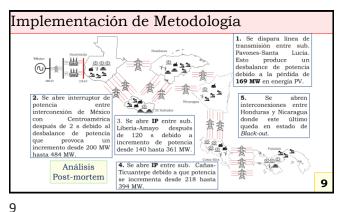
-dío	I WOMED ON SENDING	TEC Tecnológico de Costa Rica
V.	Nombre	Firma
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Havia Lacra Sojo Araya Havold Campos J Jovier López Solis Maria José Angelo C Jesés Sanchee Alfaro Masmillano Birnver Ji - Fre Fredly Ares Senabre Guadolize kara Madrigal Romy Casen Le Clase Jan Galond Per Asia Pérez Aciña Cabric (Barrientes Darricto) Sebartian Martinez Sabartini Juan Dego Comes Hodoliga José Francisco Pérez Guardiola Fabricia Unaciña Blanco	Jan We der

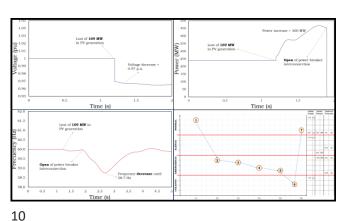
- A	íaz Sistemas de Potencia	TEC Tecnológico de Costa Rica
No	Nombre	Firma
123456709611213	José Pablo Varela Benilla Neyner Araya Pertuguez José Andrés Arrieta M Giovan Tencio Alvarado Keitlyn Valeria Montrel Aciana Muñez Moya Alejandra Ouedo Miraz Misor Servano Mecha Virler Trigoran Opota Seboitió Aguilos Sánches Norvin Misios Núñez Henry Álvarez Nogrera	Arielas Friedas Arielas Antielas Antielas

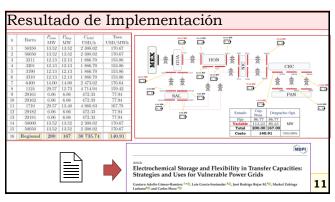
60 Hz 59 Hz Contexto Demanda E Mar P 16-20 Inversión v 🖶 Ш ± 181 4

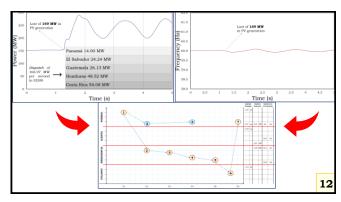

El desarrollo de una metodología científica para incrementar la flexibilidad de las redes eléctricas interconectadas, mediante la integración óptima de BESS, aborda un **problema crucial** en la evolución de las redes hacia una mayor penetración de DER, BESS y VEs. 5

Este enfoque no solo mejora la **estabilidad** de las redes débiles, sino que también ofrece un marco para la toma de decisiones estratégicas en la planificación y operación de sistemas eléctricos.

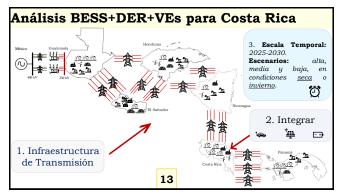

5

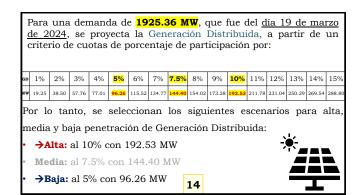

2. Estrategias para la integración de BESS • Metodología de Incremento de Flexibilidad. ■ Implementación de metodología. Electrochemical Storage and Flexibility in Transfer Capacities: Strategies and Uses for Vulnerable Power Grids 7

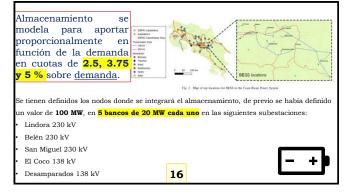

7



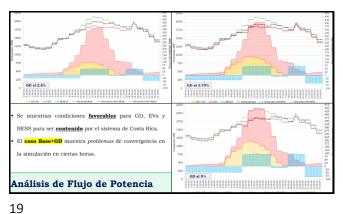
8

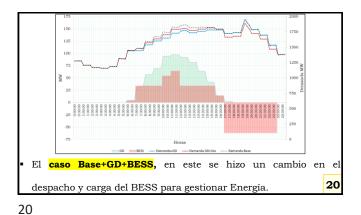




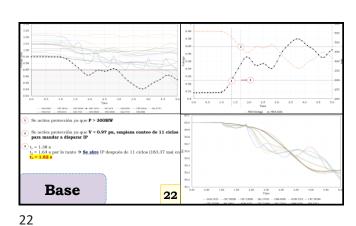

11 12

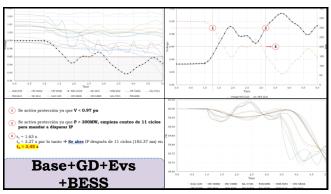
14

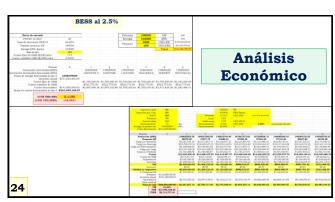


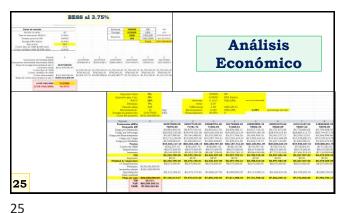


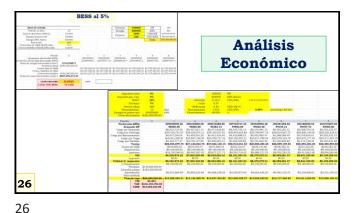
15 16


BESS Tamaño Nominal 5 bancos / 20 MW		GD al 5%	GD al 7.5%	GD al 10%	EVs	Demanda del sistema
2.5%	Demanda 48.13 MW a 372.9 MWh	96.26 MW			35309 VEs 282.82 MW 14.74% de la demanda	1925.36 MW
3.75%	Demanda 72.19 MW a 559.34 MWh		144.40 MW		35309 VEs 282.82 MW 14.74% de la demanda	1925.36 MW
5.00%	Demanda 96.25 MW a 745.79 MWh			192.53 MW	35309 VEs 282.82 MW 14.74% de la demanda	1925.36 MW


Posibles Escenarios de análisis	Flujos de Potencia	Estabilidad Transitoria
GD	No	Si
EVs	Si	Si
Alm.	Si	Si
GD+EVs	Si	Si
GD+Alm.	No	Si
EVs+Alm.	Si	Si
GD+EVs+Alm.	Si	Si






					Estabilida	·u		2
	Study ID	Operacion_N	lormal					
	Study Case ID	LF		Fat	udio d		مهنانطم	4
L	Buses	1652		ESI	uaio a	e est	aviiiaa	и
	Branches	1704		tra	nsitoria.	se mod	ela fall	٥
	Generators	231			,			a
	Power Grids	1		dor	ide se pie	erde 140	MW d	le
	Loads	579						
	Load-MW	44086.9	PV. Se utiliza un pas					e
	Load-Mvar	8999.68	1	inte	aración	do 0 1	s y 1	_
	Generation-MW	44432.12	25	unite	egración	ue 0.18	s y_1	a
4	Generation-Myar	9055.51	2	eim	ulación se	realiza r	oro 5 e	
	Loss-MW	345.17	1	31111	idiacion sc	rcanza p	ara <mark>o s</mark> .	
	Loss-Mvar	55.832						
BESS a	nivel Regional	GD al		EVs	PV	w	Demanda de	e1
		10%					sistema	
5.0%	200 MW	192.53 MW		309 VEs	1947.91 MW	982 MW	9740 MW	
	a			3.82 MW	20% de demanda			
	1200 MWh	10.00%		.74% de	Regional.	10.08% de la		
			dema	anda de CR		demanda Regional.		

4.0 Conclusiones

d. Se desarrolló una metodología de optimización basada en factores para mejorar la *flexibilidad* de la red eléctrica de transmisión y aumentar la transferencia de potencia, enfocada en prevenir inestabilidades de frecuencia mediante gestión del BESS. 27

Se <u>demuestra</u> que existe un <u>alto</u> potencial para 🗡 aumentar la capacidad energética en el SEN usando 鴦 BESS, facilitar la **transición** hacia fuentes renovables y de esta forma **mejorar** la flexibilidad y ANA جها ⊡ resiliencia.

28 27

					2
BESS	TIR %	VAN Millones USD	VANE Millones USD	LCOE USD/MWh	Comentario
2.5 %	15.26	17.995	2.113	118.99	Factible
3.75 %	26.51	60.099	7.059	90.55	Factible
5.00 %	36.30	102.1930	12.003	76.33	Factible
	2.5 %	2.5 % 15.26 3.75 % 26.51	% Millones USD 2.5 % 15.26 17.995 3.75 % 26.51 60.099	% Millones USD Millones USD 2.5 % 15.26 17.995 2.113 3.75 % 26.51 60.099 7.059	% Millones USD Millones USD USD/MWh 2.5 % 15.26 17.995 2.113 118.99 3.75 % 26.51 60.099 7.059 90.55

a. Solar fotovoltaica con BESS (baterías de ion a. Solar fotovoltaica: Rango de LCOE: \$20 a \$50 por MWh de litio):
- Rango de LCOE: \$50 a \$150 por MWh b. Energía eólica onshore (en tierra):
Rango de LCOE: \$30 a \$60 por b. Eólica onshore con BESS (baterías de iones de MWh MWH

Energía eólica offshore (en el mar):
Rango de LCOE: \$60 a \$120 por MWh Rango de LCOE: \$50 a \$100 por MWh Almacenamiento electroquímico independiento (baterías de iones de litio):
Rango de LCOE: \$100 a \$250 por MWh d. Hidroeléctrica: Rango de LCOE: \$30 a \$70 por MWh e. Gas natural (ciclo combinado):

Rango de LCOE: \$40 a \$80 por MWh d. Almacenamiento electroquímico independiente (baterías de flujo de vanadio):
Rango de LCOE: \$150 a \$300 por MWh f. Carbón: Rango de LCOE: \$60 a \$110 por MWh 30

29 30

De acuerdo con el estudio y análisis financiero en todos los análisis realizados, se muestra una alta factibilidad para la implementación de sistemas **BESS** en el Sistema Eléctrico de Costa Rica.

31 32