Estimación del potencial de producción de biocombustibles en Costa Rica a partir de cultivos energéticos, agroenergéticos y aceites usados, al 2021

PROYECTO FINAL DE GRADUACIÓN PARA OPTAR POR EL TÍTULO DE INGENIERA AMBIENTAL CON EL GRADO ACADÉMICO DE LICENCIATURA EN INGENIERÍA AMBIENTAL

REALIZADO POR:

Arlyn García Salas

Cartago Agosto, 2013
“Terminar una obra vale más que comenzarla: lo que cuenta es la perseverancia, y no la pretensión”

Eclesiastés 7:8
Agradecimientos

En primera instancia se desea extender el más grato agradecimiento al Centro de Servicio Investigación y Desarrollo de la UEN Proyectos y Servicios Asociados del Instituto Costarricense de Electricidad, el cual brindó el espacio, financiamiento y apoyo técnico para llevar a cabo este trabajo.

A la Ingeniera Gloriana Alvarado Ramírez, supervisora directa en el ICE, por constituirse en la más cercana y primordial guía hasta el último momento de la realización del proyecto en manos.

Al consultor e Ingeniero Carlos Roldán Villalobos, director del proyecto y responsable de dar seguimiento académico y orientación al desarrollo del presente trabajo, en representación del Instituto Tecnológico de Costa Rica.

Al Ingeniero Alonso Acuña, gerente del Programa Nacional de Agrocombustibles del Ministerio de Agricultura y Ganadería por su tiempo y paciencia para transmitir el enriquecedor conocimiento del cual gozar en el tema de biocombustibles.

Al Ingeniero Jesús Hernández, de la Estación Experimental Fabio Baudrit, por su atención y anuencia a responder en diversas ocasiones a las múltiples preguntas surgidas a lo largo del desarrollo de este proyecto.

A Nuri Sanabria y Ana Rita Chacón, geógrafas del Instituto Meteorológica Nacional, quienes aportaron mapas e información sobre la aptitud de tierras para el cultivo de energéticos en el país.

Al profesor Julio Mata Segreda de la Universidad de Costa Rica por la contribución de una diversidad de materiales relativos al tema e informaciones provenientes de su propia experiencia.

A todas las demás personas productores, académicos y servidores de diversas instituciones que con sus pequeños y grandes aportes pasaron a ser parte de la razón por la cual el proyecto finalmente ha llegado a su exitosa culminación.
Tabla de contenidos

1. Resumen .. VIII
2. Abstract .. XIII
3. Introducción ... 15
4. Justificación ... 17
5. Marco conceptual ... 23
 5.1. Conceptos generales ... 23
 Tipos de biomasa .. 23
 Biocombustibles ... 23
 Balance energético .. 24
5.2. Generalidades de los biocombustibles ... 24
 Aceite vegetal .. 26
 Biodiesel .. 31
 Etanol ... 34
6. Metodología .. 35
7. Resultados .. 37
 7.1. Antecedentes de la producción de biocombustibles para el transporte en Costa Rica 37
 7.2. Principales fuentes biomásicas de producción energética investigadas mundialmente ... 42
 7.2.1. Biogás .. 42
 7.2.2. Cultivos energéticos forestales ... 46
 7.2.3. Biocombustibles líquidos ... 50
 7.3. Fuentes de producción más promisorias para el desarrollo de los biocombustibles líquidos en Costa Rica ... 56
 7.3.1. Biodiesel .. 57
 7.3.1.1. Palma africana .. 58
 7.3.1.1.1. Costo de producción .. 64
 7.3.1.2. Jatropha .. 67
 7.3.1.2.1. Costo de producción .. 71
 7.3.1.3. Higuerilla .. 77
 7.3.1.3.1. Costo de producción .. 81
Índice de figuras

Figura 1. Estructura del consumo final de energía en el país, año 2011 17

Figura 2. Comparación entre el consumo y el precio del diesel en el periodo 2005-2011... 19

Figura 3. Comparación entre el consumo y el precio de gasolina regular en el periodo 2005-
2011 ... 19

Figura 4. Comparación entre el consumo y el precio de gasolina súper en el periodo 2005-
2011 ... 20

Figura 5. Estimaciones de demanda a mediano plazo de diesel y gasolinas para el transporte
terrestre, 2013-2021 .. 21

Figura 7. Proceso de obtención de biodiesel a partir de aceite vegetal y/o grasa animal..... 32

Figura 8. Fuentes de información consultadas en la investigación 37

Figura 9. Proceso de degradación anaeróbica para la producción de biogás 44

Figura 10. Compuestos constituyentes del biogás ... 45

Figura 11. Comparación entre el precio internacional del aceite crudo de palma (CIF
Rotterdam) y el precio del diesel importado ... 64

Figura 12. Histórico precios CIF Rotterdam del aceite de higuerilla vs aceite de palma (US
$/Ton) ... 82

Figura 13. Proceso detallado para obtención de biodiesel de microalgas 86

Figura 14. Mapa de aptitud de uso de los suelos de Costa Rica para el cultivo de la palma
.. 105

Figura 15. Cobertura del suelo en Costa Rica al 2005 .. 107

Figura 16. Zonas aptas para el cultivo de caña... 114

Figura 17. Zonas aptas para el cultivo de sorgo dulce ... 115

Figura 18. Consumo de combustibles diesel y gasolina en el sector transporte del país de
2005 a 2011 ... 122
Figura 19. Análisis del ciclo vital para los balances de gases de efecto invernadero 127

Figura 20. Reducciones en las emisiones de gases de efecto invernadero de determinados combustibles en comparación con los combustibles fósiles.. 129

Figura 21. Efecto de porcentajes variables de volumen de etanol en la mezcla de combustible sobre las emisiones de HC para diferentes cargas de motor.............................. 132

Figura 22. Efecto de porcentajes variables de volumen de etanol en la mezcla de combustible sobre las emisiones de CO para diferentes cargas de motor.............................. 133

Figura 23. Efecto de porcentajes variables de volumen de etanol en la mezcla de combustible sobre las emisiones de CO$_2$ para diferentes cargas de motor.......................... 134

Figura 24. Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución de diesel.. 137

Figura 25. Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución de gasolina.. 138
Índice de cuadros

Cuadro 1. Propiedades del diesel, SVO de colza y biodiesel de colza a 20°C 29
Cuadro 2. Producción de aceite por hectárea de diferentes cultivos oleaginosos 33
Cuadro 3. Producción de etanol por hectárea de diferentes cultivos con azúcares fermentables ... 34
Cuadro 4. Escenario base de introducción de mezclas de biocombustibles al consumo nacional .. 40
Cuadro 5. Peso de Biomasa Seca (ton/ha) con diferentes espaciamientos 47
Cuadro 6. Área de cultivo forestal energético requerida para producir electricidad 48
Cuadro 7. Características relevantes de los cultivos energéticos .. 51
Cuadro 8. Productividad promedio de aceite de palma por país, en t/ha/año en 2010 59
Cuadro 9. Comparación entre el precio internacional del aceite crudo de palma (CIF Rotterdam) y el precio del diesel importado .. 63
Cuadro 10. Cálculo del costo de producción de biodiesel de palma (USD/BED) 66
Cuadro 11. Algunos datos generales y relevantes de la Jatropha y su potencial para la producción de biodiésel .. 67
Cuadro 12. Parámetros de rentabilidad para el establecimiento de plantaciones de Jatropha Curcas .. 71
Cuadro 13. Cálculo del costo de producción .. 75
Cuadro 14. Precio de equilibrio final por barril equivalente de diesel (BED) 76
Cuadro 15. Comparación propiedades entre el biodiesel de higuera, diesel corriente y mezclas preparadas .. 79
Cuadro 16. Análisis de ingreso económico de la producción de biodiesel de higuera con base en el rendimiento del cultivo .. 83
Cuadro 17. Resultados de Ingenio Taboga comparativo de caña de azúcar y sorgo dulce .. 91
Cuadro 18. Aprovechamiento de la melaza de caña ... 95
Cuadro 20. Balanza de costos de producción del etanol, segundo escenario 99
Cuadro 21. Valor FOB de las exportaciones de alcohol vs valor CIF de las importaciones de gasolina, en el periodo 2006-2011

Cuadro 22. Matriz de evaluación del potencial de cultivos para producción de biodiesel.

Cuadro 23. Uso del suelo en Costa Rica

Cuadro 24. Zonas propuestas para el establecimiento de plantaciones energéticas de palma aceitera

Cuadro 25. Productores de biodiesel en Costa Rica

Cuadro 27. Potencial de producción de biodiesel por año

Cuadro 28. Porcentajes de sustitución de diesel en distintos escenarios, al 2021

Cuadro 29. Porcentajes de sustitución de gasolina en distintos escenarios, al 2021

Cuadro 30. Estadísticas de montos y precios correspondientes a la importación de gasolinas, diesel y otros combustibles en el periodo 2006-2011

Cuadro 31. Ahorros en la factura petrolera percibidos por concepto de incorporación de etanol y biodiesel potenciales a la matriz energética ($)

Cuadro 32. Las emisiones de biodiesel comparadas con el diesel convencional

Promedio de acuerdo al EPA-USA

Cuadro 33. Información de partida para estimar el ahorro en emisiones GEI

Cuadro 34. Porcentajes de emisiones ahorradas en el sector transporte por uso del potencial de biocombustibles del escenario moderado, periodo 2014-2021

Cuadro 35. Escala de medición de los criterios de evaluación

Cuadro 36. Consideraciones para evaluar las características físico-químicas del biodiesel obtenido de distintos cultivos

Cuadro 37. Estimaciones de demanda a mediano plazo de diesel y gasolinas para el transporte terrestre, 2013-2021

Cuadro 38. Potencial de producción de biodiesel al 2021: Escenario conservador

Cuadro 39. Porcentaje de sustitución de diesel al 2021: Escenario conservador

Cuadro 40. Potencial de producción de biodiesel al 2021: Escenario moderado
Cuadro 41. Porcentaje de sustitución de diesel al 2021: Escenario moderado

Cuadro 42. Potencial de producción de biodiesel al 2021: Escenario optimista

Cuadro 43. Porcentaje de sustitución de diesel al 2021: Escenario optimista

Cuadro 44. Potencial de producción de etanol al 2021: Escenario moderado

Cuadro 45. Porcentaje de sustitución de etanol al 2021: Escenario moderado

Cuadro 46. Potencial de producción de etanol al 2021: Escenario optimista

Cuadro 47. Porcentaje de sustitución de gasolina al 2021: Escenario optimista

Cuadro 48. Ahorros de emisiones obtenidos en el periodo 2014-2021 al emplear el potencial de biodiesel del escenario moderado (ton CO₂e)

Cuadro 49. Ahorros de emisiones obtenidos en el periodo 2014-2021 al emplear el potencial de bioetanol del escenario moderado (ton CO₂e)

Cuadro 50. Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución, con base en escenario moderado

Cuadro 56. Aspectos técnicos y medioambientales comparativos entre el diesel y el biodiesel

Cuadro 57. Principales propiedades comparativas entre el etanol y la gasolina

Cuadro 58. Áreas potenciales para el cultivo de palma aceitera en los cantones con Índice de Desarrollo Humano Bajo-Bajo

Cuadro 59. Áreas potenciales para el cultivo de caña de azúcar en los cantones con Índice de Desarrollo Humano Bajo-Bajo

Cuadro 60. Áreas potenciales para el cultivo de sorgo en los cantones con Índice de Desarrollo Humano Bajo-Bajo

Cuadro 61. Áreas potenciales para el cultivo de palma aceitera en los cantones con Índice de Desarrollo Humano Bajo-Medio

Cuadro 62. Áreas potenciales para el cultivo de caña de azúcar en los cantones con Índice de Desarrollo Humano Bajo-Medio

Cuadro 63. Áreas potenciales para el cultivo de palma aceitera en los cantones con Índice de Desarrollo Humano Bajo-Alto

Cuadro 64. Áreas potenciales para el cultivo de caña de azúcar en los cantones con Índice de Desarrollo Humano Bajo-Alto
1. Resumen

El presente documento es el resultado de la investigación del potencial que existe en Costa Rica para producir biocombustibles, la cual permitió conocer que, entre una gama variable de opciones para explotar la energía contenida en la biomasa, aquellas cuyo potencial puede trascender más, serán las que tengan la capacidad de incidir en los sectores del consumo comercial de energía que demanden mayores volúmenes y, por lo tanto, tengan mayores impactos en la reducción de las emisiones de gases contaminantes.

Por este motivo, el enfoque de la investigación fue dirigido hacia el potencial para producir biocombustibles líquidos, mismos que son sustitutivos de los dos derivados fósiles más utilizados en el país: el diesel y la gasolina.

Dentro de las características que poseen las diferentes materias primas para producción de biocombustibles se determinó que las más importantes son las relacionadas al costo de oportunidad, competencia con el mercado de alimentos, costo de producción del producto final, calidad del producto, disponibilidad de tierras, oferta de materia prima y los balances ambiental, de emisiones y de energía.

Se identificó que en el país las fuentes de producción de biodiesel y etanol que tienen potencial son la palma africana, los aceites usados, la caña de azúcar y el sorgo dulce. No obstante, otras fuentes muy promisorias que han venido postulándose son los aceites de higuerilla, Jatropha y microalgas, además del etanol lignocelulósico.

De la experiencia generada por los países que se han adelantado al fomento de la producción de biocombustibles, se pudo concluir que su desarrollo requiere la creación de incentivos a los productores como asistencia técnica, desarrollo de la capacidad instalada y mejoras a la infraestructura del país, exoneración de impuestos, acceso a créditos y transparencia en la comercialización.

Además, debido a los sucesos acontecidos fuera de las fronteras de Costa Rica, debe destacarse la prioridad que tienen ante el incentivo a la producción de los biocombustibles la soberanía alimentaria y la evasión de los cambios directos e indirectos que pudieran ser provocados en el uso del suelo.
Los resultados de la reducción de emisiones de gases medidos en unidades de dióxido de carbono equivalentes, que podría generar el uso de biocombustibles en el transporte del 2014 al 2021, van de 2,18% a 7,60% por consumos de diesel evitados y de 0,86% a 1,10% por consumos de gasolina evitados, en contraste con porcentajes de mezcla de 2,48% a 12,45%, en diesel, y de 1,10% a 1,41%, en gasolina, tomando en cuenta la puesta en práctica del potencial que se podría obtener en un escenario moderado.

Por último, si en Costa Rica se diera una implementación de biocombustibles, basada en el mismo escenario, se podrían evitar al final del periodo contemplado $405,7 millones en razón de reducir en 3,11% el monto que se tendría que cancelar por la importación de diesel y gasolina, según proyecciones al 2021.

Palabras claves: Biomasa, potencial, balance energético, costos, biodiesel, etanol, diesel, gasolina, mezcla, emisiones, transporte, soberanía alimentaria, usos del suelo.
2. Abstract

The present study aimed to estimate the potential Costa Rica has for producing biofuels from energy crops, food crops, and used oils, to 2021.

This research involved the progressive accomplishment of different stages, from collecting literature and interviewing experts to processing the data, making correlations, preparing spreadsheet, and analyzing the results, which allowed integrating all the variables in a model to estimate such present and future potential.

The relevant characteristics for the production of biofuels such as the emission balance and energy balance, associated with environmental balance, the cost opportunity, the competition with the food market, the production cost of the final product, the product quality, and the availability of land or supply of raw material were analyzed.

It was found that in the country the sources for production of biodiesel and ethanol with the greatest potential are African palm oils, sugar cane, and sweet sorghum. However, other very promising sources have been postulated and include castor, jatropha and algae oils, additionally to lignocellulosic ethanol.

Experiences crossed by other countries in the international pathway, which have been undertaken to promote the production of biofuels, show that its development requires creating incentives for producers such as technical assistance, installed capacity development and improvements to the country's infrastructure, tax exemption, credit access and transparency in marketing.

Furthermore, the events outside the borders of Costa Rica have demonstrated the importance of emphasizing the priority of food sovereignty and evasion of direct and indirect changes that might be caused in the land use over the incentive to biofuels production.

The results of saving carbon dioxide equivalent gas emissions, which can be generated by the use of biofuels in transportation from 2014 to 2021, go from 2.18% to 7.60% for diesel consumption avoidance, and from 1.10% to 0.86% for gasoline consumption avoidance,
applying percentages of mixture of 1.41% to 1.10%, in gasoline and of 2.48% to 12.45%, in diesel. The results match with the application of the obtained potential in a moderated scenario.

Meanwhile, the suggested percentages of mixture could avoid, by the end of the period, $405.7 millions due to 3.11% reduction in the budget required to import diesel and gasoline according to 2021 projections.

Key words: Biomass, potential, energy balance, costs, biodiesel, ethanol, diesel, gasoline, mixture, emissions, transport, food sovereignty, land use.
3. Introducción

Desde comienzos de la Revolución Industrial el uso de combustibles fósiles como fuente de energía ha venido adquiriendo cada vez mayor protagonismo en la emisión de gases de efecto invernadero a la atmósfera, hasta convertirse, por mucho, en el origen principal de la acumulación de dichos gases responsables de los cambios en las temperaturas y en el clima mundial.

Por otra parte, es un combustible caro, especialmente para los países que no tienen la capacidad de extraerlo, aunado al hecho de las constantes convulsiones geopolíticas en las zonas de los países productores, que provocan inestabilidad en la oferta.

Las razones anteriores han provocado que las fuentes alternativas y limpias de producción de energía sean exploradas con gran ímpetu, con mayor importancia para los países dependientes del petróleo importado, como es el caso de Costa Rica.

Al respecto, el presente trabajo realiza una exploración a través de las principales opciones que están siendo desarrolladas para sacar provecho a las fuentes biomásicas, con el fin de realizar una estimación del potencial que puede ser explotado en Costa Rica hacia una transición energética de fuentes fósiles a fuentes más seguras, limpias y sostenibles. Para precisar la temática planteada, el transcurso de la obra gira alrededor del siguiente objetivo general:

Estimar el potencial de producción de biocombustibles en Costa Rica a partir de cultivos energéticos, agroenergéticos y aceites usados, al 2021.

Objetivos específicos

-Identificar las fuentes de producción de biocombustibles con las características adecuadas para realizar un cambio porcentual en la matriz energética de combustibles no renovables a combustibles renovables.
- Analizar las características de distintos cultivos utilizados en la producción de biocombustibles y de los combustibles mismos, en virtud de su capacidad para sustituir al diesel y la gasolina.

- Seleccionar las materias primas que poseen mejor perfil para la producción de biodiesel y etanol en Costa Rica.

- Establecer el límite máximo de superficie territorial que puede ser utilizada para la producción de los cultivos energéticos con potencial para producir biocombustibles en el corto plazo, según disponibilidad de suelos.

Es así como el problema identificado para formular el presente proyecto fue la necesidad imperante que existe en Costa Rica, un país cuya demanda de recursos energéticos está en crecimiento, de emplear fuentes alternativas renovables, por lo que la finalidad del proyecto es contribuir a aumentar la fracción de las fuentes de producción de energía renovables en la matriz energética, por medio del estudio del potencial real de una de las alternativas que se perfila como posible recurso para la generación energética.

Los resultados del potencial fueron planteados mediante la clasificación de las posibilidades descubiertas en tres distintos escenarios: conservador, moderado y optimista, y a su vez fueron proyectados al año 2021, fecha en que Costa Rica se planteó alcanzar un balance neutro de emisiones GEI. El objetivo de la proyección fue determinar la cantidad de emisiones que podrían evitarse en el periodo y reflejar la contribución del uso de biocombustibles al cumplimiento de dicho objetivo.

También fue realizado un cálculo del ahorro percibido en la factura petrolera, con el propósito de visualizar el impacto sobre la balanza financiera de disminuir la cantidad de combustibles fósiles importados.

La estimación del potencial fue realizado a partir de cultivos energéticos, agroenergéticos y aceites usados, pues se observó que son estas las principales fuentes para producir sustitutos de los combustibles fósiles empleados en el sector comercial que más consumo y emisiones provoca: el transporte.
4. Justificación

Para el año 2011 la dependencia petrolera alcanzó el 59,8% del consumo energético final del país; mientras que la electricidad atendió el 20,6% de la demanda, la biomasa el 19,5% y el 0,2% le correspondió al carbón mineral (ver figura 1).

![Diagrama de consumo energético](image)

Fuente: Elaboración propia con base en Balance Nacional de Energía 2011, por A. Molina.

Figura 1. Estructura del consumo final de energía en el país, año 2011

Esta alta dependencia, resultado de políticas impulsadas en el pasado cuando los precios internacionales del petróleo presentaban niveles mínimos históricos, empeora la vulnerabilidad y agrava la incertidumbre sobre la disponibilidad del suministro de la energía que el país requiere para su desarrollo sostenible.

Por esta razón, es imperativo buscar alternativas energéticas nacionales que permitan reducir el consumo de petróleo y el impacto sobre el ambiente.

Costa Rica es un país con un alto potencial y algunos logros en materia de energías alternativas limpias, y preocupantes y serios rezagos en sus patrones de uso de los hidrocarburos importados. Esto sucede en un marco en el cual el país ha adquirido compromisos importantes para la reducción y compensación de sus emisiones de GEI en un
mundo que todavía muestra una alta dependencia de fuentes energéticas agotables y contaminantes.¹

Desde una perspectiva nacional el abastecimiento y uso sostenible de la energía constituyen un problema estratégico para el desarrollo con severas implicaciones económicas, ambientales y sociales, debido a los fenómenos medioambientales ligados a las emisiones de gases resultantes de la quema de combustibles fósiles y a la alta dependencia energética que posee el país a los mismos.

El problema de la dependencia energética no solo se limita a la cantidad de recursos que se tienen que destinar actualmente a la importación de esta energía, sino que además; el mercado de los combustibles fósiles es altamente inestable. Las razones son los conflictos de carácter geopolíticos en los países productores, la alta vulnerabilidad a las leyes de oferta y demanda (volatilidad) y la conocida historia de las reservas menguantes a largo plazo.

El conjunto de estas realidades contribuyen a una tendencia alcista de los precios que perjudica en mayor medida a países en vías de desarrollo con alta dependencia energética, como Costa Rica.

En otro sentido, la propuesta de desarrollar biocombustibles, en países con alta producción biomásica como Costa Rica, no toma en cuenta solo indicadores para maximizar los resultados económicos, sino que además provee la posibilidad de impulsar zonas con problemas socioeconómicos, al representar la formación de un nuevo sector industrial para su desempeño en el ámbito local.

Adicionalmente, pese a que cada vez es más costoso tener acceso a los combustibles fósiles, los consumidores no escatiman en las cantidades utilizadas año tras año. En las figuras 2, 3 y 4 se han graficado los precios de los combustibles fósiles más empleados en el país (sector transporte) del 2006 al 2011 y los volúmenes consumidos, pudiéndose comprobar que no guardan una relación proporcional, hecho que prueba que el precio de venta no ha repercutido en la posibilidad de disminuir las cantidades de consumo.

¹ XVI Informe del Estado de la Nación, 2010.
Figura 2. Comparación entre el consumo y el precio del diesel en el periodo 2005-2011

Figura 3. Comparación entre el consumo y el precio de gasolina regular en el periodo 2005-2011
Fuente: Elaboración propia con datos de Dirección Sectorial de Energía (DSE), Memoria Estadística del Sector Energía y RECOPE, Precios e Informes de labores

Figura 4. Comparación entre el consumo y el precio de gasolina súper en el periodo 2005-2011

La proyección de consumo de los combustibles en el transporte terrestre de Costa Rica, basado en datos publicados por Recope, muestra que contrario a esperarse que en los últimos años el consumo presente descensos motivados por los altos precios, este más bien continuará aumentando, tal como se puede apreciar en la figura 5, reforzando la apremiante necesidad de contar, a la brevedad, con opciones alternativas al uso tradicional de los combustibles fósiles.

En concordancia con lo anterior, el país cada año debe destinar más divisas para la adquisición del petróleo y sus derivados, lo que afecta a la balanza comercial y el nivel de reserva del Banco Central. Por ejemplo, durante el año 2010 la empresa estatal RECOPE importó $1603,8 millones, cifra que aumentó a $2172 millones en el 2011 y que presenta la misma tendencia hacia el 2012 y demás años futuros (ver figura 6).
Figura 5. Estimaciones de demanda a mediano plazo de diesel y gasolinas para el transporte terrestre, 2013-2021

Esta situación repercute directamente sobre la economía nacional al encarecer los productos, trasladando el efecto al precio final y, a su vez, afectando la competitividad externa e interna de los productos nacionales.

En ese contexto, urge en el país una diversificación e inclinación de su matriz energética hacia fuentes alternativas, renovables y limpias, necesidad que podría en parte ser cubierta por el desarrollo de los biocombustibles.

Por esta razón; contar con un documento que estime el potencial de producción de biocombustibles de cultivos energéticos, agroenergéticos y aceites usados, a partir del cual analizar la posibilidad de sustituir determinado porcentaje de combustible fósil consumido a nivel nacional.

De comprobarse un potencial representativo, el uso de los biocombustibles podría implicar la reducción de la factura petrolera y la puesta en práctica de iniciativas de producción más limpia de energía.

En el caso de las empresas, agricultores e incluso en un nivel más individual, la investigación contribuye a ampliar el conocimiento y a aclarar un conjunto de especulaciones que han marcado el rumbo de las discusiones empleadas en todos los ámbitos de la sociedad concernientes a la temática, por lo que el proyecto representa un aporte para que puedan tomar decisiones con criterio técnico de la conveniencia de sustituir fuentes fósiles por biocombustibles.
5. Marco conceptual

5.1. Conceptos generales

Tipos de biomasa

a) Biomasa natural: Es la que produce la naturaleza sin ninguna intervención humana. La leña procedente de árboles crecidos espontáneamente en tierras no cultivadas ha sido utilizada tradicionalmente por el hombre para calentarse y cocinar. Sin embargo, este tipo de biomasa no es la más adecuada para su aprovechamiento energético masivo ya que ello podría conllevar la destrucción de los ecosistemas.

b) Biomasa residual seca: Son los residuos orgánicos que se obtienen de actividades agrícolas, forestales e industrias agroalimentarias o de transformación de la madera, con poco contenido de humedad. Tienen la característica especial, de que puede ser utilizada para la generación de energía, tanto térmica como eléctrica, por medio de su combustión.

c) Biomasa residual húmeda: Son residuos orgánicos con mayor contenido de humedad y se dividen en: Aguas residuales urbanas, residuos ganaderos y residuos industriales biodegradables. Tienen la característica especial, de que puede ser utilizada para la generación de energía, tanto térmica como mecánica, esta última empleada en la producción de electricidad y para el transporte.

d) Cultivos energéticos: Son los cultivos realizados con la finalidad de producir biomasa transformable en biocombustibles. Dentro del grupo se encuentran los cultivos puramente energéticos, aquellas especies que son cosechadas solo para generar energía (no alimentarios) y los cultivos agroalimentarios, los cuales además de producir biocombustibles, son utilizados para alimentación humana. Algunos ejemplos de cultivos energéticos son: jatropha, higuerilla o ricino, microalgas oleaginosas, el coco, la soja, palma africana, maíz, caña de azúcar, remolacha y muchos más.

Biocombustibles

Son combustibles de origen biológico que se pueden clasificar en:
a) Biocombustibles de primera generación: Son aquéllos provenientes de cultivos agrícolas que también son destinados a la alimentación humana (cultivos agroenergéticos).

b) Biocombustibles de segunda generación: Son combustibles producidos a partir de materias primas que no son fuentes alimenticias, se distinguen de los combustibles de la primera generación porque no compiten con la producción de alimentos.

c) Biocombustibles de tercera generación: Emplean métodos de producción adaptados, en cierto modo, a la transformación de la biomasa en biocombustible. Es decir, obtención de organismos vegetales con poca lignina o con celulasas. Utilizan tecnologías que todavía están en etapas de investigación y desarrollo.

d) Biocombustibles de cuarta generación: Buscan la captación y almacenamiento de carbono en los organismos que producen las materias primas que serán utilizadas en la producción de carburantes. De tal modo que se busca no sólo minimizar el impacto del uso de los carburantes, sino incluso llegar a revertir del proceso de emisión capturando más CO$_2$ que el que se llegue a emitir durante las etapas de producción y transformación.

Balance energético

Por balance energético se entiende como la relación entre la cantidad de unidades de energía que se consumen para obtener el biocombustible y la cantidad de unidades de energía que el mismo produce. Valores mayores que uno significan que la producción de un litro de biocombustible no consume más energía de la que un litro de biocombustible rinde. Al momento de realizar un análisis del ciclo completo, el combustible obtenido debe brindar una cantidad significativa de energía por sobre la que se ha gastado en su obtención.

5.2. Generalidades de los biocombustibles

En los últimos años, más que en ningún otro momento de la historia, el mundo se está enfrentando a una serie de problemas como la pobreza no resuelta, el cambio climático, la

3 Instituto Interamericano de Cooperación para la Agricultura (IICA), 2007: 19.
alimentación, la agricultura y la seguridad alimentaria, entre otros, que requieren decisiones globales y que de alguna manera marcarán el futuro.4

Los biocombustibles aparecieron como una solución para varios de estos problemas, especialmente para la reducción de gases de efecto invernadero, el desarrollo de las economías agrícolas regionales y para la independencia de la economía basada en los combustibles fósiles.5

En la segunda mitad de la década de los años 2000, el uso de los biocombustibles empezó a ser promocionado con mucha agresividad por gobiernos, empresas, organizaciones internacionales y hasta por organizaciones no gubernamentales.6

Los países y organismos comenzaron a regular el uso obligatorio de los mismos en ciertos porcentajes y a otorgar subsidios para su producción, pero debido a las incertidumbres surgidas en años más recientes en relación con la sustentabilidad asociada al ciclo de vida completo, los requisitos impuestos para lograr subsidios han empezado a ser más exigentes e incluso muchos de ellos han sido eliminados.

La OLADE considera que los biocombustibles constituyen una transición al futuro en materia energética, y que son una especie de puente entre el petróleo/gas y los energéticos renovables del mañana, como el hidrógeno/celdas combustibles.7

No obstante, deben reconocerse las posibles implicaciones medioambientales y sociales del crecimiento continuo de los biocombustibles. El aumento de la producción agrícola, en caso de apoyarse en procesos no sustentables de expansión de la frontera agropecuaria -basados en la deforestación y/o el avance de los monocultivos a gran escala- o en procesos de intensificación utilizando prácticas de la denominada agricultura convencional, provoca en general efectos negativos en la tierra, el aire, el agua y la biodiversidad.8

4 Ganduglia et al, 2009: ii.
5 Ibidem
7 Bravo, 2007: 30.
8 Ganduglia et al, 2009: ii.
En relación con lo anterior, recientes estudios han concluido que las reducciones de emisiones GEI alcanzadas al substituir combustibles fósiles por biocombustibles, especialmente biocombustibles líquidos, no son del todo claras debido a los materiales auxiliares y las entradas de energía requeridas, así como a los cambios indirectos producidos en el uso de la tierra.⁹

Otra de las grandes preocupaciones que despierta la producción de biocombustibles, es el riesgo que significa para la soberanía alimentaria el utilizar alimentos para la producción de los biocarburantes, la cual hace competir ambas funciones tanto por tierra como por precios. Las oscilaciones en los precios de mercado y las necesidades energéticas pueden provocar que los terrenos agrícolas sean empleados para producir cultivos destinados a elaborar biocarburantes, planteando el dilema futuro de tener que escoger entre lo que se come y cómo se conduce.

Aun cuando el término biocombustible se refiere a cualquier material biológico que pueda ser transformado en energía aprovechable, las principales investigaciones en esta materia han estado enfocadas en las fuentes que tienen las cualidades para sustituir directamente los combustibles derivados del petróleo: el aceite vegetal, el biodiesel y el etanol.

Aceite vegetal

Algunas personas han expresado interés en usar los aceites vegetales puros (straight vegetable oil, o SVO) o aceite usado de cocina como combustible en automotores que funcionan a base de diesel, debido a que pueden ser obtenidos de fuentes agrícolas o industriales sin necesidad de procesamiento intermedio. No obstante, el SVO y otros aceites usados en general no se consideran aceptables como combustible para uso generalizado o prolongado en vehículos,¹⁰ ya que su uso reduce la vida útil del motor debido a la acumulación de depósitos de carbono dentro del motor y la acumulación excesiva de SVO en el lubricante (conduce a su degradación por polimerización), a su vez provocados por el

alto punto de ebullición y, en mayor medida, por la alta viscosidad del SVO en comparación con el punto de ebullición y la viscosidad del combustible diesel.11

La alta viscosidad de algunos aceites vegetales también produce un desgaste prematuro de la bomba e inyectores, mientras que el alto potencial disolvente de los ésteres de alquilo promueven el taponamiento de filtros, líneas e inyectores. Aquellos aceites de viscosidad moderada, más bien ayudan a alargar la vida útil del motor.

Pese a lo anterior, en los últimos años han surgido nuevas tecnologías de modificación de motores, que han hecho viable su funcionamiento a partir del aceite vegetal puro. La modificación requerida está basada en tres sistemas básicos12:

a) Instalación de precámara para convertir un motor de combustión directa en uno de combustión indirecta: Dado que los motores de combustión directa, típicos de camiones, tractores agrícolas o motores industriales, presentan problemas con el uso de aceites vegetales, podrían convertirse en motores IDI, como los que poseen la mayoría de los automóviles, los cuales han demostrado un buen funcionamiento al quemarse parte del aceite vegetal en la precámara, para en seguida enviar el resto de combustible no quemado a la cámara principal, donde se encuentra con el aire necesario para completar la combustión.

b) Modificar la cámara de combustión de los motores de inyección directa para que las condiciones de temperatura durante el funcionamiento aseguren una total combustión de los aceites vegetales. La modificación es exhaustiva e implica conductos, filtros, inyectores y modificación de la programación de la inyección.

c) Modificación del sistema de alimentación del biocombustible: El sistema de alimentación CAV (combustible de aceite vegetal) tiene dos depósitos, uno para el aceite y otro para el diesel mineral, por lo que son llamados motores de doble depósito. Necesita un pequeño depósito adicional con gasoil, y unos elementos de calefacción del combustible en todo su recorrido, desde el depósito hasta el pistón. arranque con el gasoil y al llegar el aceite a una temperatura de 70ºC debido al funcionamiento del motor empieza a funcionar con SVO. Antes de parar el motor,

11 Ibidem
12 Universidad Politécnica de Cataluña, \textit{Estudio de la viscosidad y densidad de diferentes aceites para su uso como biocombustible}, 2010.
se abre el paso al gasoil para asegurar el limpiado del circuito e inyectores para el próximo arranque.

Un vehículo que ha sido correctamente transformado para obtener energía de aceite vegetal es reconocido por el olor similar al de una churrería que expulsa por el tubo de escape, situación que podría indisponer a los peatones ubicados cerca del vehículo.

Por esta razón es preferible utilizar otra alternativa para hacer funcionar los vehículos con aceite vegetal que consiste en modificar la estructura química del segundo con el fin de convertirlo en biodiesel. En realidad, esta opción es la que goza de mayor difusión actualmente, siendo el objetivo principal rebajar la viscosidad de los aceites vegetales hasta valores cercanos a los gasóleos de origen fósil, para poder ser usados en los motores diesel.

Además de la temperatura de ebullición y la viscosidad, existen otras propiedades que se toman en cuenta para conocer las ventajas comparativas que genera el empleo de distintas opciones de combustibles, específicamente las referidas a sustitutos del diesel (biodiesel y aceites vegetales puros).

El calor específico en MJ/L del SVO es ligeramente menor al del diesel tradicional y aproximadamente 4 unidades porcentuales mayor que el biodiesel. El mismo es una medida de la eficiencia experimentada por el combustible, en relación con la cantidad de energía obtenida por unidad de volumen, y, por lo tanto, del nivel de consumo requerido por la máquina.

La combustibilidad, dada por el número de cetanos, es una medida de la capacidad que tiene el combustible para arder y de la calidad del proceso de combustión. La misma se ve beneficiada con el uso de aceites vegetales puros, debido a su alto contenido de oxígenos y a la casi completa ausencia de sulfuros. Otras propiedades comparativas entre el diesel, biodiesel y aceite vegetal puro son mostradas en el cuadro 1:

Los ensayos con motores modificados sobre su comportamiento medioambiental indican que las emisiones de la mayoría de los contaminantes son algo menores en el caso de los SVO y el mayor aporte es brindado por la producción mínima de contaminación por CO₂. No obstante, hay una tendencia hacia emisiones iguales o ligeramente mayores de NOx y de partículas ultra finas, pero, como el azufre prácticamente no está presente en el combustible, los SVO deberían funcionar bien con sistemas de post-tratamiento de gases de escape, ofreciendo así mejoras importantes en las emisiones, en comparación con las normas actuales.14

Está en curso un estudio de elevada importancia en Alemania, para investigar estos temas en más detalle. Alemania es el país que más ha invertido en producción de aceites oleaginosos como carburantes.

Otras ventajas de la aplicación de aceites vegetales como combustibles son su benevolencia con las partes del motor, por lo que no corroen conductos o juntas y su mejor balance energético-ecológico en comparación con el biodiesel.

Los estudios realizados para determinar las propiedades y calidad que deben tener los aceites vegetales empleados como biocombustibles toman en cuenta el contenido de ácido

oleico mono-saturado, el bajo nivel de ácidos grasos saturados y el nivel aceptable de ácidos linoleicos, requisitos todos reunidos en el aceite de colza, convirtiéndolo en la fuente ideal preferida para biocombustible en Europa y otras zonas de clima frío y templado, por su amplia disponibilidad.15

Sin embargo, la calidad del aceite contenido en la semilla o fruto no es el único aspecto influyente en la calidad final del aceite. Son de igual importancia el sistema de prensado y el proceso de purificación empleados, siendo este último la separación hecha de los componentes líquidos y sólidos. Otras variantes están relacionadas con el uso de solventes, químicos y agua.16

En términos generales, todos ellos dependerán del nivel de desarrollo de la planta. Los molinos industriales o centralizados obtienen como producto un aceite totalmente refinado, gracias a su sistema de prensado en caliente y demás procesos complejos, mientras que los molinos descentralizados aplican el prensado en frío, obteniéndose un aceite crudo de menor calidad.17

Con respecto al rango de aplicación de los SVO’s corresponde al del gasoil o diesel fósil, por lo que todos los intentos investigativos en la actualidad, en relación con los aceites vegetales como combustible, están dirigidos a reemplazar las funciones hasta el momento cubiertas por el diesel.

Pese a que es un objetivo aun en desarrollo, algunos campos de aplicación ya adelantan promisorios futuros para el uso del aceite vegetal combustible. Los avances más notables han sido en el campo del transporte, donde se han propuesto distintas alternativas para aplicar el aceite puro en la combustión interna de los motores tradicionalmente operados con diesel.

Un estudio realizado por SG Biofuels y el Laboratorio Nacional de Brookhaven reveló el buen desempeño y beneficios ambientales de las mezclas de aceite de jatropha con aceite

15 Torres, \textit{El uso del aceite vegetal como combustible para motores}, 2009.
16 Agriforenergy, 2011:20.
17 Ibidem
residual en distintas proporciones para sustituir el diesel en las calderas industriales de generación de electricidad y calefacción a base de este combustible, sin necesidad de hacer modificaciones en el quemador. En las calderas para calefacción es común el funcionamiento con aceites minerales, por lo que en dicho caso, la mezcla también sirve como sustituto.

Según el estudio el aceite de Jatropha tiene una viscosidad mucho menor que otros aceites, de manera que sus mezclas no tienen que ser calentadas a temperaturas tan altas, lo cual se traduce en un ahorro generalizado de energía cuando aceite residual es mezclado con aceite de Jatropha.18

\textit{Biodiesel}

El biodiesel es un combustible de origen renovable que puede utilizarse como sustituto del diésel (ver anexo 1). De ahí que en los últimos años haya surgido como una alternativa a los combustibles de origen fósil que ha despertado gran interés entre entes y organizaciones públicas y privadas alrededor de todo el mundo.

La obtención final del biodiesel se logra mediante un proceso llamado transesterificación, donde reacciona una molécula de un triglicérido, que puede ser aceite vegetal o grasa animal, con un exceso de alcohol en la presencia de un catalizador (KOH, NaOH, NaOCH\textsubscript{3}, etc.) para producir glicerol y esteres grasos (figura 7).19

18 SG biofuels, \textit{Estudio Confirma la Viabilidad del Aceite Vegetal de Jatropha para la Generación de Energía Eléctrica y Calefacciones Industriales}, 2011.
19 Orellana, \textit{Evaluación de calidad de biodiesel elaborado con palma africana (Elaeis guineensis) y etanol}.

31
Figura 7. Proceso de obtención de biodiesel a partir de aceite vegetal y/o grasa animal

La ASTM (American Society for Testing and Materials) define el biodiesel como los ésteres monoalquílicos de cadena larga de ácidos grasos derivados de recursos renovables, como por ejemplo aceites vegetales o grasas animales, para utilizarlos en motores diesel.

Los aceites vegetales, fuente primaria utilizada para la producción de biodiesel, pueden ser extraídos de cultivos agroalimentarios, que son aquellos tradicionalmente empleados como fuente de alimento; en los últimos años también de cultivos energéticos, los cuales potencialmente se pueden cultivar en tierras marginales (es decir, que la tierra no es apta para la producción de alimentos); de algunos tipos de microalgas; entre otras fuentes de materia prima.

En el cuadro 2 se pueden observar los cultivos, con sus correspondientes rendimientos, que han sido comúnmente explorados y utilizados para la extracción de aceites vegetales a nivel mundial, no obstante, no todos cuentan con características que puedan ser aprovechadas para la producción de biodiesel.

Cuadro 2. Producción de aceite por hectárea de diferentes cultivos oleaginosos21

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>kg/ha</th>
<th>litros/ha</th>
<th>Cultivo</th>
<th>kg/ha</th>
<th>litros/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maíz</td>
<td>145</td>
<td>172</td>
<td>Sésamo</td>
<td>585</td>
<td>696</td>
</tr>
<tr>
<td>Anacardos</td>
<td>148</td>
<td>176</td>
<td>Cártamo</td>
<td>655</td>
<td>779</td>
</tr>
<tr>
<td>Avena</td>
<td>183</td>
<td>217</td>
<td>Arroz</td>
<td>696</td>
<td>828</td>
</tr>
<tr>
<td>Lupino</td>
<td>195</td>
<td>232</td>
<td>Girasol</td>
<td>800</td>
<td>952</td>
</tr>
<tr>
<td>kenaf</td>
<td>230</td>
<td>273</td>
<td>Cacao</td>
<td>863</td>
<td>1026</td>
</tr>
<tr>
<td>Caléndula</td>
<td>256</td>
<td>305</td>
<td>Maní</td>
<td>890</td>
<td>1059</td>
</tr>
<tr>
<td>Algodón</td>
<td>273</td>
<td>325</td>
<td>Colza</td>
<td>1000</td>
<td>1190</td>
</tr>
<tr>
<td>Cáñamo</td>
<td>305</td>
<td>363</td>
<td>Oliva</td>
<td>1019</td>
<td>1212</td>
</tr>
<tr>
<td>Soya</td>
<td>375</td>
<td>446</td>
<td>Castor</td>
<td>1188</td>
<td>1413</td>
</tr>
<tr>
<td>Café</td>
<td>386</td>
<td>459</td>
<td>Pecan</td>
<td>1505</td>
<td>1791</td>
</tr>
<tr>
<td>Semillas de Lino</td>
<td>402</td>
<td>478</td>
<td>Jojoba</td>
<td>1528</td>
<td>1818</td>
</tr>
<tr>
<td>Avellanas</td>
<td>405</td>
<td>482</td>
<td>Jatropha</td>
<td>1590</td>
<td>1892</td>
</tr>
<tr>
<td>euphorbia</td>
<td>440</td>
<td>524</td>
<td>Macadamia</td>
<td>1887</td>
<td>2246</td>
</tr>
<tr>
<td>Semillas de Calabaza</td>
<td>449</td>
<td>534</td>
<td>Nueces Brasileñas</td>
<td>2010</td>
<td>2392</td>
</tr>
<tr>
<td>Culantro</td>
<td>450</td>
<td>536</td>
<td>Aguacate</td>
<td>2217</td>
<td>2638</td>
</tr>
<tr>
<td>Mostaza</td>
<td>481</td>
<td>572</td>
<td>Coco</td>
<td>2260</td>
<td>2689</td>
</tr>
<tr>
<td>Camelina</td>
<td>490</td>
<td>583</td>
<td>Palma Africana</td>
<td>5000</td>
<td>5950</td>
</tr>
</tbody>
</table>

Fuente: FAO, Producción de Biodiesel a partir de JATROPHA.

El biodiesel funciona en cualquier motor diesel y puede mezclarse con diesel petrolífero. Las mezclas que han sido usadas más comúnmente son: B2 y B5, en las cuales funciona como un aditivo de combustibles derivados del petróleo y, B20 y B100. En dicha nomenclatura el carácter numérico indica el porcentaje de biocombustible presente en una mezcla de biocombustible y combustible fósil22.

Hasta la fecha, los países que han invertido en la producción comercial de biodiesel son algunos países de la Unión Europea. Entre ellos los que han alcanzado mayores rankings de producción son Alemania, Francia e Italia, y en el resto del mundo países como Estados Unidos, Argentina e incluso Brasil están en un proceso vertiginoso de incremento en sus

21 Roldán, 2009.

22 Bravo, 2007: 37.
producciones, lo cual lleva a suponer que pronto estarán por encima de los países europeos mencionados anteriormente.23

Etanol

El etanol (C_2H_5OH), también conocido como alcohol etílico, o de grano, se obtiene a partir de tres tipos de materia prima: los productos ricos en sacarosa como la caña de azúcar, la melaza y el sorgo dulce; las fuentes ricas en almidón como cereales (maíz, trigo, cebada, etc.) y tubérculos (yuca, batata, papa); y mediante la hidrólisis de los materiales ricos en celulosa como la madera y los residuos agrícolas.24

En el cuadro 3 a continuación, se enlistan las materias primas que tienen más tradición alrededor del mundo para la producción de etanol carburante, pues son estas las que mejores condiciones reúnen para cumplir con los requerimientos de combustible sustituto de la gasolina.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>l/ha/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorgo</td>
<td>444725</td>
</tr>
<tr>
<td>Remolacha</td>
<td>6000</td>
</tr>
<tr>
<td>Maíz</td>
<td>3703</td>
</tr>
<tr>
<td>Caña de azúcar</td>
<td>520026</td>
</tr>
<tr>
<td>Yuca</td>
<td>540027</td>
</tr>
<tr>
<td>Trigo</td>
<td>87728</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con documentos varios

El etanol posee un alto octanaje y una mayor solubilidad en gasolina que el metanol. El etanol se utiliza como aditivo para oxigenar la gasolina, lo cual ayuda a producir una combustión mejorada y más limpia.29

28 Universidad Pontificia Comillas, *Biomasa*.
Algunas de las mezclas más comunes de etanol con gasolina que se utilizan en países como Canadá, Estados Unidos y Brasil son:30

- E5: Mezcla de gasolina súper sin plomo, con 5\% de etanol anhidro (el que tiene 99,5\% de hidratación).
- Gasohol (E10): 90\% de gasolina súper sin plomo y 10\% de etanol anhidro por volumen.
- E85: Contiene 85\% de etanol anhidro y 15\% de gasolina súper sin plomo por volumen.
- E100: Etanol anhidro 100\%.

A nivel mundial, el primer país que adoptó el alcohol como combustible fue Brasil. Sin embargo, actualmente el principal productor de etanol es Los Estados Unidos de Amérrica.31

6. Metodología

La metodología empleada para cumplir con los objetivos de la investigación fue de tipo cuantitativa descriptiva. En primera instancia la investigación dio inicio con una exhaustiva revisión de material bibliográfico para realizar el estado del arte del desarrollo de las fuentes de energía biomásicas.

El mismo permitió orientar la investigación hacia el estudio de los biocombustibles líquidos, tanto en el ámbito internacional como nacional, en el orden respectivo.

Por su parte, la etapa de la investigación que se centralizó en estimar el potencial de producción de biocombustibles en Costa Rica estuvo basada en la realización de entrevistas y consultas vía electrónica a expertos institucionales o académicos, cuya información fue sistematizada para obtener los principales resultados del trabajo. La figura 8 esquematiza en forma general algunas de las fuentes de información que se consultaron.

29Ibidem
30Bravo, 2007: 34.
31Alternative Fuels Data Center (www.afdc.energy.gov).
Entre los métodos implementados para sistematizar la información destacan: la creación de una matriz de evaluación de las materias primas para la producción de biodiesel, la determinación de disponibilidad de tierras o materia prima, la valoración de las características (del mercado, técnicas, económicas y ambientales) de las materias primas para la producción de etanol y la selección de escenarios para la evaluación del potencial en un corto plazo.

Los procesos indicados finalmente permitieron determinar las posibilidades que tiene el país en materia de implementación de biocombustibles.

A su vez, éstas fueron la base para determinar las consecuencias implicadas en la cantidad de gases GEI emitidos por el sector transporte y en la factura petrolera cancelada cada año por importación de diesel y gasolina, en conjunción con el manejo de factores de emisión, estadísticas de importación de combustibles y proyecciones de demanda al 2021.
Figura 8. Fuentes de información consultadas en la investigación

7. Resultados

7.1. Antecedentes de la producción de biocombustibles para el transporte en Costa Rica

Los altos precios del petróleo del momento, debido a la gran Crisis Internacional de los Energéticos ocurrida en el año 1979, hicieron que el gobierno de Costa Rica impulsara un
programa de uso de gasohol. Según Chaves, el programa operó durante diecinueve meses entre abril de 1981 y noviembre de 1982.32

Este programa permitió vender en 1981 más de 2000 m3 de gasolina con una mezcla de 20% de etanol y en 1982 superar los 13.000 m3 con la misma mezcla. Sin embargo, el programa fue clausurado en 1983 y se eliminó el uso de la mezcla.

A criterio de Chaves, el Programa Nacional de Alcohol Carburante fracasó en su momento por las siguientes razones: ser opcional y no obligatorio, existencia de infraestructura deficiente (hidratación) principalmente en las gasolineras, inseguridad sobre los efectos ocasionados sobre los vehículos, tecnología de modificación y ajuste de motores aparentemente poco desarrollada y por último una fuerte campaña en contra, promovida por los grupos de interés.33

Sin embargo, otras de las causas por las que se abandonó el uso de etanol en las gasolinas fue en descenso en los precios internacionales del petróleo y sus derivados que se presentó mediados y fines de la década de los ochenta y que disminuyó la competitividad del etanol como combustible.

El año 2002 el Gobierno de la República procura nuevamente incorporar el etanol a las gasolinas debido tanto al incremento en el precio del petróleo que se presentó a principios de esa década como a aspectos ambientales.

Después de un largo periodo de análisis, estudio, valoración y discusión de la necesidad, el potencial y la viabilidad de impulsar esa alternativa energética en el país, se dispuso comercializar, a partir del 1º de enero del 2005, todas las gasolinas mezcladas con etanol anhidro, destilado nacionalmente y producido con materias primas locales, en las proporciones de mezcla fijadas con el Poder Ejecutivo y sin embargo, la única acción concreta que se estableció fue la venta pública de etanol anhidro a partir del 10 de febrero

33Chávez, 2006: 2.
del 2006, utilizando una mezcla del 4,6%34 adicionada a la gasolina regular en la Terminal de Distribución en Barranca, que representa el 12% de las ventas nacionales.

Este plan piloto buscaba evaluar la logística del manejo del etanol anhidro y su mezcla con la gasolina, desde el mezclado en RECOPE hasta el punto de venta en las estaciones de servicio, venta a granel, grado de confianza del cliente y del consumidor final.35 A pesar de que los resultados fueron satisfactorios, a la fecha aún no se ha logrado incorporar etanol nacional en las gasolinas.

En lo que al uso de biodiesel respecta, el Plan Nacional de Desarrollo 2006-2010 (PND), se establecieron una serie de acciones para impulsar el desarrollo de los biocombustibles en Costa Rica para lo cual en febrero de 2008 se emitió el plan conocido como Programa Nacional de Biocombustibles (PNB) cuyos objetivos fueron:36

- Sustituir en forma progresiva los combustibles fósiles importados, por otras fuentes de energía renovable de origen nacional.
- Propiciar el desarrollo social en zonas de alta vulnerabilidad a partir del desarrollo del sector biocombustibles.
- Reactivar el sector agrícola a partir de cultivos de productos agroenergéticos para uso de combustibles.
- Desarrollar una industria de biocombustibles, competitiva y eficiente.
- Contribuir a la disminución de gases de efecto invernadero como acción de mitigación del cambio climático.

Para ello planteó un escenario base de introducción de mezclas de biocombustibles, el cual puede ser apreciado en el cuadro 4, caracterizado por una inserción modesta, la cual permitiera al parque automotor adaptarse al cambio de las cualidades del combustible, y por estar acorde con las capacidades de producción agrícola e industrial que posee el país.37

34El Financiero, Programa de biocombustibles en la picota, 2012.
35MAG-MINAE, Programa Nacional de Biocombustibles, 2008.
36MAG-MINAE, Programa Nacional de Biocombustibles, 2008.
37Ibidem
Pese a la intencionalidad con que fue creado el Programa Nacional de Biocombustibles a la fecha, no se ha logrado iniciar la distribución de diésel con el porcentaje de mezcla de biodiesel establecido en el PNB.

<table>
<thead>
<tr>
<th>Año</th>
<th>Porcentaje de mezcla Biodiesel</th>
<th>Porcentaje de mezcla Etanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>5,0-10,0</td>
<td>7,5-10,0</td>
</tr>
<tr>
<td>2009</td>
<td>10,0-15,0</td>
<td>10,0</td>
</tr>
<tr>
<td>2010</td>
<td>15,0-20,0</td>
<td>10,0</td>
</tr>
<tr>
<td>2011</td>
<td>15,0-20,0</td>
<td>10,0</td>
</tr>
<tr>
<td>2012 en adelante</td>
<td>15,0-20,0</td>
<td>10,0</td>
</tr>
</tbody>
</table>

Fuente: Programa Nacional de Biocombustibles, 2008

Por su parte, el 17 de marzo de 2009, es emitido, por Decreto Ejecutivo Nº 35091 MAG, el Reglamento de Biocombustibles, el cual pretendió cumplir con el primer objetivo del Plan Nacional de Desarrollo del Ex presidente Arias.

El mismo fue creado con el objetivo de propiciar el desarrollo de una industria nacional de biocombustibles y un régimen equitativo de relaciones entre los actores o los agentes de la actividad de biocombustibles, que garantice el desarrollo sostenible de la cadena de valor del sector energético nacional el cual incluye la producción, el transporte, el almacenamiento, la distribución, y la comercialización tanto mayorista como de detalle.

Algunos considerandos sobresalientes para efectuar la promulgación, que se dejan ver en el Reglamento de biocombustibles son:

1. El país cuenta con capacidad instalada, experiencia y tierras con potencial agrícola para la producción de biocombustibles, sin detrimento de las áreas destinadas a la producción con propósitos alimentarios, lo que en su conjunto facilita la sustitución parcial de los combustibles fósiles por biocombustibles.

38 Astorga, Roldán et al., 2011: 17.
39 República de Costa Rica, Decreto Nº 35091-MAG-MINAET del 09/01/09
40 Ibidem
2. Las Comisiones Nacionales de Etanol y Biodiesel creadas por el Poder Ejecutivo mediante los Decretos Ejecutivos Nº 31087 MAG-MINAE y 31818-MAG-MINAE, respectivamente, rindieron informes de gran utilidad, sobre aspectos que debían considerarse para la definición de una política agro-energética que comprenda el uso de biocombustibles.

3. La Comisión Nacional de Biocombustibles, creada por el Poder Ejecutivo mediante el Decreto Ejecutivo Nº 33357-MAG-MINAE, analizó los resultados de las referidas Comisiones Nacionales de Etanol y Biodiesel, concluyendo que es necesario para los intereses del país y resulta factible desde un punto de vista técnico, la ejecución de un Programa Nacional de Biocombustibles en Costa Rica.

4. Como parte de dichos informes se recomendaron acciones de corto y mediano plazo, que incluyen disposiciones reglamentarias dentro del marco legal vigente, que aunque limitadas, permitirán iniciar la implementación del Programa Nacional de Biocombustibles.

Posteriormente, en el Plan Nacional de Desarrollo 2011-2014, se estableció la meta de implementar el Programa Nacional de Biocombustibles. Según este, MINAET pretende incentivar la utilización de gas y biocombustibles, con el objetivo de sustituir en 5% el combustible fósil en la flotilla vehicular y transporte público.\(^{41}\)

De acuerdo con el Plan, uno de los objetivos más importantes del país, y en particular de la administración 2010-2014, es convertirse en una economía baja en emisiones de Gases con Efecto Invernadero (en ruta hacia la carbono neutralidad, como meta nacional al 2021).

Para ello el MINAET identificó los sectores productivos que más emisiones de CO\(_2\) generan, con el fin de promover la definición e implementación de estrategias, destacando que transporte es el sector prioritario en la iniciación de labores para mitigar las emisiones de gases.

A pesar de las intenciones e innumerables iniciativas surgidas, a la fecha no ha sido producida una sola gota de biocombustibles bajo un programa gubernamental ni

tampoco es posible encontrar un plan actualizado de mezclas que permita iniciar con la implementación.

7.2. Principales fuentes biomásicas de producción energética investigadas mundialmente

7.2.1. Biogás

El biogás, es producido a partir de la biofermentación anaerobia de la materia orgánica y se ha convertido en los últimos años en una de las alternativas más atractivas para dar solución a parte de la demanda energética de los países de todo el mundo haciendo uso de fuentes de energía renovables.42

La fermentación anaerobia es un proceso es un proceso biológico en el que la materia orgánica, en ausencia de oxígeno, y mediante la acción de un grupo de bacterias específicas, se descompone en productos gaseosos o “biogás” y en digestato, que es una mezcla de productos minerales (N, P, K, Ca, etc.) y compuestos de difícil degradación.

Una ventaja adicional consiste en que su aprovechamiento impide que el metano se libere a la atmósfera, ya que es varias veces más contaminante que el CO2 que se produce por quemar el biogás.

Un ejemplo de producción a mayor escala de biogás son los rellenos sanitarios, una propuesta no muy novedosa pero que ha empezado a tener mayor acogida en los distintos municipios. Tradicionalmente los desechos sólidos urbanos han tenido como destino insalubres tiraderos de basura, pero con el sistema de rellenos sanitarios el gas metano puede ser capturado en celdas impermeabilizadas, para luego ser conducido a grandes plantas de biogás con capacidad de generación de hasta 16.96 kilowatts de energía eléctrica, como la planta de biogás de Monterrey en México.43

42 IDEA, 2002, citado por Contreras en artículo de revista Producción de biogás con fines energéticos. De lo histórico a lo estratégico.
43 Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Tipos de biocombustibles, 2011.
La digestión anaeróbica también es un proceso adecuado para el tratamiento de aguas de alta carga orgánica, como las producidas en muchas industrias alimentarias.

Otras fuentes de materia prima que han resultado de gran interés para producir biogás son:

- La broza del café
- Sebos
- Lodos flotantes
- Broza del café + glicerina (del biodiesel)
- Paja
- Mezclas de distintos tipos de residuos (para alcanzar mayor rentabilidad)

En el Informe de Capacidad de Energías Limpias Disponibles en Costa Rica, publicado en el 2012, se presentan los resultados de la contabilización de los principales residuos biomásicos producidos por las actividades agropecuarias durante el año al 2011. De estos se desprende que Costa Rica consume únicamente 13 TJ de la totalidad del biogás producido, dejando a disposición, para un mayor aprovechamiento energético, alrededor de 5595 TJ, como resultado de las actividades agropecuarias realizadas dentro del territorio.\[44\]

La biometanización de la materia orgánica se produce a través de una serie de transformaciones bioquímicas que pueden ser separadas en cuatro etapas metabólicas, actuando en cada una de ellas un grupo diferente de bacterias anaerobias facultativas o estrictas, que dan lugar a la aparición de productos característicos en cada fase, según se recoge en la figura 9.

Figura 9. Proceso de degradación anaeróbica para la producción de biogás

Estas poblaciones se caracterizan por estar compuestas por seres de diferentes velocidades de crecimiento y diferente sensibilidad a cada compuesto intermedio como inhibidor (por ejemplo, H₂, ácido acético o amoníaco producido de la acidogénesis de aminoácidos). Esto implica que cada etapa presentará diferentes velocidades de reacción según la composición del substrato y que el desarrollo estable del proceso global requerirá de un equilibrio que
evite la acumulación de compuestos intermedios inhibidores o la acumulación de ácidos grasos volátiles (AGV), que podría producir una bajada del pH.

Lo anterior implica que las puestas en marcha de los reactores sean, en general, lentas, requiriendo tiempos que pueden ser del orden de meses. La velocidad del proceso está limitada por la velocidad de la etapa más lenta, la cual depende de la composición de cada residuo.

La digestión anaerobia de biomasa puede generar biogás a razón de unos 300 l/kg de materia seca, con un valor calórico de unos 5.500 kcal/m3. El poder calorífico está determinado por la concentración de metano, pudiéndose aumentar ésta, eliminando todo o parte del CO₂ que le acompaña. La composición de biogás es variable, pero está formado principalmente por metano (55-65%) y CO₂ (35-45%); y, en menor proporción, por nitrógeno, (0-3%), hidrógeno (0-1%), oxígeno (0-1%) y sulfuro de hidrógeno (trazas).⁴⁵

![Diagrama de barras](image)

Fuente: Elaboración propia.

Figura 10. Compuestos constituyentes del biogás

En un país como Costa Rica, con una estructura productiva eminentemente agrícola, la producción de biogás para generar electricidad de forma descentralizada puede constituir

⁴⁵ Energías renovables, Energías renovables para todos: biomasa.
una excelente solución para dar respuesta a las crecientes demandas energéticas, con una mayor seguridad en el servicio eléctrico, disminución de las pérdidas por transmisión de la energía, disminución del impacto ambiental de la generación energética y una mayor rentabilidad para las empresas que operan estas plantas, a la vez que concuerda con los planes actuales del gobierno de ubicar grupos electrógenos de forma descentralizada en el país para aumentar la seguridad energética.

Sin embargo existen una serie de factores que afectan la producción de biogás en el país, así como deficiencias y debilidades que no permiten un desarrollo mantenido y sostenible de tecnologías para la producción de biogás con fines energéticos. Problemas similares se han constatado en China, América Latina y Europa, en el caso de China, expertos consideran que los factores económicos han afectado en gran medida la popularización del biogás, principalmente por la alta inversión inicial que conlleva la tecnología.46

7.2.2. Cultivos energéticos forestales

Por ser una fuente de producción de energía con bajo porcentaje de humedad, se ubica dentro del grupo de materias primas cuyo sistema de aprovechamiento emplea procesos termoquímicos, y que a su vez se encuentra compuesto de forma dominante por biomasa residual seca.

Los cultivos leñosos para la obtención de biomasa con fines energéticos consisten en plantaciones o siembras de especies con determinadas características, como son la rapidez de crecimiento y la capacidad de rebrote después de la corta, con el objeto de producir una mayor cantidad de biomasa por unidad de superficie y tiempo.47

Uno de los mayores atractivos de la biomasa de cultivos forestales es la capacidad que posee para secuestrar carbono. Esto por varios motivos:

46 Contreras, Producción de biogás con fines energéticos. De lo histórico a lo estratégico, 2006.
1. En calidad de plantaciones reforestadoras, cumplen la función de sumideros de carbono a través de los árboles y arbustos en proceso de crecimiento que de otra forma no harían posible la captura de importantes cantidades de carbono antropogénico.

2. Actúa como sustituto de los combustibles.

3. Al contar con especies de rápido crecimiento y, por lo tanto, de ciclo corto, la eficiencia en la captura de carbono se muestra siempre en los límites óptimos.

Los cultivos madereros con fines energéticos, también llamados plantaciones dendroenergéticas, pueden ser cosechados en periodos de rotación que van entre los 3 y los 5 años de edad, hasta por 30 años\(^{48}\) y tener la capacidad de secuestrar de 4.5 a 8 toneladas de carbono por hectárea por año, como sucede con el sauce, muy empleado en los Estados Unidos.\(^{49}\)

También pueden ser sembrados con densidades que están entre 1000 y 310000 árboles/ha, dependiendo de la especie, la cosecha, la edad de rotación y otros aspectos y, producir rendimientos ubicados en rangos que van de 5 a 20 Ton/ha/año de biomasa o de 10 a 30 m3/ha/año de madera. Criterios emitidos al respecto señalan que Costa Rica cuenta con las condiciones para superar dichos rendimientos.\(^{50}\)

A manera de ejemplo, se presenta en el cuadro 5 un resumen de los resultados de producción biomásica de una plantación de eucalipto clonal, dedicada a la generación de energía eléctrica en Itamarandiba, MG, a la edad de 24 meses.

| Cuadro 5. Peso de Biomasa Seca (ton/ha) con diferentes espaciamientos |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Tratamiento | Peso de materia seca (ton/ha) | % Biomasa total |
| | Copa | Fuste | Total | Copa | Fuste | |
| | Madera | Cortez | | Madera | Cortez | |
| 3.0x0.5 | 12.2 | 42 | 6.2 | 60.4 | 20.10% | 69.60% | 10.30% |
| 3.0x1.0 | 10.2 | 35.7 | 5.3 | 51.2 | 19.90% | 69.80% | 10.30% |
| 3.0x1.5 | 8.7 | 29.8 | 4.5 | 43.1 | 20.30% | 69.20% | 10.50% |

\(^{49}\) Bennick, Holway, Juers & Surpreant, 2008: 6.

\(^{50}\)
Siempre en el uso del eucalipto clonal para alimentar la generación eléctrica, el cuadro 6 es la representación de los rendimientos biomásicos del cuadro 5 y los correspondientes rendimientos calóricos, por lo que destaca la cantidad de hectáreas de la especie en cuestión que deben ser sembradas a la hora de querer producir determinada cantidad de energía eléctrica. De acuerdo con la información, se requieren entre 600-1000 has para alimentar una planta de 10 MW.

Cuadro 6. Área de cultivo forestal energético requerida para producir electricidad

<table>
<thead>
<tr>
<th>Densidades</th>
<th>Planta 1 MW</th>
<th>Planta 5 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ton biomasa</td>
<td>Hectáreas</td>
</tr>
<tr>
<td>3 x 0,5</td>
<td>2356</td>
<td>64</td>
</tr>
<tr>
<td>3 x 1</td>
<td>2330</td>
<td>67</td>
</tr>
<tr>
<td>3 x 1,5</td>
<td>2507</td>
<td>82</td>
</tr>
<tr>
<td>3 x 2</td>
<td>2219</td>
<td>75</td>
</tr>
<tr>
<td>3 x 3</td>
<td>2412</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Arias, Cultivos lignocelulósicos como fuente de energía renovable: Tendencias mundiales y oportunidades para Costa Rica.

De conformidad con un estudio del Centro de Inteligencia sobre Mercados Sostenibles (CIMS), del INCAE, existe en Costa Rica alta disponibilidad de biomasas, como el aserrín y la burucha de madera, las cuales sirven como materia prima en la generación de vapor y calor, pero aún no existe el desarrollo tecnológico que permita un aprovechamiento rentable.

En las condiciones edafoclimáticas del territorio costarricense, como especies energéticas arbóreas y arbustivas destacan: Melina, Teca, Acacia, Madero negro, Leucaena, Arundo donax, Pennisetum, Gynerium, Phragmites, por mencionar solo algunos ejemplares de un recuento que incluye muchas otras especies más.
En términos generales, una alusión a los beneficios obtenidos del manejo sostenible de biomasa forestal con fines energéticos debe incluir:

- Oportunidades de mercado para los reforestadores (pequeños y medianos).
- Suministro de bioenergía renovable y sostenible.
- Existencia de una cadena de procesamiento bien desarrollada.
- Oferta durante todo el año.
- Inventario con larga “vida útil”.
- Superior rendimiento energético entre todas las demás fuentes de biomasa.
- Tecnología limpia.
- Aumentan los reservorios de carbono no atmosférico.

Como ya ha sido dicho, Costa Rica posee grandes posibilidades energéticas en la explotación del potencial que encierran los recursos forestales, por razones como la abundancia de bosques secundarios (> 700.000 has) sin concepto de manejo y de tierras degradadas y elevaciones medias (> 1 millón has), así como los avances experimentados en materia genético con la obtención de clones e incluso la alta disponibilidad de biomasa de residuos de la industria maderera.

No obstante, es un tema que impone desafíos para su desarrollo, especialmente relacionados con el alto costo por unidad calórica producida, lo que ha obligado la búsqueda de modelos de aprovechamiento como el autoabastecimiento o cogeneración en las industrias altamente demandantes de energía (cementerias, ingenios, beneficios, vidrio, ladrilleras), donde ya existe la tecnología industrial y el diseño de logística para el aprovechamiento económico de las mismas.

Aun así, si los productores desean efectuar la venta de los excedentes de energía eléctrica, las bandas tarifarias, impuestas por la estatal reguladora de los precios de servicios públicos a la cogeneración, son marginales.

Es por ello que se debe seguir trabajando en la creación de soluciones tecnológicas para el uso múltiple de lignocelulósicos (pellets, carbón, astillas, aglomerados) y en la ampliación de las políticas energética y forestal a una visión de largo plazo y adaptada a las técnicas disponibles y en desarrollo.
7.2.3. **Biocombustibles líquidos**

Para el aprovechamiento de la energía solar almacenada en los cultivos, por medio de la conversión a biocombustibles líquidos, lo más significativo es evaluar una variedad de características de índole edafoclimática, fisiológica, gametogénica y económica, las cuales son las responsables de indicar el potencial de las distintas especies de cultivos para la producción y uso sostenible de biocombustibles a escala industrial.

Estas características han sido utilizadas para describir los cultivos que han cobrado más fuerza a nivel internacional, y son presentadas, de manera resumida, en el cuadro a continuación.
<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Caña de azúcar</th>
<th>Maíz</th>
<th>Remolacha</th>
<th>Palma africana</th>
<th>Colza</th>
<th>Tempate</th>
<th>Higuerilla</th>
<th>Microalgas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento del cultivo (Ton/ha/año)</td>
<td>40-80</td>
<td>3,6</td>
<td>30-40</td>
<td>19<sup>51</sup></td>
<td>3<sup>52</sup></td>
<td>7,5-10</td>
<td>1,5</td>
<td>14-255</td>
</tr>
<tr>
<td>Eficiencia de la conversión (l/ton)</td>
<td>85</td>
<td>396</td>
<td>98</td>
<td>401</td>
<td>418</td>
<td>380</td>
<td>412</td>
<td>40%-45% del peso seco<sup>53</sup></td>
</tr>
<tr>
<td>Rendimiento de conversión (l/ha)</td>
<td>3400-6800<sup>54</sup></td>
<td>1425,6<sup>55</sup></td>
<td>3920-7500<sup>56</sup></td>
<td>4010-12030<sup>57</sup></td>
<td>1254</td>
<td>190-4560</td>
<td>412-618</td>
<td>20000</td>
</tr>
</tbody>
</table>

⁵¹ Oilgae, Comprehensive Oilgae Report – Preview.
⁵² Ibidem
⁵³ Guerrero, Integrated System of Micro Algae Production
⁵⁴ BNDES, CGEE, FAO y CEPAL, 2008: 5.
⁵⁵ Bouille, Bravo, Nadal & Pistonesi, 2008: 22.
⁵⁶ Ibidem
⁵⁷ Ibidem
<table>
<thead>
<tr>
<th>Costo de producción del combustible (USD/l)</th>
<th>0,35-0,40</th>
<th>0,68</th>
<th>0,70</th>
<th>0,23-0,31</th>
<th>1,15</th>
<th>0,83-0,86</th>
<th>1,2</th>
<th>2,8*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo de oportunidad</td>
<td>Muy alto</td>
<td>Muy alto</td>
<td>Alto</td>
<td>Muy alto</td>
<td>Medio-alto</td>
<td>Bajo</td>
<td>Alto</td>
<td>Bajo</td>
</tr>
<tr>
<td>Tipo de suelo</td>
<td>Casi cualquiera (francos, profundos bien drenados)</td>
<td>Texturas medias (profundos, planos, m.o., bien drenados)</td>
<td>Variables (Franco arenoso, franco arcilloso, m.o.)</td>
<td>Profundos, sueltos, buen drenaje</td>
<td>Variables (Buen drenaje, preferible profundos)</td>
<td>Marginales</td>
<td>Casi cualquiera (buen drenaje)</td>
<td>Fotobioreactores</td>
</tr>
<tr>
<td>Tipo de clima</td>
<td>Caliente (tropical y subtropical)</td>
<td>Cálido (exposición alta al sol)</td>
<td>Templado</td>
<td>Tropical</td>
<td>Templado</td>
<td>Tropical y ecuatorial principalmente</td>
<td>Clima seco en fructificación y maduración</td>
<td>Cualquiera</td>
</tr>
<tr>
<td>Balance energético</td>
<td>2-8,3</td>
<td>1,3-1,7</td>
<td>1,2-2,2</td>
<td>8,6-9,6</td>
<td>1,2-3,7</td>
<td>8,3**</td>
<td>3,2**</td>
<td>1,8-2,4***</td>
</tr>
</tbody>
</table>

*Aceite recuperado de la biomasa de menor costo cultivada en fotobioreactores
**A partir del segundo año el balance energético del tempate y la higuerilla mejoran a 42,71 y 28,92 respectivamente.
***Tiene un amplio rango de variación que depende del método de cultivo y de extracción utilizado.

Fuente: Elaboración propia con información de documentos varios

58 FAO, Análisis de costos de producción de biocombustible en Perú: Una dimensión social.
59 Ibidem
60 NETAFIM, Requerimientos de Suelo de la Caña de Azúcar.
En el corto plazo, todo hace suponer que la mayor parte de los biocombustibles líquidos serán obtenidos de cultivos de primera generación específicos como la palma africana, la colza, maíz, soja o caña de azúcar, lo que implica extremar los cuidados acerca del modo en que estos cultivos se realizan.

Formas menos tradicionales de producción de biocombustibles líquidos han venido siendo investigadas en épocas más recientes, con mayor intensidad por los países líderes en innovación y tecnología alrededor del mundo, generadas entorno a la premisa de aumentar la eficiencia de producción de biocombustibles a partir de materias objeto de fermentación.

- **Etanol lignocelulósico**: Los tres tipos de tecnologías de producción de etanol incluyen procesos de fermentación de materias primas comestibles dulces, como la caña de azúcar o la remolacha azucarera, procesos de hidrólisis enzimática de materias primas amiláceas ricas en almidón, como el maíz o la yuca y por último procesos de hidrólisis ácida o enzimática de materiales lignocelulósicos. Dichas materias primas se caracterizan por tener una composición química rica en carbohidratos.

En virtud de la enorme polémica a nivel mundial sobre un posible desabastecimiento de alimentos, derivado de la producción masiva de biocombustibles, se ha intensificado, en los últimos años, la investigación sobre los procesos industriales necesarios para poder convertir la biomasa residual o productos no alimentarios cultivados en tierras marginales (biomasa celulósica), en bioetanol más limpio y más sostenible que el obtenido hasta el momento.

Además, con excepción de la caña, las tecnologías disponibles comercialmente en la actualidad para la producción de bioetanol por medio del almidón y de azúcares, como en el caso del maíz y de la remolacha, dan por resultado ganancias energéticas y ambientales bastante reducidas. Por otro lado, estas materias primas presentan una ventaja económica limitada y encuentran, en general, mercados alternativos más remuneradores, como alimentos o insumos para otros fines.
Al producto obtenido de este nuevo método se le denomina etanol celulósico, con la gran ventaja de que pueden obtenerse azúcares de prácticamente cualquier elemento vegetal: tallos de granos, aserrín, astillas de madera, plantas nativas perennes crecidas en tierras marginales. Los residuos de la producción industrial de azúcar como el bagazo, son bien valorados para producir etanol celulósico.

Al respecto, vale la pena destacar la puesta en marcha de proyectos piloto en distintos países, con mayor fuerza en Europa y Estados Unidos, y aunque esta naciente tecnología no está disponible comercialmente, es conveniente considerarla dentro del abanico de posibilidades futuras dada la vocación agroindustrial del país y las expectativas existentes de que pueda alcanzar viabilidad económica en los próximos años.\(^{61}\)

- **Biobutanol**: Es un alcohol que se obtiene mediante el proceso de fermentación de azúcares desde inicios del siglo XX y posee múltiples aplicaciones como solvente químico industrial. A partir de mediados del mismo siglo, su producción cayó debido a una mayor factibilidad técnica y económica para ser obtenido en la industria petroquímica, es decir, partiendo del uso de materia prima fósil; no obstante, esta sería una realidad que vendría a cambiar drásticamente cuatro décadas más tarde.

El incremento en los precios del petróleo que empezó a suscitarse desde la década de los noventas, a raíz del agotamiento de los pozos de extracción y los nocivos GEI (gases de efecto invernadero) emitidos por los combustibles fósiles, despertaron más que nunca el interés por generar butanol de origen natural, esta vez con un objetivo mucho más ambicioso que el de producir solventes químicos: sustituir la gasolina de origen fósil empleada en los medios de transporte.

Entre distintas alternativas de combustible líquido, el biobutanol ofrece grandes promesas, debido a que las propiedades que posee lo hacen asimilarse en gran medida a la gasolina, junto con sus demás ventajas agregadas.

De acuerdo con el Profesor Hans Blaschek, director del Centro para la Investigación Avanzada de Biorrefinería en la Universidad de Illinois, el biobutanol produce menos gases de efecto invernadero que la gasolina convencional, y puede ser mezclado con gasolina o inyectado puro en máquinas de combustión interna, aunque este es un rubro aun no garantizado por las compañías automovilísticas. En Estados Unidos la reglamentación autoriza mezclas con biobutanol de hasta un 16%, en contraste con el 10% permitido para el bioetanol.

El biobutanol hace uso de las mismas materias primas que el bioetanol para su producción: caña de azúcar, granos de maíz, trigo, celulosa, algas y hasta residuos orgánicos domésticos e industriales. Todas ellas presentan elevadas concentraciones de materiales lignocelulósicos aprovechables mediante estas nuevas tecnologías.

Observadores y expertos apuntan que el biobutanol supera muchos de los problemas asociados con el uso del bioetanol como un combustible para el transporte. El butanol tiene más alto peso molecular que el etanol, menor presión de vapor y solubilidad en el agua y, aún más relevante, una mayor densidad de energía.

La baja presión de vapor y baja solubilidad del agua se traducen en una mayor facilidad para hacer mezclas con gasolina que el etanol. Además es menos corrosivo que el etanol, por lo que puede ser más fácilmente transportado en oleoductos y usado en motores de vehículos en concentraciones más altas que el bioetanol, sin la necesidad de realizar extensas modificaciones.

Es un combustible 20% más eficiente que el etanol, mientras este genera solamente alrededor de tres cuartas partes de la energía que produce la gasolina convencional, el biobutanol podría producir hasta 95%. El etanol es más fácil de producir, sólo que no es más fácil de usar, el butanol no tiene esas mismas restricciones, realmente se le puede comparar con la gasolina.

63 http://www.butamax.com/
64 NextFuel, Biobutanol: La próxima estrella de los biocombustibles, 2010.
65 Ibidem
En Estados Unidos se ha empezado a producir biobutanol utilizando materia lignocelulósica, partes de árboles que de otra manera se desecharían y lo están haciendo las mismas empresas procesadoras de celulosa que venden la pulpa a las compañías de papel. En esta labor también se está aprovechando la madera que se habría quedado en el suelo del bosque como no usable para los leñadores.66

No obstante, existen grandes obstáculos que superar, todavía no está claro si el bio-butanol puede competir en costo con el petróleo o con sustitutos como el etanol sin subsidios del Gobierno.

Distintas compañías en Estados Unidos, Europa, Brasil, China y Japón mantienen una fuerte disputa en investigación por alcanzar la viabilidad de producción a escala comercial y se espera que en un par de años las primeras productoras ya estén en condiciones óptimas de desarrollo para abastecer los demandantes mercados.

Con el uso de nuevas cepas de bacterias, sustratos de bajo costo y diseños de reactores superiores, el potencial económico del proceso de fermentación se ha vuelto altamente atractivo. Los esfuerzos de investigación en la ciencia, ingeniería y economía de la fermentación han hecho que el biobutanol esté cada vez más cerca de ser comercializado como un combustible líquido alternativo.

7.3. Fuentes de producción más promisorias para el desarrollo de los biocombustibles líquidos en Costa Rica

La información que se presenta a continuación está centrada en la exploración del potencial de producción de biocombustibles que se encuentra en determinadas materias primas halladas dentro del territorio costarricense y para su análisis se ha considerado conveniente clasificarlas de acuerdo con el tipo de biocombustible que es posible obtener a partir de cada uno de ellas.

66 Federación Nacional de Biocombustibles de Colombia, Fabricantes pulpa EEUU, pioneros de nuevo biocombustible
7.3.1. Biodiesel

Estudios realizados en el medio internacional han destacado el potencial del subcontinente Latinoamericano, como el más importante de todas las regiones del globo terrestre, por dos razones principales: disponibilidad de tierras y condiciones edafoclimáticas.

Costa Rica, como pequeño bloque constituyente del gran bloque latinoamericano, no escapa a esta realidad, argumento que automáticamente lo convierte en un territorio con amplias posibilidades para incursionar en la producción de biocombustibles, no sin antes abarcar el estudio de condiciones estrictamente asociadas al desarrollo de fuentes biomásicas para la producción de energía.

Además, al ser un país de alta vocación agrícola, la economía continúa estando basada en la agricultura, cuyo significado para el impulso del biodiesel se puede hallar en la amplia experiencia alcanzada por el país, por lo que la planificación y seguimiento de los proyectos deberían resultar mucho más sencillos que si no se contara con esta característica.

Respecto de la producción de biodiesel en el país, se conocen tres empresas que contribuyen activamente a la industria: Energías Biodegradables S.A., Biodiesel H & M y CoopeVictoria, cuyas producciones son sostenidas a partir del uso de los aceites vegetales usados y grasas animales (en menor medida).

A parte de estas tres empresas de biodiesel que han alcanzado hacerse un lugar estable dentro del mercado de los combustibles, existe una serie de empresas adicionales que no han logrado, hasta el momento, un despegue exitoso de ventas, pero que, en caso de emprenderse, definitivamente, en Costa Rica la marcha hacia el uso de sustitutos de combustibles en el transporte, representarían un aporte considerable dentro del potencial nacional de producción de biodiesel.

Dieselloverde S. A. cuenta con una planta de 3,4 m3/día, y las empresas Compañía Coto 54 S. A. y Quivel poseen instalaciones con una capacidad de producción de 95,4 m3/día.67

67 Astorga, Roldán et al., 2011: 90.
Adicionalmente, la empresa española Biodiesel de Andalucía (Bida) tiene interés en instalar una planta de biodiesel, que estaría en capacidad de producir 364 m3/día.68

7.3.1.1. Palma africana

La palma africana (\textit{Elais guineensis}) fue introducida en la franja ecuatorial del continente americano desde Guinea Occidental después del descubrimiento ya que es una especie adaptable a zonas tropicales, con temperaturas cálidas.

La disponibilidad de agua es de mucha importancia desde la germinación de la semilla hasta la cosecha de los racimos pues de lo contrario el crecimiento y la producción de aceite pueden resultar seriamente afectados. El requerimiento de agua oscila entre 1 800 y 2 200 milímetros distribuidos anualmente. La temperatura, con una media de 28°C se considera óptima para los procesos fotosintético, respiratorio y de crecimiento de la planta.69

De todos los cultivos agrícolas con los que se ha experimentado para generar biodiesel es el que tiene mejor balance energético, es decir, mayor cantidad de unidades retornadas de energía por cada unidad de energía no renovable usada.70

De acuerdo con un informe del investigador Ricardo Asturias, presentado en el Tercer Foro Regional de Bioenergía realizado en San Salvador, los frutos de palma africana cosechados en una hectárea tienen el potencial para producir doce veces más biodiesel que la soya o tres veces más que el tempate o higuero.71

También son ventajas del biodiesel hecho con aceite de palma el bajo consumo de combustibles fósiles usados para la producción, la mayor eficiencia en el motor en relación

69 Figueroa, 2008: 84.
70 Instituto Interamericano de Cooperación para la Agricultura (IICA), 2007: 19.
71 Instituto Interamericano de Cooperación para la Agricultura, \textit{Crecen interés por producción de biodiesel con palma africana en América Central}.
con otras importantes fuentes primarias como la colza canola y el alto número de cetano muy cercano al del diesel de petróleo.\footnote{La Fabril S.A., \textit{Biodiesel: Una perspectiva empresarial.}}

El biodiesel de aceite de palma tiene un alto contenido de ácidos grasos saturados que afectan las propiedades de comportamiento a baja temperatura del biocombustible, sin embargo, debido a su estructura saturada, parámetros como la estabilidad oxidativa se ven mejorados haciendo de este biodiesel, un producto menos susceptible a la degradación por oxígeno en condiciones de almacenamiento prolongado.

En relación con los rendimientos de producción por hectárea sembrada en distintos países, Costa Rica ocupó el primer lugar en el mundo en el año 2010 (cuadro 8), con una extracción de 4,2 toneladas de aceite por hectárea, siendo un importante indicador del potencial que existe en el país para producir biodiesel de manera ventajosa.

Debido a lo anterior y a la amplia experiencia nacional en la producción de palma aceitera y procesamiento para la extracción del aceite de palma, es la materia prima que ofrece, de momento, mejores posibilidades para la producción de biodiesel a nivel nacional,\footnote{Astorga, 2011: 4.} y a nivel centroamericano en general, donde ya se han comenzado a dar los primeros pasos para establecer esa agroindustria.

<table>
<thead>
<tr>
<th>País</th>
<th>Rendimiento del cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costa Rica</td>
<td>4,2</td>
</tr>
<tr>
<td>Malasia</td>
<td>4,1</td>
</tr>
<tr>
<td>Papúa N. Guinea</td>
<td>3,9</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3,8</td>
</tr>
<tr>
<td>Colombia</td>
<td>3,0</td>
</tr>
<tr>
<td>Honduras</td>
<td>2,7</td>
</tr>
<tr>
<td>Camerún</td>
<td>2,6</td>
</tr>
<tr>
<td>Tailandia</td>
<td>2,5</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2,1</td>
</tr>
</tbody>
</table>

\footnote{Cuadro 8. Productividad promedio de aceite de palma por país, en t/ha/año en 2010}
<table>
<thead>
<tr>
<th>Otros países</th>
<th>1,9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecuador</td>
<td>1,6</td>
</tr>
<tr>
<td>Costa de Marfil</td>
<td>1,3</td>
</tr>
<tr>
<td>Todo el mundo</td>
<td>3,6</td>
</tr>
</tbody>
</table>

Fuente: OilWorld

Una consultoría realizada en Costa Rica por el Ing. Carlos Roldán para FAO en la cual se hace “Análisis de precios de indiferencia y prefectibilidad técnico-económica del Biodiesel a partir de Palma Aceitera”, en su momento encontró que era posible sustituir por completo el consumo de diesel sembrando alrededor de 200 mil hectáreas adicionales de palma africana.74

Por su parte, el estudio realizado por la estudiante de Maestría en Química de la Universidad de Costa Rica, Guiselle Lutz Cruz, para conocer las posibilidades del país de producir biodiesel de palma africana, concluyó que el biocombustible obtenido del fruto es igual de eficiente que algunos derivados del petróleo y que además de sus características como combustible, presenta buena calidad como material lubricante, fluido de transmisión de energía mecánica y disolvente, capaz de reemplazar al aguarrás, la acetona, el polietileno y otras sustancias tóxicas.75

Un aspecto sobresaliente probado en la investigación, al graficar la variación de la viscosidad absoluta con la temperatura, es el valor de la energía de activación de flujo viscoso (15 ± 2 kJ/mol). Este valor resultó ser menor que el correspondiente a los aceites de algodón, girasol, colza, palma, soya, higuerilla, biodiesel de soya, biodiesel de higuerilla, y tres veces menor que el de los aceites de motor. Ello significa que la viscosidad del biodiesel de palma varía menos al cambiar la temperatura, lo cual refleja su estabilidad y buena calidad como lubricante.

Productos derivados del aceite de palma que pueden representar un aumento del costo de oportunidad para producir biodiesel son jabones y detergentes, productos alimenticios, derivados grasos y oleoquímicos, debido a que se tratan de vías industriales fuertemente consolidadas y con salidas comerciales bien remuneradas, de manera que el ingreso

74 Roldán, 2007:1.
percibido por emplear el aceite de palma en los productos mencionados es mayor que si se utilizara para producir biodiesel.

Desde el punto de vista medioambiental, el uso de aceite de palma para la generación de biodiesel, provoca una gran controversia debido a la paradoja que surge al destruirse millones de hectáreas de bosque, con el supuesto de obtener un combustible más amigable con el ambiente. La anterior es la historia de los países del sudeste de Asia, principales comercializadores del biodiesel de aceite de palma.

Indonesia es el principal productor mundial de palma aceitera y también el país con la mayor tasa de deforestación del planeta. Según datos de Greenpeace, la destrucción de bosques y turberas tropicales de Indonesia representan el 4% de la emisión de gases de efecto invernadero globales.

Miguel Ángel Soto, responsable de la campaña de bosques y clima de la organización, considera que se están destruyendo los bosques, drenando turberas y se está emitiendo metano para que Europa reduzca sus emisiones en un porcentaje muy bajo, lo que no da al traste con los objetivos reales del uso de biocombustibles, uno de los cuales es contribuir a la reversión de los efectos causados por el cambio climático. En su criterio, lo que hay que procurar es que el biodiesel no provenga de zonas deforestadas.

Costa Rica es uno de los países que más amplia experiencia ha desarrollado a lo largo de todo el subcontinente latinoamericano en el cultivo de la palma aceitera. Fue introducido en 1944 y la primera planta extractora de aceite fue construida en Damas (Aguirre) en el año 1950. Para 1951 Costa Rica ya contaba con 3 926 ha de palma, siendo tal la diseminación del cultivo que en la actualidad existen 60 000 hectáreas sembradas con la oleaginosa.

Los aceites vegetales son todos “commodities”, sustitutos entre sí, con producción, disponibilidad y demanda mundial, que poseen un rango de precios internacionales. Sin embargo, la competitividad del costo es el secreto del crecimiento rápido del aceite de

76 NextFuel, Biodiesel, aceite de palma y polémica por la destrucción de bosques en Indonesia.
77 Ministerio de Agricultura y Ganadería (MAG), Cultivo e industria de la palma aceitera.
78 Cámara Nacional de Productores de Palma (CANAPALMA), Gráficos Área y Producción.
palma a nivel mundial, gracias a su alta productividad, alrededor de 10 veces mayor que la de gran parte de los otros cultivos oleaginosos. En Costa Rica la productividad promedio es de 17.5 toneladas métricas de fruta/ha/año, aproximadamente 4 300 l/ha/año de ACP (aceite crudo de palma), misma que se ha mantenido en los últimos años.79

Es ésta alta competitividad del aceite de palma lo que a su vez ha limitado las posibilidades de destinar parte de la producción local de ACP a la creación de un nuevo componente en la matriz energética, específicamente el biodiesel.

Aproximadamente el 60% de la producción nacional de aceite crudo de palma se exporta y el resto es utilizado en la fabricación industrial de margarinas, mantecas, grasas para la cocina y de muchos otros productos para la alimentación humana.

La producción de suministros para la alimentación humana, como se mencionó anteriormente, se trata de una vía industrial que permite obtener mayores ganancias, por lo que la industria palmera de Costa Rica no estaría en disponibilidad de cambiar la aplicación que se le ha venido dando por décadas al aceite de palma, por un uso energético, a la fecha, incapaz de generar igual rentabilidad.

Además que de concretarse la posibilidad, se emplazaría una fuerte competencia entre el sector alimentario y el sector energético por la consecución de insumos para sostener ambas necesidades, temática que ha sido el mayor argumento, en el entorno mundial, para oponerse a la producción de los biocombustibles.

En el caso de retener el excedente de la producción de ACP y utilizarlo en una potencial industria de biocombustibles, nuevamente se entra en un conflicto atribuido a la alta competitividad internacional del aceite de palma en el mercado de las oleaginosas (es uno de los productos agrícolas que genera más divisas al país, superado solo por el banano, la piña y el café), pues los precios internacionales de referencia ponen en ventaja el mercado

79 Cámara Nacional de Productores de Palma (CANAPALMA), Cultivo Palma Aceitera.
internacional, sobre el mercado nacional, que no ofrece mayores retornos económicos que los que debe realizar por la importación del diesel al país.

Como se muestra en el cuadro 9 y figura 11, el precio internacional del aceite crudo de palma, en los últimos años, con excepción del 2006, ha superado el monto desembolsado por el Estado en cada barril de diesel que importa desde otros países para su consumo en el transporte y la industria, de modo que en la actualidad no es conveniente desde un punto de vista económico, utilizar las exportaciones de aceite de palma para la producción de biodiesel.

Cuadro 9. Comparación entre el precio internacional del aceite crudo de palma (CIF Rotterdam) y el precio del diesel importado

<table>
<thead>
<tr>
<th>Año</th>
<th>Precio aceite de palma (USD/TM)</th>
<th>Precio aceite de palma (USD/bbl)*</th>
<th>Precio diesel importado (USD/bbl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>416,81</td>
<td>60,44</td>
<td>76,88</td>
</tr>
<tr>
<td>2007</td>
<td>719,12</td>
<td>104,27</td>
<td>85,58</td>
</tr>
<tr>
<td>2008</td>
<td>862,92</td>
<td>125,12</td>
<td>123,61</td>
</tr>
<tr>
<td>2009</td>
<td>644,07</td>
<td>93,39</td>
<td>70,53</td>
</tr>
<tr>
<td>2010</td>
<td>859,94</td>
<td>124,69</td>
<td>92,04</td>
</tr>
<tr>
<td>2011</td>
<td>1.076,50</td>
<td>156,09</td>
<td>126,27</td>
</tr>
</tbody>
</table>

*Considérese para la conversión de TM a bbl que la densidad de la palma es igual a 0,91 TM/m³ a 23°C

Fuente: Elaboración propia con datos de Comercio Internacional, RECOPE; indexmundi y CEPAL, Centroamérica: Estadísticas de hidrocarburos, 2011.
Figura 11. Comparación entre el precio internacional del aceite crudo de palma (CIF Rotterdam) y el precio del diesel importado

Es por esta razón, que las iniciativas nacidas desde años atrás para producir biodiesel de palma aceitera, pese a los desarrollos del país en el cultivo, no han logrado perseverar, pues está demostrado que para tener acceso a la materia prima se debe crear una industria de palma aceitera independiente a la establecida, incentivada y controlada por el Estado, la cual se encargue de procesar directamente la fruta del cultivo.

7.3.1.1.1. Costo de producción

El análisis técnico-económico para la obtención de biodiesel a partir de aceite de palma (2007), elaborado en el marco de la conformación de la Comisión Técnica del Biodiesel y patrocinado por la FAO, incluye un ejercicio en el cual se evalúa la posibilidad de contar con plantaciones dedicadas a la producción de biodiesel, por lo que se determinó el costo económico del biodiesel partiendo de la productividad entregada por 200 mil hectáreas sembradas de palma africana.

Estas 200 mil hectáreas estarían distribuidas por igual en dos regiones, Los Chiles y Limón, mismas que servirían de ubicación para las dos plantas industriales de biodiesel, con una capacidad de producción de 3 millones 20 mil barriles de biodiesel por año cada una. El
conjunto del biodiesel elaborado en las plantas podría llegar a cubrir un porcentaje cercano al 62% del consumo total de diesel en el transporte esperado para el 2013.

Consideraciones del análisis de costo de producción:

1. El estudio fue realizado a un nivel de prefactibilidad. Por ello los resultados obtenidos podrían presentar un margen de error de +/- 30%, lo que motivó que se incluyera un 10% del monto de la inversión como imprevistos.
2. La preparación de las mezclas del biodiesel y el diesel se produciría enviando el B-100 al Plantel Barranca de RECOPE con el fin de redistribuirlo.
3. Una hectárea está en capacidad de producir hasta 18,6 tm de fruta de palma por año, la cual a su vez, permite obtener 0,225 kg de aceite/kg de fruta.
4. Debido a que los costos de operación y de inversión son más bajos en el caso de la catálisis heterogénea, se seleccionó esta tecnología para determinar el precio de equilibrio.
5. En el cuadro 10 se hallan los costos de operación y el precio de equilibrio del biodiesel. Este último ha considerado los costos de inversión y los créditos por concepto de certificados asociados a la captación de CO2 y de la venta de glicerina residual.
6. En el caso de la glicerina, existen dudas sobre la existencia de un mercado real para este producto en el sector de los cosméticos, debido a que el mercado nacional ya está siendo cubierto. Por esta razón se calculó el precio de equilibrio considerando la venta de la glicerina con base en el precio internacional del fuel oil.
7. Dado que las plantas extractoras producen sus propias necesidades eléctricas utilizando desechos del proceso de extracción como lo son la fibra del mesocarpio y la cascarilla del coquito, se han considerado únicamente los costos marginales del vapor y la electricidad.
8. El precio de equilibrio del biodiesel corresponde al valor que garantiza la obtención de una tasa interna de retorno del 15%.
Cuadro 10. Cálculo del costo de producción de biodiesel de palma (USD/BED)

<table>
<thead>
<tr>
<th>Plantas</th>
<th>Los Chiles</th>
<th>Limón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos fijos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal (40% cargas sociales)</td>
<td>50.5,000,00</td>
<td>50.5,000,00</td>
</tr>
<tr>
<td>4 (Operadores)</td>
<td>266,000,00</td>
<td>266,000,00</td>
</tr>
<tr>
<td>12 (Técnicos de Mantenimiento)</td>
<td>357,500,00</td>
<td>357,500,00</td>
</tr>
<tr>
<td>Desecho de Planta</td>
<td>1,200,000,00</td>
<td>1,200,000,00</td>
</tr>
<tr>
<td>Impuestos</td>
<td>20% del costo del personal</td>
<td>28.80</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>20% del costo de la planta por año</td>
<td>1,574.14</td>
</tr>
<tr>
<td>Desgaste</td>
<td>5% costo de eq. y tanques + 2% de edf</td>
<td>4,226.85</td>
</tr>
<tr>
<td>Total</td>
<td>1,070.01</td>
<td>1,070.01</td>
</tr>
</tbody>
</table>

Costos variables		
Reducidos (15% precio de mercado)	141,000,00	262,260,00
Nutrición	492,000,00	5,571,76
Electricidad	0,02	1,915,97
H2O	0,00	0,00
Uso de proceso	0,00	0,00
Vapores	4,50	6,746,97
Diesel en cabina	0,04	0,00
Uso de extracción	1,00	2,421,93
Carbón	2,421,93	2,421,93

Costo total		
660 USD/mundo	2,268,235	2,268,235
USD/mundo biodiesel	623,10	623,10
USD/BED	266,00	266,00

Credenciales		
Mercado cosmético	-22,699,00	-22,699,00
Comun combustible	-8,879,00	-8,879,00
0 USD/mundo	0,00	0,00

Credenciales totales		
Mercado cosmético	-22,699,00	-22,699,00
Comun combustible	-8,879,00	-8,879,00

Costo total neto		
Mercado cosmético	250,731	246,515
Comun combustible	283,542	259,372
Mercado cosmético	396,31	388,20
Comun combustible	626,78	616,75
Glicerina a mercado cosmético	10,49	9,96
Glicerina como combustible	93,11	93,11
Distancia a Planteles de distribución	km	300,00
Costo del transporte del biodiesel	USD/t biodiesel	16,05

Precio de equilibrio del biodiesel		
Glicerina com o combustible	706,85	672,98
USD/mundo biodiesel	107,26	102,12

Fuente: Roldán, Análisis de precios de indiferencia y prefactibilidad técnico-económica del Biodiesel a partir de Palma Aceitera.

La diferencia en el precio de equilibrio del barril equivalente de diesel entre la planta de Limón y la de Los Chiles, está marcada por las distancias que deben ser recorridas para
trasladar el producto de uno y otro lugar hasta el plantel de Barranca. Sin embargo, se puede deducir, del promedio entre los dos, que en comparación con el precio del diesel fósil (a la fecha ubicado en 640 colones ó $1,26 el litro), resulta muy competitivo, con un valor de $0,7 el litro equivalente de diesel.

7.3.1.2. Jatropha

La Jatropha es un arbusto silvestre ampliamente difuminado en América Latina, pero la producción sistemática de plantas que den rendimientos óptimos requiere que sea llevado a cabo un seguimiento cuidadoso de los cultivos.

En el siguiente (cuadro 11) se presentan algunos datos generales y relevantes de la Jatropha y su potencial para la generación de biodiesel.

<table>
<thead>
<tr>
<th>Cuadro 11. Algunos datos generales y relevantes de la Jatropha y su potencial para la producción de biodiesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre: La Jatropha es un arbusto cuyo nombre científico es Jatropha curcas (Euphorbiace)</td>
</tr>
<tr>
<td>Característica económica: Produce un fruto cuyas semillas poseen un 40% de aceite.</td>
</tr>
<tr>
<td>Origen y desarrollo: Es originaria de Centroamérica y fue propagada por los portugueses hacia otros continentes como África y Asia.</td>
</tr>
<tr>
<td>Ventajas de su cultivo: Su cultivo tiene bajo requerimiento de agua (1/10 de la recomendada para palma africana). Debido a que el aceite obtenido de sus semillas posee sustancias tóxicas, su producción no compite con la producción de alimentos. Dado su bajo requerimiento de nutrientes, se plantea como una opción agrícola para el aprovechamiento de suelos áridos o pocos productivos.</td>
</tr>
<tr>
<td>Desarrollo actual: En la actualidad existen aproximadamente 940 mil hectáreas sembradas alrededor del mundo y se estima que para el año 2015, el área sembrada llegará a 12,8 millones de hectáreas.</td>
</tr>
</tbody>
</table>
Capacidad para producir aceite

Se encuentra entre los seis cultivos que producen mayor cantidad de litros por hectárea y representa el tipo de planta no alimenticia que permite obtener mayor producción.

<table>
<thead>
<tr>
<th>Producción de semilla</th>
<th>1.590 Kg / Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producción de aceite</td>
<td>1892 litros / Ha</td>
</tr>
</tbody>
</table>

Producción de biodiésel

El proceso de producción de biodiésel es similar al que se utiliza con otras semillas como el algodón y la soya; a excepción que para aprovechar la torta de las semillas como alimento animal es necesario someterla a un proceso de desintoxicación que consiste en una cocción prolongada con el fin de desactivar las lectinas. La torta puede ser empleada también como abono orgánico o como sustrato para producción de hongos.

Fuente: Astorga, 2011:11

El cultivo de Jatropha curcas puede desarrollarse en suelos de baja capacidad agrícola, incluso degradados, con insuficiente drenaje, incluso con alta pedregosidad, con la ventaja adicional de que con los años favorece la restauración y la calidad del suelo.

No se requiere arado del terreno, solamente una pequeña excavación donde se coloca la planta. De esta manera, los impactos ambientales que se producen son limitados y no difieren o son menores, que los impactos ambientales comunes que se producen con otro tipo de cultivos.

Pese a que la Jatropha puede desarrollarse en suelos de baja capacidad agrícola, sin mayores insumos, esta circunstancia se refleja en la producción de semillas, que por lo general también va a ser baja. De esta manera, al igual que otros cultivos agroalimentarios, se puede aplicar insumos agrícolas a la planta para aumentar su producción.

Esto es particularmente significativo cuando la Jatropha se ha sembrado de forma combinada con otros cultivos agroalimentarios. No obstante, cuando se ha sembrado en terrenos de aptitud forestal, para recuperar terrenos degradados, es altamente recomendable que su cultivo sea de tipo orgánico.
Algunas especies de Jatropha se caracterizan por ser tóxicas, lo que les da una significativa resistencia a plagas y evita el uso de plaguicidas para su cultivo, con lo cual se da una ventaja desde el punto de vista ambiental.

Para el cuidado de la planta de Jatropha no se requieren técnicas y prácticas especializadas, ni tampoco una capacitación particular a los responsables de su manejo. Este aspecto es importante, dado que los agricultores no requieren de conocimientos especializados para implementar el cultivo.

El enfoque de la producción de biodiésel a partir de la Jatropha, requiere que se haga un análisis integral del ciclo de vida para establecer su potencial, es decir que integre todo el proceso.

El aceite de jatropha, tiene un mayor contenido de ácidos grasos insaturados, frente a otros aceites, que permite obtener un biodiesel con mejor comportamiento en condiciones de baja temperatura, pero que a su vez provoca que sea menos estable y se degrade más rápidamente que el biodiesel de aceites de cadenas menos insaturadas.\(^{80}\)

Además de sus propiedades energéticas, otras aplicaciones incluyen: como materia prima para fabricar látex, lubricantes domésticos, jabón, barnices, acondicionador y colorante para el cabello, repelentes, pesticidas naturales y se ha encontrado que una las aplicaciones que puede resultar más importante es como diluyente.\(^{81}\)

No obstante, algunos expertos recuerdan que no todo son ventajas y reconocen que no hay milagros en el cultivo de esta planta.

En Costa Rica y el mundo entero, el mayor problema que se tiene con la obtención de biodiesel a partir del aceite de la *Jatropha curcas* es que, durante siglos, ha sido un cultivo silvestre y a la fecha no existen suficientes plantaciones consolidadas que permitan evaluar su rendimiento y la efectividad de las diferentes técnicas agrícolas aplicadas.

Por eso, el primer paso que se requiere abordar es reunir información básica sobre el comportamiento del germoplasma adaptado a las condiciones de nuestro país y su manejo.

\(^{80}\) Cantor, Rodríguez & Sierra, 2010:77.

\(^{81}\) Instituto para el Desarrollo de Energías Alternativas de Costa Rica, *¿Por qué cultivar la Jatropha curcas?*
agronómico, para luego identificar las localidades donde estos cultivos muestren el mayor potencial genético, a través de la evaluación de estudios de costos, y, finalmente, llevar a cabo el desarrollo de plantaciones.

En Costa Rica, desde hace aproximadamente cuatro años, empezaron a surgir iniciativas para probar el comportamiento y rendimiento del cultivo en distintos sectores, con una característica en común: el uso de tierras marginales o desgastadas ubicadas en lugares como Guanacaste, Puriscal, Pérez Zeledón y el Pacífico Sur.

Al 2009, gracias al paulatino involucramiento del sector privado en el desarrollo y manejo de los cultivos energéticos, se tenían aproximadamente 350 hectáreas de tempate sembradas, las cuales podrían catalogarse como el inicio de la fase de experimentación del cultivo.82

Por otro lado, uno de los primeros estudios realizados en el país para estimar el potencial de producción de biodiesel de Jatropha (2009), destacó la conveniencia, para la obtención de cantidades significativas de aceite, de emplear terrenos ubicados en las zonas áridas del norte de Liberia, Guanacaste, conformado por cerca de 15 mil hectáreas.

Otra posibilidad que podría valorarse consiste en el aprovechamiento del tempate como linderos de campos agrícolas o ganaderos, e incluso en función de cultivos intermedios, como parte de sistemas de producción de cultivos alimenticios intercalados por cultivos energéticos. De esa manera se puede sacar provecho a los terrenos, en el tanto las plantas de Jatropha no hayan alcanzado la madurez de su productividad.

Según la literatura, el tempate presenta un mayor rendimiento por hectárea en relación con el aceite que puede producirse de la higuera, el otro cultivo que se ha empezado a usar en plantaciones experimentales por tener la propiedad de no competir con la alimentación; sin embargo, hay posiciones encontradas al respecto, precisamente debido a la falta de experiencia que sigue imperando en la aplicación de los cultivos de segunda generación como energéticos.

Lo que con seguridad un gran número de expertos se atreve a afirmar es que si los productores son capaces de darse cuenta de las capacidades de producción óptima del cultivo de Jatropha, el pago a largo plazo puede ser significativamente remunerativo, al tomar en cuenta que es una planta cuya producción de semillas se extiende hasta por 50 años.

7.3.1.2.1. Costo de producción
Una de las investigaciones más importantes que han sido llevadas a cabo en Costa Rica sobre el cultivo y producción de biodiesel de Jatropha Curcas es la protagonizada por el grupo de trabajo que conforman investigadores de la Universidad Nacional, El Instituto Tecnológico de Costa Rica, la Universidad Nacional y el Convenio MAG-UCR (mediante la Estación Experimental Agrícola Fabio Baudrit Moreno). El seguimiento de un proyecto que inició en el 2009 con el establecimiento de plantaciones de Jatropha en cinco regiones de Costa Rica, ha recogido distintos frutos, entre los que se encuentran la creación de parámetros de rentabilidad para la obtención de semillas de Jatropha para producir biodiesel a nivel local (ver cuadro 12).

Estos parámetros surgieron con base en los costos implicados en la plantación que ha mostrado los mejores resultados, ubicada en Los Chiles de Alajuela, por lo que se consideró un modelo de siembra con densidad de 2x3 m (1666 plantas/ha), en el cual se mantengan 30 ramas por árbol entre el segundo y el quinto año, con un consecuente rendimiento de 1870,2 litros de aceite por hectárea por año.

A partir del quinto año, se podría esperar que la planta tenga un mayor porte y mantenga más de 30 ramas, sin embargo es algo que no se puede asegurar, debido a que en Costa Rica ninguna de las plantaciones con las que se ha empezado a experimentar supera los 4 años.

<table>
<thead>
<tr>
<th>Cuadro 12. Parámetros de rentabilidad para el establecimiento de plantaciones de Jatropha Curcas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
</tr>
<tr>
<td>Inversión inicial</td>
</tr>
</tbody>
</table>

71
Mantenimiento

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Requerimientos</th>
<th>Costo ($/ha/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primera fertilización foliar</td>
<td>Un hombre (8 h x ₡1050/h)</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Fertiplant (₡2706/l)</td>
<td>2706</td>
</tr>
<tr>
<td>Primera Fertilización granulada</td>
<td>Un hombre (8 h x ₡1050/h)</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Fertilizante 12-24-12 (3 sacos x ₡13775)</td>
<td>41325</td>
</tr>
<tr>
<td>Primera aplicación contra ácaros</td>
<td>Un hombre (8 h x ₡1050/h)</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Acaramix (₡5874/100 cc)</td>
<td>5874</td>
</tr>
<tr>
<td>Primera aplicación contra taladrador</td>
<td>0,1 cc de Monarca inyectado al tronco (₡16710/500 cc)</td>
<td>3342</td>
</tr>
<tr>
<td>Primer control malezas</td>
<td>Un hombre (8 h x ₡1050/h)</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Herbicida Rondoup (1/2 l/estañón)</td>
<td>1348</td>
</tr>
<tr>
<td>Rodajea</td>
<td>Un hombre (46 h x ₡1050/h)</td>
<td>48300</td>
</tr>
<tr>
<td>Primera poda</td>
<td>Un hombre (16 h x ₡1050/h)</td>
<td>16800</td>
</tr>
<tr>
<td>Segunda fertilización foliar</td>
<td>Un hombre (8 h x ₡1050/h)</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Fertiplant (₡2706/l)</td>
<td>2706</td>
</tr>
<tr>
<td>Segunda fertilización granulada</td>
<td>Un hombre (8 h x ₡1050/h)</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Fertilizante 12-24-12 (3 sacos x ₡13775)</td>
<td>40191</td>
</tr>
<tr>
<td>Segunda aplicación contra ácaros</td>
<td>Un hombre (8 h x ₡1050/h)</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Vertimec (₡8860/100 cc/estañón)</td>
<td>8860</td>
</tr>
<tr>
<td>2da, 3ra, 4ta, 5ta chapia (cada dos meses)</td>
<td>Un hombre (4 x 8 h x ₡1050/h)</td>
<td>33600</td>
</tr>
<tr>
<td>2da, 3ra, 4ta, 5ta rodajea (cada dos meses)</td>
<td>Un hombre (4 x 46 h x ₡1050/h)</td>
<td>193200</td>
</tr>
<tr>
<td>Segunda poda</td>
<td>Un hombre (16 h x ₡1050/h)</td>
<td>16800</td>
</tr>
<tr>
<td>Recolecta de la cosecha</td>
<td>65 qq x 50 h x ₡1050/h</td>
<td>52500</td>
</tr>
<tr>
<td>Total ($/ha/año)</td>
<td></td>
<td>526352</td>
</tr>
<tr>
<td>Total ($/ha/año)*</td>
<td></td>
<td>1038,17</td>
</tr>
</tbody>
</table>

*Conversión realizada con base en el tipo de cambio venta del 18 de febrero de 2013

Fuente: Elaboración propia con datos de Guía Técnica para el establecimiento y producción de Jatropha Curcas (tempate) en Costa Rica

A través de la información que se desprende del recuadro se pudo conocer el costo anual correspondiente al mantenimiento de cada hectárea de la plantación. No obstante, para fines prácticos es conveniente trasladar el costo anual por hectárea de cultivo dentro del costo por
tonelada de biodiesel, para lo cual se partió de la premisa que de un litro de aceite se obtiene un litro de biodiesel y se procedió de la siguiente manera:

\[
\frac{\$}{\text{Ton}_{\text{biodiesel}}} = \frac{\$}{\text{ha}} \times \left(\frac{l}{\text{ha}}\right)^{-1} \times \left(\frac{kg}{l}\right)^{-1} \times \text{factor de conversión}
\]

\[
\frac{\$}{\text{Ton}_{\text{biodiesel}}} = 630,8
\]

Es decir que se requiere invertir en el cultivo $630,8 por cada tonelada de biodiesel producido.

En lo que a la producción del biodiesel respecta, se tomará como referencia la información generada por el estudio de consultaría denominado *Producción de biodiesel a partir de Jatropha*, realizado por la FAO en el año 2009.

En él se consideró que los cultivos de Jatropha estarían ubicados en las zonas áridas que se encuentran al norte de Liberia (debido a que es en esta zona en donde existen suelos cuyo uso en producción de alimentos se ha visto limitado debido a sus características) y se definieron los factores económicos involucrados en la instalación y operación de una planta con capacidad para producir 75 toneladas de biodiesel al día, lo suficiente para cubrir un 2% de la demanda de consumo esperada en el transporte para el 2013.

La producción de biodiesel a partir de Jatropha no se ha desarrollado comercialmente a un punto tal que sea posible obtener costos reales de producción e inversión, por esta razón el estudio económico que se presenta para la extracción del aceite y producción del biodiesel está basado en los procesos que utilizan aceite de palma.

La inversión total requerida es de aproximadamente US$ 23,5 millones, sin embargo el estudio aclara que es un estimado cuyo error podría ubicarse en el rango de +/- 30%.

Posteriormente, el cuadro 13 muestra que el costo de extraer el aceite, producir el biodiesel y transportarlo hasta el plantel de Barranca de RECOPE es de US$ 47,1 por barril equivalente de diesel, el cual permite recuperar el capital invertido en la planta de extracción y producción de biodiesel con una rentabilidad del 15%. El mismo ha
considerado, además, los créditos debido a la venta de la glicerina obtenida como subproducto del proceso de producción del biodiesel.

Una vez calculados los costos de cada uno de los procesos necesarios para producir biodiesel, se procederá a realizar la fusión de los mismos, de modo que se pueda conocer el precio de equilibrio final por unidad volumétrica, tomando en consideración un margen de ganancia del 15% para el productor de semilla y que la producción diaria establecida son 75 toneladas biodiesel o 27375 toneladas anuales.

Vale la pena aclarar que el costo de inversión de la plantación será distribuido a lo largo del primer año de productividad del cultivo, es decir, del segundo año de haberse realizado la plantación, cuando es posible recoger la cosecha y empezar el proceso en planta, de manera que el cálculo del precio de equilibrio final lleva implícito el retorno de la inversión, cuya amortiguación será efectiva al cabo del primer año de productividad. Por ello es de esperarse que el precio de equilibrio del biodiesel resultante sea menor luego de este primer año, cuando la inversión en la plantación ya haya sido pagada.
Cuadro 13. Cálculo del costo de producción

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>LIBERIA 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIBERIA</td>
</tr>
<tr>
<td>Costos fijos</td>
<td></td>
</tr>
<tr>
<td>Personal (45% nóminas salariales)</td>
<td></td>
</tr>
<tr>
<td>4 Supervisor</td>
<td>600 600,00</td>
</tr>
<tr>
<td>12 Operadores</td>
<td>258 000,00</td>
</tr>
<tr>
<td>12 técnicos de Mantenimiento</td>
<td>387 600,00</td>
</tr>
<tr>
<td>Dependencia de Planta</td>
<td>1 200 000,00</td>
</tr>
<tr>
<td>Imprescindibles</td>
<td>45,65</td>
</tr>
<tr>
<td>Equipo</td>
<td>74,32</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>92,80</td>
</tr>
<tr>
<td>Depreciación</td>
<td>26,16</td>
</tr>
<tr>
<td>Seguros</td>
<td>339,18</td>
</tr>
<tr>
<td></td>
<td>1,22</td>
</tr>
<tr>
<td></td>
<td>254,54</td>
</tr>
<tr>
<td>Costo fijo total</td>
<td>585,53</td>
</tr>
<tr>
<td>Costo variable total</td>
<td>1 617</td>
</tr>
<tr>
<td>Costo total</td>
<td>2 202</td>
</tr>
</tbody>
</table>

CREDITOS

| Glicerina: | Mercado oeméticos | 000 U Sílbaño | 1 121,7 |
| Fertilizantes | Como combustible | 000 U Sílbaño | -476,6 |

CREDITOS TOTALES

| Mercado oeméticos | 000 U Sílbaño | 1 121,7 |
| Como combustible | 000 U Sílbaño | -476,6 |

Costo total neto de producción

Distancia a Planta Barranca	km	200,00
Costo del transporte del biodiesel	000 U Sílbaño	10,77
Precio de equilibrio del biodiesel (1)	000 U Sílbaño	22,06

(1) Considera la venta de la glicerina como combustible

Fuente: Roldán, Producción de biodiesel a partir de aceite de Jatropha.
Cuadro 14. Precio de equilibrio final por barril equivalente de diesel (BED)

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo total primer año de productividad</th>
<th>Costo total en los años siguientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión en plantaciones (16634 ha/27375 ton anuales)</td>
<td>27279760.00</td>
<td>...</td>
</tr>
<tr>
<td>Costo en mantenimiento de plantación*</td>
<td>19858372.50</td>
<td>19858372.50</td>
</tr>
<tr>
<td>Costo de producción industrial**</td>
<td>8497473.75</td>
<td>8497473.75</td>
</tr>
<tr>
<td>total</td>
<td>55635606.25</td>
<td>28355846.25</td>
</tr>
<tr>
<td>Precio (USD/ton)</td>
<td>2032.35</td>
<td>1035.83</td>
</tr>
<tr>
<td>Precio (USD/BED)</td>
<td>307.93</td>
<td>156.94</td>
</tr>
<tr>
<td>Precio (USD/LED)</td>
<td>1.94</td>
<td>0.99</td>
</tr>
</tbody>
</table>

*Incluye margen de ganancia del 15%
**Incluye recuperación de la inversión con rentabilidad del 15%

Fuente: Elaboración propia

De la información en el recuadro se desprende que el peor panorama que enfrentarían los productores de biodiesel de Jatropha es el alto precio de equilibrio durante el primer año de producción, el cual conlleva una pérdida de competitividad frente al precio del diesel fósil, que a la fecha se obtiene a un precio de ₡640 ($1.26). Sin embargo, a partir del segundo año los papeles se invertirían, cuando el biodiesel de Jatropha puede ser colocado en el mercado con un precio más competitivo y con un buen margen de ganancia para los productores.

Dada la situación expuesta lo conveniente sería que el Estado interviniera con políticas de incentivos a la producción del biodiesel de Jatropha, donde la inversión fuera asumida total o parcialmente por el mismo.

Por otro lado, vale aclarar que los ingresos y la productividad expuestos tienen un alto grado de especulación, debido a que están basados en un rendimiento de producción que no ha mostrado verdadera estabilidad hasta el momento, ya que la Jatropha Curcas es una oleaginosa aún en proceso de domesticación cuyas composiciones genotípicas no han logrado ser definidas.
7.3.1.3. **Higuerilla**

Recientemente fue descubierto el importante papel que puede llegar a jugar la higuerilla como fuente primaria para biocombustibles, tanto por su fácil obtención como por las cualidades entregadas por el aceite extraído de sus semillas, además que al no fungir como un aceite comestible, no sería objeto de dilemas por prioridades del uso de la tierra, como sí ha venido sucediendo con los cultivos energéticos que se debaten con la vocación agroalimentaria.

La higuerilla es una oleaginosa no agroalimentaria, cuyo aceite es parte de la fórmula química de múltiples productos como lubricantes, pinturas, lacas, barnices, plásticos, fertilizantes, antiparasitarios en humanos, por mencionar solo unos cuantos, excluyendo el biodiesel, pero en total se utiliza en más de ciento ochenta productos.

Según el Centro para la Promoción de Jatropha & Biodiesel, ubicado en India (autoridad global para la comercialización de biodiesel de avanzada) Ricinus communis tiene la habilidad de reunir las condiciones de materia prima de bajo costo con potencial para una alta producción de aceite y la habilidad para crecer en tierras marginales. Esas propiedades proporcionan la idoneidad del cultivo para la producción a gran escala de aceite, manteniendo la sustentabilidad de la industria del biodiesel.

Tiene gran capacidad de adaptación y hoy día es cultivada prácticamente en todas las regiones tropicales y subtropicales, aunque es típica de regiones semiáridas. Prolifera de manera silvestre en muchas zonas, cuyos terrenos resultan inhóspitos para otros cultivos, sin embargo su mayor producción como agronegocio está en el rango de los 300 a 1500 m.s.n.m. La higuerilla requiere una época seca definida después de la floración y su requerimiento de agua durante la etapa de crecimiento es de 600 a 800 mm.

En cuanto a las técnicas de cultivo, toda recomendación de nutrientes tiene que estar sustentada por un análisis de suelos y guiada por un ingeniero agrónomo. La fertilización debe realizarse en las épocas de lluvias, depositándolo y tapándolo en un hoyo a 20 centímetros de la planta. Es importante mantener libre de malezas el cultivo, esta labor es
de mayor importancia en los primeros 60 días. Una característica muy cotizada es la alta resistencia que presenta a las plagas.

Países como México, Colombia, Brasil, Ecuador, India, China, Estados Unidos, mantienen programas de fitomejoramiento y desarrollo de nuevas técnicas, pues se trata de un cultivo en etapa experimental, que requiere ser tratado técnicamente y con aplicación de paquetes tecnológicos ampliamente probados para lograr la optimización de rendimientos y costos.

Para evaluar el comportamiento del combustible obtenido del aceite de higuerilla el grupo académico llamado Grupo Combustibles Alternativos de la Universidad Nacional de Colombia, realizó un estudio experimental sobre la producción y utilización del mismo en motores de automoción diesel. Los resultados lanzados por el estudio indican que:

- El máximo rendimiento de metilésteres en la reacción de transesterificación del aceite de higuerilla usado se obtiene bajo las siguientes condiciones: temperatura ambiente (25°C), una relación molar metanol/aceite de 9 y una concentración de catalizador de 0.8%.

- El biodiesel de aceite de higuerilla puede ser mezclado con el combustible diesel convencional derivado del petróleo en proporciones hasta del 15%, sin que la mezcla resultante se salga de las especificaciones de calidad estipuladas en los estándares internacionales para combustibles diesel.

- El biodiesel de higuerilla presenta ventajas en sus propiedades de flujo a baja temperatura como los puntos de nube y fluidez. Sin embargo, su alta viscosidad y bajo número de cetano limitan su aplicación en motores de automoción.

- Las pruebas en motor con mezclas biodiesel de higuerilla/diesel convencional, en el rango de proporciones de biodiesel ensayadas, muestran que a medida que se incrementa la proporción de biodiesel en la mezcla aumenta el consumo específico de combustible, la opacidad de humos se disminuye levemente, mientras que el

83 *La higuerilla, un cultivo bioenergético* en Programa de Estímulos a la Investigación, Desarrollo Tecnológico e Innovación del CONACYT, Mexico.
rendimiento efectivo y las emisiones de CO y CO₂ prácticamente permanecen constantes.

En el cuadro 15 se contrastan las propiedades del biodiesel de aceite de higuerilla con las de un combustible diesel convencional adquirido en una estación de servicio y con las especificaciones para combustibles diesel contempladas en las normas ASTM D-975 e ICONTEC NTC 1438.

En dicha tabla, adicionalmente, se presentan las propiedades de las mezclas biodiesel-diesel denominadas B5, B15, B30 y B60. En dicha denominación el número indica el porcentaje de biodiesel en la mezcla.

Cuadro 15. Comparación propiedades entre el biodiesel de higuerilla, diesel corriente y mezclas preparadas

<table>
<thead>
<tr>
<th>Análisis</th>
<th>B100</th>
<th>B60</th>
<th>B30</th>
<th>B15</th>
<th>B5</th>
<th>Diesel</th>
<th>Especificación ASTM D-975</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua por Destilación, % por volumen</td>
<td>0.8</td>
<td>0.5</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>N/A (No Aplica)</td>
</tr>
<tr>
<td>Cenizas, % por peso</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Color Saybolt</td>
<td>2.5</td>
<td>2.5</td>
<td>2.0</td>
<td>2.0</td>
<td>1.5</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Corrosión Lámina Cobre</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>1A</td>
<td>2.0</td>
</tr>
<tr>
<td>Destilación (T en °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punto Inicial de Ebullición</td>
<td>204.3</td>
<td>191.1</td>
<td>190.1</td>
<td>171.8</td>
<td>174.9</td>
<td>182.0</td>
<td>Reportar</td>
</tr>
<tr>
<td>50% recubierto</td>
<td>333.3</td>
<td>327.2</td>
<td>319.1</td>
<td>299.8</td>
<td>298.8</td>
<td>297.8</td>
<td>300</td>
</tr>
<tr>
<td>90% recubierto</td>
<td>345.5</td>
<td>347.5</td>
<td>352.6</td>
<td>350.6</td>
<td>354.6</td>
<td>357.7</td>
<td>360</td>
</tr>
<tr>
<td>Punto Final de Ebullición</td>
<td>353.6</td>
<td>351.6</td>
<td>362.8</td>
<td>362.8</td>
<td>372.9</td>
<td>380.0</td>
<td>390</td>
</tr>
<tr>
<td>Densidad a 60°F (kg/m³)</td>
<td>926.05</td>
<td>901.85</td>
<td>882.17</td>
<td>871.30</td>
<td>868.63</td>
<td>865.97</td>
<td>Reportar</td>
</tr>
<tr>
<td>Índice de Cetano</td>
<td>38.0</td>
<td>45.0</td>
<td>49.0</td>
<td>50.5</td>
<td>51.0</td>
<td>50.0</td>
<td>45</td>
</tr>
<tr>
<td>Poder Calorífico, MJ/kg</td>
<td>37.52</td>
<td>40.0</td>
<td>42.95</td>
<td>44.2</td>
<td>45.01</td>
<td>45.43</td>
<td>N/A</td>
</tr>
<tr>
<td>Punto de Inflamación, °C</td>
<td>84.3</td>
<td>64.3</td>
<td>64.3</td>
<td>62.3</td>
<td>62.3</td>
<td>62.3</td>
<td>52</td>
</tr>
<tr>
<td>Punto de Fluidez, °C</td>
<td>-18.0</td>
<td>-12.0</td>
<td>-13.0</td>
<td>-18.0</td>
<td>-14.0</td>
<td>-14.0</td>
<td>4</td>
</tr>
<tr>
<td>Punto de Nube, °C</td>
<td>-4.0</td>
<td>4.0</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Residuo Carbonoso, % por peso</td>
<td><0.05</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Viscosidad Cinemática a 40 °C, mm²/s</td>
<td>14.89</td>
<td>8.75</td>
<td>6.11</td>
<td>5.02</td>
<td>4.79</td>
<td>4.66</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Las principales deficiencias de calidad del biodiesel de aceite de higuerilla son su bajo índice de cetano y su alta viscosidad. Las mezclas B60 y B30, aunque cumplen con la especificación del índice de cetano poseen valores de la viscosidad por fuera del rango recomendado en las normas. Con las mezclas B15 y B5, las cuales cumplen especificaciones, es de esperar un funcionamiento adecuado en los motores que las utilicen.84

Recientemente un grupo de ingenieros desarrollaron a través de un proyecto de la Empresa Biodimex un biocombustible avanzado a partir del aceite de la planta Ricinus communis L. (higuerilla), cuya formulación ha logrado alcanzar los estándares internacionales. El biocombustible proporciona una serie de ventajas: mayor lubricidad que reduce la fricción y amplía la vida útil de las unidades, más estabilidad, menos oxidación y un mayor rendimiento comparado con el diésel convencional, a un reducido costo económico.85

Comentaron que en la actualidad los procesos para producir biocombustible suelen ser paradójicamente muy contaminantes y consumen una cantidad excesiva de agua, pero con la tecnología implementada por ellos redujo al mínimo el nivel de contaminación.

En otro sentido, se ha deducido que el aceite de ricino es la sustancia adecuada para producir biodiesel, porque es el único aceite vegetal soluble en alcohol, y por lo tanto no se requiere la aplicación de calor y la consiguiente demanda de energía para transformarlo en combustible.

El interés por el cultivo de la higuerilla, nació en Costa Rica alrededor de los años ochenta, en razón del valor que se le dio en Estados Unidos y Europa a su aceite para la preparación de barnices, pinturas y lubricantes; así, los altos precios provocados por la demanda creciente de su grano fue el gran estímulo para que organismos estatales comenzaran a investigar su comportamiento86.

Los rendimientos luego de la primera experimentación fueron sumamente bajos, lo que motivó que más adelante, en 1985, se llevara a cabo un programa de fitomejoramiento con

84 Benavides, Benjumea & Pashova, 2007: 146.
85 NextFuel, Biodiesel en México a partir de aceite de ricino, 2012.
86 Secretaría Ejecutiva de Planificación Sectorial Agropecuaria (SEPSA), Informe final gestión 2003-2006.
apoyo de capital francés, en el marco de la suscripción del “Convenio entre el Ministerio de Agricultura y Ganadería y la empresa Atochem Société Anonyme”.

A pesar que en el país se siguieron desarrollando cultivos con algunos de los cultivares resultantes del programa, en la actualidad no es posible encontrar información documentada de los logros alcanzados ni de la metodología utilizada a lo largo del mismo.

Una de las alternativas que se ha propuesto, con el fin de promover un beneficio ambiental, económico y social ha sido la asociación la higuerilla con plantaciones de café, conformando cercas o sombras, muy importantes en el sistema de siembra de los cafetales.

En el año 2009 existían cerca de 50 hectáreas cultivadas de higuerilla (asociada especialmente con café)\(^7\), buena parte desarrolladas, mediante el INTA, en la Zona Sur del país con el propósito de valorar el desempeño de este cultivo como una fuente de energía renovable y sus características para el uso como biocombustibles.

Un dato interesante obtenido mediante entrevista personal con el Ing. Jesús Hernández de la Estación Experimental Fabio Baudrit (lugar que cuenta con un banco de germoplasma de higuerilla), es el beneficio económico que podrían tener los cafetaleros por incluir la higuerilla en las plantaciones de café.

De acuerdo con el ingeniero, por cada hectárea de café podrían extraerse 400 litros de aceite de higuerilla, mismos que colocados en el mercado generarían un ingreso cercano a $800. Si bien es un precio que resulta elevado para la producción de biodiesel, está acorde con el precio internacional del aceite de higuerilla y puede ser utilizado en una diversidad de aplicaciones cuyo valor agregado es superior.

7.3.1.3.1. Costo de producción

Un aspecto de especial interés para la evaluación del aceite de higuerilla como materia prima de biocombustibles es el costo implicado en su obtención. En ese contexto, la producción de aceite a partir del cultivo de higuerilla, tiene un importante limitante: el rendimiento de cultivo promedio mundial no supera 1,5 ton/ha/año, cifra que está por

\(^7\) MAG, Programa Nacional de Agrocombustibles: Análisis de la situación 2009.
debajo del rendimiento de los demás aceites aprovechados, amortiguando significativamente las ventajas en los costos de producción asociados a la naturaleza del cultivo88.

En la figura 12 se contrastan los precios pagados por la Unión Europea por el aceite de palma y el aceite de higuerilla a lo largo de una década, donde se evidencia una clara diferencia entre ambas oleaginosas.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure12.png}
\caption{Histórico precios CIF Rotterdam del aceite de higuerilla vs aceite de palma (US $/Ton)}
\end{figure}

El factor que interviene en el elevado precio internacional de comercialización del aceite de higuerilla, además de la baja productividad, es la cantidad de importantes aplicaciones que posee, provocando una alta demanda en el mercado y restringiendo las posibilidades para que sea utilizado en la producción de biodiesel.

Estimaciones realizadas por el Ing. Alonso Acuña, Gerente del Programa Nacional de Agrocombustibles del MAG, señalan una importante inviabilidad económica en la producción de biodiesel a partir del aceite de higuerilla.

Según el ingeniero del MAG, basta tomar en cuenta informaciones certeras de la productividad del cultivo y precio del diesel en el mercado, para concluir sobre la realidad que engloba la utilización del aceite de higuerilla como combustible. Las informaciones mencionadas se resumen en el cuadro 16.

<table>
<thead>
<tr>
<th>Componente del análisis</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosechas por año</td>
<td>3</td>
</tr>
<tr>
<td>Rendimiento del cultivo (semillas)</td>
<td>6000 kg/ha/año</td>
</tr>
<tr>
<td>Porcentaje de extracción de aceite (mecánica)</td>
<td>30%</td>
</tr>
<tr>
<td>Rendimiento de extracción de aceite</td>
<td>1800 kg/ha/año</td>
</tr>
<tr>
<td>Densidad del aceite</td>
<td>0.93 kg/l</td>
</tr>
<tr>
<td>Rendimiento industrial (biodiesel)</td>
<td>1935.5 l/ha/año</td>
</tr>
<tr>
<td>Precio del diesel*</td>
<td>¢640/l</td>
</tr>
<tr>
<td>Ingreso anual</td>
<td>¢1238709.7 ha/año</td>
</tr>
<tr>
<td>Ingreso mensual</td>
<td>¢103225.8 ha/mes</td>
</tr>
</tbody>
</table>

*Precio máximo de referencia para garantizar competitividad del biodiesel

Fuente: Elaboración propia con base en entrevista a Ing. Alonso Acuña

El dato de partida del ingreso anual, para analizar de manera preliminar la factibilidad de la producción del biodiesel de higuerilla, vislumbra un panorama sombrío debido a que las inversiones y los costos de mantenimiento y operación, durante un año, deberían ser menores a ¢1238709.7 para obtener 1935.5 litros de biodiesel a partir de una hectárea y manejar el mínimo margen de ganancia.

Lo anterior se agrave si se toma en consideración que el cultivo de la higuerilla tiene requerimientos de mantenimiento y fertilización para alcanzar los rendimientos asumidos, que, a diferencia de la Jatropha, menos intensiva en costos de cultivo, absorbe una importante parte de las finanzas en la obtención de la materia prima.

Con una cifra como la obtenida, se puede deducir que no existiría ganancia o sería muy poca (de no ser porque el precio del diesel alcance umbrales mucho más elevados) para
poder distribuir entre los agentes participantes a lo largo de la cadena de valor del biodiesel y tomándolo desde otro punto de vista, el monto de ₡103225.8, equivalente al ingreso mensual por hectárea, no alcanza siquiera el mínimo establecido por la legislación costarricense que debe desembolsarse como pago de salario a un trabajador en jornada ordinaria.

Ante esta situación cabe mencionar que una posible solución es seguir invirtiendo esfuerzos materiales e intelectuales en la consecución de un mejor perfil de manejo agronómico de la higuerilla, aunque en este punto, a nivel mundial, no existe todavía ningún país que haya podido alcanzar mejores rendimientos.

En otro lado, sería conveniente continuar con la línea estratégica que han venido recomendando los expertos, referida a explotar el aceite de higuerilla para generar productos de valores agregados supremos al biodiesel, la cual podría abrir una gama amplia de opciones para lograr posicionamiento en nichos de mercado variables.

Para procurar una mejor productividad del cultivo de aceite de higuerilla se debe considerar:

- Seleccionar las variedades con mayor rendimiento de semillas y % de aceite, y con la calidad comercial adecuada.
- Planificar la siembra, que sea en la estación apropiada y se haga uso de lo último en técnicas agrícolas.
- Adopción de controles en la etapa posterior a la cosecha.

7.3.1.4. Microalgas

Las fuentes que se conocen desde hace varias décadas para sintetizar biodiesel son, principalmente, los aceites vegetales de plantas oleaginosas, como palma o soja. Sin embargo, en los últimos años se ha destacado que las microalgas representan una alternativa más conveniente que cualquier otro tipo de organismo para la producción de triacilglicéridos y su conversión a biodiesel e incluso se cataloga como la opción más promisoria habida hasta el momento para la producción de energía en general.
Algunas especies oleaginosas de microalgas, siendo organismos fotosintéticos, sólo requieren energía solar, agua, CO₂ y algunas sales para producir tan altos rendimientos de biomasa rica en lípidos, que hasta podrían alcanzar las 255 TM/ha/año, de manera que prometen una gran producción de biodiesel por unidad de área.⁸⁹

Científicos del Departamento de Energía de los Estados Unidos, basados en sus investigaciones sobre el posible uso de las microalgas para producir biocombustibles, han dicho que estas son capaces de producir 30 veces más cantidad de aceite que los demás cultivos energéticos en una misma área de tierra.⁹⁰

En efecto, son los organismos fotosintéticos más eficientes, absorben más CO₂ y liberan más O₂ que cualquier planta, crecen extremadamente rápido y llegan a acumular grandes cantidades de diversos productos. Algunas microalgas doblan su biomasa en 24 h y el tiempo de duplicación de biomasa durante la fase exponencial puede ser tan corto como 3.5h.

Como se observa en la figura 13, el bioproceso de producción de biodiesel a partir de microalgas oleaginosas, consta de varias etapas claramente diferenciadas y en cuanto al cultivo existen dos grandes tipos de procesos que destacan:

✔ Cultivos en estanques

- Abiertos: Es el sistema más económico, pero al igual que los demás, presenta su propio set de desafíos para el cultivo. Son por lo general del tipo “pista de carrera”. Se denominan así porque la biomasa (las microalgas, el agua y los nutrientes) fluye por el sistema como si circulara por una pista de carreras. Ruedas de paletas motorizadas proporcionan el flujo para que las microalgas circulen y se mantengan suspendidas en el agua. En ocasiones cuentan con mecanismos para suministrar CO₂ y nutrientes.
- Cerrados: Se cubre el estanque o la piscina con efecto invernadero, para que el control sobre el medio ambiente sea mucho mejor que con los estanques abiertos. Los sistemas de estanque cerrado cuestan más que las lagunas abiertas,

⁸⁹ Oilgae, Comprehensive Oilgae Report - Preview
pero mucho menos los fotobioreactores para las áreas similares de operación. Es posible aumentar la cantidad y la concentración de dióxido de carbono lo que aumenta la tasa de crecimiento de las microalgas.

✔ Cultivos en fotobioreactores: Es un sistema mucho más caro que el de estanques abiertos, pero provee significantes beneficios de productividad asociados al control óptimo de las condiciones ambientales y previene la contaminación al no hacer uso de especies algales dañinas.

Recientemente empezaron los estudios de la etapa de extracción del aceite de las microalgas debido a la importancia de esta etapa en la eficiencia y los costos globales del proceso. Los investigadores de varios países empezaron a evaluar los diferentes métodos en

\[\text{Fuente: Oilgae, Comprehensive Oilgae Report - Preview} \]

Figura 13. Proceso detallado para obtención de biodiesel de microalgas
función de la composición de la pared celular de la microalga que se va a someter a extracción. Los más ampliamente explorados hasta el momento por su funcionalidad son:

- Extracción con solventes químicos orgánicos, siendo la mezcla hexano-etanol la más popular.
- Extracción asistida por microondas
- Extracción mediante ultrasonido
- Extracción mediante fluidos supercríticos
- Shock osmótico
- Extracción enzimática
- Autoclavado
- Destrucción mecánica

El Instituto Vasco de Investigación y Desarrollo Agrario, Neiker-Tecnalia, en España, lidera un proyecto que investiga el desarrollo de microalgas con mayor productividad de aceite para obtener biodiesel. Los investigadores del proyecto consideran que los métodos tradicionales de cultivo de microalgas pueden ser mejorados mediante una modificación del metabolismo de estas algas microscópicas (ingeniería genética).

La regulación metabólica tiene como finalidad que las microalgas produzcan y acumulen más lípidos; es decir, más aceite. Tras extraer el aceite de las microalgas, queda una biomasa residual que los investigadores quieren aprovechar para obtener biogás, mediante un proceso de digestión anaeróbica.

De manera más específica, los principales beneficios que se obtienen de la producción de biodiesel a partir de microalgas, son:

- Es el único bioenergético que tiene una verdadera huella ecológica pequeña.

91 González, Guzman y Kafarov, Desarrollo de métodos de extracción de aceite en la cadena de producción de biodiesel a partir de microalgas.

Por su elevado rendimiento, en contraste con otros bioenergéticos, se requiere una superficie muy pequeña para cubrir la demanda actual de diesel de petróleo.

Las microalgas oleaginosas pueden ser cultivadas en agua de mar, en agua salobre o en aguas residuales, según sea la especie de alga en crecimiento, contribuyendo a disminuir la presión sobre el agua dulce requerida para la producción de alimentos.

Con relación a la emisión de gases invernadero, es de los bioenergéticos que muestran un valor negativo tomando en cuenta el ciclo de vida completo.

Sin embargo, la tecnología para la producción de biodiesel a partir de microalgas, aún enfrenta grandes retos para lograr una producción a escala comercial y de manera rentable, por lo que, a pesar de las grandes promesas y clamores, sigue siendo una fuente en etapa de desarrollo y prueba.

Entre los retos más importantes destacan:

- Selección de cepas con mayores productividades de biomasa y de lípidos, mejores perfiles de lípidos y mejor adaptabilidad a condiciones de cultivo a gran escala.
- Estrategias de cultivo muy efectivas para lograr el máximo posible de productividad de lípidos y de biomasa al menor costo. Entre dichas estrategias, destacan el uso de condiciones de estrés fisiológico y el uso de aguas residuales para reemplazar agua destinada al uso agrícola.
- Selección del tipo de reactor o de una combinación de ellos para lograr máxima producción de biomasa al mínimo costo.
- Optimización de los métodos actualmente disponibles para extracción de lípidos y transesterificación de ácidos grasos para disminuir sus altos costos e impactos ambientales negativos. Se debe hacer reconocimiento de lo altamente intensivo en consumo energético que es el proceso de extracción del aceite.

En el caso de Costa Rica no es posible aún realizar ningún tipo de aproximación a su potencial debido a que el proyecto que estudia el desarrollo de cepas con las cualidades de producción necesitadas, apenas pasó recientemente a su etapa de experimentación en módulos de prueba, por lo que no fue posible que se proporcionara a la fecha información concluyente.
7.3.2. Etanol

El impulso al uso del etanol como carburante, adquirió un importante dinamismo en Costa Rica desde años anteriores no solo por ser sustitutivo de la gasolina en sí, sino también por tener la capacidad de sustituir otras sustancias químicas dañinas que comúnmente han sido mezcladas con la gasolina, para producir lo que ha sido llamado gasolina reformulada u oxigenada, debido a la necesidad de aumentar su octanaje y provocar una combustión más completa.

En primera instancia en Costa Rica se utilizó Tetraetilo de Plomo (TEL) como mejorador de octanaje, pero fue reemplazado por el MTBE en 1994 debido a los graves problemas de contaminación y toxicidad que el Plomo venía provocando en la población, en virtud de sus efectos acumulativos en los organismos.

En aquel momento se esperaba que la opción para sustituir al TEL fuera el etanol, pero por intereses de las compañías petroleras en introducir y consolidar al MTBE como aditivo, la opción del etanol se dejó por fuera, pese a haber sido un aditivo más económico.

En la actualidad, muchos países del mundo han eliminado o sustituido el MTBE al haber sido probado por estudios de gran renombre que es un producto generador de principios y consecuencias carcinogénicas y mutagénicas en el ser humano, además de significar un riesgo para el medio ambiente, por ser un compuesto muy volátil y muy soluble en el agua, pudiendo contaminar de esta forma cuerpos y fuentes de abastecimiento de agua para el sector público.

No obstante, aun cuando en Costa Rica se cuenta con un sustituto de origen renovable que no conlleva factores ambientales o de salud negativos, el MTBE sigue siendo la alternativa para oxigenar las gasolinas.

En Costa Rica existen dos unidades productoras de etanol equipadas con los respectivos módulos requeridos a lo largo del proceso productivo: destilerías y deshidratadoras. Estas unidades pertenecen a la agroindustria del azúcar y se encuentran ubicadas en los ingenios

93 Chávez, 2003: 4
CATSA y Taboga, en Guanacaste. En total la capacidad instalada permite una producción de etanol anhidro de 530000 l/día, correspondiente a 290000 l/día y 240000 l/día, respectivamente.

7.3.2.1. Sorgo dulce

El sorgo dulce pertenece a la familia de las gramíneas y forma parte de la dieta básica de millones de personas en China, la India y África; en los países industrializados se cultiva sobre todo como planta forrajera.

En Costa Rica su cultivo fue practicado desde décadas anteriores para alimentación del ganado, pero en años más recientes, con el descubrimiento de un potencial distinto contenido en la planta, el país inició experimentaciones dirigidas a encontrar las variedades con mejores características para usos energéticos.

El periodo comprendido entre el 2003 y el 2006 marcó el comienzo de la coordinación estratégica para explorar el potencial del sorgo dulce como energético. Fue entonces, por medio de la Secretaría Ejecutiva de Planificación Sectorial Agropecuaria (SEPSA), que se enlazaron esfuerzos institucionales para llevar a cabo el establecimiento de parcelas experimentales de sorgo. Como resultado se seleccionaron tres híbridos para la producción de alcohol anhidro y una variedad con características favorables para la producción de alcohol y grano en las regiones Chorotega y Huetar Norte.\(^\text{94}\)

Según el Ingeniero del INTA Alonso Acuña, la entidad realizó los estudios de valoración de material y dentro de las cosas que sobresalen está que el material Urja reúne un excelente potencial, cercano a las 90 TM/ha/año, para obtener sacarosa para fermentación.

Por último, una de las más destacables experiencias fue emprendida por el Ingenio Taboga, la cual logró comprobar con la siembra experimental de alrededor de 200 hectáreas de dos variedades distintas, las cualidades comparativas o incluso superiores del sorgo dulce con

\(^{94}\) Secretaría Ejecutiva de Planificación Sectorial Agropecuaria (SEPSA), *Informe final de gestión 2003-2006.*
la caña de azúcar, como puede verse en el cuadro 17, tanto por la producción de bagazo como por la de etanol.

<table>
<thead>
<tr>
<th>Propiedades</th>
<th>Caña de azúcar</th>
<th>Sorgo dulce 1</th>
<th>Sorgo dulce 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciclo de cosechas</td>
<td>12 meses</td>
<td>3 meses</td>
<td>3 meses</td>
</tr>
<tr>
<td>Cosechas por año</td>
<td>1,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Requerimiento nutricional (NPK)</td>
<td>175:150:150</td>
<td>100:50:50 (-20 %)</td>
<td>100:50:50 (-20 %)</td>
</tr>
<tr>
<td>Contenido de sacarosa (%)</td>
<td>16,45</td>
<td>10,10</td>
<td>13,30</td>
</tr>
<tr>
<td>Contenido de reductores (GYF)</td>
<td>1,05</td>
<td>1,50</td>
<td>3,50</td>
</tr>
<tr>
<td>Azúcares fermentables totales</td>
<td>17,50</td>
<td>11,60</td>
<td>16,90</td>
</tr>
<tr>
<td>Toneladas totales medidas</td>
<td>2174,50</td>
<td>2728,40</td>
<td>2174,50</td>
</tr>
<tr>
<td>Conversión de fermentables a alcohol 95 °GL (l)</td>
<td>155445,00</td>
<td>96948,50</td>
<td>104884,00</td>
</tr>
<tr>
<td>Litros por tonelada</td>
<td>71,49</td>
<td>35,53</td>
<td>48,23</td>
</tr>
<tr>
<td>Torta residual</td>
<td>168,00</td>
<td>251,66</td>
<td>268,80</td>
</tr>
<tr>
<td>Fibra</td>
<td>16,95</td>
<td>25,52</td>
<td>27,26</td>
</tr>
<tr>
<td>Humedad del bagazo</td>
<td>49,30</td>
<td>41,41</td>
<td>51,83</td>
</tr>
<tr>
<td>Bagazo (%)</td>
<td>35,00</td>
<td>44,51</td>
<td>59,63</td>
</tr>
<tr>
<td>Energía electrica por tonelada (kW)</td>
<td>131,00</td>
<td>180,00</td>
<td>202,00</td>
</tr>
<tr>
<td>Cogeneración 260 tmh* (kW/h)</td>
<td>18848,00</td>
<td>31440,00</td>
<td>36016,00</td>
</tr>
</tbody>
</table>

Con base en los resultados obtenidos, el ingenio pudo concluir que este cultivo, en especial el de la variedad Urja, es una muy buena alternativa para la producción de biocombustibles, en un proyecto autónomo, con su propia destilería, cogeneración, producción de proteínas de la levadura y el complemento de los carbohidratos de la panoja (concentrados).

La principal ventaja del sorgo es que se desarrolla bien en áreas secas o calurosas, entre otras razones, por su capacidad de latencia durante las sequías, que le permite luego volver a crecer, entre 15°C y 45°C. El óptimo para fotosíntesis está en 30°C-35°C. Posee un bajo requerimiento de precipitación que va de 350 a 600 mm durante el ciclo, no obstante 200-300 mm son considerados indispensables. Las exigencias de suelos son franco-limosos o
franco-arcillo-limosos, preferentemente no calcáreos. Sin embargo, si el drenaje es bueno se da en casi cualquier suelo.95

Las características del sorgo dulce, que incluyen un contenido energético comparable al de la caña de azúcar, considerando hasta tres cosechas por año en climas tropicales y una mejor adaptabilidad a suelos pobres, hacen de esta planta un candidato ideal para la producción de biocombustibles a partir de fuentes renovables.

En la producción de sorgo, la mayor parte de la agrocadena se desarrolla en la finca y muy poco va a la industria. Se puede cortar con cuchillo y el jugo se extrae con la misma máquina con la que se saca el jugo de caña.

A pesar que el sorgo y la caña comparten grandes similitudes, el primero no es sustitutivo del segundo, porque no se obtiene el procedimiento de cristalización (el sorgo no cristaliza), por lo que los expertos consideran que no va a ser competitivo con la caña de azúcar, allanando el camino para su uso como energético.

Otra virtud del sorgo dulce es que resulta ser una buena alternativa para rotar cultivos, por lo que el MAG recomienda a los productores de arroz del país que sea utilizado para combatir el arroz rojo (plaga que afecta a este grano), ocuparía el mismo suelo y maquinaria que el arroz y de paso serviría como rotador de cultivo para el control del arroz rojo.

\hspace{1cm} 7.3.2.2. Caña de azúcar

El desarrollo de la caña de azúcar depende en gran medida de la luz solar, razón por la cual su cultivo se realiza en las zonas tropicales que poseen un brillo solar alto y prolongado.

Es un cultivo poco exigente en cuanto a suelos, tolera bien y se ha cultivado económicamente tanto en suelos muy pesados o arcillosos, como en muy ligeros o arenosos. Sus exigencias respecto a suelos se limitan a profundidad, la necesaria para desarrollar su sistema radicular, alrededor de un metro; aireación suficiente, por lo que

95 MAG-MINAE, Programa Nacional de Biocombustibles, 2008.

92
deben evitarse los problemas de drenaje tanto interno como superficial; pH cercano a 7, aunque suele tolerar desde 4 hasta 10 y salinidad y/o alcalinidad, no muy elevada, aun cuando hay diferencias bastantes marcadas entre variedades.

La caña tiene el más bajo rendimiento de etanol por tonelada, pero, en contraste, tiene un alto rendimiento agrícola, entre 40-80 ton/ha/año, dependiendo de la zona, que se traduce en un rendimiento de conversión nada despreciable de entre 3400 y 6800 l/ha que lo convierte en el cultivo más viable hasta el momento para la producción de biocombustible.96

La fabricación de etanol a partir de la caña de azúcar se puede realizar con cualquiera de las siguientes materias primas97:

- **Miel pobre (c) o melazas**: El ingenio mantiene la misma producción de azúcar y utiliza una destilería anexa para procesar las melazas agotadas que resultan del proceso de producción de azúcar para fabricar etanol. Este es el caso de la industria de alcohol en Costa Rica.

- **Miel rica (b)**: Cuando existe interés en producir más etanol, no se agotan por completo las mieles, produciendo menos azúcar y dedicando una mayor parte para el etanol.

- **Jugo directo**: En este caso se desvía el jugo de caña hasta el punto en que ya no se produce azúcar, lo que aumenta considerablemente la producción de etanol.

A medida que toda la caña, con sus azúcares y fibras, pasa a ser una fuente de materiales de interés, utilizable en una amplia gama de productos en procesos integrados e interdependientes, las plantas de azúcar y bioetanol se configuran cada vez más en el modelo de las llamadas biorrefinerías, que imitan a las actuales refinerías de la industria del petróleo, pero con nuevas bases, renovables y ambientalmente más saludables.

Sin duda alguna, Brasil es el mejor modelo a seguir en materia de tecnologías para el procesamiento de la caña de azúcar, tanto para producir azúcar y otros productos como para obtener etanol. Al ser una región que desarrolló un gran potencial para el crecimiento del mismo, sus plantaciones se han extendido masivamente especialmente en el sector sureste del país, y al mismo tiempo, los métodos para extraer todos los recursos que ofrece el valioso cultivo.

En el contexto brasileño, la producción de bioetanol de caña de azúcar se realiza generalmente en unidades agroindustriales que producen también azúcar, dando origen a melazas que pueden, conjuntamente con el jugo de caña, componer mostos fermentables, como se muestra en la figura 26.

Así, se consigue una buena sinergia entre los dos procesos productivos que utilizan en común los equipos de extracción (típicamente moliendas, pero recientemente pasaron a ser adoptados también difusores) y los sistemas auxiliares y de utilidades. Después de la fermentación del mosto, las levaduras se recuperan y el vino resultante pasa a ser destilado, para obtenerse finalmente el bioetanol.

Al igual que en Brasil, la melaza, ha sido la materia prima desde hace varias décadas utilizada en la fabricación del alcohol etílico de origen costarricense. Los dos tipos de alcohol que se producen son alcohol potable REN, que sirve como materia prima para la fabricación de licores y es vendido a FANAL y a países europeos; y el alcohol etílico anhidro, que se utiliza como combustible mezclado con la gasolina y es exportado al mercado europeo.

La melaza también ha sido suministrada al ganado de carne y de leche por muchos años, principalmente como aditivo para incrementar la gustosidad o facilitar la reducción a comprimidos de las raciones convencionales mezclados en seco.

Ha sido utilizada como vehículo en varios tipos de alimentos líquidos; como suplemento para el ganado en pastoreo solo o adicionado con otros componentes como úrea y ácido fosfórico. Igualmente ha sido común como ingrediente alimenticio para pollos y cerdos, en
donde constituye un subproducto de primer orden para lograr una adecuada alimentación en los animales.

Por otro lado, se usa como fertilizante para suelos, mezclada con bagazo y otros componentes, en casos especiales de abundancia. También es frecuentemente utilizada como combustible. Los diferentes usos de la melaza se reúnen en el cuadro 18.

<table>
<thead>
<tr>
<th>Cuadro 18. Aprovechamiento de la melaza de caña</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilización</td>
</tr>
<tr>
<td>Alimentos</td>
</tr>
<tr>
<td>Animales</td>
</tr>
<tr>
<td>Recuperación de líquidos desazucarados</td>
</tr>
<tr>
<td>Fermentación</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente: Evaluación de la melaza de caña como sustrato para la producción de Saccharomyces cerevisiae, 2007

Según datos suministrados por el gerente de comercialización de LAICA, Eladio Bolaños, aproximadamente un 30% de la miel final o miel de purga producida en Costa Rica es dedicada a alimentación animal directa o agregada a los concentrados alimenticios. Un 12% se destila a producir alcohol potable REN, el cual se exporta a Europa y en Costa Rica se vende a FANAL, y el resto es destinado a la producción de alcohol anhidro o bioetanol.

7.3.2.2.1. Costo de producción

El análisis de la balanza económica de producción de etanol carburante para consumo interno está basado en dos escenarios que podrían llegar a desarrollarse, diseñados ambos
de manera que no interfieran en los volúmenes de azúcar tradicionalmente producidos para su consumo en el mercado de los alimentos.

El primero consiste en hacer uso de las melazas inevitablemente resultantes de la producción de azúcar, una gran parte de las cuales, en la actualidad, no son aprovechadas por el mercado nacional, ya sea porque se venden a otros países o porque se aplican en la producción de etanol que igualmente termina siendo consumido en otros hemisferios del orbe.

El segundo consiste en implementar una industria independiente de etanol, incluyendo nuevos cultivos y destilerías dedicados a este fin, donde toda la caña cosechada sea convertida en azucares fermentables para la posterior obtención del etanol.

El análisis para ambos casos se desprendió de la información de costos de un ingenio cuyo nombre se pidió no ser revelado. Por ello no es posible hacer mención a los volúmenes de producción ni a la capacidad de proceso industrial del ingenio modelo.

Algunas consideraciones que deben ser tomadas en cuenta al momento de revisar e interpretar las matrices de costos son las siguientes:

En los costos industriales del alcohol hidratado se incluye los costos de la mano de obra y los insumos requeridos en el proceso (levaduras y abiótico). No incluye costo por energía, pues se utiliza el vapor de las calderas.

El análisis económico parte de los siguientes factores de productividad\(^{98}\):

<table>
<thead>
<tr>
<th>Rendimiento del cultivo</th>
<th>80 TM/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento industrial (jugo directo)</td>
<td>68 l/TM caña</td>
</tr>
<tr>
<td>Rendimiento de melazas</td>
<td>40 Kg/TM caña</td>
</tr>
<tr>
<td>Rendimiento industrial (melazas)</td>
<td>275 l/TM melaza</td>
</tr>
</tbody>
</table>

\(^{98}\) Alpizar, Bermúdez & Cortés, 2009: 140.
El tratamiento de las vinazas se efectúa actualmente por riego. Si por disposiciones del MINAE y Ministerio de Salud se requiriera de una planta de tratamiento de vinazas, la inversión requerida podría ascender entre US$ 4 y US$ 5 millones.\footnote{Ibidem}

Las inversiones de tanques de almacenamiento y vinazas (total $800.000) tienen una vida útil de 10 de años y requieren un rendimiento mínimo del 10% anual.

En el caso del escenario primero se parte de que LAICA es el único proveedor de etanol (no existe otro proveedor del bien para la comercialización a nivel interno) y lo vende a RECOPE al precio de exportación, dado que a nivel interno no existen precios de referencia para el etanol carburante. Para que LAICA desvíe el etanol para el consumo interno, como mínimo debe recibir un precio igual al de exportación o la creación de un marco regulatorio que afiance y garantice el mercado local, de lo contrario seguirá vendiéndolo en el exterior.

En ese mismo escenario, dentro de los costos desglosados en la matriz se incluye el costo de oportunidad de la melaza y el mismo representa el costo de la materia prima para producir el etanol, de ese modo se descarta pasar desapercibido un posible menor costo de oportunidad.
Cuadro 19. Balanza de costos de producción del etanol, primer escenario*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia prima</td>
<td></td>
<td>$29.520,02</td>
<td>$39.848,00</td>
<td>$406,35</td>
<td>$548,51</td>
</tr>
<tr>
<td>Costo de Materia Prima</td>
<td></td>
<td>$107,35</td>
<td>$144,90</td>
<td>$64,85%</td>
<td>$64,85%</td>
</tr>
<tr>
<td>Costos - Ingenio</td>
<td></td>
<td>$20.72</td>
<td>$19.92</td>
<td>$10,99%</td>
<td>$7,31%</td>
</tr>
<tr>
<td>Industriales (Alcohol hidratado)</td>
<td></td>
<td>$10.36</td>
<td>$9.96</td>
<td>$5,49%</td>
<td>$5,49%</td>
</tr>
<tr>
<td>Manejo de vinazas y tratamiento de aguas</td>
<td></td>
<td>$3.73</td>
<td>$3.52</td>
<td>$1,99%</td>
<td>$1,98%</td>
</tr>
<tr>
<td>Inversiones tanques, almacenamiento y vinazas (total: us $ 800 mil)</td>
<td></td>
<td>$12.95</td>
<td>$12.45</td>
<td>$8,78%</td>
<td>$8,78%</td>
</tr>
<tr>
<td>Administrativos, financieros y seguros</td>
<td></td>
<td>$14.12</td>
<td>$13.65</td>
<td>$8,92%</td>
<td>$8,92%</td>
</tr>
<tr>
<td>Costo Total Proceso Industrial - Ingenio</td>
<td></td>
<td>$47.75</td>
<td>$45.92</td>
<td>$25,33%</td>
<td>$25,33%</td>
</tr>
<tr>
<td>Costo Total del Ingenio</td>
<td></td>
<td>$155,10</td>
<td>$190,83</td>
<td>$82,28%</td>
<td>$82,28%</td>
</tr>
<tr>
<td>Costo - Laica:</td>
<td></td>
<td>$15,68</td>
<td>$15,68</td>
<td>$15.09</td>
<td>$15.09</td>
</tr>
<tr>
<td>Flete ingenio - Puntas morales</td>
<td></td>
<td>$27.34</td>
<td>$22.50</td>
<td>$22,00%</td>
<td>$22,00%</td>
</tr>
<tr>
<td>Industrial (deshidratación)</td>
<td></td>
<td>$103,51</td>
<td>$99,62</td>
<td>$14,51%</td>
<td>$11,78%</td>
</tr>
<tr>
<td>Costo financiero - Retraso en flujos de efectivo</td>
<td></td>
<td>$7.25</td>
<td>$8.37</td>
<td>$1,05%</td>
<td>$1,05%</td>
</tr>
<tr>
<td>Total Costo - Laica</td>
<td></td>
<td>$126,45</td>
<td>$123,58</td>
<td>$17,72%</td>
<td>$14,61%</td>
</tr>
<tr>
<td>Costo ex Puntas Morales</td>
<td></td>
<td>$188,50</td>
<td>$233,45</td>
<td>$100,00%</td>
<td>$100,00%</td>
</tr>
<tr>
<td>Precio del Alcohol Anhidro/l</td>
<td></td>
<td>$41.67</td>
<td>$47,92</td>
<td>$21.44%</td>
<td>$21.44%</td>
</tr>
<tr>
<td>MARGEN DE GANANCIA DE LA FASE INDUSTRIAL</td>
<td></td>
<td>$53.29</td>
<td>$75,16%</td>
<td>$21.44%</td>
<td>$21.44%</td>
</tr>
</tbody>
</table>

*Tipo de cambio promedio de compra y venta al último día del año del 2006 (517,895 col/dol) y del 2007 (498,100 col/dol).

El segundo escenario, basado en la creación de una nueva industria cañera para dedicarse a la producción de etanol carburante, es una posibilidad que eventualmente podría llegar a ser efectiva en el entorno energético nacional. No obstante, dentro del alcance de este trabajo, la opción que será considerada para estimar potencial de producción está representada por el primer escenario, donde el aprovechamiento de las melazas residuales de los procesos actuales constituye el potencial mejor adaptado a la realidad nacional.

<table>
<thead>
<tr>
<th>Detalle de costos</th>
<th>Alcohol/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$/litro</td>
</tr>
<tr>
<td>Materia prima</td>
<td></td>
</tr>
<tr>
<td>Caña de azúcar</td>
<td>157,51</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos-Ingenio</td>
<td></td>
</tr>
<tr>
<td>Industriales (alcohol hidratado)</td>
<td>19,92</td>
</tr>
<tr>
<td>Manejo de vinazas y tratamiento de agua</td>
<td>9,96</td>
</tr>
<tr>
<td>Administrativos, financieros y seguros</td>
<td>12,45</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos-LAICA</td>
<td></td>
</tr>
<tr>
<td>Flete ingenio-Punta Morales</td>
<td>3,98</td>
</tr>
<tr>
<td>Industrial (deshidratación)</td>
<td>26,3</td>
</tr>
<tr>
<td>Costo financiero por retraso en flujos efectivos</td>
<td>2,34</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos totales</td>
<td>232,46</td>
</tr>
<tr>
<td>Precio del alcohol anhidro/3</td>
<td>271,37</td>
</tr>
<tr>
<td>Margen de ganancia</td>
<td>38,91</td>
</tr>
</tbody>
</table>

1/Basada en costos del año 2007
2/Tipo de cambio promedio de compra y venta al último día del año (498,100 col/dol)
3/Dato tomado de los informes estadísticos de LAICA, zafra 2006-2007

Fuente: Elaboración propia con datos de Análisis de la cadena productiva de la actividad azucarera en Costa Rica para desarrollar la producción de etanol como fuente alternativa de energía

Seguidamente, se presenta un cuadro con información de los precios de exportación del alcohol anhidro en el puerto de embarque, Punta Morales y se comparan con los precios a
los cuales la estatal refinadora RECOPE ha adquirido la gasolina importada en el periodo comprendido entre el 2006 y el 2011.

Cuadro 21. Valor FOB de las exportaciones de alcohol vs valor CIF de las importaciones de gasolina, en el periodo 2006-2011

<table>
<thead>
<tr>
<th>Año</th>
<th>Valor FOB alcohol (USD/l)</th>
<th>Valor CIF gasolina (USD/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>0.64</td>
<td>0.49</td>
</tr>
<tr>
<td>2007</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>2008</td>
<td>0.53</td>
<td>0.65</td>
</tr>
<tr>
<td>2009</td>
<td>NR*</td>
<td>0.46</td>
</tr>
<tr>
<td>2010</td>
<td>0.54</td>
<td>0.56</td>
</tr>
<tr>
<td>2011</td>
<td>0.63</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* NR: No reporta

Fuente: LAICA, Reportes estadísticos anuales; Ingenio Taboga, Departamento de Logística; RECOPE, Estadísticas de importación y exportación; CEPAL, Estadísticas de hidrocarburos 2011.

La comparación de precios, entre la gasolina y el etanol en los últimos años, deja ver que la balanza ha entrado en un cambio en la tendencia de inclinación, de modo que adquirir etanol carburante al precio de exportación, permitiría mantener un margen de diferenciación importante en contraste con el precio de las gasolinas importadas.

Ello solo pone de manifiesto que la ausencia de la mezcla etanol-gasolina en las estaciones de servicio de todo el país no está asociada directamente a un problema de precios, sino a la falta de una política de compra que garantice a los productores estabilidad de mercado y que dé prioridad a la explotación de los potenciales que posee el país para su propia adopción sobre la dinámica internacional importación-exportación.

En la actualidad el etanol que se mezcla con las gasolinas en el plantel de Barranca, como parte del plan piloto de Recope, proviene de Brasil, mientras que el etanol producido en Costa Rica se exporta a Estados Unidos y Europa por un asunto de conveniencia en los precios, sin embargo lo pertinente sería pactar un contrato y conformar un marco regulatorio que auspicie el aprovechamiento del potencial de las melazas por parte del mercado nacional.
Luego de comparar el precio al cual RECOPE adquiriría el etanol producido localmente con el precio de la gasolina importada, debe aclararse que el precio del etanol tendría un recargo adicional, correspondiente al costo del transporte terrestre desde el sitio donde es deshidratada, hasta los 5 planteles ubicados en distintos puntos del país.

Al respecto, no existe la posibilidad de sortear el costo, dado que en virtud de la naturaleza del alcohol, no se recomienda el uso del oleoducto utilizado para el trasiego de combustibles entre las plantas, por el daño que la corrosividad del alcohol causaría a la estructura.

Las implicaciones de esta medida son determinantes sobre la rentabilidad y la viabilidad del proyecto, ya que el transporte representa un costo económico significativo, cuyas consecuencias deberán analizarse y resolverse oportunamente.

7.4. Potencial de producción de biocombustibles en Costa Rica a partir de las fuentes más promisorias

7.4.1. Potencial de producción de biodiesel

La evaluación del potencial de Costa Rica para producir biodiesel fue realizado a través de la evaluación del potencial de producción a partir de cada una de las materias primas que ya han venido siendo estudiadas y que poseen características que las perfilan como las más promisorias.

Las características que demandan ser analizadas para comprobar la viabilidad de las opciones comprenden: el balance de emisiones y balance energético, asociados al balance ambiental; costo de oportunidad; competencia con el mercado de alimentos; costo de producción del producto final; calidad del biodiesel; disponibilidad de tierras u oferta de la materia prima.

Es conveniente anotar que para estudiar la disponibilidad de tierras u oferta del producto, previamente debe hacerse la revisión del resto de variables, pues no existe lógica en buscar los medios para la plantación de cultivos u obtención de las materias primas, si el uso de los mismos no tiene el calibre para garantizar un combustible sostenible, de calidad aceptable.
para los motores, costeable para la capacidad financiera del país y que pueda redundar en beneficios sociales para sus habitantes.

Precisamente, el orden en que se ha establecido la evaluación del potencial de producción de biodiesel en Costa Rica, responde a este aspecto: primero seleccionando los materiales que cumplen con los criterios mencionados, a través de una matriz de evaluación, y posteriormente realizando el estudio de disponibilidad de tierras u oferta a los mismos. Los criterios utilizados en la matriz se detallan a continuación:

- **Rendimiento de conversión:** Por medio de este se puede conocer el equivalente de biocombustible por unidad superficial de cultivo sembrado y se puede interpretar como una medida de la eficiencia productiva en la relación con la cantidad de superficie cubierta. Se mide en litros por tonelada por año.
- **Balance energético:** Corresponde a la relación entre la cantidad de energía entregada por el biocombustible y la cantidad de energía fósil invertida durante el ciclo de vida de dicho biocombustible. Cuando mayor sea el coeficiente de la operación mayor es la conveniencia desde el punto de energético para optar la sustitución.
- **Costo de producción:** Reúne el total de los costos asociados a las operaciones que forman parte de la cadena productiva del biocombustible, con el fin de establecer la comparación entre las diferentes opciones de materia prima. Se mide en dólares por litro.
- **Balance neto de emisiones proceso agroindustrial:** Destinado a establecer la contabilidad de carbono equivalente, o toneladas de carbono equivalente, que se producen en el proceso de cultivo y transformación de cada especie. La unidad de medida utilizada es el kilogramo de CO₂ equivalente.
- **Calidad del germoplasma:** Es un criterio cualitativo que permite calificar el nivel de conocimiento y manipulación alcanzados tanto sobre el fenotipo como sobre el genotipo del cultivo.
- **Características físico químicas del biodiesel:** Se trata de las cualidades encontradas directamente en el biocombustible puesto en funcionamiento dentro del sistema de generación eléctrica, las cuales en parte facultan su capacidad para desarrollar dicha función.
- **Costo de oportunidad:** Es el valor de la mejor opción alternativa no realizada, el cual es deseable que sea el menor posible, o en el mejor de los casos, no existente.

7.4.1.1. **Matriz de evaluación**

<table>
<thead>
<tr>
<th>Criterio de evaluación</th>
<th>Peso</th>
<th>Jatropa</th>
<th>Higuera</th>
<th>Palma aceitera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento de conversión (l/ha/año)</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Balance energético (respecto a energía fósil)</td>
<td>12</td>
<td>3*</td>
<td>3*</td>
<td>12</td>
</tr>
<tr>
<td>Costo de producción ($/l)</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Balance neto de emisiones (kg CO₂e)**</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Calidad del germoplasma</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Características físico químicas del biodiesel</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Costo de oportunidad</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>52</td>
<td>32</td>
<td>80</td>
</tr>
</tbody>
</table>

Ver apéndice 1: Detalle del método empleado para evaluar el potencial de cultivos para producción de biodiesel

El balance energético de la extracción del aceite de la higuera y la jatropha es comparable con el de la soya, valor que fue tomado como referencia.

No considera uso final del combustible

Fuente: Elaboración propia

A pesar de la superioridad como fuente de materia prima mostrada por la palma africana, si se manejará mayor información sobre el comportamiento de germoplasma de especies de higuera y tempate adaptadas a las condiciones del país y se lograra alcanzar un estado
avanzado del desarrollo fitogenético de las anteriores, podrían competir con la palma aceitera.

Las mismas ofrecen ventajas competitivas en especial en los criterios de balance energético y balance neto de emisiones, balance neto socio-económico-ambiental, costo de oportunidad de la materia prima y capacidad de uso de suelos marginales, especialmente en el caso de la Jatropha.

Es conveniente resaltar que una ventaja en común entre las tres opciones, es la capacidad de captura de CO$_2$. Ello se debe a que sus plantaciones poseen ciclos de vida extensos, entre 30 y 50 años, periodos en los cuales se capturan cantidades importantes de biomasa tanto en las ramas como en las raíces.

Esta característica asociada a su naturaleza biológica, es fundamental en la elección de energías alternativas a los combustibles fósiles, ya que cumple con el propósito de una de las máximas establecidas en la búsqueda, la cual consiste en la disminución de emisiones GEI a la atmósfera, causadas por la combustión de fuentes de producción energética.

7.4.1.2. Disponibilidad de tierras

Diferentes investigaciones realizadas en los últimos años, con distintos objetivos, han podido destacar que Costa Rica posee una cantidad grande de tierras aptas para realizar plantaciones de palma de acuerdo con sus requerimientos bioclimáticos, aun sin tomar en cuenta las plantaciones ya establecidas.

Uno de los estudios más recientes y más completos realizados en el país para conocer la totalidad de hectáreas con capacidad de sostén para este cultivo, es el denominado Identificación y priorización de tierras aptas para el cultivo de palma aceitera.

Dicho estudio formó parte de otro mayor con el nombre de Asistencia para la preparación del Plan Nacional de desarrollo del Biodiesel a partir del aceite de palma, siendo una de las actividades encomendadas a la Comisión Nacional de Biocombustibles, para conocer las posibilidades de incrementar la producción de aceite de palma y producir biodiesel.
En la figura 14 se muestra el resultado principal del estudio, el cual se trata de un mapa del territorio nacional, publicado en el 2007, donde se puede distinguir las hectáreas con aptitud para el cultivo palma, como producto de la intersección entre las clases de capacidades del uso de la tierra en Costa Rica y las clases taxonómicas de los diferentes tipos de suelos. Según información anotada en el mapa, existen 798.627 hectáreas con una buena o moderada aptitud para ser utilizadas en el cultivo de la palma africana.

Fuente: INTA, Palma aceitera: Opción productiva, pro y contra en Costa Rica

Figura 14. Mapa de aptitud de uso de los suelos de Costa Rica para el cultivo de la palma
No obstante, es irreal suponer que las aptitudes señaladas puedan llegar a aplicarse en su totalidad en la siembra del cultivo de la palma, pues no es excluyente de aquellas ya ocupadas por uno u otro uso, sea agrícola o no.

Se realizó la búsqueda de mapas de Costa Rica sobre uso del suelo, con el fin de identificar dentro de las distintos tipos de clasificaciones suelos disponibles o sin ningún uso, los cuales pudieran coincidir con las áreas de aptitud para el cultivo de palma, sin embargo se advirtió que toda la superficie territorial es clasificada dentro de alguna categoría por lo que conocer la disponibilidad de suelos para ser empleados en determinado uso, como el cultivo de energéticos, más bien implica realizar un estudio exhaustivo a las distintas clasificaciones para determinar subuso, sobreuso, capacidad de uso y otros aspectos socioambientales de acuerdo con el tipo de uso deseado.

La figura 15 es el mapa de uso de suelo más actualizado en Costa Rica y fue preparado por el Earth Observation Systems Laboratory de Universidad de Alberta, Canadá para el Fondo Nacional de Financiamiento Forestal (FONAFIFO) y SINAC.
Otras informaciones acerca de la cobertura del suelo en Costa Rica están inscritas en el cuadro 23. De igual manera se concluye, por medio de estas, que existe un uso de la tierra muy ajustado, considerando que las superficies colocadas en la categoría “otros” no pueden asumirse como superficies sin un uso específico, sino que más bien se trata de terrenos ya fuera no clasificados, o pertenecientes a categorías no consideradas en los estudios.

Una solución apreciable para llenar el vacío provocado por la falta de un inventario de áreas de cultivos energéticos, es el estudio realizado en el año 2007 por el Departamento de Gestión de Desarrollo del Instituto Meteorológico Nacional en el cual se traslaparon resultados, obtenidos por la misma institución, de áreas potenciales para el cultivo de la
palma y otros cultivos a lo largo y ancho del territorio costarricense y los resultados obtenidos por el Programa de las Naciones Unidas para el Desarrollo del Índice de Desarrollo humano por Cantón en el país.

Cuadro 23. Uso del suelo en Costa Rica

<table>
<thead>
<tr>
<th>Cobertura</th>
<th>Extensión (Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosque</td>
<td>2.401.800</td>
</tr>
<tr>
<td>Agricultura</td>
<td>500.000</td>
</tr>
<tr>
<td>Pasturas para lechería</td>
<td>200.000</td>
</tr>
<tr>
<td>Pastos de ganadería de carne</td>
<td>1.000.000</td>
</tr>
<tr>
<td>Infraestructura y urbanismo</td>
<td>500.000</td>
</tr>
<tr>
<td>Pantano/humedal</td>
<td>146.900</td>
</tr>
<tr>
<td>Sabana/pastizales</td>
<td>50.000</td>
</tr>
<tr>
<td>Manglar</td>
<td>29.900</td>
</tr>
<tr>
<td>Cuerpos de agua</td>
<td>34.200</td>
</tr>
<tr>
<td>Otros</td>
<td>237.200</td>
</tr>
<tr>
<td>Total</td>
<td>5.100.000</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos del Programa Palma Aceitera, MAG y de La economía del cambio climático en Centroamérica, CEPAL.

El objetivo de dicha asociación fue tener conocimiento de las áreas potenciales para sembrar cultivos energéticos dentro de los cantones con un menor índice de desarrollo humano, en virtud de responder a una de las máximas constitutivas de la existencia de la industria agroenergética, como el mismo Programa Nacional de Biocombustibles lo contempla, la cual es propiciar el desarrollo social en zonas de alta vulnerabilidad. Es importante aprovechar las estrategias para impulsar zonas con problemas socioeconómicos.

La incorporación de áreas como las mencionadas a la producción de biocombustibles, redundaría en aumentos en los ingresos de los agricultores, una mejora en la distribución del ingreso, una disminución del desempleo y, en general, en beneficios económicos para sus pobladores.

Precisamente, en los mapas siguientes se puede observar que existe coincidencia entre las áreas potenciales de producción de palma aceitera con los cantones de menor desarrollo.
humano, por lo que, la implementación de una industria de biocombustibles podría mejorar la calidad de vida de los cantones de mayor pobreza. El estudio, efectuó la correlación para cultivos como la palma, la caña de azúcar y el sorgo dulce, entre otros.

En el anexo 3 se muestran tres mapas correspondientes a las tres categorías de cantones de mayor pobreza con las tierras potenciales para el cultivo de la palma, las cuales suman en total 1.104.573,19 ha.

Dada la aceptación y divulgación que el empleo de fuentes bioenergéticas ha tenido entre todos los medios involucrados, son numerosos los estudios emprendidos a su alrededor para asegurar la fiabilidad de las variables implicadas en su utilización.

Así, otro destacable proyecto en Costa Rica fue el que realizó el Instituto de Innovación y Transferencia de Tecnología Agropecuaria (INTA), del Ministerio de Agricultura de Costa Rica para resaltar la disponibilidad real de tierras para el cultivo de la palma africana. Este estudio valoró condiciones como aptitud de las tierras, índice de desarrollo humano, distancia de los planteles de distribución y uso actual de los suelos.

Como resultado se elaboró una propuesta en la cual se establecieron 6 distintas zonas con potencial para el cultivo de palma, conformadas en conjunto por unas 30000 hectáreas. Estas zonas en la actualidad son ocupadas por el desarrollo de actividades ganaderas que generan un ingreso por hectárea por año más bajo que el del resto de las actividades agropecuarias, por lo que se consideran tierras subutilizadas o poco productivas. En el país existen cerca de 1 000 000 de hectáreas dedicadas a la ganadería.

Dicha propuesta representa el potencial hasta el momento más conciso que podría ser explotado en el corto plazo para el cultivo de palma con fines agroenergéticos. El cuadro 24 ilustra la distribución de las zonas ofertadas para el fin mencionado.

En Costa Rica el potencial más accesible hasta el momento para la producción de biodiesel es el que se encuentra en el reciclaje de los aceites usados en frituras. Si bien se han venido estudiando distintas alternativas para obtener el biodiesel, el uso de los aceites usados no requiere más que una estrategia de recolección muy bien diseñada, que logre garantizar un abasto de materia prima siempre abundante, Para ello se debe plasmar un verdadero
convencimiento en todos los posibles proveedores, los cuales van desde familias a hoteles, sobre las ventajas de almacenar en recipientes los restos de aceites vegetales usados para su posterior conversión en biodiesel, en lugar de tirarlos a las redes cloacales o cualquier otro medio.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Localidades impactadas</th>
<th>Área disponible (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte-Oeste</td>
<td>Upala, Guatuso, Santa Cecilia, Las Delicias, Yolillal, Pizote, Aguas Claras</td>
<td>2500</td>
</tr>
<tr>
<td>Norte</td>
<td>Los Chiles, Pocosol, Santa Rosa, Cutris, Caño Negro, El Amparo, san Jorge</td>
<td>7500</td>
</tr>
<tr>
<td>Sarapiquí</td>
<td>Pital, Venecia, Aguas Zarcas</td>
<td>2500</td>
</tr>
<tr>
<td>Caribe-Norte</td>
<td>La Virgen, Horquetas, Puerto Viejo</td>
<td>8000</td>
</tr>
<tr>
<td>Caribe-Centro</td>
<td>Colorado, La rita, Roxana, cariari, Guapiles, Bataan, Matina, Germania, El Cairo, Florida, Siquirrez, Pacuarito, Rio Jiménez, Guacimo, Pocora, Ducari</td>
<td>9000</td>
</tr>
<tr>
<td>Caribe-Sur</td>
<td>Cahuita, Sixaola</td>
<td>1500</td>
</tr>
</tbody>
</table>

Fuente: Programa Palma aceitera del Ministerio de Agricultura y Ganadería

7.4.1.3. Capacidad instalada para la producción de biodiesel de aceites usados

En el país desde inicios del presente siglo, han venido surgiendo muchas empresas que se han trazado la meta de subsistir en el mercado a través de la producción de este tipo de biodiesel y si bien la mayoría han nacido y desaparecido, existen tres que a través de los años han logrado consolidarse fuertemente y aun poseen suficiente capacidad instalada vacante para soportar aumentos importantes de producción demandada por el país.

La suma de las capacidades instaladas, halladas en el recuadro, da como resultado una producción anual de 253668,5 barriles, que puede ser aprovechada por el país con el aporte de una política de información y planificación adecuada en favor del uso del potencial de los biocombustibles.
Cuadro 25. Productores de biodiesel en Costa Rica

<table>
<thead>
<tr>
<th>Productor</th>
<th>Ubicación</th>
<th>Materia prima</th>
<th>Producción</th>
<th>Capacidad instalada</th>
<th>Otras consideraciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía Biodegradables S.A.</td>
<td>El Alto, Ochomogo</td>
<td>Aceites usados principalmente</td>
<td>22957,9-34436,8 bbl/año</td>
<td>229578,5 bbl/año</td>
<td>Inició labores en el 2006. Es la empresa de biodiesel más consolidada. Realiza experimentos con aceites de pescado, grasas, palma, higuerilla, aceites usados, entre otros</td>
</tr>
<tr>
<td>Biocombustibles H & M</td>
<td>Santa Clara, San Carlos</td>
<td>Aceites usados y grasas animales</td>
<td>4528,7-4906,1 bbl/año</td>
<td>22957,8 bbl/año</td>
<td>Empresa de materiales para construcción Maquinaria pesada usa 100% biodiesel</td>
</tr>
<tr>
<td>CoopeVictoria R.L.</td>
<td>San Isidro, Grecia</td>
<td>Aceites usados</td>
<td>490,6 bbl/año</td>
<td>1132,2 bbl/año</td>
<td>Proyecto de Responsabilidad Social empresarial. Las escuelas de la zona son los principales centros de acopio. Suplen el 20% de la demanda interna, el resto lo ofrecen a los asociados</td>
</tr>
</tbody>
</table>

*NR: No reporta

Fuente: Elaboración propia con base en entrevistas a productores

7.4.2. Potencial de producción de etanol

En Costa Rica existen dos cultivos energéticos con características para la producción de etanol: la caña de azúcar y el sorgo dulce, cuyos potenciales han sido probados técnica, económica y ambientalmente. Sin embargo el dilema final continúa siendo que en Costa Rica no se ha elaborado una investigación exhaustiva para inventariar de forma íntegra las tierras que podrían ser destinas a cultivar especies agroenergéticas.

En el caso de la caña de azúcar, si bien es cierto que el país dispone de una industria cañera bastante desarrollada, su capacidad se encuentra ocupada por la producción de azúcar y no
es deseable poner en competencia la industria de los alimentos con la industria de la energía.

No obstante, el proceso de producción de azúcar genera un subproducto rico en sacarosa, que es aprovechado como sustrato para inducir fermentaciones alcohólicas y tras posteriores transformaciones industriales obtener alcohol etílico. En Costa Rica se cuenta con una estructura sólida para el uso de estas melazas o mieles de purga, pero, por razones obvias, los productores de etanol ya han construido su propio mercado, especialmente fuera de las fronteras del país.

Por otro lado, no todas las melazas que originan los ingenios son utilizadas para producir etanol debido a que estas constituyen un apreciable alimento para el ganado, por lo que grandes empresas como la Dos Pinos las cotizan a muy buenos precios. De igual forma, una buena parte del etanol producido se utiliza como carburante, pero el restante, denominado alcohol potable, se vende a la FANAL, donde se convierte en bebidas alcohólicas.

De acuerdo con el artículo 147 de la Ley Orgánica de la Agricultura e Industria de la Caña de Azúcar:

Será voluntario que los ingenios vendan a la Liga de la Caña, el azúcar y las mieles producidos dentro de cuota. Los que no se los vendan, podrán ejercer libremente las actividades de comercialización de sus productos...

Sin embargo, debe hacerse reconocimiento de la importancia que tienen tanto las melazas como las bebidas alcohólicas en la economía y en la alimentación del país, por lo que no se pretenderá incluir dentro del cálculo del potencial de producción de etanol las melazas destinados a dichos fines, sino que se contemplarán únicamente los volúmenes dedicados a producir etanol anhidro o carburante, mismos que actualmente se exportan a Europa y Estados Unidos.

En el cuadro 26 se presenta una síntesis de la cantidad de melazas que fueron producidas en las zafras de los últimos años, a partir de 2006-2007. También se hace la estimación del promedio en el mismo periodo de las melazas que fueron puestas a disposición de la
producción de alcohol carburante, las cuales según Eladio Bolaños, del Departamento de Comercialización de LAICA, han tenido una participación cercana al 58%.

<table>
<thead>
<tr>
<th>Zafra</th>
<th>Producción de melazas (kg)</th>
<th>Melazas disponibles (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007</td>
<td>168697390.0</td>
<td>97844486.2</td>
</tr>
<tr>
<td>2007-2008</td>
<td>132088681.0</td>
<td>76611435.0</td>
</tr>
<tr>
<td>2008-2009</td>
<td>132497225.0</td>
<td>76848390.5</td>
</tr>
<tr>
<td>2009-2010</td>
<td>174403261.0</td>
<td>101153891.4</td>
</tr>
<tr>
<td>2010-2011</td>
<td>124051279.0</td>
<td>71949741.8</td>
</tr>
<tr>
<td>2011-2012</td>
<td>154963000.0</td>
<td>89878540.0</td>
</tr>
<tr>
<td>Promedio</td>
<td>147783472.7</td>
<td>85714414.1</td>
</tr>
</tbody>
</table>

Fuente: LAICA, Informes estadísticos

Los datos en el cuadro de arriba servirán de base para calcular el potencial de producción costarricense de alcohol etílico para su propio consumo como biocombustible.

7.4.2.1. Disponibilidad de tierras

Como ya fue mencionado, no se han realizado hasta la fecha inventarios concisos que puedan deducir la completa disponibilidad de uso de tierras para el cultivo de las distintas especies agroenergéticas, sin embargo, al igual que la palma, estudios que abarcan toda la porción de territorio costarricense fueron realizados para conocer las tierras con capacidad de cultivo de caña de azúcar (1.362.000 ha) y sorgo dulce (94 664 ha), como se puede apreciar respectivamente en las siguientes figuras.
Figura 16. Zonas aptas para el cultivo de caña

Figura 17. Zonas aptas para el cultivo de sorgo dulce
Posteriormente, el Instituto Meteorológico Nacional practicó con la caña de azúcar y el sorgo dulce el mismo ejercicio que con la palma africana, e interceptó los resultados de zonas aptas en los mapas anteriores con los resultados del PNUD, específicamente de los cantones con menor Índice de Desarrollo Humano.

El producto fue la obtención de áreas en los cantones poco desarrollados, por lo general ubicados en el contorno del país, con condiciones edafoclimáticas para llevar a cabo el cultivo de estos energéticos, lo cual corresponde a una deducción en completa coherencia con la filosofía del desarrollo de fuentes agroenergéticas. Dichas áreas poseen extensiones de 487.853,02 ha, para la caña de azúcar y de 1.920,73 ha, para el sorgo dulce (anexo 3).

Debe realizarse un análisis sobre el uso que reciben en la actualidad los terrenos que se perfilan con potencial para sembrar caña de azúcar y sorgo dulce, toda vez que la política de uso de cultivos energéticos debe cumplir condiciones sociales, como lo es el hecho de no reemplazar tierras dedicadas a cultivos para la alimentación humana. De otro modo, no será posible dar garantía que dichos terrenos puedan, en su totalidad, dedicarse a la función agroenergética.

En el caso del sorgo dulce se ha sugerido que pueda ser cultivado por los productores de arroz como rotador de cultivo para el control del arroz rojo, una maleza que provoca entre los arroceros el sufrimiento de pérdidas millonarias.

7.4.3. Capacidad de producción de biocombustibles en Costa Rica

A manera de síntesis de los hechos esbozados anteriormente, sobre el potencial de las fuentes de producción de biodiesel y etanol más promisorias en Costa Rica, se presentan en el cuadro 27 las tres posibilidades o escenarios que podrían darse en los años consecutivos en el acontecer nacional, los cuales dependerán, con mayor fuerza, del grado de voluntad política que exista para integrar los biocombustibles con enfoque de “programa país”.

Escenario conservador: Estipula que no hayan cambios próximos en el impulso a la producción de biocombustibles, por lo que el potencial de producción en los años 2014-2021 se mantendría en la capacidad que existe hasta la fecha (2013), la cual se encuentra en las empresas que transforman los aceites vegetales usados en biodiesel.
Escenario moderado: Es el que sería presenciado en caso de que, además de la producción de los aceites usados que ya se tiene, se estimule el uso de las tierras propuestas por el MAG, de bajo Índice de Desarrollo para realizar plantaciones de palma y usar su aceite como materia prima del biodiesel. En cuanto al potencial de contar con etanol carburante, se presume que sean pactados convenios para que el etanol actualmente exportado sea empleado en la creación de mezclas etanol- gasolina para el consumo local.

Escenario optimista: Este se daría en el caso que las tierras contabilizadas por el IMN de Bajo Índice de Desarrollo con capacidad de uso para realizar plantaciones de palma aceitera, caña de azúcar y sorgo dulce, empezaran a ser utilizadas a la brevedad para este fin. No obstante sus potenciales de producción exceden las necesidades del país, lo que indica que hace falta promover sobre ellas un proyecto que investigue a fondo el uso que se les está dando, puesto que en la actualidad se encuentran comprometidas por varios usos como la agricultura de cultivos tradicionales, infraestructura, pastizales y otros.

El mismo deberá estar orientado a definir claramente el número de hectáreas que puede llegar a emplearse acorde con los límites técnicos máximos de mezcla de biocombustibles y con un uso sostenible del suelo.

En otros tipos de cultivo aún no existe potencial por presentar algún tipo de inconsistencia con las condiciones que deben cumplir las materias primas para producción de biocombustibles.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Used Oils</th>
<th>Palm Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative</td>
<td>253668.5 bbl</td>
<td>-</td>
</tr>
<tr>
<td>Moderate</td>
<td>253668.5 bbl</td>
<td>31000 ha</td>
</tr>
<tr>
<td>Optimistic</td>
<td>253668.5 bbl</td>
<td>1104573 ha</td>
</tr>
</tbody>
</table>

*Average productivity in the period, consistent with the life cycle of the palm

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Sugarcane Syrup</th>
<th>Sorghum Sweet</th>
<th>Total Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Moderate</td>
<td>85714414.1 kg</td>
<td>1482460.3 bbl</td>
<td>23927424.3 bbl*</td>
</tr>
</tbody>
</table>
En los cuadros siguientes se puede observar la conversión de los potenciales de las materias primas en porcentajes de sustitución de los volúmenes del diesel y la gasolina que se espera serán demandados por el sector transporte con miras hacia el año 2021 (ver apéndice 2 sobre demanda de gasolina y diesel del 2014 al 2021).

El objetivo es poder calcular, en un apartado independiente, la disminución que se obtendría cada año, hasta 2021 (hito que marca el objetivo de Costa Rica para convertirse en un país carbono neutral), en emisiones de gases de efecto invernadero, por concepto de disminuir el consumo de combustibles fósiles y a cambio utilizar biocombustibles con factores de emisión de GEI mucho menores.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservador</td>
<td>2.48%</td>
<td>2.37%</td>
<td>2.30%</td>
<td>2.24%</td>
<td>2.17%</td>
<td>2.10%</td>
<td>2.02%</td>
<td>1.98%</td>
</tr>
<tr>
<td>Moderado</td>
<td>2.48%</td>
<td>2.37%</td>
<td>4.91%</td>
<td>7.31%</td>
<td>9.54%</td>
<td>10.82%</td>
<td>11.96%</td>
<td>12.45%</td>
</tr>
<tr>
<td>Optimista</td>
<td>2.48%</td>
<td>2.37%</td>
<td>95.19%</td>
<td>182.96%</td>
<td>264.89%</td>
<td>312.85%</td>
<td>356.12%</td>
<td>375.03%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Los porcentajes de sustitución de diesel por biodiesel del 2014 al 2021 varían considerablemente de un escenario a otro y en el caso del escenario conservador disminuye conforme transcurren los años, debido a que mientras el potencial no aumenta, la demanda sí lo hace. Cabe la eventualidad de que en el periodo mencionado surjan nuevas industrias de producción de biodiesel de aceites reciclados, en cuyo caso el potencial podría empezar a aumentar más allá de la tasa de crecimiento de la demanda.

En relación con los escenarios moderado y optimista, durante los primeros dos años los potenciales de sustitución se mantienen igual que en el escenario conservador porque, de las dos fuentes que los conforman, la palma aceitera empieza a ser productiva hasta después de dos años de haberse realizado la plantación y paulatinamente va incrementando su
productividad hasta alcanzar el cenit, a una edad aproximada de 27 años, cuando la tendencia más bien continua en dirección contraria.

De los tres escenarios, el que resultaría más conveniente desarrollar es el escenario moderado, pues coincide con una ocupación de suelos modesta (cerca del 3% de los terrenos ganaderos, o sea 0.6% del suelo costarricense) y con un intervalo de porcentajes de sustitución de los más comunes y aceptados en el medio internacional por poseer características nobles en mezcla con el diesel e incluso mejorar el estado de algunas de las partes del motor como la bomba y los inyectores.

En el cuadro de porcentajes potenciales de sustitución de gasolina con etanol, se puede apreciar en el escenario moderado que, nuevamente, conforme transcurren los años se encare el potencial, sin embargo la causa real es que este se mantiene y la demanda va en aumento. Las melazas del proceso industrial del azúcar tienen pocas posibilidades de aumentar en el corto plazo ya que dependen directamente del tamaño de las producciones, a su vez asociadas a la cantidad de hectáreas de cultivo sembradas, mismas que tienen un ritmo lento de crecimiento.

El escenario optimista revela que en Costa Rica el tema de los biocombustibles no se presta para despertar controversias reales asociadas a la competencia por el uso del suelo, ya que es un país que en general cuenta con abundancia de recursos biomásicos y una amplia parte de la extensión del territorio está en la capacidad de albergar plantaciones de cultivos como la caña y el sorgo.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderado</td>
<td>1.41%</td>
<td>1.36%</td>
<td>1.31%</td>
<td>1.27%</td>
<td>1.22%</td>
<td>1.18%</td>
<td>1.14%</td>
<td>1.10%</td>
</tr>
<tr>
<td>Optimista</td>
<td>153.20%</td>
<td>147.78%</td>
<td>142.34%</td>
<td>137.95%</td>
<td>133.30%</td>
<td>128.79%</td>
<td>124.07%</td>
<td>120.11%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
7.5. Porcentajes de sustitución, consideraciones finales.

En adición al cálculo del potencial de desarrollo de biocombustibles en el país para sugerir porcentajes de sustitución en el diesel y la gasolina, existen otros aspectos que a la hora de la mezcla sopesan el volumen final que biocombustible que puede ser añadido.

Referente al funcionamiento del biodiesel, la gran mayoría de vehículos tienen la capacidad de funcionar con mezclas B20 y menores sin ninguna modificación o adaptación especial y sin notarse diferencia alguna en el rendimiento respecto del diesel puro. Además, los vehículos más nuevos pueden emplear el 100% de combustible biodiesel sin verse afectado el buen estado de las partes mecánicas.

No obstante, tratándose de automotores más antiguos (construidos antes de 1995), emplear mezclas en mayor proporción implica realizar algunos cambios de relevante importancia por lo que deben ser tomados en cuenta (ver anexo 2).

En el caso del etanol, éste puede ser agresivo hacia los metales y elastómeros por su propia acción, o bien por su cantidad de agua.

Normalmente, el etanol contiene agua que puede afectar a la solubilidad de los contaminantes dañando los sistemas, empeorando las propiedades y generando más residuos indeseables, además de ser una fuente importante de corrosión.

Es por ello que la práctica común es mezclarlo con gasolina en porcentajes que varían del 5% al 10%, ya que no todos los vehículos fabricados en años más recientes, del 2000 en adelante, responden bien a mezclas superiores a la E10 (ver anexo 2).

En otro sentido, de acuerdo con el Reglamento de Biocombustibles (Decreto No. 35091 MAG-MINAET), creado para regular la implementación del Programa Nacional de Biocombustibles, la adición inicial de biocombustibles a los combustibles fósiles, deberá ser de 0% a 8% (volumen/volumen), tratándose del bioetanol y de 0% a 5% (volumen/volumen), en el caso del biodiesel.

No obstante, el mismo reglamento aclara que para ajuste de los porcentajes de mezcla se empleará la vía de Decreto Ejecutivo sobre la base de las condiciones técnicas
correspondientes, por lo que deja abierta la posibilidad para elevar paulatinamente los porcentajes de mezcla por encima de las cantidades iniciales, con las debidas justificaciones de causa.

Por último, en la Quinta Edición del Worldwide Fuel Charter se establece un máximo de 5% el biodiesel con diesel, debido a algunas preocupaciones técnicas no resueltas sobre el efecto del uso del biodiesel en el funcionamiento de los motores de vehículos. En lo que al uso de etanol se refiere, se establece un contenido máximo de oxígeno del 2,7% que equivale a un 10% de etanol.

Es conveniente mencionar que el Worldwide Fuel Charter es preparado por una organización de orden internacional que representa a los fabricantes de vehículos del mundo, con el propósito de generar mejores conocimientos sobre la calidad de combustibles que son requeridos por las tecnologías motoras de los vehículos y para armonizar la calidad de los combustibles en todo el mundo, de acuerdo con las necesidades del motor y del vehículo.

La sustitución de diesel con biodiesel a partir de la realización del escenario moderado, implicaría que la máxima de 5% sería superada hasta el 2017, lo que significa que se cuenta con un periodo de gracia relativamente extenso en el cual las condiciones para no perder el derecho a la garantía del vehículo podrían cambiar.

7.6. Ahorro en la factura petrolera por año por concepto de sustitución de diesel y gasolinas

Para calcular el monto que se puede ahorrar el país de su PIB, por concepto de sustitución de combustibles por biocombustibles, se va a asumir que los precios de importación se mantendrán sobre la misma línea de variación que la mostrada en el cuadro 30, esto porque los precios internacionales del petróleo y sus derivados están sujetos a una gran cantidad de variables, cuyo comportamiento no es predecible en el tiempo.

Cuadro 30. Estadísticas de montos y precios correspondientes a la importación de gasolinas, diesel y otros
Combustibles en el periodo 2006-2011

<table>
<thead>
<tr>
<th>Año</th>
<th>Monto total de importación (USD)</th>
<th>Precio unitario (USD/barril)</th>
<th>Monto total de importación (USD)</th>
<th>Precio unitario (USD/barril)</th>
<th>Factura petrolera (USD)</th>
<th>Precio cóctel (USD/barril)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diesel</td>
<td></td>
<td>Gasolinas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>309,939,000</td>
<td>76.88</td>
<td>329,937,000</td>
<td>77.89</td>
<td>1,241,442,000</td>
<td>71.37</td>
</tr>
<tr>
<td>2007</td>
<td>493,742,000</td>
<td>85.58</td>
<td>371,259,000</td>
<td>86.00</td>
<td>1,444,061,000</td>
<td>78.61</td>
</tr>
<tr>
<td>2008</td>
<td>764,009,173</td>
<td>123.61</td>
<td>487,336,098</td>
<td>104.11</td>
<td>2,091,011,849</td>
<td>109.09</td>
</tr>
<tr>
<td>2009</td>
<td>473,242,841</td>
<td>70.53</td>
<td>352,047,437</td>
<td>73.01</td>
<td>1,239,513,636</td>
<td>68.63</td>
</tr>
<tr>
<td>2010</td>
<td>623,725,156</td>
<td>92.04</td>
<td>456,690,583</td>
<td>89.66</td>
<td>1,603,824,666</td>
<td>86.57</td>
</tr>
<tr>
<td>2011</td>
<td>835,800,000</td>
<td>126.27</td>
<td>700,300,000</td>
<td>116.74</td>
<td>2,149,900,000</td>
<td>116.81</td>
</tr>
<tr>
<td>Promedio</td>
<td>583,409,695</td>
<td>95.82</td>
<td>449,595,020</td>
<td>91.23</td>
<td>1,628,292,192</td>
<td>88.51</td>
</tr>
</tbody>
</table>

Fuente: RECOPE, Estadísticas de importación y exportación y CEPAL, Estadísticas de hidrocarburos 2011.

Por otra parte, el consumo de combustibles diesel y gasolina en los últimos años, cuyas curvas de comportamiento se aprecian en la figura 18, no guarda ninguna relación con el pago realizado anualmente en la factura petrolera, razón por la cual no es posible a través de ésta variable extrapolar el valor de las facturas petroleras que pueda ser esperado para los próximos años.

Figura 18. Consumo de combustibles diesel y gasolina en el sector transporte del país de 2005 a 2011

Fuente: Elaboración propia con datos de Dirección Sectorial de Energía (DSE), Memoria Estadística del Sector Energía y RECOPE, Informes de labores.
Como se observa en el cuadro 31, si en Costa Rica se diera una implementación de biocombustibles, basada en los porcentajes de potencial que resultaron en el escenario moderado, se podrían evitar al final del periodo contemplado $405,7 millones en razón de reducir en 3,11% el monto cancelado por la importación de diesel y gasolina según proyecciones al 2021, con lo cual sería posible realizar trabajos en las vías similares a los que se pretenden realizar para ampliar los carriles de la autopista que se encuentra entre San José y San Ramón, valorados en $524 millones.
Cuadro 31. Ahorros en la factura petrolera percibidos por concepto de incorporación de etanol y biodiesel potenciales a la matriz energética (S)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahorro por uso de biodiesel</td>
<td>14,468,560</td>
<td>13,826,810</td>
<td>28,645,416</td>
<td>42,647,249</td>
<td>55,657,285</td>
<td>63,124,929</td>
<td>69,775,800</td>
<td>72,634,507</td>
<td>360,780,555</td>
</tr>
<tr>
<td>Ahorro por uso de etanol</td>
<td>6,339,290</td>
<td>6,114,492</td>
<td>5,889,695</td>
<td>5,709,857</td>
<td>5,485,059</td>
<td>5,305,221</td>
<td>5,125,383</td>
<td>4,945,545</td>
<td>44,914,542</td>
</tr>
<tr>
<td>Total ahorros en factura petrolera*</td>
<td>20,807,850</td>
<td>19,941,302</td>
<td>34,535,111</td>
<td>48,357,105</td>
<td>61,142,344</td>
<td>68,430,150</td>
<td>74,901,183</td>
<td>77,580,052</td>
<td>405,695,098</td>
</tr>
<tr>
<td>Porcentaje de ahorro en la factura petrolera</td>
<td>1.28</td>
<td>1.22</td>
<td>2.12</td>
<td>2.97</td>
<td>3.75</td>
<td>4.20</td>
<td>4.60</td>
<td>4.76</td>
<td>3.11</td>
</tr>
</tbody>
</table>

*Asume que factura petrolera en próximos años será igual que el promedio de 2006-2011

Fuente: Elaboración propia
7.7. Impacto ambiental provocado por el uso de los biocombustibles

7.7.1. **Gases de efecto invernadero y los biocombustibles**

El más común e importante GEI es el dióxido de carbono (CO$_2$), cuya principal fuente es la quema de combustibles fósiles. Pero también es necesario analizar lo que sucede con los otros GEI como aquellos gases que contienen nitrógeno y azufre (NOx y SOx) y un conjunto de gases industriales como los CFCs. Esto es importante porque los sistemas involucrados en la producción de biocombustibles producen una cantidad de emisiones de gases orgánicos e inorgánicos que son GEI.

El análisis del ciclo vital es un instrumento analítico empleado para calcular el balance de los gases de efecto invernadero, a saber, el resultado de la comparación entre todas las emisiones de gases de efecto invernadero en todas las fases de producción y de uso de un biocombustible y todos los gases de efecto invernadero emitidos en la producción y uso de una cantidad equivalente de energía del combustible fósil correspondiente. Este método analiza sistemáticamente cada componente de la cadena de valor para estimar las emisiones de gases de efecto invernadero (Ver figura 19).
Los balances de gases de efecto invernadero varían en gran medida en función del cultivo y de la ubicación y dependen de los métodos de producción de materias primas (el óxido nitroso, por ejemplo, un gas de efecto invernadero con un potencial de calentamiento global unas 300 veces mayor que el dióxido de carbono, es liberado por fertilizantes nitrogenados), de las tecnologías de conversión, el empleo en los vehículos y los posibles cambios en el uso del suelo (se libera el CO$_2$ que almacena), pero no podría esperarse que el balance total de emisiones de los biocombustibles sea neutro, como fue creído en un principio, cuando se atribuyó a los biocombustibles el carácter de panacea para resolver el problema climático global.
Uno de los factores a tener en cuenta, que complejiza enormemente la evaluación climática, es la deforestación para llevar a cabo la siembra de cultivos energéticos, ya sea directa o indirectamente, la cual genera enormes emisiones por pérdida de masa forestal y cambios en el uso del suelo.

La mayoría de los estudios han puesto de manifiesto que la producción de biocombustibles de primera generación a partir de materias primas actuales resulta en una reducción de las emisiones del orden del 20-60 por ciento en comparación con los combustibles fósiles, siempre que se empleen los sistemas más eficientes y que se excluya el carbono originado por el cambio del uso de la tierra. La amplitud del rango es una característica asociada directamente con el rendimiento de cada cultivo para generar biocombustible.

Brasil, un país que cuenta con una extensa experiencia en la producción de etanol a partir de la caña de azúcar, presenta unas reducciones incluso mayores. Aunque los biocombustibles de segunda generación siguen resultando insignificantes a nivel comercial, suelen ofrecer reducciones del orden del 70-90 por ciento en comparación con el diésel fósil y el petróleo, sin contabilizar el carbono emitido debido al cambio del uso de la tierra (Figura 20).

100 Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2008.
Nota: Comprende las emisiones “evitadas” por la generación de productos complementarios, como orujos o piensos para el ganado y por la captura de CO₂ por parte de los cultivos. Excluye las repercusiones del cambio en el uso de la tierra.

Figura 20. Reducciones en las emisiones de gases de efecto invernadero de determinados combustibles en comparación con los combustibles fósiles

7.7.2. Emisiones resultantes de la combustión de biodiesel

Respecto a las emisiones ambientales de gases y partículas de la quema de biodiesel, EPA ha inspeccionado un gran compendio de estudios, cuyo resultado está ilustrado en el siguiente cuadro.¹⁰¹

<table>
<thead>
<tr>
<th>Tipo de emisión</th>
<th>B100</th>
<th>B20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promedio de acuerdo al EPA-USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de hidrocarburos no quemados</td>
<td>-67%</td>
<td>-20%</td>
</tr>
<tr>
<td>Monóxido de carbono</td>
<td>-48%</td>
<td>-12%</td>
</tr>
<tr>
<td>Material de partícula</td>
<td>-47%</td>
<td>12%</td>
</tr>
<tr>
<td>NOx</td>
<td>±2%</td>
<td>±2%</td>
</tr>
</tbody>
</table>

¹⁰¹ DieselloVerde, Emisiones de biodiesel
<table>
<thead>
<tr>
<th>No regulado</th>
<th>Azufre</th>
<th>PAH (hidrocarburos policíclicos aromáticos)</th>
<th>nPAH (nitrato PAH's)</th>
<th>Hidrocarburos (ozono)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-100%</td>
<td>-80%</td>
<td>-90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-20%</td>
<td>-13%</td>
<td>-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-10%</td>
</tr>
</tbody>
</table>

Fuente: www.dieselloverde.com

EPA usa seis contaminantes de criterio como indicadores de la calidad de aire, y ha establecido para cada uno de ellos una concentración máxima sobre la cual pueden ocurrir efectos adversos a la salud humana. Los resultados de pruebas de emisiones de motores que utilizan biodiesel son substancialmente menores en estos seis contaminantes que son: monóxido de carbono, micropartículas (más pequeñas que 10 micrones), hidrocarburos (asociados a la formación de ozono), dióxido de nitrógeno, dióxido de azufre y plomo.

Ozono-Hidrocarbonos (niebla toxica): Es menor en el biodiesel que en diesel de petróleo, el potencial de formación de ozono en emisiones de biodiesel es 50 por ciento menos que en emisiones de diesel de petróleo.

Emisiones del azufre: Con el biodiesel, las emisiones de óxidos de azufre y sulfatos (los mayores componentes de lluvia ácida) son en la práctica eliminadas.

Monóxido de carbono: Las emisiones de monóxido de carbono (un gas tóxico) del biodiesel tienen un promedio 48 por ciento menos que el diesel de petróleo.

Micro partículas: Respirar micro partículas tiene un efecto adverso para la salud humana. Las emisiones de micro partículas provenientes de motores con biodiesel son 47 por ciento menos que las emisiones de micro partículas generadas por diesel de petróleo.

Hidrocarburos: Las emisiones de escape de hidrocarburos combustibles (mayor contribuyente a la formación localizada de niebla toxica y ozono) tienen un promedio de 67 por ciento menos en el biodiesel que en emisiones de diesel de petróleo.
Óxido de Nitrógeno: Reaccionan con los compuestos orgánicos volátiles para formar niebla toxica. También son los mayores componentes de la lluvia acida. Las emisiones de NOx del biodiesel aumentan o disminuyen de acuerdo al estado de mantenimiento del motor.

Las emisiones de NOx de biodiesel puro (100%) tienen un incremento de +/- 2 por ciento. Sin embargo, la ausencia de azufre en el biodiesel permite el uso de tecnologías del control de NOx que no pueden ser utilizadas con diesel convencional. Adicionalmente, algunas compañías han desarrollado agregados que reducen las emisiones de NOx en mezclas de biodiesel (aditivos).

Cabe mencionar que en el caso de poderse producir un biodiesel de muy alta calidad, cuyo número de cetano sea mayor que 68, las emisiones de NOx serían iguales o menores que las provenientes del diésel fósil.102

Hidrocarburos aromáticos policíclicos (BAH) y nitratos de hidrocarburo aromáticos policíclicos (nPAH): Han sido identificados como compuestos cancerígenos. En pruebas de efectos de salud y uso de biodiesel, los compuestos BAH se reducen en un 75 a 85%, a excepción de benzo (un) antraceno, que fue reducido aproximadamente 50 por ciento. Los compuestos dirigidos de nPAH se reducen también dramáticamente con biodiesel, con 2-nitrofluoreno y 1-nitropyreno reducido en 90 por ciento, y el resto de los compuestos de nPAH tienen una reducción de bajo nivel solamente.

7.7.3. Emisiones resultantes de la combustión de etanol

En relación con el etanol, algunos de los biocombustibles derivados del cultivo de granos pueden contribuir a reducir las emisiones de GEI en el transporte, pero estos se limitan a aquellos que presentan balances energéticos y de carbono altamente positivos, a su vez relacionados con la obtención en un marco de prácticas agrícolas sustentables.

102 Instituto Interamericano de Cooperación para la Agricultura (IICA), 2007: 7.
En el caso del bioetanol con base en maíz, remolacha o trigo el balance energético, altamente incidente en el balance de emisiones, es bastante pobre lo que hace desaconsejable apostar hacia esas tecnologías.

Acerca de las emisiones despedidas en la etapa de uso en transporte del bioetanol, un estudio realizado en el año 2010 por la Facultad de Ingeniería de la Universidad de Al-Kufa en el motor de un vehículo ciclo Otto de un solo cilindro y carburado, empleando distintas mezclas etanol-gasolina, demostró que, a grandes rasgos, las concentraciones de CO y HC disminuyen conforme aumenta el porcentaje de etanol en la mezcla (ver figuras 21 y 22).

![Figura 21](image)

Figura 21. Efecto de porcentajes variables de volumen de etanol en la mezcla de combustible sobre las emisiones de HC para diferentes cargas de motor
Figura 22. Efecto de porcentajes variables de volumen de etanol en la mezcla de combustible sobre las emisiones de CO para diferentes cargas de motor

Las razones son el contenido de oxígeno en la fórmula química del etanol que provoca un proceso de combustión más estequiométrico y, por ende, más completo (conocido como *leaning effect*), además de la reducción en la concentración de los átomos de carbono, la alta difusividad molecular y los altos límites de flamabilidad que mejoran el proceso de mezcla del combustible con el comburente y por lo tanto la eficiencia de combustión.

Cuando el proceso de combustión es más completo a causa del *leaning effect* el CO₂ sustituye la formación del CO e hidrocarburos no quemados, por lo que es de esperarse que la concentración de CO₂ se incremente, como se observa en la figura 23.
El uso de la gasolina mezclada con etanol provoca el aumento de las emisiones de formaldehído, acetaldehído y acetona hasta 5.12–13.8 veces más que las de la gasolina sin etanol. No obstante, el daño al ambiente causado por los aldehídos emitidos es mucho menor que aquel causado por los PAH’s, de los cuales es responsable la quema de gasolina. Por lo tanto, el contenido de etanol en las mezclas de combustible puede promover una mejora de la calidad del aire en comparación con la gasolina.103

7.7.4. Ahorro en la cuota de emisiones de GEI del sector transporte en el periodo 2014-2021

En general, las emisiones de gases de efecto invernadero por la combustión de energéticos se calculan multiplicando el consumo de combustible por el factor de emisión correspondiente a cada combustible.

En este proceso, el carbono se emite inmediatamente como CO₂. En adición, se emite carbono en formas como monóxido de carbono (CO), metano (CH₄), óxido de nitrógeno (N₂O) y otros compuestos orgánicos volátiles (COV). Con el fin de homologar el efecto invernadero de estos gases, las emisiones de gases no-CO₂ pueden expresarse en términos de CO₂ equivalente (CO₂e).

Las emisiones de CO₂ por combustión dependen del contenido de carbono del combustible considerado y son independientes de la tecnología de combustión empleada. Las emisiones de gases no-CO₂, por otro lado, son altamente dependientes de la tecnología de combustión empleada y del estado de mantenimiento de estas tecnologías, entre otros elementos.

Debido a lo anterior, se emplean factores de emisión de gases de efecto invernadero estándar cuando no existe información detallada de las tecnologías específicas utilizadas en el proceso de combustión y su estado de mantenimiento.

En el caso particular del proyecto, se trata de una generalización del ahorro de emisiones de GEI que se originaría dentro del sector transporte año tras año (de 2014 a 2021) si los porcentajes hallados de potencial de mezcla de biocombustibles, en efecto fueran explotados, por lo que el cálculo está basado en los factores de emisión estándar del diesel y la gasolina, y en los factores de reducción por cada litro de combustible fósil equivalente (biodiesel o etanol) que sustituya al diesel o la gasolina.

En el cuadro 33 se exponen los supuestos de partida para determinar los ahorros de emisiones de gases de efecto invernadero que se producen dentro del periodo señalado por sustituir en los combustibles fósiles del transporte los porcentajes potenciales de biocombustibles del escenario moderado.
Cuadro 33. Información de partida para estimar el ahorro en emisiones GEI

<table>
<thead>
<tr>
<th>Factor</th>
<th>Unidad</th>
<th>Cifra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones de CO₂e diesel</td>
<td>kg CO₂e/l</td>
<td>2.75</td>
</tr>
<tr>
<td>Emisiones de CO₂e gasolina</td>
<td>kg CO₂e/l</td>
<td>2.38</td>
</tr>
<tr>
<td>Reducción GEI biodiesel de palma</td>
<td>%</td>
<td>56</td>
</tr>
<tr>
<td>Reducción GEI biodiesel de aceites usados</td>
<td>%</td>
<td>88</td>
</tr>
<tr>
<td>Reducción GEI etanol de caña</td>
<td>%</td>
<td>78</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos de documentos varios

Los cálculos consideraron por separado los ahorros que podría producirse al incorporar etanol o biodiesel hechos a partir de cada una de las materias primas que tienen potencial para utilizarse en Costa Rica y posteriormente fueron ponderados dichos ahorros en función del porcentaje aportado en la sustitución total, ya fuera de gasolina o de diesel.

Cuadro 34. Porcentajes de emisiones ahorradas en el sector transporte por uso del potencial de biocombustibles del escenario moderado, periodo 2014-2021

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahorros por sustitución de diesel (%)</td>
<td>2.18</td>
<td>2.09</td>
<td>3.48</td>
<td>4.81</td>
<td>6.04</td>
<td>6.73</td>
<td>7.34</td>
<td>7.60</td>
</tr>
<tr>
<td>Ahorros por sustitución de etanol (%)</td>
<td>1.10</td>
<td>1.06</td>
<td>1.02</td>
<td>0.99</td>
<td>0.95</td>
<td>0.92</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>Ahorros totales al sector transporte (%)</td>
<td>3.28</td>
<td>3.15</td>
<td>4.50</td>
<td>5.79</td>
<td>6.99</td>
<td>7.65</td>
<td>8.23</td>
<td>8.46</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En las dos figuras siguientes se hacen comparaciones entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución de biocombustibles para ilustrar que no son equivalentes entre sí, aunque podrían ser muy similares y que dicha relación depende del tipo de cultivo que sea utilizado para la producción del biocombustible.

La figura 24, donde se comparan los porcentajes de emisiones de CO₂e ahorrados con los porcentajes de diesel sustituidos en función de presentarse un escenario moderado, muestra la curva de emisiones por debajo de la curva de consumos, lo cual se debe a que los biocombustibles no tienen un balance de emisiones 100% positivo respecto de los
combustibles fósiles, pero sí pueden llegar a presentar porcentajes de ahorro de emisiones muy importantes en comparación con el uso de los últimos.

En el caso particular, la sustitución de diesel puede realizarse con biodiesels hechos de aceites usados y de aceite de palma. La razón por la cual las curvas de comportamiento tienden a divergir después del segundo año es que a partir de ese momento es que se puede empezar a mezclar con diesel el biodiesel hecho de la palma y cada vez en mayores proporciones, mismo que tiene un porcentaje de reducción de emisiones menor que el biodiesel hecho de aceites usados, el cual estaría siendo utilizado en forma única durante los primeros dos años.

De lo anterior se puede concluir que cuanto mejor sea el balance de emisiones del biodiesel, más cercana será la relación entre el porcentaje de biocombustible sustituido y el porcentaje de emisiones evitadas. En el ejemplo particular es el biodiesel de aceites usados el que permite la relación más cercana.

Fuente: Elaboración propia

Figura 24. Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución de diesel
La figura 25, que realiza la comparación entre los porcentajes de ahorros de emisiones y los porcentajes de sustitución de gasolina, muestra una relación lineal entre ambas debida al uso de una sola materia prima a lo largo de todo el periodo para producir el etanol, las melazas de la caña de azúcar, y puede observarse además que en comparación con el biodiesel de aceites usados, este último cuenta con un mejor balance de emisiones.

![Diagrama Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución de gasolina](image)

Fuente: Elaboración propia

Figura 25. Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución de gasolina

8. **Conclusiones**

Existe en el país la capacidad para producir biocombustibles y sustituir en el transporte, a partir del año próximo y hasta el 2021, porcentajes que van de 1.10% a 1.41%, en la gasolina, y de 2.48% a 12.45%, en el diesel, tomando en consideración el escenario moderado evaluado en este documento.
El ahorro de emisiones de gases CO$_2$e, que podría generar el uso de biocombustibles en el transporte del 2014 al 2021, va de 2.18% a 7.60% por consumos de diesel evitados y de 0.86% a 1.10% por consumos de gasolina evitados.

Los porcentajes de mezcla sugeridos (escenario moderado) podrían evitar al final del periodo 405.7 millones en razón de reducir en 3.11% el monto total que se tendría que cancelar por la importación de diesel y gasolina, según proyecciones, de 2014 a 2021.

La capacidad industrial instalada en Costa Rica para destilación y deshidratación de alcohol etílico podría sustituir hasta un 17,2% de la gasolina que se espera será demandada en el 2014.

Los estudios de prefactibilidad económica del biodiesel de Jatropha, higuerilla y palma incluidos en el documento funcionan como referencias para considerar su competitividad frente a los combustibles fósiles, así como la capacidad financiera del país para incentivar proyectos de producción de biocombustibles.

En la actualidad no es conveniente desde un punto de vista económico, utilizar las exportaciones de aceite de palma para la producción de biodiesel.

Las oportunidades de desarrollo para la cadena de valor agregado compuesta por el biodiesel obtenido a partir de palma aceitera, estarían determinadas por las condiciones de distribución de la superficie de siembra y la estructura de mercado.

El alcohol etílico como carburante sustituye al MTBE, compuesto utilizado en la gasolina reformulado o súper para aumentar el octanaje, el cual tiene efectos nocivos sobre la salud y el medio ambiente.

Entre el 70% y el 90% del costo de producción del biodiesel depende del costo de la materia prima. Es por esta razón que materias primas como la jatropha, la higuerilla y los aceites de frituras, por su bajo costo de obtención, se vislumbran como insumos tentativos para la producción del biodiesel.
Las principales desventajas en cuanto a calidad del biodiesel de aceite de higuera son su bajo índice de cetano y su alta viscosidad. Las mezclas B60 y B30, aunque cumplen con la especificación del índice de cetano poseen valores de la viscosidad por fuera del rango recomendado en las normas. Las mezclas B15 y B5 cumplen especificaciones y es de esperar un funcionamiento adecuado en los motores que las utilicen.

El aceite de ricino (higuera) es una sustancia adecuada para producir biodiesel, debido a que es el único aceite vegetal soluble en alcohol, y por lo tanto no se requiere la aplicación de calor y la consiguiente demanda de energía para transformarlo en combustible.

El crecimiento promedio del consumo de hidrocarburos en los últimos 20 años fue del 4,7% anual por lo que la demanda de hidrocarburos se duplicará en 15 años.

A nivel mundial las mezclas probadas con mejores resultados han sido B2, B5, B20 y B100 y en el caso de etanol los rendimientos sobresalientes se han dado en mezclas de E5, E10 y E85.

La proyección de consumo de los combustibles en el transporte terrestre de Costa Rica, basado en datos publicados por Recope, muestra que contrario a esperarse que en los últimos años el consumo presente descensos motivados por los altos precios, este más bien continuará aumentando.

Mezclas de hasta 5% funcionan como aditivos que ayudan a mejorar significativamente la propiedad lubricante y permiten una combustión más completa.

Los aceites vegetales cuentan con ventajas sobre los aceites derivados del petróleo que los hacen adecuados para el uso como biolubricantes.

Los ésteres metílicos tienen características físicas químicas que lo facultan para sustituir a los vólatiles y dañinos solventes de origen petroquímicos.

Se necesita redoblar esfuerzos de investigación y desarrollo para mejorar los rendimientos de producción y el precio de equilibrio del biodiesel de Jatropha.
No es del todo concluyente que la actual escasez relativa y la carestía de ciertos bienes agrícolas básicos se deba como causa primordial al surgimiento comercial de los biocombustibles.

La propuesta, formalizada en 2010, de convertir a Costa Rica en un país carbono-neutral en el 2021, será difícil de alcanzar de mantenerse la cantidad actual de combustibles fósiles importados para cubrir la demanda energética.

El potencial hallado para un escenario optimista, con base en el mapeo realizado en el IMN de los índices de desarrollo humano, es un estudio preliminar sobre el cual elaborar futuras investigaciones para conocer la cantidad real de tierras disponibles.

Se requiere para el desarrollo de los biocombustibles de incentivos a los productores: asistencia técnica, desarrollo de la capacidad instalada y mejoras a la infraestructura del país (carreteras), exoneración de impuestos, acceso a créditos, transparencia en la comercialización.

Los biocombustibles no reemplazan los combustibles fósiles, se encuentran formando mezclas en menor proporción, por lo que son una medida complementaria para aminorar la dependencia a los combustibles fósiles, pero no la solución.

Las políticas de producción y uso de biocombustibles deben estar orientadas a crear planes de sustitución doméstica de los combustibles fósiles. Ver el desarrollo de los cultivos energéticos como una posibilidad para ampliar las exportaciones crea incoherencias con el verdadero propósito de los biocombustibles. Los biocombustibles al tener que ser transportados, consumen combustibles que provocan nuevas generaciones de CO₂.

Se deben mantener controles adecuados para evitar tanto el cambio directo, como el cambio indirecto en el uso de la tierra. En este sentido, por nada podrán sustituirse cultivos establecidos con cultivos energéticos, para evitar la migración hacia otros tipos de suelos.

La propuesta del uso de terrenos que se perfilan con potencial para sembrar cultivos energéticos, debe cumplir condiciones sociales, como no reemplazar tierras dedicadas a
cultivos para la alimentación humana. De otro modo, no será posible dar garantía que puedan, en su totalidad, dedicarse a la función agroenergética.

Una mayoría de la producción de biodiesel en Costa Rica es realizada con propósitos de autoconsumo.

El uso de biodiesel como sustituto del diesel provoca reducciones en la emisión de los siguientes contaminantes: S, HC, CO, CO₂, material particulado, compuestos NOₓ y SOₓ.

El uso de etanol como sustituto de la gasolina provoca reducciones en la emisión de los siguientes contaminantes: CO, HC y PAH’s; sin embargo otros como el CO₂, el formaldehído, acetaldehído y acetona más bien aumentan. El balance neto por último, termina favoreciendo el ahorro en la emisión de compuestos precursores de calentamiento global (CO₂e).

9. **Recomendaciones**

Es importante resaltar que la voluntad política impulsaría la participación de los biocombustibles en la matriz energética, para ello es necesario establecer marcos regulatorios específicos, que fomenten la participación de diferentes actores y que creen incentivos tributarios para el desarrollo de estas fuentes.

Es urgente que en el país se impulse una diversificación e inclinación de la matriz energética hacia fuentes renovables y limpias, necesidad que podría en parte ser cubierta por el desarrollo de los biocombustibles.

Realizar una revisión detallada a cada una de las categorías en que está dividido el uso de suelos en Costa Rica para determinar subuso, sobreuso, capacidad de uso y otros aspectos socioambientales relacionados, de manera que se deduzca la disponibilidad real de tierras para el cultivo de energéticos.

En el caso del sorgo dulce se ha sugerido que pueda ser cultivado por los productores de arroz como rotador de cultivo para el control del arroz rojo, una maleza que provoca entre los arroceros el sufrimiento de pérdidas millonarias.
Promover los sistemas de plantaciones de cultivos energéticos, como la Jatropha, la higuerilla y el sorgo dulce, intercalados o en rotación con otros tipos de cultivos, a cambio del fomento de las grandes extensiones de monocultivos.

Fomentar la asociación la higuerilla con plantaciones de café, conformando cercas o sombras, muy importantes en el sistema de siembra de los cafetales.

Un mayor aprovechamiento del tempate podría lograrse utilizándolo en linderos de campos agrícolas o ganaderos, e incluso en función de cultivos intermedios, como parte de sistemas de producción de cultivos alimenticios intercalados por cultivos energéticos.

Sería conveniente explotar el aceite de higuerilla para generar productos de valores agregados supremos al biodiesel en nichos de mercado variables.

Es conveniente incentivar la promoción de biocombustibles avanzados, como el etanol lignocelulósico, el uso de cultivos en tierras marginales, el biodiesel de microalgas y el uso de los desechos agrícolas, así como las plantaciones forestales energéticas para sortear problemáticas asociadas a la competición con el uso del suelo para la agroalimentación.

Cada nuevo proyecto de producción de un biocombustible debe contemplar la evaluación del ciclo de vida del producto, para verificar que cierre con un balance de emisiones positivo.

Se debe considerar efectuar estudios de factibilidad técnica-económica, concisos y con bajos porcentajes de incertidumbre, a partir de los cuales determinar la capacidad financiera del país para incentivar proyectos de producción de biocombustibles.

También es recomendable dedicar mayores recursos humanos y económicos a la investigación y promoción de los usos alternativos de los aceites vegetales, como sustitutos de derivados de combustibles fósiles.

Se debe continuar promoviendo esfuerzos para el mejoramiento tanto de los materiales genéticos como de los rendimientos de producción industrial.
No se recomienda la vinculación de la industria de producción agroalimentaria con la industria agroenergética, excepto en el caso de la agroindustria azucarera, siempre y cuando el etanol sea producido de mieles residuales. De esta manera se evita incurrir en juegos de producción dominados por el precio de mercado de los productos, que a la larga podría llevar a encarecer mercancías demandadas para la alimentación.

10. Bibliografía

Agriforenergy II. (2011). *Pure plant oil as fuel: Technical aspects and legislative context* (pp. 20, 28). Germany. Retrieved from

Historical Biodiesel Operating Margins. (2012). Center for agricultural and Rural Development. Retrieved from
http://www.card.iastate.edu/research/bio/tools/hist_bio_gm.aspx

Ministro alemán pide parar producción de biocombustible. (2012, Agosto). *Deutsche Welle (DW).* Germany. Retrieved from http://www.dw.de/ministro-alem%C3%A1n-pide-parar-producci%C3%B3n-de-biocombustible/a-16179580-1

¿Por qué cultivar la jatropha curcas? (2012). Instituto para el Desarrollo de Energías Alternativas -INDESENA-.

160

http://www.sep.ucr.ac.cr/noticias/Anuncio_SEP_junio09.pdf

11. Apéndices

Apéndice 1. Detalle del método empleado para evaluar el potencial de cultivos para producción de biodiesel

<table>
<thead>
<tr>
<th>Criterio de evaluación</th>
<th>Escala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento de conversión (l/ha)</td>
<td>1870,20-2477,65=3 2477,65-3085,10=6 3085,10-3692,55=9 3692,55-4300=12</td>
</tr>
<tr>
<td>Balance energético (respecto a diesel)104</td>
<td>3,00-4,50=3 4,50-6,00=6 6,00-7,50=9 7,50-9,00=12</td>
</tr>
<tr>
<td>Costo de producción</td>
<td>0,70-0,83=3 0,83-0,95=6 0,95-1,08=9 1,08-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Balance neto de emisiones (kg CO$_2$e)105</th>
<th>1,20=12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-97,00$-</td>
<td>$23,25=12$</td>
</tr>
<tr>
<td>$23,25=12$</td>
<td>$143,50=9$</td>
</tr>
<tr>
<td>$143,50=9$</td>
<td>$263,75=6$</td>
</tr>
<tr>
<td>$263,75=6$</td>
<td>$384=3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del germoplasma</th>
<th>Baja=4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media=8</td>
</tr>
<tr>
<td></td>
<td>Alta=12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características físico químicas del biodiesel</th>
<th>Regulares=4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buenas=8</td>
</tr>
<tr>
<td></td>
<td>Excelentes=12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo de oportunidad</th>
<th>Bajo=12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medio=8</td>
</tr>
<tr>
<td></td>
<td>Alto=4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Los límites de las escalas para evaluar los criterios cuantitativos están dados por el valor mínimo tomado en cada criterio por los cultivos y el valor máximo. Para poder evaluar los cultivos con base en las escalas determinadas, se dividen las mismas entre el número de ámbitos que se desean (4), los cuales corresponderán a la evaluación misma, en el sentido que a continuación la puntuación máxima que puede ser alcanzada (12) también se divide entre el número de ámbitos y el cociente de la división se asigna en modo sumatorio a cada uno de los ámbitos en el orden de menor a mayor o viceversa, dependiendo de la naturaleza del criterio evaluado.

Para la asignación de la escala de evaluación de criterios cualitativos se procedió de manera más sencilla. Basta dividir la puntuación máxima que puede ser alcanzada (12) entre cada uno de los términos en que fue dividida la escala para la evaluación (como alto, medio, bajo) y el cociente de la división se asigna en modo sumatorio a cada uno de los términos en el orden de menos a más.

Determinación del tamaño de los ámbitos en las escalas de medición para evaluar criterios cuantitativos

\[
\text{Tamaño del ámbito} = \frac{\text{Tamaño de la escala}}{\# \text{ de ámbitos}}
\]

Determinación de la escala de medición de criterios cualitativos

<table>
<thead>
<tr>
<th>Términos de la evaluación</th>
<th>Puntuación asignada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>Bajo</td>
</tr>
<tr>
<td>Bueno</td>
<td>Medio</td>
</tr>
<tr>
<td>Regular</td>
<td>Alto</td>
</tr>
</tbody>
</table>

En el caso de la evaluación macro de los cultivos con base en el criterio denominado “características físico-químicas del biodiesel”, se debió antes hacer una evaluación a un nivel micro la cual contemplara el detalle de los datos de cada una de las características sobresalientes y partir del ponderado del conjunto de estas, decidir la calificación merecida por los cultivos en relación con la generalidad de las características físico-químicas de los biodiesels respectivos. Lo anterior se puede apreciar de una forma más clara en el cuadro 50.

<table>
<thead>
<tr>
<th>Características físico-químicas del biodiesel</th>
<th>Unidad</th>
<th>Jatropha</th>
<th>Puntaje</th>
<th>Higuerilla</th>
<th>Puntaje</th>
<th>Palma aceitera</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poder calorífico</td>
<td>MJ/kg</td>
<td>40,86</td>
<td>12</td>
<td>37,52106</td>
<td>3</td>
<td>39,61107</td>
<td>9</td>
</tr>
<tr>
<td>Número de cetano</td>
<td>______</td>
<td>52,10108</td>
<td>6</td>
<td>38,00</td>
<td>3</td>
<td>68,00</td>
<td>12</td>
</tr>
</tbody>
</table>

106 Benavides, Benjumea & Pashova, 2007: 146.
107 Quezada, 2007:25.
<table>
<thead>
<tr>
<th>Viscosidad cinemática a 40°C</th>
<th>mm²/s</th>
<th>4,93</th>
<th>12</th>
<th>14,89</th>
<th>3</th>
<th>4,49</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto nube o enturbiamiento</td>
<td>°C</td>
<td>0,50</td>
<td>12</td>
<td>(-4,00)</td>
<td>12</td>
<td>14,00</td>
<td>3</td>
</tr>
<tr>
<td>Punto de fluidez</td>
<td>°C</td>
<td>0,00</td>
<td>6</td>
<td>(-18,00)</td>
<td>12</td>
<td>12,00</td>
<td>3</td>
</tr>
<tr>
<td>Estabilidad de la oxidación</td>
<td>Horas</td>
<td>2,50</td>
<td>3</td>
<td>20,06</td>
<td>9</td>
<td>26,00</td>
<td>12</td>
</tr>
<tr>
<td>Puntaje total*</td>
<td></td>
<td>51</td>
<td>42</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Regulares=0-24, Buenas=24-48, Excelentes=48-72

Fuente: Elaboración propia con información de autores varios

Apéndice 2. Estimación de la demanda de diesel y gasolina por el transporte de los años 2013 a 2021

Cuadro 37. Estimaciones de demanda a mediano plazo de diesel y gasolinas para el transporte terrestre, 2013-2021

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel (miles de bbl/día)</td>
<td>23,32</td>
<td>24,38</td>
<td>25,48</td>
<td>26,24</td>
<td>27,05</td>
<td>27,91</td>
<td>28,84</td>
<td>29,83</td>
<td>30,58</td>
</tr>
<tr>
<td>Diesel (miles de bbl/año)</td>
<td>8511,80</td>
<td>8898,70</td>
<td>9300,20</td>
<td>9603,84</td>
<td>9873,25</td>
<td>10187,15</td>
<td>10526,6</td>
<td>10917,78</td>
<td>11160,15</td>
</tr>
<tr>
<td>Gasolinas (miles de bbl/día)</td>
<td>18,67</td>
<td>19,36</td>
<td>20,07</td>
<td>20,78</td>
<td>21,5</td>
<td>22,25</td>
<td>23,03</td>
<td>23,84</td>
<td>24,69</td>
</tr>
<tr>
<td>Gasolinas (miles de bbl/año)</td>
<td>6814,55</td>
<td>7066,4</td>
<td>7325,55</td>
<td>7605,48</td>
<td>7847,50</td>
<td>8121,25</td>
<td>8405,95</td>
<td>8725,44</td>
<td>9013,12</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos de RECOPE, Proyecto de Modernización y Ampliación de Refinería de Moín, 2012.

Apéndice 3. Potencial de producción y porcentajes de sustitución de diesel y de gasolina en distintos escenarios, al 2021

Producción de biodiesel y porcentajes de sustitución de diesel

110 Cantor, Rodríguez & Sierra, 2010: 93.
111 Ibidem
112 Cantor, Rodríguez & Sierra, 2010: 95.
113 Universidad de Antioquia, Aspectos físicoquímicos del aceite de Jatropha y otras aplicaciones industriales, 2011.
Cuadro 38. Potencial de producción de biodiesel al 2021: Escenario conservador

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencial de producción aceites usados (bbl)</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
</tr>
<tr>
<td>Barriles equivalentes de diesel (BED)*</td>
<td>220691.60</td>
<td>220691.60</td>
<td>220691.60</td>
<td>220691.60</td>
<td>220691.60</td>
<td>220691.60</td>
<td>220691.60</td>
<td>220691.60</td>
</tr>
</tbody>
</table>

*Cada barril de biodiesel equivale a 0.87 barriles de diesel

Fuente: Elaboración propia

Cuadro 39. Porcentaje de sustitución de diesel al 2021: Escenario conservador

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aporte potencial de biodiesel aceites usados (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Porcentaje de sustitución de diesel fósil (%)</td>
<td>2.48</td>
<td>2.37</td>
<td>2.30</td>
<td>2.24</td>
<td>2.17</td>
<td>2.10</td>
<td>2.02</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro 40. Potencial de producción de biodiesel al 2021: Escenario moderado

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencial de producción aceites usados (bbl)</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
<td>253668.50</td>
</tr>
<tr>
<td>Potencial de producción palma africana (bbl)</td>
<td>0.00</td>
<td>0.00</td>
<td>287797.12</td>
<td>575594.23</td>
<td>863391.35</td>
<td>1055256.09</td>
<td>1247120.83</td>
<td>1343053.21</td>
</tr>
<tr>
<td>Total</td>
<td>253668.50</td>
<td>253668.50</td>
<td>541465.62</td>
<td>829262.73</td>
<td>1117059.85</td>
<td>1308924.59</td>
<td>1500789.33</td>
<td>1596721.71</td>
</tr>
<tr>
<td>Barriles equivalentes de diesel (BED)*</td>
<td>220691.60</td>
<td>220691.60</td>
<td>471075.09</td>
<td>721458.58</td>
<td>971842.07</td>
<td>1138764.39</td>
<td>1305686.72</td>
<td>1389147.88</td>
</tr>
</tbody>
</table>

*Cada barril de biodiesel equivale a 0.87 barriles de diesel

Fuente: Elaboración propia

Cuadro 41. Porcentaje de sustitución de diesel al 2021: Escenario moderado

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aporte potencial de biodiesel aceites usados (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>46.85</td>
<td>30.59</td>
<td>22.71</td>
<td>19.38</td>
<td>16.90</td>
<td>15.89</td>
</tr>
<tr>
<td>Aporte potencial de diesel (bbl)</td>
<td>0.00</td>
<td>0.00</td>
<td>53.15</td>
<td>69.41</td>
<td>77.29</td>
<td>80.62</td>
<td>83.10</td>
<td>84.11</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Total</td>
<td>253668.5</td>
<td>253668.5</td>
<td>253668.5</td>
<td>253668.5</td>
<td>253668.5</td>
<td>253668.5</td>
<td>253668.5</td>
<td>253668.5</td>
</tr>
<tr>
<td>Barriles equivalentes de diesel (BED)*</td>
<td>220691.60</td>
<td>220691.60</td>
<td>9142202.67</td>
<td>18063713.7</td>
<td>26985224.8</td>
<td>32932898.9</td>
<td>38880572.9</td>
<td>41854409.9</td>
</tr>
</tbody>
</table>

*Cada barril de biodiesel equivale a 0.87 barriles de diesel

Fuente: Elaboración propia

Cuadro 43. Porcentaje de sustitución de diesel al 2021: Escenario optimista

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aporte potencial de biodiesel aceites usados (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>2.41</td>
<td>1.22</td>
<td>0.82</td>
<td>0.67</td>
<td>0.57</td>
<td>0.53</td>
</tr>
<tr>
<td>Aporte potencial de biodiesel palma (%)</td>
<td>0.00</td>
<td>0.00</td>
<td>97.59</td>
<td>98.78</td>
<td>99.18</td>
<td>99.33</td>
<td>99.43</td>
<td>99.47</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Porcentaje de sustitución de diesel fósil (%)</td>
<td>2.48</td>
<td>2.37</td>
<td>95.19</td>
<td>182.96</td>
<td>264.89</td>
<td>312.85</td>
<td>356.12</td>
<td>375.03</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Producción de etanol y porcentajes de sustitución de gasolina

Cuadro 44. Potencial de producción de etanol al 2021: Escenario moderado
---|---|---|---|---|---|---|---|---
Potencial de producción de melazas (bbl) | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32
Barrales equivalentes de gasolina (BEG)* | 99334.42 | 99334.42 | 99334.42 | 99334.42 | 99334.42 | 99334.42 | 99334.42 | 99334.42

*Cada barril de etanol equivale a 0.67 barriles de gasolina

Fuente: Elaboración propia

---|---|---|---|---|---|---|---|---|
Aporte potencial de etanol de melazas (%) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Porcentaje de sustitución de gasolina (%) | 1.41 | 1.36 | 1.31 | 1.27 | 1.22 | 1.18 | 1.14 | 1.10 |

Fuente: Elaboración propia

Cuadro 45. Porcentaje de sustitución de etanol al 2021: Escenario moderado

---|---|---|---|---|---|---|---|---|
Potencial de producción de melazas (bbl) | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32 | 148260.32
Potencial de producción de azúcar (bbl) | 44547038.4 | 44547038.4 | 44547038.4 | 44547038.4 | 44547038.4 | 44547038.4 | 44547038.4 | 44547038.4
Potencial de producción de sorgo dulce (bbl) | 2647831.63 | 2647831.63 | 2647831.63 | 2647831.63 | 2647831.63 | 2647831.63 | 2647831.63 | 2647831.63
Total | 47343130.4 | 47343130.4 | 47343130.4 | 47343130.4 | 47343130.4 | 47343130.4 | 47343130.4 | 47343130.4
Barriles equivalentes de gasolina (BEG)* | 31719897.4 | 31719897.4 | 31719897.4 | 31719897.4 | 31719897.4 | 31719897.4 | 31719897.4 | 31719897.4

*Cada barril de etanol equivale a 0.67 barriles de gasolina

Fuente: Elaboración propia

Cuadro 46. Potencial de producción de etanol al 2021: Escenario optimista

---|---|---|---|---|---|---|---|---|
Aporte potencial de etanol | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones sin uso de biodiesel</td>
<td>2014</td>
<td>3890638.45</td>
<td>4066179.97</td>
<td>4198935.70</td>
<td>4316725.59</td>
<td>4453967.15</td>
<td>4602379.52</td>
<td>4773408.99</td>
<td>4879376.61</td>
</tr>
<tr>
<td>Ahorro con uso de biodiesel de aceites usados</td>
<td>2015</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
</tr>
<tr>
<td>Ahorro con uso de biodiesel de palma</td>
<td>2016</td>
<td>122033.89</td>
<td>146214.66</td>
<td>207518.55</td>
<td>268822.44</td>
<td>309691.69</td>
<td>350560.95</td>
<td>370995.58</td>
<td>370995.58</td>
</tr>
<tr>
<td>Ahorro total uso de biodiesel</td>
<td>2017</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
<td>84910.77</td>
</tr>
<tr>
<td>Emisiones sin uso de bioetanol</td>
<td>2018</td>
<td>2673848.45</td>
<td>2771907.98</td>
<td>2877830.43</td>
<td>2969408.15</td>
<td>3072992.15</td>
<td>3180719.52</td>
<td>3301611.04</td>
<td>3410466.00</td>
</tr>
<tr>
<td>Ahorro con uso de bioetanol de melazas</td>
<td>2019</td>
<td>29317.90</td>
<td>29317.90</td>
<td>29317.90</td>
<td>29317.90</td>
<td>29317.90</td>
<td>29317.90</td>
<td>29317.90</td>
<td>29317.90</td>
</tr>
</tbody>
</table>
Apéndice 5. Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución de biodiesel y etanol

Cuadro 50. Comparación entre los porcentajes de ahorro de emisiones y los porcentajes de sustitución, con base en escenario moderado

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje de sustitución de diesel</td>
<td>2.48</td>
<td>2.37</td>
<td>4.91</td>
<td>7.31</td>
<td>9.54</td>
<td>10.82</td>
<td>11.96</td>
<td>12.45</td>
</tr>
<tr>
<td>Porcentaje de emisiones ahorradas</td>
<td>2.18</td>
<td>2.09</td>
<td>3.48</td>
<td>4.81</td>
<td>6.04</td>
<td>6.73</td>
<td>7.34</td>
<td>7.60</td>
</tr>
<tr>
<td>Porcentaje de sustitución de gasolina</td>
<td>1.41</td>
<td>1.36</td>
<td>1.31</td>
<td>1.27</td>
<td>1.22</td>
<td>1.18</td>
<td>1.14</td>
<td>1.10</td>
</tr>
<tr>
<td>Porcentaje de emisiones ahorradas</td>
<td>1.10</td>
<td>1.06</td>
<td>1.02</td>
<td>0.99</td>
<td>0.95</td>
<td>0.92</td>
<td>0.89</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

12. Anexos

Anexo 1. Propiedades comparativas entre los biocombustibles y los combustibles fósiles

Biodiesel

En el cuadro 56 se resumen los aspectos técnicos y medioambientales comparativos entre el diesel y el biodiesel como alternativa surgida para sustituir en cierta medida el uso del primero y así mitigar algunas de las consecuencias de su explotación:

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Biesel</th>
<th>Biodiesel</th>
</tr>
</thead>
</table>

171
<table>
<thead>
<tr>
<th></th>
<th>34,09 kJ/l(^1)</th>
<th>31,22 kJ/l(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poder energético</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosidad cinemática</td>
<td>2,4 - 2,6 mm(^2)/s(^3)</td>
<td>4,0 - 6,2 mm(^2)/s(^4)</td>
</tr>
<tr>
<td>Capacidad instalada en motores</td>
<td>Completamente adaptados</td>
<td>Sin modificaciones contenido no debe sobrepasar el 20% para algunos autos(^5)</td>
</tr>
<tr>
<td>Cantidad de agua</td>
<td>Menos propenso a contener agua</td>
<td>Más propenso a contener agua por lavado en proceso de obtención(^6)</td>
</tr>
<tr>
<td>Emisión de contaminantes</td>
<td>Contiene azufre y compuestos aromáticos, no propicia reciclamiento de CO(_2)</td>
<td>No contiene azufre ni compuestos aromáticos, propicia reciclamiento de CO(_2)</td>
</tr>
<tr>
<td>Efectos a la salud</td>
<td>Tóxico</td>
<td>No tóxico</td>
</tr>
<tr>
<td>Biodegradabilidad</td>
<td>Lenta</td>
<td>Rápida</td>
</tr>
<tr>
<td>Clasificación de la fuentes (durabilidad)</td>
<td>No renovables</td>
<td>Renovables</td>
</tr>
<tr>
<td>Accesibilidad a las fuentes</td>
<td>Fuera del país</td>
<td>Dentro del país</td>
</tr>
<tr>
<td>Índice de cetano(^7)</td>
<td>50(^8)</td>
<td>> 50(^9)</td>
</tr>
<tr>
<td>Lubricación</td>
<td>regular</td>
<td>excelente(^10)</td>
</tr>
</tbody>
</table>

\(^1\) Orellana, 2007:7.
\(^2\) Ibidem
\(^3\) Orellana, 2007:6.
\(^4\) Ibidem
\(^6\) Ibidem
\(^7\) Es un indicativo de la eficiencia de la reacción que se lleva a cabo en los motores de combustión interna, como el octanaje en la gasolina.
\(^8\) http://www.wearcheckiberica.es/documentacion/doctecnica/combustibles.pdf
\(^9\) Ibidem
\(^10\) Ibidem
<table>
<thead>
<tr>
<th>Temperatura de inflamación</th>
<th>>52°C</th>
<th>>130°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura de fusión</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Puede fluir a bajas temperaturas</td>
<td>El palmítico tiene dificultad para fluir a bajas temperaturas</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

El número de cetano es un indicador de la habilidad de los combustibles para autoencenderse, después de que han sido inyectados al motor diesel. Los requerimientos de cetano dependen del diseño del motor, tamaño, naturaleza de las variaciones de velocidad y carga, y de las condiciones atmosféricas al iniciar la operación. El diesel que se utiliza en las carreteras, requiere tener un número de cetano de 40 o mayor; pero debido a que un número de cetano mayor se traduce también en costos mayores del combustible; normalmente se mantiene entre 40 y 45.

En investigaciones recientes se ha demostrado que el ligeramente mayor número de cetano del biodiesel (generalmente entre 46 y 60, dependiendo de la materia prima utilizada) puede reducir el retraso a la ignición.

Este factor junto con la menor volatilidad del biodiesel, contribuyen a mejorar las características de la combustión, con relación al diesel del petróleo.

Otros beneficios de la producción y consumo de biodiesel son:

- Mayor lubricidad que alarga la vida del motor y reduce su ruido.
- El mayor poder disolvente hace que no se produzca carbonilla ni se obstruyan los conductos y mantiene limpio el motor.
- Alto punto de inflamación o ‘Flash point’.

Las siguientes se destacan como las principales desventajas del uso de biodiesel frente al combustible fósil:
- El Biodiésel tiene un punto de congelación (equivalente al CFPP del Gasóleo) entre 0º y -5º. La mezcla B10 tiene una aceptable temperatura de congelación y se ajusta a la normativa del CFPP para el período de invierno.125
- Menor poder calorífico (disminución de potencia y aumento de consumo entre 10 y 24%).126
- Escasa estabilidad oxidativa.
- Deforestación de tierras selváticas.
- Efectos sobre el precio de los alimentos.
- Expansión de la frontera agrícola.
- 1,5-3 veces más costoso.127

Hay que decir que no se puede hacer una comparación absoluta de si es mejor o es peor el biodiesel que el diesel convencional. En líneas generales se puede decir que es similar, a veces mejor, otras no tanto. Depende de qué biodiesel se use para realizar la comparación y con qué gasoil se le compare.

Etanol

A continuación se realiza una comparación entre las propiedades que tienen mayor incidencia en el rendimiento y funcionamiento del vehículo utilizando por un lado gasolina y por otro su sustituto, el etanol.

| Cuadro 57. Principales propiedades comparativas entre el etanol y la gasolina |
|-----------------------------|--------|--------|--------|
| **Propiedad** | **Unidad** | **Gasolina** | **Etanol** |
| Densidad | kg/dm^3 | 0,69-0,79 | 0,79 |
| Punto de congelación | °C | -40 | -114 |

125 Miliarium.com, *Aplicaciones del biodiesel*.
127 Ulloa, S. 2011: 3.
<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Unidad</th>
<th>Valor Mínimo</th>
<th>Valor Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto de ebullición</td>
<td>°C</td>
<td>27-225</td>
<td>78</td>
</tr>
<tr>
<td>Punto de inflamación</td>
<td>°C</td>
<td>-43</td>
<td>13</td>
</tr>
<tr>
<td>Temperatura de autoignición</td>
<td>°C</td>
<td>257</td>
<td>423</td>
</tr>
<tr>
<td>Calor latente de vaporización</td>
<td>kJ/kg</td>
<td>349</td>
<td>923</td>
</tr>
<tr>
<td>Presión de vapor a 38°C</td>
<td>kPa</td>
<td>48-103</td>
<td>15,9</td>
</tr>
<tr>
<td>Poder calorífico en masa</td>
<td>MJ/kg</td>
<td>43,39</td>
<td>26,804</td>
</tr>
<tr>
<td>Poder calorífico en volumen</td>
<td>MJ/dm³</td>
<td>30-33</td>
<td>21,1</td>
</tr>
<tr>
<td>Viscosidad a 20°C</td>
<td>mPa.s</td>
<td>0,37-0,44</td>
<td>1,19</td>
</tr>
<tr>
<td>Solubilidad en agua a 21°C</td>
<td>%</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Límite de inflamabilidad</td>
<td>Min</td>
<td>1,4</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td>Máx</td>
<td>7,6</td>
<td>19</td>
</tr>
<tr>
<td>Ratio aire/combustible</td>
<td>kg aire/kg combustible</td>
<td>14,7</td>
<td>9</td>
</tr>
<tr>
<td>Número de octano experimental (RON)</td>
<td>-</td>
<td>88-100</td>
<td>108,6</td>
</tr>
</tbody>
</table>

Fuente: Universidad Politécnica de Cataluña

Una de las desventajas más reveladoras del etanol es su reducido poder calorífico, causado por una composición alta en oxígenos (70% en volumen al de la gasolina), de manera que para producir la misma potencia se necesita cerca de 1.5 veces de etanol por 1 de gasolina.

Otras desventajas asociadas a la producción y uso de etanol son:

- El etanol de grano es aproximadamente 1,5 más caro.
• La producción de maíz y cereales requiere un intenso laboreo y es vulnerable a cambios climáticos.
• Cambios de infraestructura.

El punto de congelación del etanol es muy bajo por lo que no se producen problemas de congelación ni obturación de los sistemas de almacenamiento y distribución. Además, la unión de un alto punto de ebullición y una baja presión de vapor a temperatura ambiente, hacen que sea más difícil una mezcla inflamable.

Otras ventajas del etanol como combustible incluyen:
• Incorpora valor agregado a derivados de origen agroindustrial, como la melaza.
• Cuando se mezcla en bajas proporciones con gasolina funge como oxigenante y, con ello, se eleva la eficiencia de combustión en el motor (es decir, su octanaje), sustituyendo a un componente tradicional de la gasolina denominado éter metil tert-butílico o MTBE, el cual es altamente contaminante, por lo que las gasolinas mezcladas con etanol son menos agresivas con el medio ambiente.\(^{128}\)
• El octanaje y la calidad de las gasolinas se aumenta y mejora, por lo que tiene una alta potencia como combustible. El Etanol tiene mayor número de octanos respecto a la gasolina no oxigenada.
• No contiene azufre.

Anexo 2. Comportamiento de los biocombustibles en la mecánica automotriz

Biodiesel

Referente al funcionamiento del biodiesel en los motores de ciclo diesel, la gran mayoría de vehículos tienen la capacidad de funcionar con mezclas B20 y menores sin ninguna modificación o adaptación especial y sin notarse diferencia alguna en el rendimiento respecto del diesel puro. Además, los vehículos más nuevos pueden emplear el 100% de combustible biodiesel sin verse afectado el buen estado de las partes mecánicas.

No obstante, tratándose de automotores más antiguos (construidos antes de 1995), emplear mezclas en mayor proporción implica realizar algunos cambios de relevante importancia por lo que deben ser tomados en cuenta.

El alto poder solvente del metil éster puede degradar y causar daños a ciertos componentes del sistema de combustión como juntas, empaques, sellos o mangueras, hechos de PVC, caucho natural u otros polímeros no compatibles con las características del biodiesel, por lo que deben ser reemplazados por otros más resistentes, hechos de materiales como el vitón, el neopreno o teflón. En los vehículos modernos, dichos componentes ya vienen hechos de materiales de mejor calidad.

El poder solvente del biodiesel también provoca la disolución de ciertos metales entre los que se hallan el cobre, el zinc, el estaño, el plomo y el hierro fundido que deben cambiarse por metales inmunes como el acero inoxidable y el aluminio.

Otro cambio que podría derivarse del uso de biodiesel, especialmente en mezclas del 20% en adelante, es la pérdida de la vida útil del lubricante a menor plazo que el diesel, es decir, que es probable que se tengan que hacer los cambios de aceite de motor más seguido que usando diesel puro.

La razón es que en cualquier motor diesel, una pequeña cantidad de combustible pasa los anillos del pistón al aceite del motor. Los antioxidantes en el aceite del motor son utilizados por el combustible que filtró y el mismo comienza a polimerizar, causando espesamiento. Es de esperarse que el excesivo espesamiento del aceite dificulte el libre movimiento del mismo a través del motor resultando en una pobre lubricación y mayor desgaste del motor, por lo que debe cambiarse a la brevedad.

Debido a la fracción no saturada de la cadena de ácidos grasos que se encuentran en el biodiesel, este espesamiento se produce más rápido que con el petrodiesel. A partir de la década de 1990 la dilución del aceite por efecto del combustible, se ha reducido dramáticamente y en los vehículos fabricados desde entonces el cambio prácticamente no es perceptible. Además, las mejoras en los aditivos que usan los aceites, los han vuelto más resistentes a la dilución, dando cabida al uso de mezclas mayores.
Cabe mencionar que inicialmente pueden ser necesarios cambios adicionales de filtros si se usan mezcla de B20 o superiores, esto debido al poder detergente del biodiesel que limpia toda la suciedad, y a veces algo de pintura, depositada en los tanques y conductos de gasoil. Las mezclas de menores a B20 tienen este efecto diluido en el tiempo.\footnote{Cámara Paraguaya del Biodiesel, \textit{Biodiesel Folleto Educativo}.}

En mezclas de hasta 5\% funciona como aditivo que ayuda a mejorar significativamente la propiedad lubricante y permite una combustión más completa, que es por lo tanto una combustión con menores emisiones de monóxido de carbono e hidrocarburos volátiles.

Las razones por las que el biodiesel no ha sido insertado en el sector transporte de manera más generalizada y con mayores porcentajes de mezcla, obedecen más a otro tipo de factores que a las modificaciones mecánicas requeridas, entre los que destacan la disminución de la potencia de hasta un 10\% y el aumento de consumo en un 24\% por el empleo de biodiesel puro, precio más elevado y la competencia del sector agrícola tradicional con el sector agroenergético.

En general, las modificaciones corresponden a cambios mínimos que deberán ser consultados con un experto en mecánica automotriz para una mayor precisión, ya que de manera más específica dependerán de las características del vehículo al que se vaya aplicar el biodiesel.

\textit{Etanol}

El etanol es un alcohol que puede ser agresivo hacia los metales y elastómeros por su propia acción, o bien por su cantidad de agua. Normalmente, el etanol contiene agua que puede afectar a la solubilidad de los contaminantes dañando los sistemas, empeorando las propiedades y generando más residuos indeseables, además de ser una fuente importante de corrosión.

Es por ello que la práctica común es mezclarlo con gasolina en porcentajes que varíen del 5\% al 10\%, ya que no todos los vehículos fabricados en años más recientes, del 2000 en adelante, responden bien a mezclas superiores a la E10. Sin embargo, en países como
Brasil, es común utilizarlo de manera pura (E100) como combustible, gracias a sus tecnologías *flex fuel*.

En el caso de los vehículos más antiguos, es importante que los usuarios se informen antes con sus especialistas mecánicos para no verse perjudicados.

El uso de magnesio no está recomendado y el aluminio también sufre su corrosión, aunque más lentamente. Es principalmente crítico el vapor del alcohol, ya que la velocidad de corrosión es mayor y el producto resultante puede ser hidróxido de aluminio; un precipitado que obtura los filtros de combustible y causa problemas en los conductos del combustible.

Los metales recomendados para ser usados con etanol son el acero inoxidable y aleaciones, siempre que no sean de zinc, latón o cobre. El acero al carbono común es uno de los metales que se ven menos afectados por el etanol puro. Si el etanol contiene más de un 5% en volumen de agua y otros iones se producirá oxidación fácilmente, por lo que la solución debe recubrir el aluminio o acero con cromo, cadmio, níquel o anodinados.

Elastómeros que tienen buena aceptación al etanol son las siliconas fluoradas, el neopreno y la goma natural. También el teflón y el nylon son buenos materiales. Un material utilizado es el polietileno de cadena cruzada. Por el contrario, las poliamidas se endurecen, diversos plásticos laminados se ablandan y ceden, el poliuretano tiende a agrietarse y fracturarse y las fibras de vidrio deben ser especialmente diseñadas para soportar el efecto de desgaste y erosión del etanol.

La elevada conductividad eléctrica del etanol tiene la capacidad de transmitir las corrientes inducidas que pueden causar elementos como las bombas y los medidores eléctricos, lo cual elimina parte del material de estos componentes. Para prevenir que suceda lo anterior, se realizan baños o capas de poliolefina si se trata de elastómeros y en metales, el níquel es de los pocos que es efectivo y puede ser aplicado en acero o en aluminio.
En ciertos aceites lubricantes, el etanol reacciona con los aditivos que incorporan los aceites, perdiendo los lubricantes sus propiedades. Así, los fabricantes de aceites han desarrollado lubricantes y filtros compatibles con el etanol.

Por otra parte, una de las opciones más brillantes surgidas para aprovechar con mayor versatilidad el bioetanol en motores de combustión interna son los vehículos FFVs (Flexible Fuel Vehicles), por sus siglas en inglés, vehículos de carga liviana que pueden utilizar como combustible tanto gasolina convencional derivada del petróleo como bioetanol en mezclas de cualquier proporción o una combinación de los dos.

Aunque la tecnología actual permite que los vehículos flex funcionen con cualquier proporción de gasolina sin plomo y etanol, en los Estados Unidos y Europa los motores son diseñados para operar con una mezcla máxima de etanol anhidro del 85% (E85). Este límite es fijado en la práctica para evitar problemas de arranque con el motor frío durante temporadas o lugares con clima frío, provocados debido a la baja presión de vapor y al alto calor latente de vaporización que tiene el etanol.

Brasil, con un clima más caliente, desarrolló y comercializa vehículos flexibles capaces de operar con cualquier mezcla de etanol hasta un 100% de etanol hidratado (E100), sin embargo, como la gasolina pura no se vende en el país desde 1993, los vehículos flex brasileños realmente operan con cualquier mezcla de gasohol E20/E25 hasta E100. En Brasil son llamados vehículos flex fuel.

Anexo 3. Áreas potenciales para el cultivo de palma aceitera, caña de azúcar y sorgo dulce en los cantones con Índice de Desarrollo Humano Bajo-Bajo, Bajo-Medio, Bajo-Alto

<table>
<thead>
<tr>
<th>Cantones</th>
<th>Suma Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUENOS AIRES</td>
<td>91.275,99</td>
</tr>
</tbody>
</table>
Tabla de Áreas Potenciales de Palma Aceitera por Canton

<table>
<thead>
<tr>
<th>Canton</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COTO BRUS</td>
<td>4.324,13</td>
</tr>
<tr>
<td>GUATUSO</td>
<td>57.495,77</td>
</tr>
<tr>
<td>LA CRUZ</td>
<td>59.362,58</td>
</tr>
<tr>
<td>LOS CHILES</td>
<td>75.192,20</td>
</tr>
<tr>
<td>MATINA</td>
<td>45.435,61</td>
</tr>
<tr>
<td>TALAMANCA</td>
<td>56.193,36</td>
</tr>
<tr>
<td>TARRAZU</td>
<td>196,64</td>
</tr>
<tr>
<td>TURRUBARES</td>
<td>30.588,26</td>
</tr>
<tr>
<td>Total</td>
<td>420.064,54</td>
</tr>
</tbody>
</table>

Fuente: Departamento de Gestión de Desarrollo, Instituto Meteorológico Nacional (IMN), 2007.

[Mapa de Áreas Potenciales de Palma Aceitera por Canton]

Fuente: Programa Nacional de Biocombustibles, 2008.
Cuadro 59. Áreas potenciales para el cultivo de caña de azúcar en los cantones con Índice de Desarrollo Humano Bajo-Bajo

<table>
<thead>
<tr>
<th>Cantones</th>
<th>Suma Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUENOS AIRES</td>
<td>44.014,40</td>
</tr>
<tr>
<td>COTO BRUS</td>
<td>27,75</td>
</tr>
<tr>
<td>GUATUSO</td>
<td>39.640,43</td>
</tr>
<tr>
<td>LA CRUZ</td>
<td>45.841,86</td>
</tr>
<tr>
<td>LOS CHILES</td>
<td>48.922,43</td>
</tr>
<tr>
<td>MATINA</td>
<td>13.058,15</td>
</tr>
<tr>
<td>TALAMANCA</td>
<td>17.725,60</td>
</tr>
<tr>
<td>TURRUBARES</td>
<td>19.517,61</td>
</tr>
<tr>
<td>Total</td>
<td>228.748,22</td>
</tr>
</tbody>
</table>

Fuente: Departamento de Gestión de Desarrollo, Instituto Meteorológico Nacional (IMN), 2007.

Cuadro 60. Áreas potenciales para el cultivo de sorgo en los cantones con Índice de Desarrollo Humano Bajo-Bajo

<table>
<thead>
<tr>
<th>Cantones</th>
<th>Suma Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA CRUZ</td>
<td>1.920,73</td>
</tr>
<tr>
<td>Total</td>
<td>1.920,73</td>
</tr>
</tbody>
</table>

Fuente: Departamento de Gestión de Desarrollo, Instituto Meteorológico Nacional (IMN), 2007.

Cuadro 61. Áreas potenciales para el cultivo de palma aceitera en los cantones con Índice de Desarrollo Humano Bajo-Medio

<table>
<thead>
<tr>
<th>Cantones</th>
<th>Suma Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABANGARES</td>
<td>52,900,09</td>
</tr>
<tr>
<td>ACOSTA</td>
<td>3,030,70</td>
</tr>
<tr>
<td>CORREDORES</td>
<td>22,882,49</td>
</tr>
<tr>
<td>GUACIMO</td>
<td>44,280,06</td>
</tr>
<tr>
<td>OSA</td>
<td>49,440,81</td>
</tr>
<tr>
<td>PARRITA</td>
<td>40,126,83</td>
</tr>
<tr>
<td>PEREZ ZELEDON</td>
<td>17,770,68</td>
</tr>
<tr>
<td>POCOCI</td>
<td>47,137,63</td>
</tr>
<tr>
<td>SARAPIQUI</td>
<td>97,424,61</td>
</tr>
<tr>
<td>UPALA</td>
<td>115,142,19</td>
</tr>
<tr>
<td>Total</td>
<td>490,136,08</td>
</tr>
</tbody>
</table>

Fuente: Departamento de Gestión de Desarrollo, Instituto Meteorológico Nacional (IMN), 2007.

Cuadro 62. Áreas potenciales para el cultivo de caña de azúcar en los cantones con Índice de Desarrollo Humano Bajo-Medio

<table>
<thead>
<tr>
<th>Cantones</th>
<th>Suma Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABANGARES</td>
<td>55.713,85</td>
</tr>
<tr>
<td>CORREDORES</td>
<td>2.634,22</td>
</tr>
<tr>
<td>OSA</td>
<td>411,30</td>
</tr>
<tr>
<td>PARRITA</td>
<td>21.115,32</td>
</tr>
<tr>
<td>PEREZ ZELEDON</td>
<td>21.549,20</td>
</tr>
<tr>
<td>UPALA</td>
<td>86.613,97</td>
</tr>
<tr>
<td>Total</td>
<td>188.037,86</td>
</tr>
</tbody>
</table>

Fuente: Departamento de Gestión de Desarrollo, Instituto Meteorológico Nacional (IMN), 2007.

Cuadro 63. Áreas potenciales para el cultivo de palma aceitera en los cantones con Índice de Desarrollo Humano Bajo-Alto

<table>
<thead>
<tr>
<th>Cantones</th>
<th>Suma Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASERRI</td>
<td>832,28</td>
</tr>
<tr>
<td>GOLFITO</td>
<td>27.717,62</td>
</tr>
<tr>
<td>LIMON</td>
<td>79.560,38</td>
</tr>
<tr>
<td>OROTINA</td>
<td>13.810,20</td>
</tr>
<tr>
<td>SAN MATEO</td>
<td>10.049,80</td>
</tr>
<tr>
<td>SIQUIRRES</td>
<td>62.402,30</td>
</tr>
<tr>
<td>Total</td>
<td>194.372,58</td>
</tr>
</tbody>
</table>

Fuente: Departamento de Gestión de Desarrollo, Instituto Meteorológico Nacional (IMN), 2007.

Cuadro 64. Áreas potenciales para el cultivo de caña de azúcar en los cantones con Índice de Desarrollo Humano Bajo-Alto

<table>
<thead>
<tr>
<th>Cantones</th>
<th>Suma Ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLFITO</td>
<td>16.810,44</td>
</tr>
<tr>
<td>LIMON</td>
<td>21.442,76</td>
</tr>
<tr>
<td>OROTINA</td>
<td>13.457,08</td>
</tr>
<tr>
<td>POAS</td>
<td>395,64</td>
</tr>
<tr>
<td>SAN MATEO</td>
<td>11.448,14</td>
</tr>
<tr>
<td>SIQUIRRES</td>
<td>7.512,89</td>
</tr>
<tr>
<td>Total</td>
<td>71.066,94</td>
</tr>
</tbody>
</table>

Fuente: Departamento de Gestión de Desarrollo, Instituto Meteorológico Nacional (IMN), 2007.

Anexo 4. Muestras de plantaciones, semillas y biocombustibles extraídos de la Estación Experimental Agrícola Fabio Baudrit Moreno

Banco de germoplasma de Jatropha

Plantación joven
Plantación desarrollada

Florescencia de la planta
Plantación experimental de higuerilla

Frutos de la higuerilla

Altura de la planta
Plantación experimental de Arundo donax

Semillas, aceite y biodiesel de Jatropha
Cake de Jatropha para abonar

Frutos, semillas y aceite de higuerailla

Frutos maduros de higuerailla
Semilla de Higuerilla
Comparación entre el biodiesel de aceites usados sin filtrar y filtrado
Comparación entre el biodiesel de palma, aceites usados y Jatropha