


Computer Engineering Department
Master in Computer Science

A Texture and Curvature Bimodal Leaf
Recognition Model for Costa Rican Plant

Species Identification

Thesis
for

Magister Scientiæ in Computer Science

Author:
Jose Carranza

Advisor:
Erick Mata, Ph.D.

December 2014



Abstract

In the last decade, research in Computer Vision has developed algorithms to help

botanists and non-experts classify plants based on images of their leaves. Neverthe-

less, very few efficient tools have resulted from that research and have actually been

used in the field. The most popular system to date is LeafSnap. It is considered a

state-of-the art leaf recognition mobile application. It uses a multi scale curvature

model of the leaf margin to classify leaf images into species. LeafSnap was applied

to 184 tree species from Northeast US and achieved high levels of accuracy for that

group of trees. In this document, we extend the research that led to the development of

LeafSnap along several lines. First, LeafSnap’s underlying algorithms are applied to a

set of species from Costa Rica. Then, texture is used as an additional criteria in order

to improve the level of accuracy of LeafSnap’s original algorithms. Thus, the main goal

of this research is to measure the level of improvement in automatic Costa Rican tree

species identification achieved when texture analysis is added to the curvature model

of margins of leaves. Our results confirm our hypothesis since the level of improvement

reaches a 0.168 for the Costa Rican clean subset, and 0.431 for the Costa Rican noisy

subset. In both cases, our results show this increment as statistically significant.



Resumen

En la última década, la investigación en Visión por Computadora ha generado algo-

ritmos para ayudar a botánicos y personas no expertas a clasificar especies de plantas

con base en las imágenes de sus hojas. Sin embargo, pocos algoritmos han resultado en

herramientas eficientes que hayan sido usadas en el campo. El sistema más popular a

la fecha es LeafSnap, considerado el estado del arte en aplicaciones móbiles de recono-

cimiento de hojas. Utiliza un modelo multi escala de curvatura para clasificar imágenes

de hojas en sus respectivas especies. LeafSnap fue aplicado a 184 especies de árboles

del noreste de Estados Unidos, alcanzando altos niveles de exactitud para ese grupo

reducido de árboles. En este documento, extendemos en varios aspectos la investigación

que llevó al desarrollo de LeafSnap. Primero, los algoritmos que conforman a LeafSnap

internamente, son aplicados a un grupo de especies de Costa Rica. Además la textura

de las hojas es utilizada como un criterio adicional para mejorar el nivel de exactitud del

modelo de curvatura de LeafSnap. Por tanto, el objetivo principal de esta investigación

es medir el nivel de mejora en la identificación automática de especies de plantas de

Costa Rica resultante de agregar análisis de la textura al modelo de curvatura del mar-

gen de las hojas. Los resultados obtenidos confirman nuestra hipotesis ya que el nivel

de exactitud mejora hasta en un 0.168 para el subconjunto de datos limpio, y hasta

en 0.431 para el subconjunto de datos con ruido. En ambos casos, nuestros resultados

muestran que el incremento es estadisticamente significativo.
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CHAPTER 1

Introduction and General Background

Each species on our planet plays a role in the healthy functioning of

natural ecosystems, on which humans depend.
William H. Schlesinger

1.1 Introduction

In the last decade, research in Computer Vision has produced algorithms to help

botanists and non-experts classify plants based on images of their leaves [1; 3; 4; 5; 20;

23; 30; 41; 47; 48]. However only a few studies studies have resulted in efficient systems

that are used in the field. The most popular system to date is LeafSnap [24]. It is

considered a state-of-the-art mobile leaf recognition application that uses an efficient

multiscale curvature model to classify leaf images into species. LeafSnap was applied

to 184 tree species from Northeast USA, resulting in a very high precision method for

species recognition for that region, and has been downloaded by more than 1 million

users [24]. LeafSnap has not been applied to identified trees from tropical countries such
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1.1. INTRODUCTION

as Costa Rica. The challenge of recognizing tree species in biologically rich regions is

expected to be considerably bigger.

Vein analysis is an important, discriminative element for species recognition, that

has been used in several studies before [10; 25; 26; 27; 29]. According to Nelson Zamora,

curator of the herbarium at the National Biodiversity Institute (INBio), and one of the

most renowned in Costa Rica, venation is as important as the curvature of the margin

of the leaf when classifying species in Costa Rica.

To our knowledge, with exception of the work of Wijesingha and Marikar [47],

herbarium specimen images have not been used for automated species identification.

The collection of vascular plants at the Herbarium INBio consists of 160,068 records.

The collection includes 327 families, 2,259 genera and 9,087 species. All of these plants

are dried for preservation, which we think can be exploited as a dataset given that veins

have a tendency to stand out once the leaf is dry [49].

This document is a thesis for a MSc degree in Computer Science to study the

accuracy of a leaf recognition model based not only on the curvature of the leaf margin,

but also on the venation present in its texture. This is the first attempt to create

such model in Costa Rica. We must state that we would have liked to extract only

venation instead of the whole texture. However, automatic venation extraction turns

to be such a complex problem by itself additional research would be needed to solve it.

Furthermore, the time frame given for this thesis would not allow us to satisfactorily

address this problem, thus we use an approach where venation is highly important and

captured, but other additional characteristics such as reflections are also captured.

The rest of this document is organized as follows: Section 1.2 describes the theo-

retical framework of the proposed research. It focuses on the five main phases involved

in classifying plants based on leaf images. Section 1.3 presents relevant related work.

Section 1.4 summarizes the problem description and Section 1.5 states the hypothe-

sis of this research. Section 2 presents the objectives, main contributions, scope and

2



1.2. THEORICAL FRAMEWORK

limitations of the proposed research. Section 3 focuses on methodological aspects and

experiment descriptions, Section 4 explains the results obtained from the experiments.

Finally, Section 5.1 covers the conclusions and future work.

1.2 Theorical Framework

Computer Vision is the discipline of extracting information from images, opposite

of Computer Graphics [18]. There is an overlap with Image Processing regarding basic

techniques, and some authors use both terms interchangeably. The main goal of Com-

puter Vision is to create models and extract data and information from images, while

Image Processing is about applying transformations to the images, such as sharpening,

contrasting, among others [18]. The following section explains the different Computer

Vision techniques and studies related to leaf recognition to date.

Most authors divide the leaf recognition process in into five phases [4; 24; 30; 48]:

leaf image acquisition, image enhancement, image segmentation, leaf feature extraction,

and similarity search for species identification. Figure 1.1 depicts these five phases and

their corresponding products.

1.2.1 Leaf Image Acquisition

Datasets

Existing datasets for leaf recognition typically use images of individual leaves on a

uniformly colored background, which makes it easier to detect the leaf. For instance,

the authors of LeafSnap [24] use Expectation-Maximization (EM) [12] to cluster pixels

into leaf/non leaf categories, but this can only be done if the image is already prepared

with a uniform background.

There are some public datasets for leaf recognition, but none has become a univer-

sally accepted standard by the Computer Vision community yet. The following are the

3



1.2. THEORICAL FRAMEWORK

Leaf Image Acquisition

• Fresh leaf images with uniform background

Image Enhancement

• Images with noise and artifacts removed

• Images converted to other color domains

Leaf Segmentation

• Leaf pixels separated from background pixels

Leaf Feature Extraction

• Curvature

• Shape

• Texture

• Veins

• Color

• Morphological characteristics

Similarity Search / Species Classification

• Supervised Machine Learning Classification
(kNN, PNN, SVM)

Figure 1.1: Commonly defined leaf recognition phases
Most studies agree with these phases [1; 3; 4; 5; 20; 23; 24; 30; 41; 47; 48]

4



1.2. THEORICAL FRAMEWORK

Figure 1.2: Canadian poplar
Taken from Wu et al. [48]

most widely used:

• The Swedish Dataset [44] consists of 15 species with 75 images each. Images are

aligned to reduce rotation. Only one side of the leaf is captured. This image

dataset offers high inter-species similarity.

• The Flavia Dataset [48] comprises 32 species with 3,621 leaf images with white

backgrounds. This dataset uses fresh leaf images. Leaves were sampled from the

Nanjing University campus and the Sun Yat-Sen Arboretum, Nanking, China.

Figure 1.2 shows a sample of the dataset.

• ImageCLEF 2013 [16] includes 250 species of herbs and trees from France. It

includes images of leaves, flowers, fruits, stem and the whole plant. It comprises

both images with white background and images taken directly in the field (fresh

sample leaves) with complex backgrounds, lighting and noise [16]. In previous

years other similar datasets were also available [14; 15].

• The LeafSnap dataset consists of images from 184 tree species from Northeastern

USA. It includes 23,916 images of fresh leaves with white backgrounds [24]. Figure

1.3 shows leaves of all the species available in the dataset.

5



1.2. THEORICAL FRAMEWORK

Figure 1.3: LeafSnap species
Taken from Kumar et al. [24]

Herbaria

According to Nelson Zamora, the collection of vascular plants at the INBio herbar-

ium consists of 160,068 records, corresponding to 327 families, 2,259 genera and 9,087

species [49]. A sample from the collection is shown in Figure 1.4.

To our knowledge, few studies have created their dataset directly from herbaria.

Wijesingha and Marikar [47] used 79 images of the Stemonoporus genus, obtained from

the National Herbarium at the Royal Botanic Garden, Sri Lanka. The images have

rather low resolution (120 x 120 pixels), and the dataset is small.

1.2.2 Image Enhancement

Once images are acquired, the next phase consist of preprocessing the image to

enhance important features [46]. This step includes gray scale conversion [26; 27], noise

reduction and other color domain conversions [24]. The goal is to delete undesired noise

and distortions that may affect the following phases [4; 21].

Hue Saturation Value (HSV) Conversion In LeafSnap [24], the image is con-

verted to the HSV domain to obtain enhanced pixel definitions for the leaf, since it

is shown better on the saturation and value domains, however hue is discarded. Wi-

jesingha and Marikar [47] also convert the image to the saturation domain to reveal

textures more clearly.

6



1.2. THEORICAL FRAMEWORK

Figure 1.4: Herbarium sample
Taken from González [17]

Gray scale Conversion Converting the image to gray scale intensities is very com-

mon, since most of the feature extraction methods work better on gray scale [1; 3; 20;

23; 25; 28; 30; 34; 39; 41]. To convert a Red Green Blue (RGB) image to gray scale the

following function can be used [48]:

gra = 0.2989 ∗R + 0.5870 ∗G+ 0.1140 ∗B (1.1)

Larese et al. [25] worked on gray scale because their research did not contemplated color

at all, just venation.

Leaf/Non-Leaf Validation Some studies also developed mobile apps during their

research, to provide users the option to capture a leaf image in real time [20; 24;

34]. By allowing the users to upload images, another problem arises which consists of

detecting if the image has a leaf inside at all, to avoid further processing for invalid

7



1.2. THEORICAL FRAMEWORK

images. Thus, authors have trained classifiers such as Support Vector Machines (SVM)

to detect if there is a leaf inside the captured image. In LeafSnap [24] a low dimensional

representation of the scene using A low dimensional representation of the scene, which

does not require any form of segmentation (GIST) descriptors is used as feature set. A

total of 5,972 manually labeled leaf images were used to train the SVM classifier.

1.2.3 Leaf Image Segmentation

Once the dataset is created, the images cleaned, and the noise is filtered out, the

next step is to extract the leaf from the image [24]. Most studies deal with clean leaf

images, with uniform backgrounds, and use color clustering techniques to extract the

leaf.

Thresholding A binary image is the result of converting a normal image to a two

value image (normally black and white, or in general two colors only) [26; 27]. Sev-

eral studies use techniques that require binary images, especially for shape and vein

extraction [25]. Equation 1.2 shows how a binary function works:

B(x, y) =

 0 if f(x, y) <= T

255 if f(x, y) > T
(1.2)

Where B(x, y) and f(x, y) are the intensity values of the gray scale image and the binary

image, respectively, at position (x, y), and T is the threshold value. This technique is

also used by Larese et al. [25] to extract the leaf shape.

Expectation-Maximization (EM) It is an iterative algorithm used to find the

maximum likelihood estimates of parameters when the model depends on unobserved

latent variables [12]. It clusters the pixels into two groups: leaf pixels and non-leaf pixels

[12; 24]. Applied to leaf segmentation in [24], it is used with the following mathematical

8



1.2. THEORICAL FRAMEWORK

model:

p(x|θ) = 1/2p(x|µf ,Σ) + 1/2p(x|µb,Σ) (1.3)

Where p(x|µf ,Σ) and p(x|µb,Σ) are normal distributions, µf represents the foreground

distribution (the leaf itself), and µb represents the background distribution. A common

shared covariance matrix Σ is used. Each normal distribution has an equal weight of

1/2 assigned.

Graph-Cut Very few studies deal with a leaf dataset that has complex backgrounds

or uncontrolled conditions such as light, noise, and other objects inside the image.

Several problems arise from complex background images [43], such as:

• On interactive systems such as mobile apps, the algorithms must be fast.

• Compound leaves are extremely difficult to segment due to their complex segmen-

tation boundaries.

• Leaf images present natural variations in lighting, which creates shadows that add

noise.

Soares and Jacobs [43] study how a semi-controlled light environment affects tradi-

tional clustering algorithms to extract the leaf from the image given that it produces

undesired shadows. They opt to perform color clustering, like on their previous work

[24], followed by a Graph-Cut (also known as Min-Cut), which finds the global optimal

segmentation solution. It is based on the idea that that a graph can be partitioned

in two disjoint sets by simply removing edges connecting them both. It is important

to note that this method does not deal with any uncontrolled scenario, but only with

semi-controlled lighting settings.

9
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1.2.4 Leaf Feature Extraction

Once leaf images are clean and leaf pixels have been extracted, the next step is to

extract a feature set of the leaf that is discriminative enough to determine its species.

Most of the feature extraction techniques mentioned in literature are based on different

morphological characteristics by using Computer Vision techniques [4; 24; 30; 46; 48].

Some use shapes or contour [24; 48], others textures [4; 46; 48], and even color [48] and

veins [25; 26; 27].

Leaves in general present at least two advantages over flowers and fruits when it

comes to automatic species classification. First of all, they are two dimensional [5].

Secondly, they are available during all year [46].

Because we use texture extraction in this research, we must note the "texture" has

different meanings in Botany and Computer Vision. In Botany, texture can be defined

as the physical texture of the leaf, meaning how it feels against tact [49]. In Computer

Vision however, the definition of texture differs since it is the pattern of non-uniform

spatial distribution of different imaging intensities [3; 46]. In this research, we use the

Computer Vision definition, as we are looking for pixel patterns and relations between

them.

Morphological Descriptors They are calculated from gray levels of the image after

a gray scale conversion [2; 5; 20; 26; 27; 41; 48]. The following is a list of the most

common (see Figure 1.5).

• Leaf Diameter: The longest distance between any two points of the leaf’s margin,

denoted as D.

• Physiological Length: The distance between the two terminals of the main vein

named Lp. Normally it is selected manually by a human on a semi-automatic

fashion.

10



1.2. THEORICAL FRAMEWORK

Figure 1.5: Basic Leaf Morphological Features
from Arora et al. [2]

• Physiological Width: The longest line orthogonal to the Physiological Length,

denoted as Wp.

• Leaf Area: The pixel count of the leaf area A [26; 27; 48].

• Leaf Perimeter: The count P of pixels of the leaf margin.

• Aspect Ratio: Lp/Wp.

• Form Factor: The difference between the leaf and a circle, given by 4πA/P 2.

• Rectangularity: The similarity between the leaf and a rectangle, given by (LpWp)/A.

• Narrow Factor: the ratio of the diameter D and length Lp, thus D/Lp.

• Circularity: The ratio involving area A of the leaf and the square of its perimeter

P given by A/P 2.

• Solidity: The ratio between A the area of the leaf and Ach the area of a convex

hull given by A/Ach

Morphological Dilation and Erosion Both are the basic operators of mathemat-

ical morphology, typically applied to binary or gray scale images. Dilation attempts to

gradually enlarge the boundaries of regions of foreground pixels, causing the foreground

11



1.2. THEORICAL FRAMEWORK

areas to grow in size [18]. It uses a structuring element or kernel to determine the thick-

ness. Erosion is the opposite of Dilation, it is effect is to erode away the boundaries of

the foreground pixels [18].

Morphological Opening Consists on applying erosion first to the image A given a

structuring element B. Then, using the same structuring element B, dilation is applied

to the result:

A ◦B = (A	B)⊕B (1.4)

Where 	 is erosion and ⊕ is dilation [18].

In leaf feature extraction, morphological opening is performed on a gray scale image

with flat, disk-shaped structuring element of variable radius [20; 23; 41; 48]. It is used

as a feature closely related to the veins. Wu et al. [48] use disks of 1, 2, 3 and 4 radius.

Remaining areas are named as Av1, Av2, Av3 and Av4 respectively to each radius size.

Then, the authors obtain 4 additional vein features: Av1/A, Av2/A, Av3/A and Av4/A.

Hit Miss Transformation (HMT) Is a mathematical morphology operator that

allows extracting all pixels that have a similar foreground and background neighbor

configuration [13]. The original operator works over binary images in order to differen-

tiate foreground from background. Larese et al. [25] used it to detect vein patterns of

the leaf (see Figure 1.6). The next Equation 1.5 shows how it is calculated:

A�B = (A	 C) ∩ (Ac 	D) (1.5)

where A is the image, Ac is the complement of A, C and D are structuring elements

which satisfy that C ∩ D = ∅. The pair B = (C,D) is also known as composite

structuring element [13]. Erosion 	 is used as the main operator.

12
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Figure 1.6: Venation by HMT
Taken from Larese et al. [25]

Color Moments Provide a measurement for similarity between images using invari-

ant global features [20]. In case of gray scale images, let xi be a random variable which

denotes the gray levels of an image and L the number of distinct gray levels. We define

the probability P of occurrence of pixels with intensity xi, k as the number of pixels

with gray level xi, and N as the total number of pixels in the region [3; 5; 20; 23]:

P (xi) = k/N (1.6)

Then we can calculate the following gray scale moments:

• Mean: averages the gray levels of the image µ0 =
L∑
i=1

xiP (xi)

• Variance: µ2 =
L∑
i=1

(xi − µ0)P (xi)

• Standard Deviation: σ =

√
1/L

L∑
i=1

(P (xi)− µ0)2

• Skewness: µ3 =
L∑
i=1

(xi − µ0)
2P (xi)

It should be noticed that this is not limited to gray scale, but images could also be

generalized to any number of color channels [20].

Lacunarity Measures how fractals fill space, where patterns having bigger gaps tend

to result in higher lacunarity values. It is also calculated for each gray level on the
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image and used by several studies as a venation descriptor [23; 46].

Keypoints / Salient Points Salient points are defined as those which stand out

from an image [32; 33]. This landmark points could be boundary points or salient

points internally within the shape, like the ones from the veins. Salient points can be

used to describe the leaf boundary, or to represent the spatial correlation between them

and the leaf margin [32].

Filtering Image filters are useful to extract certain interesting parts of the image,

such as boundaries. Some of the filters used previously on leaf feature extraction include

Gabor filters [4], Laplacian [48] and Sobel filters [4]. However, a lot more filters exist

in current Computer Vision literature [18].

Centroid Distance Another way to get features related to the contour is to calculate

the distances from a centroid of the leaf, to each pixel of the contour [26; 27]. A centroid

can be defined as:

C(x, y) = C(1/N
N∑

n=1

xn, 1/N
N∑

n=1

yn) (1.7)

Where C(x, y) is the centroid coordinate of the leaf region and N is the number of

pixels of the leaf margin [26; 27]. Then the distance can be calculated by using:

D(i) =
√
|Cx − E(i)x|2 + |Cy − E(i)y|2 (1.8)

WhereD(i) is the distance between the centroid of the leaf and the ith leaf contour pixel,

Cx and Cy are the coordinates of the centroid, and E(i)x and E(i)y are the coordinates

of the contour pixel.

Curvature The current mobile state-of-the-art application, LeafSnap [24], represents

the leaf shape using multiscale curvature measures. Two type of invariant integral
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Figure 1.7: LeafSnap curvature arch length and area features with radio r
The figure shows a disk around a pixel from the margin of the leaf. 2 feature sets are
taken, the internal area measure (the piece of the circle that intersects the leaf area)

and the arclength (the length of the arc that intersects the leaf area). This is
calculated for each pixel from the margin, for 25 different radius scales.

measures are used, the area of intersection of a disk centered at each contour point, and

the arclength, which is the fraction of the disk’s perimeter inside the contour. This is

calculated for 25 different scales.

Figure 1.7 shows how the curvature algorithm works by going pixel by pixel calcu-

lating the area and the arclength of the intersection of a radius r circle and the leaf area,

centered on pixel p. Once both feature vectors are computed, a histogram with 21 bins

is calculated for each feature set. This is done for 25 different radius and concatenated

together afterwards forming a HCoS [24]. This mechanism has proven promising on

the LeafSnap mobile application, thanks to its speed, multiscale and rotation invariant

approach.

Local Binary Pattern (LBP) They are known for their invariance to local gray

scale variations, and their high descriptive power [3; 39]. The image is assumed to be

formed by micro patterns such as spots, lines, flat areas and edges, and its value is

calculated based on the circular neighborhood of P pixels of gray levels qp and radius
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Figure 1.8: LBP
(8,1), (16, 2) and (8, 2) circular pixel neighborhoods. (8,1) means 8 pixels from the
nearest neighbors are used to calculate the binary number. (16, 2) means 16 pixels
from the second neighborhood level are used. (8, 2) means 8 pixels from the second

neighborhood level are used. Taken from Kadir et al. [23].

r around a central pixel of gray value q (refer to Figure 1.8).

LBP (P, r) =
P−1∑
p=1

s(qp − qc)2p (1.9)

s(x) =

 1 if ifx >= 0

0 if otherwise
(1.10)

The s(x) function shown in Equation 1.10 is known as the thresholding function which

is similar to Equation 1.2 [39]. LBPV is a variant of LBP that is rotation invariant [20;

39]. For multiscale LBP some authors such as Herdiyeni [19] extract LBP descriptors

at different radius scales, calculate a histogram for each radius feature set, and then

concatenate those histograms together, similar to the curvature HCoS on LeafSnap [24].

This is a technique useful in complex image backgrounds, uncontrolled lighting, noise

[19], and may be useful for vein extraction.

SIFT-like Algorithms Once located, keypoints need to be converted to feature vec-

tors used to describe the image. Scale-Invariant Feature Transform (SIFT) uses a 128-

dimensional vector from a grid of histograms of oriented gradient. Its high descriptive

power and robustness to illumination change have ranked it as the reference keypoint

descriptor for the past decade. Other similar algorithms have been created such as

Speeded Up Robust Features (SURF), Fast Retina Keypoint Descriptor (FREAK),
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Figure 1.9: Fast Retina Keypoint Descriptor (FREAK)
FREAK descriptor of an object on a generic scene. Taken from Ortiz [37]

and Oriented FAST and Rotated BRIEF (ORB) [37]. Nguyen et al. [34] used SURF

features to develop an Android application for mobile leaf recognition, similar to LeafS-

nap [24]. SURF features are extracted from the gray scale image of the leaf. The focus

was neither the margin nor the internal veins, but the whole leaf as a texture. Figure

1.9 shows the intuition behind the FREAK descriptor.

Feature Normalization When several feature sets are used, it is necessary to nor-

malize the feature vectors as a precaution since the feature values may vary in different

ranges. In absence of feature normalization, features with larger values would have

stronger influence on the cost function from the classifier [23].

1.2.5 Species Classification based on Leaf Images

The following algorithms have been used to classify species by several authors, based

on leaf images.

Probabilistic Neural Network (PNN)

A PNN is derived from a Neural Network (NN) that uses a Radial Base Func-

tion (RBF) that scales a variable nonlinearly [48]. PNN is adopted because of several

advantages: its training speed is several times faster than a normal NN, it can approach

a Bayes optimal result under certain conditions, and it is robust to noise examples [45].
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On a PNN, the network is not "trained" traditionally since node weights are just as-

signed. Existing weights will not be re-assigned, but new weight vectors are inserted

into the weight matrices when training happens, so it can be used in real time. Since

PNN are implemented using matrices, makes them very fast and useful for leaf recog-

nition [4; 19; 20; 23; 30; 48]. The classification is done by calculating which class has

the maximum probability of being the correct one.

k Nearest Neighbors (kNN)

A very common and fairly simple classifier is kNN. In leaf recognition several studies

used kNN with very good results [3; 5; 24]. This algorithm measures the distance from

a query item to each of the training set items, getting the k training set items that are

the nearest [8]. In order to measure the distance, several metrics have been proposed,

but the most common one is the Euclidean one:

d(xr, xs) =

[
p∑

i=1

ci(xri − xsi)2
] 1

2

(1.11)

Where xr is the reference item, xs the query item, p the feature vector and ci is an

optative weight factor used to change the weight of each variable. It is sensitive to

the amount of training elements, making it slower if too many samples exist, and also

particularly sensitive to the Curse of Dimensionality problem. One possible solution to

both problems is the use of Locality Sensitive Hashing (LSH) where the feature set is

mapped to a hash number. This has been used in leaf recognition as well [33]. Another

option is to reduce dimensionality to the most representative features, using techniques

like Principal Component Analysis (PCA) [41; 48].

Support Vector Machines (SVM)

A SVM classifier is a binary supervised learning algorithm that can recognize pat-

terns to classify an item into one of two classes [6]. The items can be pictured as points
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in space, mapped so the items of each class are divided by a clear gap (called hyperplane)

that is as wide as possible. New items then, are predicted to belong to a class based on

which side of the gap they fall on. A data point can be viewed as a p-dimensional vec-

tor, and the goal is to separate several points by using a (p−1)-dimensional-hyperplane

that maximizes the margin between two classes (known as maximum-margin hyper-

plane). Several leaf recognition-related studies have used SVM for both leaf feature

classification into species [3], but also to do a previous validation in cases where the

image may not include a leaf [20; 24; 34]. The precision achieved by these studies are

used by current state-of-the-art mobile systems such as LeafSnap [24].

1.3 Related Work

This section recaps previous work on leaf recognition using Computer Vision tech-

niques. It comprises several works applying techniques for leaf feature extraction and

image classification.

Shape and Margin

Mouine et al. [33] used local descriptors associated with margin sample points to

create triangles based on those points. These landmark points are N points distributed

uniformly around the shape, and each point pi is represented by Ns triangles computed

at different scales, with a distance d(k) between the triangle points. They used 4 types

of descriptors: Triangle Area Representation (TAR) is based on triangle areas, robust to

noise and provides information about local concavities, Triangle Oriented Angles (TOA)

describes the inner angles of the triangles, Triangle Side Lengths (TSL) the side lengths,

and finally, Triangle Side Lengths and Angle (TSLA) is a combination of side lengths

and angles (this last one is the most robust one) [33]. The similarity search was done

using LSH and kNN, projecting the feature vectors to hash functions for faster search.

19



1.3. RELATED WORK

On the Flavia [48] dataset, the best obtained result was a 69.93% of precision using

kNN with the TSLA feature set. On the ImageCLEF 2011 dataset [14], TSL had the

best results with a 80% precision reported. They also used the Swedish leaf dataset

[33; 44], where their TSLA methods achieved an impressive 96.53% of precision. As

future work, the authors mentioned that adding venation may improve the precision of

the model.

Mouine et al. [32] studied the leaf margin and the leaf salient points using two shape

descriptors, one to describe the leaf boundary and another to represent the spatial

correlation between salient points and the leaf margin. The salient points, however, are

not vein points always, so the authors mention how the model could be improved by

developing an specific detector of key points of the venation network and use them as

salient points. The reported precision on the ImageCLEF 2011 dataset was 78.5% [14],

and on the ImageCLEF 2012 dataset was 58% [15].

In LeafSnap [24] the authors created a leaf classification method based on unimodal

curvature features and similarity search using kNN. This method was tested against a

dataset built from North American trees, using 183 species in total. The methodology

was based on 4 phases:

• Discard non-leaf images: they used a trained SVM to detect if an image contained

a leaf. GIST features taken from the image were used for leaf detection, imple-

mented using LibSVM1, an open source SVM library from [9]. The quantity of

manually labeled leaf images used to train the SVM was 5,972 in total.

• Color-Based Segmentation: since their system required images to have a uniform

background, leaf segmentation worked by estimating the foreground and back-

ground color distributions, and then classifying each pixel at a time into one of

those two categories. A conversion to HSV color domain was applied before using

Expectation-Maximization (EM) [12] for the leaf segmentation. Refer to Figure
1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Figure 1.10: Leaf Segmentation
a-) a leaf on a uniform background, b-) the same image on the HSV color domain and
c-) the result of applying EM to cluster the pixels. Taken from Kumar et al. [24].

1.10 for the color-based segmentation steps.

• Curvature Feature Extraction: the leaf shape was effectively represented using

multiscale invariant integral curvature measures. Two measures were used, the

area of intersection of a disk centered at the contour point, and the the arclength,

which is a fraction of the disk’s perimeter inside the contour. 25 disks with

different radius were generated at each point for multiscale support. Finally a

histogram was computed at each scale and then concatenated together to form a

Histogram of Curvature over Scale (HCoS).

• Similarity Search: kNN was used over the resulting HCoS of the images.

It is important to note that the work of LeafSnap resulted on the first mobile state-of-

the-art application for leaf recognition, with more than 1 million reported users in the

U.S [24].

Texture

Arun et al. [3] used morphological features such as mean, variance, skewness and

standard deviation of the gray levels of the image. The authors used Gray Tone Spatial

Dependency Matrix (GTSDM) and Local Binary Pattern (LBP) to do classification over

medicinal plants as well. The objective of the study was to obtain the best combination

of features for automatic classification of medicinal plants [3]. The authors used a total
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of 6 different classifiers and tested out all the possible combinations, having SVM and

kNN among them. A dataset was also created by them. It is a small dataset with only

5 different species and a total of 250 images, which doesn’t confirm if their method is

robust for more general proposes, even when a 94.7% of precision was reported [3].

Herdiyeni and Kusmana [19] used LBP features to classify medicinal and house

plants from Indonesia. They extracted LBP descriptors from different sample points and

radius, calculated a histogram for each radius length feature set, and concatenate those

histograms together, similar to the curvature HCoS of LeafSnap [24]. As a classifier a

4 layer PNN with a RBF was used. Their dataset consists of 30 species, 1,440 images

from tropical plants, and 30 species with 10 images for each species from house plants.

It is important to note the image background of the medicinal plants is uniform, but

house plant images have non-uniform backgrounds. For medicinal plants the precision

reported was 77% and for house plants 86.67%, revealing that using LBP for complex

image backgrounds is a suitable technique.

Nguyen et al. [34] used SURF features to develop an Android application for mobile

leaf recognition, similar to LeafSnap [24]. First, GIST descriptors from the gray scale

image were calculated from the leaf pixels and a SVM was trained to recognize them,

with a 95% of precision. This is used to detect if a picture has or doesn’t have a leaf,

to prevent users to upload a leaf-less image. For the species classification task, SURF

features were extracted from the gray scale image of the leaf, not from the leaf itself.

The feature set was reduced to histograms in order to reduce dimensionality since the

resulting SURF feature vector may be too big. The precision reported was 95.94% on

the Flavia dataset [48].

Venation

Lee and Hong [26]; Lee et al. [27] proposed and implemented a leaf recognition

system using the major vein of the leaf. They calculated a total of 21 features includ-
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ing the distance between a centroid and all the points from the contour, followed by

Fast Fourier Transform (FFT), and other morphological geometric features of the leaf.

The image was converted to gray scale, and then to a binary image using a threshold

conversion in order to get the leaf contour. The extraction of the vein was done by

performing opening operations. They obtained the gray scale image and the image of

performed opening operation (erosion and dilation), and then calculated the leaf veins

image by converting the difference image to binary. Once the veins were extracted, they

calculated two histograms of the veins, one horizontal and one vertical. Additionally, 4

geometrical features were extracted from the leaf: aspect ratio, form factor, rectangu-

larity, length and width. The reported precision was 97.19% on the Flavia dataset [48].

As future work, they wanted to focus on working leaf contour extraction methods for

complex backgrounds.

Larese et al. [25] discarded completely color, texture, size and shape, and focused

only on venation. Leaf vein segmentation was performed using Unconstrained Hit-or-

Miss Transform (UHMT) over gray scale leaf images using pixel masks (see Figure 1.11).

Three classes of legumes were recognized: a soybean (Glycine max (L) Merr), and red

and white beans (Phaseolus vulgaris). The beans belong to the same species, presenting

similar leaf shapes, but different veins. Color was discarded by converting the image to

gray scale, then in order to segment the veins, UHMT was computed for different sized

versions of the image intended to highlight different levels of vein detail. A central patch

(Figure 1.11) was selected manually from the resulting vein image using LeafGUI2 [40],

since shape of the leaf was not important for this study. Based on the extracted patch,

35 additional morphological measures were computed. Using 10 independent runs of

10-fold cross validation, the reported precision of the model with SVM was 87%, over

866 RGB leaf images.

Li et al. [28] studied how to extract venation from the leaf to develop an interactive
2http://www.leafgui.org/
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Figure 1.11: Venation Pattern Masks for Unconstrained Hit-or-Miss Transform
(UHMT)

Taken from Larese et al. [25]

tool for botanists. The study used 21 kind of tree images to generate randomly 50,000

12 × 12 pixel patches to train an Independent Component Analysis (ICA) algorithm.

Based on ICA, each image patch can be represented by a linear combination of basis

patches, which are really the vein features.

Multimodal Models

Wu et al. [48] used morphological, easy to extract features with PNN to recognize

plant species. This study also produced the Flavia dataset [48], mentioned in many

other studies. In total, 12 feature types were extracted. First the image was converted

to gray scale from RGB, then a boundary enhancement was applied by a Laplacian

filter of 3 × 3 spatial mask in order to get the margin of the leaf. Over the extracted

margin, the leaf diameter, length, width, area, perimeter, smooth factor, aspect ratio,

form factor, rectangularity, narrow factor, and morphological opening were calculated.

By applying PNN after reducing dimensionality with PCA, 90% precision was reported.

Beghin et al. [4] proposed a feature fusion technique using Gabor Filters for edge

and texture feature extraction. Their data used fresh leaf images, not dry species. The

reported precision was in the range of 56.2% and 85.93%, using 10 fold cross validation.

The dataset had 9 species and 15 sample images per species. The classification method

used was PNN.

Kadir et al. [23] proposed a multimodal method which uses shape, vein and color

features. This is one of the few studies where color played an important role. The
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system in [23] merged the following features into a single model:

• Shape features: geometric features were extracted such as slimness, roundness

and dispersion. Additionally, second order Polar Fourier Transform (PFT) was

used because of its invariance to scaling and rotation [23].

• Color Moments: features of the RGB were captured such as mean, standard

deviation, skewness and kurtosis, for each component of the RGB [23].

• Morphological Opening was used to extract 4 vein features [48]. It was performed

on the gray scale image with flat, disk-shaped structure element of variable radius

[23].

• Lacunarity [23; 46] was calculated for each RGB channel of the image.

After all features were extracted, feature normalization was applied. In absence of

feature normalization, features with larger values would have stronger influence on the

cost function from the classifier [23]. The classifier used was PNN, reporting a 93.75%

of precision on the Flavia dataset [48].

Li et al. [29] created a combined vein and curvature model from 3-dimensional

models of point cloud data from 4 images of leaves. They used 3-dimensional laser

capturing technology to obtain the point cloud data, and a mesh algorithm to link the

points, to calculate curvature and venation.

R.D and S [41] used a multimodal system composed of 38 morphological features

and a PCA approach for texture. The morphological features are captured from a gray

scale version of the image, with several morphological features such as: perimeter, circu-

larity, aspect ratio, roundness, area, rectangularity, maximum length, maximum width,

morphological opening, followed by a normalization process [23]. The PCA approach

had a training phase which took all the dataset pictures and put them in a matrix,

where a small number of characteristic features were generated, called eigenpictures.

Then, each image was represented as a linear combination of these eigenpictures. Their
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reported precision on the Flavia dataset [48] for the morphological features was 91.9%,

for the PCA algorithm 85.4%, and for both combined 89.2%. One of the downsides of

the PCA approach is that it requires training with the complete dataset, which is not

memory efficient nor scalable.

Bhardwaj et al. [5] used morphological features such as aspect ratio, leaf area,

rectangularity, circularity, convexity, solidity. They also used color moments for gray

scale intensities such as mean, variance, kurtosis, skewness. Classification was done

using kNN on a dataset of 320 leaves of 14 different plants from different sizes, colors

and shapes, achieving a recognition rate of 91.5%.

Herdiyeni and Santoni [20] worked with a combination of shape, texture and color

to recognize Indonesian medicinal plants. As a classifier they used PNN with a reported

precision of 72.16% over 51 medicinal species, with a total of 2,448 images. The specific

features used are:

• Morphological features such as leaf diameter, length, width, area, perimeter, as-

pect ratio, and morphological opening [23].

• Color Moments such as mean, standard deviation and skewness were used over

the different color channels.

• LBPV was used to capture the texture of the leaf with rotation invariance [20; 39].

The authors created a mobile app which runs on Android OS called Medleaf [20]. Their

best precisions were achieved by using LBPV as a feature base. Morphological features

don’t seem to contribute a lot to the precision of their model.

It is important to note that after studying different unimodal (one feature set mod-

els) and multimodal (2 or more feature set models) studies, it is not clear if using single

curvature features is good enough (given the fact that the current state-of-the-art in

[24] is unimodal), or if using a combination with veins is better.
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1.4 Problem Description

Herbaria keep large amounts of dry mounted samples of plants to support scientific

research. As noted by Nelson Zamora, once a leaf is dry and mounted, some botanical

characteristics of the leaf such as color may be lost, but vein patterns are kept intact.

Veins will also have a tendency to stand out even more than normal [49].

Additionally, the current state-of-the-art mobile leaf recognition application LeafS-

nap [24] may not be enough to classify with high precision two species that share similar

margins, especially for tropical countries. LeafSnap [24] uses curvature of the margin

of the leaf only, which seems to be enough for tree species from the Northeast area of

the USA.

Furthermore, Costa Rica has approximately 12,000 plant species. The species iden-

tification process is manual, slow, tedious, and error prone. There have been pioneer

attempts to automate the identification process with reduced domains [4; 24; 48], how-

ever none has been tested in Costa Rica. Mega-diverse regions such as the Neotropic

need tools to identify both known and unknown species in an efficient, automatic or

semi-automatic way, in order to better understand and conserve the world biodiversity.

1.5 Hypothesis

1. The current multiscale curvature model used by LeafSnap will not have the same

high level of accuracy when recognizing Costa Rican species.

2. The accuracy of a leaf recognition model on species from Costa Rica increases

significantly by adding texture pattern analysis to LeafSnap’s curvature model.
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CHAPTER 2

Objectives and Contributions

We share this planet with many species. It is our responsibility to protect

them, both for their sakes and our own.
Pamela A. Matson

2.1 General Objective

Compare the results of applying LeafSnap’s curvature model with a model that

comprises both leaf curvature and texture features of Costa Rican tree species.
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2.2 Specific Objectives

1. Design and implement an efficient, rotation invariant, multiscale texture feature

extraction model for leaf images.

2. Produce a Costa Rican dataset of dry leaf images from the herbarium at INBio

that can be used for Costa Rican tree species identification systems.

3. Create another dataset of fresh Costa Rican leaf images that can be used to

measure the accuracy of the curvature and texture based models.

4. Compare the accuracy obtained by LeafSnap in USA using the curvature model

against the accuracy obtained by the same model with Costa Rican tree species.

5. Measure the positive effect of adding texture to the curvature model for Costa

Rican species identification.

6. Create a backend system with the curvature and texture algorithms for future

projects such as mobile apps for Costa Rican species recognition.

2.3 Contributions

This research will produce the following:

• A document that summarizes literature review of existing Computer Vision tech-

niques used to classify plant species based on the morphological characteristics of

their leaves.

• A Costa Rican dataset with leaf pictures and plant species information oriented

to leaf recognition systems, taken from the herbarium at INBio.

• Another dataset comprised of fresh leaf images taken from field trips.

• Analysis of applying the state-of-the-art curvature model on Costa Rican species.
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• An efficient, rotation invariant, multiscale leaf recognition model that uses both

curvature and texture features for Costa Rican species recognition.

• A study of the accuracy when applying both curvature and texture on Costa

Rican species.

• A backend system containing the dataset and the leaf recognition algorithms

properly coded and implemented.

2.4 Scope and Limitations

This work will be based on the LeafSnap curvature model, which is considered the

mobile state-of-the-art leaf recognition. We will add texture features to the model to see

if it significantly improves its accuracy. Our premise is that Costa Rica’s biodiversity is

more complex and a curvature-only model performance may be significantly improved

by adding texture information.

This research does not include:

• Using color features for the classification of species.

• Classifying other plant species besides the ones already selected from the herbar-

ium at INBio.

• Working with high-noise images, with complex backgrounds or with bad resolution

images.

• Segmenting complex background images.

• Working with other media type different than images.

• A mobile app for leaf recognition on Costa Rican species. This research however

will focus on making fast algorithms so that the model can be eventually used as

a backend for a mobile app.

• Any other deliverable not explicitly mentioned on this document.

30



CHAPTER 3

Methodology

Living wild species are like a library of books still unread. Our heedless

destruction of them is akin to burning the library without ever having

read its books.
John Dingell

3.1 Introduction

This chapter covers the techniques, tools and experiment design used in this re-

search. Manual tasks such as image digitalization of fresh captured leaves from the

field were required for the reference dataset. Automatic species identification algorithms

needed several software development tasks. Experimental work to compare accuracy

between Costa Rican species recognition and USA species recognition was designed and

executed.

This chapter is organized as follows: Section 3.2 describes the software tools. Section

3.3.1 presents how images were acquired and the different datasets used and created.
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Section 3.3.2 describes how leaf segmentation was achieved using color clustering. Sec-

tion 3.3.3 describes which image enhancements were applied to improve segmentation.

Section 3.3.4 explains which features were extracted for both curvature and texture.

Section 3.3.5 covers the techniques used to classify the images into species. Finally,

Section 3.4 focuses on experiments set up.

3.2 Software

In order to implement the LeafSnap model of curvature and the LBP algorithms, we

made use of several open source libraries. By using existing implementations we reduced

development time and improved the implementation’s robustness. The following is a

list of the key libraries used for this research:

Photshop CS6: We used Photoshop to manually clean up leaf images. We cleaned

shadows, dust, and any undesired object or noise from all images. This process was

applied to a portion of the dataset, not to everything, in order to facilitate leaf segmen-

tation. This application is not open source.

StatSolver: An statistical application was used for the experiments. StatSolver1

implements several statistical analysis methods, and in particular, the Proportion Hy-

pothesis Test for 2 Samples that we needed to verify if there was a significant increase

of accuracy when texture was added to curvature.

R: We used the scripting language R to create better looking charts for the results

chapter.
1www.statsolver.net
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Python: We choose Python2 as the programming language to develop the algorithms.

The main reason for its selection is that its scientific community is highly active and a

significant number of scientific libraries are available. Also, Python has web frameworks

that can be used easily to develop web back-ends, which is desirable in order to create

a web service for Costa Rican leaf recognition.

OpenCV: Computer Vision algorithms are key to this research. The OpenCV3

framework is an open source framework with key implemented Computer Vision al-

gorithms that we needed for this research. The Expectation-Maximization (EM) al-

gorithm allowed to cluster the image points into leaf and non-leaf clusters. Other

morphology algorithms such as opening, closing, dilation, top-hat transformations, and

contour calculations were used from this library as well [7].

SciPy: SciPy4 is a scientific library that we used for interpolations and connected

components calculations. We calculated the connected components for post-processing

and to improve segmentation [22; 24].

NumPy: An n-dimensional array library was needed in order to treat images as ma-

trices. NumPy5 was the key library for image manipulation. It is very fast, which allows

our algorithms to run with high computational efficiency, which is part of the desired

features of the proposed model of curvature and texture. NumPy allowed us to clip

images and extract specific pixels in several color domains, among other functionalities

[36].

Mahotas: We proposed using LBP to improve the curvature model used by LeafSnap.

A fast implementation of LBP can be found in the library called Mahotas6. This library
2www.python.org
3www.opencv.org
4www.scipy.org
5www.numpy.org
6luispedro.org/software/mahotas
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has a LBPV implementation that is rotation invariant, very fast, and also offers the

option to specify different pixel radii and circumferences, which was used to capture

different scales in our approach [11].

Scikit-learn: Because of the potential big size of the datasets, we required a highly

memory efficient k Nearest Neighbors (kNN) implementation for the experiments and

the classification of leaves overall. Scikit-learn7 is a machine learning library in Python

that has an extremely fast kNN implementation that we used to get the leaf species’

ranking after classification. Scikit-learn contains several distance metrics that can be

used for classification (e.g., Euclidean). In addition, it allows users to add their own

distance code. In our case, we added the code to calculate the Histogram Intersection

distance [24; 38].

Bottle: As part of the deliverables of this research, we provide a simple web service

that receives images and returns the k best matching for the provided image. The

Bottle8 library offers easy web service development on Python, that allows stateless

implementation of the service.

3.3 Leaf Recognition and Classification Process

This section describes how the leaf recognition process was created. It comprises not

only curvature and the texture models, but also explains the segmentation process and

post-processing needed to improve the segmentation. Feature extraction is described

for both the model of curvature and the texture model. The classification process is

also detailed, which distance metric was used, and how accuracy was measured.
7www.scikit-learn.org
8www.bottlepy.org
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3.3.1 Leaf Image Acquisition

A key element to this research was the acquisition of leaf images. Because for Costa

Rica there was no suitable dataset with uniform backgrounds that we could use, so

we built our own. Additionally, in order to measure the effectiveness of our bimodal

curvature plus texture approach, we also required datasets to benchmark our findings.

For benchmarking we used the Flavia [48] dataset and a subset of the LeafSnap [24]

dataset, that contained 3,621 and 30,866 respectively.

Flavia Image Dataset

We used the Flavia Dataset [48] to compare our approach with other leaf recognition

studies. We also used it to see how accurate our implementation of LeafSnap’s model

of curvature was. The dataset comprises 32 species with 3,621 leaf images with white

backgrounds. This dataset uses fresh leaf images. The origin of the sampled leaves

is the Nanjing University campus and the Sun Yat-Sen Arboretum in Nanking, China

[48].

The LeafSnap Image Incomplete Dataset

In order to verify how our implementation of LeafSnap’s model of curvature and

texture model behaved, we were granted with access to a subset of the original LeafSnap

dataset9. As stated on their website, we quote:

"The dataset released here doesn’t exactly match that used to compute

results for the paper, nor the currently running version on our servers."

The provided dataset consists of leaf images of 185 tree species of northeast USA,

divided in 2 subsets:

• Lab Subset: 23,147 pressed, high quality images taken from the Smithsonian

collection. There are several images per species.
9http://leafsnap.com/dataset
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• Field Subset: 7,719 typical images taken from mobile phones (mostly iPhone) in

outdoor environments. These images are noisy images, since they contain blur,

lighting conditions, shadows, among other artifacts.

Costa Rican Image Dataset

An image dataset of leaves from Costa Rica dataset was created from scratch. To

our knowledge, no other suitable Costa Rican datasets existed before. The dataset

has both clean and noisy images, aimed to see how the amount of noise affects the

algorithms. Also, the Costa Rican dataset was used to evaluate our hypothesis. All

images were captured from mainly two places: the Sabana Park, located in San Jose,

and INBiopark, located in Santo Domingo, Heredia (Tables 3.1 and 3.2 show which

species where taken from each place). The dataset includes endemic species as well as

species in danger of extinction.

Reference "Clean" Subset Fresh leaf images were captured during field trips to

both the Sabana and INBiopark. If the leaves were not flat enough, a press was used to

flatten them for 24 hours. Figure 3.1 shows the leaf press used during this process. A

total of 1468 leaf images were scanned and divided in different folders for each species.

The images have a white uniform background and a size of 2548x3300 pixels, scanned

at 300 dpi in JPEG. Photoshop CS6 was used to clean the image background from

shadows, dust particles and other undesired objects. Figure 3.2 shows a sample of a

cleaned Costa Rican leaf image of this subset. The scanner technical specifications are:

• Name: HP ScanJet 300.

• Maximum 4800 dpi. Only 300 dpi were used.

Testing "Noisy" Subset A total of 2345 fresh leaf images were captured during field

trips. The images were divided into one folder per species. This subset was captured
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Species Scanned Camera

Anacardium excelsum 18 40
Ardisia revoluta 20 40

Astronium graveolens 38 40
Bauhinia purpurea 16 37
Bauhinia ungulata 20 28

Brosimum alicastrum 20 40
Calophyllum brasiliense 18 43

Cedrela odorata 20 42
Cordia eriostigma 18 36
Dalbergia retusa 34

Dipterex panamensis 20 40
Guazuma ulmifolia 16 38

Hura crepitans 18 35
Hyeronima alchorneoides 18 32

Hymenaea courbaril 38 42
Manilkara chicle 24 41

Muntingia calabura 20 41
Platymiscium parviflorum 25 33
Platymiscium pinnatum 23 44

Quercus insignis 18
Samanea saman 32 46

Sideroxylon capiri 20 35
Simarouba glauca 28 35

Swietenia macrophylla 18 42
Tabebuia impetiginosa 20 38

Tabebuia ochracea 22 44
Tabebuia ochracea CR 16 20

Tabebuia rosea 20 20
Terminalia amazonia 24 42
Terminalia oblonga 22 42
Trichilia havanensis 32 44

Table 3.1: List of species collected at the Sabana Park
Contains the number of images per species.
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Species Scanned Camera

Acnistus arborescens 20 27
Aegiphila valerioi 16 28
Annona mucosa 22 33

Blackea maurafernandesiana 16 26
Calycophyllum candidissimum 38 52

Cestrum tomentosum 28 40
Citharexylum donnell-smithii 20 24

Clusia croatii 20 30
Coccoloba floribunda 20 30

Colubrina spinosa 20 30
Cretra costaricense 14 24

Croton draco 18 30
Croton niveus 26 37

Dendropanax arboreus 22 32
Dipterix Panamensis 22 21

Erythrina poeppigiana 20 30
Eugenia hiraeifolia 20 30

Ficus cotinifolia 24 34
Genipa americana 16 26

Guaiacum sanctum 34 34
Heliocarpus appendiculatus 24 32

Ocotea sinuata 18 28
Pachira quinata 30 49

Persea americana 16 26
Picramnia antidesma 22 30

Pimenta dioica 24 34
Posoqueria latifolia 18 30

Psidium guajava 16 24
Quercus corrugata 20 30

Robinsonella lindeniana var. divergens 20 28
Sapium glandulosum 20 30

Simarouba glauca 24 34
Solanum rovirosanum 22 34

Stemmadenia donnell-smithii 26 30
Tabernaemontana littoralis 24 32

Terminalia amazonia 20 24
Urera caracasana 10 18
Vernonia patens 14 22
Zygia longifolia 20 40

Table 3.2: List of species collected at the INBiopark
Contains the number of images per species.
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Figure 3.1: Leaf press
borrowed from INBio

Figure 3.2: A Robinsonella lindeniana var. divergens sample
scanned from a leaf sample from INBiopark, using a HP ScanJet 300 scanner, then

cleaned using Photoshop CS6.
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Figure 3.3: A Bauhinia ungulata sample
taken using a Canon PowerShot SD780 IS camera at the Sabana Park.

against white, uniform backgrounds (normally a sheet of paper). Each image has a

3000x4000 pixel resolution, in JPG format. Figure 3.3 presents a noisy leaf image

sample. The used camera specifications are the following:

• Name: Canon PowerShot SD780 IS

• 12.1 megapixels

• 1/2.3-inch CCD Sensor Type

• Highest resolution size: 4,000x3,000 pixels

• Year of release: 2009

• Accessible price to general public.
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Figure 3.4: INBio Herbarium samples
with noise, objects, transposed leaves, among other noisy elements

INBio Herbarium DataSet We attempted to make use of the herbarium at Na-

tional Biodiversity Institute (INBio) to get leaf images. The plan was to scan several

samples of several Costa Rican species from the herbarium, clean them with Photo-

shop, and use them for model training. This, given the high noise of the scans, was not

possible. Current samples of the herbarium are appropriate for analysis performed by

human beings, but when it comes to computer algorithms, they have too much noise:

shadows, holes, plastic objects, interposed leaves, incomplete leaves, among others. We

decided not make use of the herbarium samples because of these reasons. Figure 3.4

shows two samples provided by INBio where high noise is present.

3.3.2 Image Leaf Segmentation: Color Based

The first step to process the leaf image is to segment which pixels belong to a leaf

and which do not. We used the same approach as LeafSnap, by applying color-based

segmentation.
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Figure 3.5: HSV decomposition of a leaf image
The top-left image shows the original sample. The top-right image shows the Hue
channel of the image containing noise. The bottom-left image shows the Saturation

component, and the bottom-right image shows the Value component.

HSV Color Domain

When segmenting with color it is imperative to use the right color domains that

exclude undesired noise. Kumar et al. [24] states how, in the HSV domain during

their tests, Hue had a tendency to contain greenish shadows from the original pictures.

Saturation and Value however, had a tendency to be clean. So we also used those two

color components for leaf segmentation. Figure 3.5 shows the noise present in the Hue

channel, but also shows how Saturation and Value are cleaner. This was useful for

posterior segmentation using Expectation-Maximization (EM). We used OpenCV to

convert the original images into the HSV domain. Then, using NumPy, we extracted

the Saturation and Value components, which were fed to the EM algorithm.
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Figure 3.6: Segmented Samples
After applying EM to different Costa Rican species

Expectation-Maximization (EM)

Once images were converted to HSV and the desired channels were extracted, we

applied EM to the color domain in order to cluster the pixels into one of 2 possible

groups: leaf and non-leaf groups [24]. Figure 3.6 shows several samples of the final

segmentation after applying EM. As shown, EM segments the image into the leaf and

non-leaf pixel groups by assigning a 1 to the leaf pixels and a 0 to the non-leaf pixels.

This method also works well on both simple and compound leaves. It is important

to highlight that we didn’t assign weights to each cluster manually as the work done

by Kumar et al. [24], because we wanted to leave the process as automatic as possible

because of the time constraints. In their work, they improve the segmentation of certain

types of leaves, especially skinny ones, by manually assigning different weights to each

cluster.
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Training Algorithm 1 describes the process to train the EM algorithm. We used

OpenCV’s implementation of EM. First we stacked all the pixels of the image matrix

into a single vector. Then we trained the model using a diagonal matrix as a co-variance

matrix, and we assigned two clusters to it, which internally were translated into two

Gaussian Distributions, one for the leaf cluster and one for the non-leaf cluster. Once

trained, we returned the EM object.

Algorithm 1 EM Training
stackedP ixels← ∅
for all pixelRow in image do

for all pixel in pixelRow do
stackedP ixels← stackedP ixels ∪ pixel

end for
end for
EM ← OpenCV.EM(nClusters = 2, covMatType = OpenCV.DIAGONAL)
EM.train(stackedP ixels)
return EM

Pixel Prediction Algorithm 2 explains how the owning cluster of a single pixel of the

image was predicted. Once the EM object was trained, the OpenCV’s implementation

allowed to compute the probabilities of the pixel belonging to each cluster. However,

for more efficiency, we created a dictionary containing each unique (Saturation, V alue)

pair as key, and the cluster as value. This way, we predicted only the unique keys

once, which decreased computing time significantly. If the key was not found in the

dictionary, we then proceeded to predict the probabilities for each cluster, added the

key and cluster to the dictionary, and returned the associated cluster with the biggest

probability.

3.3.3 Image Enhancements/Post-Processing

After segmentation of the leaf using EM, some extra work was needed to clean up

several false positives areas. We followed the process of LeafSnap [24]. First of all, a
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Algorithm 2 EM Pixel Prediction
key ← hash(pixel[S], pixel[V ])
if hash in pixelDictionary then

return pixelDictionary[key]
end if
probabilities← EM.predict(pixel[S], pixel[V ])
pixelDict[key] = probabilities[0] > probabilities[1]
return pixelDict[key]

heuristic was applied to delete undesired objects. Then, the stem was deleted since it

added noise to the model of curvature (not that much to the texture model). Finally,

each image was clipped to the internal leaf size provided by the segmentation and the

image then was resized to a common leaf area.

Deleting Undesired Objects

Even when uniform background images were used, initial segmentation turned out

not to be enough when the image contained undesired objects. These objects could be

dust, shadows, corners of furniture, among other things. Kumar et al. [24] attempted

to delete these noisy objects by using the same heuristic we implemented as shown

in Algorithm 3. By using scikit-learn we calculated the connected components of the

segmented image. We deleted the "small" components by area (in pixels). Small

components were normally dust, small bugs or pieces of leaves, among other things.

Once all small components were deleted, if the remaining was only one then we took

that to be the leaf. If more than one component remained, then we calculated for each

remaining component how many pixels had intersections with the image margin. We

then deleted the component with the biggest number of intersections. The thinking

behind this is to get rid of components that were not centered on the image, which

tend to be non-leaf objects. Finally, the component with the biggest area from the

remaining components was taken as the leaf.
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Algorithm 3 Deleting Undesired Objects Heuristic
n, components← connectedComponents(segmentedImage)
components← deleteSmallComponents(components, kMinimumArea)
if size(components) == 1 then

return components[0]
end if
inters← empty
areas← empty
for all component in components do
inters← inters ∪ getImageMarginIntersections(component)
areas← areas ∪ getComponentArea(component)

end for
noisyObject← max(inters)
return max(areas− noisyObject)

Deleting stem

We followed the description of the stem deletion described in [24]. If the stem was

left intact, it would add noise to the model of curvature, given all the possible sizes

it may take. Algorithm 5 shows the procedure. First, all connected components were

calculated from the segmented image, and also their quantity, using the scikit-learn

library. Then, using OpenCV, a Top Hat transformation was applied to the segmented

image in order to leave only possible stem regions, as shown in Figure 3.7. Once the

Top Hat image was calculated, we looped over all the components, deleting every single

one from the original segmentation and recalculating the new number of connected

components. If the original number of connected components was the same as the

new one after deletion, that meant the current component was a good stem candidate

(heuristically, a stem does not affect how many original connected components there

are). Once all stem candidates were calculated, the one with the biggest area and

largest aspect ratio was chosen to be the stem, as described in Algorithm 4.

Algorithm 4 Calculate Aspect Ratio Combined with Area
width, heigth← calculateRectangleAround(component)
area← calculateArea(component)
return width/heigth ∗ area
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Algorithm 5 Deleting the Stem
candidates← empty
candidatesRatios← empty
n, components← connectedComponents(segmentedImage)
possibleStemsImage← topHatTransformation(segmentedImage)
for all component in components do
tempSegmentation← delete(component, segmentedImage)
currentN ← connectedComponents(tempSegmentation)
if currentN = n then
candidates← candidates ∪ component
candidatesRatios← candidatesRatios ∪ calculateAspectRatio(component)

end if
end for
bestCandidate← candidates[max(candidatesRatios).index]
segmentedImage← delete(bestCandidate, segmentedImage)

Figure 3.7: Top Hat Transformation
applied to a leaf segmentation image.
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Figure 3.8: Clipping of a Coccoloba floribunda sample
The left image is the original leaf image, and the right one is clipped to the leaf size.

Clipping

Before extracting features, we deprecated non-leaf regions by cutting the image

around the leaf area. This was done in order to prepare the image for the subsequent

resizing needed for the model of curvature. The clipping algorithm was trivial to im-

plement once the contours were calculated using OpenCV. As shown in Algorithm 6,

the minimum and maximum coordinates were calculated for all contour x and y com-

ponents, followed by a cut of the leaf image matrix to those resulting minimum and

maximum coordinates. The results of the Clipping phase can be seen in Figure 3.8.

Algorithm 6 Clipping Leaf Portion of the Image
xmin← min(contours.xs)− ε
ymin← min(contours.ys)− ε
xmax← max(contours.xs) + ε
ymax← max(contours.ys) + ε
clipped← image[xmin : xmax, ymin : ymax]

Resize Leaf Area

Once the leaf area had been clipped, a resize was applied in order to standardize the

leaf areas inside all images. If not, the model of curvature was affected negatively since

the amount of contour pixels varied significantly [24]. Our implementation of the resize

was applied to the whole clipped image, however the calculations of height and width

of the image depended on the leaf area. This means resulting images may had different
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sizes, but the internal leaf areas were the same or almost the same. Algorithm 7 shows

how a new width and height were obtained for resizing, by calculating the growth ratio

between the current leaf area, the desired new leaf area, and the current height and

width of the image. This relation turned to be a quadratic equation. Finally, OpenCV

was used to resize the clipped image to a leaf size. We used 100, 000 as that constant

size for the normalized leaf area.

Algorithm 7 Common Leaf Area Resize
newLeafArea← 100000
imgArea← height× weight
newImgArea← (imgArea× newLeafArea)/leafArea
wGrowth← weight/height+ weight
hGrowth← height/height+ weight
a← wGrowth× hGrowth
x← abs(

√
4× a× newImgArea/(2× a))

newWidth = wGrowth× x
newHeight = hGrowth× x
return OpenCV.resize(image, newWidth, newHeight)

3.3.4 Leaf Feature Extraction

The feature extraction was designed and implemented considering three main con-

cepts:

• Efficiency: we wanted to build a model capable of supporting future mobile apps,

thus, it had to be fast and efficient.

• Rotation invariance: the leaf within the image may be rotated to any angle, thus,

it was imperative to build a rotation invariant approach for texture.

• Multiscale: the datasets contain different sizes of leaves so we had to capture

multiple scales.

Two different feature sets were calculated. The first one was an implementation

of the Histogram of Curvature over Scale (HCoS) [24]. We attempted to download
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this code implementation from the original URL provided in the paper but was not

available, thus we coded the solution in Python based on the description of the paper.

Then, an implementation of Local Binary Pattern Variance (LBPV) was used after the

segmentation and leaf normalization process. Both models generated histograms which

are suitable for distance metric calculations.

Model of Curvature Using HCoS

The model of curvature used by LeafSnap comprises several steps when it comes to

feature extraction. Previously explained segmentation and post-processing resulted in

a mask of leaf and non-leaf pixels. The non-leaf pixels have values of 0, and the leaf

pixels have values of 1. First, the different contour pixels were found, then 25 different

masks with discrete disk shapes were applied on top of each contour point, providing

both an area of the intersection and an arc length. Then all calculations at each scale

were assigned together into a histogram, generating 25 different histograms per image,

one per scale. Finally, all the 25 resulting histograms were concatenated, conforming

the HCoS.

Contours In a binary image (resulted of the previous segmentation), the OpenCV

implementation of contour finding worked very well, based on the original algorithm

of Satoshi Suzuki [42] for contour finding. The algorithm resulted in a vector of pairs

(x, y) that represented the coordinates where a contour pixel was found. A contour

pixel can be defined as a pixel which is surrounded by at least another pixel with the

opposite color of it. Figure 3.9 shows the contour pixels detected in the original image,

calculated from the segmented mask. Notice how shadows affect the contour algorithm,

since they were not segmented perfectly.

Scales The original algorithm of Kumar et al. [24] makes use of 25 different scales,

creating one disk per scale. Each disk is a discrete matrix representing a binary image of

50



3.3. LEAF RECOGNITION AND CLASSIFICATION PROCESS

Figure 3.9: Croton niveus contours
extracted using OpenCV.

a disk, as round as possible in the discrete domain. We implemented a discrete version

of the disks making use of matrices. The implementation is based on Manay et al. [31]

work, available in Matlab 10.

The disks used were actually matrices of 1’s and 0’s. They were applied as masks

over specific parts of the segmented leaf image (mostly contour points). The idea was

to count how many pixels intersected the segmented image and each disk mask. We

created two different versions of the disks: one completely filled up with 1’s, as shown

in Figure 3.10, used to count the area of intersection, and one where 1’s are present only

in the circumference of the disk, used to find out the arc’s length of the intersection of

the disk with the leaf, at a given contour point, as shown on Figure 3.11.

Once all disks were created for both area and arc length versions, we applied them

to each pixel of the contour vector, as shown by Algorithm 8.

Figure 3.12 shows how one specific area disk was applied to the segmentation image,

for an specific scale (radius=18 in this case), at a given contour pixel. The gray area

shows the intersection of pixels with the leaf segmentation. This procedure was then
10https:www.ceremade.dauphine.frp̃eyrenumericaltourtoursshapes_4_shape_matching
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[ [ 0 . 0 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . ]
[ 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . ]
[ 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . ]
[ 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . ]
[ 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . ]
[ 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . ]
[ 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . ]
[ 0 . 0 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . ]
[ 0 . 0 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . ] ]

Figure 3.10: A discrete filled disk of radius=4 pixels
used to calculate area of the intersection with the leaf segmentation.

[ [ 0 . 0 . 0 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . 0 . ]
[ 0 . 0 . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 0 . 0 . ]
[ 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . ]
[ 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . ]
[ 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . ]
[ 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . ]
[ 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . ]
[ 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . ]
[ 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . ]
[ 0 . 0 . 1 . 1 . 1 . 0 . 1 . 1 . 1 . 0 . 0 . ]
[ 0 . 0 . 0 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . 0 . ] ]

Figure 3.11: A discrete unfilled disk of radius=5 pixels
used to calculate arc length of the intersection with the leaf segmentation.

Algorithm 8 Area and Arc Length Vector Calculation
arcs← empty
areas← empty
for all pixel of the contour vector do

for all areaMask, arcMask = 1 to 25 do
center areaMask, arcMask at current contour pixel
area← count(areaMask ∩ segmentation)
areas← areas ∪ area
arc← count(arcMask ∩ segmentation)
arcs← arcs ∪ arc

end for
end for
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Figure 3.12: Area disk applied
to a Croton niveus sample at an specific pixel of the contour, with radius=18

repeated over all the pixels from the contour vector in the same way.

Histograms Using NumPy at each scale, a histogram was created from all the values

generated from all contour pixels, as described by Algorithm 8. We used histograms of

21 bins, as Kumar et al. [24] did. This means a total of 25 different histograms were

created, each with 21 bins, per image. At each scale, each histogram was normalized

to 1, by using Equation 3.1, where N(x) is the normalization of histogram x and xi is

each bin of the histogram. Then, all histograms were concatenated together (both the

25 for area and 25 for arc length), generating what Kumar et al. [24] describes as the

Histogram of Curvature over Scale (HCoS).

N(x) = ∀xi ∈ x,
xi∑n
i=1 xi

(3.1)

Our implementation of HCoS has a computing time that approximately ranges be-

tween 1 to 6 seconds, depending on the size of the leaf within the image. Future

improvements may be implemented for further speed optimizations.
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Variant Radius Pixels

R1P8 1 8
R2P16 2 16
R3P16 3 16
R1P8, R2P16 concatenated 1 and 2 8 and 16
R1P8, R3P16 concatenated 1 and 3 8 and 16
R3P24 3 24

Table 3.3: Variants of LBPV

Texture Using LBPV

We aimed to improve the model of curvature by adding texture analysis. We used

a Local Binary Pattern Variance (LBPV) implementation that is invariant to rotation,

multiscale and efficient [11]. The mahotas’ implementation of LBPV is based on the

algorithm of Ojala et al. [35], and makes use of NumPy libraries to represent the image

and the resulting histograms. It works on gray images, so we used OpenCV to convert

the RGB images to gray scale images. The LBPV approach aims to detect micro

structures such as lines, spots, flat areas, and edges [35]. This is useful to detect

patterns of the veins, areas between them, reflections, and even roughness. Figure

3.13 shows how 2 different LBPV implementations look. The upper image shows a

radius = 2, 16 pixels implementation, and the one below shows a radius = 1, 8 pixel

implementation. The different variants of the LBPV used are shown in Table 3.3. It

is important to note that we did not use the variant which samples 24 pixels, since it

generated histograms that were too big and memory demanding. We did, however, run

some tests where we noticed the 24 pixels variation didn’t add more accuracy, so we

decided to ignore this method.

Histograms Just like the HCoS, LBPV generated histograms that can be used for

similarity search. Several histograms were generated at different radius sizes and differ-

ent circumference pixel sampling, in order to validate which combinations provided the

best results. The mahotas’ implementation returned a histogram of the feature counts,
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Figure 3.13: LBPV patterns of Croton draco sample
The upper image shows a radius=2, 16 pixels and the lower one is a radius=1, 8 pixels

pattern.

where position i corresponds the count of pixels in the leaf texture that had code i.

Also, given that the implementation is a LBPV, non-uniform codes are not used, thus,

the bin number i is the i − th feature, not just the binary code i [11]. Figure 3.14

describes in very high level how the process of extracting the local patterns histograms

works. First, the image is converted to a gray scale image. Then, for each pixel inside

the segmented leaf area, we calculated the local pattern with different radius and cir-

cumference using the mahotas implementation. Finally, each pattern was assigned to a

bucket inside the resulting histogram.

The implementation of LBPV applied to the internal pixels of the leaf is efficient. It

takes approximately 1 up to 3 seconds to compute, depending of the variant of LBPV

calculated, and also the size of the area of the lead within the image.
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Figure 3.14: Process of extracting LBPV
Each pixel has a number assigned to it corresponding to a pattern, and the histogram

was created using all those numbers from the segmented leaf pixels.

3.3.5 Species Classification based on Leaf Images

Once all histograms were ready and normalized, a machine learning algorithm had to

be used to classify unseen images into species. We implemented the same classification

scheme used by LeafSnap. The following subsection describes how k Nearest Neighbors

(kNN) was implemented.

k Nearest Neighbors (kNN)

Scikit-learn’s k Nearest Neighbors (kNN) implementation was used for leaf species

classification. This process was fed with previously generated histograms from both the

model of curvature using HCoS and the texture model using LBPV. Additional code

was created to take into consideration only the first matching k species, not the first

k images, as shown by Algorithm 9. The difference resides in taking into account only

the best matching image per species, until completing the first k species [24].

We used k between 1 and 10, differently than LeafSnap which uses only k = 5.

The reason behind using several k values was to see how the different algorithms and

versions of them behaved as the k is increased.
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Algorithm 9 k Species Ranking
neighborImages, distances← knnSearch(histogram, k + ε)
resultSpecies← empty
while each nieghborImage and k > 0 do

if not neighborImage.species in resultSpecies then
resultSpecies← resultSpecies ∪ neighborImage.species
k ← k − 1

end if
end while

Distance Metric: Histogram Intersection We tested the basic Euclidean distance

to measure similarity between histograms, however the results were not encouraging.

As stated in [24], we implemented the histogram intersection shown on Equation 3.2,

where I(x, y) is the histogram intersection between a histogram x and y of same size,

n is the number of bins, and xi and yi are each bin of each histogram. This distance

metric is also normalized to 1, hence the first sum.

I(x, y) =
n∑

i=1

xi −
n∑

i=1

min(xi, yi) (3.2)

Accuracy Accuracy was the key metric we used to measure the results of this re-

search. As in Equation 3.3, we defined accuracy a as the ratio between hits (right

classifications) and all classification attempts.

a =
hits

attempts
(3.3)

3.4 Experiment Design

We describe the design of the experiments executed during this research. Several

algorithm variations were used in the experiments.

• Our implementation of LeafSnap’s model of curvature HCoS.

• Several scales of the texture model based on LBPV.
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Model Name Description Type

HCoS 25 scales, 21 bins per scale Curvature
R1P8 radius = 1, 8pixels Texture
R2P16 radius = 2, 16pixels Texture
R3P16 radius = 3, 16pixels Texture
R1P8, R2P16 radius = 1, 8pixels, radius =

2, 16pixels
Texture

R1P8, R3P16 radius = 1, 8pixels, radius =
3, 16pixels

Texture

HCoS combined with R1P8,
R3P16 concatenated

Assigned a factor to curvature
and texture. Factors summed 1,
increasing by 0.10

Curvature,
Texture

Table 3.4: Models used in the experiments
including curvature, variants of texture model, and combination of both.

• The combination of the best LBPV variant and the model of curvature. These

combinations were done by assigning a factor to texture and to curvature.

Table 3.4 shows the different algorithms and variations used. A single curvature

algorithm was used, however several texture algorithm variations, with different scales,

were tested too. Combinations of the curvature algorithm and texture algorithms were

included also, with different factors of importance assigned to each one.

Combining Curvature and Texture When combining two different models, we

faced the issue of having different scales in the resulting ranking of each model. We

had then to search for a way to normalize the ranking to a common interval of values.

We normalized each ranking of each model to values between [0, 1]. Equation 3.4 shows

how ranking distances were normalized:

N(x) = ∀xi ∈ x, xi =
xi −min(x)

max(x)−min(x)
(3.4)

After normalizing the rankings (one per combined algorithm), we assigned a factor

to each combined model in order to combine the predicted species into a single ranking.

This factor sums 1 in total, however we varied the factor associated with each model to
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see the behavior across different combinations. We used factors of (0.10, 0.90), (0.20,

0.80), (0.30, 0.70), (0.40, 0.60), (0.50, 0.50), (0.60, 0.40), (0.70, 0.30), (0.80, 0.20), (0.90,

0.10). For example, (0.50, 0.50) means we gave the same level of importance to each

model on that combination. Algorithm 10 describes how the merge between 2 methods

was achieved. A dictionary was created to store all the results associated with each

factor combination. Then, for each factor, we first saved the species’ distance resulted

from each method that was not available in the other method’s results. For the species

results in common, we multiplied the distance value of the first algorithm results by

the current factor, and the distance value of the second algorithm by its complement.

Finally, the results were stored in a the dictionary with the key as the factor used.

Algorithm 10 Combining 2 Rankings
mergedResults← ∅
PERC_COMBINATIONS ← {0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90}
for all factor in PERC_COMBINATIONS do
results← empty
results ← results ∪ (resultsAlgorithm1.species −
resultsAlgorithm2.keys).distance
results ← results ∪ (resultsAlgorithm2.species −
resultsAlgorithm1.keys).distance
for all species, distance in resultsAlgorithm1 do

if species in resultsAlgorithm2 then
v1← value ∗ factor
v2← resultsAlgorithm2[species] ∗ (1− factor)
results[species]← v1 + v2

end if
end for
mergedResults[factor]← results

end for

Testing/Training Approaches Depending on the data available for each dataset,

two testing and training approaches were used:

• One Versus All: We used this approach when there were no separated testing and

training subsets. We took each one of the dataset images, separated them from
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the others, used the rest for training, and used the separated image for accuracy

testing (we knew beforehand the correct species of that image). We repeated this

process for all the images in the dataset. Algorithm 11 shows how this approach

works for an specific model. We, however, applied this approach to more than

one model accordingly.

• Separate Training and Testing Subsets: when available, we used a training subset

to train all the models, and then the separate testing subset to measure accuracy.

Algorithm 12 describes how the algorithm was implemented.

Algorithm 11 One Versus All
hits← 0
attempts← 0
for all testingImage of the dataset do
tempDataset← dataset− testingImage
for all trainingImage of the tempDataset do
knn.addTrainingHistogram(trainingImage.histogram)

end for
knn.train()
species← knn.predict(testingImage.histogram)
attempts← attempt+ 1
if species == testingImage.expectedSpecies then
hits← hits+ 1

end if
end for

In regards of classification, we used k ∈ [1, 10] in all the experiments, measuring

how the accuracy behaved as we increased the error acceptance. The chosen classifier

was kNN.

Three experiments were conducted. The Flavia Experiment aimed to compare the

results of LeafSnap model of curvature and our texture approach versus other studies

that used the Flavia dataset. The second experiment called The Accuracy of HCoS on

Costa Rica And LeafSnap Incomplete Dataset Experiment, used the available portion

of the LeafSnap dataset and the Costa Rican dataset to compare the accuracy of the
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Algorithm 12 Training and Testing Subset Approach
for all trainingImage of the trainingSubset do
knn.addTrainingHistogram(trainingImage.histogram)

end for
knn.train()
hits← 0
attempts← 0
for all testingImage of the testingSubset do
species← knn.predict(testingImage.histogram)
attempts← attempt+ 1
if species == testingImage.expectedSpecies then
hits← hits+ 1

end if
end for

implementation of curvature. Finally, the Experiment of Texture and Curvature Models

in Costa Rica aimed to understand how the accuracy of the model of curvature increased

as it was combined with the LBPV model.

The Flavia Experiment

The Flavia dataset is a very common benchmark dataset for leaf recognition systems

[48]. We used the same dataset in order to understand where our implementation of the

LeafSnap model of curvature can be placed among other studies, and also where our

combination of texture and curvature is. This dataset was a good benchmark for clean

images given its clean nature. The complete dataset was processed, image by image,

and histogram files were saved in a folder inside each one of the 32 species folders of the

dataset. This was done for each each model. Classification was applied using k ∈ [1, 10].

Since we didn’t have a training and testing subset, we used the approach of One Vs All

to calculate the accuracy of all the models over this dataset.
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The Accuracy of HCoS on Costa Rica And LeafSnap Incomplete Dataset

Experiment

This experiment was used to understand how our implementation of the model of

curvature behaved in the data from USA and the data from Costa Rica. It was used to

stressed out our first hypothesis, by comparing the accuracy of our HCoS implementa-

tion on data from USA and Costa Rica. As a highlight, the available LeafSnap dataset

is not the complete dataset from the original LeafSnap research.

• LeafSnap Lab Subset vs Costa Rican Clean Subset: the idea was to compare the

accuracy obtained in the cleanest subsets of both USA and Costa Rica. This

portion of the experiment used One vs All approach for both Costa Rica and

USA data subsets.

• LeafSnap Field Subset vs Costa Rican Noisy Subset: measured accuracy on noisy

images containing shadows and other artifacts, for both Costa Rica and USA.

This portion of the experiment used One vs All approach for both Costa Rica

and USA data subsets.

The main goal of this experiment was to compare accuracy between USA and Costa

Rica, using the same baseline implementations of the curvature and texture algorithms.

We used a Proportion Test to determine if the results of running HCoS over the Costa

Rican data was statistically smaller than the results from the LeafSnap Incomplete

Dataset. The null hypothesis is that the accuracy obtained in both Costa Rica and

USA is the same, and the alternative hypothesis is that the Costa Rican results are

less-accurate than the obtained with the USA data.

Experiment of Texture and Curvature Models in Costa Rica

In order to test our second hypothesis, we ran all the implementations of model

of curvature, texture, and combinations of both, to measure all their accuracies. Our
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objective with this experiment was to measure if the accuracy increased significantly

by adding texture to the model of curvature. We used k ∈ [1, 10] to see the behavior

across several k. We ran this experiment in 3 versions:

• A One vs All version with clean Costa Rica images.

• A One vs All version with noisy Costa Rican images, which include shadows,

small objects, greenish regions, lighting conditions, blur, and others.

• A Separate Training and Testing Subsets version, using the clean images for train-

ing, and the noisy images for testing. This allowed to measure the accuracy of

predicting the species of a noisy image, given clean images.

To measure the statistical significance of the accuracy increase we used a Proportion

Hypothesis Test for 2 Samples between the HCoS results and the combination of it with

texture. We used different factor combinations. Several tests were calculated based on

the following approach:

• A series of tests were calculated for 3 subsets: The Costa Rican Clean Subset,

The Costa Rican Noisy Subset, and the Complete Costa Rican Dataset.

• The tests were applied at each level of k, where k ∈ [1, 10].

• The accuracy results of our implementation of HCoS were used as the first pro-

portion p1, and then tested against 3 different combinations of HCoS and LBPV

as the second proportions p2: 0.1 of HCoS combined with 0.9 of LBPV, 0.5 of

HCoS combined with 0.5 of LBPV, and finally 0.9 of HCoS combined with 0.1 of

LBPV.

• For all cases, Equation 3.5 shows the null hypothesis used, and Equation 3.6

describes the alternative hypothesis. We basically aimed to test if the accuracy
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obtained by HCoS alone, was significantly smaller than the one obtained by the

combination with texture.

H0 : p1 = p2 (3.5)

H1 : p1 < p2 (3.6)
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CHAPTER 4

Results and Discussion

We should preserve every scrap of biodiversity as priceless while we learn

to use it and come to understand what it means to humanity.
E. O. Wilson, The Diversity of Life

4.1 Introduction

This chapter covers the results obtained during this research. Several experiments

were executed, measuring accuracy of our implementations of the HCoS model of cur-

vature and the LBPV model of texture. We report the accuracy results obtained from

mainly 3 experiments: The Flavia Experiment, the Accuracy of HCoS on Costa Rica

and LeafSnap Incomplete Dataset Experiment, and the Experiment of Texture and

Curvature Models in Costa Rica.

This chapter is organized as follows: Section 4.2 describes the results of the first

experiment with Flavia clean images. Section 4.3 presents a comparison of running our

implementation of HCoS against Costa Rican data and the incomplete LeafSnap data,
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k HCoS R1P8 R2P16 R3P16 R1P8,R2P16 R1P8,R3P16 R2P16,R3P16

1 0.371 0.796 0.879 0.866 0.882 0.892 0.878
2 0.508 0.899 0.940 0.930 0.943 0.948 0.939
3 0.590 0.932 0.962 0.951 0.962 0.964 0.961
4 0.649 0.952 0.970 0.962 0.970 0.975 0.972
5 0.697 0.964 0.974 0.974 0.976 0.980 0.977
6 0.732 0.971 0.977 0.977 0.978 0.982 0.982
7 0.764 0.976 0.980 0.982 0.980 0.982 0.983
8 0.783 0.977 0.981 0.983 0.981 0.983 0.984
9 0.797 0.978 0.982 0.983 0.982 0.984 0.985
10 0.813 0.978 0.983 0.983 0.983 0.984 0.985

Table 4.1: Individual models against Flavia

to test our first hypothesis. Finally, Section 4.4 focuses on the results obtained on the

Costa Rican dataset, with both clean and noisy images, to measure the accuracy of the

HCoS against the combination of it with texture, to stress the second hypothesis.

4.2 The Flavia Experiment

We ran the models against the well known Flavia dataset. A One Vs All approach

was used for all the images. Table 4.1 shows the accuracy reported for each k value, per

each individual model. In general, the LBPV variation R1P8,R3P16 with radius = 1,

8pixels concatenated with radius = 3, 16pixels had the maximum accuracy for k = 1

and k = 10, with 0.892 and 0.985 respectively. HCoS has the lowest accuracy results

individually, within a range from 0.371 to 0.813 depending on the value of k. Chart 4.1

shows the best LBPV variant results and the HCoS results too across the different k

values.

Table 4.2 shows the results obtained by combining HCoS and LBPV. The combina-

tion of 0.5 HCoS and 0.5 LBPV achieves an outstanding 0.99 of accuracy with k = 10.

Chart 4.2 shows also the results from the HCoS combined with the LBPV method

with different combination factors. For the combinations, we used R1P8,R3P16 since

it reported the best results individually.
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HCoS=a, R1P8.R3P16=b
a=0.1 a=0.2 a=0.3 a=0.4 a=0.5 a=0.6 a=0.7 a=0.8 a=0.9

k b=0.9 b=0.8 b=0.7 b=0.6 b=0.5 b=0.4 b=0.3 b=0.2 b=0.1

1 0.831 0.819 0.799 0.782 0.745 0.697 0.641 0.575 0.512
2 0.919 0.917 0.907 0.897 0.884 0.849 0.808 0.748 0.670
3 0.950 0.950 0.949 0.941 0.933 0.914 0.883 0.832 0.759
4 0.964 0.966 0.967 0.962 0.958 0.945 0.927 0.889 0.830
5 0.975 0.973 0.974 0.973 0.970 0.965 0.949 0.922 0.877
6 0.979 0.978 0.978 0.977 0.977 0.974 0.968 0.947 0.906
7 0.981 0.982 0.982 0.982 0.981 0.980 0.976 0.961 0.930
8 0.984 0.985 0.986 0.986 0.985 0.982 0.980 0.972 0.947
9 0.988 0.988 0.989 0.988 0.989 0.988 0.984 0.979 0.964
10 0.988 0.988 0.990 0.991 0.991 0.991 0.987 0.983 0.970

Table 4.2: Combined models against Flavia

Figure 4.1: Individual models against Flavia
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Study Features Classifier Precision Accuracy

Nguyen et al. [34] SURF SVM 0.959 N/A
Lee et al. [27] FFT Centroid N/A 0.9719
Wu et al. [48] Morphological

Features
PNN 0.859 N/A

Kadir et al. [23] Morphological,
Color Features,
FFT

PNN N/A 0.9375

R.D and S [41] Morphological
Features

Euclidean
Distance

N/A 0.919

Mouine et al. [33] Triangle Side
Lengths and
Angle (TSLA)

kNN, k=1 0.69 N/A

Our Texture Model LBPV R1P8,
R3P16

kNN, k=1 N/A 0.892

Our Texture Model LBPV R1P8,
R3P16

kNN, k=5 N/A 0.98

Our Texture Model LBPV R1P8,
R3P16

kNN, k=10 N/A 0.985

Our HCoS Implementa-
tion

HCoS kNN, k=1 N/A 0.371

Our HCoS Implementa-
tion

HCoS kNN, k=5 N/A 0.697

Our HCoS Implementa-
tion

HCoS kNN, k=10 N/A 0.813

0.5 HCoS + 0.5
R1P8.R3P16

HCoS + LBPV
R1P8, R3P16

kNN, k=10 N/A 0.991

Table 4.3: Comparison of obtained accuracies on Flavia
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Figure 4.2: Combined models against Flavia

Discussion

The idea behind this experiment was to be able to compare our results with other

studies that used the same Flavia dataset and to understand where our model is lo-

cated within the realm of leaf recognition. There are other studies that have used LBPV

however ours is different when preprocessing the images, since we use the LeafSnap pre-

processing that segments, cleans and normalizes the images. Also, we wanted to know

how our implementation of the HCoS behaved over the Flavia dataset and compare it

with other studies too. Table 4.3 shows other studies with their corresponding precision

and accuracy when applicable. According to these results, it can be observed how both

our HCoS implementation and the LBPV implementation are viable for recognition on

clean datasets like Flavia, achieving high levels of accuracy, especially if the allowed er-

ror is increased up to a 10 species ranking. The combination of HCoS and R1P8,R3P16

shows the best accuracy with k = 10, reaching 0.99 accuracy. As expected, the accuracy

grows as the k grows for all models, since more error is allowed.
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4.3 The Accuracy of HCoS on Costa Rica And Leaf-

Snap Incomplete Dataset Experiment

Our first hypothesis claims that the model of curvature may not obtain such high

accuracy in Costa Rica as the one obtained with the LeafSnap dataset in USA, given

the high biodiversity from Costa Rica. We applied our HCoS implementation to the

available portion of the LeafSnap dataset and to our Costa Rican dataset in order

to compare the accuracy results. Our accuracy results are lower than the reported

accuracy by the LeafSnap paper, which may be due to implementation differences. This

experiment, however, uses our implementation as baseline for the comparison between

the Costa Rican field data and the LeafSnap incomplete dataset.

LeafSnap Lab Subset Vs Costa Rican Clean Subset We ran our HCoS im-

plementation against the incomplete LeafSnap lab subset and the Costa Rican clean

subset, both representing clean datasets. As shown in Table 4.4, the best obtained ac-

curacy was reported by the Costa Rican runs, with better accuracy across all k values.

For k = 5, the results from Costa Rica were far better with 0.631, compared to the

LeafSnap run with 0.136. The best accuracy was achieved by HCoS over the Costa

Rican clean subset at k = 10 with 0.790. There is a clear improvement of the accuracy

when classifying images from Costa Rica, with an increase ranging between 0.0268 to

0.567 depending on the value of k. This improvement is significant when using the

Costa Rican clean subset, however we cannot reject the null hypothesis which states

the accuracy obtained for Costa Rican clean images and USA clean images is the same.

LeafSnap Field Subset Vs Costa Rican Noisy Subset We did the same ex-

periment with noisy images. For Costa Rica we calculated the accuracy of our HCoS

implementation against the Costa Rican noisy subset, and then compared the results

with the ones obtained from the LeafSnap field subset which also contains noise. Table
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HCoS
Confidence Level=0.95

Costa Rica Clean Subset=1468
LeafSnap USA Lab Subset=23147

H0:Costa Rica=USA
H1:Costa Rica<USA

k Costa Rica
Clean LeafSnap Lab Costa Rica

Clean Hits
LeafSnap Lab

Hits zValue p-Value Reject H0? Accuracy
Improvement

1 0.311 0.043 457 1006 42.0964 1.000 NO 0.268
2 0.446 0.071 655 1649 47.8291 1.000 NO 0.375
3 0.535 0.096 785 2229 49.6896 1.000 NO 0.438
4 0.587 0.116 861 2695 49.6807 1.000 NO 0.470
5 0.631 0.136 927 3155 49.4616 1.000 NO 0.495
6 0.674 0.157 989 3628 49.2045 1.000 NO 0.517
7 0.710 0.174 1043 4038 49.2089 1.000 NO 0.536
8 0.740 0.192 1086 4444 48.7673 1.000 NO 0.548
9 0.768 0.208 1127 4819 48.5655 1.000 NO 0.560
10 0.790 0.224 1160 5174 48.1620 1.000 NO 0.567

Table 4.4: Accuracy of our HCoS implementation over the LeafSnap Lab subset and
Costa Rican Clean subset

4.5 shows the obtained results across all k values. For k = 5 the best results were

obtained by the Costa Rican noisy subset with an accuracy of 0.364. Overall, the best

reported accuracy was obtained at k = 10 with the Costa Rican noisy subset at 0.521

of accuracy. There was an improvement of the accuracy when the Costa Rican noisy

subset was used. The improvement obtained in the accuracy ranged between 0.051 to

0.188, with the Costa Rican noisy subset as the better one.

Discussion

Our first hypothesis claims that the model of curvature would not achieve in Costa

Rica an accuracy as good as in USA. This, however, does not seem to be the case

according to our experiments. Regardless of the noise in the images, the Costa Rican

counterpart got always better accuracy across all values of k. As shown on both Tables

4.5 and 4.4 the p-Values were 1 in all cases. This means the Null Hypothesis cannot

be rejected, meaning, the accuracy gotten from the Costa Rican dataset is not smaller

than the one obtained with the USA dataset, but bigger or at least equal statistically.

The reasons behind this could be several: the complexity of the leaves from USA

may be higher than the leaves used in the Costa Rican dataset creation, causing our
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HCoS
Confidence Level=0.95

Costa Rica Noisy Subset=2345
LeafSnap USA Field Subset=7719

H0:Costa Rica=USA
H1:Costa Rica<USA

k Costa Rica
Noisy

LeafSnap
Field

Costa Rica
Noisy Hits

LeafSnap
Noisy Hits zValue p-Value Reject H0? Accuracy

Improvement

1 0.151 0.101 222 2327 4.9576 1.000 NO 0.051
2 0.225 0.147 331 3396 6.8880 1.000 NO 0.078
3 0.277 0.185 406 4291 7.7669 1.000 NO 0.091
4 0.325 0.214 476 4949 9.4197 1.000 NO 0.111
5 0.364 0.238 534 5516 10.8637 1.000 NO 0.125
6 0.399 0.261 586 6036 12.3710 1.000 NO 0.138
7 0.435 0.281 638 6507 14.3376 1.000 NO 0.153
8 0.470 0.301 690 6964 16.8460 1.000 NO 0.170
9 0.496 0.317 729 7333 19.0763 1.000 NO 0.180
10 0.521 0.333 764 7703 21.8109 1.000 NO 0.188

Table 4.5: Accuracy of our HCoS implementation over the LeafSnap Field subset and
Costa Rican Noisy subset

implementation of HCoS to be less precise for them. There is also the variable of the

data size. Given our time and resource constraints, our Costa Rican data set has less

species and less images per species compared to the LeafSnap incomplete dataset, which

may end up affecting the results.

4.4 Experiment of Texture and Curvature Models in

Costa Rica

In order to stress our second hypothesis, we measured the accuracy of our HCoS

implementation and the combination of it with texture. We used the texture variation

of LBPV R1P8,R3P16, which reported the best individual texture accuracy in the

Flavia Experiment. We measured the accuracy against the clean subset, the noisy

subset, and the complete dataset, with several factor combinations of HCoS and LBPV

R1P8,R3P16, calculated for several k values where k ∈ [0, 1].

Clean Subset As shown in Table 4.6, the best results were obtained with k = 10

with the combination of 0.5 HCoS and 0.5 R1P8,R3P16 resulting in a 0.909 of accuracy,

72



4.4. EXPERIMENT OF TEXTURE AND CURVATURE MODELS IN COSTA
RICA

Clean Noisy All

k HCoS
HCoS=a, R1P8.R3P16=b

HCoS
HCoS=a, R1P8.R3P16=b

HCoS
HCoS=a, R1P8.R3P16=b

a=0.1 a=0.5 a=0.9 a=0.1 a=0.5 a=0.9 a=0.1 a=0.5 a=0.9
b=0.9 b=0.5 b=0.1 b=0.9 b=0.5 b=0.1 b=0.9 b=0.5 b=0.1

1 0.311 0.480 0.390 0.278 0.151 0.393 0.313 0.241 0.070 0.071 0.063 0.066
2 0.446 0.609 0.551 0.429 0.225 0.512 0.438 0.337 0.119 0.163 0.143 0.144
3 0.535 0.676 0.656 0.516 0.277 0.586 0.536 0.411 0.148 0.218 0.194 0.184
4 0.587 0.743 0.727 0.598 0.325 0.643 0.603 0.475 0.176 0.259 0.244 0.227
5 0.631 0.789 0.781 0.668 0.364 0.690 0.657 0.525 0.204 0.292 0.282 0.259
6 0.674 0.822 0.830 0.710 0.399 0.719 0.700 0.571 0.228 0.320 0.315 0.289
7 0.710 0.843 0.855 0.756 0.435 0.744 0.736 0.612 0.253 0.343 0.338 0.313
8 0.740 0.862 0.874 0.795 0.470 0.770 0.770 0.649 0.273 0.362 0.365 0.342
9 0.768 0.880 0.893 0.825 0.496 0.793 0.788 0.686 0.295 0.384 0.386 0.366
10 0.790 0.893 0.909 0.854 0.521 0.810 0.809 0.716 0.318 0.407 0.406 0.383

Table 4.6: Increase of accuracy when combining curvature and texture
over the clean subset, the noisy subset, and the complete Costa Rican dataset

which contrasts with the individual HCoS which obtained 0.79 of accuracy. Chart 4.3

shows the accuracy over the clean subset of Costa Rica with the best 3 combinations

of HCoS and R1P8,R3P16, and the individual HCoS.

Noisy Subset Table 4.6 shows the results obtained when running HCoS against the

combination of it with R1P8,R3P16 for the noisy Costa Rican subset. In this case, the

best combination was 0.1 HCoS and 0.9 R1P8,R3P16 achieving a 0.81 of accuracy with

k = 10. In case of the individual HCoS, the best achieved accuracy for the noisy subset

was 0.521. Chart 4.4 shows the reported accuracy over the noisy subset from Costa

Rica and shows the different trends of 3 combinations and the HCoS implementation.

Complete Dataset Table 4.6 shows the reported accuracy when the Clean subset

was used for training and the Noisy subset was used for testing. The best reported

accuracy comes from the combination of 0.1 HCoS and 0.9 R1P8,R3P16 with 0.407,

with k = 10, however most combination factors show similar accuracy. The HCoS once

again shows the lowest accuracy with a maximum of 0.318 with k = 10. Chart 4.5 shows

the obtained accuracy for the whole Costa Rican dataset with 3 different combinations

and the implementation of HCoS.
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Figure 4.3: HCoS Vs Combined Methods against Costa Rican clean dataset

Figure 4.4: HCoS Vs Combined Methods against Costa Rican noisy dataset
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Figure 4.5: HCoS Vs Combined Methods against the complete Costa Rican dataset
Used the clean subset for training and the noisy subset for testing

Discussion

This experiment shows how the combination of HCoS and LBPV increases the

accuracy of the model as the implementation of the model of curvature alone seems to

obtain less accuracy. In general, regardless of using clean or noisy images, the results

show how texture is relevant when it comes to recognition. The accuracy declines as

the combination factor assigned to curvature reaches 1. Overall, the best combination

seems to be 0.5 HCoS and 0.5 LBPV which is basically assigning the same factor of

importance to each model implementation. It is also important to notice how the

accuracy is sensitive to the quality of the dataset. The clean subset has a tendency to

improve the recognition accuracy, in contrast with the noisy subset. This reflects the

importance of good pre-processing and good segmentation. Shadows, dust, and other

artifacts affect the final accuracy results.
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4.4.1 Measuring Significance of the Accuracy Increase

As shown previously there is an increase in the accuracy when texture is added to

our implementation of the model of curvature. This, however, may not be statistically

significant. We proceeded then to apply a Statistical Proportion Test for 2 Samples,

in order to check if the increase is actually significant and not just random. Our null

hypothesis is that the accuracy of the implementation of HCoS equals the ones obtained

by combining curvature and texture. In contrast, our alternative hypothesis is that the

accuracy of the implementation of HCoS is less than the combinations.

Proportion Tests on the Clean Subset Table 4.7 shows the results obtained for all

the Proportion Tests for the clean subset. Most combinations of HCoS and R1P8.R3P16

across all k ∈ [1, 10] resulted in very low p-Values, rejecting the null hypothesis. How-

ever a few from the combination of 0.9 HCoS combined with 0.1 of R1P8.R3P16 did fail

the test. This means as the factor increases for HCoS, it starts getting non-significant

accuracy increases, which makes sense since it is almost equal to HCoS alone. For

combinations where a bigger factor was assigned to texture, the improvement ranges

between 0.078 and 0.168, which is significant as the p-Values show.

Proportion Tests on the Noisy Subset Table 4.8 shows the results obtained for

all the Proportion Tests for the noisy subset. Similar to the clean subset, most combi-

nations of HCoS and R1P8.R3P16 across all k ∈ [1, 10] resulted in very low p-Values,

rejecting the null hypothesis. A few from the combination of 0.9 HCoS combined with

0.1 of R1P8.R3P16 did fail the test, meaning assigning a factor of 0.1 to the HCoS

does not make much difference as using it alone, at least statistically. The level of

improvement is shown as high with a reported accuracy between 0.328 and 0.425 for a

combination of 0.1 HCoS combined with 0.9 of R1P8.R3P16. The combination of 0.5

HCoS combined with 0.5 of R1P8.R3P16 shows the best improvement over HCoS alone

with 0.431 when k = 6.
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Costa Rica Clean Subset
Confidence Level=0.95
Sample Size=1468

H0:HCoS=HCoS+R1P8.R3P16
H1:HCoS<HCoS+R1P8.R3P16

k HCoS HCoS=0.1,
R1P8.R3P16=0.9 Hits HCoS Hits HCoS=0.1,

R1P8.R3P16=0.9 p-Value Reject H0? Accuracy
Improvement

1 0.311 0.480 457 704 5.65023E-21 YES 0.168
2 0.446 0.609 655 894 4.99997E-19 YES 0.163
3 0.535 0.676 785 993 2.00608E-15 YES 0.142
4 0.587 0.743 861 1091 1.21109E-19 YES 0.157
5 0.631 0.789 927 1158 2.81689E-21 YES 0.157
6 0.674 0.822 989 1207 9.64321E-21 YES 0.149
7 0.710 0.843 1043 1238 2.70704E-18 YES 0.133
8 0.740 0.862 1086 1266 4.32615E-17 YES 0.123
9 0.768 0.880 1127 1292 6.49779E-16 YES 0.112
10 0.790 0.893 1160 1311 1.14726E-14 YES 0.103

k HCoS HCoS=0.5,
R1P8.R3P16=0.5 Hits HCoS Hits HCoS=0.5,

R1P8.R3P16=0.5 p-Value Reject H0? Accuracy
Improvement

1 0.311 0.390 457 572 4.32788E-06 YES 0.078
2 0.446 0.551 655 809 6.56883E-09 YES 0.105
3 0.535 0.656 785 963 1.09341E-11 YES 0.121
4 0.587 0.727 861 1067 5.88439E-16 YES 0.140
5 0.631 0.781 927 1147 2.42945E-19 YES 0.150
6 0.674 0.830 989 1219 4.19306E-23 YES 0.157
7 0.710 0.855 1043 1255 1.18899E-21 YES 0.144
8 0.740 0.874 1086 1283 1.62723E-20 YES 0.134
9 0.768 0.893 1127 1311 7.26426E-20 YES 0.125
10 0.790 0.909 1160 1335 7.84393E-20 YES 0.119

k HCoS HCoS=0.9,
R1P8.R3P16=0.1 Hits HCoS Hits HCoS=0.1,

R1P8.R3P16=0.9 p-Value Reject H0? Accuracy
Improvement

1 0.311 0.278 457 408 0.976355356 NO -0.033
2 0.446 0.429 655 630 0.823819993 NO -0.017
3 0.535 0.516 785 758 0.840833982 NO -0.018
4 0.587 0.598 861 878 0.26158887 NO 0.012
5 0.631 0.668 927 980 0.0201783 YES 0.036
6 0.674 0.710 989 1042 0.017077481 YES 0.036
7 0.710 0.756 1043 1110 0.002586312 YES 0.046
8 0.740 0.795 1086 1167 0.000201496 YES 0.055
9 0.768 0.825 1127 1211 5.92221E-05 YES 0.057
10 0.790 0.854 1160 1253 3.63353E-06 YES 0.063

Table 4.7: Proportion Test results over the Costa Rican Clean Subset
By adding texture with a bigger factor, the model of curvature improves significantly
the accuracy. As the factor assigned to texture declines, the improvement becomes

statistically insignificant.
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Costa Rica Noisy Subset
Confidence Level=0.95
Sample Size=2345

H0:HCoS=HCoS+R1P8.R3P16
H1:HCoS<HCoS+R1P8.R3P16

k HCoS HCoS=0.1,
R1P8.R3P16=0.9 Hits HCoS Hits HCoS=0.1,

R1P8.R3P16=0.9 p-Value Reject H0? Accuracy
Improvement

1 0.151 0.480 730 1125 1.7283E-129 YES 0.3282
2 0.225 0.609 1046 1428 7.7632E-157 YES 0.3838
3 0.277 0.676 1254 1586 1.3354E-165 YES 0.3997
4 0.325 0.743 1375 1743 6.4313E-182 YES 0.4187
5 0.364 0.789 1481 1850 5.3369E-191 YES 0.4251
6 0.399 0.822 1580 1928 2.8814E-194 YES 0.4231
7 0.435 0.843 1666 1978 5.1936E-187 YES 0.4088
8 0.470 0.862 1735 2022 1.3596E-178 YES 0.3920
9 0.496 0.880 1800 2064 2.6133E-177 YES 0.3837
10 0.521 0.893 1853 2094 5.9603E-173 YES 0.3724

k HCoS HCoS=0.5,
R1P8.R3P16=0.5 Hits HCoS Hits HCoS=0.5,

R1P8.R3P16=0.5 p-Value Reject H0? Accuracy
Improvement

1 0.151 0.390 730 914 1.2405E-75 YES 0.238
2 0.225 0.551 1046 1292 2.2453E-116 YES 0.326
3 0.277 0.656 1254 1538 1.1237E-149 YES 0.379
4 0.325 0.727 1375 1704 7.6123E-168 YES 0.402
5 0.364 0.781 1481 1832 5.4143E-184 YES 0.418
6 0.399 0.830 1580 1947 1.5749E-202 YES 0.431
7 0.435 0.855 1666 2005 5.0885E-199 YES 0.420
8 0.470 0.874 1735 2049 8.0747E-191 YES 0.404
9 0.496 0.893 1800 2094 1.7097E-191 YES 0.397
10 0.521 0.909 1853 2133 2.0950E-191 YES 0.389

k HCoS HCoS=0.9,
R1P8.R3P16=0.1 Hits HCoS Hits HCoS=0.1,

R1P8.R3P16=0.9 p-Value Reject H0? Accuracy
Improvement

1 0.151 0.278 730 652 2.4494E-26 YES 0.127
2 0.225 0.429 1046 1006 1.9667E-50 YES 0.204
3 0.277 0.516 1254 1211 1.9949E-63 YES 0.240
4 0.325 0.598 1375 1403 4.4262E-79 YES 0.274
5 0.364 0.668 1481 1565 1.5164E-96 YES 0.304
6 0.399 0.710 1580 1665 6.3080E-102 YES 0.311
7 0.435 0.756 1666 1773 8.9291E-112 YES 0.322
8 0.470 0.795 1735 1864 6.4232E-118 YES 0.325
9 0.496 0.825 1800 1934 4.2650E-125 YES 0.329
10 0.521 0.854 1853 2002 9.9417E-134 YES 0.333

Table 4.8: Proportion Test results over the Costa Rican Noisy Subset
By adding texture with a bigger factor, the model of curvature improves significantly
the accuracy. As the factor assigned to texture declines, the improvement becomes

statistically insignificant.
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Proportion Tests on the Complete Dataset Table 4.9 shows the results obtained

for all the Proportion Tests over the complete dataset of Costa Rica. Almost every single

test rejected the null hypothesis.The only ones that cannot reject that the proportions

are the equal are the different combinations for k = 1. The accuracy improvement in

these cases was not as big as in previous clean and noisy images, with values ranging

between 0.001 to 0.093.

Discussion

We have proven statistically that the accuracy increases significantly when texture

is added to the curvature model and that it is not related to chance. For most combina-

tions where texture had a big assigned factor the null hypothesis was rejected, meaning

the accuracy obtained by HCoS alone is not the same statistically as the one from the

different combinations where a bigger factor is assigned to texture. The only ones that

failed are the ones that have a very small factor assigned to the texture component. The

results also reveal how the quality of the images does not affect the relation between

the accuracy of curvature alone and how texture improves it, since the same p-Value

behavior happened on both noisy and clean images. The best accuracy improvement

was achieved with the noisy images with 0.431 and k = 6, for 0.5 HCoS combined

with 0.5 of R1P8.R3P16. This means the best accuracy improvement is achieved by

assigning half importance to each model.
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Costa Rica All Dataset
Confidence Level=0.95
Sample Size=2345

H0:HCoS=HCoS+R1P8.R3P16
H1:HCoS<HCoS+R1P8.R3P16

k HCoS HCoS=0.1,
R1P8.R3P16=0.9 Hits HCoS Hits HCoS=0.1,

R1P8.R3P16=0.9 p-Value Reject H0? Accuracy
Improvement

1 0.070 0.071 164 167 4.3210E-01 NO 0.001
2 0.119 0.163 278 382 6.2947E-06 YES 0.044
3 0.148 0.218 346 512 1.8102E-10 YES 0.071
4 0.176 0.259 413 607 3.2827E-12 YES 0.083
5 0.204 0.292 479 685 1.6580E-12 YES 0.088
6 0.228 0.320 534 751 6.0361E-13 YES 0.093
7 0.253 0.343 593 804 8.0774E-12 YES 0.090
8 0.273 0.362 641 848 4.1983E-11 YES 0.088
9 0.295 0.384 692 901 5.8190E-11 YES 0.089
10 0.318 0.407 746 955 1.0927E-10 YES 0.089

k HCoS HCoS=0.5,
R1P8.R3P16=0.5 Hits HCoS Hits HCoS=0.5,

R1P8.R3P16=0.5 p-Value Reject H0? Accuracy
Improvement

1 0.070 0.063 164 148 8.2576E-01 NO -0.007
2 0.119 0.143 278 336 6.0228E-03 YES 0.025
3 0.148 0.194 346 454 1.3785E-05 YES 0.046
4 0.176 0.244 413 573 4.9141E-09 YES 0.068
5 0.204 0.282 479 661 2.9011E-10 YES 0.078
6 0.228 0.315 534 738 1.0408E-11 YES 0.087
7 0.253 0.338 593 792 9.4610E-11 YES 0.085
8 0.273 0.365 641 856 8.2167E-12 YES 0.092
9 0.295 0.386 692 905 2.6311E-11 YES 0.091
10 0.318 0.406 746 953 1.6020E-10 YES 0.088

k HCoS HCoS=0.9,
R1P8.R3P16=0.1 Hits HCoS Hits HCoS=0.1,

R1P8.R3P16=0.9 p-Value Reject H0? Accuracy
Improvement

1 0.070 0.066 164 155 6.9915E-01 NO -0.004
2 0.119 0.144 278 338 4.7461E-03 YES 0.026
3 0.148 0.184 346 432 3.6781E-04 YES 0.037
4 0.176 0.227 413 532 7.3870E-06 YES 0.051
5 0.204 0.259 479 608 4.0212E-06 YES 0.055
6 0.228 0.289 534 678 7.8066E-07 YES 0.061
7 0.253 0.313 593 733 2.8185E-06 YES 0.060
8 0.273 0.342 641 801 2.0626E-07 YES 0.068
9 0.295 0.366 692 859 1.0903E-07 YES 0.071
10 0.318 0.383 746 898 1.6458E-06 YES 0.065

Table 4.9: Proportion Test results over the Costa Rican Complete Dataset
By adding texture with a bigger factor, the model of curvature improves significantly
the accuracy. As the factor assigned to texture declines, the improvement becomes

statistically insignificant.
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CHAPTER 5

Conclusions and Future Work

When I hear of the destruction of a species, I feel just as if all the works of

some great writer have perished.
Theodore Roosevelt

5.1 Conclusions

• Our implementation of HCoS obtained better results in the Costa Rican dataset

compared to the LeafSnap Incomplete dataset. This is contrary to our first hy-

pothesis, which stated that the current multiscale curvature model used by Leaf-

Snap would not have the same high level of accuracy when recognizing Costa

Rican species. The Costa Rican clean subset obtained better accuracy ranging

from 0.268 to 0.567, compared to the LeafSnap lab subset. For the Costa Rican

noisy subset, the improvement ranges from 0.051 to 0.188, compared to the LeafS-

nap field subset. This indicates that HCoS worked better in Costa Rica regardless

of the subset image quality. Several variables may have caused this behavior, such
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as the complexity of the shape from the USA leaves against the selected leaves

from Costa Rica, or the data size, since the LeafSnap incomplete dataset has

more species and more images per species than the Costa Rican dataset. Further

research needs to be done to understand how these variables affect the results at

the end.

• The addition of texture increases significantly the accuracy of our implementation

of the model of curvature. When comparing HCoS versus the combination of 0.5

HCoS and 0.5 R1P8,R3P16, for the Costa Rican clean subset, the improvement

ranges from 0.103 to 0.168, depending on the value of k. Similarly with the

noisy subset, the improvement ranges from 0.238 to 0.431. These improvements

were proved to be statistically significant in our experiments. We believe this

improvement is due that current camera technologies allow to capture images with

better quality for texture analysis. Mobile phones too have improved enough to

capture high quality images that contain detailed texture patterns that can be

exploited with algorithms such as LBPV.

• Leaf segmentation is a key component of a leaf recognition algorithm. The seg-

mentation approach implemented in this research, same as LeafSnap, should be

improved to be more precise, since it has direct implications on both the model

of curvature and the texture model presented in this research. The model of

curvature seems to be even more affected by false segmentations, making a tex-

ture based model more resilient to noise caused by wrong segmentation. It must

be noted that, as noisy data is used, the accuracy improvement becomes wider

when texture analysis is added to curvature, proving how texture by itself is more

resilient to noise. For the combination of 0.5 HCoS and 0.5 R1P8,R3P16, the

improvement over HCoS alone ranges between 0.238 and 0.431 for noisy images,

while the same combination gets an accuracy improvement between 0.078 and

0.157 for cleaner images.
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• Related to segmentation, shadows add too much noise and should be deleted

during or post segmentation. When using the Costa Rican shadow-less subset,

the accuracy obtained was higher than with the noisy subset. When comparing

the results of HCoS between the Costa Rican clean and noisy subsets, the clean

subset shows an improvement between 0.16 to 0.276 depending on the value of

k. Additionally, the combination of 0.5 HCoS and 0.5 R1P8,R3P16 shows an

improvement that ranges from 0.077 to 0.13 when clean images were used, also

depending on the value of k. Other artifacts should also be taken care of too.

However, shadows are the most prominent ones.

• Even the best herbaria do not have suitable clean physical samples useful for

an image reference dataset creation. Physical samples from INBio’s herbarium,

which meet the highest standards worldwide, turned out too noisy, incomplete,

had holes in the margin and inside, and some even had objects on top of them. The

resulting images were suitable for leaf recognition executed by humans, however

not for the presented algorithms. This caused the image capturing from those

physical samples to become useless for this research.

5.2 Future Work

• Nowadays the professionals in charge of Herbaria capture images of physical sam-

ples that are not suitable for current Computer Vision research. We believe they

should start generating pictures of not only the entire sample, but also of leaves,

fruits, textures, and any other useful part of the plant for automatic recognition in

separate images. This could impact positively the Biodiversity Informatics com-

munity. The images should also be captured before and after the pressing/drying

process.

• A better segmentation algorithm must be created for both uniform-background
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leaf images and also complex leaf images. The GrabCut Algorithm is worth ex-

ploring, paired with an iterative algorithm such as Genetic Algorithms or similar.

• In order to remove shadows, we explored illumination invariant images, however

we did not include the results because of time constraints. This type of images

have been used for generic shadow removal in other image processing sub-fields,

with very good results. However, to our knowledge, no one has yet tried to add

them for shadow removal during the pre-processing phases of the plant species

recognition process.

• A next step in this research line is to create a mobile app in order to capture

geographical data, that can be later used as an additional element to classify

species. Particularly, INBio has Atta, an extensive georeferenced database that

can be used as a gold set to eliminate false positives, since species tend to be

present in certain elevations or areas of the country in particular.

• Additional effort is needed to capture more species and increase the dataset size

of Costa Rican species images. By involving other professionals, researchers, and

students from other areas such as forest engineering, we can increase significantly

the amount of data available for leaf recognition projects. It is important to

explore how the dataset sizes affect the obtained accuracy when more data is

available.

• Research on crowd sourcing approaches for certain leaf recognition activities is

worth exploring. Tasks such as shadow removal may be executed partially by a

human, for example from a mobile device with their fingers, to build up better

datasets. Also, by crowd sourcing the image capturing, bigger datasets may be

created.

• Algorithms used to separate the leaf texture into its atomic layers should be

researched. By layers we mean venation, edge layers, reflections, porosity, and
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others, which would allow to calculate separately which ones add more value to

the recognition process.

• Other morphological features of the leaf may be worth exploring, such as the

aspect ratio, circularity, among others.
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BMP Bitmap File

EM Expectation-Maximization

FREAK Fast Retina Keypoint Descriptor

FFT Fast Fourier Transform

GIST A low dimensional representation of the scene, which does not require any form
of segmentation

GTSDM Gray Tone Spatial Dependency Matrix

HMT Hit Miss Transformation

HCoS Histogram of Curvature over Scale

HSV Hue Saturation Value

ICA Independent Component Analysis

INBio National Biodiversity Institute

kNN k Nearest Neighbors
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LBPV Local Binary Pattern Variance

LSH Locality Sensitive Hashing

LVQ Learning Vector Quantization

NN Neural Network

ORB Oriented FAST and Rotated BRIEF

PCA Principal Component Analysis
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PFT Polar Fourier Transform

PNN Probabilistic Neural Network

RBF Radial Base Function

RGB Red Green Blue

SDK Software Development Kit

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

SVM Support Vector Machines

TAR Triangle Area Representation

TOA Triangle Oriented Angles

TSL Triangle Side Lengths

TSLA Triangle Side Lengths and Angle

UHMT Unconstrained Hit-or-Miss Transform

XML Extensible Markup Language
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