
Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica

“Media Independent Interface (MII) implementation and data processing on
FPGA for Fast ETHERNET transmission over Plastic Optical Fiber”

Politecnico di Torino

Julio César Ramírez Molina
200109454

Turin, February 2008

 1

 2

Abstract

This thesis focuses on the design and implementation of a Media Converter, which

allows Ethernet Communication through 250 meters of Plastic Optical Fiber (POF).

Three subsystems constitute this system.

First, a configurable MII Interface which provides Full Duplex Communication

through the Ethernet at different data rates (10Mpbs and 100Mbps). The User

defines the data rate according to the capabilities of his Modulator.

The second subsystem is the Transmission Module. This module receives

Ethernet data provided by the MII interface in order to encode it. Then it generates

a Reed Solomon verifying sequence used by the receiver to correct the frame

errors and to certificate the frame accuracy.

Finally, the third subsystem is a Testing Unit. It is used in the development and

debugging process of the prototype. This module emulates a real data

transmission using a Pseudo Random Bit sequence (PRBS).

The data received is stored and then downloaded by a block called Downloading

Unit that executes Direct Memory Access (DMA) transfers between the memory of

the Testing Unit and a computer. The transfers are made through the USB port of

the PC.

Keywords: MII Interface; ETHERNET; Plastic Optical Fiber; POF; 100Mbps;

10Mbps; PRBS, Testing Unit; DP83848C; VHDL; Very High Speed Integrated

Circuit Hardware Description Language; DMA; Direct Memory Access; USB;

Universal Serial Bus; FPGA Virtex IV; Nallatech.

 3

Table of Contents

1 INTRODUCTION ... 8

1.1 PROBLEM DEFINITION AND SOLUTION'S RELEVANCE ... 8
1.2 PROBLEM DEFINITION.. 9

1.2.1 Generalities .. 9
1.2.2 Synthesis .. 9

1.3 SELECTED SOLUTION .. 9
2 GOAL AND OBJECTIVES.. 11

2.1 GOAL.. 11
2.2 GENERAL OBJECTIVE .. 11
2.3 SPECIFIC OBJECTIVES... 11

3 THEORETICAL BACKGROUND.. 12
3.1 SYSTEM DESCRIPTION... 12
3.2 EXISTING LITERATURE... 14
3.3 PHYSICS AND ELECTRONICS PRINCIPLES DESCRIPTION ... 15

4 METHODOLOGICAL PROCEDURES ... 19
4.1 PROBLEM DEFINITION.. 19
4.2 INVESTIGATION AND SOLUTION SYNTHESIS... 19
4.3 SOLUTION IMPLEMENTATION .. 20

5 DESCRIPTION OF THE SELECTED SOLUTION.. 22
5.1 HARDWARE DESCRIPTION.. 22

5.1.1 Hardware General Description ... 22
5.1.2 MII Initialization System.. 24

5.1.2.1 Second Level Diagram.. 25
5.1.2.2 Third Level Diagram.. 26

5.1.3 Transmission System ... 30
5.1.3.1 First Level Diagram... 30
5.1.3.2 Second Level Diagram.. 31

5.1.4 Testing System of the Media Converter ... 40
5.1.4.1 Traffic Generation Unit TGU ... 40 U

5.1.4.2 Data Compilation Unit DCU .. 41
5.1.4.3 Control Unit ... 44
5.1.4.4 Download Unit... 45

5.1.5 Reconstruction of the Preamble ... 47
5.2 SOFTWARE DESCRIPTION .. 50

6 RESULTS ANALYSIS... 52
7 CONCLUSIONS AND RECOMMENDATIONS .. 59

7.1 CONCLUSIONS .. 59
7.2 RECOMMENDATIONS.. 60

8 BIBLIOGRAPHY ... 61
9 APPENDIX .. 62

A.1 GLOSSARY, ABBREVIATIONS AND SYMBOLS... 62
A.2 COMPANY INFORMATION .. 65
A.3 TESTING PROCEDURES ... 66
A.4 TESTING SET UP WITH THE POF AS LOOPBACK ... 70
A.5 C++ PROGRAMMING CODE OF THE SOFTWARE APPLICATION .. 71

10 ANNEX .. 77

 4

ANNEX 1 PHOTOS OF THE CARDS AND DEVICES UTILIZED TO IMPLEMENT THE SYSTEM...................... 77
ANNEX 2 DP83848 NATIONAL INSTRUMENTS CARD... 79
ANNEX 3 NALLATECH PCI COMMUNICATION CORE APPLICATION NOTE... 80
ANNEX 4 VIRTEX 4 FAMILY OVEVIEW... 81
ANNEX 5 SECOND PART OF THE IEEE 802.3 PROTOCOL ... 82
ANNEX 6 XILINX CORE ASYNCHRONOUS FIFO V6.1... 83
ANNEX 7 XILINX CORE REED SOLOMON ENCODER V5.0... 84
ANNEX 8 SPECIAL WORDS (IFG, IDLE ,ASM) AND DC BALANCING .. 85

 5

Table of Figures

Fig.1.1. Block Diagram of the Media Converter... 9
Fig.3.1. Block Diagram of the Ethernet Interface... 12
Fig.3.2. IEEE 802.3 standard relationship to the OSI/IEC for Open System Interconnection......... 15
Fig.5.1. BMCR writing and reading Protocols.. 17
Fig.5.1. General Diagram of the System ... 23
Fig.5.2. CRGU Block Diagram... 24
Fig.5.3. CRGU Second Level Diagram.. 26
Fig.5.4. CRGU_MII Third Level Diagram... 27
Fig.5.5. InitPHY Third Level Diagram .. 28
Fig.5.6. ControlGEN State Machine .. 29
Fig.5.7. First Level Diagram of the transmission system... 30
Fig.5.8. BLOCK A block diagram... 32
Fig.5.9. BLOCK B block diagram... 34
Fig.5.10. BLOCK C block diagram... 36
Fig.5.11. BLOCK D block diagram... 38
Fig.5.12. System Second level diagram. ... 39
Fig.5.13. Traffic Generation Unit Diagram... 41
Fig.5.14. DCU First Level Diagram.. 41
Fig.5.15. DCU Second Level Diagram... 43
Fig.5.16. State Diagram of the Control Unit... 44
Fig.5.17. PCI Communication Core block Diagram... 45
Fig.5.18. State Diagram of the Control Unit... 48
Fig.5.19. Block Diagram of the Preamble Generator... 49
Fig.5.20. Flow Diagram implemented for the Software Application... 51
Fig.6.1. PING summary in the Command Prompt ... 53
Fig.6.2. PING summary in the Command Prompt ... 53
Fig.6.3. PING summary in the Command Prompt ... 54
Fig.6.4. FPGA Utilization ... 56
Fig.6.5. Timing Summary of the Media Converter... 57
Fig.A.1. Test 1 Configuration... 66
Fig.A.2. Test 2 Configuration... 67
Fig.A.3. Test 3 Configuration... 68
Fig.A.4. Test 4 Configuration... 69
Fig.A.5. Testing Setup with the POF as a LOOPBACK .. 70

 6

List of Tables

Table 5.1. CRGU Pinout Configuration... 25
Table 5.2. Truth Table of the ROM.. 28
Table 5.3. System Pinout Configuration ... 31
Table 5.4. Block A Pinout Configuration.. 33
Table 5.5. Block B Pinout Configuration... 35
Table 5.6. Block C Pinout Configuration.. 37
Table 5.7. Block D Pinout Configuration.. 38
Table 5.8. DCU Pinout Configuration .. 42
Table 5.9. Core Pinout Configuration .. 46
Table 6.1 Results obtained from TEST1 ... 52
Table 6.2 Results obtained from TEST2 ... 52
Table 6.3. Error Positions and number of bits lost in a PRBS of 32767 bits long 54

 7

1 Introduction

1.1 Problem Definition and Solution's Relevance

The goal of the project was to design and implement a Media Converter prototype

fully compatible with the Ethernet standard and able to transmit at a data rate of

100Mbps over 250 meters of Plastic Optical Fiber (POF). It’s important to notice

that It was programmed in VHDL and loaded in an FPGA (Field Programmable

Gate Array).

The project was developed in the PhotonLab, which is an experimental facility

product of the cooperation and joint-venture of the Politecnico di Torino and

"Istituto Superiore Mario Boella" (a private non-profit research center), both

located in Turin, Italy.

This thesis is part of a big European project called "POF-ALL ("Paving the Optical

Future with Affordable Lightning-fast Links"), which is sponsored by the European

Research Sixth Framework Program (FP6), involving 11 partners and a total

budget close to 3 Million Euros. POF-ALL develops a low-cost solution based in

POF to increase the broadband access and to give advantage, independence, and

better competitiveness to the European continent in the low-cost network access

technologies.

 8

1.2 Problem Definition

1.2.1 Generalities

The research group required a programmable Ethernet interface in order to give to

the Media Converter a Full Duplex link with configurable data rates (10Mbps and

100Mbps) and autonegotiation capabilities (enable/disable). Also required the

design and implementation of a hardware architecture to perform tests to the

equalization algorithms designed by them.

1.2.2 Synthesis

The media converter requires a programmable ETHERNET link and the hardware

architectures needed to test the equalization algorithms of the Media Converter.

1.3 Selected Solution

The design of the media converter involves the development of an optical link to

and from the POF, an electrical link to and from the UTP Cat5 cable and a signal

processing module in charge of the protocol conversion. Consequently, the system

was divided in three main blocks, which are shown in figure 1.1.

FPGA BOARD
(Equalization
Algorithms)

Interface
towards/from

UTP

POF
daughterboard

UTP

10/100
Base-T

Full
Duplex

Special
Protocol

POF

Fig.1.1. Block Diagram of the Media Converter

 9

The first module on the left implements the MII interface. It was implemented with

an special purpose card of National Instruments[1] that is configured from the

FPGA Board and that has all the circuitry and capabilities needed for the

establishment of the Full Duplex link with data rates of 10Mbps and 100Mbps.

The center module in the diagram corresponds to the FPGA board and contains

not only the necessary logic to configure the MII interface, but also the hardware

architecture that execute the media conversion and the system field tests.

Finally, the last module on the right corresponds to a POF daughterboard

designed and implemented by the PhotonLab researchers. It is an special card

that converts the electrical signals into optical signals.

1 The datasheet of the DP83848National Instruments Card is shown in the ANNEX 2

 10

2 Goal and Objectives

2.1 Goal

• Design and implementation of a media converter prototype able to establish

Fast Ethernet communication at 100Mbps over 250 meters of POF.

2.2 General Objective

• Provide the electronic structures to the media converter in order to establish

Fast Ethernet communication.

2.3 Specific Objectives

• Implement the MII standard with the possibility of selecting between data

rates of 10 Mbps and 100Mbps.

• Implement the hardware architecture that allows to perform field tests to the

Media Converter.

 11

3 Theoretical Background

3.1 System Description

Figure 3.1 shows the block diagram of the system without the modulation and

demodulation blocks. The modules colored in green, brown and yellow are those

developed for this thesis, those in orange were implemented by other members of

the PhotonLab using the System Generator Tool of Matlab and finally the FEC

(Forward Error Correction), modules on sky blue corresponds to Xilinx Cores. Also

in this figure, the hierarchical configuration of the Transmission (highlighted in

blue) and Reception (highlighted in red) blocks can also be observed in this figure.

Fig.3.1. Block Diagram of the Ethernet Interface

 12

The output pins of the system are colored in red whereas the inputs pins are black.

The gray pins on the right side of the diagram are the connections to the

modulation/demodulation blocks and finally the white pin on the top side of the

diagram is a bidirectional line connected to the National Instruments card.

At this point the operation of some blocks shown in the fig 3.1 will be detailed. The

brown modules are in charge of the DP83848 National Instruments Card

configuration (Physical Initialization Unit, PIU) and generation of the internal clocks

and resets(Clocks and Resets Generation Units, CRGU).

The green modules inside the Transmitter encode the information received in

order to facilitate the data recovery process on the receiver side. The data stream

is treated as follows: it’s received as nibbles (4 bit words) by the first module

(nib2byte) that concatenates two nibbles to form a byte word. Then the second

module (8b/9b) encodes each byte as a 9 bit word, preparing it for the FEC

module , where the data is encoded using the Reed Solomon Algorithm[3]. Once

the data is encoded, the ASM (Attached Synchronizing Mark) is inserted for

synchronization purposes and finally each 9 bit word is divided in 3 bit wide

symbols (Symbol SER) and sent to the modulator.

At the end the yellow modules execute the system field tests, as may be observed

in Figure. 3.1. The data stream can be received by the transmitter (TX_TOP)

through a multiplexer from the TGU module (Traffic Generation Unit), which

contains a PRBS sequence (Pseudo Random Bit Sequence). Then the receiver

decodes the data and store them into the DCU module (Data Compilation Unit). At

the end, the stored data are downloaded into the PC through the port called USBI,

which is implemented with a core developed by the FPGA board manufacturer.

Once in the PC the data are compared with the original PRBS sequence.

 13

3.2 Existing Literature

The development of the project implied the study of the IEEE 802.3 standard in

order to understand the operation of the ETHERNET protocol. Also a Xilinx

Implementation Manual and a Nallatech Manual[6] were consulted. The first one

includes information regarding the synchronizing and processing of data, also the

operation of some Core Modules such as the DCMs for clock generation (Digital

Clock Manager[1], the Asynchronous FIFOs as interfacing blocks between clock

domains[2] and the Reed Solomon encoder/decoder used to guarantee the data

integrity. The second manual explains the operation of the DMA interface

provided by Nallatech used to download the results generated by the Testing Unit

of the Media Converter (see USBI module in fig 3.1).

1 For further Information regarding the DCM operation can be consulted the Virtex 4 Family
Datasheet shown in the ANNEX 4
2 The Asynchronous FIFO v6.1 datasheet is shown in the ANNEX 6

 14

3.3 Physics and Electronics principles description

Ethernet Protocol

The Ethernet is a frame based computer networking technology for LANs (Local

Area Networks). It acts as a packet-switching network where devices are

connected and compete for access to the communication channel.

The IEEE 802.3 standard for Ethernet was defined in 1985 and intended to

correspond with the lowest layers of the ISO/IEC Model for Open Systems

Interconnection (OSI), see figure 3.2.

Fig.3.2. IEEE 802.3 standard relationship to the OSI/IEC for Open System Interconnection[1]

1 Taken from the IEEE 802.3 standard shown in the ANNEX 5

 15

The first part of this thesis is focused on the implementation of the Physical Layer

(PHY) and the MII interface of the IEEE 802.3 standard, see figure 3.2. These

layers interface the physical layer, where are received the Ethernet Frames from

the serial line, and the Media Access Control (MAC) Layer, where the information

is processed after being treated by the MII interface.

The Ethernet frames are transmitted following the scheme showed in table 3.1.

Table 3.1. Ethernet Frame configuration

Preamble
Start-of-
Frame-

Delimiter
MAC

destination
MAC

source Length Data CRC32

Interframe
gap

IFG

7 octets of
10101010

1 octet of
10101011 6 octets 6 octets 2

octets
46-1500
octets

4
octets

12 octets
minimum

64 octets 64-1518 octets

72-1526 octets or more

MII interface

The IEEE 802.3 standard defines the design and configuration of specific purpose

systems that implements the MII interface. For this project, the DP83848 card of

National Instruments[1] was chosen.

This card has a serial management interface that is accessible through two pins,

the Management Data Clock (MDC) and the Management Data Input/Output

(MDIO). The MDC has a maximum operation frequency of 25 MHz and doesn’t

have a minimum one. The MDIO is a bidirectional line that may be used to

1 The datasheet of the DP83848 National Instruments Card is shown in the ANNEX 2.

 16

http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Interframe_gap
http://en.wikipedia.org/wiki/Interframe_gap
http://en.wikipedia.org/wiki/Octet_%28computing%29

configure the MII interface through the writing of the Basic Mode Control Register

(BMCR) and it’s also used to obtained the link specifications through its reading.

Regarding the communication with the chip, is important to notice that the MDIO

line requires an initialization sequence composed by 32 bit (logic ones) and that a

minimum of one idle bit between transactions is required. Figure 5.1 shows the

writing and reading protocol of the BMCR register established by the IEEE 802.3

standard.

Fig.5.1. BMCR writing and reading Protocols[1]

1 Taken from the DP83848C datasheet shown in the ANNEX 2

 17

Forward Error Correction (FEC)

Generalities and Formulation

 This is a control error system for data transmission, in which redundant data are

generated and concatenated at the end of the transmitted sequence. It allows,

according with the algorithm implemented, the detection and correction of a limited

number of errors that may be present on the receiver side. This method is usually

applied in communication systems in which the retransmission is impossible.

The Reed Solomon is an error correcting algorithm commonly employed on the

FEC encoding/decoding implementation. Basically, it over samples the data

sequence that has to be transmitted and generates over-determined polynomial

values that are sent. The over sampling gives to the receiver the capacity to

recover the correct values of the erroneous data when decoding.

The mathematical formulation of this algorithm is as follows:

Given a finite field F (also referred as Galois Field) and polynomial ring F[x], let n

and k be chosen such that 1 ≤ k ≤ n ≤ | F |. Pick n distinct elements of F, denoted

{ x1, x2, ... , xn }. Then, the codebook C is created from the tuplets of values

obtained by evaluating every polynomial (over F) of degree less than k at each xi;

that is,

() () ()() [] (){ }1 2, ,..., , ,degnC f x f x f x f F x f k= ∈ <

C is a [n, k, n-k+1] code; in other words, it is a linear code of length n (over F) with

dimension k and minimum distance n-k+1.

 18

Hardware Implementation

The hardware implementation of the Reed Solomon Encoder and Decoder are

explained by their respective datasheets[1].

4 Methodological Procedures

4.1 Problem Definition

The problem definition was based on interviews and meetings with the POF-ALL

research team.

4.2 Investigation and Solution Synthesis

The problem definition and the system design were developed base on interviews

with the PhotonLab researchers. For the development and implementation of the

system, the Xilinx and Nallatec[2] manuals were consulted.

At the beginning, the system designed was simulated with Modelsim® edition

6.0d. and later on some field tests were performed using the Testing Unit provided

to the Media Converter. The result was a hardware system that fulfills all the

requirements specified.

1 The Reed Solomon Encoder v5.0 Datasheet is shown in the ANNEX 7.
2 Manufacturer of the FPGA Kit development board that has been used.

 19

4.3 Solution Implementation

The procedure followed to implement the solution involves the following steps

First Stage: MII Implementation

Investigation:

This activity involves the familiarization with the IEEE/802.3/ETHERNET protocol,

specifically with the MII interface. It also includes the learning of VHDL language,

since this is the established language for the whole project.

Configuration of the MII interface:

Implement the MII configuration system in an FPGA using VHDL on Xilinx ISE

Foundation 8.1.03i.

Simulation of the MII:

In this activity the behavioral and “post place and route” simulations with

Modelsim® edition 6.0d. took place.

Testing of the MII:

Once the MII configuration system was simulated, it was tested for the different

data rates required. The tests performed are detailed in Appendix A.3.

 20

Second Stage: Test Unit and Transmitter Implementation

At this stage the field test architecture and the transmission module that treats the

data received from the MII interface were design and implemented.

Investigation:

Familiarization with the Cores provided by Nallatech and Xilinx that were used in

the implementation of the hardware architecture.

Programming:

The system was designed and implemented in a FPGA using VHDL on Xilinx ISE

Foundation 8.1.03i.

Simulation:

In this activity the behavioral and “post place and route” simulations with

Modelsim® Xilinx edition 6.0d. took place

Testing of the system:

In this activity different experiments to corroborate the correct operation of the

implemented system were developed. The tests performed are detailed in

Appendix A.3.

 21

 22

5 Description of the Selected Solution

5.1 Hardware Description

5.1.1 Hardware General Description

Figure 5.1 shows the general diagram of the hardware implementation of the

selected solution. The details regarding the implementation of each module are

given in the following sections. However, at this point the main generalities of the

system are explained.

The MII initialization system is constituted by the CRGU (Clocks and Resets

Generation Unit) module. It generates the clocks and the resets of the system.

There is also a Preamble Generator in charge of the reconstruction of the

preamble that precedes each ETHERNET communication. The modules called

Traffic Generation Unit (TGU) and Data Compilation Unit (DCU) constitute the

Internal Testing Unit based on the PRBS sequence. Figure 5.1 also shows the

DMA USB interface which is used to download the information generated by the

Internal Testing Unit into the PC. Finally, there is a MII interface implemented with

the DP83849 card and also the modules that correspond to the Transmitter and

the Receiver.

23

MDC1

MII_Clocks
2

Vcc1
0

MII INTERFACE

MDIO1 RX_nibble [3:0] 2

RESET1 MDC 2

Vcc1
0

CRGU

MDIO 2

TX_DATA [4:0]1

GND

0

MII_Clocks1

GND

0

RX_nibble [3:0]1

Vcc1
0

Preamble Generator

RX_DV1 5bitWORD [4:0] 2

GND

0

Vcc1
0

TGU

PRBS_SEQ [4:0] 2

GND

0

TGU_SEQ [4:0]1

Vcc1
0

MUX

MII_DATA [4:0]1 DATA_nibble [4:0] 2

GND

0

DMA_DATA [31:0]1

Vcc1
0

DCU

5bitWORD [4:0] 2

GND

0

TX_DATA [4:0]1 2

Vcc1
0

DEMUX

DCU_DATA [4:0]1

GND

0

UTP CAT51 RX_DV 2

2

Vcc1
0

USB
INTERFACE

USB_DATA1

GND

0

DATA Processing

1 2

0

0

MODULATOR

1 2

0

0

DEMODULATOR

POF
LoopBack
(only for

tests)

RESET

UTP CAT5 Cable

DATA_nibble [4:0]

DMA_DATA [31:0]

2

Vcc1
0

RX

RX_Nibble1

GND

0

Serial_Symbol [2:0]

TX_Nibble1

Vcc1
0

TX

Serial_Symbol [2:0] 2

GND

0

From the
POF

Fig.5.1. General Diagram of the System

5.1.2 MII Initialization System

The configuration system of the card that implements the MII interface is part of

the module called Clocks and Resets Generation Unit (CRGU). This module is

also in charge of the logic resets and of the system’s clocks. Figure 5.2 shows its

block diagram and the table 5.1 describes its port connections.

Fig.5.2. CRGU Block Diagram

Table 5.1. CRGU Pinout Configuration
Name of the Port Direction Description

CLK3_FB Input 80 MHz clock provided by the crystal of the Board.

RSTl Input General Reset of the system

RX_CLK Input 25/2.5MHz reception clock provided by the DP83848

TX_CLK Input 25/2.5MHz transmission clock provided by the

DP83848

MasterClock Output 125MHz clock generated based on CLK3_FB

LED_ERROR Output Turns on a led when the initialization of the DP83848

fails.

LED_FINISH Output Lights a led when the initialization of the DP83848

succeds.

LED_RESET Output Lights a led when the system is asserted the system

reset

MDC Output 25 MHz clock synchronous to the MDIO

MDIO Output Bi-directional signal used to configure the DP83848

Reset_MII Output Synchronous Reset deasserted when the MII clocks

have been succesfully regenerated

RX_CLK_in Output 25/2.5 MHz clock regenarated based on RX_CLK

TX_CLK_in Output 25/2.5 MHz clock regenarated based on TX_CLK

Clk416MHz Output 41.6MHz clock generated based on CLK3_FB

5.1.2.1 Second Level Diagram

Figure 5.3 shows the second level diagram of the CRGU module. The initPHY

block configures the DP83849 card. Once the MII interface is successfully

configured this block asserts its FINISH output, allowing the operation of the

CRGU_MII block and hence the generation of both the internal MII clocks and the

internal reset.

 25

Fig.5.3. CRGU Second Level Diagram

5.1.2.2 Third Level Diagram

Module CRGU_MII

The figure 5.4 shows the hardware implementation of the CRGU_MII. The two

bigger blocks (DCM_TX and DCM_RX) correspond to the Xilinx’s Core named

Digital Clock Manager (DCM)[1], which basically allows the clock synthesis,

phasing and synchronization based on its input clock signal. The reset logic is

generated by the OR function of the LOCKED outputs of the DCMs that are

asserted high when the generated clocks are stable.

1 For further information, regarding the DCM operation, can be consulted the Virtex 4 Family
Datasheet shown in the ANNEX 4

 26

Fig.5.4. CRGU_MII Third Level Diagram

Module initPHY

Figure 5.5 shows the third level diagram of this module. It shows the minimum

system architecture developed to configure the DP83848 National Instruments

Card. The module controlGEN constitutes the CPU of the system, the ROM

memory (whose truth table is shown in the table 5.2) stores the programming

words and finally the module called specialPORT executes the communication

with the card through the bidirectional serial line (MDIO).

It’s important to mention that initPHY has an input called speed, employed by the

user to define the data rate of the Ethernet Link. However, it isn’t included in the

diagrams because the research team required its fixation in order to configure the

link for a data rate of 100Mbps.

 27

CLK3_FB

RSTl

FINISH

MDC

MDIO

MasterClock

controlGEN

specialPORT

DCM_init

ROM

clk416MHz

Fig.5.5. InitPHY Third Level Diagram

Table 5.2. Truth Table of the ROM

Address (2:0) progWORD (31:0)

000 MDIO initializing word

001 100Mbps programming word

010 100Mbps verifying word

011 Empty Position

100 MDIO initializing word

101 10Mbps programming word

110 10Mbps verifying word

111 Empty Position

 28

 29

Figure 5.6 shows the state machine that controls the configuration of the MII

interface. It’s important to notice that when the card is not successfully initialized

the system retries the programming process until it succeeds.

Fig.5.6. ControlGEN State Machine

 30

5.1.3 Transmission System

The transmission block is part of a system that treats the data provided by the MII

interface in order to send them through the Plastic Optical Fiber (POF). The next

sections explains the design that handles the data up to the point at which is sent

to the pulse modulator as a 8-PAM (Pulse Amplitud Modulation) modulated

symbol. Figure 5.7 shows the first level diagram of the implemented module and

table 5.1 describes its port connections.

5.1.3.1 First Level Diagram

Finish
1

MasterClock
2

3
clk425MHz

4
clk125MHz

Symbol_RX(2:0)
8

Vc c1

0

RX_DV
7

GND

0

RXD_nibble_in (3:0)
5

RX_CLK
6

Fig.5.7. First Level Diagram of the transmission system

 31

Table 5.3. System Pinout Configuration
Name of the Port Direction Description

Finish Input This signal informs that the MII initialization is

complete and constitutes the system reset.

MasterClock Input 125 MHz clock provided by an external module

clk125MHz Input 12.5 MHz Output clock

clk425MHz Input 41.6 MHz Output clock

RXD_nibble_in (3:0) Input Receive Data: nibble wide received data provided by

the MII interface (Synchronous to RX_CLK).

RX_CLK Input 25 MHz clock provided by the MII interface

RX_DV Input Receive Data Valid: Asserted high to indicate that

valid data are present on RXD_nibble_in (3:0)

symbol_RX (2:0) Output Data Output: synchronous to clk425MHz

5.1.3.2 Second Level Diagram

The transmission block is composed by five fundamental sub-blocks, that from

now on, will be referred as A,B,C,D and E. The location of the synchronization

interfaces was the criterion applied to define the functional blocks in the logic

chain. This means that each block is separated from the next one by a

synchronization interface, which is implemented with a special circuit involving

asynchronous FIFO. The next sections explain the main characteristics of these

Blocks and the connections between them.

Block A: word and Inter Frame Gap codification.

Clock Generalities

Block A works with two different clock domains. At the input, the data received

(RX_nibble_in (3:0)) are synchronized with RX_CLK (25 MHz), which is provided

by the MII interface. At its output the transmitted data (DATA_ETH_RX,

RE_ETH_RX) are synchronized to MasterClock_in (125MHz), which is provided

by the field programmable gate array (FPGA) (see fig. 5.8). These different clock

domains imply the implementation of a synchronization circuit implemented with

an Asynchronous FIFO that helps to avoid the lost of data.

 32

Operation

 The module concatenates two samples of RX_nibble_in (3:0) in order to form a

byte. Then, it adds RX_DV and forms a 9 bit data word that is assigned to

DATA_ETH_RX (8:0). This output will be valid data when RX_DV is asserted high,

or on the contrary, an Inter Frame Gap (IFG). The encoding of the IFG is

necessary because the system must generate it on the other side of the POF in

order to fulfill the ETHERNET protocol. There are two IFG’s encoding words to

foresee the effect of the encoded data on the communication line due to the DC

Balancing[1]. The table 5.4 describes its port connections.

Fig.5.8. BLOCK A block diagram.

1
 For further information regarding DC balancing can be consulted the ANNEX 8

 33

Table 5.4. Block A Pinout Configuration
Name of the Port Direction Description

Reset Input Active High reset

MasterClock Input 125 MHz clock provided by the FPGA

clk125MHz Input A 12.5MHz clock provided by the Block E.

RXD_nibble_in (3:0) Input Receive Data: nibble wide receive data provided by

the MII inteface (Synchronous to RX_CLK).

RX_CLK Input 25 MHz clock provided by the Block E which treats

the MII interface clock input.

RX_DV Input Receive Data Valid: Asserted high to indicate that

valid data are present on RXD_nibble_in (3:0)

DATA_ETH_RX Output Data Output: nine bit wide sent data, synchronous to

MasterClock

RE_ETH_RX Output Read Enable: Write Enable signal of the next module

of the logic chain.

Block B: IDLE insertion

Clock Generalities

This block is simpler than the previous one, because it just works with the

MasterClock at 125 MHz (see fig.5.9).

Operation

The system works with the premise that there must always be data flow in the

logic chain, but this is impossible considering that the data from the MII are

sampled with a 25 MHz clock whereas the data in the chain are transmitted with a

125 MHz. Then is necessary to include special data words in order to avoid the

absence of real data. These words are referred as IDLE’s. Again, there are two of

them because of the DC balancing consideration. The module inserts these words

when the SER_FLAG signal is asserted high by a logic that detects the moment at

which there are less than five data words in the last FIFO of the chain

(FIFO_AUX), located in the Block D. Table 5.5 describes its port connections.

 34

The insertion of these words also generates the necessity of a synchronization

and storage circuitry, since is necessary to store them while all the signals needed

for their transmission are generated, and also in order to accumulate them to

maintain the data flow.

Fig.5.9. BLOCK B block diagram.

 35

Table 5.5. Block B Pinout Configuration
Name of the Port Direction Description

Reset Input Active High reset

MasterClock Input 125 MHz clock provided by the FPGA

RX_CLK Input 25 MHz clock provided by the Block E which treats

the MII interface clock input.

DATA_ETH_RX (8:0) Input Data Input: nine bit wide received data provided by

the Block B and synchronous to MasterClock

RE_ETH_RX Input Read Enable: Asserted high to indicate that data valid

is present on DATA_ETH_RX (8:0)

ASM_CONTROL Input Feedback signal from Block C that is asserted high

when the ASM_machine
1
 is receiving data.

RFD Input Feedback signal from the Block C that is asserted

high when the FEC
2
 is ready to accept new data.

SER_FLAG Input Feedback signal from the Block D that prevents the

interruption of the data flow.

DATA_OUT_FEC (8:0) Output Data Output: nine bit wide sent data, synchronous to

MasterClock

ND Output New Data: Asserted high to indicate that valid data

are present at the inputs of the FEC.

Note (1): The ASM_machine (Attached Synchronizing Mark) is a module that inserts four data

words at the beginning of each transmission in order to synchronize its decoding on the other side

of the POF, this function is part of the next block and is explained in the corresponding section.

Note (2): The FEC is the acronym of Forward Error Correction which generates a verification

sequence in order to certificate the veracity of the information when arrives to its destination, this

function is part of the next block and is explained in the corresponding section.

 36

Block C: ASM insertion and FEC generation.

Clock Generalities

This block works with the MasterClock (125 MHz).

Operation

This module implements the Forward Error Correction (FEC). The sequence is

constituted by 479 information words (9 bits codification) and 32 verification words,

generated applying the Reed Solomon algorithm[1]. Each sequence is preceded

by four special words called ASM, which are needed to synchronize the data

acquisition in the module located on the other side of the POF. In figure 5.10 the

block diagram of the block C is shown and table 5.6 describes its port connections.

.

Fig.5.10. BLOCK C block diagram.

1
 The datasheet of the block that executes the Reed Solomon algorithm is shown in the ANNEX 7

 37

Table 5.6. Block C Pinout Configuration
Name of the Port Direction Description

Reset Input Active High reset

MasterClock Input 125 MHz clock provided by the FPGA

DATA_OUT_FEC (8:0) Input Data Input: nine bit wide received data provided by

the Block B and synchronous to MasterClock

ND Input New Data: Asserted high to indicate that data valid is

present on the inputs of the FEC.

DATA_IN_AUX (8:0) Output Data Output: nine bit wide sent data, synchronous to

MasterClock

WE_AUX Output Write Enable: asserted high to indicate to the Block D

that valid data are present on DATA_IN_AUX (8:0)

RFD Output Feedback signal from the Block C that is asserted

high when the FEC is ready to accept new data.

ASM_CONTROL Output Feedback signal from Block C that is asserted high

when the ASM_machine is receiving data.

Block D: Data serialization

Clock Generalities

This module works with two clocks, the first one is the MasterClock (125MHz),

used to sample the data present at its inputs and the second one is the clk425MHz

used to serialize the data words into symbols constituted by three bits.

Operation

This module samples its input DATA_IN_AUX (8:0) when WE_AUX is asserted

high by the preceding module. This operation is realized in synchrony with

MasterClock. Once received, the data word is divided into three symbols,

constituted as well by three bits of data. This serialization is made using

clk425MHz (41.6MHz). In the end these symbols are sent to the 8-PAM modulator

to be treated before sending them to the transmission module through the POF. In

figure 5.11 is shown the block diagram of this block and the table 5.7 describes its

port connections.

.

 38

Fig.5.11. BLOCK D block diagram.

Table 5.7. Block D Pinout Configuration
Name of the Port Direction Description

Reset Input Active High reset

MasterClock Input 125 MHz clock provided by the FPGA

Clk425MHz Input Serialization Clock: a 41.6 MHz clock generated

inside the FPGA by the Block E in order to serilize the

data words sampled in DATA_IN_AUX.

DATA_IN_AUX (8:0) Input Data Input: nine bit wide received data provided by

block C and syncronous to MasterClock.

WE_AUX Input Write Enable: asserted high to indicate to the Block D

that valid data is present on DATA_IN_AUX (8:0)

Symbol_RX (3:0) Output Data Output: three bit wide output data sent to the 8-

PAM modulator and synchronous to clk425MHz.

SER_FLAG Output Feedback signal sent to the block B in order to avoid

the interruption of the data flow.

 39

In the figure 5.12 is shown the second level diagram of the system.

Fig.5.12. System Second level diagram.

 40

5.1.4 Testing System of the Media Converter

This system is used to execute the field tests of the Media Converter constituting a

fundamental part of its debugging process. The test procedure is as follows:

1) Disable the MII interface as a data source.

2) Isolate the modules that will be tested configuring an internal loop

connection in an appropriate point.

3) Transmit a Pseudo Random Binary Sequence (PRBS) through the

prototype.

4) Download the data sequence received into a computer.

The testing system is composed by a Traffic Generation Unit (TGU), a Data

Compilation Unit (DCU), a downloading interface (see figure 3.1), and a State

Machine that controls the data transfer between the modules mentioned and the

computer. These blocks will be explained in the next sections.

5.1.4.1 Traffic Generation Unit TGU

This module generates the PRBS that is transmitted through the Media Converter.

Due to the intrinsic complexity of the implementation of a PRBS generator, the

sequence was created with Matlab and uploaded into a ROM inside the PFGA

using a Xilinx Core Tool. Nevertheless, this solution implied the use of a large

ROM which had an obvious impact on the system efficiency. So at this point, was

decided to generate a PRBS composed by 6554 words 5 bits wide and transmit it

continuously until a larger DCU’s memory is filled. Figure 5.13 shows the hardware

configuration of the TGU. It’s important to mentione that the counter’s pin called

Count Enable (CE) is employed by the Control Unit to enable/disable the PRBS

emulation.

 41

Fig.5.13. Traffic Generation Unit Diagram

5.1.4.2 Data Compilation Unit DCU

DCU First Level Diagram

The information is stored by the DCU once it passes through the media converter.

The FIFO_OUT width was defined according to the Downloading Unit

requirements, which is based on a core provided by Nallatec. Figure 5.14 shows

the DCU first level diagram and the table 5.8 describes its port connections.

.

Fig.5.14. DCU First Level Diagram

 42

Table 5.8. DCU Pinout Configuration
Name of the Port Direction Description

Reset_MII Input Reset provided by the CRGU

TX_CLK_in Input 25MHz clock generated based on TX_CLK

FIFO_RCLK Input 40MHz clock provided by the Downloading Interface

FIFO_REN Input Read Enable: connected to the downloading

interface.

DCU_TX_DATA Input Data Input: 32 bits wide word synchronous to

TX_CLK_in

FIFO_WEN Input Write Enable: Asserted High by the Control Unit to

write a 32 bit word into the Internal FIFO.

Shift Input Asserted High by the Control Unit to process a new

PRBS symbol.

FIFO_OUT (31:0) Output Data Output: 32 bits wide word synchronous to

FIFO_RCLK

TRANSFER_COMPLETE Output Asserted High to Indicate to the Downloading Unit

that the DCU’s FIFO is full and ready to transfer the

data collected.

FIFO_EMPTY Output Asserted High to indicate to the Downloading Unit that

the DCU’s FIFO is empty.

TRACK Output Asserted High to indicate to the Control Unit that the

sequence that preceeds a new transmitting process

has been detected.

FIFO_FULL Output Asserted High to indicate to the Control Unit and to

the downloading interface that the DCU’s FIFO is full.

 43

Second Level Diagram

This unit is composed by a concatenation module and a 16Kbyte FIFO. Figure

5.15 shows its hardware configuration. The next sections will explain the operation

of each module.

Fig.5.15. DCU Second Level Diagram

Concatenation Module

This module takes the 5 bit PRBS symbols and concatenates them in order to

form a 32 bit word that is stored into DCU_FIFO. This process is performed while

“shift” corresponds to a logic one. Moreover, it recognizes the synchronization

sequence at the beginning of each transmission, communicating it to the Control

Unit through its pin labeled as TRACK.

DCU_FIFO

This is a 16Kbytes memory block that stores the data words received from the

Media Converter. Its full flag (labeled as TRANSFER_COMPLETE) indicates to

the Control Unit that the PRBS emulation must be stopped and its empty flag

(labeled as FIFO_EMPTY) indicates to the Downloading Unit that the transfer to

the computer is done.

 44

5.1.4.3 Control Unit

Figure 5.16 shows the states diagram of the Control Unit.

Fig.5.16. State Diagram of the Control Unit

 45

5.1.4.4 Download Unit

This module has been implement using the PCI communications Core developed

by Nallatech. It can establish communication between the computer and the FPGA

by means of two different interfaces, the first one is a Memory Map interface and

the second one is a DMA interface, it also can be configured by software to use

the USB port instead of the PCI bus, which facilitates the board connection to the

computer.

For this project the communication through the DMA interface has been configured

and established using the USB as communication port with the PC. Figure 5.17

shows the block diagram of the core and the table 5.9 describes its pinout

configuration.

Fig.5.17. PCI Communication Core block Diagram[
1
]

1
 Taken from PCI communication Core Datasheet Included in the Annex 3

 46

Table 5.9. Core Pinout Configuration[1]
Signal Description Width Description
EMPTY INPUT 1 Indicates that PCI FPGA has data to

transfer
BUSY INPUT 1 Indicates that PCI FPGA can receive data
AS/DS# INPUT 1 Determines if data from PCI FPGA is

address or data (LOW indicates Data)
RST# INPUT 1 Reset signal from PCI FPGA (Active

LOW)
RD#/WR OUTPUT 1 Read/Write Select to PCI FPGA (LOW

indicates Read)
REN#/WEN# OUTPUT 1 Read/Write Enable to PCI FPGA (Active

LOW)
INT# OUTPUT 1 Interrupt signal to PCI FPGA (Active

LOW)
ADIO INPUT/OUTPUT 32 Data to/from PCI FPGA
READ_STROBE OUTPUT 1 Read strobe for User Design
WRITE_STROBE OUTPUT 1 Write strobe for User Design
DATA INPUT/OUTPUT 32 Data for memory map interface
ADDRESS INPUT/OUTPUT 31 Address for memory map interface
DMA_ENABLE OUTPUT 1 Indicates that DMA interface is enabled
DMA_DIRECTION OUTPUT 1 Indicates direction of DMA interface

(LOW indicates data from core to user
design, HIGH data from user to core)

DMA_DATA_AVAILABLE OUTPUT 1 Indicates the DMA interface has data for
user design

DMA_REN INPUT 1 Read enable to read data from DMA
interface

DMA_RDY OUTPUT 1 Indicates the DMA interface is ready to
receive data from user design

DMA_WEN INPUT 1 Write enable to write data to the DMA
interface

DMA_DATA INPUT/OUTPUT 32 Data for DMA interface
COUNT OUTPUT 32 DMA count. Counts down from number of

words to transfer down to zero
DMA_SEL OUTPUT 4 Selects one of sixteen DMA channels
DMA_RESET OUTPUT 1 Can be used to reset any buffers used for

DMA data transfer
CLK INPUT 1 Interface clock (typically 40MHz)
RST OUTPUT 1 Reset for user design
SYNC_RESET OUTPUT 1 Synchronous reset for user design
INT INPUT 1 Interrupt signal from user design

1
 Taken from PCI communication Core Datasheet Included in the Annex 3

 47

DMA Interface Configuration

The PCI Communication Interface has two internal register that controls the DMA

interface: the DMA Control/Status Register (Address 0x00000000) and the DMA

count Register (Address 0x00000001). These registers must be initialized before a

transfer begins and must be cleared after it has finished. The initialization and

configuration of this interface is achieved by software, using the C++ programs

and libraries developed by Nallatech. Further information regarding the DMA

hardware configuration can be consulted on the datasheet included in Annex 3.

5.1.5 Reconstruction of the Preamble

Once the modules explained in the previous sections were programmed, took

place first attempts to assemble the system. The connection of the first blocks

revealed the existence of a problem regarding the reception of the information

from the MII interface.

A loopback was connected to the DP83849 national card and several PING

transmitting sequences were executed in order to determine what the problem

was. In the end it was determined that during clock synchronizing the card

discarded 1 to 10 bits of the beginning of the ETHERNET frame. The lost bit

corresponded to the Preamble of the frame, hence it was necessary to implement

an interface in charge of its reconstruction.

The system implemented generates a new preamble for each ETHERNET

sequence received. It has a control unit that responds to the Start of Frame

Delimiter (SFD) interrupting the sequence and sending 15 preamble nibbles

(1010). The States Machine that executes this operation is shown in figure 5.18.

 48

IDLE

SFD

SEARCH

Sending

Preamble

Sending

FRAME

1

RX_nibble=1011

RX_DV=1

Count=15

FIFO_EMPTY=1

sel=0

RD_FIFO=0

WR_FIFO=0

count=0

sel=1

WR_FIFO=1

count=count+1

sel=0

RD_FIFO=1

WR_FIFO=1

count=0

Fig.5.18. State Diagram of the Control Unit

Figure 5.19 shows the hardware implementation of this system. It’s important to

notice the presence of the FIFO memory, which is used to store the data while the

preamble is sent. It has a capacity of 32 words of 5 bits each (5 bits per word).

 49

Fig.5.19. Block Diagram of the Preamble Generator

 50

5.2 Software Description

A C++ application programs the FPGA and the DMA interface, then it controls the

data transfer and finally it generates the .txt file required by Matlab to compare the

received sequence with the transmitted sequence in order to verify the proper

operation of the media converter.

The libraries developed by Nallatech were used[1] both to program the board and

to execute the data transfer. The program code can be consulted in the appendix

A.5, the flow diagram showed in the figure 5.20 explains the sequence executed

by the software in order to download the information.

1
 The libraries are included in the datasheet of the PCI Communication Core shown in ANNEX 3

 51

Fig.5.20. Flow Diagram implemented for the Software Application

 52

6 Results Analysis

MII Initialization System

The table 6.1 shows the results obtained when the TEST 1 (see procedure in

Appendix A.4) was performed.

Table 6.1 Results obtained from TEST1
Result Obtained Tested Action

First Attempt Second Attempt
The system continuously executed the initialization

sequence of the DP83848

The system initialized properly the DP83848 X

Table 6.1 shows that the reprogramming sequence executed by the MII

initialization System worked as expected. The BMCR register was programmed

successfully every single time. However, the reading process presented some

problems on the first test, because the system retried the initialization process

despite the fact of being properly configured. At this point a Logic Analyzer was

used to monitor the MDIO signal finding that the given time between transfers

didn’t fulfill the minimum value specified by the DPC83848C datasheet. Thus, a

module to generate a delay was included; further tests showed that the MII

Interface is initialized without any problem.

The table 6.2 shows the results obtained when the TEST 2 (see procedure in

Appendix A.4) was performed.

Table 6.2 Results obtained from TEST2

Result Obtained Tested Action
First Attempt

The system initialized properly the DP83848 at a 10Mbps

The system initialized properly the DP83848 at a 100Mbps

Table 6.2 demonstrate that the configuration given to the DPC83948 card allows

the establishment of the data link speed both for 100Mbps and for 10Mbps.

 53

Figure 6.1 shows the summary of the first PING that was executed in the TEST 3

(see procedure in the Appendix A.4).

Fig.6.1. PING summary in the Command Prompt

Figure 6.1 shows that when the TEST 3 was performed, 1% of the PING packages

were lost. Hence, a Logic Analyzer was used to determine what the problem was.

At the end it was discovered that, during clock synchronizing, the card discarded 1

to 10 bits of the preamble. This problem was solved with the implementation of the

Preamble Reconstruction Block; the results obtained are shown in the figures 6.2

and 6.3, which show a 0% of PING packages lost.

Fig.6.2. PING summary in the Command Prompt

 54

Fig.6.3. PING summary in the Command Prompt

Testing System of the Media Converter

The TEST4 showed that the PRBS sequence downloaded into the PC presented

differences with the sequence transmitted, see table 6.3.

Table 6.3. Error Positions and number of bits lost in a PRBS of 32767 bits long

Error Position Number of bits lost
870 10

3705 15
8525 15

Lost Bits (%) 0.122

In order to solve this problem all the software algorithms implemented were

analyzed and tested. This task implied the use of the step by step debugging tool

included in the C++ editor environment.

Once the possibility of a software error was discarded, the analysis of the

hardware took place. The DMA interface was isolated with the connection of a 32

bit counter to generate a sequence that could be verified using step by step

debugging tool in real time operation. This test helped to determine that the

problem was located inside the DMA interface provided by Nallatech. The table

 55

6.3 shows the position and the quantity of bits lost, concluding that 0.122% of the

information is lost through the downloading process. The Nallatech interface was

composed of an Asynchronous FIFO with a 16x32 bits capacity and a Control Unit.

The internal FIFO was replaced with an Asynchronous FIFO generated with the

Xilinx Core generator. The test was repeated several times with FIFOs of 32, 64,

128 and 1024 words capacity. However, the errors were present at the same

positions, consequently it was concluded that the problem wasn’t provoked by an

overflow error in the FIFO.

At this point it was considered to modify the Control Unit, but this module was

provided by Nallatech as a “Black Box”, making impossible to change its logic

design and hardware implementation. The programming of a new interface wasn’t

possible either, because the USB interface works with the C++ Nallatech Libraries

and the protocol followed for the port management and initialization isn’t specified

by the provider.

The impossibility to correct the data lost in the downloading process implied the

evaluation of other solutions. At the beginning the use of the same downloading

interface jointly with a module that would locate the number of errors and its

positions in the sequence was considered. The downloading process wouldn’t be

a problem because the first bit lost is located at position 870, which means that

27x32bit words could be received in the computer without the presence of errors.

In other words, this solution would allow the location of 32 bit errors with their

respective positions in the sequence. Nevertheless, the incapability to isolate more

than 32 errors and the inherit complexity of the module needed to locate and

generate the report didn’t accomplished the simplicity and small space

consumption required for the implementation of the internal Testing Unit. Thus, it

was discarded.

Afterward, the serial communication through the RS232 port was considered.

Nevertheless, its hardware implementation implied the establishing of the interface

inside the FPGA, also the physical construction of the RS232 port and finally the

 56

design and implementation of the analog circuits needed to convert the TTL levels

voltage into RS232 levels voltage. Moreover, regarding the software, it was

necessary to program an application to receive and generate the errors report as a

.txt file. These facts and the RS232 obsolescence lead to the conclusion that this

wasn’t either the best answer to the problem.

At last, considering the simplicity, hardware size, effort and time implementation, it

was decided to use the same downloading interface, but considering the bits lost

(see table 6.3) in the information analysis. The test configuration may be seen in

the figure A.5 in the Appendix A.5.. Hence, it was recommended to program a

MatLab application to remove the bits lost from the original PRBS in order to

compare it later with the downloaded PRBS, with the advantage that this solution

doesn’t limit the number of findable error bits and doesn’t need further hardware

resources from the FPGA.

FPGA Utilization

Figure 6.4 shows the FPGA Virtex IV utilization percentages.

Fig.6.4. FPGA Utilization

This summary shows the minimum requirements needed to implement the Media

Converter, which are far from the maximum capacity of the FPGA Virtex IV.

 57

Fig.6.5. Timing Summary of the Media Converter

Figure 6.5 shows that the maximum clock frequency of the Media Converter is

171.223MHz. This means that the system could add more control words or even

more logic levels without affect the ETHERNET data rate. This figure also shows

that the Media Converter has an input constraint of 5.484ns and an output

constraint of 6.465ns. This information is useful for the interaction of the Media

Converter with other applications and/or systems.

 58

 59

7 Conclusions and Recommendations

7.1 Conclusions

• The Media Converter is capable to establish Fast Ethernet Communication

both at 100Mbps and at 10Mbps.

• The Media Converter counts with two possible test methodologies and their

respective hardware, the first one uses the Fast Ethernet Link as a data

source, collecting the results with the network monitoring Tools embedded

on Windows. The second one consists on the internal emulation,

transmitting, receiving and downloading of a PRBS that is verified with

Matlab.

• The Media Converter uses a 4% of the total slices of the FPGA Virtex IV.

• The Media Converter minimum FPGA requirements are: 706 Flip Flops,

1108 LUTs (Look Up Tables) with 4 input (964 used as logic and 144 used

as RAM, random access memory), 108 bonded IOBs (Input/Output Blocks),

12 FIFO16/RAMB16s, 9 GCLKs (Gated Clocks) and finally 4 DCMs.

• The Media Converter has maximum combinational path delay of 6.539ns,

and a Maximum Clock frequency of 171.223MHz.

• The Media Converter has an input constraint of 5.484ns and an output

constraint of 6.465ns.

 60

7.2 Recommendations

• The main recommendation is to use both testing methods in the Media

Converter depuration process, because the Internal Testing Unit allows to

debug the system, whereas the establishment of Fast Ethernet

Communication validates the implementation of the system as a

commercial product compatible with a worldwide standard.

• Request to Nallatech a debugged version of its PCI communications Core.

Specify the presence of errors and their positions when the interface is

configured to execute DMA transfers through the USB port of the Nallatech

card. Also inform that it was concluded that the error is located in the

Control Unit of the Core. Finally, explain that error location was deduced

based on the lack of satisfactory results when hardware modifications were

made to the other modules inside the Core.

• Acquire specialized network analysis software in order to generate statistics

to validate the system. This software should have access to a set of

capabilities and analysis variables such as:

1. An accurate calculation of the data lost percentage.

2. The number of resending processes and the time needed to send

the data.

3. Operation time with error free and consequently the error frequency

to determine its possible periodicity.

4. A debugging tool capable of emulate Ethernet information from an

algorithm or file given by the user. This feature could allow the

transmission of a more complex PRBS directly to the MII interface

and later to the system, which could be an alternative to the Internal

Testing Unit.

 61

8 Bibliography

[1] CrossLink, “The Aerospace Corporation Magazine of advances in aerospace
technology” [online]. Includes an article that explains the FEC.

 < http://www.aero.org/publications/crosslink/winter2002/04.html>

[2] WIKIPEDIA, “The Free Encyclopedia” [online]. Optical Fibers.
 < http://en.wikipedia.org/wiki/Optical_fiber>.

[3] Mouse Home Page, “The Radio Network Processor” [online]. Includes a section

regarding the Reed Solomon Algorithm with several articles and related
documents.

 < http://www.radionetworkprocessor.com/reed-solomon.html>.

[4] POF ALL Association, Internet Site [online]. Plastical Optical Fiber.
 < http://www.pofac.de/pofac/en/what_are_pof/step_index.php>.

[5] Daum,W.;Krauser. J.; Zamzow, P.; Ziemann,O.Polymer Optical Fibers for

Data Communication . Germany, Springer-Verlag Berlin Heidelberg, 2002.

[6] Nallatech. XtremeDSP Development Kit-IV User Guide.Nallatech Limited,

2005.

[7] Spurgeon, Charles E..Ethernet: The Definitive Guide . First Edition, O’Reilly

Editorial, USA, 2000.

 62

9 Appendix

A.1 Glossary, abbreviations and Symbols

A

ASM: Attached Synchronizing Mark

B
BMCR: Basic Mode Control Register

C
CRGU: Clock and Reset Generation Unit
CPU: Central Processing Unit

D
DCM: Digital Clock Management
DCU: Data Compilation Unit
DMA: Direct Memory Access

F
FEC: Forward Error Correction
FIFO: First In First Out
FPGA: Field Programmable Logic Array

G
GCLK: Gated Clock

H
HDL: Hardware Description Language

I
IEEE: Institute of Electrical and Electronics Engineers
IFG: Inter Frame Gap
IP: Internet Protocol
IOB: Input/Output Block

L
LAN: Local Area Network
LUT: Look Up Table

 63

M
MAC: Medium Access Controller
MDC: Management Data Clock
MDIO: Management Data Input/Output
MII: Media Independent Interface

O
OSI: Open System Interconnection

P
PAM: Pulse Amplitud Modulation
PCI: Peripheral Component Interconnect
PHY: Physical Layer of the OSI Reference Model
POF: Plastic Optical Fiber
POF-ALL: Paving the Optical Future with Affordable Lightning-fast Links
PRBS: Pseudo Random Bit Sequence

R
RAM: Random Access Memory
ROM: Read Only Memory

 64

S
SFD: Start Frame Delimiter

T
TGU: Traffic Generation Unit

U
USB: Universal Serial Bus

V
VHDL: Very High Speed Integrated Circuit Hardware Description Language

 65

A.2 Company Information

PhotonLab is a 250 square meters laboratory constituted by different work areas,

such as the optical system and network experiment area, an electronics lab, a

dark room, a filtered air system in a class 1000 clean room and a special design

that isolates it from external vibration. Furthermore, this facility is equipped with

test and measurement equipment, several BER tester (12.5 Gbit/s and 40Gbit/s),

50 GHz oscilloscopes, optical spectrum analyzers, electrical and optical network

analyzers up to 40 GHz, numerous optical and electro-optical components and

access to 240 Km of optical fiber deployed in the metropolitan area of Turin.

 66

A.3 Testing Procedures

This section explains the field tests performed to verify the proper operation of the

systems implemented. The FPGA was programmed using the software provided

by Nallatech.

TEST1

The figure A.1 shows the setup of the test performed in order to verify the

programming system that initializes the MII interface.

Fig.A.1. Test 1 Configuration

Test procedure:

1) Connect the Reset jumper of the DP83848C.

2) Start the programming sequence with the FPGA.

3) Verify that the programming system execute continuously the initialization

sequence.

4) Remove the Reset jumper of the DP83848C.

5) Verify the proper initialization of the DP83848C.

 67

TEST 2

The figure A.2 shows the set up of the test performed to the MII interface in order

to verify its capacity to establish the link specifications.

Fig.A.2. Test 2 Configuration

Test Procedure:

1) Configure the computer link at 100 Mbps and with the auto-negotiation

capability.

2) Program the DP83848C at 10Mbps without the auto-negotiation capability.

3) Check with the Windows Network Tools the reconfiguration of the computer

link due to the auto-negotiation process.

This test was performed configuring the PC link at 10Mbps and the card at

100Mbps.

 68

TEST 3

The figure A.2 shows the set up of the test performed in order to verify the

reliability of the data transmission and receiving through and from the MII

interface. It was performed to corroborate the proper operation of the Internal

Testing System in the FPGA.

Fig.A.3. Test 3 Configuration

 69

Test procedure:

1) Program the DP83848C at 10Mbps without the auto-negotiation capability.

2) Execute a PING from the PC1.

3) Wait the answer from PC2.

TEST4

The figure A.4 shows the set up of the test performed in order to verify the testing

system implemented inside of the FPGA .

Fig.A.4. Test 4 Configuration

Test procedure:

1) Disable the MII Interface as a data source.

2) Configure the DP83848C.

3) Start the testing transmission inside the FPGA.

4) Download the PRBS sequence into the PC.

5) Compare the downloaded sequence with the original one.

 70

A.4 Testing Set up with the POF as loopback

MDIO/MDC

DP83848C PHYTER

FPGA

USB

POF

Fig.A.5. Testing Setup with the POF as a LOOPBACK

 71

A.5 C++ Programming Code of the Software Application

The following lines show the libraries inclusion, the DWORD global variables

declaration, the programming files assignment and finally the local variables

declaration and its initialization takes place.

 72

At this point the communication with the FPGA is established, the Card

specifications are obtained and it’s opened in order to initiate the programming

process.

 73

Once the card is opened, the program enables the resets, sets the clocks,

configures the FPGAs[1] and executes a general reset.

1 The nallatech board has two FPGAs, a Virtex-II Pro and a Virtex IV.-

 74

Subsequently the DMA configuration and the downloading process takes place.

At this point is opened the .txt file, and begins the writing process, which implies

the data type conversion in order to print it.

 75

This is the method that converts the data downloaded from DWORD to binary,

returns the binary data in the printDATA array.

 76

The next method converts the data contained in printDATA from binary to double

allowing its printing in the .txt file.

Finally , the file and the card are closed.

 77

10 Annex

ANNEX 1 Photos of the cards and devices utilized to implement
the system.

DP83848 National Instruments Card

FPGA Virtex-4 Nallatec Board

 78

POF daughterboard

 79

ANNEX 2 DP83848 National Instruments Card

 80

ANNEX 3 Nallatech PCI Communication Core Application Note

 81

ANNEX 4 Virtex 4 Family Oveview

 82

ANNEX 5 Second Part of the IEEE 802.3 Protocol

 83

ANNEX 6 Xilinx Core Asynchronous FIFO v6.1

 84

ANNEX 7 Xilinx Core Reed Solomon Encoder v5.0

 85

ANNEX 8 Special Words (IFG, IDLE ,ASM) and DC Balancing

 86

	1 Introduction
	1.1 Problem Definition and Solution's Relevance
	1.2 Problem Definition
	1.2.1 Generalities
	1.2.2 Synthesis

	1.3 Selected Solution
	2 Goal and Objectives
	2.1 Goal
	2.2 General Objective
	2.3 Specific Objectives

	3 Theoretical Background
	3.1 System Description
	3.2 Existing Literature
	3.3 Physics and Electronics principles description

	4 Methodological Procedures
	4.1 Problem Definition
	4.2 Investigation and Solution Synthesis
	4.3 Solution Implementation

	5 Description of the Selected Solution
	5.1 Hardware Description
	5.1.1 Hardware General Description
	5.1.2 MII Initialization System
	5.1.2.1 Second Level Diagram
	5.1.2.2 Third Level Diagram

	5.1.3 Transmission System
	5.1.3.1 First Level Diagram
	5.1.3.2 Second Level Diagram

	5.1.4 Testing System of the Media Converter
	5.1.4.1 Traffic Generation Unit TGU
	5.1.4.2 Data Compilation Unit DCU
	5.1.4.3 Control Unit
	5.1.4.4 Download Unit

	5.1.5 Reconstruction of the Preamble

	5.2 Software Description

	6 Results Analysis
	7 Conclusions and Recommendations
	7.1 Conclusions
	7.2 Recommendations

	8 Bibliography
	9 Appendix
	10 Annex
	ANNEX 1 Photos of the cards and devices utilized to implement the system.
	ANNEX 2 DP83848 National Instruments Card
	ANNEX 3 Nallatech PCI Communication Core Application Note
	ANNEX 4 Virtex 4 Family Oveview
	ANNEX 5 Second Part of the IEEE 802.3 Protocol
	ANNEX 6 Xilinx Core Asynchronous FIFO v6.1
	ANNEX 7 Xilinx Core Reed Solomon Encoder v5.0
	ANNEX 8 Special Words (IFG, IDLE ,ASM) and DC Balancing

