




 

 

Instituto Tecnológico De Costa Rica 

Computer Engineering Department 
 

 

 

 

 

 

 

 
 

“Swift mobile platform analysis: 

KMU Inventory approach” 

 

 

 

 

Alejandra Bolaños Murillo 

 

 

 

 

 

 

Cartago April, 2015  



 

 

Abstract 
 

This is an analysis of Apple’s new programming language: Swift. The 

investigation takes place in the University of Applied Sciences FH Joanneum in Styria, 

Austria. A guideline for time and skills administration is written based on the experience 

developing an iOS mobile application. This application is developed for the 

administration of an inventory in iPhone and iPad. It is called KMU Inventory App. The 

outputs of this work are: a document for guiding new developers in this area and the 

analysis of the hardware and software involved. 



 

 

 

Acknowledgments 

Foremost, I would like to express my sincere gratitude to my advisor Prof. Milton 

Villegas and Jennier Solano for the continuous support and guidance during this project. 

I would like to thank also the FH Joanneum professors and researchers for giving me the 

opportunity to work with them to accomplish this project. 



 

 

Dedication 

I dedicate this work to my parents Oliveth and Ligia, for their support, love and 

encouragement. Without them I would never have enjoyed so many opportunities. 

 I also dedicate this to my sisters for the encouragement and friendship. To 

Adriana for her support especially during my first years of studies. To Valeria and 

Natalia for the patience and help during my studies. 

 



 

i 

 

Table of Contents 

List of Tables .......................................................................................................................v 

List of Figures ................................................................................................................... vii 

1 Introduction ..............................................................................................................1 

1.1 Project Area .......................................................................................................2 

1.2 Project Context...................................................................................................2 

1.3 General Description ...........................................................................................3 

1.3.1 Background of the FH JOANNEUM .......................................................... 3 

1.3.2 Research and Development......................................................................... 4 

1.4 Problem Description ..........................................................................................5 

1.4.1 Problem Context ......................................................................................... 5 

1.4.2 Problem specification.................................................................................. 5 

1.4.3 Need and Justification ................................................................................. 6 

1.5 Objectives ..........................................................................................................6 

1.5.1 General ........................................................................................................ 6 

1.5.2 Specific ....................................................................................................... 6 

1.6 Benefits and Beneficiaries .................................................................................7 

1.7 Assumptions and Limitations ............................................................................7 

1.8 Risk Analysis .....................................................................................................8 

1.8.1 Risks ............................................................................................................ 8 

1.8.2 Mitigation Actions ...................................................................................... 8 

1.9 Scope, Deliverables and Limitations .................................................................9 



 

ii 

 

1.9.1 Work Characterization ................................................................................ 9 

1.9.2 Process Description ..................................................................................... 9 

1.10 Tools ................................................................................................................10 

1.10.1 Deliverables Description ........................................................................... 10 

2 Theoretical Framework ..........................................................................................12 

2.1 Swift Programming Language .........................................................................12 

2.2 XCode ..............................................................................................................12 

2.3 Wikibooks ........................................................................................................13 

2.4 Apple’s Terminology .......................................................................................13 

2.4.1 Storyboard ................................................................................................. 14 

2.4.2 View Controllers ....................................................................................... 14 

2.4.3 Navigation Controller ............................................................................... 14 

2.4.4 AV Foundation API .................................................................................. 15 

2.5 User Experience ...............................................................................................15 

2.5.1 Aesthetics .................................................................................................. 16 

2.5.2 Apple’s User Experience Guideline .......................................................... 16 

2.5.3 About Layout ............................................................................................ 17 

2.5.4 About Terminology and Wording ............................................................. 18 

2.5.5 About Integrating the Application to the iOS Standard ............................ 19 

2.5.6 About Navigation ...................................................................................... 19 

2.6 Training, Setting Environment and Language Investigation In .......................20 

2.6.1 Training and environment setting ............................................................. 20 



 

iii 

 

2.6.2 Investigation .............................................................................................. 21 

3 Methodological development.................................................................................24 

3.1 Application Methodological Development ......................................................24 

3.2 User Stories ......................................................................................................24 

3.3 Program flow ...................................................................................................28 

3.4 Block diagram ..................................................................................................29 

3.5 Software Design Patterns .................................................................................31 

3.5.1 Singleton ................................................................................................... 31 

3.5.2 Observer .................................................................................................... 31 

3.5.3 Servant ...................................................................................................... 31 

3.6 Communicating with the server .......................................................................32 

3.7 Hardware Libraries ..........................................................................................32 

3.8 User Interface ...................................................................................................32 

3.9 Application Performance Measurement ..........................................................38 

3.10 ApplicationUsability Testing Strategies ..........................................................41 

3.11 Application and language experience documentation .....................................41 

3.12 Swift’s Guideline .............................................................................................42 

3.12.1 Wikibook................................................................................................... 45 

4 Results Analysis .....................................................................................................46 

4.1 Experimental Application Implementation ......................................................46 

4.1.1 Application requirements .......................................................................... 46 

4.1.2 Performance measurements ...................................................................... 51 



 

iv 

 

4.1.3 Usability test ............................................................................................. 53 

4.1.4 Application upload to the store ................................................................. 54 

4.2 Language learning documentation and Guideline ...........................................55 

4.2.1 Guideline ................................................................................................... 55 

4.2.2 Wikibook................................................................................................... 56 

4.2.3 Future Work .............................................................................................. 56 

5 Conclusions and Recommendations ......................................................................57 

5.1 Conclusions ......................................................................................................57 

5.2 Recommendations ............................................................................................58 

References ..........................................................................................................................59 

Appendix ............................................................................................................................61 

Appendix I: Swift Memory Measurements..................................................................61 

Appendix II: Swift CPU Measurements ......................................................................67 

Appendix III: Objective C Memory Measurements ....................................................72 

Appendix IV: Objective C CPU Measurements ..........................................................78 

 

 



 

v 

 

List of Tables 

Table 1 Objective C performance and Swift performance time comparison with 

optimization. ............................................................................................................. 23 

Table 2 Objective C performance and Swift performance time comparison without 

optimization. ............................................................................................................. 23 

Table 3 User Story 1: Connect to Inventory-Server ......................................................... 24 

Table 4  User Story 2: See all devices which are available .............................................. 25 

Table 5 User Story 3A: Lend a device from a list ............................................................ 25 

Table 6 User Story 3B: Lend device (choosing from QR Code) ...................................... 26 

Table 7 User Story 4A: Bring back device (choosing from List) ..................................... 26 

Table 8 User Story 4B: Bring back a lent device (with QR-Code) .................................. 27 

Table 9 User Story 5: Edit Login-Information ................................................................. 27 

Table 10  User Story 6: Add a new device. ...................................................................... 27 

Table 11  User Story 7: Edit Login-Information .............................................................. 28 

Table 12 Swift application peak memory usage. .............................................................. 38 

Table 13 CPU peak usage by Swift application. ............................................................... 39 

Table 14 Objective C application peak memory usage. ................................................... 39 

Table 15 CPU peak usage by Objective C application. .................................................... 40 

Table 16 C Swift beginner’s table for guideline estimation ............................................. 44 

Table 17 Swift memory measurements 1.......................................................................... 61 

Table 18 Swift memory measurements 2.......................................................................... 61 

Table 19 Swift memory measurements 3.......................................................................... 62 

Table 20 Swift memory measurements 4.......................................................................... 62 

Table 21 Swift memory measurements 5.......................................................................... 63 

Table 22 Swift memory measurements 6.......................................................................... 63 

Table 23 Swift memory measurements 7.......................................................................... 64 

Table 24 Swift memory measurements 8.......................................................................... 64 

Table 25 Swift memory measurements statistics. ............................................................. 66 

Table 26 Swift CPU measurements 1. .............................................................................. 67 



 

vi 

 

Table 27 Swift CPU measurements 2. .............................................................................. 67 

Table 28 Swift CPU measurements 3. .............................................................................. 68 

Table 29 Swift CPU measurements 4. .............................................................................. 68 

Table 30 Swift CPU measurements 5. .............................................................................. 69 

Table 31 Swift CPU measurements 6. .............................................................................. 69 

Table 32 Swift CPU measurements 7. .............................................................................. 70 

Table 33 Swift CPU measurements 8. .............................................................................. 70 

Table 34 Swift CPU measurements statistics. .................................................................. 71 

Table 35 Objective C memory measurements 1. .............................................................. 72 

Table 36 Objective C memory measurements 2. .............................................................. 72 

Table 37 Objective C memory measurements 3. .............................................................. 73 

Table 38 Objective C memory measurements 4. .............................................................. 73 

Table 39 Objective C memory measurements 5. .............................................................. 74 

Table 40 Objective C memory measurements 6. .............................................................. 74 

Table 41 Objective C memory measurements 7. .............................................................. 75 

Table 42 Objective C memory measurements 8. .............................................................. 75 

Table 43 Objective C memory measurements statistics. .................................................. 77 

Table 44 Objective C CPU measurements 1. .................................................................... 78 

Table 45 Objective C CPU measurements 2. .................................................................... 78 

Table 46 Objective C CPU measurements 3. .................................................................... 79 

Table 47 Objective C CPU measurements 4. .................................................................... 79 

Table 48 Objective C CPU measurements 5. .................................................................... 80 

Table 49 Objective C CPU measurements 6. .................................................................... 80 

Table 50 Objective C CPU measurements 7. .................................................................... 81 

Table 51 Objective C CPU measurements 8. .................................................................... 81 

Table 52 Objective C CPU measurements statistics. ........................................................ 82 

 

 



 

vii 

 

List of Figures 

Figure1. Sketch for a Storyboard ...................................................................................... 14 

Figure2. View Hierarchy in iOS (Apple Inc, 2014d)........................................................ 15 

Figure 3. IPad screen orientation possibilities (Apple Inc, n.d b)..................................... 17 

Figure 4. Application’s program Flow .............................................................................. 29 

Figure 5. Application Block Diagram ............................................................................... 30 

Figure 6.  Login View ....................................................................................................... 33 

Figure 7. Main view from the list of products .................................................................. 33 

Figure 8. View from a product borrowed by the user. ...................................................... 34 

Figure 9. Message: returned by the user. .......................................................................... 34 

Figure 10. Add product view. ........................................................................................... 35 

Figure 11. Take picture view. ........................................................................................... 35 

Figure 12. Available product view.................................................................................... 36 

Figure 13. Comment view................................................................................................. 36 

Figure 14. Successfully borrow a device message............................................................ 37 

Figure 15. Filter Available implemented .......................................................................... 37 

Figure 16. Screenshots from US1 and US2 ...................................................................... 46 

Figure 17 Screenshots from US 3A .................................................................................. 47 

Figure 18 Screenshots from US 3B .................................................................................. 47 

Figure 19 Screenshots from US 4A .................................................................................. 48 

Figure 20 Screenshots from US 4B .................................................................................. 48 

Figure 21 Screenshots from US 5 ..................................................................................... 48 

Figure 22 Screenshots from US 6 ..................................................................................... 49 

Figure 23 Screenshots from US 7 ..................................................................................... 49 

Figure 24. About View ..................................................................................................... 50 

Figure 25. Menu ................................................................................................................ 50 

Figure 26. Filter Borrowed by the user selected ............................................................... 51 

Figure 27. Memory load in Swift vs Objective C application .......................................... 51 

Figure 28. CPU load in Swift vs Objective C application ................................................ 52 



 

viii 

 

Figure 30. Swift’s guideline .............................................................................................. 55 

 

 



Swift mobile platform analysis 1 

 

 

1 Introduction 
 

Mobile development is considered an important and growing technological 

industry. For this reason, different environments and technologies are being created in 

this field for final users and developers. As a consequence, there is an increasing amount 

of programming platforms, features, and devices. The technological industry today is 

therefore being filled by all kinds of opinions about best technologies and ways to 

develop them. 

According to Computer World’s website (Keiser, 2015), Apple's iPhone 6 and 

iPhone 6 Plus prompted a surge in iOS smartphone users. In the U.S, iOS market share 

climbed from 43.1% in October to 47.4% in November 2014. While during the same 

period of time, Android's U.S. share fell from 50.4% to 48.4%, and Google's operating 

system went just one point beyond iOS. It gives a clear image of the importance of iOS 

development for people involved in the mobile industry.  

Recently, Apple has released a new programming language named Swift. It is a 

totally new approach for developers in iOS and OS X. This company developed it to 

simplify the designing and programming phases of a project using Apple technologies 

and to give the programmer a flexible mobile working framework. 

Recently released languages like Swift do not have a strong background of 

references and previous user experiences in comparison to the most common languages, 

for instance Java and Objective C. Old languages have documentation from their 

developers and the programmers that used them for a long time.  

New programming languages do not provide developers enough information 

about their performance. They are not properly characterized by users due to their limited 

time in the market. This lack of data creates the need to provide a clear image of the 

platform.  

As a result of the new release, Swift programming language is a point of interest 

for research institutions like the FH Joanneum. Even though members have no previous 

experience with this language, they are familiar with Apple’s technology, especially with 



Swift mobile platform analysis 2 

 

 

the previous language, Objective C. The need to develop an application in this university 

is not only to sell it, but also to investigate. The research department is looking for 

documentation of Swift’s behavior in the mobile area in order to help students and 

developers learning this language. 

 

1.1 Project Area 
 

The project is oriented towards research in mobile platforms to create a software 

and hardware analysis of a programming language named Swift and its guideline. This 

guide intends to be used as a reference framework to help future developers and people 

interested in learning about Apple’s technology. The information was gathered based on 

a mobile application developing process. 

The application developed is an Inventory program for iPhone and iPad. It is 

implemented in the KMU-Goes-Mobile project. It takes place in the Research and 

Development area at the FH Joanneum University in Kapfenberg. 

1.2 Project Context 
 

Swift is a recently released programming language. Its development began in 

2010 by Chris Lattner, and was presented to the public on September 9th, 2014 with the 

version 1.0. On October 22, 2014, it reached the version 1.1 alongside XCode 6.1. 

There was a lack of expertise because this language was released by the time the present 

research project starts (October 2014). There were neither Swift experienced 

programmers in the FH JOANNEUM laboratory, nor Swift application performance 

analysis available to the public, and nor guidelines for beginners in this area.  

The lack of information about this programming language created the need of a 

technical exploration of the development process to provide future developers and 

researchers with criteria to learn Swift and its features for their projects. 

The mobile application developed to build this guide aims to help small and medium 

sized enterprises. These companies usually do not have their devices in an inventory 

which makes it hard to keep track of who is using them and where they are. As a solution, 



Swift mobile platform analysis 3 

 

 

KMU-goes-mobile developed a set of programs to help these enterprises to keep track of 

their actives.  

This project was developed for iOS. Therefore, an environment compatible with 

Apple was set. The operating system used was OS X Version 10.9.5 and the platform 

Xcode. The project is oriented towards a research about mobile development, 

documentation, and testing in the Research and Development area in ITM department of 

FH JOANNEUM in Kapfenberg, Austria. 

 

1.3 General Description 
 

1.3.1 Background of the FH JOANNEUM 

 

FH JOANNEUM University is located in Styria, Austria. It was founded in 1995. 

It is one of the leading universities of applied sciences (FHs) in Austria. It has forty 

programs in Health Sciences, Information, Design & Technologies, International 

Business and Live, Building, and Environment areas.  

The university’s history starts with the Archduke John of Austria, who was one of 

the most innovative figures of his time. He introduced an incredible number of inventions 

to his chosen home of Styria from 1811. Many of those continue to have an effect to the 

current day. He is the precursor of the Graz University of Technology, founded Styria’s 

state library, and today’s University of Leoben.  

In 1815, after traveling to England, home of the industrial revolution, he 

encouraged the railway building throughout the Habsburg Empire and the modernization 

of Styria’s mining and agricultural industries. He never lost sight of the social impact of 

all these upheavals.  

It was due to Archduke John that Styria got developed from an agricultural state 

into a leading and highly innovative industrial region. John’s thoughtful approach, his 

openness to all new things, and his affinity for the local population made him one of the 

most popular Habsburgs.  



Swift mobile platform analysis 4 

 

 

The Styrian government wished to highlight John’s spirit in naming Styria’s 

newly founded university of applied sciences “FH Joanneum” in 1995. (FH 

JOANNEUM, n.d) 

 

1.3.2 Research and Development 

The FH JOANNEUM campus in Kapfenberg has a department that aims to 

integrate innovative applied research and development in teaching in order to maintain 

the quality of degree programs and provide practice-oriented education for students. 

The applied research and development is geared both to the needs of industry and 

public administration. It is the interface between basic research on one hand, and 

innovative services and products development on the other. FH JOANNEUM’s staff and 

students work together with the clients to develop comprehensible solutions that meet 

international quality criteria. They also examine to what extent the results can be 

generalized or applied in other fields. Research achievements are reflected in innovations, 

publications, and patents. 

The highly qualified and experienced FH JOANNEUM staff is continually 

involved in a wide range of research projects, generating knowledge for the university, 

business, and society. FH JOANNEUM takes an inter and trans disciplinary approach in 

tackling key research issues of the future in cooperation with partners from business, 

industry, and public institutions. 

The best description is given by the FH Joanneum website: “KMU-Goes-Mobile 

is a research project in support of small and medium size enterprises founded by The 

Austrian Research Promotion Agency (FFG) to promote innovative ideas, concepts, and 

free applications for the use of smartphones and tablets for small enterprises that do not 

have their own IT departments for software development”. (FH JOANNEUM, n.d) 

 

 



Swift mobile platform analysis 5 

 

 

1.4 Problem Description 

1.4.1 Problem Context 

 

The FH JOANNEUM IT department found it important to include Swift within its 

background because of having experience working on different mobile areas including 

Apple’s technologies, and with mobile applications development projects. As it was a 

new programming language with less than a month being in the market, mobile 

developers did not have a current guideline to judge the path of their development 

approach or teaching approach in the case of professors using Swift.  

The institution has worked in a project called KMU-Inventory. As they had an 

Objective C application already developed, the Swift application became the next step. 

That was an opportunity to retrieve information about development and learning to use 

Apple’s new programming platform. 

 

1.4.2 Problem specification 

There is always a period of time where not enough documentation can be found 

when every new product is launched. It is normal because of the lack of users and 

experts. Swift was not the exception. Less than a month from the release date, there was 

not enough data and sample applications developed in Apple’s new programming 

language.  

As a technical university, the FH JOANNEUM was interested in building a 

reference guideline from this new technology to be used as a working framework that 

helps lecturers to teach the language and developers to start learning and evaluating the 

approach.  

A reference framework was needed. The development of an application was one good 

step to create an authentic analysis. Thus, the implementation of a newer version of KMU 

Inventory app is done. 



Swift mobile platform analysis 6 

 

 

1.4.3 Need and Justification 

Every programming language has its good and bad features, but having a 

reference guide could play a crucial role on a project development and its success. Being 

able to tell if a platform tool will suit the needs of the product to be developed is a real 

advantage for every project manager.  

Also, having documentation about Swift’s pitfalls and learning procedure is very 

helpful for new programmers in the area. For the FH JOANNEUM the new acquired 

knowledge is valuable information to provide a reference framework to those who want 

to start incurring in this new area. The users of this outcome could be investigators, 

students, or lecturers. 

The development of a testing application generates knowledge of the features that 

a programming language and platform can offer. It also helps the community by 

providing small and medium enterprises with a mobile inventory platform.  

 

1.5 Objectives 
 

1.5.1 General 

Construct a function of criteria to be used by developers and researchers in mobile 

applications to choose or not Swift programming language for their projects based on 

hardware and software variables. 

1.5.2 Specific 

-Construct a weight function that works as a reference framework and guideline for 

future developers and managers incurring in Swift technology to set a development 

strategy. 

-Define variables based on the criteria documented through the development of an 

application for iOS using Swift language for the construction of the weight function.  

-Construct a learning document as a guide for new programmers in Swift language, 

including best practices and suggested procedure to learn the programming language. 



Swift mobile platform analysis 7 

 

 

-Analyze the CPU and memory usage over time performance of an application using 

Swift language and compare them to other applications running on the same mobile. 

 

1.6 Benefits and Beneficiaries 
 

The beneficiaries are:  

 Small and medium enterprises: Using the application developed, people running 

these enterprises can get easy access to a new tool to keep track of their items 

without any important economic cost.  

 FH JOANNEUM lecturers: The guideline and the Wikibook constitute a base for 

students to learn the main difficult points of this platform in an informed way. 

 KMU-goes-mobile project: Research results are important findings for every 

educational university, this new data leads to a better understanding of Apple’s 

current and most recent programming language. 

 Swift beginners: All new developers can take advantage of this research output by 

checking the reference framework of the learning context and a beginner’s 

previous documented experience. 

 Swift developers: All code is free licensed software and accessible by anyone 

everywhere. Developers are provided with an already programmed application 

that could be used as code reference. 

 

1.7 Assumptions and Limitations 
This project aims to develop a first approach of an application for a research 

process. It is neither meant to compete it with local industries, nor to offer a limitation of 

the market business to any of the current products. 

The application is a fully working demo, not a final stable version. It is not 

offered accompanied with any kind of later support for enterprises. Also, it is developed 

using the FH JOANNEUM's framework and tools. All code generated is under Open 

Source Licensing and documented as part of KMU-goes-mobile project. All the 

information gathered and the analysis is described in a Wikibook available online. 



Swift mobile platform analysis 8 

 

 

1.8 Risk Analysis 

1.8.1 Risks 

 Swift language was released three months before this research started. 

Consequently, it was hard to find documentation about bugs or any complex 

actions. 

 Some tools were still in the development process, so it leaded to an uncertain time 

of the releases and also an unexpected behavior. 

 Specifications of the project were written in German and most of the clients were 

Austrian enterprises. Thus, there was the risk of misunderstanding some of the 

requirements and the need of changes of this project. 

 

1.8.2 Mitigation Actions 

 

 The first part of the project was an extended practice and learning experience. 

Taking time to make a complete guide about how to develop a mobile application 

in Swift can mitigate the first risk. 

 A meeting with the coordinators and developers of these tools to discuss the 

releasing time and the available resources mitigates the second risk. 

 All meetings and their notes were in English to mitigate the third risk. 

 

 

 

 

 



Swift mobile platform analysis 9 

 

 

 

1.9 Scope, Deliverables and Limitations 
 

1.9.1 Work Characterization 

This is a research of a mobile language behavior. The investigation is done during 

the development of an application. It leads the project towards a theoretical and practical 

approach. The output shows how the practical side of the project generates the knowledge 

showed in the theoretical side. 

 

1.9.2 Process Description 

 

Training, Setting Environment, and Language Investigation: 

The tools used for documentation, version control, application API, and testing 

were developed or hosted by the local university. For this reason, a period of training was 

necessary. 

The language was unknown by the team, so it had to be investigated to understand 

the project approach. The investigation includes the learning procedure to program in this 

environment. Apple’s Swift programming was set and tested to learn to develop in this 

language and work with it.  

Application Development and Swift Characterization 

During this stage, the application development and presentation, and the meetings 

with the development team took place. The language tools and the developer’s 

experience during this stage constitute the basis for the Application and language 

experience documentation. 

Application and Language Experience Documentation  

Based on the last step outputs, a guideline was constructed in this stage to work as 

a reference framework for future beginners. The work here is theoretical and analytical. 

The documentation of the language, its features, and learning process were written in a 

Wikibook available online and in a guideline presented in this work. 



Swift mobile platform analysis 10 

 

 

1.10 Tools 
The software and hardware used during the development and testing of the 

Inventory Application are listed below: 

 A distributed revision control system: Git repository. It is located in the 

university's private server: Innsbruck. 

 A flexible project management web application: Redmine. It is a bugtracker 

written using the Ruby on Rails framework. It is cross-platform and cross-

database.  

 A task administrator: Scrumpy for Scrum-Board. This software was developed by 

the IT department in the FH Joanneum for scrum based projects to administrate 

tasks. 

 Apple's IDE for Swift development: Xcode. Swift is used as the main 

programming language in the project. Leading to the mandatory usage of both 

platforms during the programming stage of the application development. 

 

1.10.1 Deliverables Description 

Functional Application:  

It was necessary to develop and implement an application capable of managing 

the state of items in an inventory. The "Inventory Component" manages these devices. 

Each system user can borrow devices for himself or for another person. This was done 

via mobile device through the "Inventory App". This mobile application runs on iOS and 

was developed using Swift as the main programming language, and also the FH 

JOANNEUM's platforms for mobile development. 

 

 

Swift documentation: 

This document is a Wikibook about the best procedures containing the following data: 

developers learning experience, features for mobile development implemented in the 



Swift mobile platform analysis 11 

 

 

language, access to hardware features from within the program, and an Apple’s manual 

for its first usage including needing tools. 



Swift mobile platform analysis 12 

 

 

2 Theoretical Framework  
 

2.1 Swift Programming Language  
 

Swift is the iOS new programming language released on June 2014. It was created 

by Apple as their language for iOS and OS X projects development. It works side-by-side 

with Objective C, the previous standard language for iOS and OS X applications. 

Swift is created as an innovative programming language for Cocoa and Cocoa 

Touch. Apple claims that the writing code is interactive and its syntax is concise but 

expressive. Swift is the result of Apple’s latest research on programming languages 

combined with decades of experience building platforms.  

 

2.2 XCode 
 

According to Apple’s developer website (Apple Inc, 2014d), XCode has got a 

series of tools to make programming in Swift easier and more intuitive. These two 

characteristics work along to provide a user friendly programming environment. About 

XCode, Apple says in its website: “ It’s easy to create a brand new app using 100% Swift 

code, add new Swift code or frameworks to existing apps, and view documentation in 

either Swift, Objective C, or both.” With this quote they highlight the benefits and 

dependence between Swift and XCode.  

Live Rendering takes the most important place within the main features of 

XCode. It makes the Interface Builder show the custom objects added by the programmer 

during the designing time and also shows the changes done in every save. This tool gives 

the developer an overview of its application and the applications flow since an early 

stage, the designing stage.  

It is also possible to debug the code in Swift using XCode’s View Debuggin tool, 

the XCTest framework is fully integrated into XCode to provide a performance tool 

capable of running, comparing performance, and displaying the change over time. It 



Swift mobile platform analysis 13 

 

 

clearly shows when test results change, alerting the user of regressions in performance or 

functionality as monitoring the quality of the app. 

 

2.3 Wikibooks 
The formal definition from its website about itself is: “Wikibooks is a project for 

collaboratively writing open-content textbooks that anyone can edit. Contributors 

maintain the property rights to their contributions, while the Creative Commons 

Attribution-ShareAlike License and the GNU Free Documentation License makes sure 

that the submitted version and its derivative works will always remain freely distributable 

and reproducible.” 

A wikibook is a collection of open-content textbooks that can be written by 

anyone, leading to a common space where people can share their knowledge in order to 

create a free source of material that can be access all over the world. The site is a place 

where textbooks, guides, manuals, and annotations of different topics can be found in 

different languages and presentations. The information can be used for educational 

reasons or self-learning.  

As said before, anyone can write a book, but other members of the community 

can modify, improve, and delete the Wikibooks. Also, the moderators can approve the 

information and review it “Wikibooks is not an in-depth encyclopedia on a specific topic 

nor are pages encyclopedia-formatted articles. Books build knowledge from one page to 

the next with inter-dependency between pages. Books in progress are sometimes 

organized in an encyclopedic manner until developed into proper books.” (Wikibooks, 

2010) 

 

2.4 Apple’s Terminology  
Due to its own way of development and privacy, Apple has got some terms to 

refer to their elements and tools during software development. In this document, it is 

important to know that some of them are used and considered for the designing and 

implementation of the mobile application. 



Swift mobile platform analysis 14 

 

 

2.4.1 Storyboard 

The storyboard is the main concept present in the flow of an iOS application. It is 

where the developer can create and modify graphically all the paths and configure the 

flow of the program between the screens, the views, and the user inputs. Figure1 shows 

the sketch of the application’s storyboard.  

 
Figure1. Sketch for a Storyboard 

2.4.2 View Controllers 

These are classes that manage the data and visual appearance of the screen 

showed by the application. When the user interface is showed, the content is managed by 

one View Controller or more. That is why View Controllers are called the skeletal 

framework of the iOS apps. The programmer can create and customize these controller 

classes to manage the application behavior. The first View controller is called Root View 

Controller. 

2.4.3 Navigation Controller  

It controls the stack of View Controller for the app navigation and its flow. It 

contains and manages a set of View Controllers. Each of them contains and manages a set 

of views. Their purpose is to coordinate the navigation between the View Controllers. 

As a summary, this hierarchy concept can be explained as follows: one 

Navigation Controller controls many View Controllers, and one View Controller can 

control many Views. This is shown in figure2. 

http://commons.wikimedia.org/wiki/File:Swift-Learning-a_storyboard_by_mk.png


Swift mobile platform analysis 15 

 

 

  
Figure2. View Hierarchy in iOS (Apple Inc, 2014d) 

2.4.4 AV Foundation API 

AV Foundation is one of the frameworks used to control audiovisual media in Swift 

language. It provides an interface that can be called directly from code in Apple devices.  

 

2.5 User Experience 
The user experience, also referred as UX, is the experience the end user gets from 

the program. In other words, it is formed by the interaction, behavior, perception, and 

satisfaction the user gets when using a product. This can be evaluated in a controlled 

environment observing the user interaction and reaction during a program run. 

Jakob Nielsen, in his classic book, Usability Engineering (Nielsen,1993) says 

usability applies to all aspects of a system which a human might interact, thus usability is 

not a single and one-dimensional property of just the user interface. It includes 

learnability, efficiency, memorability, errors, and satisfaction.  

As Chauncey Wilson points out in his book User Experience (Wilson, 2010), now 

the term “user experience” has emerged from “usability”, but the first one includes also 



Swift mobile platform analysis 16 

 

 

dimensions as aesthetics, pleasure, and consistency with moral values as important for the 

success of products and services. Then, user experience is formed by all interactions and 

impressions a user experiments while interacting with the product. The usage the 

developers give to this features will be crucial for the final user impression and 

perception of the product.  

 

2.5.1 Aesthetics 

There is a common polemic and deep discussion in the artistic field about the 

definition and meaning of the word “aesthetics”. In this work, it refers as what is 

pleasurable to the senses. The most common usage of the term is to evaluate the beauty 

and attractiveness of something. 

  The UX designers have the shore to consider every stimulus that might influence 

the user interaction because aesthetics is not just about the artistic merit of Web buttons 

or other visual effects, but also about how people respond to these elements (Anderson, 

2012).  

For a designer, all these concepts constitute the rules and interest points for every 

work they do, but what about programmers who are not designers? 

Apple has developed a guide for User Experience that aligns the most common 

requirements for a good interface, with the company’s designing standards. 

 

2.5.2 Apple’s User Experience Guideline 

For a private development, Apple does not define specific iOS Human Interface 

guidelines, but for the release and application in the Apple Store, there are requirements 

the programmer must follow. Here it is an overview of the rules and guides used in a 

project published in their website (Apple Inc, 2014a). 

About the Design iOS embodies the following themes: 

• Deference: The UI helps people to understand and interact with the content, but 

never competes with it. To make sure to accomplish this, the developer can follow the 



Swift mobile platform analysis 17 

 

 

next steps: (1) Take advantage of the whole screen. (2) Reconsider visual indicators of 

physicality and realism. (3) Let translucent UI elements hint at the content behind them. 

• Clarity: Text is legible at every size, icons are precise and lucid. A sharpened 

focus on functionality motivates the design. Apples suggestion to accomplish this is: To 

use plenty of negative space, let color simplify the UI, use the default fonts and 

borderless buttons. 

• Depth: Visual layers and realistic motion impart vitality and heighten people’s 

delight and understanding. To do so, iOS often displays content in distinct layers that 

convey hierarchy and position, and that helps users to understand the relationships among 

onscreen objects. 

 

2.5.3 About Layout 

Apple’s devices can work on landscape or portrait (see figure 3) and their screen 

sizes are variable between models, that is why an application should give a great 

experience in each environment, taking advantage of adaptability. 

 

 

Figure 3. IPad screen orientation possibilities (Apple Inc, n.d b). 



Swift mobile platform analysis 18 

 

 

When a single device or orientation is chosen the guideline is not mandatory, but 

in this market, it rarely happens. The main highlights are: 

• Maintain focus on the primary content in all environments 

• Avoid gratuitous changes in layout 

• Be straightforward if the app runs in only one orientation 

• Avoid displaying a UI element that tells people to rotate the device 

• Support both variants of an orientation 

• Use layout to communicate 

• Make it easy to focus on the main task by elevating important content or 

functionality   

• Use visual weight and balance to show users the relative importance of onscreen 

elements 

• Use alignment to ease scanning and communicate groupings or hierarchy  

• Make sure that users can understand primary content at its default size 

• Be prepared for changes in text size 

• Avoid inconsistent appearances in the UI 

• Make it easy for people to interact with content and controls by giving each 

interactive element ample spacing 

• Give tappable controls a hit target of about 44 x 44 points 

 

2.5.4 About Terminology and Wording 

The communication between the application and the user should be done in a polite but 

simple way, to achieve this, following the next steps is necessary: 

• Use terminology that the application users will understand 

• Use a tone that’s informal and friendly, but not too familiar  

• Avoid unnecessary words 

• Give short labels to controls or use well-understood icons  

• Be accurate when describing dates 



Swift mobile platform analysis 19 

 

 

• Make the most of the opportunity to communicate with the potential users by 

writing a great App Store description 

• Correct all spelling, grammatical, and punctuation errors  

• Keep all-capital words to a minimum 

• Describe specific bug fixes in every new release 

 

2.5.5 About Integrating the Application to the iOS Standard 

Following this guideline the developer gives users the experience they expect. 

The first instruction given is to use the standard UI elements. In order to do so, the 

subsequent rules should be followed: 

• Follow the guidelines for every UI element 

• Do not mix UI element styles from different versions of iOS  

• Avoid creating a custom UI element that performs a standard action 

• Use the appearance customization APIs, access properties and attributes, then 

apply custom and system provided icons to the controls  

• Do not use system-defined buttons and icons to mean something else  

• If no system-provided button or icon has the appropriate meaning for a function, it 

is possible to create one following the instructions given by the website 

 

2.5.6 About Navigation 

The structure of every application is different; However, regardless the navigation 

style, the users path should be predictable and intuitive. A standard and useful UI element 

is the navigation bar. It is an easy way to move across a hierarchy of data or a tab bar and 

support flat information architecture as well as its persistence.  

In general, to give users one path to each screen is the best to do. If there is one 

screen that users need to see in more than one context, consider using a temporary view, 

such as a modal view, an action sheet, or an alert. 



Swift mobile platform analysis 20 

 

 

2.6 Training, Setting Environment and Language Investigation In 
This stage of the process is divided in two sections: (1) Training and environment 

setting and (2) Language investigation. 

2.6.1 Training and environment setting 

The tools to be used during the project require a period of training because they 

were never used by the developer before. Also, all the accounts needed during the project 

had to be set. A procedure was followed to do it and it is specified here. 

The steps taken to accomplish this stage were: 

1) The University’s account for internet access was solicited and also the mail 

server settings were configured with the help of the IT Support department 

in the FH JOANNEUM. 

2) The assigned PC Computer’s software was updated in order to install the 

programming environment. 

3) XCode installation was done. 

4) The iOS developers account was created and all credentials to allow 

programing in physical devices were installed. 

5) XCode configuration with the iOS account was done (this step is 

complemented by the language investigation stage). 

6) Join the project Git repository for the iOS applications of the Inventory in 

the FH JOANNEUM’s server. 

7) Clone Git repository of the 6th step. 

8) Create a user in the Joomla!! web service “KMU goes Mobile” project to 

join the development team. 

9) Join the platform BugTracker to handle bug reports. 

10) Install the iOS deployment credentials in the XCode session.  

11) Set a developers account on the iOS testing devices. 



Swift mobile platform analysis 21 

 

 

 

2.6.2 Investigation 

During this stage, the first approach towards the language experience is done. 

First, Apple’s official website for Swift (Apple Inc, 2014c) is consulted to retrieve the 

details of its basic characteristics as a programming language. Also, other different 

websites are consulted for extra information and characterization as starting point for the 

guideline. Then, the main and useful findings are listed in this section. 

 

Language Official Description (Apple Inc, 2014c) 

Swift is a programming language for iOS and OS X that does not include the 

constraints of C compatibility as Objective C did. The developers simplified the memory 

management with Automatic Reference Counting (ARC). And its framework stack was 

built on the base of Foundation and Cocoa. 

Swift is a multi-paradigm, compiled programming language built intended to be 

fast by using a high-performance compiler: LLVM. Swift’s code is transformed into 

optimized native code, and tuned. The syntax and standard library have also been tuned 

with the purpose of making the most obvious way to write the code. 

Swift is a successor to the C and Objective C languages. It includes low-level 

primitives such as types, flow control, and operators. It also provides object-oriented 

features such as classes, protocols, and generics. 

The language developers claim Swift feels familiar to Objective C developers 

because it adopts the readability of Objective C’s named parameters and the dynamic 

object model. They also claim Swift is friendly to beginners because it offers support to a 

new feature called Playground that allows them the experimentation of the Swift code. 

They are also able to see the results immediately.  

Swift provides its own versions of all fundamental C and Objective C types as it 

is described in the official documentation in Apple’s website. This includes Int for 

integers, Double and Float for floating-point values, Bool for Boolean values, and String 



Swift mobile platform analysis 22 

 

 

for textual data. Swift also provides versions of the two primary collection types: array 

and dictionary. 

Swift uses variables and constants to store and refer to values by an identifying name. 

Constants are used throughout Swift to make code safer and cleaner. What makes Swift 

better is that it also introduces advanced types that are not found in Objective C: Tuples 

and Optionals. 

Optionals are similar to using nil with pointers in Objective C, but they work for 

any type, not just classes. They are safer but more memory expressive than nil pointers in 

Objective C. They are called one of the strongest Swift’s features, helping programmers 

to be clear about the types of values their code works with. 

 

Swift and Objective C 

A remarkable review that expresses the current lack of user’s documentation and 

popular information of this new programming language is made by Alfie Hanssen in his 

blog: 

 

“With Objective C being close to 35 years old, and it having been the language used to 

build Mac OSX and iOS applications for years, there's a substantial community and body 

of knowledge out there constantly documenting best practices, approaches to common 

and not-so-common problems, pretty much anything you can think of about using 

Objective C. When learning Swift, something that may be an issue for a little while will 

be the comparatively slim set of resources out there. Stackoverflow, blogs, tutorial sites 

are quickly compiling info on all aspects of Swift development, but it'll take some time to 

reach the saturation point that Objective C currently enjoys.” (Hanssen, 2014) 

Also the findings Jesse Squires describes in his web site (Squires, 2014) show that 

if Swift code is not optimized, Objective C is still noticeably faster than Swift. However, 

when safety features are deactivated, Swift orders of magnitude are better than Objective 

C’s. Squires also points out the results in tables, those are shown on table 1 and 2. 



Swift mobile platform analysis 23 

 

 

It is easy to notice the improvement of the language speed if safety rules are 

dismissed. The difference between Objective C performance and Swift performance is 

positive when Swift is not optimized and negative when it is (see Table 1 and Table 2). 

 

Table 1 

Objective C performance and Swift performance time comparison with optimization. 

T = 10  

N = 10,000  

Debug 

Std lib sort 
Quick sort 

O(n log n) 

Heap sort 

O(n log n) 

Insertion 

sort 

O(n2) 

Selection 

sort 

O(n2) 

Objective C 0.015732 s 0.011395 s 0.025252 s 1.931189 s 3.762144 s 

Swift 1.536891 s 1.633227 s 4.714571 s 625.810322s 519.386646s 

 

Note. From “Apples to apples,” by Squires,J.  

 

Table 2 

Objective C performance and Swift performance time comparison without optimization. 

T = 10  

N = 10,000  

Debug 

Std lib sort 
Quick sort 

O(n log n) 

Heap sort 

O(n log n) 

Insertion 

sort 

O(n2) 

Selection 

sort 

O(n2) 

Objective C 0.011828 s 0.010285 s 0.019763 s 1.776664 s 3.497402  s 

Swift 0.001306 s 0.001426 s 0.002259 s 0.297713 s 0.068731 s 

 

Note. From “Apples to apples,” by Squires,J.  

 

One of the findings of this investigation is that the performance was often 

measured on tests created especially for this task, not on a normal environment such as 

fully created app. So the results did not show information in a user friendly way to 

estimate the application performance. Also, time was the only variable to measure it, not 

taking into account CPU or memory usage.  



Swift mobile platform analysis 24 

 

 

User Experience rules listed in the Theoretical Framework in Apple’s 

Terminology and User Experience sections were part of this investigation. They are not 

included in this section because they are already cited in the present document.  

 

3  Methodological development 
 

The development of this project is divided in three stages. Each of them is 

depends on the previous one. They are: (1) Training, setting environment and language 

investigation, (2) Application development and Swift’s features analysis, and (3) 

Application and language analysis. Each step is also divided in procedures that are deeply 

explained in the sections below. 

 

3.1 Application Methodological Development 
It was the core of the experiment. The application was developed, the meetings 

with the development team were held and the programming language investigation was 

done. The language tools and the developer’s experience during this stage constitute the 

basis for the next step: Application and Language Experience Documentation. The 

following sections explain the modeling and development process of the experiment.  

 

3.2 User Stories  
Defining the requirements of the experiment was the first step taken. In this case, 

the experimental application was divided in seven different user stories described below 

(see tables 3 to 11). These user stories are created by the client and given to the developer 

as a requirement for the application. 

Table 3 

User Story 1: Connect to Inventory-Server 

Criteria Connect to Inventory-Server 

Description  As a new User of the inventory App, I want 

to connect to the Server with Username, 



Swift mobile platform analysis 25 

 

 

Password and Server-Address 

Acceptance Criteria *Valid Username is filled in to the 

Username-Textbox  

Definition of Done *Valid Password is filled in to the 

Password-Textbox 

 

 

 

 

Table 4 

 User Story 2: See all devices which are available 

Criteria See all devices which are available 

Description  As a User of the Inventory App, I want to 

see all available devices. 

Acceptance Criteria *If login is set: Start App 

* If login not set: Proceed US1 -> 

automatically redirected to DeviceListView 

 

Definition of Done All devices are shown at the 

ListDeviceView 

 

Table 5 

User Story 3A: Lend a device from a list 

Criteria Lend device (choosing from List) 

Description  As a User of the Inventory App, I want to 

lend a device by choosing it from the list. 

Acceptance Criteria *Device is chosen from the 

DeviceListView.  



Swift mobile platform analysis 26 

 

 

Definition of Done * New View opens which shows the 

chosen device including most of its 

information (available or not, current 

owner, name, location, Serial number etc.). 

 

Table 6 

User Story 3B: Lend device (choosing from QR Code) 

Criteria Lend device from QR Code 

Description  As a User of the Inventory App, I want to 

lend a device by capturing its QR-Code. 

Acceptance Criteria * The QR-Code Button at the Action-Bar at 

the top of the screen was pressed 

Definition of Done * When QR-Code Reader is opened, the 

QR-Code is placed in the rectangle-area of 

the screen. 

 

Table 7 

User Story 4A: Bring back device (choosing from List) 

Criteria Bring Back device (choosing from List) 

Description  As a User of the iNventory App, I want to 

lend a device by choosing it from the list. 

Acceptance Criteria * Device is chosen from the 

DeviceListView.  

Definition of Done * New View opens which shows the 

chosen device including most of its 

information (available or not, current 

owner, name, location, Serialnumber etc.). 

 



Swift mobile platform analysis 27 

 

 

Table 8 

User Story 4B: Bring back a lent device (with QR-Code) 

Criteria Bring back a lent device (with QR-Code) 

Description  As a User of the iNventory App, I want to 

bring back a lent device by choosing it 

from the list. 

Acceptance Criteria * The QR-Code Button at the Action-Bar at 

the top of the screen was pressed.  

Definition of Done * When QR-Code Reader is opened, the 

QR-Code is placed in the rectangle-area of 

the screen. 

 

Table 9 

User Story 5: Edit Login-Information 

Criteria Edit Login-Information 

Description  As a User of the Inventory App I want to 

change Login-Information (Username, 

Password, Server-Address). 

Acceptance Criteria * The Settings-Button is pressed and the 

“Login-Info” entry is chosen. 

Definition of Done * In the shown view the Login-Information 

is edited. 

 

 

Table 10 

 User Story 6: Add a new device. 

Criteria Add new device 

Description  As a User of the Inventory App I want to 



Swift mobile platform analysis 28 

 

 

add a new device to the Inventory. 

Acceptance Criteria * The Settings-Button is pressed and the 

“Add device”- entry is chosen. 

Definition of Done * In the shown view all of the necessary 

information is given (DeviceName, 

Location, SerialNumber, Description, etc.) 

Table 11 

 User Story 7: Edit Login-Information 

Criteria Filter free devices 

Description  As a User of the iNventory App I want to 

see all free devices in the inventory. 

Acceptance Criteria * The Filter-Button is pressed and the 

“Free devices” filter is chosen. 

Definition of Done In the Device List window only free items 

show. 

 

3.3 Program flow  
For the designing of the application flow, Apple has a main file called Storyboard. 

In here, the application’s flow is created graphically to set the structure of the whole 

application. Figure 4 shows the KMU Inventory App Storyboard. Each number in the 

image represents a sub flow in the application and they are explained next. 

The application’s main flow starts with the Log In screen. Then, it continues in a 

linear flow to a Tab bar controller. This is the center of the application’s structure. The 

Tab Bar Controller handles all the sub flows: 

1- Sub flow to add a new device 

2- Sub flow to show information of the application 

3- Sub flow of scanning a QR Code 

4- Sub flow to control the view of the list of the products in the inventory 

5- Sub flow to handle the access to login settings once the user is logged 



Swift mobile platform analysis 29 

 

 

 

 

Figure 4. Application’s program Flow 

3.4 Block diagram  
As a mobile application communicating with a server, the application is separated 

in two blocks, the backend and the frontend. The backend is an element that was 

designed previously. Therefore, the elements shown in figure 5 are just the ones that are 

being used in this project. The server backend is managed using Joomla!! It was already 

set and running by the time the project started.  

For the description of the frontend, the block diagram of the application can be 

consulted on figure 5. It also shows that the iOS application includes nine modules: 

1. KMU Server API Interface: This block handles all calls and communication 

between the mobile application and the KMU Server. 

2. User Interface: Default user interface elements used by Swift to show the graphics 

on the phone screen. 



Swift mobile platform analysis 30 

 

 

3. View Controllers: Elements that control the behavior of the application and the 

views depending on the interaction between the user and the application. 

4. QR Code Library: This is the library that handles the decoding of the QR code the 

camera captures. 

5. QR Code Reader: This block is the only one that can access the QR Code library. 

The decision of implementing this extra block is made because it works as a wrapper in 

case any changes are made by the library creators. 

6. Camera Interface: It handles all the camera accesses and ensures that only one 

instance is running at the same time. 

7. Web Client Library: This block contains all the functions to the web services 

usage. The KMU Server API Interface is the only one that uses these functions. 

8. Key Chain Service: This block manages the password storage and keeps it 

encrypted. 

9. Session Settings: It handles current and previous sessions setting and storages. 

 

  

Figure 5. Application Block Diagram 

Even though this step was a requirement for the development process, it was not 

significantly functional during the application’s development, analysis, or documentation 



Swift mobile platform analysis 31 

 

 

stages. 

 

3.5 Software Design Patterns 
For the message passing between View Controllers and the navigation process of the 

application, communication design patterns were used in the programming classes. They 

were explained as follows: 

3.5.1 Singleton  

It is used by the KMU Server API interface to make sure every connection to the 

backend is handled by the same instance. The web server information, the user and login 

information (not the password) are stored in this instance during the application running.  

This pattern is chosen because during the first approach all calls were handled by the 

class that needed to do the call. This made it necessary for the whole code to be rewritten 

in every class. On the second approach, only one class was created to handle all API 

calls, but there were cases in which several classes tried to make a server call, creating 

replicated instances of the API calls class. Finally, to make sure there was just one 

instance of the class and centralize the information, Singleton pattern was selected.  

3.5.2 Observer  

Every View Controller needs an observer pattern design to be notified when a user 

interacts with the application interface. This is done automatically by Swift, but it is also 

implemented in the QR reader and the camera handling View Controllers. Once the user 

finished using this feature, the class informs the parent VC that the user is ready and the 

application can continue.  

3.5.3 Servant 

The servant pattern is used only by View Controllers that are created by another View 

Controller. This is used to pass parameters between them. Especially when one is being 

initialized using the information the parent gathered. This is a standard pattern used in 

Swift’s architecture.  



Swift mobile platform analysis 32 

 

 

 

3.6 Communicating with the server  
 

The used server is located in: https://innsbruck.fh-joanneum.at. 

The Backend used is referenced in: https://innsbruck.fh-joanneum.at/kmudev/index.php 

and is running by Joomla!!(c) 

The list of calls used by the application are: 

­ Get device by ID 

­ Get all devices 

­ Get all orgUnits 

­ Get all devices lent for users 

­ Get a device by its QRCode 

­ Lend a device by its QRCode 

­ Return a device by its QRCode 

­ Return devices pictures. 

 

3.7 Hardware Libraries 
Swift main feature is safety in code programming. As a consequence, the access to 

hardware features of Apple’s devices using this language is impossible. There are no 

direct ways. The AVFoundation API needs to be used. The camera devices presented in 

the mobile can be accessed and controlled using an AVCaptureSession. Therefore, it is a 

simple step that does not require any further hardware approach. 

Due to language duality, a library for QR Code Scanner written in Objective C 

was used. It was published and distributed freely by Yannic Loriot (Loriot, 2014). 

 

3.8 User Interface 
The implemented user interface is shown in the following screenshots from 

figures 6 to 15. Figure 6 is the view of the login screen. The first entry space allows the 

user to insert the username. The second one is for the password. Finally, the last one is 

https://innsbruck.fh-joanneum.at/
https://innsbruck.fh-joanneum.at/kmudev/index.php


Swift mobile platform analysis 33 

 

 

the adress of the server to connect. The dropdown menu is for choosing the 

organizational unit of the devices to be displayed. 

 

 

Figure 6.  Login View 

Figure 7 shows the main view from the list of products. The red frame around the 

device picture symbolizes that the device cannot be borrowed or returned because it is 

being used by another user. Then, the green frame means it is available. Finally, the 

orange frame means the user has borrowed the device. 

  

Figure 7. Main view from the list of products 



Swift mobile platform analysis 34 

 

 

Figure 8 shows the view of the description of a product borrowed by the user. 

 

Figure 8. View from a product borrowed by the user.  

Figure 9 shows the message displayed when a device is returned by the user. 

 

Figure 9. Message: returned by the user.  

 

 

 



Swift mobile platform analysis 35 

 

 

Figure 10 shows the view from add product. Figure 11 is the screenshot of the 

picture being taken to add the new product. 

 

 

Figure 10. Add product view.  

 

Figure 11. Take picture view. 



Swift mobile platform analysis 36 

 

 

Figure 12 shows the view from an available product. Figure 13 shows the view 

from an available product comments section when the user is borrowing it. Figure 14 

shows the view from a product borrowed successfully. 

 

 

Figure 12. Available product view. 

 

Figure 13. Comment view. 



Swift mobile platform analysis 37 

 

 

 

Figure 14. Successfully borrowed device message. 

Figure 15 shows the list of products using the Filter Available. So, all products 

that are displayed have to be framed on green, meaning they are available.  

 

Figure 15. Filter Available implemented  

 

 



Swift mobile platform analysis 38 

 

 

3.9 Application Performance Measurement 
The behavior of this application memory usage is tested at the end of every User 

Story consecutively because Swift does not allow manual memory management. Also a 

final average consumption is measured.  

The CPU usage is also measured in these experiments to provide an overview of 

the impact that KMU Inventory has on the device. It is measured in terms of its capability 

percentage. The maximum peak of CPU usage during the process of the User Story is the 

one presented in the table of results. Having the results of just one application does not 

give an accurate characterization. Consequently, the older KMU application written in 

Objective C is tested as well.  

The memory usage and CPU performance for each User Story were traced using 

the XCode tool and Apple Instrument: Activity Monitor. All measurements can be 

consulted in the Apendix I.   

During this measurement, the following assumptions were done: 

­Considering the relation between user stories. It is not possible to load a single one 

without running the previous one. The memory usage and CPU performance are 

measured per run specified in the table. 

­The process of creating a device is not a feature of the Objective C application and 

cannot be compared. For this reason, US 6 is not taken into account on these experiments. 

 

Memory and CPU behavior 

Measurements of memory usage in Swift application and CPU load were made 

(see table 12 and table 13). Also, the same tests were done on an Objective C application 

developed by the KMU laboratory on 2013 (see table 14 and table 15). These tests were 

ran using an iPhone 4.  

Table 12 

Swift application peak memory usage. 

User Story Memory Peak Usage (MB) 

US 1  4.02 



Swift mobile platform analysis 39 

 

 

US1 US2 4.33 

US1 US2 US 3 A  7.63 

US1 US2 US 3 B 7.93 

US1 US2 US 4 A  7.26 

US1 US2 US 4 B 7.48 

US1 US2 US5 6.63 

US1 US2 US7 6.47 

 

 

Table 13 

CPU peak usage by Swift application. 

User Story Peak CPU Usage by the application (%) 

US 1  36.4 

US2 60 

US1 US2 US 3 A  65 

US1 US2 US 3 B 60 

US1 US2 US 4 A  68.8 

US1 US2 US 4 B 62.3 

US1 US2 US5 55.2 

US1 US2 US7 63.5 

 

 

Table 14 

Objective C application peak memory usage. 

User Story Peak Memory Usage (MB) 

US 1  3.48 



Swift mobile platform analysis 40 

 

 

US 2  5.75 

US1 US2 US 3 A  8.64 

US1 US2 US 3 B 6.66 

US1 US2 US 4 A  9.97 

US1 US2 US 4 B 6.78 

US1 US2 US5 7.81 

US1 US2 US7 8.33 

 

 

Table 15 

CPU peak usage by Objective C application. 

 

 

 

 

 

User Story Peak CPU Usage (%) 

US 1  30.4 

US2 46.1 

US1 US2 US 3 A  44.2 

US1 US2 US 3 B 59.9 

US1 US2 US 4 A  46.9 

US1 US2 US 4 B 58.4 

US1 US2 US5 44.6 

US1 US2 US7 43.2 



Swift mobile platform analysis 41 

 

 

3.10  ApplicationUsability Testing Strategies 
The IT department of the FH Joanneum has a User Experience Laboratory. The 

KMU Inventory App is tested by the laboratory using it as an advantage for mobile 

testing and the application evaluation. The result handled to the KMU GOES Mobile 

team is:  

Tester: Matthias Eckhart  

Test Report -iOS App Device: iPhone 4, iPad 4  

US1 Status: passed Notes: - Please add a message after successful login in 

German: Login erfolgreich 

US2 Status: passed  

US3a Status: passed Notes: - Please add whitespace between “Ausgeliehen von” 

(“Lent by”) and - Please add colon between “Abteilung” (“Organization unit”)  

US3b Status: passed  

US4a Status: passed Notes: - Please change the return message from “user 

credentials valid, device returned” to: o German: Gegenstand wurde erfolgreich 

zurückgegeben.  

US4b Status: passed US5 Status: passed US6 Status: passed. 

 

3.11  Application and language experience documentation 
This section is constructed by the knowledge acquired during the investigation 

described in section 3.1 of this document and the experience during the development of 

the application as described in section 3.2.  

The first document is a guideline created to work as a reference framework for 

future beginners in Swift programming language or to anyone interested in the process of 

developing an application in this language. The second one is a documentation of the 

language’s learning process that is located on a wikibook available online. It is meant to 

be modified and improved by people from all over the world. 



Swift mobile platform analysis 42 

 

 

3.12 Swift’s Guideline 
This guideline is based on the skills the developer required to build the test 

application described in the previous sections. The values are obtained from the 

experimental application development using the following procedure: 

1. All needed skills during the platform environment setting, the tutorials, and the 

programming stages were documented. The needed skills were:   

• Apple Knowledge 

• Mac OS experience as user 

• Encoding and keychain management previous experience 

• Apple’s auto size feature experience 

• Cocoa Framework knowledge 

• Having released an application to the Apple Store before 

• Programming experience in any language 

• Software Design Patterns knowledge 

• Experience in object oriented programming           

• Knowledge or experience in Graphic Programming 

• Mobile experience 

• Objective C knowledge 

• Basic knowledge of mobile structure 

• Backend-frontend structure 

• Server connection with a mobile platform experience 

• Library import and usage knowledge 

• Settings and Access 

• Backend for the application is already set 

• iOS programming environment is already set 

• CPU and memory behavior interpretation 

• Knowledge of CPU and memory behavior in mobile devices 

• Interpretation of memory leaks 

• User experience/aesthetics knowledge 



Swift mobile platform analysis 43 

 

 

• Experience as a designer or with Apple’s design rules 

2. The number of hours the programmer took to learn the new skills was 

documented and can be seen on table 16. If the skill was not new to the 

programmer, then a zero goes in the documented hours. 

3. The number of times the skill was needed was also documented as:  

• Once: One time. The value for this in the table is 1. 

• Twice: Two times. The value for this in the table is 2. 

• A few: three to six times. The value for this in the table is 3. 

• Several: six to nine times. The value for this in the table is 4. 

• Always: more than nine times. The value for this in the table is 5. 

 

As before starting the project the programmer already had some of the listed 

skills, an approximate time for learning them is substituted in table 16 in step 2. The 

metric used to obtain the values (see table 16) of the following procedure is: 

 Calculation of weights: 

The variables present are:  

C: Amount of times the skill is needed by the programmer. 

T: Time required learning a specific skill. 

F: The factor that characterizes the weight of a skill. 

M: The multiplier defining the value of every unit of the factor. 

W: The weight the skill has on the guideline. 

The values C and T are multiplied to obtain the factor F that will characterize the 

skill as the following formula shows: 

   

Then all factors from all skills are added and divided by 100 to get the multiplier 

M that defines the value of a unit of the factor: 

    

Then every weight of each skill is calculated as follows: 

  



Swift mobile platform analysis 44 

 

 

Table 16 

C Swift beginner’s table for guideline estimation 

Skill 

Learning 

hours (t) 

Times 

used 

(C) 

Factor 

(F) 

Skill 

weight 

(W) 

Mac OS experience as user. 24 5 120 6.05 

Encoding and keychain management previous experience. 16 1 16 0.81 

Apple’s auto size feature experience. 64 5 320 16.13 

Cocoa Framework knowledge. 40 5 200 10.08 

Having released an application to the Apple Store before. 64 3 192 9.68 

Software Design Patterns knowledge. 32 5 160 8.06 

Experience in object oriented programming.           32 5 160 8.06 

Knowledge or experience in Graphic Programming. 8 5 40 2.02 

Objective C basic/beginners knowledge. 16 1 16 0.81 

Basic knowledge of mobile structure. 40 5 200 10.08 

Backend-frontend structure 24 4 96 4.84 

Server connection with a mobile platform experience. 24 3 72 3.63 

Library import and usage knowledge. 8 3 24 1.21 

iOS programming environment is already set. 5 40 1 40 

Knowledge of CPU and memory behavior in mobile 

devices. 1 8 3 24 

Interpretation of memory leaks. 2 16 3 48 

Experience as a designer or with Apple’s design rules. 64 4 256 12.90 

Total 520 61 1984 100 

 



Swift mobile platform analysis 45 

 

 

3.12.1 Wikibook  

The wikibook created is stored in Wikibooks English web page hosted on the 

following link: http://en.wikibooks.org/wiki/Swift_learning. The information contained 

there is listed here: 

1. This wikibook 

2. Basic Concepts 

2.1. What is Swift? 

2.2. Main differences between Swift and Objective C 

2.3. Swift Navigation Architecture (Windows and Views) 

3. Programming 

3.1. XCode 

3.2. Start Programming 

3.3.  Adding elements to your project 

3.4.  Configuring for development 

3.5.  Configuring for deployment 

4. Tricky Section 

4.1.  Auto Layout 

4.2. Communication between View Controllers (Design Patterns) 

4.3.  Manage of Segues 

4.3.1.  Create-Call segues 

4.3.2.  Dismiss a Segue 

5.  Next Steps 

5.1.  Other worth to see Web Sites 

This website contains the developer’s result notes during the learning curve, making 

it a manual for Swift’s first usage. It also includes information about the tools needed 

during this project. 

  



Swift mobile platform analysis 46 

 

 

4 Results Analysis 
 The results of this project can be divided into two groups. (1) The experimental 

development of the mobile application, and (2) The information gathered about the 

language. Thus, the analysis of these results is divided by these criteria. 

 

4.1 Experimental Application Implementation 

4.1.1 Application requirements 

The application requirements, including all user stories, were implemented 

successfully. The results from the user stories are shown in this section. Also, the new 

requirements added by the client during the development process are explained here. 

Screenshots of the application are included to show each User Story 

implementation of the applications. (see figures 16 to 23.) 

 

 

Figure 16. Screenshots from US1 and US2 

US3A is implemented in the same way as US3B, but the difference is the 

initiating screen. The second, third, and fourth views were called and used in the same 

way in both user stories, implementing code recycling for these stages.  



Swift mobile platform analysis 47 

 

 

 

Figure 17 Screenshots from US 3A 

 

Figure 18 Screenshots from US 3B 

As US3A and US3B, US4A and US4B reuse the code of the second and third 

view, it necessary to build just one structure in the Storyboard.  

 



Swift mobile platform analysis 48 

 

 

Figure 19 Screenshots from US 4A 

 

 

 

Figure 20 Screenshots from US 4B 

US5 is called from the top left corner button shown on figure 21. It opens the 

login view to test the connection. 

 

Figure 21 Screenshots from US 5 



Swift mobile platform analysis 49 

 

 

In US6 (see figure 22), it can be noticed that the picture taken is resized in a not 

suitable way for the space available. Even though, it just happens sometimes, the error 

could not be corrected unfortunately. 

 

 

Figure 22 Screenshots from US 6 

 

Figure 23 Screenshots from US 7 

During the development process two new requirements were included. The About 

Window and a Filter for the products list. The About Window requirement was included 

in the Main flow as an extra sub flow and a new view was added to the design. (See 

figure 24) 



Swift mobile platform analysis 50 

 

 

  

Figure 24. About View 

The Filter was implemented by adding an option in the top-right description of the 

main list view. Figure 25 shows the menu displayed when the filter button is pressed. The 

options to filter in the order shown on the figure are: All products, Products borrowed by 

me, Available products, Not available products, by organization: All, Business, Home 

Administration and IT. Figure 26 shows the selection of the filter: Borrowed by the user. 

  

Figure 25. Menu  

 

  



Swift mobile platform analysis 51 

 

 

 

Figure 26. Filter Borrowed by the user selected  

4.1.2 Performance measurements 

For a better view of the results of the memory and CPU behavior of the 

application, the graphics of figure 27 and figure 28 provide the data of the comparison. 

The memory usage and CPU load between the Swift application and the Objective C 

application.  

 

Figure 27. Memory load in Swift vs Objective C application 



Swift mobile platform analysis 52 

 

 

Memory consumption tendency is lower using Swift than Objective C in all of the 

user stories, but in US3B and US4B. It can be observed that these two cases are the ones 

using the camera during the QRCode scan and decoding. This implementation is using 

more memory resources than the application made before in Objective C, it but cannot be 

optimized because the camera functionality is programmed through an external library.  

The QR Code scan library used is written in Objective C, but it is not the same 

used in the Objective C application. This could mean that the way the library is 

programmed is less efficient than the one used in the Objective C application.  

It can also be observed that the maximum memory consumption ever made by the 

application in Swift is 8MB. As considered by Apple, it is a safe amount of memory 

consumption for a mobile phone and makes the application suitable for its usage. 

 

 

Figure 28. CPU load in Swift vs Objective C application 

In figure 28, the CPU load in Swift and Objective C applications are compared. It 

is clearly observed that Swift application is consuming more CPU processing percentage 

than the implementation made in Objective C. The tendency is that the consumption of 

the application written in Swift is higher than the Objective C application when ran in the 

same device.  



Swift mobile platform analysis 53 

 

 

Findings made by Jesse Squires in his article cited (Squires, 2014) suggest that as 

the application is not implemented removing all safety features (array bounds-checking, 

integer overflow checking, etc.), the expected result is that the application would be 

slower than the Objective C one. This situation will worsen the numbers because an 

increase of CPU load indicates that the power consumption should be also higher. It 

makes Swift application spend more resources than the version programmed in Objective 

C. 

 

 

 

Figure 29. CPU load vs Memory load in Swift application. 

The relation between memory usage and CPU consumption (See figure 29) does 

not show any particular behavior that can lead to any conclusion. 

 

4.1.3 Usability test 

The corrections suggested in the test were made in the string document of the 

application and a second test was made after the bugs were corrected. All US passed the 

test. This indicates the KMU Inventory app is suitable for mobile users for its first 

approach.  



Swift mobile platform analysis 54 

 

 

4.1.4 Application upload to the store 

The previous version of the applications had no problems when uploading to the 

Apple Store, but the final version did. The problem found in this stage is described as 

follows: 

Once all tests ran correctly in the simulators and the devices, the application was 

uploaded to the iTunes Store for its final review and got rejected with the following 

message: 

“Apps that crash will be rejected. 

During review, your app crashed on iPad running iOS 8.1.2 when we: 

1. Launch the app 

2. Select "Demo Login" 

3. App crashes 

This occurred when your app was used:  

- Offline 

- On Wi-Fi 

- On cellular network 

Next Steps 

Please revise your app and test it on a device to ensure that it runs as expected.” 

 

When this fault was analyzed to be corrected, it was found that it only happened if 

the optimization was enabled. The C-API for Keychain Access used to encrypt the 

password makes a call: 

let opaque = dataTypeRef?.toOpaque()  

This call returned nil and to solve. The optimization had to be disabled. This is a 

bug already reported to the language developers and it is a frequently asked question in 

Apple’s forums. 

 



Swift mobile platform analysis 55 

 

 

4.2 Language learning documentation and Guideline 

4.2.1 Guideline 

The guideline (see figure 30) was originally created taking into account just the 

time it took to learn the ability. Afterwards, it included the amount of times it was used. 

A linear function was chosen to maintain simplicity. Every variable has a linear 

influence on the guideline weights. The weight system is included in this guideline to 

make the criteria easily measurable for anyone that needs to plan a project. It also 

propitiates to add future improvements based on measurable variables of the development 

environment in a very organized way, 

 

 

Figure 30. Swift’s guideline 

How to use this Guideline: 

•Every skill has a weight and all weights together sum up 100. 

•The skills in green are not so important, the skills in orange are important, and the skills 

in red are crucial. 



Swift mobile platform analysis 56 

 

 

•This guideline is meant for a learning process of 3.25 months or 65 days. The 100 of the 

weight represent the full time.  

This guideline helps to calculate the learning time of Swift language and the 

programming of an application. It is a reference framework for future developers and 

managers incurring in Swift technology to set a development strategy. 

The criteria documented in this guideline are validated by the experience 

documented through the development of the experimental application for KMU 

Inventory. In this way, a guideline for future skills and time planning of Swift learning 

process can be consulted in an understandable way. 

 

4.2.2 Wikibook  

The learning document is a guide for new programmers in Swift language 

uploaded to the Wikibooks site. It is available for modification from anyone. It makes it a 

suitable place for information about best practices and suggested procedures to learn the 

programming language. This work also encourages the exchange of information of the 

Swift community. 

 

4.2.3 Future Work 

The evaluation of CPU consumption and memory in this investigation has been 

developed using Swift safety feature activated. A further step could be evaluating the 

same application removing this feature to prove the efficiency gained or lost. 

As Swift is a constantly changing language, a future evaluation comparing the 

language to Objective C could result in a very useful piece of information and even the 

results can change drastically. It could keep track of the language evolution, and at the 

same time, change the low efficiency language image this investigation gives. 

Feedback from other developers about their timing and learning experience of 

Swift can improve the weights of the guideline. It would lead to more exact criteria of 

skills and time needed in this process. 



Swift mobile platform analysis 57 

 

 

5 Conclusions and Recommendations 
5.1 Conclusions   
 

-The implementation of the mobile application KMU Inventory app worked as a 

reference experiment to create a guideline for future developers and investigators in Swift 

language. 

 

-A weight function was built to work as a reference for future developers and managers 

incurring in Swift technology to set a development strategy for the time and skills 

needed. This criterion was validated through the development of the KMU Inventory 

application using Swift language.  

 

-The experience of developing the document about Swift language in a wikibook to be 

used as a learning document for guiding new programmers contributes to the 

programming community sharing knowledge and helping beginners in the area. 

 

- In Apple’s standards, the application implemented in Swift language does consume a 

safe amount of the device memory. That is why it is safe for deploying it to the Apple 

store. 

 

-The comparison between memory usage and CPU consumption did not provide a 

predictable result; however, this information could be studied to explain this behavior.  

 

-Even though, in average, Swift implementation consumes less memory than Objective C 

implementation, Objective C implementation of the KMU Inventory app is less power 

consuming than the Swift implementation done in this project. There is a tradeoff 

between these measurements.  

 



Swift mobile platform analysis 58 

 

 

-The user experience test shows that the UX first approach made in the application KMU 

Inventory is suitable for mobile users, but it could be improved using feedback from 

users and clients.  

 

-Future works can improve this project guideline weights and criteria using the time and 

skills needed by new developers as new inputs. It could make the investigation more 

trustworthy and stable.  

5.2 Recommendations 
There can be misunderstandings when working with clients speaking a different 

language. Also, it changes the requirements. To mitigate this risk, there has to be a 

frequent meeting to show the advances and products being developed. 

 

The storyboard should always be the first feature implemented when 

programming a mobile application in Swift language. It shows the structure of the 

program and makes the flow of the application clearer. 

 

It is easier to use the tool provided by XCode to measure CPU usage and memory 

consumption than the device’s task manager. It will not only provide the results directly 

on the computer, but also in the mobile device. 

 

When learning a new language, the creation of an application from scratch leads 

the developer to a deeper understanding of the languages functionalities and features. 

 

When programming to upload an application to the Apple Store, a good 

understanding of the user experience makes the work faster. It is possible that the 

developer does not have experience in this area. Thus, a study of Apple’s rules and 

suggestions should be done. 



Swift mobile platform analysis 59 

 

 

References 
Anderson, S (2010). Seductive Interaction Design. Berkeley, CA, USA: New Riders. 

Apple Inc (2014a). iOS Human Interface Guidelines iOS Developer Library. Retrieved 

February 22, 2015 from 

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual 

Apple Inc (n.d.b). IPad size class [Figure]. Retrieved October 13, 2014, from 

developer.apple.com/swift/. 

Apple Inc (2014c). Swift iOS Developer Library. Retrieved October 13, 2014, from 

developer.apple.com/swift/. 

Apple Inc (2014d). XCode iOS Developer Library. Retrieved February 10, 2015 from 

https://developer.apple.com/xcode/  

FH JOANNEUM (n.d). About US. Retrieved October 15, 2014 from http://www.fh-

joanneum.at/aw/home/~cwd/leitbild/?lan=en  

Hanssen, A. (2014). Swift vs. Objective C. [Blog] One Month. Retrieved September 21 

from https://onemonth.com/blog/swift-vs-Objective C. 

Keiser, G (2015). iPhone 6 boosts iOS market share. Retrieved February 22 from 

http://www.computerworld.com/article/2866441/iphone-6-boosts-ios-market-share-

android-slips.html 

Kohs, G (2010). What_is_Wikibooks. Retrieved February 2, 2015 from 

http://en.wikibooks.org/wiki/Wikibooks:What_is_Wikibooks  

Loriot, Y (2014). QR Code Reader. Retrieved November 20, 2014 from 

https://github.com/yannickl/QRCodeReader.swift 

Nielsen, J (1993). Usability Engineering. San Francisco, (CA): Morgan Kaufman 

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual
https://developer.apple.com/xcode/
http://www.fh-joanneum.at/aw/home/~cwd/leitbild/?lan=en
http://www.fh-joanneum.at/aw/home/~cwd/leitbild/?lan=en
http://en.wikibooks.org/wiki/Wikibooks:What_is_Wikibooks


Swift mobile platform analysis 60 

 

 

Squires, J (2014). Apples to apples Jesse Squires. Retrieved September 10 from 

http://www.jessesquires.com/apples-to-apples/  

Wilson, C (2010) User Experience. Burlington, MA, USA: Morgan Kaufman 

 

http://www.jessesquires.com/apples-to-apples/


Swift mobile platform analysis 61 

 

 

Appendix  
 

Appendix I: Swift Memory Measurements 
Table 17 

Swift memory measurements 1. 

US 1 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7805 4  4 280,8  

7807 4  2,8 289,8 

7811 4 0,92 289,5 

7816 4 3,5 289,9 

7820 4 2,7 289,8 

7823 4 2,9 289,7 

7827 4,1 1,9 289,7 

7830 4 2,9 289,7 

7847 4,1 1,8 288,4 

7856 4 2,1 288,6 

 

Table 18 

Swift memory measurements 2. 

US1 US2  

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7863 5,3 0,9 288,0 

7867 5,4  2,6 288,1 

7871 5,3 4,1 287,8 

7876 5,4 3,5 288 

7879 5,3 0,45 288,1 

7883 5,3 0,89 288 



Swift mobile platform analysis 62 

 

 

7887 5,3 2,9 287,9 

7890 5,3 2,9 287,7 

7895 5,4 1,6 287,9 

7899 5,3 0,96 288,1 

 

Table 19 

Swift memory measurements 3. 

US1 US2 US3 A 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7812 7,3 2,7 294,4 

7816 7,7 0,98 294,4 

7820 7,8 3,5 290,7 

7826 8,4 2,9 289,7 

7830 7,6 2,8 290,5 

7835 7,6 2,1 290,5 

7839 7,2 2,8 290,7 

7843 7,3 1,7 290,7 

7846 7,6 1,4 289,9 

7851 7,8 3,6 290,8 

 

Table 20 

Swift memory measurements 4. 

US1 US2 US3 B 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7855 7,6 3 290,6 

7859 7,5 3 290,4 

7863 7,4 0,48 289,9 

7878 7,5 2,6 290,7 



Swift mobile platform analysis 63 

 

 

7872 8 0,84 290,7 

7875 8,9 2,9 290,4 

7879 8,2 0,45 290,7 

7884 8,2 1,7 289,7 

7888 7,6 0,94 289,4 

7893 8,4 0,45 289,2 

 

Table 21 

Swift memory measurements 5. 

US1 US2 US4 A 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

8003 7,3 3,6 307,9 

8008 7,4 1,4 307,6 

8013 7 1,6 305,3 

8016 7,3 3,6 306,5 

8022 7,3 1,9 307,8 

8026 7 3 306,7 

8030 7 0,45 306,4 

8035 7,4 3,5 305,4 

8039 7,6 0,91 306,2 

8043 7,3 0,45 304,9 

 

Table 22 

Swift memory measurements 6. 

US1 US2 US4 B 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

8047 7,2 3,2 307,5 

8052 8,3 3,6 304,2 



Swift mobile platform analysis 64 

 

 

8056 7,3 3 306,2 

8060 7,2 2,71 307,1 

8066 7,4 2,2 308 

8070 7,2 2,9 308,5 

8073 7,9 2,9 304,8 

8077 7,3 2,7 305 

8082 7,6 2,1 290,9 

8086 7,4 0,78 308,1 

 

Table 23 

Swift memory measurements 7. 

 

Table 24 

Swift memory measurements 8. 

US7 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

US 5 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

8091 6,7 3 290,7 

8096 6,4 2,6 291 

8099 6,4 0,48 291,2 

8103 6,4 1,02 291,3 

8111 8,5 1,8 288,6 

8115 6,4 3 289,7 

8119 6,3 1,5 289,9 

8123 6,3 2,9 289,7 

8127 6,5 1,6 289,9 

8131 6,4 0,92 289,9 



Swift mobile platform analysis 65 

 

 

8135 6,8 0,45 289,9 

8139 6,4 0,45 290 

8143 6,5 1,3 289,9 

8147 6,1 3,1 290 

8151 6,8 0,45 290,3 

8155 6,4 0,48 290 

8158 6,4 4,4 289,8 

8163 6,8 3,5 290,1 

8167 6,4 3,1 290,2 

8171 6,1 4,4 290 



Swift mobile platform analysis 66 

 

 

 

Table 25 

Swift memory measurements statistics. 

Statistic US1 US2 US3A US3B US4A US4B US5 US7 

Mean 4.02 5.33 7.63 7.93 7.26 7.48 6.63 6.47 

Standard 

Error 0.01333333 0.01527525 0.10857665 0.15567059 0.06359595 0.11430952 0.21084486 0.08306624 

Median 4 5.3 7.6 7.8 7.3 7.35 6.4 6.4 

Mode 4 5.3 7.6 7.6 7.3 7.2 6.4 6.4 

Standard 

Deviation 0.0421637 0.04830459 0.34334951 0.49227364 0.20110804 0.36147845 0.66674999 0.26267851 

Sample 

Variance 0.00177778 0.00233333 0.11788889 0.24233333 0.04044444 0.13066667 0.44455556 0.069 

Kurtosis 1.40625 -1.22 2.11 -0.19 -0.62 2.10 9.20 -0.98 

Skewness 1.77 1.03 1.08 0.78 -0.13 1.61 3.00 0.03 

Range 0.1 0.1 1.2 1.5 0.6 1.1 2.2 0.7 

Minimum 4 5.3 7.2 7.4 7 7.2 6.3 6.1 

Maximum 4.1 5.4 8.4 8.9 7.6 8.3 8.5 6.8 

Sum 40.2 53.3 76.3 79.3 72.6 74.8 66.3 64.7 

Count 10 10 10 10 10 10 10 10 

Confidence 

Level 4.02 5.33 7.63 7.93 7.26 7.48 6.63 6.47 

 

 

 

 

 

 

 

 

 

 

 



Swift mobile platform analysis 67 

 

 

Appendix II: Swift CPU Measurements 
Table 26 

Swift CPU measurements 1. 

US 1 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

7805 15 0 7 

7807 40 0 5 

7811 68 0 6 

7816 24 0 4 

7820 35 0 8 

7823 31 0 8 

7827 66 0 5 

7830 26 0 31 

7847 26 0 8 

7856 33 0 6 

 

Table 27 

Swift CPU measurements 2. 

US1 US2  

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

7863 66 0 31 

7867 65 0 5 

7871 56 0 4 

7876 52 0 6 

7879 66 0 5 

7883 65 0 15 

7887 58 0 20 

7890 40 0 27 

7895 67 0 5 



Swift mobile platform analysis 68 

 

 

7899 65 0 6 

 

Table 28 

Swift CPU measurements 3. 

US1 US2 US3 A 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

7812 67 0 8 

7816 68 0 5 

7820 77 0 5 

7826 54 0 13 

7830 56 0 5 

7835 71 0 8 

7839 52 0 17 

7843 55 0 4 

7846 65 0 5 

7851 85 0 5 

 

Table 29 

Swift CPU measurements 4. 

US1 US2 US3 B 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

7855 47 0 8 

7859 51 0 7 

7863 52 0 15 

7878 59 0 6 

7872 66 0 17 

7875 54 0 5 

7879 65 0 53 



Swift mobile platform analysis 69 

 

 

7884 64 0 15 

7888 77 0 5 

7893 65 0 5 

 

Table 30 

Swift CPU measurements 5. 

US1 US2 US4 A 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

8003 80 0 50 

8008 62 0 46 

8013 57 0 49 

8016 84 0 59 

8022 70 0 62 

8026 66 0 68 

8030 63 0 47 

8035 64 0 52 

8039 64 0 58 

8043 78 0 67 

 

Table 31 

Swift CPU measurements 6. 

US1 US2 US4 B 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

8047 73 0 85 

8052 72 0 47 

8056 50 0 45 

8060 56 0 45 

8066 72 0 47 



Swift mobile platform analysis 70 

 

 

8070 60 0 46 

8073 40 0 47 

8077 66 0 45 

8082 68 0 40 

8086 66 0 45 

 

Table 32 

Swift CPU measurements 7. 

Table 33 

Swift CPU measurements 8. 

US7 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

8135 63 0 7 

8139 79 0 6 

8143 69 0 12 

8147 44 0 17 

US 5 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%) 

8091 48 0 6 

8096 40 0 5 

8099 67 0 15 

8103 62 0 5 

8111 37 0 6 

8115 55 0 7 

8119 62 0 19 

8123 66 0 6 

8127 47 0 7 

8131 68 0 5 



Swift mobile platform analysis 71 

 

 

8151 64 0 18 

8155 63 0 8 

8158 68 0 5 

8163 71 0 5 

8167 48 0 4 

8171 66 0 7 

 

 

Table 34 

Swift CPU measurements statistics. 

 
Statistic US1 US2 US3A US3B US4A US4B US5 US7 

Mean 36.4 60 65 60 68.8 62.3 55.2 63.5 

Standard 

Error 5.536144 2.748737 3.438346 2.871314 2.819771 3.425558 3.641733 3.290559 

Median 32 65 66 61.5 65 66 58.5 65 

Mode 26 65 - 65 64 72 62 63 

Standard 

Deviation 17.50682 8.69227 10.873 9.079892 8.9169 10.83256 11.51617 10.40566 

Sample 

Variance 306.4889 75.55556 118.2222 82.44444 79.51111 117.3444 132.6222 108.2778 

Kurtosis 0.360351 2.207444 -0.56195 -0.26653 -0.88488 0.479733 -1.43041 0.585705 

Skewness 1.122866 -1.57214 0.510205 0.331736 0.646739 -1.07906 -0.4398 -0.82838 

Range 53 27 33 30 27 33 31 35 

Minimum 15 40 52 47 57 40 37 44 

Maximum 68 67 85 77 84 73 68 79 

Sum 364 600 650 600 688 623 552 635 

Count 10 10 10 10 10 10 10 10 

Confidence 

Level(95.0%) 12.52363 6.218075 7.778079 6.495364 6.378766 7.74915 8.238173 7.443761 

 

 

 



Swift mobile platform analysis 72 

 

 

 

Appendix III: Objective C Memory Measurements 
Table 35 

Objective C memory measurements 1. 

US 1  

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7520 3,5 3,5 288,9 

7523 3,4 1,7 288,5 

7527 3,5 2 288,2 

7533 3,4 2,7 288,4 

7536 3,5 3,5 288,4 

7540 3,5 1,7 289,8 

7544 3,5 3,5 288,5 

7547 3,5 1,7 288,2 

7552 3,5 2,1 288,5 

7555 3,5 3,5 288,5 

 

Table 36 

Objective C memory measurements 2. 

US1 US2  

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7563 5,8 2 286,6 

7567 6,5 2,3 285,7 

7571 5,8 2,1 286,9 

7575 6,6 1,9 286,7 

7579 5,8 2,2 285,9 

7583 5,8 3,5 285,9 

7586 3,4 0,62 287,4 



Swift mobile platform analysis 73 

 

 

7591 6,8 2,4 285 

7595 7,6 2 284,7 

7599 3,4 3,4 280,4 

 

Table 37 

Objective C memory measurements 3. 

US1 US2 US3 A 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7600 8,4 3,5 284,4 

7605 9,3 3,4 282,8 

7609 8,5 2,8 282,9 

7613 8,3 3,4 282,7 

7617 7,8 3,4 282,8 

7624 8,8 2,3 282,9 

7636 8,4 3,4 283,9 

7641 8,4 3,4 283,4 

7644 8,8 3,4 283 

7648 9,7 3,4 282,4 

 

Table 38 

Objective C memory measurements 4. 

US1 US2 US3 B 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

8177 6,4 2 289,2 

8182 5,8 1,7 290,2 

8185 7,1 3,5 288,4 

8190 5,8 3,5 289 

8194 7,8 1,8 289,3 



Swift mobile platform analysis 74 

 

 

8201 6,9 3,5 289,2 

8206 6,9 3,5 289,5 

8210 7 2,8 289,9 

8214 7,1 3,5 288,9 

8219 5,8 3,5  290,4 

 

Table 39 

Objective C memory measurements 5. 

US1 US2 US4 A 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7669 10 3,5 280,7 

7678 10 3,5 280 

7683 10,2 2,3 279,5 

7687 10 3,4 281,6 

7690 10,1 3,4 280,3 

7696 9,9 2,3 280,6 

7699 9,9 3,4 280,4 

7704 10 3,4 282 

7708 10,1 0,62 281,6 

7712 9,5 3,4 277,9 

 

Table 40 

Objective C memory measurements 6. 

US1 US2 US4 B 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

8223 7,1 3,5 287,8 

8227 5,8 1,7 288,4 

8231 6,6 1,6 286,9 



Swift mobile platform analysis 75 

 

 

8236 7,1 2,1 285 

8240 7,1 3,4 285,6 

8244 7,2 3,4 285,5 

8247 5,8 2,1 285,8 

8252 8,3 2,6 285,6 

8257 5,8 2,1 286,5 

8260 7 3,4 286 

 

Table 41 

Objective C memory measurements 7. 

US 5 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7726 7,6 3,5 284,9 

7729 7,3 1,8 285,4 

7734 7,6 3,5 285,2 

7738 7,3 3,4 285,2 

7743 7,9 2,3 285,1 

7746 7,6 3,4 285,5 

7750 8 1,8 285,6 

7754 8,4 3,4 285,3 

7758 7,3 2,1 285,6 

7763 9,1 2,4 284,7 

 

Table 42 

Objective C memory measurements 8. 

US7 

Process ID 

Peak Memory 

Usage (MB) 

Lowest Memory 

Usage (MB) 

Other process 

usage (MB) 

7767 8,1 3,4 286,7 



Swift mobile platform analysis 76 

 

 

7770 8,2 3,5 285,4 

7774 7,8 3,4 285,4 

7778 7,9 3,4 287,2 

7783 9,2 2 284,9 

7786 7,7 3,4 286 

7790 8,4 3,5 285,3 

7794 8,3 3,5 285,6 

7798 8,8 3,4 285,6 

7802 8,9 3,5 285,5 

 



Swift mobile platform analysis 77 

 

 

 

Table 43 

Objective C memory measurements statistics. 

Statistic US1 US2 US3A US3B US4A US4B US5 US7 

Mean 3.48 5.75 8.64 6.66 9.97 6.78 7.81 8.33 

Standard 

Error 0.013333 0.432884 0.17075 0.216128 0.059722 0.252894 0.181628 0.157797 

Median 3.5 5.8 8.45 6.9 10 7.05 7.6 8.25 

Mode 3.5 5.8 8.4 5.8 10 7.1 7.6 #N/A 

Standard 

Deviation 0.042164 1.368901 0.539959 0.683455 0.188856 0.799722 0.57436 0.498999 

Sample 

Variance 0.001778 1.873889 0.291556 0.467111 0.035667 0.639556 0.329889 0.249 

Kurtosis 1.40625 0.30762 0.731908 -0.90881 4.619617 0.020667 1.87895 -0.81565 

Skewness -1.77878 -0.94373 0.715036 -0.09 -1.8112 0.23501 1.417603 0.508649 

Range 0.1 4.2 1.9 2 0.7 2.5 1.8 1.5 

Minimum 3.4 3.4 7.8 5.8 9.5 5.8 7.3 7.7 

Maximum 3.5 7.6 9.7 7.8 10.2 8.3 9.1 9.2 

Sum 34.8 57.5 86.4 66.6 99.7 67.8 78.1 83.3 

Count 10 10 10 10 10 10 10 10 

Confidence 

Level(95.0%) 0.030162 0.979253 0.386263 0.488914 0.1351 0.572087 0.410872 0.356962 

 

 

 



Swift mobile platform analysis 78 

 

 

 

 

Appendix IV: Objective C CPU Measurements 
Table 44 

Objective C CPU measurements 1. 

US 1  

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

7520 7 0 7 

7523 66 0 37 

7527 31 0 5 

7533 21 0 4 

7536 6 0 4 

7540 66 0 7 

7544 6 0 6 

7547 66 0 5 

7552 29 0 2 

7555 6 0 5 

 

Table 45 

Objective C CPU measurements 2. 

US1 US2  

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

7563 43 0 9 

7567 45 0 5 

7571 47 0 4 

7575 46 0 6 

7579 50 0 10 

7583 41 0 6 

7586 61 0 5 



Swift mobile platform analysis 79 

 

 

7591 45 0 6 

7595 43 0 7 

7599 40 0 3 

 

Table 46 

Objective C CPU measurements 3. 

US1 US2 US3 A 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

7600 38 0 5 

7605 47 0 4 

7609 48 0 11 

7613 50 0 5 

7617 43 0 5 

7624 49 0 6 

7636 40 0 9 

7641 37 0 4 

7644 45 0 32 

7648 45 0 5 

 

Table 47 

Objective C CPU measurements 4. 

US1 US2 US3 B 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

8177 64 0 5 

8182 67 0 5 

8185 54 0 7 

8190 58 0 5 

8194 61 0 10 



Swift mobile platform analysis 80 

 

 

8201 64 0 26 

8206 69 0 6 

8210 63 0 4 

8214 58 0 6 

8219 41 0 10 

 

Table 48 

Objective C CPU measurements 5. 

US1 US2 US4 A 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

7669 41 0 33 

7678 50 0 7 

7683 42 0 5 

7687 44 0 7 

7690 51 0 6 

7696 52 0 21 

7699 41 0 7 

7704 42 0 7 

7708 59 0 8 

7712 47 0 2 

 

Table 49 

Objective C CPU measurements 6. 

US1 US2 US4 B 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

8223 64 0 9 

8227 67 0 9 

8231 65 0 30 



Swift mobile platform analysis 81 

 

 

8236 59 0 6 

8240 57 0 4 

8244 60 0 5 

8247 47 0 4 

8252 60 0 5 

8257 52 0 6 

8260 53 0 8 

 

Table 50 

Objective C CPU measurements 7. 

US 5 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

7726 47 0 6 

7729 46 0 6 

7734 41 0 5 

7738 41 0 4 

7743 46 0 14 

7746 47 0 6 

7750 45 0 4 

7754 44 0 4 

7758 43 0 4 

7763 46 0 5 

 

Table 51 

Objective C CPU measurements 8. 

US7 

Process ID 

Peak CPU Usage 

(%) 

Lowest CPU Usage 

(%) 

Other processes 

(%)  

7767 42 0 5 



Swift mobile platform analysis 82 

 

 

 

Table 52 

Objective C CPU measurements statistics. 

Statistic US1 US2 US3A US3B US4A US4B US5 US7 

Mean 30.4 46.1 44.2 59.9 46.9 58.4 44.6 43.2 

Standard 

Error 8.317585 1.894143 1.451436 2.531798 1.9 1.989975 0.718022 1.133333 

Median 25 45 45 62 45.5 59.5 45.5 43 

Mode 66 43 45 64 41 60 46 42 

Standard 

Deviation 26.30251 5.989806 4.589844 8.006248 6.008328 6.292853 2.270585 3.583915 

Sample 

Variance 691.8222 35.87778 21.06667 64.1 36.1 39.6 5.155556 12.84444 

Kurtosis -1.51678 4.438447 -1.18622 3.038582 0.037567 -0.47212 -0.88634 1.970208 

Skewness 0.596322 1.904056 -0.43643 -1.53988 0.853233 -0.44383 -0.73181 0.810281 

Range 60 21 13 28 18 20 6 13 

Minimum 6 40 37 41 41 47 41 38 

Maximum 66 61 50 69 59 67 47 51 

Sum 304 461 442 599 469 584 446 432 

Count 10 10 10 10 10 10 10 10 

Confidence 

Level(95.0%) 18.81568 4.284849 3.283377 5.727324 4.298099 4.501636 1.624279 2.563778 

 

7770 45 0 4 

7774 45 0 5 

7778 44 0 5 

7783 43 0 7 

7786 43 0 11 

7790 38 0 7 

7794 39 0 9 

7798 51 0 7 

7802 42 0 6 

7767 42 0 5 


