TEC

Trmdiam Tocrmmiygion de Cimta Rz

TEC — Area Ingenieria en Computadores (CE)
Acta de Aprobacion de Trabajo de Graduacion

Con fundamento en lo que establece el "Reglamento de Trabagjos Finales de Graduacion del Instituto
Tecnologico de Costa Rica”, el Tribunal Examinador del Trabajo Final de Graduacion, nombrado con

el propodsito de evaluar el proyecto final de graduacion.

“Swift mobile platform analysis:
KMU Inventory approach”

Habiendo analizado el resultado general del frabajo presentado por los estudiantes:

Primer Apellido Segundo Apellido Nombre No. De camé

Bolafios Murillo Alejandra 200938622

Emite el siguiente dictamen:

O REPROBADO

APROBADO
SE NO SE
RECOMIENDA RECOMIENDA

0
CALIFICACION: _ODUH?OS- Brindarle una nueva oportunidad para la
DEFENSA PUBLICA de su Trabajo Final

NUEVA FECHA:

Dando fe de lo agui expuesto firmamos

Profesor Asesor

Dr. Roberto Pereira Amroyo M.Sc. Anjbal Coto Cortés
Profesor Lector Profesor Lector

Profesor Lector

04 de Mayo del 2015
Fecha

Biblioteca Jose Figueres Femer
Tel:2550-2263= Fax 2591-4820

ANEXO 3 : CARTA DE ENTENDIMIENTO
(Ejemplo)

Senores
Instituto Tecnoldgico de Costa Rica
Biblioteca José Figueres Ferrer

Yo)Q.\P:,\)S‘ﬂ('\fﬁ Bcjaﬁo) -nuﬂ\\(:) carné qug)gézzautorizo no autorizo ala

Biblioteca José Figueres del Instituto Tecnoldgico de Costa Rica disponer del Trabajo Final regifzado por mi

. 0 5 (P e B
persona, con el titulo § Zégls-\- mgg\nf ‘1@%&[31“ anghm;,s-

KHU lauentons agproach
J LR

para ser ubicado en el Repositorio institucional y Catdlogo SIBITEC para ser accesado a través de la red

Internet.

k/r&\évm}\xz{é 7Y

Firma de estudialljte

Cédula 20631 0654

Instituto Tecnoldgico De Costa Rica
Computer Engineering Department

Tecnologico
de Costa Rica

TEC

FH|JOANNEUM

“Swift mobile platform analysis:
KMU Inventory approach”

Alejandra Bolafios Murillo

Cartago April, 2015

Abstract

This is an analysis of Apple’s new programming language: Swift. The
investigation takes place in the University of Applied Sciences FH Joanneum in Styria,
Austria. A guideline for time and skills administration is written based on the experience
developing an iOS mobile application. This application is developed for the
administration of an inventory in iPhone and iPad. It is called KMU Inventory App. The
outputs of this work are: a document for guiding new developers in this area and the

analysis of the hardware and software involved.

Acknowledgments
Foremost, | would like to express my sincere gratitude to my advisor Prof. Milton
Villegas and Jennier Solano for the continuous support and guidance during this project.
I would like to thank also the FH Joanneum professors and researchers for giving me the

opportunity to work with them to accomplish this project.

Dedication
| dedicate this work to my parents Oliveth and Ligia, for their support, love and
encouragement. Without them I would never have enjoyed so many opportunities.
| also dedicate this to my sisters for the encouragement and friendship. To
Adriana for her support especially during my first years of studies. To Valeria and
Natalia for the patience and help during my studies.

Table of Contents

LASE OF TADIES ...t Vv
LISE OF FIQUIES ...ttt et e e e e s ne e reeneaneeareenee s vii
1 INEFOTUCTION ...ttt 1
O R o (0] 1= o1 Y =Y LSOO S R SSPRRTI 2
O & (0] 1= A @0 | (=) SO SSURSTI 2
1.3 General DESCIIPLIONc.oiiiciiciecie et ereas 3
1.3.1 Background of the FH JOANNEUM.........c.cocoiiiiiiicieece e 3

1.3.2 Research and Development..........c.coveveiieiiiie i 4

1.4 Problem DeSCIIPLIONc.coviiiiieiie sttt e e eesneas 5
141 ProbIem CONEXLocoieiiiieieiesieeese e 5

1.4.2 Problem SPeCifiCatioN...........cccocueiieiiiic e 5

1.4.3 Need and JUSITICALION.........ccceiiiiiiieiseee e 6

15 ODJECHIVES ..ttt sttt ae et re e teenrenneas 6
151 GeNEIAL ..ot 6

1.5.2 SPECITIC oottt 6

1.6 Benefits and BenefiCIariesccooeieiiiieiiiiiese s 7
1.7 Assumptions and Limitationsccccceoveiiiiiiic i 7
1.8 RISK ANGIYSIS ..ot 8
L.8.1 RISKS..iiiiiieiiteit ettt 8

1.8.2 Mitigation ACHIONSccvveiiieiii ittt 8

1.9 Scope, Deliverables and Limitationsccccceiiieiieiiieiie e 9

1.9.1 WOrk CharaCteriZationeeeeeeeee oot e e e e 9

1.9.2 Process DESCIIPLION.c.ccieiieieiieiie e se e be e rae e 9
120 TOOIS 1ot 10
1.10.1 Deliverables DeSCIIPLION.......c.cccviieiieiieeieceese e 10
Theoretical FrameWorK ... 12
2.1 Swift Programming LANQUAGEccceeiueeieieerieeie e esee e e e sae e sae e sneas 12
2.2 KCOUE ..ottt bbbt 12
2.3 WIKIDOOKS ...ttt 13
2.4 Apple’s TerminolO@Ycccvveiiiiiieiiiiiie e 13
O R (0] Y/ 10 o [SRS URURSTRSN 14
2.4.2 VieW CONLIOIEIScuoiiiieieie e 14
2.4.3 Navigation Controllercccovviiiiiiiie e 14
2.4.4 AV FOUNAAION AP ..ot 15
2.5 USEI EXPEIIBNCEovieie et ciee ettt ettt sttt st te et e e sta e tesraesbeesaeeneenre s 15
2.5.1 ABSTNELICS ... 16
2.5.2 Apple’s User Experience Guideline...........cccovvvvviiiiiiiiiiciiciiniciecns 16
2.5.3 ADOUL LAYOULcviiiiiiiicie ettt ettt 17
2.5.4 About Terminology and Wording...........ccccvvevieieiieseeie e 18
2.5.5 About Integrating the Application to the iOS Standard................c.ccueen.. 19
2.5.6 ADOUL NAVIGALION.......ociiiiiiciie e 19
2.6 Training, Setting Environment and Language Investigation In....................... 20
2.6.1 Training and environment SEttINGccovveiiieiie i 20

3

2.6.2 INVESHIGALION......cciiiiciicie ettt ae s 21

Methodological deVelOpMENL.............coviiiiieie e 24
3.1 Application Methodological Development...........ccccovveveiieiicie s, 24
3.2 USEI SEOMIES .ttt 24
3.3 Program fIOWc.oooveiiiii e 28
3.4 BIOCK QHAGIamc..ccieiiicie ettt e 29
3.5 Software Design PatterNS.........cccvciiiieiiiiie e 31
351 SINGIEION ..o 31
3.5.2 OBSEIVEN ...ttt 31
393 SEIVANT ..ot 31
3.6 Communicating With the SEIVErcccveiiiiiie e 32
3.7 Hardware LIDIaries ... 32
3.8 USEr INTEITACE ... 32
3.9 Application Performance Measurementccceovveveevieiecieesesie e 38
3.10 ApplicationUsability Testing Strategiesccceveivieieerieiieieere e 41
3.11 Application and language experience documentationcccceeveeeereenenen, 41
3.12 SWIft’s GUIACINE ..vviiiiiiiiiie s 42
3121 WIKIDOOK.veiiieiieiieieie et 45
RESUIS ANGIYSIS......oiieieiicic ettt re e eae s 46
4.1 Experimental Application Implementation...........c.cccoovevieiieeiie e, 46
4.1.1 Application reqUIrEMENTS.......ccuveieeiieeiie e 46
4.1.2 Performance MeaSUIEMENTSccccureerierienieiesesieseeeee e 51

4.1.3 USADIIEY TST ..o e 53

4.1.4 Application upload t0 the StOre.........ccccvveiveiieiieie e 54

4.2 Language learning documentation and Guidelinecccccceevevvevviieieenenn, 55
421 GUIEIING. ..o 55

4.2.2 WIKIDOOK. ..ottt 56

4.2.3 FULUIE WOTK ..ot 56

5 Conclusions and ReCOMMENALIONSccerviireriiiiiieeese e 57
5.1 CONCIUSIONS ..ottt bbb 57
5.2 ReCOMMENUALIONS.cviiiiiiiiitirieieiest e 58
RETEIEINCES ...t bbbt 59
AN o] 0100 | SRR 61
Appendix I: Swift Memory MeasuremMeNtS..........cccvevveieeieeresee e ese e sre e 61
Appendix I1: SWift CPU MEASUIEMENESccveiviiiieiecieciie et 67
Appendix I11: Objective C Memory Measurementsccceevveveerreiieseeseseeseeseeenns 72
Appendix IV: Objective C CPU MeaSUrEMENESccceeveevieiieiireiecreece e 78

List of Tables
Table 1 Objective C performance and Swift performance time comparison with
(0] 01 LA 72 U1 o] PSSO 23

Table 2 Objective C performance and Swift performance time comparison without

OPTIMIZALION. <.ttt 23
Table 3 User Story 1: Connect to INVENTOrY-SEIVELccivieiviiiiiieiieie e 24
Table 4 User Story 2: See all devices which are availablec.ccccocoevveviiiicicinens 25
Table 5 User Story 3A: Lend a device from a list ..o 25
Table 6 User Story 3B: Lend device (choosing from QR Code)........ccccocvvvrvniiininnnnns 26
Table 7 User Story 4A: Bring back device (choosing from List)cccccoevvvniniininnnnns 26
Table 8 User Story 4B: Bring back a lent device (with QR-Code)c.cccevvevviveiinennnns 27
Table 9 User Story 5: Edit Login-Informationcccccceoveiiiiieiiiiicic e 27
Table 10 User Story 6: Add @ NEW AEVICE.c.ccveiieririieiieieeie e 27
Table 11 User Story 7: Edit Login-Informationccccoooiiiiniininiinene s 28
Table 12 Swift application peak memory USAQE.ccveverieieeiieieeieesiesee e esee e s 38
Table 13 CPU peak usage by Swift application............cccccevveiiiieiiiieeie e 39
Table 14 Objective C application peak memory USAge.ccovvrererieiieienenesesesenieas 39
Table 15 CPU peak usage by Objective C application.cccoveveeninreiiennene e 40
Table 16 C Swift beginner’s table for guideline estimationccceeevviveiiiiciicninnnn, 44
Table 17 Swift memory measurements L..........ccccoeiiieiiiiie i s 61
Table 18 Swift MemMOory MeasUreMENTS 2.........cccvevviieereeierieseereeseeseesee e seeeseesseesseeeens 61
Table 19 Swift memory MeasuremMeNts 3.........cocvoeiiierreieree e ee e see e e see e sreeeeas 62
Table 20 Swift memory MeasuremMeENtS 4..........cccooveieeieiiieieeie et 62
Table 21 Swift memory MmeasuremMeNntS 5.........cccooveiieieiie i 63
Table 22 Swift memory MeasuremMeNnts B...........ccooveiriireiere e 63
Table 23 Swift MemOory MeasUreMENTS 7........cccvviiieieie e 64
Table 24 Swift memory measuremMents 8..........ccocvveiieiiieiie e 64
Table 25 Swift memory measurements StatiStiCS.cccveiieiiieiie i 66
Table 26 Swift CPU MEASUIEMENTS L.ccveiieieeiesieesie e sre e snae e 67

\Y

Table 27 SWift CPU MEASUIEIMENTS 2.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeneennennenenennnennes 67

Table 28 Swift CPU MEASUIEMENTS 3.cee et 68
Table 29 Swift CPU MEASUIEMENTS 4.oiviiiiiiieiieieiesie ettt nneas 68
Table 30 Swift CPU MEASUIEMENTS 5.oc.oiviiiiiieiieieiee s 69
Table 31 Swift CPU MEASUIEMENTS B.ocuveivieiieiieiiieiiesie et ee et 69
Table 32 Swift CPU MEASUIEMENTS 7.oieeiiieiieiesieesie ettt ee e sne e 70
Table 33 Swift CPU MEASUIEMENTS 8.cciiiiiiiiiieierie e 70
Table 34 Swift CPU mMeasurements StatiStiCS.cocuvererererieniesieeeiesie e 71
Table 35 Objective C memory measurements L.cccooeieiirenienineeieniese e 72
Table 36 Objective C memory MeasUremMENtS 2.cccocverererererineeeeneesie e 72
Table 37 Objective C memory MeasuremMents 3.cccvevveieeieeieeseeseese e sne e 73
Table 38 Objective C memory measurements 4.cccvcvveveeieeieeseeseeie e seeseseesnennens 73
Table 39 Objective C memory measurementS 5.ccccvveiieiieniesieneese e 74
Table 40 Objective C memory Measurements 6.ccoerererereniineeiiesiese e 74
Table 41 Objective C memory MeasUremMENtS 7.coccvevvevieieeieeseeseesie e sieeseeseesseeseens 75
Table 42 Objective C memory measurements 8.cccvevveveeieeiieseeseesie e e ese e s 75
Table 43 Objective C memory measurements StatiStiCs.covvrveerienresiereeresieseeiens 77
Table 44 Objective C CPU MeasUremMents L.........ccoecueierirrieieeriesiesieesieseesieeseesseeseneneens 78
Table 45 Objective C CPU MEASUrEMENES 2........cveieeiieiieiieeiieeiesree e esee e sreesee e e e 78
Table 46 Objective C CPU MeasUremMENtS 3.........c.covveiieiiieiieieeieestee e esee e ste e snesra e 79
Table 47 Objective C CPU MeaSUreMENTS 4.........c.oieerreierieieeieseesieesieseesieeseesseeseeeneens 79
Table 48 Objective C CPU MeasuremMentS 5........ccviiveieiieiiereeieseeseesie e seeenee s 80
Table 49 Objective C CPU MEASUrEMENLS B........cveiveerieiieiiieiiecie e sre e seesie e sre e 80
Table 50 Objective C CPU MEASUIEMENES 7.......ccveiveeieeieiieesie e see st esie e ste e sne e 81
Table 51 Objective C CPU MeasUremMeNts 8.........cccvuererieriereeieseesieesieseesieeseeseeseeeneens 81
Table 52 Objective C CPU measurements StatiStiCS.ccouvrivereerieereniesiiesreseseesineneens 82

Vi

List of Figures

Figurel. Sketch for a StOryh0oard ... 14
Figure2. View Hierarchy in i0OS (Apple INC, 2014d).......cocviieiieieie e 15
Figure 3. IPad screen orientation possibilities (Apple Inc, N.d b).......ccccoovevviiieiieieinenne, 17
Figure 4. Application’s program FIOW...........cccoiiiiiiiiiiiiiiici e 29
Figure 5. Application BIOCK DIAQIam...........cccuiieieieiiiiiie e 30
FIGUIE 6. LOGIN VIBWeiiii ettt sttt na e teenee e e ns 33
Figure 7. Main view from the list of productscccooveviiieiicie e 33
Figure 8. View from a product borrowed by the USEr. ... 34
Figure 9. Message: returned DY the USEr. ..o 34
Figure 10. Add ProdUCTE VIBW.cuecieiieiecic ettt 35
Figure 11. Take PICTUIE VIBW.eccviiieiieie ettt sttt sne e 35
Figure 12. Available ProdUCE VIBW.ccoiiiiiiiiieieieiese e 36
FIgure 13. COMMENT VIBW......cuviiiieieieite sttt 36
Figure 14. Successfully borrow a deviCe MeSSAQE.covevueeeeieerieiie e e see e 37
Figure 15. Filter Available implemented............ccooovieiieie i 37
Figure 16. Screenshots from USL and US2ccoieiiiiiiiiiieeee s 46
Figure 17 Screenshots from US Ao s 47
Figure 18 Screenshots from US 3Bccvoviiiiiiiic et 47
Figure 19 Screenshots from US 4A ...t 48
Figure 20 Screenshots from US 4B ..ot 48
Figure 21 Screenshots from US 5 ..o s 48
Figure 22 Screenshots from US Bc.ooviiiiiiiiic e 49
Figure 23 Screenshots from US 7ooooiiiiiciece e 49
FIQUIE 24. ADOUL VIBW ..ottt 50
FIQUIE 25, IMIBINU ...ttt bbbkttt bbb 50
Figure 26. Filter Borrowed by the user selectedc.ccoovviiiiiiiii i, 51
Figure 27. Memory load in Swift vs Objective C applicationcccccccevvviiieviieiiieennnn. 51
Figure 28. CPU load in Swift vs Objective C applicationccccoovvivvenencneniniiene 52

vii

Figure 30. Swift’s guideline

viii

Swift mobile platform analysis 1

1 Introduction

Mobile development is considered an important and growing technological
industry. For this reason, different environments and technologies are being created in
this field for final users and developers. As a consequence, there is an increasing amount
of programming platforms, features, and devices. The technological industry today is
therefore being filled by all kinds of opinions about best technologies and ways to
develop them.

According to Computer World’s website (Keiser, 2015), Apple's iPhone 6 and
iPhone 6 Plus prompted a surge in iOS smartphone users. In the U.S, iOS market share
climbed from 43.1% in October to 47.4% in November 2014. While during the same
period of time, Android's U.S. share fell from 50.4% to 48.4%, and Google's operating
system went just one point beyond iOS. It gives a clear image of the importance of iOS
development for people involved in the mobile industry.

Recently, Apple has released a new programming language named Swift. It is a
totally new approach for developers in iOS and OS X. This company developed it to
simplify the designing and programming phases of a project using Apple technologies
and to give the programmer a flexible mobile working framework.

Recently released languages like Swift do not have a strong background of
references and previous user experiences in comparison to the most common languages,
for instance Java and Objective C. Old languages have documentation from their
developers and the programmers that used them for a long time.

New programming languages do not provide developers enough information
about their performance. They are not properly characterized by users due to their limited
time in the market. This lack of data creates the need to provide a clear image of the
platform.

As a result of the new release, Swift programming language is a point of interest
for research institutions like the FH Joanneum. Even though members have no previous

experience with this language, they are familiar with Apple’s technology, especially with

Swift mobile platform analysis 2

the previous language, Objective C. The need to develop an application in this university
is not only to sell it, but also to investigate. The research department is looking for
documentation of Swift’s behavior in the mobile area in order to help students and

developers learning this language.

1.1 Project Area

The project is oriented towards research in mobile platforms to create a software
and hardware analysis of a programming language named Swift and its guideline. This
guide intends to be used as a reference framework to help future developers and people
interested in learning about Apple’s technology. The information was gathered based on
a mobile application developing process.

The application developed is an Inventory program for iPhone and iPad. It is
implemented in the KMU-Goes-Mobile project. It takes place in the Research and

Development area at the FH Joanneum University in Kapfenberg.

1.2 Project Context

Swift is a recently released programming language. Its development began in

2010 by Chris Lattner, and was presented to the public on September 9™, 2014 with the
version 1.0. On October 22, 2014, it reached the version 1.1 alongside XCode 6.1.
There was a lack of expertise because this language was released by the time the present
research project starts (October 2014). There were neither Swift experienced
programmers in the FH JOANNEUM laboratory, nor Swift application performance
analysis available to the public, and nor guidelines for beginners in this area.

The lack of information about this programming language created the need of a
technical exploration of the development process to provide future developers and
researchers with criteria to learn Swift and its features for their projects.

The mobile application developed to build this guide aims to help small and medium
sized enterprises. These companies usually do not have their devices in an inventory

which makes it hard to keep track of who is using them and where they are. As a solution,

Swift mobile platform analysis 3

KMU-goes-mobile developed a set of programs to help these enterprises to keep track of
their actives.

This project was developed for i0S. Therefore, an environment compatible with
Apple was set. The operating system used was OS X Version 10.9.5 and the platform
Xcode. The project is oriented towards a research about mobile development,
documentation, and testing in the Research and Development area in ITM department of
FH JOANNEUM in Kapfenberg, Austria.

1.3 General Description

1.3.1 Background of the FH JOANNEUM

FH JOANNEUM University is located in Styria, Austria. It was founded in 1995.
It is one of the leading universities of applied sciences (FHs) in Austria. It has forty
programs in Health Sciences, Information, Design & Technologies, International
Business and Live, Building, and Environment areas.

The university’s history starts with the Archduke John of Austria, who was one of
the most innovative figures of his time. He introduced an incredible number of inventions
to his chosen home of Styria from 1811. Many of those continue to have an effect to the
current day. He is the precursor of the Graz University of Technology, founded Styria’s
state library, and today’s University of Leoben.

In 1815, after traveling to England, home of the industrial revolution, he
encouraged the railway building throughout the Habsburg Empire and the modernization
of Styria’s mining and agricultural industries. He never lost sight of the social impact of
all these upheavals.

It was due to Archduke John that Styria got developed from an agricultural state
into a leading and highly innovative industrial region. John’s thoughtful approach, his
openness to all new things, and his affinity for the local population made him one of the

most popular Habsburgs.

Swift mobile platform analysis 4

The Styrian government wished to highlight John’s spirit in naming Styria’s
newly founded university of applied sciences “FH Joanneum” in 1995. (FH
JOANNEUM, n.d)

1.3.2 Research and Development
The FH JOANNEUM campus in Kapfenberg has a department that aims to

integrate innovative applied research and development in teaching in order to maintain
the quality of degree programs and provide practice-oriented education for students.

The applied research and development is geared both to the needs of industry and
public administration. It is the interface between basic research on one hand, and
innovative services and products development on the other. FH JOANNEUM s staff and
students work together with the clients to develop comprehensible solutions that meet
international quality criteria. They also examine to what extent the results can be
generalized or applied in other fields. Research achievements are reflected in innovations,
publications, and patents.

The highly qualified and experienced FH JOANNEUM staff is continually
involved in a wide range of research projects, generating knowledge for the university,
business, and society. FH JOANNEUM takes an inter and trans disciplinary approach in
tackling key research issues of the future in cooperation with partners from business,
industry, and public institutions.

The best description is given by the FH Joanneum website: “KMU-Goes-Mobile
is a research project in support of small and medium size enterprises founded by The
Austrian Research Promotion Agency (FFG) to promote innovative ideas, concepts, and
free applications for the use of smartphones and tablets for small enterprises that do not
have their own IT departments for software development”. (FH JOANNEUM, n.d)

Swift mobile platform analysis 5

1.4 Problem Description

1.4.1 Problem Context

The FH JOANNEUM IT department found it important to include Swift within its
background because of having experience working on different mobile areas including
Apple’s technologies, and with mobile applications development projects. As it was a
new programming language with less than a month being in the market, mobile
developers did not have a current guideline to judge the path of their development
approach or teaching approach in the case of professors using Swift.

The institution has worked in a project called KMU-Inventory. As they had an
Objective C application already developed, the Swift application became the next step.
That was an opportunity to retrieve information about development and learning to use

Apple’s new programming platform.

1.4.2 Problem specification
There is always a period of time where not enough documentation can be found

when every new product is launched. It is normal because of the lack of users and
experts. Swift was not the exception. Less than a month from the release date, there was
not enough data and sample applications developed in Apple’s new programming
language.

As a technical university, the FH JOANNEUM was interested in building a
reference guideline from this new technology to be used as a working framework that
helps lecturers to teach the language and developers to start learning and evaluating the
approach.

A reference framework was needed. The development of an application was one good
step to create an authentic analysis. Thus, the implementation of a newer version of KMU

Inventory app is done.

Swift mobile platform analysis 6

1.4.3 Need and Justification
Every programming language has its good and bad features, but having a

reference guide could play a crucial role on a project development and its success. Being
able to tell if a platform tool will suit the needs of the product to be developed is a real
advantage for every project manager.

Also, having documentation about Swift’s pitfalls and learning procedure is very
helpful for new programmers in the area. For the FH JOANNEUM the new acquired
knowledge is valuable information to provide a reference framework to those who want
to start incurring in this new area. The users of this outcome could be investigators,
students, or lecturers.

The development of a testing application generates knowledge of the features that
a programming language and platform can offer. It also helps the community by

providing small and medium enterprises with a mobile inventory platform.

1.5 Objectives

1.5.1 General
Construct a function of criteria to be used by developers and researchers in mobile

applications to choose or not Swift programming language for their projects based on

hardware and software variables.

1.5.2 Specific
-Construct a weight function that works as a reference framework and guideline for

future developers and managers incurring in Swift technology to set a development
strategy.

-Define variables based on the criteria documented through the development of an
application for iOS using Swift language for the construction of the weight function.
-Construct a learning document as a guide for new programmers in Swift language,

including best practices and suggested procedure to learn the programming language.

Swift mobile platform analysis 7

-Analyze the CPU and memory usage over time performance of an application using

Swift language and compare them to other applications running on the same mobile.

1.6 Benefits and Beneficiaries

The beneficiaries are:

e Small and medium enterprises: Using the application developed, people running
these enterprises can get easy access to a new tool to keep track of their items
without any important economic cost.

e FH JOANNEUM lecturers: The guideline and the Wikibook constitute a base for
students to learn the main difficult points of this platform in an informed way.

e KMU-goes-mobile project: Research results are important findings for every
educational university, this new data leads to a better understanding of Apple’s
current and most recent programming language.

e Swift beginners: All new developers can take advantage of this research output by
checking the reference framework of the learning context and a beginner’s
previous documented experience.

e Swift developers: All code is free licensed software and accessible by anyone
everywhere. Developers are provided with an already programmed application

that could be used as code reference.

1.7 Assumptions and Limitations
This project aims to develop a first approach of an application for a research

process. It is neither meant to compete it with local industries, nor to offer a limitation of
the market business to any of the current products.

The application is a fully working demo, not a final stable version. It is not
offered accompanied with any kind of later support for enterprises. Also, it is developed
using the FH JOANNEUM's framework and tools. All code generated is under Open
Source Licensing and documented as part of KMU-goes-mobile project. All the

information gathered and the analysis is described in a Wikibook available online.

Swift mobile platform analysis 8

1.8 Risk Analysis

1.8.1

1.8.2

Risks
Swift language was released three months before this research started.

Consequently, it was hard to find documentation about bugs or any complex
actions.

Some tools were still in the development process, so it leaded to an uncertain time
of the releases and also an unexpected behavior.

Specifications of the project were written in German and most of the clients were
Austrian enterprises. Thus, there was the risk of misunderstanding some of the

requirements and the need of changes of this project.

Mitigation Actions

The first part of the project was an extended practice and learning experience.
Taking time to make a complete guide about how to develop a mobile application
in Swift can mitigate the first risk.

A meeting with the coordinators and developers of these tools to discuss the
releasing time and the available resources mitigates the second risk.

All meetings and their notes were in English to mitigate the third risk.

Swift mobile platform analysis 9

1.9 Scope, Deliverables and Limitations

1.9.1 Work Characterization
This is a research of a mobile language behavior. The investigation is done during

the development of an application. It leads the project towards a theoretical and practical
approach. The output shows how the practical side of the project generates the knowledge

showed in the theoretical side.

1.9.2 Process Description

Training, Setting Environment, and Language Investigation:

The tools used for documentation, version control, application API, and testing
were developed or hosted by the local university. For this reason, a period of training was
necessary.

The language was unknown by the team, so it had to be investigated to understand
the project approach. The investigation includes the learning procedure to program in this
environment. Apple’s Swift programming was set and tested to learn to develop in this
language and work with it.

Application Development and Swift Characterization

During this stage, the application development and presentation, and the meetings
with the development team took place. The language tools and the developer’s
experience during this stage constitute the basis for the Application and language
experience documentation.

Application and Language Experience Documentation

Based on the last step outputs, a guideline was constructed in this stage to work as
a reference framework for future beginners. The work here is theoretical and analytical.
The documentation of the language, its features, and learning process were written in a

Wikibook available online and in a guideline presented in this work.

Swift mobile platform analysis 10

1.10 Tools

The software and hardware used during the development and testing of the

Inventory Application are listed below:

1.10.1

A distributed revision control system: Git repository. It is located in the
university's private server: Innsbruck.

A flexible project management web application: Redmine. It is a bugtracker
written using the Ruby on Rails framework. It is cross-platform and cross-
database.

A task administrator: Scrumpy for Scrum-Board. This software was developed by
the IT department in the FH Joanneum for scrum based projects to administrate
tasks.

Apple's IDE for Swift development: Xcode. Swift is used as the main
programming language in the project. Leading to the mandatory usage of both
platforms during the programming stage of the application development.

Deliverables Description
Functional Application:

It was necessary to develop and implement an application capable of managing

the state of items in an inventory. The "Inventory Component™ manages these devices.

Each system user can borrow devices for himself or for another person. This was done

via mobile device through the "Inventory App". This mobile application runs on iOS and

was developed using Swift as the main programming language, and also the FH

JOANNEUM's platforms for mobile development.

Swift documentation:

This document is a Wikibook about the best procedures containing the following data:

developers learning experience, features for mobile development implemented in the

Swift mobile platform analysis 11

language, access to hardware features from within the program, and an Apple’s manual

for its first usage including needing tools.

Swift mobile platform analysis 12

2 Theoretical Framework

2.1 Swift Programming Language

Swift is the i0S new programming language released on June 2014. It was created
by Apple as their language for iOS and OS X projects development. It works side-by-side
with Objective C, the previous standard language for iOS and OS X applications.

Swift is created as an innovative programming language for Cocoa and Cocoa
Touch. Apple claims that the writing code is interactive and its syntax is concise but
expressive. Swift is the result of Apple’s latest research on programming languages

combined with decades of experience building platforms.

2.2 XCode

According to Apple’s developer website (Apple Inc, 2014d), XCode has got a
series of tools to make programming in Swift easier and more intuitive. These two
characteristics work along to provide a user friendly programming environment. About
XCode, Apple says in its website: ““ It’s easy to create a brand new app using 100% Swift
code, add new Swift code or frameworks to existing apps, and view documentation in
either Swift, Objective C, or both.” With this quote they highlight the benefits and
dependence between Swift and XCode.

Live Rendering takes the most important place within the main features of
XCode. It makes the Interface Builder show the custom objects added by the programmer
during the designing time and also shows the changes done in every save. This tool gives
the developer an overview of its application and the applications flow since an early
stage, the designing stage.

It is also possible to debug the code in Swift using XCode’s View Debuggin tool,
the XCTest framework is fully integrated into XCode to provide a performance tool

capable of running, comparing performance, and displaying the change over time. It

Swift mobile platform analysis 13

clearly shows when test results change, alerting the user of regressions in performance or

functionality as monitoring the quality of the app.

2.3 Wikibooks
The formal definition from its website about itself is: “Wikibooks is a project for

collaboratively writing open-content textbooks that anyone can edit. Contributors
maintain the property rights to their contributions, while the Creative Commons
Attribution-ShareAlike License and the GNU Free Documentation License makes sure
that the submitted version and its derivative works will always remain freely distributable
and reproducible.”

A wikibook is a collection of open-content textbooks that can be written by
anyone, leading to a common space where people can share their knowledge in order to
create a free source of material that can be access all over the world. The site is a place
where textbooks, guides, manuals, and annotations of different topics can be found in
different languages and presentations. The information can be used for educational
reasons or self-learning.

As said before, anyone can write a book, but other members of the community
can modify, improve, and delete the Wikibooks. Also, the moderators can approve the
information and review it “Wikibooks is not an in-depth encyclopedia on a specific topic
nor are pages encyclopedia-formatted articles. Books build knowledge from one page to
the next with inter-dependency between pages. Books in progress are sometimes
organized in an encyclopedic manner until developed into proper books.” (Wikibooks,

2010)

2.4 Apple’s Terminology
Due to its own way of development and privacy, Apple has got some terms to

refer to their elements and tools during software development. In this document, it is
important to know that some of them are used and considered for the designing and

implementation of the mobile application.

Swift mobile platform analysis 14

2.4.1 Storyboard
The storyboard is the main concept present in the flow of an iOS application. It is

where the developer can create and modify graphically all the paths and configure the
flow of the program between the screens, the views, and the user inputs. Figurel shows
the sketch of the application’s storyboard.

§ L05-4

Figurel. Sketch for a Storyboard

2.4.2 View Controllers
These are classes that manage the data and visual appearance of the screen

showed by the application. When the user interface is showed, the content is managed by
one View Controller or more. That is why View Controllers are called the skeletal
framework of the i0S apps. The programmer can create and customize these controller
classes to manage the application behavior. The first View controller is called Root View

Controller.

2.4.3 Navigation Controller
It controls the stack of View Controller for the app navigation and its flow. It

contains and manages a set of View Controllers. Each of them contains and manages a set
of views. Their purpose is to coordinate the navigation between the View Controllers.

As a summary, this hierarchy concept can be explained as follows: one
Navigation Controller controls many View Controllers, and one View Controller can

control many Views. This is shown in figure2.

http://commons.wikimedia.org/wiki/File:Swift-Learning-a_storyboard_by_mk.png

Swift mobile platform analysis 15

Navigation bar Window
(drawn by the navigation controller)

Slider |_—
(a view subclass) —| \:K

1
S . 1 =
1
1

e -
x‘“'a.‘_ —
\IHEH‘ \‘

Navigation contraller
(a view controller subclass)

i/

View

Figure2. View Hierarchy in iOS (Apple Inc, 2014d)

2.4.4 AV Foundation API
AV Foundation is one of the frameworks used to control audiovisual media in Swift

language. It provides an interface that can be called directly from code in Apple devices.

2.5 User Experience
The user experience, also referred as UX, is the experience the end user gets from

the program. In other words, it is formed by the interaction, behavior, perception, and
satisfaction the user gets when using a product. This can be evaluated in a controlled
environment observing the user interaction and reaction during a program run.

Jakob Nielsen, in his classic book, Usability Engineering (Nielsen,1993) says
usability applies to all aspects of a system which a human might interact, thus usability is
not a single and one-dimensional property of just the user interface. It includes
learnability, efficiency, memorability, errors, and satisfaction.

As Chauncey Wilson points out in his book User Experience (Wilson, 2010), now

the term “user experience” has emerged from “usability”, but the first one includes also

Swift mobile platform analysis 16

dimensions as aesthetics, pleasure, and consistency with moral values as important for the
success of products and services. Then, user experience is formed by all interactions and
impressions a user experiments while interacting with the product. The usage the
developers give to this features will be crucial for the final user impression and

perception of the product.

2.5.1 Aesthetics
There is a common polemic and deep discussion in the artistic field about the

definition and meaning of the word “aesthetics”. In this work, it refers as what is
pleasurable to the senses. The most common usage of the term is to evaluate the beauty
and attractiveness of something.

The UX designers have the shore to consider every stimulus that might influence
the user interaction because aesthetics is not just about the artistic merit of Web buttons
or other visual effects, but also about how people respond to these elements (Anderson,
2012).

For a designer, all these concepts constitute the rules and interest points for every
work they do, but what about programmers who are not designers?

Apple has developed a guide for User Experience that aligns the most common

requirements for a good interface, with the company’s designing standards.

2.5.2 Apple’s User Experience Guideline
For a private development, Apple does not define specific iOS Human Interface

guidelines, but for the release and application in the Apple Store, there are requirements
the programmer must follow. Here it is an overview of the rules and guides used in a
project published in their website (Apple Inc, 2014a).

About the Design iOS embodies the following themes:

. Deference: The Ul helps people to understand and interact with the content, but

never competes with it. To make sure to accomplish this, the developer can follow the

Swift mobile platform analysis 17

next steps: (1) Take advantage of the whole screen. (2) Reconsider visual indicators of
physicality and realism. (3) Let translucent Ul elements hint at the content behind them.

. Clarity: Text is legible at every size, icons are precise and lucid. A sharpened
focus on functionality motivates the design. Apples suggestion to accomplish this is: To
use plenty of negative space, let color simplify the U, use the default fonts and
borderless buttons.

. Depth: Visual layers and realistic motion impart vitality and heighten people’s
delight and understanding. To do so, iOS often displays content in distinct layers that
convey hierarchy and position, and that helps users to understand the relationships among

onscreen objects.

2.5.3 About Layout
Apple’s devices can work on landscape or portrait (see figure 3) and their screen

sizes are variable between models, that is why an application should give a great

experience in each environment, taking advantage of adaptability.

The size classes of iPad in portrait The size classes of iPad in landscape

T |

Regular
height

Regular
height

|- Regular - |
width

-t Regular -
width

Figure 3. IPad screen orientation possibilities (Apple Inc, n.d b).

Swift mobile platform analysis 18

When a single device or orientation is chosen the guideline is not mandatory, but

in this market, it rarely happens. The main highlights are:

. Maintain focus on the primary content in all environments

. Avoid gratuitous changes in layout

. Be straightforward if the app runs in only one orientation

. Avoid displaying a Ul element that tells people to rotate the device

. Support both variants of an orientation

. Use layout to communicate

. Make it easy to focus on the main task by elevating important content or

functionality

. Use visual weight and balance to show users the relative importance of onscreen
elements

. Use alignment to ease scanning and communicate groupings or hierarchy

. Make sure that users can understand primary content at its default size

. Be prepared for changes in text size

. Avoid inconsistent appearances in the Ul

. Make it easy for people to interact with content and controls by giving each

interactive element ample spacing

. Give tappable controls a hit target of about 44 x 44 points

2.5.4 About Terminology and Wording
The communication between the application and the user should be done in a polite but

simple way, to achieve this, following the next steps is necessary:

. Use terminology that the application users will understand
. Use a tone that’s informal and friendly, but not too familiar
. Avoid unnecessary words

. Give short labels to controls or use well-understood icons

. Be accurate when describing dates

Swift mobile platform analysis 19

. Make the most of the opportunity to communicate with the potential users by

writing a great App Store description

. Correct all spelling, grammatical, and punctuation errors
. Keep all-capital words to a minimum
. Describe specific bug fixes in every new release

2.5.5 About Integrating the Application to the iOS Standard
Following this guideline the developer gives users the experience they expect.

The first instruction given is to use the standard Ul elements. In order to do so, the

subsequent rules should be followed:

. Follow the guidelines for every Ul element

. Do not mix Ul element styles from different versions of iOS

. Avoid creating a custom Ul element that performs a standard action

. Use the appearance customization APIs, access properties and attributes, then

apply custom and system provided icons to the controls
. Do not use system-defined buttons and icons to mean something else
. If no system-provided button or icon has the appropriate meaning for a function, it

is possible to create one following the instructions given by the website

2.5.6 About Navigation
The structure of every application is different; However, regardless the navigation

style, the users path should be predictable and intuitive. A standard and useful Ul element
is the navigation bar. It is an easy way to move across a hierarchy of data or a tab bar and
support flat information architecture as well as its persistence.

In general, to give users one path to each screen is the best to do. If there is one
screen that users need to see in more than one context, consider using a temporary view,

such as a modal view, an action sheet, or an alert.

Swift mobile platform analysis 20

2.6 Training, Setting Environment and Language Investigation In
This stage of the process is divided in two sections: (1) Training and environment

setting and (2) Language investigation.

2.6.1 Training and environment setting
The tools to be used during the project require a period of training because they

were never used by the developer before. Also, all the accounts needed during the project

had to be set. A procedure was followed to do it and it is specified here.

The steps taken to accomplish this stage were:

1)

2)

3)
4)

5)

6)

7)
8)

9)
10)
11)

The University’s account for internet access was solicited and also the mail
server settings were configured with the help of the IT Support department
in the FH JOANNEUM.

The assigned PC Computer’s software was updated in order to install the
programming environment.

XCode installation was done.

The i0S developers account was created and all credentials to allow
programing in physical devices were installed.

XCode configuration with the i0S account was done (this step is
complemented by the language investigation stage).

Join the project Git repository for the 10S applications of the Inventory in
the FH JOANNEUM’s server.

Clone Git repository of the 6th step.

Create a user in the Joomla!! web service “KMU goes Mobile” project to
join the development team.

Join the platform BugTracker to handle bug reports.

Install the i10S deployment credentials in the XCode session.

Set a developers account on the 10S testing devices.

Swift mobile platform analysis 21

2.6.2 Investigation
During this stage, the first approach towards the language experience is done.

First, Apple’s official website for Swift (Apple Inc, 2014c) is consulted to retrieve the
details of its basic characteristics as a programming language. Also, other different
websites are consulted for extra information and characterization as starting point for the

guideline. Then, the main and useful findings are listed in this section.

Language Official Description (Apple Inc, 2014c)

Swift is a programming language for iOS and OS X that does not include the
constraints of C compatibility as Objective C did. The developers simplified the memory
management with Automatic Reference Counting (ARC). And its framework stack was
built on the base of Foundation and Cocoa.

Swift is a multi-paradigm, compiled programming language built intended to be
fast by using a high-performance compiler: LLVM. Swift’s code is transformed into
optimized native code, and tuned. The syntax and standard library have also been tuned
with the purpose of making the most obvious way to write the code.

Swift is a successor to the C and Objective C languages. It includes low-level
primitives such as types, flow control, and operators. It also provides object-oriented
features such as classes, protocols, and generics.

The language developers claim Swift feels familiar to Objective C developers
because it adopts the readability of Objective C’s named parameters and the dynamic
object model. They also claim Swift is friendly to beginners because it offers support to a
new feature called Playground that allows them the experimentation of the Swift code.
They are also able to see the results immediately.

Swift provides its own versions of all fundamental C and Objective C types as it
is described in the official documentation in Apple’s website. This includes Int for

integers, Double and Float for floating-point values, Bool for Boolean values, and String

Swift mobile platform analysis 22

for textual data. Swift also provides versions of the two primary collection types: array
and dictionary.
Swift uses variables and constants to store and refer to values by an identifying name.
Constants are used throughout Swift to make code safer and cleaner. What makes Swift
better is that it also introduces advanced types that are not found in Objective C: Tuples
and Optionals.

Optionals are similar to using nil with pointers in Objective C, but they work for
any type, not just classes. They are safer but more memory expressive than nil pointers in
Objective C. They are called one of the strongest Swift’s features, helping programmers

to be clear about the types of values their code works with.

Swift and Objective C
A remarkable review that expresses the current lack of user’s documentation and
popular information of this new programming language is made by Alfie Hanssen in his

blog:

“With Objective C being close to 35 years old, and it having been the language used to
build Mac OSX and iOS applications for years, there's a substantial community and body
of knowledge out there constantly documenting best practices, approaches to common
and not-so-common problems, pretty much anything you can think of about using
Objective C. When learning Swift, something that may be an issue for a little while will
be the comparatively slim set of resources out there. Stackoverflow, blogs, tutorial sites
are quickly compiling info on all aspects of Swift development, but it'll take some time to
reach the saturation point that Objective C currently enjoys.” (Hanssen, 2014)

Also the findings Jesse Squires describes in his web site (Squires, 2014) show that
if Swift code is not optimized, Objective C is still noticeably faster than Swift. However,
when safety features are deactivated, Swift orders of magnitude are better than Objective

C’s. Squires also points out the results in tables, those are shown on table 1 and 2.

Swift mobile platform analysis

23

It is easy to notice the improvement of the language speed if safety rules are

dismissed. The difference between Objective C performance and Swift performance is

positive when Swift is not optimized and negative when it is (see Table 1 and Table 2).

Table 1

Obijective C performance and Swift performance time comparison with optimization.

T=10) Insertion Selection
) Quick sort | Heap sort
N =10,000 | Std lib sort sort sort
O(n log n) O(n log n)
Debug 0O(n2) 0O(n2)
Objective C | 0.015732s | 0.011395s | 0.025252s |1.931189s | 3.762144s
Swift 1.536891s | 1.633227s |4.714571s | 625.810322s | 519.386646s

Note. From “Apples to apples,” by Squires,J.

Table 2
Obijective C performance and Swift performance time comparison without optimization.
T=10 _ Insertion Selection

) Quick sort | Heap sort
N =10,000 | Std lib sort sort sort

O(n log n) O(n log n)

Debug 0O(n2) O(n2)
Objective C 0.011828 s 0.010285 s 0.019763 s 1.776664 s 3.497402 s
Swift 0.001306s | 0.001426s |0.002259s |0.297713s | 0.068731s

Note. From “Apples to apples,” by Squires,J.

One of the findings of this investigation is that the performance was often
measured on tests created especially for this task, not on a normal environment such as
fully created app. So the results did not show information in a user friendly way to
estimate the application performance. Also, time was the only variable to measure it, not

taking into account CPU or memory usage.

Swift mobile platform analysis 24

User Experience rules listed in the Theoretical Framework in Apple’s
Terminology and User Experience sections were part of this investigation. They are not

included in this section because they are already cited in the present document.

3 Methodological development

The development of this project is divided in three stages. Each of them is
depends on the previous one. They are: (1) Training, setting environment and language
investigation, (2) Application development and Swift’s features analysis, and (3)
Application and language analysis. Each step is also divided in procedures that are deeply

explained in the sections below.

3.1 Application Methodological Development
It was the core of the experiment. The application was developed, the meetings

with the development team were held and the programming language investigation was
done. The language tools and the developer’s experience during this stage constitute the
basis for the next step: Application and Language Experience Documentation. The

following sections explain the modeling and development process of the experiment.

3.2 User Stories
Defining the requirements of the experiment was the first step taken. In this case,

the experimental application was divided in seven different user stories described below
(see tables 3 to 11). These user stories are created by the client and given to the developer
as a requirement for the application.

Table 3

User Story 1: Connect to Inventory-Server

Criteria Connect to Inventory-Server

Description As a new User of the inventory App, | want

to connect to the Server with Username,

Swift mobile platform analysis 25

Password and Server-Address

Acceptance Criteria *Valid Username is filled in to the

Username-Texthox

Definition of Done *Valid Password is filled in to the

Password-Textbox

Table 4

User Story 2: See all devices which are available

Criteria See all devices which are available

Description As a User of the Inventory App, | want to
see all available devices.

Acceptance Criteria *1f login is set: Start App
* If login not set: Proceed US1 ->

automatically redirected to DeviceListView

Definition of Done All devices are shown at the

ListDeviceView

Table 5

User Story 3A: Lend a device from a list

Criteria Lend device (choosing from List)
Description As a User of the Inventory App, | want to

lend a device by choosing it from the list.

Acceptance Criteria *Device is chosen from the
DeviceListView.

Swift mobile platform analysis 26

Definition of Done

* New View opens which shows the
chosen device including most of its

information (available or not, current

owner, name, location, Serial number etc.).

Table 6

User Story 3B: Lend device (choosing from QR Code)

Criteria

Lend device from QR Code

Description

As a User of the Inventory App, | want to
lend a device by capturing its QR-Code.

Acceptance Criteria

* The QR-Code Button at the Action-Bar at

the top of the screen was pressed

Definition of Done

* When QR-Code Reader is opened, the
QR-Code is placed in the rectangle-area of

the screen.

Table 7

User Story 4A: Bring back device (choosing from List)

Criteria

Bring Back device (choosing from List)

Description

As a User of the iNventory App, | want to
lend a device by choosing it from the list.

Acceptance Criteria

* Device is chosen from the

DeviceListView.

Definition of Done

* New View opens which shows the
chosen device including most of its
information (available or not, current

owner, name, location, Serialnumber etc.).

Swift mobile platform analysis 27

Table 8

User Story 4B: Bring back a lent device (with QR-Code)

Criteria Bring back a lent device (with QR-Code)

Description As a User of the iNventory App, | want to
bring back a lent device by choosing it
from the list.

Acceptance Criteria * The QR-Code Button at the Action-Bar at
the top of the screen was pressed.

Definition of Done * When QR-Code Reader is opened, the
QR-Code is placed in the rectangle-area of
the screen.

Table 9

User Story 5: Edit Login-Information

Criteria Edit Login-Information

Description As a User of the Inventory App | want to

change Login-Information (Username,
Password, Server-Address).

Acceptance Criteria * The Settings-Button is pressed and the

“Login-Info” entry is chosen.

Definition of Done * In the shown view the Login-Information
is edited.

Table 10
User Story 6: Add a new device.

Criteria Add new device

Description As a User of the Inventory App | want to

Swift mobile platform analysis 28

add a new device to the Inventory.

Acceptance Criteria * The Settings-Button is pressed and the
“Add device”- entry is chosen.

Definition of Done * In the shown view all of the necessary

information is given (DeviceName,

Location, SerialNumber, Description, etc.)

Table 11

User Story 7: Edit Login-Information

Criteria Filter free devices

Description As a User of the iNventory App | want to

see all free devices in the inventory.

Acceptance Criteria * The Filter-Button is pressed and the

“Free devices” filter is chosen.

Definition of Done In the Device List window only free items

show.

3.3 Program flow
For the designing of the application flow, Apple has a main file called Storyboard.

In here, the application’s flow is created graphically to set the structure of the whole
application. Figure 4 shows the KMU Inventory App Storyboard. Each number in the
image represents a sub flow in the application and they are explained next.

The application’s main flow starts with the Log In screen. Then, it continues in a
linear flow to a Tab bar controller. This is the center of the application’s structure. The
Tab Bar Controller handles all the sub flows:

1- Sub flow to add a new device

2- Sub flow to show information of the application

3- Sub flow of scanning a QR Code

4- Sub flow to control the view of the list of the products in the inventory

5- Sub flow to handle the access to login settings once the user is logged

Swift mobile platform analysis 29

Figure 4. Application’s program Flow

3.4 Block diagram
As a mobile application communicating with a server, the application is separated

in two blocks, the backend and the frontend. The backend is an element that was
designed previously. Therefore, the elements shown in figure 5 are just the ones that are
being used in this project. The server backend is managed using Joomla!! It was already
set and running by the time the project started.

For the description of the frontend, the block diagram of the application can be
consulted on figure 5. It also shows that the iOS application includes nine modules:
1. KMU Server API Interface: This block handles all calls and communication
between the mobile application and the KMU Server.
2. User Interface: Default user interface elements used by Swift to show the graphics

on the phone screen.

Swift mobile platform analysis 30

3. View Controllers: Elements that control the behavior of the application and the
views depending on the interaction between the user and the application.

4. QR Code Library: This is the library that handles the decoding of the QR code the
camera captures.

5. QR Code Reader: This block is the only one that can access the QR Code library.
The decision of implementing this extra block is made because it works as a wrapper in
case any changes are made by the library creators.

6. Camera Interface: It handles all the camera accesses and ensures that only one
instance is running at the same time.

7. Web Client Library: This block contains all the functions to the web services

usage. The KMU Server API Interface is the only one that uses these functions.

8. Key Chain Service: This block manages the password storage and keeps it
encrypted.
9. Session Settings: It handles current and previous sessions setting and storages.
KMU
Inventory User Interface User
AP (View Controllers) Interface
4 Server
e QR Code QR Code Camera
APl) =
: k Library Reader nterface
nterface
Web Client Key Chain Session
Library Service Settings
KMU Server
Backend KMU App Frontend

Figure 5. Application Block Diagram
Even though this step was a requirement for the development process, it was not

significantly functional during the application’s development, analysis, or documentation

Swift mobile platform analysis 31

stages.

3.5 Software Design Patterns
For the message passing between View Controllers and the navigation process of the

application, communication design patterns were used in the programming classes. They

were explained as follows:

3.5.1 Singleton
It is used by the KMU Server API interface to make sure every connection to the

backend is handled by the same instance. The web server information, the user and login
information (not the password) are stored in this instance during the application running.
This pattern is chosen because during the first approach all calls were handled by the
class that needed to do the call. This made it necessary for the whole code to be rewritten
in every class. On the second approach, only one class was created to handle all API
calls, but there were cases in which several classes tried to make a server call, creating
replicated instances of the API calls class. Finally, to make sure there was just one

instance of the class and centralize the information, Singleton pattern was selected.

3.5.2 Observer
Every View Controller needs an observer pattern design to be notified when a user

interacts with the application interface. This is done automatically by Swift, but it is also
implemented in the QR reader and the camera handling View Controllers. Once the user
finished using this feature, the class informs the parent VVC that the user is ready and the

application can continue.

3.5.3 Servant
The servant pattern is used only by View Controllers that are created by another View

Controller. This is used to pass parameters between them. Especially when one is being
initialized using the information the parent gathered. This is a standard pattern used in

Swift’s architecture.

Swift mobile platform analysis 32

3.6 Communicating with the server

The used server is located in: https://innsbruck.fh-joanneum.at.

The Backend used is referenced in: https://innsbruck.fh-joanneum.at/kmudev/index.php

and is running by Joomlal!!(c)

The list of calls used by the application are:
- Get device by ID

- Get all devices

- Get all orgUnits

- Get all devices lent for users

- Get a device by its QRCode

- Lend a device by its QRCode

- Return a device by its QRCode

- Return devices pictures.

3.7 Hardware Libraries
Swift main feature is safety in code programming. As a consequence, the access to

hardware features of Apple’s devices using this language is impossible. There are no
direct ways. The AVFoundation API needs to be used. The camera devices presented in
the mobile can be accessed and controlled using an AV CaptureSession. Therefore, it is a
simple step that does not require any further hardware approach.

Due to language duality, a library for QR Code Scanner written in Objective C
was used. It was published and distributed freely by Yannic Loriot (Loriot, 2014).

3.8 User Interface
The implemented user interface is shown in the following screenshots from

figures 6 to 15. Figure 6 is the view of the login screen. The first entry space allows the

user to insert the username. The second one is for the password. Finally, the last one is

https://innsbruck.fh-joanneum.at/
https://innsbruck.fh-joanneum.at/kmudev/index.php

Swift mobile platform analysis 33

the adress of the server to connect. The dropdown menu is for choosing the

organizational unit of the devices to be displayed.

SIM gesperrt 18:37 -

Log In

H |

Figure 6. Login View

Figure 7 shows the main view from the list of products. The red frame around the
device picture symbolizes that the device cannot be borrowed or returned because it is
being used by another user. Then, the green frame means it is available. Finally, the

orange frame means the user has borrowed the device.

SIM gesperrt & 18:53 (o

Q

& 6-fach-Steckdose

I ; Lager 6
@ Akku-Schrauber

s Arbeitshandschuhe
-
L
Cle
—)] 1+]
= e ha ©
Gerat Sca de zufiigen nformatior

BN

4

Figure 7. Main view from the list of products

Swift mobile platform analysis

Figure 8 shows the view of the description of a product borrowed by the user.
SIM gesperrt T 18:53 -

< Zuriick Beschreibung

Zuriickgeben

Akku-Schrauber
Ort:
QR-Code: Akku-Schrauber-123
Beschreibung: O.K. Akku-Schrauber AK 18-2
MX
Seriennummer:

Abteilung: Hausverwaltung
Ausleihdatum: 2015-01-25 17:38:00

= B © O

Geriit Scanne QR Code Hinzufiigen Information

Figure 8. View from a product borrowed by the user.

Figure 9 shows the message displayed when a device is returned by the user.

Gegenstand wurde erfolgreich
zuriickgegeben.

OK

Figure 9. Message: returned by the user.

34

Swift mobile platform analysis

35

Figure 10 shows the view from add product. Figure 11 is the screenshot of the

picture being taken to add the new product.

SIM gespert = 18:41 -

Bild aufnehmen

Sichern

Abteilung

= B OO o0

Figure 10. Add product view.

Wiederholen Foto benutzen

I | |

Figure 11. Take picture view.

Swift mobile platform analysis

36

Figure 12 shows the view from an available product. Figure 13 shows the view

from an available product comments section when the user is borrowing it. Figure 14

shows the view from a product borrowed successfully.

SIM gesperrt & 18:37 L1

< Zuriick Beschreibung

-

Akku-Schrauber

Ort:

QR-Code: Akku-Schrauber-123
Beschreibung: O.K. Akku-Schrauber AK 18-2
MX

Seriennummer:
Abteilung: Hausverwaltung

T

Figure 12. Available product view.

SIM gesperrt = 18:37 L1

< Beschreibung Ausleih

Ausleih-Kommentar

Kommentar |

Gerit

Figure 13. Comment view.

Swift mobile platform analysis 37

Gegenstand wurde erfolgreich
ausgeliehen

OK

Figure 14. Successfully borrowed device message.

Figure 15 shows the list of products using the Filter Available. So, all products

that are displayed have to be framed on green, meaning they are available.

SIM gesperrt F 18:38 1]
e Q
il
E Mr"’ Arbeitshandschuhe |
8L Dy
Ball3
(A
i - - besel o
- Green room L
BlackberryZ30
(AT
= B O o
=] (%
Gerat Scanne QR Code Hinzuflger Information

Figure 15. Filter Available implemented

Swift mobile platform analysis 38
3.9 Application Performance Measurement

The behavior of this application memory usage is tested at the end of every User
Story consecutively because Swift does not allow manual memory management. Also a
final average consumption is measured.

The CPU usage is also measured in these experiments to provide an overview of
the impact that KMU Inventory has on the device. It is measured in terms of its capability
percentage. The maximum peak of CPU usage during the process of the User Story is the
one presented in the table of results. Having the results of just one application does not
give an accurate characterization. Consequently, the older KMU application written in
Obijective C is tested as well.

The memory usage and CPU performance for each User Story were traced using
the XCode tool and Apple Instrument: Activity Monitor. All measurements can be
consulted in the Apendix |.

During this measurement, the following assumptions were done:

-Considering the relation between user stories. It is not possible to load a single one
without running the previous one. The memory usage and CPU performance are
measured per run specified in the table.

-The process of creating a device is not a feature of the Objective C application and

cannot be compared. For this reason, US 6 is not taken into account on these experiments.

Memory and CPU behavior

Measurements of memory usage in Swift application and CPU load were made
(see table 12 and table 13). Also, the same tests were done on an Objective C application
developed by the KMU laboratory on 2013 (see table 14 and table 15). These tests were
ran using an iPhone 4.
Table 12

Swift application peak memory usage.

User Story Memory Peak Usage (MB)

US1 4.02

Swift mobile platform analysis 39

US1 US2 4.33
US1US2US3 A 7.63
US1US2US3B 7.93
US1US2US4 A 7.26
US1US2US 4B 7.48
US1 US2 USS5 6.63
US1 US2 US7 6.47
Table 13

CPU peak usage by Swift application.

User Story Peak CPU Usage by the application (%)
US1 36.4

us2 60

US1US2US3 A 65

US1US2US3B 60

US1US2US4 A 68.8

US1US2US 4B 62.3

US1 US2 US5 55.2

US1 US2 US7 63.5

Table 14

Obijective C application peak memory usage.

User Story Peak Memory Usage (MB)
US1 3.48

Swift mobile platform analysis 40

usS2 5.75
US1US2US3 A 8.64
US1US2US3B 6.66
US1US2US4 A 9.97
US1US2US 4B 6.78
US1 US2 USS5 7.81
US1 US2 US7 8.33
Table 15

CPU peak usage by Objective C application.

User Story Peak CPU Usage (%)
US1 30.4
uUSs2 46.1
US1US2US3 A 44.2
US1US2US3B 59.9
US1US2US4 A 46.9
US1US2US 4B 58.4
US1 US2 US5 44.6
US1 US2 US7 43.2

Swift mobile platform analysis 41

3.10 ApplicationUsability Testing Strategies

The IT department of the FH Joanneum has a User Experience Laboratory. The
KMU Inventory App is tested by the laboratory using it as an advantage for mobile
testing and the application evaluation. The result handled to the KMU GOES Mobile
team is:

Tester: Matthias Eckhart

Test Report -iOS App Device: iPhone 4, iPad 4

US1 Status: passed Notes: - Please add a message after successful login in

German: Login erfolgreich

US2 Status: passed

US3a Status: passed Notes: - Please add whitespace between “Ausgelichen von”

(“Lent by”) and - Please add colon between “Abteilung” (“Organization unit’)

US3b Status: passed

US4a Status: passed Notes: - Please change the return message from “user

credentials valid, device returned” to: o German: Gegenstand wurde erfolgreich

zuriickgegeben.

US4b Status: passed US5 Status: passed US6 Status: passed.

3.11 Application and language experience documentation
This section is constructed by the knowledge acquired during the investigation

described in section 3.1 of this document and the experience during the development of
the application as described in section 3.2.

The first document is a guideline created to work as a reference framework for
future beginners in Swift programming language or to anyone interested in the process of
developing an application in this language. The second one is a documentation of the
language’s learning process that is located on a wikibook available online. It is meant to

be modified and improved by people from all over the world.

Swift mobile platform analysis 42
3.12 Swift’s Guideline
This guideline is based on the skills the developer required to build the test
application described in the previous sections. The values are obtained from the
experimental application development using the following procedure:
1. All needed skills during the platform environment setting, the tutorials, and the
programming stages were documented. The needed skills were:
. Apple Knowledge
« Mac OS experience as user
« Encoding and keychain management previous experience
» Apple’s auto size feature experience
» Cocoa Framework knowledge
» Having released an application to the Apple Store before
. Programming experience in any language
« Software Design Patterns knowledge
» Experience in object oriented programming
» Knowledge or experience in Graphic Programming
. Mobile experience
* Objective C knowledge
» Basic knowledge of mobile structure
» Backend-frontend structure
 Server connection with a mobile platform experience
« Library import and usage knowledge
. Settings and Access
» Backend for the application is already set
« 10S programming environment is already set
. CPU and memory behavior interpretation
» Knowledge of CPU and memory behavior in mobile devices
* Interpretation of memory leaks

. User experience/aesthetics knowledge

Swift mobile platform analysis 43

« Experience as a designer or with Apple’s design rules
2. The number of hours the programmer took to learn the new skills was
documented and can be seen on table 16. If the skill was not new to the
programmer, then a zero goes in the documented hours.
3. The number of times the skill was needed was also documented as:
» Once: One time. The value for this in the table is 1.
» Twice: Two times. The value for this in the table is 2.
» A few: three to six times. The value for this in the table is 3.
» Several: six to nine times. The value for this in the table is 4.

« Always: more than nine times. The value for this in the table is 5.

As before starting the project the programmer already had some of the listed
skills, an approximate time for learning them is substituted in table 16 in step 2. The
metric used to obtain the values (see table 16) of the following procedure is:

Calculation of weights:
The variables present are:

C: Amount of times the skill is needed by the programmer.

T: Time required learning a specific skill.

F: The factor that characterizes the weight of a skill.

M: The multiplier defining the value of every unit of the factor.

W: The weight the skill has on the guideline.

The values C and T are multiplied to obtain the factor F that will characterize the
skill as the following formula shows:

Fp = Gty
Then all factors from all skills are added and divided by 100 to get the multiplier

M that defines the value of a unit of the factor:

1 n

T op =k=0'k
Then every weight of each skill is calculated as follows:
W, = MF,

Swift mobile platform analysis 44

Table 16

C Swift beginner’s table for guideline estimation

Times Skill
Learning | used | Factor | weight

Skill hours (t) ©) (F) (W)
Mac OS experience as user. 24 5 120 6.05
Encoding and keychain management previous experience. | 16 1 16 0.81
Apple’s auto size feature experience. 64 5 320 16.13
Cocoa Framework knowledge. 40 5 200 10.08
Having released an application to the Apple Store before. | 64 3 192 9.68
Software Design Patterns knowledge. 32 5 160 8.06
Experience in object oriented programming. 32 5 160 8.06
Knowledge or experience in Graphic Programming. 8 5 40 2.02
Obijective C basic/beginners knowledge. 16 1 16 0.81
Basic knowledge of mobile structure. 40 5 200 10.08
Backend-frontend structure 24 4 96 4.84
Server connection with a mobile platform experience. 24 3 72 3.63
Library import and usage knowledge. 8 3 24 1.21
10S programming environment is already set. 5 40 1 40
Knowledge of CPU and memory behavior in mobile
devices. 1 8 3 24
Interpretation of memory leaks. 2 16 3 48
Experience as a designer or with Apple’s design rules. 64 4 256 12.90
Total 520 61 1984 100

Swift mobile platform analysis 45

3.12.1 Wikibook

The wikibook created is stored in Wikibooks English web page hosted on the

following link: http://en.wikibooks.org/wiki/Swift_learning. The information contained

there is listed here:

1.
2.

This wikibook
Basic Concepts
2.1. What is Swift?
2.2. Main differences between Swift and Objective C
2.3. Swift Navigation Architecture (Windows and Views)
Programming
3.1. XCode
3.2. Start Programming
3.3. Adding elements to your project
3.4. Configuring for development
3.5. Configuring for deployment
Tricky Section
4.1. Auto Layout
4.2. Communication between View Controllers (Design Patterns)
4.3. Manage of Segues
4.3.1. Create-Call segues
4.3.2. Dismiss a Segue
Next Steps
5.1. Other worth to see Web Sites

This website contains the developer’s result notes during the learning curve, making

it a manual for Swift’s first usage. It also includes information about the tools needed

during this project.

Swift mobile platform analysis 46

4 Results Analysis
The results of this project can be divided into two groups. (1) The experimental

development of the mobile application, and (2) The information gathered about the

language. Thus, the analysis of these results is divided by these criteria.

4.1 Experimental Application Implementation
4.1.1 Application requirements
The application requirements, including all user stories, were implemented
successfully. The results from the user stories are shown in this section. Also, the new
requirements added by the client during the development process are explained here.
Screenshots of the application are included to show each User Story

implementation of the applications. (see figures 16 to 23.)

Log In o

Figure 16. Screenshots from US1 and US2

US3A is implemented in the same way as US3B, but the difference is the
initiating screen. The second, third, and fourth views were called and used in the same

way in both user stories, implementing code recycling for these stages.

Swift mobile platform analysis 47

BN G ¥ - - S g ¥ -y - L E e —— - -
a A { Besctruturg Ausheih
B -tacn-Seckdose
oY Aussieih-Kormrnentar
“J PP
Morertar |
Aas-Schrmdn
Ol
a"’"’" QWERTZUI1OPUD
] o
&o—n:r:xn-.-s;?-.uln ASDFGHUJKLOA
2R i S s 3 ' b0 D s s’ e i
o8 Actmetnrarcuctute Sestummm—

= B G O = B g o i - S

Figure 17 Screenshots from US 3A

B et ¥ e - BN gesperrt ¥ war -
{ Zuruck Beschreibung Deschreitung Ausleih
W peeper T s -
r Ausish-Kommentar
—-b_
QWERTZUIoOPO
On:
et O Raba St AK 16:3 ASDFGHJKLOA
= .. c: o M e o
- - Rt et B vxcvenm £

= 5 g o | -
Figure 18 Screenshots from US 3B

As US3A and US3B, US4A and US4B reuse the code of the second and third
view, it necessary to build just one structure in the Storyboard.

LU e = NS fmagree @ - e

& 3 Cruien Bescheolung
b e i!

i! Anb - Byt =
s

At Aty Schvauber
N
el on
ON Conte Abbs Btvmdins 123

Bosctwatung O 5 Mbe Schralur AL 152
M

B Abeitenanaschune rosi—
“ 4 [_ AlNebang "Gutiereetsrg
-t B Auvehastan 201500 26 17 3000

® g o E B o O

Swift mobile platform analysis 48

Figure 19 Screenshots from US 4A

BN geriem ¥ "ws —
CZwick Beschrelbung
BM gespam ¥ “was L1

Ciagrrmianid warom srfolgmioh
i hgegebivg,

3

Akku-Schraubor oK

On

G Gode: Ak Baotysubien- 123
Boscveibung: O, Ak -Schimubar AK 102
Mx

=) (¥ (0]

Figure 20 Screenshots from US 4B

Dbt v
Antaling: Mausvermiiueg
Asieihelatume POYEOV25 17 2000

§ w (9] (0]

US5 is called from the top left corner button shown on figure 21. It opens the
login view to test the connection.

B et ¥ "y - IV prper: © " -

¢ 3 & 2uriich Log In

Gm-mm
O .-
i] e
e

[+

AmbiPur
0Ny
. ‘V Artetshandschube
[&
= e o
= L C‘ o Dwmo Logn

Figure 21 Screenshots from US 5

Swift mobile platform analysis 49

In US6 (see figure 22), it can be noticed that the picture taken is resized in a not

suitable way for the space available. Even though, it just happens sometimes, the error
could not be corrected unfortunately.

N geajmn ¥ s

& O

Figure 22 Screenshots from US 6

BN gescert ¥ L2n] e B pere @ - -
o \

v * ' &fach-Stackocse
O '

@

Akhr .
- Schrauber ~ Baia
u i

b Artsiiwranduchuhe i a - m Blackbamy 230
-
-
-9 .- < - & . -
- o L‘ O L= ! : 2zl

Figure 23 Screenshots from US 7

)

4

(\
O
1

During the development process two new requirements were included. The About
Window and a Filter for the products list. The About Window requirement was included

in the Main flow as an extra sub flow and a new view was added to the design. (See
figure 24)

Swift mobile platform analysis 50

SIM gesperrt = 18:38 -

FH JOANNEUM Gesellshaft mbH
kmu.fh-joanneum.at 2.3 by
Alejandra Bolanos 2014
QRScanner: yannickloriot.com.
Icons: glyphicens.com.
Copyright (c) 2014 FH
JOANNEUM. All rights reserved

Figure 24. About View

The Filter was implemented by adding an option in the top-right description of the
main list view. Figure 25 shows the menu displayed when the filter button is pressed. The
options to filter in the order shown on the figure are: All products, Products borrowed by
me, Available products, Not available products, by organization: All, Business, Home
Administration and IT. Figure 26 shows the selection of the filter: Borrowed by the user.

SIM gesperrt F 18:38 -

< Zurick

Alle

Meine

Verfiigbar

Ausgeliehen

Abteilung: Alle

Abteilung: Geschaftsfilhrung

Abteilung: Hausverwaltung

Abteilung: IT

Figure 25. Menu

Swift mobile platform analysis 51

SIM gesperrt 18:38 L&
%] Q
Beistelltisch
4
Lager 9
Box
4
o5 .
;g Building 5 P
[}
4

nfarmatior

Figure 26. Filter Borrowed by the user selected

4.1.2 Performance measurements
For a better view of the results of the memory and CPU behavior of the

application, the graphics of figure 27 and figure 28 provide the data of the comparison.
The memory usage and CPU load between the Swift application and the Objective C

application.

Memory load (MB) between Swift and Objective

C application
12
10
8 —— e
6 /
4 -—
2
0
us1 US2 US3A US3B USAA US4B uss us7
—— SWIFT OBJECTIVE C

Figure 27. Memory load in Swift vs Objective C application

Swift mobile platform analysis 52

Memory consumption tendency is lower using Swift than Objective C in all of the
user stories, but in US3B and US4B. It can be observed that these two cases are the ones
using the camera during the QRCode scan and decoding. This implementation is using
more memory resources than the application made before in Objective C, it but cannot be
optimized because the camera functionality is programmed through an external library.

The QR Code scan library used is written in Objective C, but it is not the same
used in the Objective C application. This could mean that the way the library is
programmed is less efficient than the one used in the Objective C application.

It can also be observed that the maximum memory consumption ever made by the
application in Swift is 8MB. As considered by Apple, it is a safe amount of memory

consumption for a mobile phone and makes the application suitable for its usage.

CPU percentage load between Swift and
Objective C application

80

70
60 /.\‘\'/
50
40
30
20
10
uUs1 us2 US3A US3B US4A US4B uss us7

—_

Figure 28. CPU load in Swift vs Objective C application

In figure 28, the CPU load in Swift and Objective C applications are compared. It
is clearly observed that Swift application is consuming more CPU processing percentage
than the implementation made in Objective C. The tendency is that the consumption of
the application written in Swift is higher than the Objective C application when ran in the

same device.

Swift mobile platform analysis 53

Findings made by Jesse Squires in his article cited (Squires, 2014) suggest that as
the application is not implemented removing all safety features (array bounds-checking,
integer overflow checking, etc.), the expected result is that the application would be
slower than the Objective C one. This situation will worsen the numbers because an
increase of CPU load indicates that the power consumption should be also higher. It
makes Swift application spend more resources than the version programmed in Objective
C.

Swift application memory load (MB) vrs
CPU load (%)

80 9
70 8
60 7
50 6

) 5
40

_ 4
30 3
20 2
10 1

0 0

Us1 us2 US3A US3B US4A US4B Uss us7

== (P} =—@= [Memory

Figure 29. CPU load vs Memory load in Swift application.
The relation between memory usage and CPU consumption (See figure 29) does

not show any particular behavior that can lead to any conclusion.

4.1.3 Usability test
The corrections suggested in the test were made in the string document of the

application and a second test was made after the bugs were corrected. All US passed the
test. This indicates the KMU Inventory app is suitable for mobile users for its first

approach.

Swift mobile platform analysis 54

4.1.4 Application upload to the store
The previous version of the applications had no problems when uploading to the

Apple Store, but the final version did. The problem found in this stage is described as
follows:

Once all tests ran correctly in the simulators and the devices, the application was
uploaded to the iTunes Store for its final review and got rejected with the following
message:

“Apps that crash will be rejected.

During review, your app crashed on iPad running iOS 8.1.2 when we:

1. Launch the app

2. Select "Demo Login"

3. App crashes

This occurred when your app was used:

- Offline

- On Wi-Fi

- On cellular network

Next Steps

Please revise your app and test it on a device to ensure that it runs as expected.”

When this fault was analyzed to be corrected, it was found that it only happened if
the optimization was enabled. The C-API for Keychain Access used to encrypt the
password makes a call:

let opaque = dataTypeRef?.toOpaque()

This call returned nil and to solve. The optimization had to be disabled. This is a
bug already reported to the language developers and it is a frequently asked question in

Apple’s forums.

4.2 Language learning documentation and Guideline

Swift mobile platform analysis

4.2.1 Guideline

The guideline (see figure 30) was originally created taking into account just the

time it took to learn the ability. Afterwards, it included the amount of times it was used.

influence on the guideline weights. The weight system is included in this guideline to
make the criteria easily measurable for anyone that needs to plan a project. It also

propitiates to add future improvements based on measurable variables of the development

environment in a very organized way,

A linear function was chosen to maintain simplicity. Every variable has a linear

SWIFT’S BEGINNERS GUIDELINE
Mac 0S Encoding and keychain . . Cocoa f N
& . - g ycha . Apple’s auto size Having released an application
- experience management previous . Framework
5 2 . feature experience. to the Apple Store hefore
gz as user. experience. knowledge.
S w-os1 = 1005
z @ [Software Design' Knowledge or Experience in object
§ 5 Patterns experience in Graphic oriented programming.
g | knowledge. | Programming.
@ Objective C | [Basic knowledge Server connection Backend- Library import i0S programming
o - . . - . .
25 basic/beginners of mobile with a mobile frontend and usage environment is
z 38 . .
EQ ?g_ knowledge. structure. platform experience. structure. knowledge. | already set.
& W=0.81 W=10.08 W=3.63 W=1.21 W=2.02
© Knowledge of CPU and | . .
= > - Interpretation of
g8 memory behavior in
o E3 . o memory leaks.
z 33 mobile devices.
U E ¢ |
= Ww=1.21 W=2.42
w B _ﬁ:n Experience as a designer or
g _Q:: ;; with Apple’s design rules.
5%

Figure 30. Swift’s guideline

How to use this Guideline:

*Every skill has a weight and all weights together sum up 100.

*The skills in green are not so important, the skills in orange are important, and the skills

in red are crucial.

Swift mobile platform analysis 56

*This guideline is meant for a learning process of 3.25 months or 65 days. The 100 of the
weight represent the full time.

This guideline helps to calculate the learning time of Swift language and the
programming of an application. It is a reference framework for future developers and
managers incurring in Swift technology to set a development strategy.

The criteria documented in this guideline are validated by the experience
documented through the development of the experimental application for KMU
Inventory. In this way, a guideline for future skills and time planning of Swift learning

process can be consulted in an understandable way.

4.2.2 Wikibook
The learning document is a guide for new programmers in Swift language

uploaded to the Wikibooks site. It is available for modification from anyone. It makes it a
suitable place for information about best practices and suggested procedures to learn the
programming language. This work also encourages the exchange of information of the

Swift community.

4.2.3 Future Work
The evaluation of CPU consumption and memory in this investigation has been

developed using Swift safety feature activated. A further step could be evaluating the
same application removing this feature to prove the efficiency gained or lost.

As Swift is a constantly changing language, a future evaluation comparing the
language to Objective C could result in a very useful piece of information and even the
results can change drastically. It could keep track of the language evolution, and at the
same time, change the low efficiency language image this investigation gives.

Feedback from other developers about their timing and learning experience of
Swift can improve the weights of the guideline. It would lead to more exact criteria of

skills and time needed in this process.

Swift mobile platform analysis 57

5 Conclusions and Recommendations
5.1 Conclusions

-The implementation of the mobile application KMU Inventory app worked as a
reference experiment to create a guideline for future developers and investigators in Swift

language.

-A weight function was built to work as a reference for future developers and managers
incurring in Swift technology to set a development strategy for the time and skills
needed. This criterion was validated through the development of the KMU Inventory

application using Swift language.

-The experience of developing the document about Swift language in a wikibook to be
used as a learning document for guiding new programmers contributes to the

programming community sharing knowledge and helping beginners in the area.

- In Apple’s standards, the application implemented in Swift language does consume a
safe amount of the device memory. That is why it is safe for deploying it to the Apple

store.

-The comparison between memory usage and CPU consumption did not provide a

predictable result; however, this information could be studied to explain this behavior.

-Even though, in average, Swift implementation consumes less memory than Objective C
implementation, Objective C implementation of the KMU Inventory app is less power
consuming than the Swift implementation done in this project. There is a tradeoff

between these measurements.

Swift mobile platform analysis 58

-The user experience test shows that the UX first approach made in the application KMU
Inventory is suitable for mobile users, but it could be improved using feedback from

users and clients.

-Future works can improve this project guideline weights and criteria using the time and
skills needed by new developers as new inputs. It could make the investigation more

trustworthy and stable.

5.2 Recommendations
There can be misunderstandings when working with clients speaking a different

language. Also, it changes the requirements. To mitigate this risk, there has to be a

frequent meeting to show the advances and products being developed.

The storyboard should always be the first feature implemented when
programming a mobile application in Swift language. It shows the structure of the

program and makes the flow of the application clearer.

It is easier to use the tool provided by XCode to measure CPU usage and memory
consumption than the device’s task manager. It will not only provide the results directly
on the computer, but also in the mobile device.

When learning a new language, the creation of an application from scratch leads

the developer to a deeper understanding of the languages functionalities and features.

When programming to upload an application to the Apple Store, a good
understanding of the user experience makes the work faster. It is possible that the
developer does not have experience in this area. Thus, a study of Apple’s rules and

suggestions should be done.

Swift mobile platform analysis 59

References
Anderson, S (2010). Seductive Interaction Design. Berkeley, CA, USA: New Riders.
Apple Inc (2014a). iOS Human Interface Guidelines iOS Developer Library. Retrieved
February 22, 2015 from
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual

Apple Inc (n.d.b). IPad size class [Figure]. Retrieved October 13, 2014, from
developer.apple.com/swift/.

Apple Inc (2014c). Swift iOS Developer Library. Retrieved October 13, 2014, from
developer.apple.com/swift/.

Apple Inc (2014d). XCode iOS Developer Library. Retrieved February 10, 2015 from

https://developer.apple.com/xcode/

FH JOANNEUM (n.d). About US. Retrieved October 15, 2014 from http://www.fh-

joanneum.at/aw/home/~cwd/leitbild/?lan=en

Hanssen, A. (2014). Swift vs. Objective C. [Blog] One Month. Retrieved September 21

from https://onemonth.com/blog/swift-vs-Objective C.

Keiser, G (2015). iPhone 6 boosts iOS market share. Retrieved February 22 from
http://www.computerworld.com/article/2866441/iphone-6-boosts-ios-market-share-

android-slips.html

Kohs, G (2010). What_is_Wikibooks. Retrieved February 2, 2015 from
http://en.wikibooks.org/wiki/Wikibooks:What_is_Wikibooks

Loriot, Y (2014). QR Code Reader. Retrieved November 20, 2014 from
https://github.com/yannickl/QRCodeReader.swift

Nielsen, J (1993). Usability Engineering. San Francisco, (CA): Morgan Kaufman

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual
https://developer.apple.com/xcode/
http://www.fh-joanneum.at/aw/home/~cwd/leitbild/?lan=en
http://www.fh-joanneum.at/aw/home/~cwd/leitbild/?lan=en
http://en.wikibooks.org/wiki/Wikibooks:What_is_Wikibooks

Swift mobile platform analysis 60

Squires, J (2014). Apples to apples Jesse Squires. Retrieved September 10 from

http://www.jessesquires.com/apples-to-apples/

Wilson, C (2010) User Experience. Burlington, MA, USA: Morgan Kaufman

http://www.jessesquires.com/apples-to-apples/

Table 17

Swift mobile platform analysis 61

Appendix

Appendix I: Swift Memory Measurements

Swift memory measurements 1.

UsS1 Peak Memory Lowest Memory Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7805 4 4 280,8

7807 4 2,8 289,8

7811 4 0,92 289,5

7816 4 3,5 289,9

7820 4 2,7 289,8

7823 4 2,9 289,7

7827 4,1 1,9 289,7

7830 4 2,9 289,7

7847 4,1 1,8 288,4

7856 4 2,1 288,6

Table 18

Swift memory measurements 2.

US1 US2 Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7863 53 0,9 288,0

7867 54 2,6 288,1

7871 53 4,1 287,8

7876 54 3,5 288

7879 53 0,45 288,1

7883 53 0,89 288

Swift mobile platform analysis 62
7887 5,3 2,9 287,9
7890 53 2,9 287,7
7895 5,4 1,6 287,9
7899 5,3 0,96 288,1
Table 19
Swift memory measurements 3.
US1 US2 US3 A Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7812 7,3 2,7 294,4
7816 1,7 0,98 294,4
7820 7,8 35 290,7
7826 8,4 2,9 289,7
7830 7,6 2,8 290,5
7835 7,6 2,1 290,5
7839 7,2 2,8 290,7
7843 7,3 1,7 290,7
7846 7,6 1,4 289,9
7851 7,8 3,6 290,8
Table 20
Swift memory measurements 4.
US1 US2 US3 B Peak Memory | Lowest Memory | Other process
Process 1D Usage (MB) Usage (MB) usage (MB)
7855 7,6 3 290,6
7859 7,5 3 290,4
7863 7.4 0,48 289,9
7878 75 2,6 290,7

Swift mobile platform analysis 63
7872 8 0,84 290,7
7875 8,9 2,9 290,4
7879 8,2 0,45 290,7
7884 8,2 1,7 289,7
7888 7,6 0,94 289,4
7893 8,4 0,45 289,2
Table 21
Swift memory measurements 5.
US1 US2 US4 A Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
8003 7,3 3,6 307,9
8008 7,4 14 307,6
8013 7 1,6 305,3
8016 7,3 3,6 306,5
8022 7,3 1,9 307,8
8026 7 3 306,7
8030 7 0,45 306,4
8035 7,4 35 305,4
8039 7,6 0,91 306,2
8043 7,3 0,45 304,9
Table 22
Swift memory measurements 6.
US1 US2 US4 B Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
8047 7,2 3,2 307,5
8052 8,3 3,6 304,2

Swift mobile platform analysis 64
8056 7,3 3 306,2
8060 7,2 2,71 307,1
8066 74 2,2 308
8070 7,2 2,9 308,5
8073 7,9 2,9 304,8
8077 7,3 2,7 305
8082 7,6 2,1 290,9
8086 74 0,78 308,1
Table 23
Swift memory measurements 7.
US5 Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
8091 6,7 3 290,7
8096 6,4 2,6 291
8099 6,4 0,48 291,2
8103 6,4 1,02 291,3
8111 8,5 1,8 288,6
8115 6,4 3 289,7
8119 6,3 1,5 289,9
8123 6,3 2,9 289,7
8127 6,5 1,6 289,9
8131 6,4 0,92 289,9
Table 24
Swift memory measurements 8.
us7 Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)

65

Swift mobile platform analysis
8135 6,8 0,45 289,9
8139 6,4 0,45 290
8143 6,5 1,3 289,9
8147 6,1 3,1 290
8151 6,8 0,45 290,3
8155 6,4 0,48 290
8158 6,4 4,4 289,8
8163 6,8 35 290,1
8167 6,4 3,1 290,2
8171 6,1 4,4 290

Swift mobile platform analysis 66

Table 25

Swift memory measurements statistics.
Statistic US1 us2 US3A US3B US4A UsS4B Us5 us7
Mean 4.02 5.33 7.63 7.93 7.26 7.48 6.63 6.47
Standard
Error 0.01333333 | 0.01527525 | 0.10857665 | 0.15567059 | 0.06359595 | 0.11430952 | 0.21084486 | 0.08306624
Median 4 5.3 7.6 7.8 7.3 7.35 6.4 6.4
Mode 4 5.3 7.6 7.6 7.3 7.2 6.4 6.4
Standard
Deviation | 0.0421637 | 0.04830459 | 0.34334951 | 0.49227364 | 0.20110804 | 0.36147845 | 0.66674999 | 0.26267851
Sample
Variance 0.00177778 | 0.00233333 | 0.11788889 | 0.24233333 | 0.04044444 | 0.13066667 | 0.44455556 | 0.069
Kurtosis 1.40625 -1.22 2.11 -0.19 -0.62 2.10 9.20 -0.98
Skewness | 1.77 1.03 1.08 0.78 -0.13 1.61 3.00 0.03
Range 0.1 0.1 1.2 15 0.6 1.1 2.2 0.7
Minimum | 4 5.3 7.2 7.4 7 7.2 6.3 6.1
Maximum | 4.1 54 8.4 8.9 7.6 8.3 8.5 6.8
Sum 40.2 53.3 76.3 79.3 72.6 74.8 66.3 64.7
Count 10 10 10 10 10 10 10 10
Confidence
Level 4.02 5.33 7.63 7.93 7.26 7.48 6.63 6.47

Table 26

Swift mobile platform analysis

Appendix Il: Swift CPU Measurements

Swift CPU measurements 1.

67

US1 Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7805 15 0 7
7807 40 0 5
7811 68 0 6
7816 24 0 4
7820 35 0 8
7823 31 0 8
7827 66 0 5
7830 26 0 31
7847 26 0 8
7856 33 0 6
Table 27
Swift CPU measurements 2.
US1 US2 Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7863 66 0 31
7867 65 0 5
7871 56 0 4
7876 52 0 6
7879 66 0 5
7883 65 0 15
7887 58 0 20
7890 40 0 27
7895 67 0 5

Swift mobile platform analysis 68
7899 65 0 6
Table 28
Swift CPU measurements 3.
US1 US2 US3 A Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7812 67 0 8
7816 68 0 5
7820 77 0)
7826 54 0 13
7830 56 0 5
7835 71 0 8
7839 52 0 17
7843 55 0 4
7846 65 0 5
7851 85 0 5
Table 29
Swift CPU measurements 4.
US1 US2 US3 B Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7855 47 0 8
7859 51 0 7
7863 52 0 15
7878 59 0 6
7872 66 0 17
7875 54 0 5
7879 65 0 53

Swift mobile platform analysis 69
7884 64 0 15
7888 77 0 5
7893 65 0 5
Table 30
Swift CPU measurements 5.
US1US2 US4 A Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
8003 80 0 50
8008 62 0 46
8013 57 0 49
8016 84 0 59
8022 70 0 62
8026 66 0 68
8030 63 0 47
8035 64 0 52
8039 64 0 58
8043 78 0 67
Table 31
Swift CPU measurements 6.
US1 US2 US4 B Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
8047 73 0 85
8052 72 0 47
8056 50 0 45
8060 56 0 45
8066 72 0 47

Swift mobile platform analysis 70
8070 60 0 46
8073 40 0 47
8077 66 0 45
8082 68 0 40
8086 66 0 45
Table 32
Swift CPU measurements 7.
US5 Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
8091 48 0 6
8096 40 0 5
8099 67 0 15
8103 62 0 5
8111 37 0 6
8115 55 0 7
8119 62 0 19
8123 66 0 6
8127 47 0 7
8131 68 0 5
Table 33
Swift CPU measurements 8.
us7 Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
8135 63 0 7
8139 79 0 6
8143 69 0 12
8147 44 0 17

71

Swift mobile platform analysis

8151 64 0 18

8155 63 0 8

8158 68 0 5

8163 71 0 5

8167 48 0 4

8171 66 0 7

Table 34

Swift CPU measurements statistics.
Statistic us1 us2 US3A US3B US4A Us4B uss us7
Mean 36.4 60 65 60 68.8 62.3 55.2 63.5
Standard
Error 5.536144 | 2.748737 | 3.438346 | 2.871314 | 2.819771 | 3.425558 | 3.641733 | 3.290559
Median 32 65 66 615 65 66 58.5 65
Mode 26 65 - 65 64 72 62 63
Standard
Deviation 17.50682 | 8.69227 | 10.873 | 9.079892 | 8.9169 | 10.83256 | 11.51617 | 10.40566
Sample
Variance 306.4889 | 75.55556 | 118.2222 | 82.44444 | 79.51111 | 117.3444 | 132.6222 | 108.2778
Kurtosis 0.360351 | 2.207444 | -0.56195 | -0.26653 | -0.88488 | 0.479733 | -1.43041 | 0.585705
Skewness 1.122866 | -1.57214 | 0.510205 | 0.331736 | 0.646739 | -1.07906 | -0.4398 | -0.82838
Range 53 27 33 30 27 33 31 35
Minimum 15 40 52 47 57 40 37 44
Maximum 68 67 85 77 84 73 68 79
Sum 364 600 650 600 688 623 552 635
Count 10 10 10 10 10 10 10 10
Confidence
Level(95.0%) | 12.52363 | 6.218075 | 7.778079 | 6.495364 | 6.378766 | 7.74915 | 8.238173 | 7.443761

Swift mobile platform analysis 72

Appendix I11: Objective C Memory Measurements

Table 35

Objective C memory measurements 1.

UsS1 Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7520 3,5 3,5 288,9

7523 3,4 1,7 288,5

7527 3,5 2 288,2

7533 34 2,7 288,4

7536 3,5 3,5 288,4

7540 3,5 1,7 289,8

7544 3,5 3,5 288,5

1547 3,5 1,7 288,2

7552 35 2,1 288,5

7555 3,5 3,5 288,5

Table 36

Objective C memory measurements 2.

US1 US2 Peak Memory | Lowest ~ Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7563 58 2 286,6

7567 6,5 2,3 285,7

7571 5,8 2,1 286,9

7575 6,6 1,9 286,7

7579 5,8 2,2 285,9

7583 58 3,5 285,9

7586 3,4 0,62 287,4

Swift mobile platform analysis 73
7591 6,8 2,4 285
7595 7,6 2 2847
7599 3,4 34 280,4
Table 37
Objective C memory measurements 3.
US1 US2 US3 A Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7600 8,4 35 2844
7605 9,3 3,4 282,8
7609 8,5 2,8 282,9
7613 8,3 34 282,7
7617 7,8 34 282,8
7624 8,8 2,3 282,9
7636 8,4 34 283,9
7641 8,4 34 283,4
7644 8,8 3,4 283
7648 9,7 34 282,4
Table 38
Objective C memory measurements 4.
US1 US2 US3 B Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
8177 6,4 2 289,2
8182 58 1,7 290,2
8185 7,1 35 288,4
8190 5,8 3,5 289
8194 7,8 1,8 289,3

Swift mobile platform analysis 74
8201 6,9 3,5 289,2
8206 6,9 35 289,5
8210 7 2,8 289,9
8214 7,1 3,5 288,9
8219 58 35 290,4
Table 39
Objective C memory measurements 5.
US1 US2 US4 A Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7669 10 3,5 280,7
7678 10 35 280
7683 10,2 2,3 279,5
7687 10 3,4 281,6
7690 10,1 34 280,3
7696 9,9 2,3 280,6
7699 9,9 3,4 280,4
7704 10 34 282
7708 10,1 0,62 281,6
7712 9,5 3,4 277,9
Table 40
Objective C memory measurements 6.
US1 US2 US4 B Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
8223 7,1 3,5 287,8
8227 5,8 1,7 288,4
8231 6,6 1,6 286,9

Swift mobile platform analysis 75
8236 7,1 2,1 285
8240 7,1 34 285,6
8244 7,2 34 285,5
8247 5,8 2,1 285,8
8252 8,3 2,6 285,6
8257 58 2,1 286,5
8260 7 3,4 286
Table 41
Objective C memory measurements 7.
US5 Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7726 7,6 3,5 284.9
7729 7,3 1,8 285,4
7734 7,6 35 285,2
7738 7,3 34 285,2
7743 7,9 2,3 285,1
7746 76 3,4 285,5
7750 8 1,8 285,6
7754 8,4 3,4 285,3
7758 7,3 2,1 285,6
7763 9,1 2,4 2847
Table 42
Objective C memory measurements 8.
URY) Peak Memory | Lowest Memory | Other process
Process ID Usage (MB) Usage (MB) usage (MB)
7767 8,1 34 286,7

76

Swift mobile platform analysis

7770 8,2 3,5 285,4
7774 7,8 34 285,4
7778 7,9 34 287,2
7783 9,2 2 284.9
7786 7,7 34 286

7790 8,4 35 285,3
7794 8,3 3,5 285,6
7798 8,8 34 285,6
7802 8,9 35 285,5

Swift mobile platform analysis

Table 43

Objective C memory measurements statistics.
Statistic us1 us2 US3A us3B US4A us4B us5 us7
Mean 3.48 5.75 8.64 6.66 9.97 6.78 7.81 8.33
Standard
Error 0.013333 | 0.432884 | 0.17075 | 0.216128 | 0.059722 | 0.252894 | 0.181628 | 0.157797
Median 3.5 5.8 8.45 6.9 10 7.05 7.6 8.25
Mode 3.5 5.8 8.4 5.8 10 7.1 7.6 #N/A
Standard
Deviation 0.042164 | 1.368901 | 0.539959 | 0.683455 | 0.188856 | 0.799722 | 0.57436 | 0.498999
Sample
Variance 0.001778 | 1.873889 | 0.291556 | 0.467111 | 0.035667 | 0.639556 | 0.329889 | 0.249
Kurtosis 1.40625 | 0.30762 | 0.731908 | -0.90881 | 4.619617 | 0.020667 | 1.87895 | -0.81565
Skewness -1.77878 | -0.94373 | 0.715036 | -0.09 -1.8112 | 0.23501 | 1.417603 | 0.508649
Range 0.1 4.2 1.9 2 0.7 2.5 1.8 1.5
Minimum 3.4 3.4 7.8 5.8 9.5 5.8 7.3 7.7
Maximum 3.5 7.6 9.7 7.8 10.2 8.3 9.1 9.2
Sum 34.8 57.5 86.4 66.6 99.7 67.8 78.1 83.3
Count 10 10 10 10 10 10 10 10
Confidence
Level(95.0%) | 0.030162 | 0.979253 | 0.386263 | 0.488914 | 0.1351 | 0.572087 | 0.410872 | 0.356962

77

Swift mobile platform analysis 78
Appendix IV: Objective C CPU Measurements
Table 44
Objective C CPU measurements 1.
Us1 Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7520 7 0 7
7523 66 0 37
7527 31 0 5)
7533 21 0 4
7536 6 0 4
7540 66 0 7
7544 6 0 6
7547 66 0 5
7552 29 0 2
7555 6 0 5)
Table 45
Objective C CPU measurements 2.
US1 US2 Peak CPU Usage | Lowest CPU Usage | Other processes
Process 1D (%) (%) (%)
7563 43 0 9
7567 45 0 5
7571 47 0 4
7575 46 0 6
7579 50 0 10
7583 41 0 6
7586 61 0 5

Swift mobile platform analysis 79

7591 45 0 6
7595 43 0 7
7599 40 0 3
Table 46

Objective C CPU measurements 3.

US1 US2 US3 A Peak CPU Usage Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7600 38 0 5
7605 47 0 4
7609 48 0 11
7613 50 0 5
7617 43 0 5
7624 49 0 6
7636 40 0 9
7641 37 0 4
7644 45 0 32
7648 45 0 5
Table 47

Objective C CPU measurements 4.

US1 US2 US3 B Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
8177 64 0 5
8182 67 0 5
8185 54 0 7
8190 58 0 5
8194 61 0 10

Swift mobile platform analysis 80

8201 64 0 26
8206 69 0 6
8210 63 0 4
8214 58 0 6
8219 41 0 10
Table 48

Objective C CPU measurements 5.

US1 US2 US4 A Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7669 41 0 33
7678 50 0 7
7683 42 0 5
7687 44 0 7
7690 51 0 6
7696 52 0 21
7699 41 0 7
7704 42 0 7
7708 59 0 8
7712 47 0 2
Table 49

Objective C CPU measurements 6.

US1 US2 US4 B Peak CPU Usage Lowest CPU Usage | Other processes
Process ID (%) (%) (%)

8223 64 0 9

8227 67 0 9

8231 65 0 30

Swift mobile platform analysis 81
8236 59 0 6
8240 57 0 4
8244 60 0 5
8247 47 0 4
8252 60 0 5
8257 52 0 6
8260 53 0 8
Table 50
Objective C CPU measurements 7.
US5 Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7726 47 0 6
7729 46 0 6
7734 41 0)
7738 41 0 4
7743 46 0 14
7746 47 0 6
7750 45 0 4
7754 44 0 4
7758 43 0 4
7763 46 0 5
Table 51
Objective C CPU measurements 8.
us7 Peak CPU Usage | Lowest CPU Usage | Other processes
Process ID (%) (%) (%)
7767 42 0 5

Swift mobile platform analysis 82

7770 45 0 4

7774 45 0 5

7778 44 0 5

7783 43 0 7

7786 43 0 11

7790 38 0 7

7794 39 0 9

7798 51 0 7

7802 42 0 6

7767 42 0 5

Table 52

Objective C CPU measurements statistics.
Statistic Us1 us2 US3A US3B US4A US4B uss us7
Mean 30.4 46.1 44.2 50.9 46.9 58.4 44.6 43.2
Standard
Error 8.317585 | 1.894143 | 1.451436 | 2.531798 | 1.9 1.989975 | 0.718022 | 1.133333
Median 25 45 45 62 455 50.5 455 43
Mode 66 43 45 64 41 60 46 42
Standard
Deviation 26.30251 | 5.989806 | 4.589844 | 8.006248 | 6.008328 | 6.292853 | 2.270585 | 3.583915
Sample
Variance 691.8222 | 35.87778 | 21.06667 | 64.1 36.1 30.6 5.155556 | 12.84444
Kurtosis -1.51678 | 4.438447 | -1.18622 | 3.038582 | 0.037567 | -0.47212 | -0.88634 | 1.970208
Skewness 0.596322 | 1.904056 | -0.43643 | -1.53988 | 0.853233 | -0.44383 | -0.73181 | 0.810281
Range 60 21 13 28 18 20 6 13
Minimum 6 40 37 41 41 47 41 38
Maximum 66 61 50 69 59 67 47 51
Sum 304 461 442 599 469 584 446 432
Count 10 10 10 10 10 10 10 10
Confidence
Level(95.0%) | 18.81568 | 4.284849 | 3.283377 | 5.727324 | 4.298099 | 4501636 | 1.624279 | 2.563778

