Tecnologico
de Costa Rica

I Duale Hochschule

Baden-Wirttemberg
Karlsruhe

TEC

INSTITUTO TECNOLOGICO DE COSTARICA

AREA ACADEMICA INGENIERIA MECATRONICA

PROYECTO DE GRADUACION: Documento Final
""3D scanning and detection of objects for a subsequent manipulation by a collaborative
robot*
Institution where project will be developed: Duale Hochschule Baden Wuertemberg

(DHBW) University. Karlsruhe, Germany.

Profesor asesor: Prof. Dr. Juan Luis Crespo Marifio

Profesor guia: Prof. Dr. Clemens Reitze

Ejecutor: Alejandro Alpizar Cambronero

Carne: 200929524

Fecha: 22-06-2016

Content

TR 1011 (0T [o1 1T o PP 9
P @] oY (=) (o) 1 L=] (0] [o] PSS 11
M. Definition Of the ProbIEMoo ettt e 20
[T O 1 V7= VT S 20

i, Problem SYNTNESIScoi it 23
IV. Yo] (U1 dTo] g Jr=T o o] (0= Yol o USRSt 23
V. Cause — Effect Diagrams (ISNIKAWA)cccveiviiiiiiiiiecc et 29
VI. (O] o= Tox 1)Y= TSRSt 31
[T €= 1= = T @ o [T 1Y S 31

TS o 1o |1 o3 @ o = od 11 =2 S 31
VII. Project @XeCULION PrOCEAUIEcoccviiicie e eieeecteeertreetre et e staeestaeesteeesraeessteesareessseessteesareesaees 33
AV @ T o] g oo [ir= 1 g 10 (0] = Tod 1AV 1T TSR 35
. Gantt diagram fOr TASKSc.eeeciiiiie ettt e et eenra e s e e e srre e 38
IX. Budget and expenses fOr the PrOJECT ... 39
X. Solution's detailed deSCHPLIONcei ittt sere e srre e s rbeesareesanes 41
i. Selection of the RODOLC ANociiiiiieieee ettt s saeeneens 41

ii. Communication (Transport) ProtOCOIS...........ccviiieiieieeeeece e 43

1. UDP ProtOCO] ... eiiieiee ettt ettt e sttt e e s st e e e e s st e e e e e e e ae e e e e e e naabaaee s 43

N N € o) oYl | OO PP PTPPTN 44

3. Error Codes for SOCKEt Programming........ccoccciuiiieeeiiiiiieeee e eecitte e e e e ectare e e e s e saarae e e e e s ennaaeeeaeeaas 48

iii. Setting up the programming ENVIFONMENT..........ccceeiieiieiiieiece et sre e 49

1. Programming laNGUAEE ...ccccccuueeiiiiiiiiieieeeeee et e e e e e e e e e e e e e e se e s e ss e aaareeb b e eeeereeeeeeeaeeaeaeeeeesessenssnanannes 49

B - =T [o] OO PP PP OPPTPPPRN 49

T = TW 1T [T =Y Vo I et o oo 11 =T U UTRN 49

I | = 1 L= USRS R 50

iv. Programming Light Section Sensor Communication............cccceevvevieveecieeneerieecre e 50

1. Important safety INdICAtiONScccuviiiiie e e e e e e e nrraeeeas 51

2. Operation Principle of the Light SECtion SENSOIcccccuiiiiiiiiccieeee e 53

3. Mounting and connection of the SENSONc..uviiiii i e 57

4, CommuNication ProtoCOl StrUCTUME.......ueiiiiiieiiiiee ettt e e saae e s sbae e e saeeee s 59

5. Programming the LPS COMMUNICATIONciiiiiiciiiiiee ettt e st e e e e aerae e e e e 66

v. Programming the Object Detection and Recognition Phaseccccoevvevveciieceeciecce e, 76
1. Selecting the programming toOl.........cccoiiiiiiiii i e e 76

2. Setting up the programming ENVIrONMENT.........ceiiiiiiciiiieieeieiciireee et e e e eecrrre e e e e e esbrreeeeeeeans 76

3. Vision SOIULION PrOPOSal...cccciiieiiiiiiiiiiiie e eecccccccccrtrrrrreeee et e e e e e eeeeeeeeeeeeeeeessssssssssssssssssrsssenees 78

4. Developing the SOIULIONccii e e e e e e e re e e e e e s eanraeee s 78

5. Edge detection algorithmiuiiiiiiie e e a e e 81
Vi. Programming UR COMMUNICALIONcceevuieiiieiecieciecee ettt ste et ae e e e 83
1. Getting 10 KNOW the URBG......cooiiiiiie ettt e e e e e et tre e e e e e e ebtae e e e e e eennaaeeeas 83

Y- | 1Y VAo] i 1 V=T U 1 PSPPI 85

3. Kinematics Of the PrOJECTccueeiiiiei e e e e s et e e e e e e saaraeeeeeeaas 86

4. Initialization Of the URS ..ot 87

LT I 1= oo TP PP PRI 88

6. Afirst approach to handle LPS SENSONuiiiiiciiiiiee ittt e e s e e e s saraeee e e e 89

7. DEFINE @ PIANE et e e e e —— e e e e e s bbaeeaeeenaanraeeaeeaaas 89

8. Programming the FODOTccooeiiiiiei e e e e et e e e e e a e e e e e eas 91

9. ReSUILS OBTAINEAeeiiiiiieee ettt et e e st e s ab e e e ssabe e e ssabeeessabaeesnane 92
10. Problem PreSENtEd ... e e e e e e e e e e rraae s 92
11. ASSESSMENT OF AMAZE .. ieiieiiee et e e e e e e s s satre e e e e e s snrbaeeaeeenas 93
Vii. INTEGIAtiON PRASE ..ottt st sn e b 94
i o ToTo I {1 I U PO T PP P OPUPPP 94

2. PerspeCiVe COTECLION ..uiiiiiiiiiiiiiie ettt e et e e e e e e eeeaeeeeesessessssssaasasssssnbenseeneeaees 94

B 1 Y= F= Lo Y 1] 4 1SRN 98

N o VAN oo 1o {10 T 14 (o o VPRSPPI 100

5. Bestfit (Circle and reCtangle) ... e aa e 101

6. Improvement of UR Programccoo oottt e e e e e e e e e e e e e e e e e e e s e e asen e e s aaaaeeeseeeeees 102

Y o T=T=To I [y o o] e 1VZ=T o T=T o | PSPPSR 104

8. Best fit for rectangles, circles and triangles.........eeviiiiciiiiii i 107

S T 070 0 oY o - V=4 | (=T 3 107
10. Analyzing gradients on each 0bject...........ooo oo ——— 109
XI. SOIULION'S ANAIYSIS ...neeeeieiieeee ettt sttt ee e te e ae e se e seeseenseenseeneas 113
i. Leuze SeNnsSOr Programimingc..ccecererereerereneeeessessesseessesessessesseessessesseessessessesseessensenses 113
i, UR Programiming.........coccoeeieiereneeeeese sttt sttt ese et ssesse s ssesbesae s eneesneese s ensennes 113

ii. Image recognition ProgrammMiNgG........cccccecieerieriereeseesreeseesreesreeaesreseesaesseesseesseesseesseesseenns 114

iv. INTEQrAtION PRASE....cciieiece ettt et e et e et e st e erteeaaesnaenraens 115
V. FiNal COSt Of the PrOJECE ...c.eeieeeeeeeeeeee et e et eneas 116
X CONCIUSIONS. ...ttt sttt s bt bt et e b s b sbe e st e b e sbeeat et et e sbeeseensennes 117
X, Recommendations and FULUIE WOTK............ccocueiriririirienenieieseseee e 117
[T | ¢ o 0)Y7=T 0 4 1= T oo 1 1SS 117

TR @ Tolod [V E={To] o T =To] AV o o [S 118
iii. Use of POINt CIOUA LIDFAIYoouiieiiiececeeterteseee ettt re e 118
iv. Use Of QL 1O Create @n IDEc.oooiioiiee ettt et be e e ennes 118

D QLY = 10 [ToT o | = o] oYU 120
b VA Y o] o =1 g o [T q=T =T ox 17] o IO URRRSPRSRPRN 123
i. Appendix A: Acceptance letter from DHBWcocooiiiieiiececiecece e 124

ii. Appendix B: AutentiCity DECIAration............cceoerueririeiieninieeeese e 125
i, AppendiX C: Final EVAIUALION.........cccooiiiiirieereeeees e 126
iv. Appendix D: Contact information from professor at DHBW...........cccccvevieiinenenienienne. 127
v. Appendix E: Objects available for reSearch ... 128
Vi. Appendix F: Makefile used for the Leuze programccccccevereeieneneeeenenieneeeeneenees 129
Vii. Appendix G: Different images acquired With LPScooiiiiiiieeeee, 130
viii. Appendix H: Error detected When SCaNNINGcovevererinieieeieeeeeeeeee e 131
iX. Appendix I: Sample of data file with COOrdinatesccceveririeieninieceeeeee 132

X. Appendix J: Receipt of repair Of LPS SENSOT.......cccooiiiiiiiieieieieeeeeeseeee e 133
Xi. Appendix K: Codes developed for final SOIULION.........ccccoviievininiieeeeeeee 134

[[T T 11 L= o T ol I8 PRSPPI 134
Code for LPS Scanning With URcoooiiiiii ittt e e e s e e e e e e e eeeeeeees 138
Code for UR robot SCANNING SEQUENCEcccceiiiiiitiiiiiiiiieeeieeereeeeeeeeeeeeeeseeessssssasnnssssresssseeseeeeeees 160
Code for Image detection and classifiCationcccuviiiiiiiciiii 161

I Lo (= R I 1 ol a T o Lo o= o [35

Table 2 Tasks chronogram (CoNtiNUALION)cccueiiiieeiiieiieceece ettt ees 36
TaDIE 3 LISES Of COSES ...ttt sttt te st e se et e s tesseeneetensesneennens 40
TADIE 4 LPS HEAUEK ... ettt ettt ettt ettt eteentesnteeneeentesneeeas 60
Table 5 Status INterpretation Of LPS........o ettt re e st be e s 62
Table 6 Commands iN MEASUIE MOUEceeviirieriereeeere et e e teete e srae e e sraesreesreenseenseenses 63
Table 7 Commands in COMMANA MOUEocviiiiiiiceereecee et e e re et et esaesnaesraeees 64
Table 8 Sent and received message from LPS ..o s 69
Table 9 SAfEtY INTEITACEccvieeeeec ettt e b e et e et e e b e s naesreenees 85
Table 10 Different results obtained With filters ..o 100
Table 11 Areas COMPAIISON......ccccieiiieeiieeiieesteesteesteesreessteesreesseessteesseessseessreessseessseesssessssesssseensns 108
Table 12 Possible rectangle shaped profilesS...........cooiiiiiiiniieeee e 109
Table 13 Real budget Of the PrOJECTccueoiiiirieiee s 116

Figures content

Figure 1 Variables to consider during realization of the project.........ccccvcvevveeicieccie e 28
1o T 1A = (0] o] (= o PSR 29
FIGQUIE B PTOBIEM 2 ...ttt sttt st ae et b bt sae et et i 30
FIGUIE 4 ProbIEm 3 ...ttt st ettt sb e bt et et sbeeae et e be e 30
Figure 5 Chronogram for NOVEMDETccuiiii ittt 38
Figure 6 Chronogram fOr DECEMDETcuv ittt e reene e 38
Figure 7 Chronogram fOr JANUAIYcceeiieecieecieeie ettt sttt st e teestaesteesteeste e be e te e beesteenreenreens 38
Figure 8 Chronogram for February and March ... 39
Figure 9 Robotic arms at DHBW: (a) ABB IRB1600. (b) ABB IRB140. (c) URS5. (d) UR1O0. 42
Figure 10 Image from: National INStrumentS. WWW.NIL.COMcccveiirirerieienienieeieiesee e 44
Figure 11 CommuniCation QIAgIam.........ceeviieiieeiieiieie e ete et e e st eseeseeesreesteesseesseesseessesssesnseensenns 45
Figure 12 UDP and TCP DIAQraIMScccveviieiieeiieieeiecreete et seeeseesteesteessaesseesteesseasseessesssesssesssesssenns 46
Figure 13 Error codes for Socket Programmingcccceevveeieieeiiesieseeseeseesieesieesseesreesveesaeeseeneens 48
FIQUIE 14 LASETr WAININGeecveiivieiiieieecie et et et esteeteetesveeaesseesseessaessaessaesssessaesseesseesessseesesseensesnsenns 51
Figure 15 Laser prevention iNStruCtions Part Lccccoe e iiiciee et 52
Figure 16 Laser prevention iNStruCtioNS Part 2c.cocveiieoiiie et 52
Figure 17 Laser prevention iNStruCtioNS Part 3c.cooveiieiiiirie et 53
Figure 18 Leuze LPS funNctioning SCREMIEc.ooiieiice et 53
Figure 19 OCCIUSION ON LEUZE LPS ...ttt ettt st snn e 54
Figure 20 Distance sensor-object vs. Resolution Of [ECIUIEccceevveiieiievieeeceeceee e, 56
Figure 21 AlIgNMENt Of LEUZE LPS ...ttt te e sttt e s te e s ae e snre e enes 57
Figure 22 Screen output fOr @ligNiNgcoceereeiieieeee ettt e eeenneens 57
Figure 23 Temporal mounting base fOr LPS ...t 58
Figure 24 LPS connectors. Image from Leuze ElectroniC (2014).......cccceceveveeieveneneneneneneenen 59
Figure 25 LPS general @lgorithimcoci ottt ettt 64

Figure 26 Sample of NEAUET fIlEcc.oiirieieeee e 67

Figure 27 INCIUAEd IDFAMIESc.veeivieieeieeeee ettt sttt e be b e e be e beebeenreenneens 68
FIgure 28 FirSt SCANMING SCEMEoovieieeieeteete ettt te e te st ste e st e steesteestaesbaesteesbe e beeteesteenteenteenseans 69
Figure 29 Obtained profile. Signal z in 1/0 mm. Signal X in 1/20 MM.ccccccovvvievcieenieecee e 70
Figure 30 Measuring manual surface with millimetric bottom for simulating movement.............. 70
Figure 31 Mesh of ODtaINEd IMAGEco.eiiiiiieeeeeee et 72
Figure 32 Mesh obtained, SECONA VIEW..........ceccuiiiieiiiierie ettt ve e st e e seee s 72
Figure 33 Dots image With GNU PIOL..........c.oooiiiiiicece ettt te et e ens 73
Figure 34 Dots image With MESNLADcc.ocoiieiiiiceceee ettt et ees 74
FIQUIE 35 PIY NEATET ...ttt ettt s e s be e s te e be e be e beeste e beenteenteenteens 74
Figure 36 LPS measuring fIOWCNAITccuvi ittt ettt 75
Figure 37 Cmake configuration for building OPenCVcc.cerieiiiininieeieeeeese e 77
Figure 38 Explanation of transformation to grayscale image........c.ccoeeveeveveneeieneneneeeseneeeenen 79
Figure 39 Opening image from i@ ..o e ens 80
Figure 40 3-Channel XYZ IMAQJEcccveiieiieieeie ettt sttt et ste e teebeeteeteevesssesaseessesnsesenessnenns 80
Figure 41 First graySCale IMAGEeccveiiieieeieee ettt et e e e s e e sraesbeesteesbeesbeeste e beerteenseenseens 81
Figure 42 Original IMage IN OISccve ettt te e s te e s e e s e e srteesraeesnteeenns 81
Figure 43 First €dge AeECHION........ccccie e et e e e s te e s te e sate e srtaesnteesnteeenrs 82
Figure 44 Canny with low threshold Of 10..........ccoooieiiiieeeeee e 82
Figure 45 Canny with low thresShold Of 15.......cc.coiiiiiiie e 82
Figure 46 Canny with low threshold Of 20............ccceriiiiiiiececeeee e 83
FIQUIE 47 URS JOINTS ...ouiiiieieeiestee ettt ettt ettt st e sttt s e s taesteesteesbaeste e teenba e seesseenteenseenseensenns 84
FIQUrE 48 URS WOIKSPACE.......c.ueeitieiieieeieeteee ettt te s te st saa e s taesraestaestaesteesteebaesseessaenteenseenseensenns 84
Figure 49 UR Teach Pendant and Emergency BUONccooviieeiieiie it 85
Figure 50 ROLALIONS' MALIIXcccueiiiieiiie e see et ste e ste e st e s te e ste e st e e sateesateesateesateesntessnseesnsessnses 86
Figure 51 Rotation and TransIation MAatriX..........cceveririeiereninieere e 86
FIQUrEe 52 JOINTS PArAMETEIS ...c..eeiieieecieeteete ettt ete e teeteseeesraeseeessaessaesseesseesseeseesseensesseensensenns 87
Figure 53 UR iNItialiZatiOn SCIEEMcc.eeciieiieieee ettt e s ste e re e te e se e beenseenseenseens 88
FIgure 54 URS ACtUAI GFIPPENccueeieeieeieeieeie ettt ete s teste st e staesteestaestaesteesteesba e seeseesteeseensennsenns 88
FIgure 55 URS FEAIUINES SCIEEN........occieeieeieeieete ettt et ete et ste e st s e e teesbaesteesteesbeesbe e teenteenteenteenseans 90
Figure 56 Defining the Measuring PlANE ...t e st esare e e 91
Figure 57 UR basic algorithm for @ firSt SCANcoooieeieie e 91
Figure 58 First scan obtained With URccco it 92
Figure 59 First scan obtained wit UR in Me@ShLaDcccoeoiiiiiiiiieceeeeeeeeeee s 92
Figure 60 Damage t0 LPS'S CONNECIOIScccuviiiiieeieceeseesttesie ettt et sve e st e e saaesnee e 93
Figure 61 Image obtained with UR iN graySCalecccecvuviiiiiiiieceeeeese ettt 94
Figure 62 Scan with flood fill at different Values............ccovieiiieiiiiieecece e 94
Figure 63 Original location of IMage IN Gridcceeeceeiieiiee e 95
Figure 64 New location of iIMage iN Grid.........coeoieieiie e ens 95
Figure 65 First proportional image ObtaiNed.............covriiiiiiniiieeee e 96
Figure 66 First proportional image obtained (with flood fill).........cccccveveeeieiiecie e, 96
Figure 67 Image with Canny with two different values...........ccccoovevieveeciinicsecec e, 97

Figure 68 FirSt CONTOUN OETECTONccuevuirieiiterieeiteie sttt sttt sttt sttt eae et sbe b saeebenbesaeas 97

FIQUrE 69 BIUI @XAMPIE ..ottt st s e s te e s be e be e beeste e beenteenteenseens 98
FIgUre 70 Dilate EXAMPIE ..ottt ettt et ae st e st e s ba e s beeste e be e beeste e beenbeenteenreens 98
FIQUIe 71 Erode EXaAMPIE.......ccuie ettt sttt et e s te e st e e s te e sate e sateesnteesntaesnteesnraeenes 99
Figure 72 Approximation With POIY APPIOX........cccuiiieeeiieeieeeirieeieeesteeesieeesseeesseeesseeesssesssnsesssssssneans 101
Figure 73 Best fit Circles and reCtangles ..o 102
Figure 74 LPS and UR algorithm. PArt 1c.cccoveiieciiiieeie ettt sae e e 103
Figure 75 LPS and UR algorithm. PArt 2ccoovieiiiiice ettt s 103
FIQUIE 76 SCAN L EVEIY 2IMIM c..eiiiieieeieeieeie et eve et ette et e st e ste e s e e s raesteestaessaesbeesseesseenseenseenseensesssennsas 104
FIQUIE 77 SCAN 2 EVEIY 2IMIM c..eiiiieiieeiecte ettt ettt e et e saaesaaesaaesteesteessaesbeesteenbeenbeenteenseenseensenanas 105
Figure 78 Every 2mm image fILEred..........ov ittt 105
Figure 79 Canny and edge detector for every 2mm image L........cccceverieieneneneenieneneneeeenene 106
Figure 80 Canny and edge detector for every 2mm iMage 2........ccccoevereeieenenenienieneneseeeenaee 106
Figure 81 Best fit for rectangles, circles and trianglesccccovveveereerievieseerereeeee e, 107
Figure 82 NUMDEIEd ODJECLSccueeieeiecieeee ettt e b e e beenreeanas 108
T [0 IR Il = 10 41T RO 110
1o WS IR ST TY o PRI 110
1o WSTR[o [T PRI 110
Figure 86 Gradient analyzing ProCEAUIE..........coci ittt sae e e eeees 111
Figure 87 Final image for USEr iNTEITACEcoevieiiriiriieeeeesee e 111
Figure 88 Information Printed 10 USENcvieciieiecieeece ettt eare s 112

Dedicatoria

"A mis padres que estuvieron durante todo momento dandome apoyo y fortaleza, y que
me hicieron creer que toda meta es posible de alcanzar.”

I. Introduction

The present document is a brief description of what the project "3D scanning and
detection of objects for a subsequent manipulation by a collaborative robot" will be
about, and how the solution will be approached. The project is developed as a final
requirement to obtain the degree of "Licenciatura” in Mechatronic Engineering at the

Tecnolégico de Costa Rica.

On the first part, the context of the project will be presented. It will be introduced
different applications for 3D mapping technologies that can be found nowadays, as well
as the different algorithms that are commonly used in this type of applications. It will be
presented an outlook of some of the obstacles that might occur when handling this type
of technology, and also the main authors and documents that were used to build a

prospect of the realization of the project.

On the consequent part, it will be defined the problem to be resolved, with the
environment where it will be developed. Also, the main problem will be divided in
several steps, to facilitate the achievement of the overall project. Finally, it will be

presented the motivation for the interested part to develop a project of such nature.

The next section will describe a strategy proposed to approach a solution for the entire
project. It will be explained in more detail what each stage of the solution consist, and

how every one of them is intended to be resolved.

Ishikawa diagrams will be used as a tool to identify different problems present on the
work, and the possible root causes that may be inducing each problem. After this, the
Objectives section will present both the general and specific objectives for this project,
together with a specific indicator for each objective.

In the "Project execution" section, it will be detailed a list of steps to realize, to achieve
the goals of the project. After this, a Gantt Diagram will be presented as an approximate
to distribute time efficiently for the project. After this, a small summary of the expenses

of the project will be presented, to understand the impact and feasibility of the project.

On the Solution's detailed description section, it will be described with detail all the steps
that were taken to develop the project and to achieve the desired objectives. This
section will be sub-divided to present the solution for each phase independently, with a

final integration phase that connects all the solutions developed.

After presenting the solutions developed, an analysis section will be described, where
the strengths and weaknesses of the project will be described. Followed by this section,
the conclusions of the project will be stated and after this, it will be presented a section
that mentions different recommendations and future work that can be developed after

this project, to give continuity and achieve more goals on the future.

Finally, it will be presented a list of the sources and authors used to develop this

document, as well as the important documents in the corresponding Appendix section.

10

II. Context of the project

In this section, it will be presented some of the most common uses that 3D mapping
has, not only in industry but on the Research and Development area (R+D). The ability
to obtain tridimensional information of certain space has been increasing over years,
and different technologies to achieve this are applied nowadays. Some of the
techniques and algorithms used will be presented on this document, as well as some of

the obstacles that usually present in this type of applications.

The evolution of robotics brings new opportunities for human development. Every
progress made in the research of new technologies brings not only benefits, but also
makes noticeable the deficits that had not been detected previously on the various
areas of growth among robotics and related areas (Sofge, Potter, Bugajska and Schultz,
2003). Robotics develops in a variety of shapes and functionalities, and it is evident
that acquiring abilities inspired in nature are one of the main goals among researchers.
Giving a robot the ability to interact with the world in a more real approach is one of the
main interests in robotics. One of the abilities desired in robots, that is inspired in nature
and also in human abilities is, the sense of sight. To achieve these, there are several

attempts that are still on the spot of researchers, and that have grown in the last years.

The 3D scanning has become the attempt to document the real world and understand it
better. There have been developed several techniques among time. As Ebrahim (2014)

states:

3D laser scanning developed during the last half of the 20th century in an attempt
to accurately recreate the surfaces of various objects and places. The technology
is especially helpful in fields of research and design. The first 3D scanning
technology was created in the 1960s. The early scanners used lights, cameras

and projectors to perform this task. (p.4)

In the beginnings of robotics and development of technology, "blind" machines were
helping humans to fulfill their needs, but with the advance on both of them, the needs

increased, and with them the demands of evolved abilities for this robots. "Over the last

11

years, various research groups have made substantial progress in recognition and
manipulation of everyday objects" (Krainin, Henry, Ren and Fox, 2011, p.1), and many
different techniques have been developed for acquiring this 3D information. In this
document, some of the techniques for 3D scanning will be discussed as a reference.

There is for example, the use of RGB-D cameras. These specialized cameras capture
images as a common RGB camera, but they also capture depth information per pixel.
They get important visual information that is very helpful for loop closure detection
(which will be discussed further later). However, using RGB-D cameras has its
disadvantages. They have limited distance for information acquisition, the noise level on
the measured distances can be problematic depending on the application, and they also

have a restricted view angle (Henry, Krainin, Herbst, Ren and Fox, 2010).

There are many other restrictions or problems when using a camera technology for
acquiring 3D information, such as the light conditions in which the applications is
developed. The lack or excess of light or the uncontrolled conditions of it may cause
shadows or faulty information, which may affect the measurements of depth among
objects and scenarios. To avoid this problematic, laser technologies have been
implemented to get depth information, that is not affected in the same way as cameras
by the light on the environment (Valencia, Teniente, Trulls & Andrade-Cetto, 2009).

There are many attempts developed with both camera and laser technologies. Both of
them have their own advantages and disadvantages. By one side, the cameras provide
3D information with less cost for the hardware. Collet, Berenson, Srinivasa and
Ferguson (2009), for example, developed a vision system with a medium resolution
camera that was able to detect the position of particular objects, and give further
instructions to a Universal Robot to grip those objects. However, their method needed a
previous training phase for the vision system, in which the computer was given the
information of the possible objects to be observed. Needless to explain, this is a very

restricted approach if there is a necessity of identifying a wide variety of objects.

The project that is to be developed has two main phases: on the first stage, the intention

is to develop a vision system with laser technology for creating a 3D image of a given

12

surface with a variety of objects. The system will be used in an indoor environment,
however it is desired to measure the scope of the solution under different conditions,
especially illumination, to measure the capability of the system to operate under
uncontrolled conditions and which would be the restrictions of the system for this
variables. On this first stage, it is also desired to apply vision techniques that will allow
the system to identify, segment and locate the objects on the given surface (it could be
for example a table or a box). This stage will take most part of the project, since it is the
goal to create an optimum system which will be time and memory efficient. The second
stage comes after having the information classified. Once the needed information is
processed, it will be transmitted to a Universal Robot (UR), which will be programmed to
grab each item and complete a function (dispose, package, pile, classify the item, etc.).
Both stages will be discusses with more detail on this section, to understand better the

context in which they will be developed.

First of all, the environment for the project needs to be defined. There are several
applications currently for 3D mapping. They can be mainly classified within two
categories: outdoor and indoor applications. For outdoor applications we can mention
mainly navigation, either street navigation or building navigation. Despite building
navigation could happen within doors, it can be considered outdoor, since there are no
illumination controlled conditions and also a wide variety of static and dynamic
obstacles may appear. The application desired is going to be operated on indoor
environments, so there is no need to deepen on outdoor applications, however there
are important contributions on 3D mapping on previous studies for outdoor
environments that will be taken into consideration, especially the ones from Henry et al.
(2010), Valencia et al. (2009) and Hornung, Wurm, Bennewitz, Stachniss and Burgard
(2013).

For indoor applications, there are still several conditions to be specified for this project.
Inside mapping could be implemented for static scenes or for scenes where objects can
move, which will lead the investigation to a completely different course. For the purpose

of this application, a static scene will be the situation of study. Therefore, we need to

13

study the strengths and weaknesses of 3D scanning laser methods for indoor static

environments.
As Henry et al. (2010) mention in their study:

Building accurate, dense models of indoor environments has many applications
in robotics, telepresence, gaming, and augmented reality. Limited lighting, lack of
distinctive features, repetitive structures, and the demand for rich detail are
inherent to indoor environments, and handling these issues has proved a
challenging task for both robotics and computer vision communities. Laser
scanning approaches are typically expensive and slow and need additional
registration to add appearance information (visual details). Vision-only
approaches to dense 3D reconstruction often require a prohibitive amount of
computation, suffer from lack of robustness, and cannot yet provide dense,

accurate 3D models. (p.13)

Hence, it needs to be taken into consideration the characteristics of specific
components that might be troubling when scanning. For example, any part that has lack
of distinctive features among its body could be challenging to scan, since there are no
points of reference when computing the full 3D image. There is also an important need
to take into account the type of light that will be used on the working area, as well as the
time for the scanning and the amount of memory required for each scan, without giving
up resolution of the objects of interest. For this, different algorithms previously
experimented will be studied, to determine the best one that satisfies the limits

established for time and memory consumption.

As mentioned before, considering the illumination is important, despite the application
using a laser scan and not a camera. Laser scans are a type of Time-of-Flight sensor.
They use a light source, which could be a LED or in this case a laser. They also have
an array of pixels that detect and measure the incoming light and its correspondent
phase. This will be used to determine the distance from a specific point on space. The
measure of received light depends not only on the distance of the object, but also on the

reflectivity of the object that is been evaluated. Therefore, the light present on the

14

surroundings does affect the measurements and should be considered. To get a better
resolution of the scanned objects, an option would be to utilize a higher power laser, but
this would increase the power consumption and overall cost of the system. Another
option to avoid this would be to reduce the scanned area or to extend the scanning time
of the object (Gokturk, Yalcin and Bamji, 2004). There are then three variables that
need to be considered and pondered very cautiously: resolution of the images, cost of

operation and cost of the system, and time invested on the scan.

To approach the study to a more real situation, it needs to be considered that there a
different technologies within laser scanners, every one of them with certain restrictions.
There are also a wide variety of algorithms that have been implemented to fit every
requirement according to each specific application or need. Schwarz (2010), for
example, mentions two variations of LIDAR systems. The first variation functions with a
single laser that is directed to rotating mirrors (this refers to the usual LIDAR systems).
However, there is a variation for high definition scanning that uses a rotating head with
64 lasers. Every laser works on a frequency of 20 KHz. This makes possible to retrieve
higher amounts of information than common methods, which at the same time allows
the system to get better resolution on the outcome images. Schwarz also mentions that
some of the most common applications for these systems are robotics, mapping,
navigation and manufacturing. This last application would be a clue for this project,
since one of the possibilities for exploiting a system such as the one to be developed
would be manufacturing itself. Since the project is not developed for a company but for
a university, it doesn't have a specific use or end. On the contrary, it seeks to give use
to such technologies expanding the knowledge and researching the possibilities of use
for the system. Henry et al. (2010) introduce the reader to pure laser-based ICP
technologies, and discuss the robustness for 3D point clouds obtained with SICK

scanners and 3D Velodyne scanners.

The information supplied by the university DHBW indicates that the sensor available is a
light section sensor from Leuze-Electronic.de. However, there is no further information
regarding the sensor. The very first step to be taken care of would be acquiring specific

information on the sensor, on how it functions and which algorithms it uses at the

15

present time. Valencia et al. (2009) use a Leuze RS4 sensor for urban scanning and
mention a sensor noise of £5cm in depth estimation, but this information is subject to
the applications and the environment, which are for this study very different than the
conditions present for Valencia et. al (2009). For the specific application on this project,

it is desired a much smaller noise than the one mentioned here.

A 3D scanning process is usually integrated by three main stages: 1) Obtaining
continuous frames from an object with depth information from different positions, 2)
detection of loop closure from information acquired, and 3) integration of all the scans
into one whole 3D object. (Henry et al., 2010 and Weise, Wismer, Leibe and Gool,
2009). A loop closure is basically the detection of reference features on an object that
determine the complete lecture of that object. It happens when the sensor has reached
a point where the scanner started recording information and has enough key features
that ensures the closure of the object. This loop closure has a common problem that
comes with the "accumulation of registration errors” (Weise et al., 2009) when
connecting the different frames previously obtained by the depth sensor. Every frame
connected to the next one may add a small error in degrees, but this will entail to an
important error, that will cause the complete object not to fit spatially. Henry et al. (2010)
propose to use the detection of loop closure as an additional constraint that will describe
better the spatial distribution of the frames obtained. Nonetheless, as Weise et al.
(2009) explain, this would cause a forced and artificial bending of the object to
compensate this error. They on the other hand propose to distribute the error globally,
distorting the entire model. This technique is also used by Krainin et all. (2011) when

they state:

To prevent all of the loop closure error from occurring in a single frame when a
second connected component comes into view, only one connected component
can be matched into each frame. The error is distributed over the whole structure

in a separate relaxation step. (p.18)

This technique helps solving the loop closure problematic, without forcing any solution

that might be inefficient or unnatural for the object.

16

Once the data is obtained from the 3D sensors, there is a need to store this information,
for treating the image and obtaining useful information when required. This is conformed
by both the previously mentioned stage (frame alignment and loop detection) and also
the optimization of the data stored to use the memory efficiently. As Hornung et al.
(2013) describe, "memory consumption is often the major bottleneck in 3D mapping
systems". In their work they describe a method for discretizing the space in same size
cubes to represent the scanned area. One of the drawbacks of this method is that there
needs to be known previously the size of the volume to be studied and a 3D grid for that
size needs to be previously initialized. This implies memory consumption that might be
unnecessary, and for outdoor applications or high resolution scans, the amount of
memory demanded could be counterproductive. For this project, an outdoor application
is not the case. However, a high resolution could be a characteristic desired in the

system. Voxels is the name that the authors give to the same size cubes.

Hornung et al. (2013) also compare the voxels method with one of the most common
method for 3D mapping: Point clouds. The advantage of voxels over point clouds falls in
memory consumption. Also, the point clouds only represent the measured points, and
do not allow the system to differentiate unmapped areas from free areas. On the
counterpart, voxel representation makes a difference between both conditions. They
further explain their OctoMap integrated framework, which functions with octrees very
similar than with voxels, while keeping the memory consumption at a minimum level.

Their implementation is open source, and is available on the web for several platforms.

Another approach for 3D representation is explained by Henry et al. (2010) with the

commonly used surfels. In their own words:

A surfel consists of a location, a surface orientation, a patch size and a color. As
more point clouds are added to the surfel representation, we follow rules... for
updating, adding, and removing surfels. Surfels store a measure of confidence,
which is increased through being seen from multiple angles over time. Surfels

with low confidence are removed from the representation.

17

With this method, the point clouds are reduced to a more compact representation,

preserving the important information while using less space in memory.

Krainin et all. (2011) make a comparison for the use of surfels against the previously
used triangle meshes. The triangle meshes provide occlusion information, but when
attempting to update a map it can become a more complicated problem, since this
method requires maintaining connections between vertices. This is not a problem with
the use of surfels since they can be separately updated, and they can be transformed
into one mesh when desired. They also mention the benefit of the surfel resolution
being updated when the object is closer to the sensor. Another advantage of the surfels
that Krainin et all. (2011) mention is that it can use "visibility confidence" which basically
means to give a value of confidence to each surfel depending on how many times it has
been observed by the sensor and from what angles it was observed. This increases the

confidence of the lecture for the system.

Henry et al. (2010) claim that the Iterative Closets Point method (ICP) is commonly
used for 3D frame alignment. Valencia et al. (2009) mention non-probabilistic methods
to solve the frame alignment problem. They mention the ICP and variations of the ICP
to be used for the alignment of two scans. However, they suggest probabilistic methods
to be better, since they allow the correct distribution of the loop closure error. They use
the delayed-state Extended Information Filter (EIF) algorithm as well as the delayed-
state Extended Kalman Filter (EKF).

Developing a system for the given Leuze sensor at the DHBW will need to consider all
the different algorithms and techniques commonly used in order to conceive the best
balance between resolution of the 3D images obtained given a purpose for the
application, cost of operation and cost of the system, and time invested on the scan. All
this variables strongly depend on the application in which the system will be used, and
the cost the owner of the system is minded to invest.

Despite this application is being developed for investigation, and will not be functioning
on a real industry environment, it is desired for the system to be energy and memory

efficient, while giving the most efficient behavior. On the future, this type of applications

18

will give robots a more accurate understanding on their surroundings, and with this,

accomplish more complicated tasks. As Krainin et all. (2011) mention accurately:

The goal of our work is to develop techniques that enable robots to autonomously
acquire models of unknown objects, thereby increasing their semantic
understanding. Ultimately, such a capability will allow robots to actively
investigate their environments and learn about objects in an incremental way,

adding more and more knowledge over time.

Achieving goals like this will expand the uses of robotics on the coming years
exponentially. Hopefully, this will allow robots to move around us as any other human
being, and also perform any type of action as we would, like navigating or performing

any job to help people with our daily tasks.

In this section, many of the applications for 3D mapping were mentioned, to locate
among them the specific application that wants to be developed on this project: an
indoor, static application, to build 3D maps of objects present on a specific surface or
area, with a light section sensor. Some of the main algorithms were mentioned, like the
use of surfels and how to solve the loop closure problem, the use of Octrees to store
information, and the improvement on the use of memory when storing the information
required. The main variables to have present during the realization of the project were
discussed: memory consumption, external light influence, material influence, cost of

operation, cost of the system and time spent by the system when scanning an area.

19

III. Definition of the problem

On the overview section, it will be explained the interest from the involved entity, in this
case, the Duale Hochschule Baden-Wurttemberg University (DHBW) located in
Karlsruhe, for developing the project that is presented in this document. It will be
mentioned the different stages that integrate the overall project, and what is wanted
from each of this stages. On the "Problem Synthesis" section, the project will be
explained in a simple phrase, that can be easily understood, and that describes the
main idea to be developed on the project.

i. Overview

The university Duale Hochschule Baden-Wurttemberg (DHBW) in Karlsruhe, Germany
has a Robotics and Automation laboratory that is part of the mechanical engineering

faculty, a division of the engineering or "Technics Department"”.

The DHBW owns a light section sensor from Leuze-Electronic.de. The sensor is
currently used by a demonstrator to pick rings lying unsorted in a box. The system is
running well, but it is only a demonstrator for these rings. Therefore, other objects can't
be handled by the system. They also have possession of one ABB IRB1600, two
IRB140 and from UniversalRobots an UR5 and UR10. At the moment the system
functions like this: The universal robot uses the light section sensor to make a scan of a

box that contains several metal rings. It then picks the rings and stacks them properly.

The project will be divided in several steps that will be explained next:

Stepl: Collaborative Robot

Understand the functioning of the collaborative robots available at DHBW, their
differences, advantages and disadvantages. Learn on the specification for this robots

and how to program them. Understand the robot demonstrator which uses the light

section sensor to detect metal rings, pick and stack them.

20

Step 2: Light section sensor

It is desired to understand how the light section sensor works, its features and
limitations and how to get signals from it. The system is working at the moment to detect
metal rings; however there is no specific information on how it is done. Several testing
will be carried out to understand better the functioning of the system: how it performs
the scanning, and what communication protocol it uses to send this information to the
receiver. It is also important to understand what process it uses to build the frame

alignment to create the 3D images.

Step 3: Object detection, recognition

A first goal is to identify and understand the algorithms used to detect the metal rings at
the moment, and compare them, with different methods found in literature. It is desired
to develop algorithms to identify different objects with OpenCV. Also, it will be
implemented algorithms to identify different objects with Matlab or Octave software, to

compare performance.

Step 4: Combined work

The overall objective is to integrate the robotic system, sensor reading algorithms and
computer vision system to perform a complete function. The UR will aid rotate the
sensor for the initial lecture, the information will be processed by the system and data
will be sent back to the UR, so it can identify the different objects present on the work
area, decide how to pick up and pick up the objects, for further manipulation (reposition,
stack, relocate or store objects)

Step 5: Documentation

As a last step, it is intended to document the process that let the robot handle new or

additional objects. A user manual will be written so future investigations can be made

21

and new users will be able to manipulate and/or modify the 3D scanning and

manipulating system for different purposes.

Additional considerations need to be mentioned:

The goal of the project is to detect and handle new objects with the 3D scanning system
and the collaborative robot. For choosing different objects for the tests, it is desired to
pick different and challenging objects that can be handled with one gripper. However, it
can be an option to pick also objects that need to use different grippers (fingers, suction
cups, among others), which would elevate the complexity of the system because the
robot needs to make the decision of which gripper would be more appropriate to use.
The objects to handle by the robot will be produced or bought, depending on the
requirements. Also, the grippers can be used as supplied by the university, or they can

be adapted or designed new if needed to accomplish the objectives of the project.

The motivation for developing such a system is based on the availability of the hardware
(light section sensor and universal robot) at the DHBW, but also on the necessity to
increase knowledge and uses on this type of systems that use 3D scanning technology.
At the moment, the university has a very restricted use for the sensor, but the uses of it
can be increased and enhanced by developing further investigation. With the option of
scanning multiple objects, the applications also augment. Scanning objects in the given
environment for obtaining 3D images can be used for sorting different objects,
assembling entire components, augmented reality, service robots and others. The ability
to learn about the surroundings and about different objects allows robots to get a better
notion of the world, and with this, new applications can be developed. Lai and Fox
(2009), for example, synchronized 3D readings with Google 3D Warehouse models.
With this, a robot was able to identify real world objects and classify them using as base
similar 3D models found on this database. And with the growing use of 3D technologies,

understanding the world will be easier every day.

22

ii. Problem synthesis

To develop an integrated system that is able to scan a surface to get 3D images, and
with this information identify objects present and give instructions to a Universal Robot

to pick up the objects.

After this section, the reader should have a clearer view of the motivation that led to
develop this project, and an overview of the subdivision that will integrate the project.

Also, the problem synthesis is a very concise idea of what the project will be about.

IV. Solution approach

This section is a discussion about the problems to be resolved to achieve the goal of the
project. It will be presented the situation in which the equipment is found at the moment,
and the solution will be divided into different steps that will help to direct the developing

of the project in an efficient and ordered solution.

In the last years, 3D technologies have been increasing. Nowadays, it is common to
hear about 3D printing, modeling and scanning. They are all separate technologies;
however they complement each other, expanding the uses for all of them. Some of the
most common uses for 3D scanning are navigation, assembling, telepresence, gaming,
augmented reality, and in general terms, interaction of a robot with the world. For this
project, the DHBW University wants to expand the uses of a 3D scan that they own, so
they can have more complex uses of the sensor, and develop different applications with
it.

At the moment, the light section sensor from Leuze-Electronic.de that the university
owns has a very restricted use. The sensor is handled by a robotic arm which moves
the sensor over a scanning area, in their case, a box. The sensor captures the depth
information and transmits the information to a computer that analyzes the information.
After getting the data, the system is capable of detecting a specific type of metal rings,
pick the rings with the universal robot, and stack these rings. The application is not

simple. On the contrary, it shows several engineering challenges; however, the system

23

is only capable of working with the given rings, and cannot operate with any other
objects, making the application too restricted, and wasting capabilities of the sensor and
the UR.

The DHBW wants the ability of the system to be enhanced. It is desired to have the
system functioning as it is at the moment, with the added value of scanning and
identifying different type of objects, not only the metal rings. The goal is to experiment
with different type of objects that have challenging shapes, and also with different
materials. After scanning the work area, the system should be able to identify the
different present objects, take decisions on which objects the robot can take and take
them. When taking the objects, the final action may vary since this is not a real
application and the system might be used for different ends in real life. In this case, the
robot might be programmed to pile the objects, or just store them on a different box to
demonstrate the capabilities of the robot to interact with the environment and the

different objects.

As the system is functional at the moment, it will be used as a reference for
improvement. Several tests will be run and documented on the initial condition of the
system. Important data that need to be taken into account are: time for scan, overall
performance of the system, ability of the system to detect metal rings, ability to
accurately locate and pick up rings, influence of external light on the performance,
ability to detect rings from different materials (not metal). The goal is to establish these
results as a first parameter, and eventually match or surpass the results. However, it will
be taken into consideration that the time for achieving proper 3D scans is proportional to

the complexity of the objects being scanned.

As it was mentioned in the previous section, the problem consists on several steps that
need to be resolved in order to achieve the objective of the project. For a better
approach of the investigation, these steps will be implemented sequentially,
documenting the resolution on every step, and considering the necessary variables that
present on each stage.

24

Stepl: Collaborative Robot

This stage is for getting to know the universal robots available at DHBW. As mentioned
before, there are four different models:

= ABB IRB1600

= ABB IRB140

= UniversalRobots UR5
= UniversalRobots UR10

The purpose is to get familiarized with each robot, their capabilities and restrictions, and
how they are programmed. One of the models will be selected for the remaining of the
project according to their capabilities and easiness for programming, as well as the
ability to adapt the sensor to the given robot.

Step 2: Light section sensor

The light section sensor from Leuze-Electronic.de is currently operating. This stage is
intended for understanding how the sensor works, at both hardware and software level.
It is a main objective to research about the communication protocol that the sensor uses
in order to determine if it is the best option for this type of applications, or if there is an
alternative for reaching higher speeds for data acquisition. It will be also of interest to
determine what technique the sensor uses for getting the depth information on the
environment, and what algorithms it implements to merge the various images to create
the 3D figure.

Step 3: Vision system: Object detection, recognition

After having created a 3D scan of the work space, the computer will only have one
whole 3D image that includes any object over the table and the table itself. The system
cannot differentiate between objects, base surface and noise by itself. Further
algorithms need to be applied to the resulting image to isolate the objects from the rest.

The image needs to be filtered if necessary to reduce sensor noise and the image

25

needs to be conditioned. After obtaining separate objects, they need to pass through a
vision system program that identifies each object and classifies them by physical
characteristics. Important features to keep in record when classifying the objects would
be: the main dimensions of the object, presence or absence of outstanding features
(like handles), and if the object was detected as a solid or hollow object. This
information will be helpful when making decisions for handling each object. The system
should also have information of the gripper that is being used to determine if the robot
can handle a certain object with the tool available, or if a different tool would be
necessary for an action to be taken. If a different tool is available that would suffice the
needs to handle the object, the robot should change the tool, but if there is no tool that
will meet this requirements, the system should inform the user about the situation, and

identify the object that leads to an exception.

Step 4: Combined work

The overall objective is to integrate the robotic system, sensor reading algorithms and
computer vision system to perform a complete process. The UR will aid move the
sensor for the initial lecture, the information will be processed by the system and data
will be sent back to the UR, so it can identify the different objects present on the work
area, decide how to pick up and pick up the objects, for further manipulation (reposition,
stack, relocate or store objects) as it is desired or needed (the final action depends on
the application that is given to the system and the specific company's needs). In this
final step, the mechatronic abilities become more evident, because there is a need to
integrate mechanics from the UR, the communication stage between sensor, computer
and robot, electrical knowledge for both sensor and robot, control for the complete
system and computer vision for the analysis and interpretation of the information
acquired. All these steps should have the other steps in consideration when developing
each one of them, since it is desired to have an integrated system, and not a

segmented system that may present conflict with previous or further steps.

Step 5: Documentation

26

As an important part of the project, all the development will be documented on a report
parallel to the progress, for each development achieved on every stage of the project.
This will be to procure order when performing the project, and to allow a high standard
when developing the project, as it is expected from an engineer from the Instituto

Tecnologico de Costa Rica.
It is presented below a diagram that contains each of the variables that will be

considered on each stage to determine the best solution possible. Every variable will be

measured and compared with other methods, or devices when available.

27

Use a 3D sensor to scan an area,
to detect and identify the objects,
for further manipulation of a UR

3D sensor

UR

Vision System

All stages
together

Communication
protocol:

Speed, easiness
to install, to
operate, to

configure.

Sensing method:
laser functioning

Mobile or static

sensor
|| Memory
consumption

Scanning Speed

Sensor noise

— Working range

__|Speed for object || |

identifying

Overall time
consumption

— Speed of robot

Memory
consumption

|_| Overall memory

consumption

Accuracy of
robot

Programming
arduousness

Correct

— integration

sensor-robot

= Repeatability

|_Cost for software

use

Easiness to
= adapt sensor to
robot's body.

Programming
arduousness

External Light
influence

Object material
influence

Object
complexity

influence

| Integration with

3D sensor

|_|Integration with

UR

|| Tool availability
(gripper)

Object
complexity
influence

Figure 1 Variables to consider during realization of the project

28

On the previous section, it was presented several steps that need to be followed to
achieve a proper solution for the project. Also, on the Figure 1 was given an overview of
the variables that need to be taken into consideration. These variables will be studied
during the development of the project, and well documented to understand the
functioning of the system, and how the environment affects the implementation of the
system.

V. Cause - Effect Diagrams (Ishikawa)

On this section it is presented three diagrams that name different causes for certain
problems. The problems cited were identified as the situations that may present during
the development of the project, and hence need to be premeditated, to avoid or reduce

their effect for the resulting system.

Three main problems were identified that may present on the developing of the project.
The Ishikawa diagram that links together cause and effect for each problem is showed
below:

Problem 1: System is not able to recognize objects

Noise Material

External light - Object too shiny *
< Sensors noise - object texture

System is not able
o

£
to recognize objects

Sensing method not appropiate .4

“——sensing speed

Sensing method

Figure 2 Problem 1

29

Problem 2: System takes too much time to scan and recognize objects

Memory usage Computational
work

Sensor lecture - Sensor algerithm -
- Vision System Algorithm - Visian System algorithm
System takes too much time
+ - § . .
to scan and recognize objects
Computer-UR > Amount of objects present o

#+——3D sensor-computer #——Complexity of objects

Communication .
Objects nature
protocol used

Figure 3 Problem 2

Problem 3: Robot is not able to grab objects accurately

UR ‘ Coordinates
" rogrammation not optimized.

- (may require intermediate points
to reach object)
Accuracy insufficient —=
Incorrect coordinate
transformation between ——=
sensor, robot and gripper

H P Robot is not able to
grab object aceurately

PR Gripper does not meet
Images with incorrect r)l’J- .
. . > - conditions to grab
information o .
specific object

+——0Object out of range

- Moise an processed images
Images inac:urac)-
Gripper

Figure 4 Problem 3

On the diagrams showed previously, it was presented different variables that will be
taken into consideration during the performance of the project. They will guide the
solution desired, to accomplish specific goals.

30

VI. Objectives

On this section the general and specific objectives of the project will be presented. They
will be considered the spine of the project among the process, and will guide the overall
procedure and goals to be obtained. For each objective, it is given a specific indicator
that makes easy to identify if the goal was properly achieved, or which points should be
enhaced.

I. General Objective

To develop an integrated, low cost system with a 3D sensor, Vision Systems and a
Collaborative Robot, that allows the system to identify objects on a given work area, for

further manipulation of the Robot.

Indicator: The system is able to identify a series of different object using the 3D sensor
from Leuze Electronic.de, and the Universal Robot retrieves the information necessary

to grab the objects that it is supposed to grab, when the required conditions are met.

ii. Specific Objectives

e Implement the use of a light section sensor from Leuze Electronic.de to

acquire 3D images.

Indicator: Visual indicator. The 3D information is sent to a computer, and it is visually

possible (on screen) to identify the objects that were present on the work area.

¢ Implement a vision system environment that is capable of treating information
acquired from the light section sensor to identify objects present on the work

station.

Indicator: The system will identify with visual markers (on screen) the different objects
found on the working area. Also, characteristic features from the objects should also be
identified, for further usage and manipulation (dimensions, special features present like

handles, etc.)

31

e Program the Universal Robot to handle de light section sensor to scan the
desired area.
Indicator: The robot moves the sensor over the scanning area, so that the sensor is

capable to realize the needed scan procedure.

e Implement a code that allows the Universal Robot to interpret the resulting
information and grab the different present objects. (Optional as a further

objective to achieve).

Indicator: The robot interprets correctly the information resulting from the Vision System
Stage, and is capable of identifying which objects it can take, which objects it should

take, and take the objects.

The general objective presented above is the main goal of the project. The specific
objectives are previous goals that need to be accomplished for fulfilling the main
objective. After having specified the objectives of the project, it is easy to have a clearer

view of the steps that need to be taken.

32

VII. Project execution procedure

On this section, it will be presented a more detailed list of steps in which the solution of
the problem was divided. The main project is simplified into more specific tasks, in order
to achieve a better solution. The project will be divided in three main stages and one

final integration stage.

The main stages are:

Stage 1: Light section sensor from Leuze Electronic.de functioning
Stage 2: Universal Robot programming

Stage 3: Vision System developing

And the final stage would be:

Stage 4: System integration for the 3D sensor, the Universal Robot and the

Vision System for identifying and further grabbing objects.

Each stage will be explained below:

1. Light section sensor from Leuze Electronic.de functioning

This task will have the following steps:

a. Recognize de sensor and read the Technical Documentation available for
the light section sensor from Leuze Electronic.de.

b. Research on possibilities for programming and establishing
communication with the sensor. Make simple tests with the sensor on
place.

c. Build a simplified prototype to simulate the environment where the sensor
will be operating (structure for holding sensor and electronics) and man
operated to simulate universal robot.

d. Implement communication with the sensor with interface for the user.

33

e. Develop tests with different objects, varying the previously discussed
variables (color, external light, shape and others) and document results.

f. Study results and improve performance.

2. Universal Robot programming

a. Recognize URs available and read Technical Documentation. Select the
UR to use according to its characteristics.

b. Develop different programs to understand the capabilities of the UR.

c. Program the UR to move the sensor according to the process defined on
the stage for the Light section sensor.

d. Compare results from the ones obtained on Stage 1, and improve
performance in both programming of the Light section sensor and the UR

if necessary.

3. Vision System developing

a. Gather results obtained from Stage 2.

b. Study different programming languages that could solve the problem (At
the moment it's in mind to use MatLab/Octave and Open CV).

c. Develop Vision System to evaluate results and obtain the information
needed. The solution may be developed with several programming
languages, to compare performance.

d. Compare results obtained with the different codes, and improve the
programming.

4. System integration for the 3D sensor, the Universal Robot and the Vision System
for identifying and grabbing objects.

a. Study results obtained from Stage 3.

b. Develop code to communicate information obtained by the Vision System
to the Universal Robot.

c. Integrate results from all 4 stages.

d. Develop tests to check functionality.

e. Study results and improve the whole system.

34

After having a list of detailed steps to be followed, the time available for the

development of the project should be distributed. This will be done in the next section.

VIII. Chronogram for activities.

In this section, it will be presented an estimated distribution of time for developing each
of the previously mentioned tasks, in order to achieve the objectives of the project. It will
be used a software tool for developing Gantt diagrams to have a visual distribution of
the tasks among time.

To achieve a successful accomplishment of the project, the rationing of all resources is
elemental, and this includes the correct use of time available. Specially, since the
project is being developed in a foreign country, with limited resources, a correct
distribution of tasks among time is essential. It is presented below a table and a Gantt
diagram with an estimated planning for the realization of the previously mentioned

tasks.

Table 1 Tasks chronogram

Task Task Mode Task Name Duration Start Finish Predecessors
1 Auto Stage 1.a Recognize sensor Mon Wed
Scheduled and read Te.chnical 3 days 26/10/15 28/10/15
Documentation 08:00 a.m. 05:00 p.m.
2 Auto Stage 1.b Research Thu 29/10/15 Y8
Scheduled programming options. Tests to 4 days 08:00 am. 03/11/15 1
sensor 05:00 p.m.
3 Auto Stage 1.c Build simplified 2 days Thu 29/10/15 Fri 30/10/15 1
Scheduled prototype for simulation 08:00 a.m. 05:00 p.m.
4 Auto Stage 1.d Implement Wed Tue
Scheduled communication with sensor. 10 days 04/11/15 17/11/15 2
User interface. 08:00 a.m. 05:00 p.m.
5 Auto Wed Thu
Scheduled Stage 1.e Develop tests 2 days 18/11/15 19/11/15 4,3
08:00 a.m. 05:00 p.m.
6 . Tue
Auto Stage 1.f Evaluate and Fri 20/11/15
Scheduled improve 3 days 08:00 a.m. 24/11/15 °

05:00 p.m.

35

Table 2 Tasks chronogram (Continuation)

7

10

11

12

13

14

15

16

17

18

19

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Auto
Scheduled

Stage 2.a UR Technical
Documentation

Stage 2.b Develop test
programs for UR

Stage 2.c Program UR to move

sensor

Stage 2.d Compare and
improve

Stage 3.a Gather results from
stage 2

Stage 3.b Research
programming languages for
Vision System

Stage 3.c Develop Vision
System

Stage 3.d Compare and
improve

Stage 4.a Study results from
stage 3

Stage 4.b Develop UR code

Stage 4.c Integrate results

Stage 4.d Tests to check
functionality

Stage 4.e Study results and
improve

Wed Thu
2 days 25/11/15 26/11/15
08:00 a.m. 05:00 p.m.
. Mon
2 days gg,ggl ;14 15 3011115
' © 05:00 p.m.
Mon Wed
3 days 04/01/16 06/01/16
08:00 a.m. 05:00 p.m.
Tue
4 days 32%87&’0;/ 16 150116
' " 05:00 p.m.
Wed Wed
1day 13/01/16 13/01/16
08:00 a.m. 05:00 p.m.
2 days Thu 14/01/16 Fri 15/01/16
08:00 a.m. 05:00 p.m.
Mon Tue
12 days 18/01/16 02/02/16
08:00 a.m. 05:00 p.m.
Wed Mon
4 days 03/02/16 08/02/16
08:00 a.m. 05:00 p.m.
Tue
1 day ggzgs;/ors/ 16 659/02116
' 7 05:00 p.m.
Wed Mon
4 days 10/02/16 15/02/16
08:00 a.m. 05:00 p.m.
Wed
2 days gg%gi’orﬁ/ 16 17102116
' " 05:00 p.m.
Tue
4 days gg%észorﬁ/ 16 53102116
' " 05:00 p.m.
Wed Thu
7 days 24/02/16 03/03/16
08:00 a.m. 05:00 p.m.

11

13

14

15

16

17

18

36

Notes:
The start day will be on Monday, October 26, 2015.
The vacation period is from December 1% to December 31, 2015.

The estimated date to finish the project is on Thursday, March 3, 2016.

37

i. Gantt diagram for tasks

aaaaaaaa

Stage 1.c Build simplified

communication with sensor.

.

Figure 5 Chronogram for November

aaaaaa
aaaaaaaa

7
éo
7
/
¢
/
/
7
¢
%
.
%
/
/
/
¢
7
7
.
/
/
7
%
/
7
7
.
/
/
/
.
/
7
7
¢
/
/
5
¢
/
7
7
¢
/
7
/
%
7
7
.
/
7
7
.
/
7
7
%
/
/
/
¢
/
7
7
¢
/
7
ﬁ
%
/
%
.
?

aaaaaa

| est N N e S
\@ ___________________________ \ RIS\ S— N\ N\
ssssss d =0 S B

— Y . \‘ s‘.
mo § _________________ L § ____________________________ \§ _____________________________ §§ _
\ . .
ynspen \\ ____________________________ § ____________________________ \ ___________________________ %\\ ____________________________ s

system SN\ \— A\

38

February March
Task Name +~||31|01 02 02 04 05 06 O7 08 02 10 11 12 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 22|01 02 03 04

B
Stage 3.c Develop Vision .
System l

Stage 3.d Compare and
improve

Stage 4.a Study results from
stage 3

Stage 4.b Develop UR code

e
§ § __________________________ \ _____ 1
§ % % ________________ L

SgeadTesstochede N\
functionality

Stage 4.e Study results and
improve &

Figure 8 Chronogram for February and March

7

_

N\

Note:

Non-working days and vacation period are shown in bold on the Gantt diagram.

On this section was presented an estimated distribution of the tasks to be developed.
Each task was given a certain time to be completed, estimating the difficulty of the task.
The chronogram here presented is a guide for developing the project, and is intended to
easily identify when a task gives opportunity to advance faster, or on the contrary, when

a specific task will be taking more time than estimated, to make previous adjustments.

IX. Budget and expenses for the project

On this section, it will be presented the known expenses that are present for the
developing of the project. The information was given by Professor Dr. Clemens Reitze
from the DHBW, and is presented here to calculate a normal investment when intending
to develop a project such as the one desired. If there are any other expenses that may
present further, they will be included to the total list.

The project to be developed has specific costs that are expected: the cost for the
Universal Robot, the light section sensor from Leuze Electronic.de, the computer to
operate both sensor and UR, and others. While the DHBW from Karlsruhe already owns
the UR to be used and the 3D sensor, it is convenient to mention the investment made
by the university, so that a third party can visualize a budget needed to reproduce a

project like the one to be developed.

39

Hence, a breakdown of the outgoings is presented next:

Table 3 Lists of costs

ltem Price (€)

UR10 23870.00

URS5 17870.00

Gripper 1378.00

2D Image Recognition 8571.00
3D Image Recognition 9714.00
Fittings, small parts 2000.00
Total 63403.00

Notes:

1) The "Image Recognition" prices are for hardware and software:

- Leuze Sensor (3D)

- CCD Camera (2D + 3D)

- IR PC with touchscreen

- Halcoon library, runtime license
- FIPS IR Software from Faude.de

2) The budget presented here is for all the inversion the university DHBW has made for developing the

project, among other projects that use the same parts. It is not the real cost for developing a project,

because the final project will not necessarily use all the components listed before. A complete analysis of

costs will be detailed when the project is completed.

40

X. Solution's detailed description
In this section, a detailed step-by-step description of the solution will be explained. As it
was described before, the execution of the project is divided in 3 main phases due to its

complexity:

i. Light section sensor
ii. Object detection and recognition
iii. Universal Robot

And a final fourth stage which integrates the first three, which was named "Combined

work" stage.

Hence, the description of the solution will also be sectioned in these phases, and a final
integration of all of them. The solutions will be presented in the order they were
developed, but first, a general investigation of communication protocols and definitions

will be presented, which will be used for both phase 1 and 3 of the solution.

I. Selection of the Robotic Arm
The DHBW University has for different robotic arms in the Robotics and Automation

Laboratory:

— ABB IRB1600
— ABB IRB140
- URS5

- URI10

41

(@)

(d)

Figure 9 Robotic arms at DHBW: (a) ABB IRB1600. (b) ABB IRB140. (c) URS5. (d) UR10.

The ABB robots where at the moment used for different projects from other research
students, and both Universal Robots where available for immediate use. The difference
between both UR5 and UR10 are in dimensions and capacity, where the UR10 is bigger
and can handle more weight. The programming of both robots makes no difference
since they run on the same language and environment, and the final decision of which
UR would be the best choice depends on the specific application the robot will be
developing and its requirements. Since the application developed is for research only
(not a real application in the industry), and the parts that will be handled by the robot
represent no high demand on power, the UR5 was selected for working on the
developing of the project during the semester. However, the solution developed will be

possible to use on both URs.

42

After selecting the Robotic Arm that will be used for the development of the project, a
brief research on the communication protocols that can be used for achieving the

objectives will be presented.

ii. Communication (Transport) Protocols
IP Communication provides the ability to send and receive information between different
devices, for a variety of purposes. It is an efficient service model when used properly.
The idea of implementing a network with a certain protocol is to hide to the end user the
physical network, and the technologies and architecture used, while securing a reliable
and complete communication (Chunyan Fu). To understand better the protocols
available, and select the best ones for the given applications to develop, a further

investigation will be presented.

A communication protocol is composed by the client and the server. They can also be
named as "Host 1" and "Host 2" if a differentiation between both is not needed. The
client is the host that requests to receive certain information. On the counterpart, the
server is the center of the information, where the message or data is stored. After the
client requests information, the server will follow some specific steps to send a response
to the other side. The steps to follow depend on the specific protocol that is used for the
communication. The most common protocols are the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP). Both have different characteristics that
could be an advantage or disadvantage depending on the application. Hence, both will
be presented next with their characteristics.

1. UDP Protocol
The User Datagram Protocol is an unreliable but fast datagram service (Walrand and
Chunyan Fu). The protocol does not establish a connection between server and client.
There is no confirmation of received packages, and the packages may be lost, delayed
or received incorrect. It is commonly used in applications where the need of precision in
the message is not drastic, for example video or audio streaming. The advantage of
UDP over TCP is that it does not increase the delay over IP. However, any conflict with

lost packets must be resolved by the application itself. There is no buffer on any side of

43

the communication (sender or receiver). Finally, there is a limit for the size of the

messages sent and received.

2. TCP Protocol
The Transmission Control Protocol is widely used in many IP communication
applications. It is not as fast as UDP. However, it is more reliable with the information
exchanged between hosts. A connection is established, which allows a flow control of
the packets using a buffer and handling errors that may occur when sending messages,
for example: lost packets, delayed packets and duplicated packets. On this protocol, a
specific port is linked to only one application. Also, it is possible to handle different ports
by the same application, when there is need to handle communications with different

hosts simultaneously. The size of the messages can be arbitrary.

UDP Request / Response Paradigm

Request

CLIENT SERVER
Response

N

TCP Handshake Paradigm

Open Connection

Handshake

CLIENT > e SERVER

Response

Figure 10 Image from: National Instruments. www.ni.com

As it is showed in the image, perhaps the main difference between UDP and TCP is that

while UDP is connection-less and the server just sends the information when it is

44

http://www.ni.com/

requested, the TCP establishes a connection, which allows the server to ensure that the
client received the packet as expected, and if an error occurred, resend the packet until

it is received properly.

For the development of this project, there are two different Ethernet communications
needed. The first one is between the Leuze sensor and the central computer, where the
laser sensor functions as the server and the PC as the client. The second
communication is between the PC and the UR Robot, where the UR behaves as a client

and the PC will be working as a server. A diagram is presented below:

Figure 11 Communication diagram

The next diagrams represent the main differences between a UDP and a TCP

connection:

45

I UDP Connection TCP Connection

Initialize Winsock

Initialize Winsock

Create socket for

Create UDP client . . .
incoming connections

Create UDP server -
Bind socket to port

Bind socket to port Listen (blocking call)

Send/receive data ' -
Accept connection

Close socket

Loop (continue listening)

Close socket

Figure 12 UDP and TCP Diagrams

To understand the previous diagrams better, an explanation of the different phases will
be described below.

Both UDP and TCP start by initializing Winsock, which is the use of Windows Sockets
DLL. This enables the use of other calls on Winsock, and also ensures that the system
supports it. After initialized, the next step is to create the sockets that will be used.

On UDP, there must be created sockets for both sender and receiver. Since there will
not be any established connection, every packet sent to a determined socket should be
addressed to a previously created socket, with known IP address and port number. On
the counterpart, the TCP needs to create only a socket for incoming connections. The
bind phase is the one that ties in the IP addresses and Port numbers to a previously

created but empty socket. This is for both UDP and TCP communications.

46

The UDP communication is at this point ready for exchanging information. Any packet
sent from the server to the socket linked to the client will be addressed to the known IP
and port, and vice versa. However, if there is any conflict on the communication, for
some examples: one of the ends gets unexpectedly disconnected, the port number is
incorrect, one of the ends is currently busy transmitting or receiving data. In any of
these and other cases, the message will be simply sent by the sender, but the receiver
will not take in the packet. The sender will neither get a report of the failure, causing
lack of communication and lost information. To avoid this, the program should have an

error control on both sides.

After the TCP socket has performed the "Bind" function, it is time for the server to start
listening. The Listen function is a blocking call. A blocking call is a function that, when
executed, remains at that point of the program until a certain value is returned, or a
time-out is reached. On the specific case of the Listen function, the program of the
server will remain waiting to receive a message from another host (a request from the
client). It will remain listening as far as the time-out variable is not reached, after this it
will return an error value. However, if a request from the client is received, the program
continues its course, and runs the Accept function. At this point, a connection is made
between server and client. After a connection is successful, both client and server can

send and receive messages to the other part.

The TCP protocol uses a buffer; this allows sending messages with no restriction on
size. The protocol itself makes a revision of the information received, and if a message
was lost on transit, or received incorrect, the message will be requested again to the
counterpart. Also, if there is a saturation of packets on the receiver, the buffer will store

the data and deliver it accordingly.
At the end of both UDP and TCP, the sockets must be closed, to avoid further conflicts.

When deciding which protocol is better for each communication needed, it is clear that
the TCP would be preferable, since it assures the correct sending of the packets, and
therefore no information will be lost on the process. However, when making a revision of

the technical information of the Leuze sensor, it is described that "the LPS

47

communicates with the process control via UDP/IP" (Leuze Electronic, 2014), hence
UDP protocol will be implemented for the communication between the LPS and the
computer. The UR presents no restrictions for the IP communication, so the TCP will be
implemented between the UR and the computer.

3. Error Codes for Socket Programming
When programming for socket communications, the WSAGetLastError() function returns
to the user the last error that occurred when executing a WSA function, such as the

ones previously explained. An extract of a couple of error codes is shown below.

WSAEWOU
LDELOCK Resource temporarily unavailable.

10035 This error is returned from operations on nonblocking
sockets that cannot be completed immediately, for example
recv when no data is queued to be read from the socket. It
is a nonfatal error, and the operation should be retried later.
It is normal for WSAEWOULDBLOCK to be reported as the
result from calling connect on a nonblocking
SOCK_STREAM socket, since some time must elapse for the
connection to be established.

WSAEINPR
OGRESS Operation now in progress.
10036 A blocking operation is currently executing. Windows

Sockets only allows a single blocking operation—jper- task
or thread—to be outstanding, and if any other function call
i= made (whether or not it references that or any other

socket) the function fails with the WSAEINPROGRESS error.

Figure 13 Error codes for Socket Programming

A complete table of errors can be found at MSDN Microsoft (n.d.) and the interpretation
of the error depends on the code that is returned by the function. For example, if the
code received is 10035, referring to the error "WSAEWOULDBLOCK?", it means that the
function used at that point of the program would try to remain expecting a reply, while

the socket itself is not capable of doing that, if it was configured as a non-blocking

48

socket. The example given for the recv() function on this error needs to be taken on

account, since this function will be used for the socket communications amply.

lii. Setting up the programming environment

On this section, different software for developing the project will be mentioned. This first
stage of the project is important, since it will constitute the base for developing the
whole project. It is also important to have in mind that from the DHBW University, it is
desirable to create portable software that will allow the use of the software developed in
this project with different Operative Systems, or easily make the conversion to a desired
OS. It is specially desired to have the ability to run software on Windows and Linux OS,

as they are the most common.

1. Programming language
The software to be developed will be programmed in C or C++ language, depending on
the needs of each program. Both languages are easily adapted for functioning on
Windows and Linux, as the program can define the OS at the beginning of the program,

and include the necessary libraries for its correct functioning.

2. Text editor
For writing the code, any text editor can be used, for example Eclipse or ConTEXT. For
this project, ConTEXT was selected for its friendly environment to the programmer;
however this does not affect in any way the program itself as it is only a tool for writing

and comprehending the code easier.

3. Builder and compiler
The program MSYS 2015 will be used for building the applications and programs
needed for the project. It is basically a supplement of MinGW, and has certain
advantages over cmd shell. It is "a collection of GNU utilities such as bash, make, gawk
and grep to allow building of applications and programs which depend on traditionally
UNIX tools to be present" (jonY, 2008). For this project, the most useful utility will be
"make". After installing MSYS, it is important to add it to the Path variable, for its proper

functioning.

49

4. Makefile
The makefile is a generic file created to give instructions to Msys on how to build a
program. There exist a wide variety of commands for these makefiles. A tutorial on how
to construct these files can be found at GNU (n.d.). The resultant makefiles will be also
attached at the appendix D of the document. This file basically indicates to Msys where
to find the libraries to link, what name to confer to the object and executable, and also

indicates the dependencies between files.

There are also tools that assist on creating these makefiles, for example Cmake. This
software will be discussed later, when working on the Image recognition phase of the

project.

At this point, the user has set up the environment for programming and has an
appropriate makefile for creating executable programs. On the next sections, a detailed
explanation of the process of programing the three main phases of the project will be
explained. These phases are:

— Programming the Light Section Sensor Communication
— Programming the UR Communication

— Programming the Vision Phase

Iv. Programming Light Section Sensor Communication

On this section, it will be developed the steps taken for programming the communication
between the Leuze Light Section Sensor and the host computer. To achieve this
communication, the sensor must first be studied, its technical characteristics, the
protocol used by Leuze for the communication and the different possibilities that the
sensor offers to the user, to define the scope and flexibility that the sensor will offer for

the desired objectives.

Important information about the Light Section Sensor is summarized in the following

section.

50

1. Important safety indications
Before starting to work with the Leuze sensor, it is important to first understand the

safety measures and indications for handling the item.

On the next image it is explained the symbol used on the technical description provided
by Leuze, and also present on the sensor shield. It is important to respect the

indications. Failure to follow these instructions may lead to damage.

Attention Laser!

& This symbal warns of possible danger caused by harardous laser radiation.
The light section sensors of the LPS series use a class 2M laser: Viewing the laser output
with certain optical instruments, e.g. magnifwng glasses, microscopes or binoculars, may
result in eyve damage.

Figure 14 Laser warning
Approved purpose of the sensor

Common uses for the light section sensor are for example (but not restricted to):

— 3D Measurement of moving objects: for example in a transporting band

— Gripper control: location of the gripper with real coordinates in working area
On the counter part, completely forbidden uses include:

— Rooms with explosive atmospheres

— Operation for medical purposes

For the project, the intended use is for both gripper control and 3D measurement. The
difference in regard to the given example is that the objects will not be moving, the
sensor itself will be moved by the robotic arm assistant, allowing the program to make a

3D scan instead of receiving only a 2D profile.

Leuze Electronic's safety regulations
It is important to read carefully and always follow the indications given by the sensor's
manufacturer. These indications should always be accessible by the user. The

indications are presented next:

51

Attention!

Access to or changes on the device, except where expressly descrbed in this operating
manual, are not authorzed.

Safety regulations

CObserve the localy applicable legal reguiations and the rules of the employver's liabifity
insurance association.

Qualified personnel

Mountng, commissioning and maintenance of the device must only be carried out by qual-
ified personnegl. Blectrical work must be camied out by a certified electrician.

Figure 15 Laser prevention instructions Part 1

A

Attention, laser radiation!

If you look into the beam path over a longer time period, the retina of your eye may
be damaged!

Never look directly into the beam path!
Do not point the laser beam of the light section sensors ar persons!

When mounting and aligning the light section sensors, avoid reflections of the laser
beam off reflective surfaces!

Viewing the laser output with certain optical instruments, e.4. magnifying glasses,
microscopes or binoculars, may result in eye damage!

Thelight section sensors comply with the safety standard EN 60825-1:2007 for a Laser
class 2M product, and with US Regulation 21 CFR 1040, 10 with the deviations pursu-
ant to "Laser Notice No. 50", dated 24th June 2007.

Radiant Energy: The light section sensors use a laser diode. The emitted wavelength
is 658 nm. The maximum laser power, which is determined with measurement condi-
tion 3 acc. to EN 60825-1: 2007 (Tmm measunng diaphragm at a distance of 100mm
from the virtual source), is 8. fmW.

Adjustments: Do not attempt any adjustments to or alterations of this product. Do not
open the protective housing ofthe light section sensor. There are no user-serviceable
parts inside.

The glass optics cover is the only aperiure through which laser light may be observed
on this product.

Figure 16 Laser prevention instructions Part 2

52

CAUTION: Use of controls or adjustiments or performance of procedures other than
specified herein may result in hazardous light exposure.

The use of optical instrumenits or devices in combination with the light section sensor
increases the danger of eye damage!

QOperation notice in accordance with UL certification:
CAUTION - Use of controls or adjustments or performance of procedures other than
specified herein may result in hazardous light exposure.

Figure 17 Laser prevention instructions Part 3

These indications where extracted directly from Leuze Electronic (2014) as they are not

to be modified, and should be followed exactly as they are given by the manufacturer.

2. Operation Principle of the Light section sensor
This section is intended to explain how the laser sensor works, the limits it may present

on given circumstances and possible solutions to these limits.

On the next image, it is possible to observe a scheme of the functioning of the sensor.

Laser with expansion optics

CMOS planar —, \
datector
< -X
Baceiving optics LR
. X =
1 “]
™ B
-,
. Y
h . The zero point of the coordi-
™, nate system is the intersaction
™ rd of optical axis and front edge of
1 the housing.
.,
!
\
'\.‘ »
\ >

Figure 18 Leuze LPS functioning scheme

Image from Leuze Electronic (2014)

53

As it is shown, the laser beam is projected over a surface from the laser. The laser line
will be projected to the CMOS planar detector accordingly to a position relative to the
point of reflection of the beam on the surface. This allows mapping the gradient of the
laser beam proportional to the real 2D cut. The sensor then converts these values to a
certain position, both in X and Z coordinates, that correspond to the real life surface.
With one isolated lecture, a 2D profile will be obtained. When making continuous
lectures, and if there is a relative movement between the sensor and an object, it is
possible to create a 3D map of the readings.

There is one common problem that may present when making lectures, and it is called
"Occlusion”.

As the scanning of a surface is based on the reflection phenomenon from the laser
beam to the CMOS detector, if the beam is obstructed partially or completely, it will not
reach the destination as it is expected. This can be better explained when observing
these two images:

Racaiver occlusion Lasaer occlusion

Figure 19 Occlusion on Leuze LPS

54

There can be mainly two types of occlusion. On the first image it is possible to observe

a "Receiver occlusion” and on the second image a "Laser occlusion”.

Receiver occlusion

As it can be observed on the first image, given certain characteristics of an object
present on the scan area, when the laser beam reaches a certain point of the object, it
may be obscured by the object itself when reflecting to the CMOS, creating a "shadow
area" that will never reach it, and hence it will not be mapped. This occurs specially
when there are very high features on an object. The red area on the image shows all
the area that will not be mapped by the sensor due to the upper right corner of the

object.

Laser occlusion

In the second image, the occlusion is a little bit different as in the first. In this case, it's
the laser beam that will never reach certain points of the object, as they are obscured by
the object itself. The laser beam will effectively be mapped by the sensor, but as it never
reaches the features hidden by the top right corner, they will never be shown on the

CMOS. This occurs because the laser beam is projected with an angle from the sensor.

Leuze Electronic offers a suggestion for avoiding this type of problems, depending on

both cases.

Possible measure for receiver occlusion

One option is to align the sensor (or the object) in a position that allows measuring all
the features from the object. Another is to use a second sensor that faces 180° opposite
on the Z axis. This allows the sensor to receive information from both sides, capturing

the information that was missing on the first sensor.

Possible measure for laser occlusion
For this type of occlusion, an easy solution is using multiple light section sensors. They
are programmed in cascade so they don't affect the others, and this way is possible to

access most features of the objects.

55

Measure adopted for this project

The DHBW University owns only one light section sensor, so the use of multiple
sensors is not an option for the moment. Also, the idea for the project is to receive
objects in random order and of different shapes, so aligning the objects or the sensor for
a specific object and position is not viable either.

The actual project will be developed knowing the existence of these phenomena;
however, a very feasible solution will be exposed in the Recommendations and Future

work's section.

Resolution of the sensor
The following graphic shows the relation between the distance sensor-object vs. the

resolution of the lecture in mm.

(=T

el I I
1
|
Lkl

[T I~ T T — T
\.

Ty plcal resalution in mm

200 300 400 500 60D YOO OO
Object distance in Z-direction in mm

Figure 20 Distance sensor-object vs. Resolution of lecture

Image from Leuze Electronic (2014)

As it can be seen on the image, the resolution is higher when the sensor is closer to the
object. This means that it is easier to obtain more accurate images when closer to the
object. This will be further discussed in the Recommendations and Future work's
section for a possible variation of the application developed that might enhance the

performance of the scanning and the time needed for the whole process.

It is also important to know the ranges within the sensor can work properly. The Z range
goes between 200 to 800 mm, and the maximum length of the laser line is 600mm (it
decreases when Z distance decreases). Also, the response time of the sensor or for a

measurement is of 10ms.

56

3. Mounting and connection of the sensor
The correct mounting of the sensor is relevant for acquiring proper lectures of a surface.
On this section it will be mentioned the steps taken for achieving a proper mounting of

the sensor and how to connect it.

Alignment

On the next image, the alignment of the sensor will be explained.

Figure 21 Alignment of Leuze LPS

Image from Leuze Electronic (2014)

The sensor should be mounted as the first image shows, aligned on the Y axis, with the
measuring surface parallel to the XY plane of the sensor. The sensor comes with a
screen that shows the Z distance at the beginning, middle and end of the laser beam.
The three measures should be equal, indicating a correct alignment of the sensor.

OLED display
128 x 32 pixsls

Device LEDs
graan and ysliow

r S0 *LED stats displays*
on page 41.

Koy pad with 2 buttons

L4538 H458 R45A

Figure 22 Screen output for aligning

57

When aligning the sensor, the screen should show values as the ones in the image
before, equal for the Left (L), Middle (M) and Right (R) value. The numeric value
corresponds to the distance between the sensor and the measuring surface in mm. If
the sensor shows 000(mm) it means that the measuring surface is out of the measuring
range of the sensor.

Mounting base

For the first phase of the project, the objective is to make measures with the sensor, but
the UR will be programmed on a further phase of the development. For this reason, a
temporal mounting base will be assembled. This base will be stationary, and the relative
motion between the sensor and the objects will be produced by manually translating the

objects as if they were on a transporting band.

The resulting base was built with materials available at the storage room of the Robotics
and Automation laboratory from the DHBW. It will not be for permanent use, but only for
making tests to the sensor, and taking simple measurements. The picture below shows
the resulting base. On the second picture, it is shown an L shaped plate that was
machined to connect the sensor with the base structure. The sensor has holes for its
proper mounting with screws, so the plate was machined with this purpose.

Figure 23 Temporal mounting base for LPS

58

It is important to place the safety labels of the laser beam on a visible place,
& and to mount the sensor in a position that the laser beam will not reflect

directly to the eyes of the operator.

Electrical connection

The following image shows the connectors of the Leuze sensor.

l/:::u | |Ql
& T
AR\ (R

Figure 24 LPS connectors. Image from Leuze Electronic (2014)

For the purpose of this project, only the X1 and X2 terminals will be used. The X1
terminal is the Power supply connection and the X2 terminal is the Ethernet connection
between the sensor and the PC.

On this first phase of the project, the sensor will be powered by a source of +24V DC,
with a restricted current of 2 A.

4. Communication Protocol Structure
After studying the basics of the Leuze LPS sensor and how to set it up, it is time to
study the protocol that the sensor employs for the Ethernet communication. On this
section, an explanation of the protocol and the most common codes that will be needed

for the project will be explained.

Measure Mode and Command Mode

First of all, the sensor can work in two different modes:

— Measure mode:
On this mode the sensor can be configured to measure on "Free Running",

where it will be measuring periodically by a previous set frequency or on "Input

59

Triggered”, where it can receive an external signal that will trigger a single

measure from the sensor.

— Command mode:

On command mode, the sensor will receive instructions and configuration

parameters from the Ethernet connection via the X2 connector and a UDP

communication.

For this project, the Command Mode was chosen as the best option, as it enables the

user to configure parameters while operating the sensor, and gives more flexibility for

programming the interface of the program.

Header and User Data

The protocol that the LPS employs is integrated by 2 parts, the Header and the User

Data. The Header is 30 bytes long, and it is distributes as showed next:

Header:
Byte 0-1 Byte 2-3 Byte 4-5 Byte 6-7 Byte 8-9

Start seq. 1 | Start seq. 2 Fill Char Command No. | Fill Char
Byte 10-11 Byte 12-13 Byte 14-15 Byte 16-17 Byte 18-19
Packet No. Fill Char Transaction Status Encoder H

No.
Byte 20-21 Byte 22-23 Byte 24-25 Byte 26-27 Byte 28-29
Encoder L Fill Char Scan No. Type No. of User
Words

Table 4 LPS Header

The User Data's size depends on the information sent by the sensor to the PC.

60

Start Seq. 1 & 2

Start sequence 1 and 2 have both a value of OXFFFF. They are the indicators of a new

message.

Fill Characters

Every Fill Character has a value of 0x0000, and they are used to separate the different

information sent or received on the Header.

Command Number

These 2 bytes specify the command sent from the PC to the sensor, as well as the
response from the sensor to the PC. The different values that can be on this space will

be discussed further.

Packet Number

It's a value used by the manufacturer.

Transaction number

In Measure mode, the value of Transaction No. will always be 0x0000. However, for
Command mode, the value will be the same value of the Command Number that the

sensor is answering for.

For example: if the command sent by the PC is 0x434E (Connect to Sensor), when the
sensor acknowledges with a response, the Transaction number will have the value of
Ox434E.

61

Status

This word indicates the status of the sensor. A table with the different values is

presented next:

MSB High-Byte LSB|MSB Low-Byte L5B |Meaning of the bits
== 1--1-1-1-1-1-1-1-1-1-1-1|- |0 |Sensor not connected via Ethernet

1= 1-1-1-1-1-1-1-1-1-1-1-1-1-|1 |5ensor connected via Ethemet

- |- |- |- |Measure mode

- |- 1-1- |Menumode

1
0
Of-1-1-1- |Command made
]

- |- 1- |- |Emor mode

== - -1--1-10)-|-[-{-]1-1]-]|-|- |Sensor deactivated via activation function

-1 -1--1-11-1-1-1-1-1-1|-1|- |Sensoractivated via actvation function

-1 -0-f-1-1-10] |-1-{-{-|-1-1-1- [Mowarning

-1-1-1-1-1-1I1 -1 -1-1-1-1-1-1- |Waming, temparary sensor malfunction

- -1--1-10]-]-]-|-|-1-1-1-1|-1|- |Free Rumning measure mode

== 1-1-1-(1]-1-1-1--1-1-1-1|-1- |Tnogered measure mode

=== 10 - -f---1-1-1-1-1-]- |Moconhguraton memory connected

- -1f-1-1-1-1-1-1-1-1-1|-1- |Configuration memory connected

=0 - -1 -1-1-1-]--1-[- |Neemor

-1 -1-1-1-1-1-1-1-1-1-1-1-1|- |Emordetected, measurement data are still
sent if applicable, the sensor then swiiches
into ermor mode

Table 5 Status interpretation of LPS

Table from Leuze Electronic (2014)

Encoder High & Low

The encoder is used for sensors with encoder input: however, it will not be implemented

on this project.

Scan Number

This value indicates the number of single consecutive measures that have been
processed. The X and Z values from a single lecture are identified with the same Scan

number.

62

Type

Its value is 0x0010, and indicates that it handles 16 bit data.

Number of user Data

It defines how many words of User Data are to be received on the actual packet. The
values can be 0, 1, 2, 3, 376 or 480.

User Data

When measuring, 376 values will be returned to the PC with X or Z values. The
resolution of the lectures is 1/10 mm. The X values are signed values in two's
complement that go from 0 to 65535. Values between 0 (0x0000) and 32767 (Ox7FFF)
represent positive values, and values between 32768 (0x8000) and 65535 (OxFFFF) are

negative values, where 65535 represents -1.

Commands
The Leuze LPS has a wide list of commands for configuration and measuring of the

sensor. Some of the most important commands are listed below and their use will be
explained afterwards. The Acknowledge response is also listed, which would be the
response from the sensor to the PC. If the command is acknowledged, the response is
'‘Ack'=0x4141 and if the command is not processed the response is 'Not Ack'=0x414E

In measure mode

Action Command Ack Not Ack
Connect to sensor 0x434E 0x4141 0x414E
Disconnect from 0x4443 0x4141 0x414E
sensor
Enter command mode 0x3132 0x4141 0x414E
Exit command mode 0x3133 0x4141 Ox414E
All other commands - - 0x414E

Table 6 Commands in measure mode

63

From this commands, the execution should be like this:

Connect to Enter Exit Disconnect

SEnsOr command command -

mode mode

Measuring process

Figure 25 LPS general algorithm

The measuring process is shown separately because is the complete algorithm that will
be elaborated for measuring objects, sending data to the PC and storing the data with

the proper format. It will be detailed later.

In command mode

The complete list of commands when operating in Command Mode can be found in
Leuze Electronic (2014). A list of the commands that will be used for the purposes of
this project are listed next; however, for future extent of this project, it is important to
make a revision of the other available commands, to understand the extent and

possibilities offered by the LPS sensor.

Action Command Ack Not Ack
Set laser Gate 0x0001 0x4141 0x414E
Trigger single 0x0003 0x4141 0x414E
measurement
Get X coordinates 0x0011 0x0012 -
Get Z coordinates 0x0013 0x0014 -
Get ZX coordinates O0x005F 0x0060 -

Table 7 Commands in command mode

64

Set laser Gate

This command is used to toggle the state of the laser. When the laser is ON it will
change its state to OFF and vice versa. It is important to consider the use of this
command if the sensor is going to be at some point of the process looking to a direction

that is not the measuring surface, to avoid injury by looking at the laser beam.

Trigger single measurement

The trigger command executes one single measurement at the moment the command
is received. It stores both X and Z values (376 values for each coordinate) in the sensor
buffer.

Get X Coordinates

This command is a request from the PC to the LPS to send a packet with the X
coordinates acquired in the previous measurement. 376 signed Values will be sent to
the PC, each within a range between 0 and 32767 for the positive values, and between
32768 and 65535 for the negative values. The packet is transmitted to the PC with a

command number of 0x5858.

Get Z Coordinates

This command is a request from the PC to the LPS to send a packet with the Z
coordinates acquired in the previous measurement. The Z coordinates are 376
unsigned values the can have a value in a range between 0 and 8100. The packet is
transmitted to the PC with a command number of OX5A5A

Both X and Z coordinates will be transmitted with the same Scan Number when they

belong to the same lecture.

Get ZX Coordinates

This command transmit both X and Z coordinates to the PC; however, this command is
only available for the LPS 36HI, and for the project the sensor available is the LPS 36.

Hence, this command will not be implemented in the project.

65

Set Single Inspection Task Parameter

This command, with the command number 0x006D can configure a series of

parameters of the sensor like:

— Name of inspection task: name used for the actual measurement (Parameter ID:
0x0BB9).

— Exposure Duration of the laser: configuration of laser exposure in pus depending
on the brightness of the objects to be measured. A normal exposure is of 261 ps.
For bright objects 97 ps are recommended, for dark objects a mayor exposure of
655 ps is advised and for normal to bright objects it is recommended an
exposure of 328 us approximately (Parameter ID: 0OxOBBD).

— Detection range of the LPS: the X coordinates and Z coordinates detection
ranges can be separately modified to ignore values out of the range of interest
(Parameter ID: OxOBBF for X coordinates and Parameter ID: OxOBCO for Z

coordinates).

These task parameters are configured using 3 words from the User Data. The first word
is the parameter ID to be modified, and the next two words define certain values

depending on the parameter to be modified.

5. Programming the LPS communication
The programming of the LPS communication requires order and simplicity. The protocol to be
used (UDP) has to follow specific rules, which can be found on several tutorials. Some useful
tutorials and examples can be found in Silver Moon (2011) and Silver Moon (2012).

Header file
Most of the commands mentioned previously are the ones that will be used in the

program. Knowing all these commands, a header file with the name "leuze-Ips.h" was
created to define a name for each command, and make the interaction with the

programmer friendlier. A sample of the header is shown below:

66

LPS Cmd Ok = Ox4141, Acknowledge nfi

LPS Cmd Error = 0x414E, not Acknowl , BError, not executed
LP5 Cmd ConnectToSensor = Ox434E,
LPS Cmd DisconnectFromSensor = 0x4443,

LPS Cmd CmdModeEnter 0x3132,
LP5 Cmd CmdModeExit = 0x3133,
LPF5 Cmd SetLaserGate = 0x0001,
LPS Cmd TriggerSingleMeasurement = 0x0003
LP5 Cmd GetXCoordinates = 0x0011
LP5 Cmd GetXCoordinates &Ans = 0=x0012
- signed wvalues, unit: 1/100mm, 378 valuss
LPF5 Cmd GetiCoordinates = 0x0013
LP5 Cmd GetiCoordinates Ans = Ox0014,
- signed waluess, unit: 1/100mm, 378 values

Figure 26 Sample of header file

Also, a Header structure with the format and size previously explained was defined.

After having defined all the variables needed for commands, the programming of the
sensor communication was developed. A file with the name "sensor_client.c" was

elaborated. Its different sections will be explained next:

Libraries inclusion
On the first section of the code, all libraries included are listed. A conditioning evaluation

of the OS of the system defines whether to include libraries for Windows or for Linux,
and finally those libraries needed for both. On the next image is shown how the program
includes the needed libraries depending on the OS making the program portable.

67

$if defined (LINUX)

$# include <sys/types.h>
$# include <svys/socket.h>»
include <netinet/in.h>
$# include <netdb.h>

$ include <arpainet.h>
$elif defined (WIHN3Z2)

include<winsockZ.h>

include<windows.h>

include<fcntl.h>

% include<sys/stcatc.h>
$endif

$include <stdio.h>
$include <stdlib.h>
#include <uni=std.h>
$include <string.h>
#include <errno.h>
$include "leuze-lps.h"

Figure 27 Included libraries

IP Configuration
After including the corresponding libraries, the algorithm for UDP communication was

developed for connecting the sensor with the PC. An IP address of 192.168.28.50 was
defined for the sensor with a Port Number on 9008. The port for the PC was defined as
5634. The communication between both hosts will happen in these two ports. The PC's
IP was defined as 192.168.28.51 as it needs to be on the same subnet. Both hosts use

a subnet mask of 255.255.255.0.

Use of Wireshark to read Ethernet data
After programming and debugging the UDP communication and configuring the proper

parameters for the sockets, the communication was finally established. To ensure that
the correct commands where send to the sensor, a Sniffer program was installed on the
PC. With the use of the free software Wireshark, the data sent and received by the
Ethernet connection of the PC was monitored. After a series of tests an correction of the
order of the bytes when sending them to the sensor because they were in Big Endian
format and were supposed to be in Little Endian format (Little byte first), the following

data was captured by Wireshark:

68

Word 1 2 3 4 5 6 7 8 9 10
Sent FFFF | FFFF | 0000 | 4E43 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000
Response | FFFF | FFFF | 0000 | 4141 | 0000 | 0000 | 0000 |4E43 | 1001 | 0000
Word 11 12 13 14 15

Sent 0000 | 0000 | 0000 | 0000 | 0000

Response | 0000 | 0000 | 0000 | 1000 | 0000

Table 8 Sent and received message from LPS

The command number (Word No. 4) of the message sent is 0x434E (4e4E43 in Little
Endian format) which represents the command "Connect to Sensor". On the response,
the Transaction Number is 0x434E, as it is the response from the received command.
The Command number of the response is 0x4141, which acknowledges that the

connection was successfully established.

First successful lecture
After implementing a simple lecture with the sensor and importing the X and Z

coordinates to a file, a graphic was created using a simple data tool, in this case
Microsoft Excel.

From the scene shown below, a profile was obtained.

Figure 28 First scanning scene

69

From these objects, the following profile of a single lecture was obtained:

2000 1500 1000 500 1] 500 1000 1500 2000
3500

3700

s Series]

Figure 29 Obtained profile. Signal z in 1/0 mm. Signal x in 1/10 mm.

The units on the graphic are in 1/10mm units and represent the X and Z distances
between the sensor and the objects on the table. The X and Z axis don't have the same
scale, which makes the image appear distorted. It is also observable the phenomenon

of occlusion present on the lecture, that was previously explained.

Improvement of the code for 3D measuring
After reading one single profile and storing it to a file, it is time to simulate a continuous

lecture with the sensor, with relative movement between the sensor and the objects on
the measuring surface. As the sensor at this point doesn't have the capability to move,

the measuring surface will be disposed as showed on the next image:

S

Figure 30 Measuring manual surface with millimetric bottom for simulating movement

70

As it can be observed on the image, a millimetric sheet was fixed to the surface of the
table. Over this sheet, another millimetric sheet was placed (not fixed). The objects will
be placed over the second sheet, allowing it to be manually moved every one millimeter

and making one lecture from the sensor on each position.

The code was modified to request permission to the user to make a new scan every
time, or to terminate the lectures. Every time a scan is made, the values are stored at
the end of a *.txt file with a name that the user indicated at the beginning of the
program. The final result is a file with multiple lectures of the sensor. The Y coordinate,
which is not provided by the sensor, was pseudo-assigned as the number of lecture,
starting from lecture number 1, until the user decided to terminate the program at

lecture number N.

Graphical interpretation of data
For interpreting the data acquired, more specialized software than Microsoft Excel is

needed. GNUPIlot and MeshLab are both free software that allow visualizing 3D data.
Both will be tested and analyzed to choose the optimum program. This will be used only
for easily visualizing the obtained data after a complete lecture, and does not affect the
results of the project. An idea about the data visualizing will be proposed on the

Recommendations and Future work's section.
GNUPIot

The GNUPIot software is free software that is compatible with most common OS. It is
used for graphing and visualizing functions and data. It is controlled by console, which
allows the user to modify parameters and modify information of the input data. After
investigating on the different commands and possible the configurations that the

program uses, two types of images where obtained: Meshed images and Dots images.

The Meshed image creates a solid surface with the input 3D points that where

introduced, and allows the user to visualize the result as a whole object as showed next:

71

2000 500

U Eslili} -1 -1ouu

3600 -
3800 |
4000
4200 -
4400 -

4600 -

4800

5000 -

Figure 31 Mesh of obtained image

When rotating the graph, this was observed:

Figure 32 Mesh obtained, second view

=000 60

5000
20
460
40
a0
4000

3800

5000

4800

4600

4400

4200

4000

3800

As it can be appreciated, the figures present some "holes" on the surface. This occurs

because of the previously mentioned occlusion phenomenon, which doesn't allow

scanning completely the figures on the measuring surface.

72

The Dots image presents the same results, but it is a more exact representation of the
results, as it shows the data in a 3D space as it is on the input data. The image below

shows a Dots image obtained in another test:

140

Figure 33 Dots image with GNU Plot

The results obtained with GNUPIlot are very clear, but require a certain amount of
commands to obtain images like the ones presented. The commands depend on the
size of the image, the quantity of points from the input data and the output desired by

the user.
MeshLab

MeshLab is an open source tool that allows creating 3D meshes with an input of points.
It can also create Dots Images using the *.ply format. It requires a header on the file
with information of the type of data (float, integer, etc.) and the quantity of points on the
input. Tutorials on how to create *.ply files can be found at FSU PLY Files (n.d.),
Paulbourke (n.d.) and FSU PLC Files (n.d.). Also an example on creating a mesh from

point clouds can be found at Tenney (2012).

73

After creating a proper header, the following result was obtained:

Figure 34 Dots image with MeshLab

MeshLab allows the user to obtain easy visualization of 3D data, and requires a small
amount of parameters to do so. For this, the rest of scans will be analyzed with this

software.

An example of the header for a *.ply file is as follows:

ply

format ascii 1.8

comment author: Alejandro Alpizar

comment object: 3D object with Leuze sensor
element wvertex 1128

property float x

property float y

property float z

end_header

Figure 35 Ply header

The variable "vertex" indicates the total number of points with X, Y and Z coordinates.
This number is obtained from the number of lectures that were made when scanning the
surface. As every lecture returns 376 pairs of X and Z coordinates, the vertex can be

calculated as:

Vertex= 376 * No. of lectures

74

Measuring process
The final measuring process flowchart can be seen in the next image:

Save on file empty

Header

Make new Edit Header

Trigger single measurement
Get Z coordinates

Get ¥ coordinates

Save data on file

Increment counter of

lectures

Figure 36 LPS measuring flowchart

An example of a file created with the Leuze program can be found on the Apendix F.

The program for measuring will be edited when the UR phase is working, as the user
will have no need to indicate to make a new measure. Instead, the UR will send a
command to the Leuze program requesting a new measure when it has reached a new
position. The details of these will be explained in the next section.

75

v. Programming the Object Detection and Recognition Phase

Originally, the UR phase was planned to be developed before the Vision Phase.
However, the Robotics and Automation Laboratory has certain restrictions when
working on the Laboratory. One of these restrictions is that any user has to be
accompanied by another professor or operator when working on the Laboratory. For this
reason, it was decided to work first on the Vision Program with the data already
acquired from the previous phase. It will most probably need adjustments when
integrating the three phases, but it will allow a continuous work on the project.

1. Selecting the programming tool
Until this point, the programming has been developed in C language, assisted with
MSYS for building the executables. For the Vision phase, there needs to be chosen a
Vision specialized software that has the capacity for achieving the desired objectives of
the project. Different software, such as MatLab, Octave and OpenCV have the utilities
needed for complex Image Analysis. There are other libraries that can be used in C that
will open more options for developing the project, as is Point Cloud Library (PCL).

One of the desired objectives is to have a low cost system developed. The use of open
source software when possible would decrease enormously the cost on software of the
overall project. With this in mind, MatLab would not be a desired software to use.
Octave is open source, and has a wide variety of tools. OpenCV is an image and video
dedicated library, and it is open source. There can be found plenty examples and
tutorials on literature and on the web, that can improve the programming. For this
reason, it was decided to use OpenCYV for the Vision development of the project.

PCL is a powerful library; it allows the user to work with 2D and 3D point clouds in
space, and carry out a series of algorithms such as object detection in 3D, Point Cloud
Stitching (Fitting two or more Point clouds in one final mesh), and others. For this first
project, it will not be implemented; however, its possibilities will be discussed on the
Recommendations and Future work's section.

2. Setting up the programming environment
The setup of the environment for using OpenCV with C or C++ is a task that must be done
carefully. Otherwise, the final result may not function properly or may even cause the installation
to break. The installation depends on the OS, the version of the OpenCV to be used and the
complements to be used. There are certain complements that can be installed together to
expand the possibilities of use with the library. An example of a complement named Qt will be
described in the Recommendations and Future work's section.

Different tutorials and forums that discuss the subject can be found for installing
OpenCV in the PC and building it properly at M. Asad (2011), OoenCV.org(n.d.),
Stackoverflow (n.d.), Sahid Hasan (n.d.), and others. One suggestion found is to use

76

Cmake for building OpenCV. Cmake is an open source tool used to control the software
compilation process. It is basically a crossed-platform build environment that creates the
necessary Makefiles for later use at any compiler of choice.

The steps for building OpenCV where followed:

Set the path variable

Select the location where the source code is.

Select an location where to build the binaries

Select MSYS Makefiles as the generator of the project

Generate with Cmake

Specify the location of the Compilers for C and C++.

After the red screen shown in the next picture, select the parameters wanted for
the configuration and generate.

8. Close Cmake and on the Command Prompt go to the build folder and enter
Make. After it is done, enter Make Install.

Nogogpwd PR

-9
] -Os -DNDEBUG
ELEASE -03 -DNDEBUG
WITHDEBINFO -02 -g -DNDEBUG
“__L]BRARIES -lkernel32 -luser32 -1gdi32 -lwinspo
R_FLAGS
,_FLAGS_DEBUG
LAGS_MINSIZEREL
RELEASE
. MFLWITHDEBINFO

C:/opencv/sources/ e

A e

Figure 37 Cmake configuration for building OpenCV

77

As it can be seen, the building process is not complicated, but it requires of caution. The
main problem is to find a process that fits the needs of the user (OS, OpenCV version,
compiler, building tool, and others).

Once the programming environment is ready, it is time to plan a solution to be
developed.

3. Vision solution proposal

The advantage when working with Point Clouds is that the data is managed in space as
it is obtained. Every point (xi, yi, zi) will have a specific coordinate with no possibility of
occupying the same space than another point. Libraries like PCL have developed
algorithms that handle these data, and allow to extract information and to transform the
data (transforming the coordinate system or stitching with another point cloud for
example). However, OpenCV cannot handle point clouds, which requires a different
approach for a solution.

At this point of the project, there are files created with a list of points with x, y and z
coordinates. A proposition for working with these data is to make a transformation from
a 3D point cloud to a 2D grayscale image. The intensity of the gray represents in a 2D
image the Z value of the 3D image, while the X and Y coordinates remain the same.

4. Developing the solution
Some adjustments need to be made for the transformation proposed, because the
sensor range of height is from 0 to 8100 in 1/10 mm, and a grayscale image is usually
within a range from 0 to 255.

For a better understanding of the transformation, the previously obtained profile will be
used.

78

Origin of the sensor's
coordinates

FiLil 1500 1000 o] @ w00 A0

]

Peak figure —)

A 100 |
Measuring

| —aried

[[1 surface
[\ 1| |
f 4700 B

_ J - 4-'

Figure 38 Explanation of transformation to grayscale image

The Z coordinates are 0 when closer to the sensor, and can go up to 8100. However, if
a linear transformation was done from range [0 ... 8100] to a range [0 ... 255] the
contrast of the image would be very bad, as all the figures would be concentrated in a
small range of the possible values. The peak figure on the scan has a gradient of
approximately 100mm out of the 810mm that can be represented. When converting the

bottom value of 4900 and the top value of 3900 to grayscale, the following values are
obtained:

Bottom value=154
Top value=123

This means that any other figure present on the measuring surface and smaller than the
top figure will be within this range, and the rest will not be used. For this, it was defined
that the transformation will be calculated between a range that goes from the highest
level (the distance between the sensor and the measuring surface) and an established

maximum point a little higher than the peak point, in this example could be 1500 in 1/10
mm above the measuring surface.

It is important to note that the distance between the sensor and the measuring surface
is variable and should be set depending on the working area and the coordinates from
where the sensor will be placed , and that the that the maximum point depends on the
figures that will be handled. For the purpose of this project, no figures above 1500 in

79

1/10 of mm will be handled. The list of figures to be used can be found on the Appendix
C.

Since the previous program saves a file with the data, this program will part from that
point. It will be a separated program that opens the requested file and loads the data.

The following steps are taken:

Create empty 3 channel
image of size:

Read file and Calculate No.

Open file

find Vertex of lectures

value No. lectures x 376

Figure 39 Opening image from file

The resulting empty image is a 3 channel image that will store the file values as shown:

¥ value

¥ value

Zvalue

Figure 40 3-Channel XYZ image

The above image uses an analogy of the RGB format of images that is widely use on
color images because they also have 3 Channels, one for each color (Red, Green and
Blue). However, it does not represent a color image, as the values of each pixel
represent the numeric value of each coordinate. To locate a point in space one would
need to take the Ri, Gi and Bi values, and then represent them as an (x,y,z) coordinate.
To avoid confusion, instead of referring the image as RGB, it will be referred as XYZ
channels.

80

If the Z channel is output as a grayscale image, the above result is printed:

Figure 41 First grayscale image

As expected, the image is a grayscale representation of the 3D image that represents
the height with a different intensity of gray. The darkest zones represent what is farther
from the sensor, and the brightest zones represent what is closer to the LPS.

The image is a representation of the previously showed image:

140 |
120

o @

Figure 42 Original image in dots

From the grayscale image, there are two conclusions to make:

e The range transformation works properly for this image
e The occlusion zones are clearly observable in color black (They are represented
as a value of 0).

The next step is to program a recognition algorithm to locate and identify objects in the
image.

5. Edge detection algorithm
OpenCV offers a wide variety of functions that can help to identify, locate, classify and
characterize objects on images. Usually, for doing so, the images need a conditioning
step, that enhances the image for the desired purposes. The process usually needs
feedback: enhance image, process and observe results. If results are not satisfactory,

81

enhance image, process again and observe results until the final result is satisfactory.
All functions from OpenCV can be found at OpenCV Documentation(n.d.).

First test will be made for finding contours on the image. After doing some research on
the possible functions to obtain borders, the Canny function was implemented, because
it gives equal priority for both X and Y directions. Other functions for finding borders are
for example: Gaussian filter, Sobel filter, Scharr filter. The canny edge detector uses the
Gaussian filter to filter out noise from the image, and then applies a similar to Sobel filter
to find the gradients on the image. It is also known as Optimal Detector.

The canny edge detector returned the following result:

Figure 43 First edge detection

As it can be observed, the edges were found, together with some noise on the resulting
image. The threshold parameters on the Canny function allow to make a more or less
sensible edge detector depending on the needs of the user. When configuring the
thresholds with different values, the following results were obtained:

Figure 45 Canny with low threshold of 15

82

Figure 46 Canny with low threshold of 20

As it can be observed, when augmenting the threshold values, the noise is reduced;
however, not completely eliminated. The above images are for a low threshold of 10, 15
and 20 respectively, and a high threshold of three times the low threshold.

Observing the resulting image, it was noticed that the image shows a perspective from
the sensor, and it is not a flat Top View from the sensor. This is observed because of
the section of wall of the cylinder that should not appear if it was a perspective-less Top
View image. This means that all the values assigned for the wall of the cylinder should
be projected to a single X and Y position, correcting the image to a proportional real life
image.

For better results, new images need to be created, so it was decided to start the next
phase of UR Programming, to enhance the process of data acquisition. The perspective
problem will be continued on the integrating phase, after the UR Communication is
programmed.

vi. Programming UR Communication

On this section, the process of programming the Universal Robot UR5 will be detailed.
But before starting to program, the UR5 needs to be studied, its safety measures
acknowledged and its commands understood.

1. Getting to know the UR5
The URS5 is a universal robot that has 6 joints; for this robot, this means 6 degrees of
freedom. The first 3 joints of the robot (A, B and C) form the body of the robot, and the
last 3 form the wrist (D, E and F). The robot is as shown below:

83

Figure 47 UR5 Joints

At the end of the wrist, different tools can be adapted depending on the application that
the robot will be developing. The tool has a Tool Center Point (TCP) that will be the
coordinate system of the tool. Each joint has its own coordinate system and with a
combination of kinematics and electronics, the robot is able to move the TCP to a
specific coordinate in space with a desired orientation. The only restrictions of
movement of the tool are directly above and below the robot, and outside the
workspace of the robot.

The URS5 has a reach of 850mm from the center of the base, which can be observed on
the next image:

Figure 48 UR5 Workspace

The workspace is a sphere of approximately 170cm of diameter, excluding a cylinder
volume that is formed above and under the robot base.

84

This workspace should be considered for defining the space where the robot
will be working, and should also be considered as a security restricted area
where no operator should remain, regardless of the programmed
movements of the robot. An error on the programming or operation of the UR could
severely injure a person. Also, the workspace is defined for a vertical floor mounting.
The proper adjustments should be made when using a different mounting (Tilted

mounting or roof mounting).
2. Safety of the UR

The URS5 has a safety interface integrated by two parts: the emergency stop and the
safeguard stop. A summary of their differences is provided by Universal Robots (2012)

and it's showed next:

Emergency Stop Safeguard Stop
Robof sfops moving Yes Yes
Initiations Manual Manual or autormatic
Program execution Stops Pauses
Brakes Active Mot acfive
Motor power Ot mited
Reset Manual Automatic or manual
LIze frequency Infrequenit BEvery cycle to infrequent
Reqguires re-infalzation Brake release only Mo
EN/IEC 60204 and NFFA YT | Sfop categorny 1 Stop cafegory 2
Performance level 150 138491 PLd 150 138491 PLd

Table 9 Safety interface

The Safeguard Stop can be activated by the UR when the motors of the joints are
exceeded on a specific movement or torque, or when a risk of collision is detected. The
Emergency Stop can be activated manually by the operator with the Teach Pendant's

Emergency Stop button showed in the next image (The red button):

Move Tool

@ smutsvon
@ sl Robot

Wt 3

......

nnnnnnnnnnn

UNIVERSAL ROBOTS

Figure 49 UR Teach Pendant and Emergency button

85

If it is required to move the robot joints on an emergency, the operator can press the
back button on the teach pendant, which will activate a special mode of the robot. When
presses, it releases the breaks on the joints and allows the user to manually move the
joints.

It is highly important to train every operator on the safety use of the UR and how to
proceed on an emergency.

3. Kinematics of the project
Kinematics is a branch of mechanics that involves movement of points, bodies and
coordinate systems. It is widely used in the motion of robotic arms, as every joint works
on its own coordinate system. To calculate the position of the TCP at a certain moment,
a kinematic calculation from the base and all the way to the last joint should be
performed.

For the project, not only the UR's coordinate systems are involved, but also the
measuring surface's coordinates, the LPS's coordinates and the objects to be
manipulated coordinates. Hence, a good managing of kinematics is required. The UR
kinematics are performed by the UR's controller, and can be obtained with different
functions that the UR's software provide.

Rotations can be calculated with the functions:

(1 0 0
R.(0) = 0 cosf —sind
0 sinf cosf

[cosf 0 sind]

R()=| 0 1 0

—sin # 0 cos fi'

[cosf) —sind 0]
R.(8) = |sinf cosf 0
0 0 1

Figure 50 Rotations' matrix

When using the Denavit-Hartenberg Notation, a rotation and translation from one
coordinate system to another would be as follows (Sina, 2009):

cosf, —sinb,cosc; sinf sinc; a,cosf;
Tii-ni - sinfl; cosB,cosc, —cosB sin, ,sinl;

0 sine, COSML, i

0 a a 1
Figure 51 Rotation and Translation matrix

86

Where:

e 0;is the angle between axes x;.; and x;;

e (;is the angle between axes z;.; and z;;

e d; is the distance between the origin of the coordinate system and the common
perpendicular of the next coordinate system;

e 3a;is the distance between the two feet of the common perpendicular;

These values can be observed on the next image:

Figure 52 Joints parameters

The UR's controller realizes these calculations, and any external transformation should
be made by the program.

4. Initialization of the UR5
When turning ON the UR5, a series of steps have to be taken, to initialize the robot, as
the sensors on each joint need to be calibrated. When turning on the teach pendant, the
following screen shows up:

87

Initialize Robot @

Push 'Auto' until all lights turn green. Rotate Joints individually if necessary.

‘ & 0n H OFF Robot Power

Robot Auto [a]74

Q)

Base @ > | Auto POWER OFF gl
Shoulder @ > Auto | POWER OFF il
Elbow <0 = Auto | POWER OFF il
Wrist 1 @ E» | Auto POWER OFF il
Wrist 2 @ |:> Auto | POWER OFF il
Wrist 3 ‘ < ‘ (53 [auto | PoweR ofF gl
Tool POWER OFF il
ControlBox CONNECTING g'

)

oK

Figure 53 UR initialization screen

On this screen, the steps to follow are:

e Power the Robot ON: The motors are powered, and the brakes released.

e Press Auto to calibrate the Joints: When pressing auto (For the robot or
separately for each joint) the joints will move to some directions to calibrate and
align the encoders of each joint. The user does not have control over these
movements direction.

e Once aligned, the yellow indicators will turn green, and OK can be selected.

5. The tool
For this UR5, students from the area of Mechanics previously elaborated a Pneumatic
gripper to be used with the robot. The gripper is the one showed on the next image:

Figure 54 UR5 actual Gripper

88

As it can be observed, it uses a pneumatic Festo valve of double actuation, so the
aperture and closure of the gripper can be controlled.

6. Afirst approach to handle LPS sensor
As it is wanted to continue with the Image recognition program, a first UR's program will
be developed that enables the user to move the sensor with steps and control it
manually. A further Ethernet communication will be developed in the Integration phase
to make the process automatic.

To program the UR, the most common functions that the UR's software offers should be
studied:

e Movel(), MoveP(), MovelL(): commands for moving the robot with certain
characteristics, linear movement or fast route.

e pose_trans():Calculates the coordinate transformation between one coordinate
system and another.

e pose_inv(): Calculates the inverse transformation between a point and the base
coordinate system.

e (get actual _tcp_pose(): return the value of the actual TCP position from the base
coordinate.

e Halt: Stops the program execution.

e Wait: Waits a determined time in seconds to continue executing the program.

e socket_open(): Opens a socket with specified port and the IP from the server
(PC).

e Socket_send_string(): Send a string to the server.

There are other commands available; however, this are the ones the will be needed for
the program purposes.

7. Define a plane
The UR's software allows defining features to make the programming easy. The user
can define Points in space, Lines, and Planes. For this project, a plane is needed, which
will be the table or measuring surface.

89

Figure 55 URS Features screen

The previous image shows the interface for defining a plane. Three points need to be
defined, which can be taught to the UR by used the back button of the teach pendant, to
enter Teach Mode. For this program, the points where selected in this order:

Point 1: The origin of the working plane.
Point 2: A point on the direction of the movement desired of the scan.

Point 3: Any point on the surface of the table.

90

The next image explains the disposition of points on the plane created:

Scanning

. Direction

Point 1
Point 2

Figure 56 Defining the measuring plane

The coordinate system of the table will be located at Point 1.

8. Programming the robot
The next algorithm was developed to control the sensor:

Wi

Make new
scan?

Move robot an offset in

scanning direction

Figure 57 UR basic algorithm for a first scan

The algorithm is very simple, and allows the user to control with steps the movement of
the sensor with a desired offset. In this case and offset of 1mm was established, to take

images every 1mm and later build the 3D image.

91

The detail on this programming is that the robot moves in Base coordinates, so a
transformation has to be done to move the robot linearly from the Table coordinates.

9. Results obtained
The next image was obtained on the first lecture:

Figure 58 First scan obtained with UR

Using MeshLab tool, the same image can be observed in 3D:

Figure 59 First scan obtained wit UR in MeshLab

10. Problem presented
When the sensor was installed on the UR, it was handled with no problem and the scan
previously showed was obtained. However, after turning OFF and ON the UR, the
Initialization of the Joints was done as it is normally done. The movements of the UR on
this phase are not controlled by the user, and the cables were pulled off the sensor, as
they were attached to the body of the robot. This resulted on the connectors of the

92

sensor un-wielded from the sensor, and the sensor needed to be sent for repair back to
Leuze Company.

The damage was documented on the following images:

Figure 60 Damage to LPS's connectors

The process of repairing took from February 25, 2016 (Day of damage) to March 18,
2016, when the sensor was received back at the DHBW University. The receipt of repair
can be found on the Appendix G.

11. Assessment of damage
The problem occurred because the cables that were previously installed on the UR for
communication with the Leuze sensor were too tight. This caused that a different
unexpected movement of the UR pulled the cables together with the connector, and tore
them from the sensor. The integration of Leuze communication with the UR will be
continued when the sensor is received back. For now, the Recognition program will be
improved with the image that was acquired. Future enhancements will be made when
more images can be obtained.

At this point, the UR algorithm is working properly, and it is time to continue improving
the Image detection system. Also, working on parallel, the UR program will be modified
to work by Ethernet and communicate with the PC. These next objectives will be
explained on the Integration Phase.

93

vii. Integration phase
On the previous section, the following image was obtained:

Figure 61 Image obtained with UR in grayscale

1. Flood fill
As it can be observed, the bottom of the image is not clearly distinguishable from some
points of the objects. A flood fill algorithm was applied to identify the measuring surface,
and separate it from the objects of interest. The next two images were obtained with
different levels of flood:

Figure 62 Scan with flood fill at different values

The second image uses a flood level of 15mm. It shows less noise on the image than
the first; however, it is also appreciable the deformation of certain images, as is the
case of the left bottom image, that corresponds to a ramp (tilted triangular prism). To
avoid loss of information, the flood will be applied with a very low value.

Also, the deformation for perspective is very noticeable on the top right image, which
corresponds to a cylinder. A solution for the perspective most be developed.

2. Perspective correction
To correct the perspective problem, a new image needs to be created, that has a
different size. The size of the new image should be proportional to the area scanned,
and then the Z values should be assigned to the proper X and Y coordinate.

94

To calculate the size of the new image, the old image needs to be evaluated, to find the
maximum and minimum values for X and Y, and create a proportional but translated to
the origin image. This may be easily to understand on the following image.

The image obtained is located as shown on a XY grid:

o™ py

Min. X value=-1864

Max. X value= 1867

Min. ¥ value= 10

Max. ¥ value= 800

Figure 63 Original location of image in grid

And the new image should look like the following:

L.,

Figure 64 New location of image in grid

The image is translated to the origin, because images don't have negative pixels. Also,
a rescaling of 10 was made. Originally, the units were 1/10 of mm; now, each pixel will
represent 1 mm in real life. Multiple values of Z that correspond to the same X and Y
coordinates will be overlapped, leaving the highest value of all, and eliminating the
vertical values of the walls.

95

After all this transformations, the following image was obtained:

Figure 65 First proportional image obtained

As it can be appreciated, the perspective problem is not present on the image anymore,
and the image is completely proportional to the real life objects. Applying the flood fill
will obtain a better result as shown next:

Figure 66 First proportional image obtained (with flood fill)

There is still some noise present on the image that will be treated later.

96

Applying a canny edge detector, the following results were obtained:

1]

/ /

' ff

L,————aj _',_,—fs 3

S e

|
e}
s _© I!_

%,

Figure 67 Image with Canny with two different values

The first image was a Canny applied to the obtained proportional image as it was. The
second was obtained when applying the Canny algorithm after a Blur that was applied
to the image. As it can be seen, it reduces the noise considerably. A blur is a mask that
is applied to an image that softens the image by making an average on a pixel with the
neighbors' pixel values. It is useful for reducing doted noise and to soften borders.

After applying the canny edge detector, a Contour detection algorithm has to be applied.
This function evaluates the edges obtained and classifies them as independent
contours when they are connected to each other or as separate contours if they do not
belong to the same contour. The following image was the first attempt to identify
contours:

Figure 68 First Contour detector

97

Every color on the image represents a different independent contour. On this image, 85
contours were found. The objective is to reduce the amount of contours until every
contour represents only the objects present on the image. To reduce this noise, a
certain amount of filters has to be applied. The most common algorithms to reduce

noise are blur, dilate and erode.

3. Filter algorithms
Blur: as explained before, it produces an average of the values per pixel with its

neighbors, softening the image.

Example:

58
I
In focus Simple Gaussian blur

Figure 69 Blur example

Dilate: it increases the dark areas (or reduces the white areas) by applying a structuring

element to the borders.

Example:

_—

Dilation

Figure 70 Dilate example

98

Erode: it increases the white areas (or reduces the dark areas) by applying a structuring

element to the borders.
Example:

== j/
Erosion

Figure 71 Erode example

It is not only important to understand what each filter algorithm does, but also in which
order to apply them, as it will generate different results. The working image presents
holes inside the objects that can be filtered applying dilation, but it also presents white

noise on the outside of the objects that can be reduce applying erosion.

Different combinations of filters were applied, to obtain the best results.

Combination applied Image obtained

Dilate-erode

Dilate-erode-erode-dilate

99

Dilate-erode-erode-dilate-blur

Dilate-erode-erode-dilate-blur-fill

Table 10 Different results obtained with filters
As it can be seen, very different results can be obtained when changing the combination
of filters. The last image is obtained from the previous one, but represents the contours
with a fill parameter. With this, the different objects where finally separated as different

contours, as it ignores the contours inside other contours.

4. Poly Approximation
The Poly_approx() function was applied to improve the shape of the rectangle shaped

objects. It calculates the best fit of a rectangle that contains the object. The following

result was obtained:

100

Figure 72 Approximation with Poly Approx

The new profiles found have a better rectangle shape; however; some of the resulting
contours seem to be rotated a little, which is not desirable, since the final objective is to
locate the objects with their X and Y coordinates and rotation. With this information, the

UR should be able to handle the objects. It was decided not to use the Poly
Approximation algorithm.

5. Best fit (circle and rectangle)
An algorithm for the best circle fit and best rectangle fit was applied to all the contours.

The idea with this is to find the best fit, compare the areas of the obtained figures with
the area of the original figures, and identify the shape of the objects.

101

The following image was obtained:

Figure 73 Best fit circles and rectangles

On the previous image, the top right figure is a cylinder (which was trimmed when
measuring). The best circle fit shows that it located a circle where the figure was
originally. On this image, the only circle-profile object was this cylinder, and it is trimmed
because it was out of the sensors range when the scan was made. New images are

necessary at this point to continue improving the classification algorithm.

6. Improvement of UR program
When the sensor was finally received back at the university, the work for integrating the

phases was continued. The UR program was modified to establish a TCP connection

and connect with the PC.

102

A sequence was defined for the UR and the LPS sensor. The algorithm was as showed

next:

UR Request Wait for Start scanning
Algorithm connection instruction algorithm

LPS Listen for Request

Algorithm incoming Connection?
connection

new scan

Figure 74 LPS and UR algorithm. Part 1

On this first part of the algorithm, the communication between LPS and UR are
established. Once the connection is established, the LPS program requests to make a
new scan, and the UR starts the sequence for this, that can be shown on the next part

of the algorithm:

UR Scanning Go to next Request scan Wait for
Algorithm point gcLE instruction
coordinates

LPS Scanning Wait for Scan and Request
Algorithm instruction Delay end status

Figure 75 LPS and UR algorithm. Part 2

The algorithm might seem confusing at first sight. This is because two different
programs are running simultaneously. But it's actually pretty simple to understand the

flow of the programs. A brief verbal explanation is presented next:

103

Once the UR starts the scanning process, it moves the sensor to the starting point.
When it reaches the desired position it sends a request for scanning to the LPS. The
LPS was waiting for instructions, and once it receives the command it makes the new
scan. Also, the UR sent the actual TCP coordinates, which will be used to locate the
objects on the table. A delay is necessary in this case, because the sensor needs time
to perform the scan before the UR starts moving again. Once the delay is over, the
sensor requests the status of the scan. A total scanning distance was previously defined
to the UR that the user defines at the beginning of the configuration. If the total distance
is already scanned, the program is terminated. If it is not finished, the UR moves to the

new position with the offset defined (until now is 1mm) and requests a new scan.

7. Speed improvement
The complete algorithm was taking about 2 minutes to perform a complete scan for a

length of 60cm (600 lectures). To improve the speed, an offset of 2mm was tested. This

means that the sensor will make a scan every 2mm. The image obtained is as follows:

Figure 76 Scan 1 every 2mm

104

Figure 77 Scan 2 every 2mm

The first and third images are the images obtained every 2mm. The second and last
images are a close up of the originals. As expected, the objects are now made by lines
instead of been solid objects. This will affect the previous established filtering stage but
with some adjustments it can be corrected.

After a Canny filter, followed by a dilate-erode stage, the following images were
obtained:

Figure 78 Every 2mm image filtered

105

The images are now solid images, and the borders were changed from the first to the

second image shown below:

Figure 80 Canny and edge detector for every 2mm image 2

Note: More than one image is used to improve the algorithm as the algorithms may

behave different on different images.

106

8. Best fit for rectangles, circles and triangles
As the objects that are handled have mainly rectangle, circle and triangle profiles, and

algorithm for detecting the best fit on this figures is developed. The following results are
obtained:

Figure 81 Best fit for rectangles, circles and triangles

On every object has now been drawn the best fit for circle, triangle and rectangle. This
will be used to characterize each object.

9. Comparing areas
The idea of finding the best for circle, rectangle and circle is to compare the area of all

these best fit figures, and compare it with the area of the figure. All the areas were
calculated, and compared, and it was found that when the error was below 20% of the
original contour area, the figure coincided with the one evaluated. An example is

explained next.

107

The following image has several objects, some of them rectangles and a circle:

Figure 82 Numbered objects

The objects are numbered from O to 8 to differentiate them.

The following results from calculating areas were obtained for figures 0 and 7:

Area Figure O % Error Figure 7 % Error
Original Figure 2048.5 1563

Best fit Rectangle 2115 3.25 1893.13 21.12
Best fit Triangle 4050.09 97.7 2524.71 61.53
Best fit circle 3325.39 62.3 1777.12 13.7

Table 11 Areas comparison

The results of the error percentage on each figure show that the lowest error is the one
that corresponds to the best fit. Also, after several objects analyzed, it was conclusive
that in most cases the error percentage was not higher than 20%. This is useful
because if the 3 errors are higher than 20% error, it can be conclusive that the figure is

neither rectangle, triangle nor circle.

108

In the examples mentioned before, Figure 0 is effectively a Rectangle, while Figure 7 is

a circle.

10. Analyzing gradients on each object
Now that the objects are classified between circles, triangles and rectangles, it only

remains to sub-classify the rectangles. The following figures can present a rectangle

profile when observed from a top view:

Any prism laying down on any face

Pyramids when they are not laying

down on their triangular faces

- v

Cylinders that are not laying on
their bottom

w VvV’

Different pieces that have a

rectangular top view

Table 12 Possible rectangle shaped profiles

109

This analysis is based on the pieces acquired from the university to work on this and
other projects; however, different profiles may be found in real life that would require a

different approach for identifying.
To distinguish from all these rectangular profiles, a gradient analysis needs to be made.

Pyramids, for example, will have a constantly growing gradient as shown in the next
images. The first one is like a simple ramp; the second one is a double ramp.

Figure 83 Pyramids

Prisms will have a constant value, with a null gradient as in the following image:

Figure 84 Prism

Cylinders will present a growing and decreasing not constant gradient:

Figure 85 Cylinder

For making the gradient analysis, first of all each figure was isolated and rotated to end
up with a straight single figure. After this, a gradient analysis was made in both X and Y

direction, to determine what figure it is, and which orientation it has.

110

The process is as follows:

- B>l

Figure 86 Gradient analyzing procedure

After obtaining all gradients, the program is able to differentiate objects. An extra feature
was added to the program that allows to click on a figure and obtain information as

showed on the next image:

Figure 87 Final image for user interface

This is the image that the user handles, and when making click to an object, for

example Object 7, the following information is printed on screen:

111

rect 7 s

rect 7

rect 7 height= 92
rect 7 center= [16&9,
rect 7 angle= -70.1278

area poly 7= 4

area rectangul 23,2 coordinates= [151, 86]
area triangul = pixel value= 94

area circul = 13142.1 height value= 494

. ngle *** |ghject 7

Figure 88 Information printed to user

The coordinates are showed to the user, and the real value of the height in mm.

If the user wants to take an object, the coordinates have to be transformed first to
sensor coordinates (Inverse process as the one explained in the "Perspective
Correction” section). Once that the coordinates are known in the sensor coordinate
system, another transformation needs to be done, because the sensors coordinate
system is different than the one of the TCP. For the case of the gripper used, it needs to
be added an offset of 60mm in X and 210mm in Y; however, this value depends on the

gripper used, and needs to be calculated by the user when installing the LPS.

112

XI. Solution's Analysis
The solution developed is very wide, and has many details. As it was proposed at the

beginning, it is divided in 3 main phases:

1. Leuze sensor programming
2. UR Programming

3. Image recognition programming

I. Leuze sensor programming
The LPS program is in charge of making the scan of the surface to be analyzed. It also

manages part of the communication between the sensor and the Universal Robot. From
the Leuze interface, it should be possible to configure certain parameters of the sensor

that give the user a widespread amount of opportunities on different scenarios.

Some advantages of using laser depth sensors instead of cameras for object detection
and identification are that the ambient light is not as problematic as with cameras,
hence the working area doesn't need a controlled light ambient. Also, the possibility to
vary the laser exposition allows the user to quickly adapt the sensor for working with
different materials on the objects to be detected, from dark objects, to metallic bright

objects.

The interface for communicating the sensor with the UR is satisfactory, and the sensor
is able to scan surfaces in a proper mode. The result of the scanning process can be
evaluated when observing the images obtained. The time of scanning however is high
and should be improved in a next level of the project. The sensor uses a delay when
making each scan and this makes the code slow. A proposition for solving this problem
will be proposed in the Recommendations and Future work's section. The interface for
the program is console based, and could be improved to make it more user-friendly. An
idea for the interface will be proposed at the Recommendations and Future work's

section.

ii. UR Programming
The UR program is in charge of moving the sensor over the scanning area. It needs to

communicate with the LPS sensor to coordinate scanning and positioning, and to

113

exchange information such as actual position of the TCP, or the LPS sensor if the

conversion is made.

The Universal Robot software is very flexible for programming. The Ethernet connection
is easy to program, and does not need to take the programming to a low level to
achieve most of the work. If special programming is needed, UR offers a variant of the
programming by inserting Script code. A complete manual on Script programming can
be found at Universal Robots (2013) and Zacobria Lars (n.d.). The Ethernet
communication on this project was done using script code. The rest of the programming

was done by using the functions that the UR offer from the teach pendant.

The resultant program is effective and does what it is supposed to do. The same issue
as for the Leuze program is the time it takes to make a full scan. They are both
dependent and to improve one, the other should be improved as well. The actual code
moves the UR step by step, and this makes it slow, and also creates a small vibration
on the robot, which could introduce some noise on the scan. A solution will be proposed

together with the Leuze's solution on the Recommendations and Future work's section.

lii. Image recognition programming
The image recognition phase could probably be the most important of all the three as it

is the one in charge of interpreting the data acquired from the Leuze sensor. The First
two phases are in charge together of acquiring the data, but this last phase is the one
that defines if the project fulfills its objectives. The main objective is both acquiring the
3D images, and interpreting them for future manipulation.

The transformation from a 3D Point Cloud to a 2D Grayscale image is very useful to
analyze data with image recognition software. The possibilities with open-source
powerful software as is OpenCV are very wide, and the amount of information, forums
and tutorials that can be found on the web is very extensive. The solution developed
covers the objectives desired: to detect objects, identify and characterize them and
finally locate them in space. The project was based on a variety of objects that can be
found on the appendix C, and similar objects will be also identified by the program.
However, if the intention is to identify any object at all, a different approach needs to be

114

made. An alternative solution will be proposed at the Recommendations and Future

work's section that uses the Point Cloud Library (PCL) together with OpenCV.

Some errors were detected when two objects from similar height were very close to
each other. The program would detect both objects as one, because there is no
gradient variation between each. This can be observed in the Appendix E. A possible
solution would be to make the UR move the container of the objects, to re-arrange them

and make a new scan.

iv. Integration phase
The three phases that make the project (Leuze program, UR program and Vision

program) were integrated to function together, having in consideration the needs of the

other phases. The results were good but they can improve, mainly in time.

As an additional but optional objective, it was proposed to make a final program with the
UR receiving the coordinates of the objects, and picking them in their place. The
programming and knowledge behind this is already implicit in the other programs, as the
coordinates just need to be sent to the UR (data exchange has already been done), and
the UR needs to position on a specific coordinate (this was done in the scanning phase
every time the robot places on the next scanning position). The plan was to develop this
program, but with the time lost on the repairing of the Leuze sensor, the time left was

just enough to finish the other objectives, hence it was not developed.

115

v. Final cost of the project
The cost of the project was initially calculated with more elements than needed. After

developing the solution, a more accurate calculation can be done.

Item Price (€)

UR10 23870.00

URS 17870.00
Gripper 1378.00

3D Image Recognition 9714.00
Fittings, small parts 2000.00
Total 54832.00

Table 13 Real budget of the project

This total is calculated including both UR5 and UR10 robots; however, if a more low
cost solution was required, using only the URS would give a total budget of €30962. The
main inversion is in the Universal Robot and the Leuze LPS sensor, but no big

investment was made for license on image processing software.

116

Xll. Conclusions
The use of light section sensors is optimal for acquiring 3D images on scanning

surfaces, as it is very flexible to program, and offers the user a wide range of

possibilities of configuration for obtaining the desired results.

The use of an assisting robot, in this case the UR5, to assist a depth sensor on realizing
a scan over a measuring surface is very useful. It allows the user to make complicated

scans with a high precision when a transporting band is not an option to move objects.

Vision systems are very powerful for analyzing data, and the extent of their scope is tied
to the user's imagination and programming skills. An open-source tool such as OpenCV
gives the user more than enough options for developing object identification,
characterization and image treatment, but a background on image processing is

required.

The integration of different areas such as Sensor programming, Robotics programming
and kinematics, Image processing and others are a very useful quality for mechatronics,
as they allow the user to build a wide variety of solutions that can be applied on the
industry with success and for a large amount of applications.

The use of open-source software is growing every day, and the possibilities with these
tools are getting bigger. This type of software generally gets support from the users, and

the cost benefits are admirable.

Xlll. Recommendations and Future work
As the solution developed is for a university for research purposes, the DHBW wants to

continue doing research and improving the results obtained from the realization of this
project. Hence, a series of recommendations will be listed as ideas to be developed and

enhancements that can be made to the solution obtained.

I. Improvement of time
As it was mentioned previously, the time for scanning is not very good, as it takes

approximately 1 minute to scan a surface of 50cm. This is because of the logic that was

used all along the programming of the algorithms.

117

A proposed solution is to make the Leuze sensor scan continuously and the UR also
move continuously from the start point to the end point. An algorithm for managing the
data sent from the sensor to the PC needs to be programmed, probably using a buffer
that stores all the data and then stores it properly. With no delays on the scanning
process, the scanning time should be reduced drastically, probably to less than a 10%

of the actual scanning time.

Another proposition for improving time is to make a coarse first scan that will get the
location of objects on the beginning, and after locating the present objects over the
scanning surface, a smoother scan can be made locally to obtain more clear scans of
each object. This will also reduce the time of scanning, as it uses most of the time only

where there are objects present, and very little time where no objects are found.

li. Occlusion solving
There is no need to have multiple sensors to avoid the occlusion phenomenon because

the sensor is not fixed to a static surface. The advantage of having the Leuze sensor
fixed to a Universal Robot is that it can change position and orientation easily. If a
complete 3D image wants to be acquired, it's only a matter of making a scan on one
direction, rotating 180°, and making one second scan. The sensor can even be rotated
to obtain a different degree of detail. It will just need a kinematic transformation of

coordinates on each position and orientation of the sensor to fit all the images taken.

lii. Use of Point Cloud Library
PCL is a powerful tool that will allow treating the data as it is taken by the Leuze sensor.

It only requires point coordinates on a 3D space to analyze data. PCL has algorithms for
stitching more than one point cloud, which would allow making scans to an object from
different directions, and putting them together in only one image. With this, it is even
possible to create complete 3D images of objects that can later be used to reproduce

the objects with 3D printers or CNC machines.

Iv. Use of Qt to create an IDE
The result produced is mainly for a user that knows of programming, as it is console

based. However, using a tool as Qt enables the user to create IDE's that can realize the

same functions as the program, but with a friendly-user interface. The configuring of the

118

Leuze sensor can be handled from this interface, and it should be possible also to
display the results in 3D to the user. With this, the operator would not need to worry on

entering commands, but would only see a final graphic interface program.

119

XIV. Bibliography
Henry, P., Krainin, M., Herbst, E., Ren, X., y Fox, D. (2010). RGB-D Mapping: Using
Depth Cameras for Dense 3D Modeling of Indoor Environments. Experimental Robotics,
79, 477-491. DOI: 10.1007/978-3-642-28572-1_33

Schwarz, B. (2010). LIDAR: Mapping the world in 3D. Nature photonics, 4, 429-430.
DOI: 10.1038/nphoton.2010.148

Valencia, R., Teniente, E., Trulls, E., and Andrade-Cetto, J. (2009). 3D mapping for
urban service robots. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on (pp. 3076-3081). IEEE.

Gokturk, S. B., Yalcin, H., & Bamji, C. (2004, June). A time-of-flight depth sensor-
system description, issues and solutions. In Computer Vision and Pattern Recognition
Workshop, 2004. CVPRW'04. Conference on (pp. 35-35). IEEE.

Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).
OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octree.
Autonomous Robots. 34 (3), pp(189-206). DOI 10.1007/s10514-012-9321-0

Weise, T., Wismer, T., Leibe, B., and Van Gool, L. (2009). Computer Vision Workshops
(ICCV Workshops), 2009 IEEE 12th International Conference on. pp (1630 - 1637).
IEEE. DOI: 10.1109/ICCVW.2009.5457479

Krainin, M., Henry, P., Ren, X., and Fox D. (2011). The International Journal of
Robotics. 30 (11), pp (1311-1327). DOI: 10.1177/0278364911403178

Collet, A., Berenson, D., Srinivasa, S., and Ferguson, D. (2009). Object Recognition
and Full Pose Registration from a Single Image for Robotic Manipulation. IEEE
International Conference on Robotics and Automation (ICRA '09), May, 2009. Source:
https://www.ri.cmu.edu/

Lai, K., and Fox, D. (2009). 3D Laser Scan Classification Using Web Data and Domain
Adaptation. Proc. of Robotics: Science and Systems, 2009. pp (1-8)

Ebrahim, M. (2014). 3D laser scanners: History, Applications, and Future. Research
Gate. DOI: 10.13140/2.1.3331.3284

GNU. Makefile manual. (n.d.). Retrieved 10-15-2015.
http://www.gnu.org/software/make/manual/html node/index.html#SEC Contents

jonY. (01-18-2008). MSYS. Retrieved 10-15-2015. http://www.mingw.org/wiki/msys

FSU.PLY Files: an ASCII Polygon Format. (n.d.) Retrieved 10-24-2015.
http://people.sc.fsu.edu/~jburkardt/data/ply/ply.html

120

https://www.ri.cmu.edu/
http://www.gnu.org/software/make/manual/html_node/index.html#SEC_Contents
http://www.mingw.org/wiki/msys
http://people.sc.fsu.edu/~jburkardt/data/ply/ply.html

Paulbourke. PLY-Polygon File Format. (n.d.) Retrieved 10-24-2015.
http://paulbourke.net/dataformats/ply/

Tenney, Matthew. 2012. Point Clouds to Mesh in “MeshLab”.CAST Technical Publications
Series. Number 10062. http://gmv.cast.uark.edu/scanning/point-clouds-to-mesh-in-meshlab/.
[Retrieved : 10-20-2015]. [Last Updated: 29 November 2012]. Disclaimer: All logos and
trademarks remain the property of their respective owners.

FSU.PLC Files. (n.d.) Retrieved 10-24-2015.
http://people.sc.fsu.edu/~jburkardt/data/plc/plc.html

Zacobria Lars. UR Script Programming. (n.d.) Retrieved 11-10-2015.
http://www.zacobria.com/universal-robots-zacobria-forum-hints-tips-how-to/universal-robots-ur-

script/

M. Asad. (12-09-2011). Linux Like Installation of OpenCV 2.3.0 on Windows. Retrieved 11-05-
2015. http://seevisionc.blogspot.co.uk/2011/09/linux-like-installation-of-opencv-230.html

opencv.org. Installation in Windows (n.d.). Retrieved 11-05-2015.
http://docs.opencv.org/2.4/doc/tutorials/introduction/windows install/windows install.htmI#windo
ws-installation

Stackoverflow. Compiling MinGW libs for OpenCV under Windows. (n.d.) Retrieved 11-05-2015.
http://stackoverflow.com/questions/26397657/compiling-mingw-libs-for-opencv-under-windows

Zahid Hasan. How to install OpenCV on Windows (64bit) using MinGW (64) and Codeblocks.
(n.d.) Retrieved 11-05-2015. https://zahidhasan.wordpress.com/2013/02/16/how-to-install-
opencv-on-windows-7-64bit-using-mingw-64-and-codeblocks/

OpenCV. OpenCV Documentation. (n.d.) Retrieved 11-05-2015.

http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=gaussianblur#void
medianBlur(InputArray src, OutputArray dst, int ksize)

Silver Moon. (12-26-2011). Winsock tutorial-Socket programming in C on windows. Retrieved
10-12-2015. http://www.binarytides.com/winsock-socket-programming-tutorial/

Silver Moon (08-30-2012). UDP socket programming in winsock. Retrieved 10-12-2015.
http://www.binarytides.com/udp-socket-programming-in-winsock/

MSDN Microsoft. Windows Sockets Error Codes. (n.d.) Retrieved 10-13-2015.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740668(v=vs.85).aspx

Walrand. Transport Protocols: UDP, TCP. (n.d.). Retrieved 10-13-2015.
http://robotics.eecs.berkeley.edu/~wlr/12203/transport-slides.pdf

Chunyan Fu. TCP/UDP Basics. (n.d.) Retrieved 10-14-2015.
http://users.encs.concordia.ca/~glitho/F09 TCP UDP.pdf

121

http://paulbourke.net/dataformats/ply/
http://people.sc.fsu.edu/~jburkardt/data/plc/plc.html
http://www.zacobria.com/universal-robots-zacobria-forum-hints-tips-how-to/universal-robots-ur-script/
http://www.zacobria.com/universal-robots-zacobria-forum-hints-tips-how-to/universal-robots-ur-script/
http://seevisionc.blogspot.co.uk/2011/09/linux-like-installation-of-opencv-230.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation
http://docs.opencv.org/2.4/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation
http://stackoverflow.com/questions/26397657/compiling-mingw-libs-for-opencv-under-windows
https://zahidhasan.wordpress.com/2013/02/16/how-to-install-opencv-on-windows-7-64bit-using-mingw-64-and-codeblocks/
https://zahidhasan.wordpress.com/2013/02/16/how-to-install-opencv-on-windows-7-64bit-using-mingw-64-and-codeblocks/
http://www.binarytides.com/winsock-socket-programming-tutorial/
http://www.binarytides.com/udp-socket-programming-in-winsock/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740668(v=vs.85).aspx
http://robotics.eecs.berkeley.edu/~wlr/12203/transport-slides.pdf
http://users.encs.concordia.ca/~glitho/F09_TCP_UDP.pdf

Sina. (01-05-2009). Basic Kinematics of Constrained Rigid Bodies. Retrieved 11-20-2015.

http://blog.sina.com.cn/s/blog 48571ec80100brx6.html

Leuze Electronic. (2014). Technical Description LPS. http://www.leuze.com

Universal Robots. (January, 2012). User manual. Version 1.5.

Universal Robots. (August, 2013). The URScript Programming language. Version 1.8.

122

http://blog.sina.com.cn/s/blog_48571ec80100brx6.html
http://www.leuze.com/

XV. Appendix section

123

I. Appendix A: Acceptance letter from DHBW

Acceptance letter for developing the Graduation Project as an exchange student in the

DHBW, in the period from October 2015 to March 2016.

ph DHBW

Karisruho

International Office

Bearbeiterlin
Aloxandra Braswell

Tededon + 49 721,97 35-707
Telefax + 49 721 97 35.600
braswel @dhbw karsntw de

Aktenzeichen
DR/BR

Letter of Confirmation 15 July 2015

We herewith confirm that Mr. Alejandro Alpizar Cambronero
(home university: Tecnolégico de Costa Rica) will be enrolled as
an exchange student at our university from October 1, 2015 -
March 31, 2016.

—

Alexandra Braswell
International Office

124

li. Appendix B: Autenticity Declaration

Declaro que el presente Proyecto de Graduacion ha sido realizado enteramente por mi persona,
utilizando y aplicando literatura referente al tema e introduciendo conocimientos propios.

En los casos en que he utilizado bibliografia, he procedido a indicar las fueptes mediante las
respectivas citas bibliograficas.

En consecuencia, asumo la responsabilidad total por el trabajo de graduacién realizado y.por el
contenido del correspondiente informe final.

Cartago, Junio 2016
Bernal Alejandro Alpizar Cambronero

Céd: 1-1470-0554

125

lii. Appendix C: Final Evaluation
INSTITUTO TECNOLOGICO DE COSTA RICA
CARRERA DE INGENIERIA MECATRONICA
PROYECTO DE GRADUACION
ACTA DE APROBACION

Proyecto de Graduacién defendido ante el presente Tribunal Evaluador como requisito
para optar por el titulo de Ingeniero en Mecatrdnica con el grado académico de
Licenciatura, del Instituto Tecnoldgico de Costa Rica.

Miembros del Tribunal

f

: —
Ing. MauricioMufioz Arias Ing. An(bal&o Cortés

Profesor lector Profesor lector

Ing.) uig’Crespo Marifio
Profesor asesor

Los miembros de este Tribunal dan fe de que el presente trabajo de graduacion ha sido
aprobado y cumple con las normas establecidas por la Carrera de Ingenieria Mecatrénica

Cartage. 22 de Junio, 2016

126

iv. Appendix D: Contact information from professor at DHBW

Contact for the developing of the project:

Prof. Dr.-Ing. Clemens Reitze

c/o Duale Hochschule Baden-W lrttemberg Karlsruhe

Baden-Wuerttemberg Cooperative State University

Fakultat fir Technik, Maschinenbau

Erzbergerstr. 121
D-76133 Karlsruhe

Postfach 100136
D-76231 Karlsruhe

GERMANY

Fon +49 721 9735 829
Fax +49 721973577 829
Mobile +49 176 80140133

eMail clemens.reitze@dhbw-karlsruhe.de

http://www.dhbw-karlsruhe.de

127

http://www.dhbw-karlsruhe.de/

V.

Appendix E: Objects available for research

EEXARY L&

Arcahl Aol Summa
|1 100 Saick WOOEN

Eréttabaimana
Oy
L -2

|m— 18k LETES

Liforzew 2.7
Wabime

Liforzer 2.7
‘Wakrge

|s BaMogsmin IS ER
Gundnet %0

L 2.7
‘Wakige

|5 Baiwan TAGER

i

I'l‘. r
‘Wakige

,g_ oy 295 R
Brdchmn b
Fréteba s in
Ganangl i O
mm
ez 20
Waknmge

[Bamsntane M95ER
Erebatawan

[f Bamsen 1245 EAR

[w_ Hausen 1BH0ER

5 Rayman 096 E\R

£ Baswan Kal 9ASELR

£ Bausan apsem

WML M L 6 EUR
Dvimchunmumme 21018 EUR
o IR TR T ST

Lo Kawa
Ihr Warenkorb enthalt :

Ihe Quhabe nkomo

Achmng S d Ereihn
T Kb o s iar e s

=Kundainon amsdin

Anzahl Aribel Sunme Enteman
[imsue @ioew
Exibabaioane

128

vi. Appendix F: Makefile used for the Leuze program
file: Makefile

CC =gcc

OSTYPE := $(shell uname -s)

ifeq ($(OSTYPE), Linux)
OSTYPE := linux

endif

CFLAGS =-g -0O0 -Wall
LDFLAGS =
LD_LIBS =

ifeq ($(OSTYPE),linux)
CFLAGS += -DLINUX

else

CFLAGS += -DWIN64

LD_LIBS += -lWs2_32
endif

default: sensor_client

leuze-lps.o: leuze-lps.c leuze-lps.h Makefile
sensor_client.o: sensor_client.c leuze-Ips.h Makefile
ptg.o: ptg.c Makefile

urb_testl.o: ur5_testl.c Makefile

ur5S_server.o: ur5_server.c Makefile

ur5_client.o: ur5_client.c Makefile

client.o: client.c Makefile

sensor_client: sensor_client.o leuze-Ips.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
server: server.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
client: client.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
SEeNnsor_server: Sensor_server.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
ptg: ptg.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
udpclient: udpclient.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
ur5_testl: ur5_testl.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
ur5_client: ur5_client.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)
ur5_server: ur5_server.o

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LD_LIBS)

clean:
-rm -f *.0 *~

129

vii. Appendix G: Different images acquired with LPS

77 7
i Vi A ST : . T e— -
. ST, \%}\ ; !ilg’ .m{mﬁfl
: i, o “} o aElAhi
i v 7 SRt = g S i
I !
; ; &

s, A ENNTRTR,

g VINSTd o N

ittt i] il
s il

S
» ; St
5 i SRS

; ; AT

130

viii. Appendix H: Error detected when scanning

131

iIX. Appendix |I: Sample of data file with coordinates

The tabled values are Y axis, X axis and Z axis.

ply

format ascii 1.
comment author:
comment object:
element wvertex
property float
property float
property float
end header

Sga g

S8 8

5@)

Soa @

Sga -1988
S8 -1969
5@ -1957
Soa -1946
Sga -1935
S8 -1923
5@ -1912
Soa -1981
Sga -1889
S8 -1878
5@ -1867
Soa -1852
Sga -1841
S8 -1833
5@ -1818
Soa -1387
Sga -1796
S8 -1784
5@ -1773
Soa -1762
Sga -1751
S8 -1743
5@ -1732

@

Alejandro Alpizar
30 object with Leuze sensor

X

¥
z

= E &

5158
5151
5158
5152
5158
5158
5152
5152
5151
5151
5151
5148
5148
5158
5148
5147
5147
5148
5147
5148
5148
5154
5154

75852

588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588
588

-1784
-1773
-1762
-1751
-1743
-1732
-1721
-1786
-1695
-1e87
-1675
-1664
-1653
-1e41
-1638
-1619
-1687
-1556
-1585
-1573
-1562
-1548
-1537
-1525
-1514
-1583
-1491
-1488
-1469
-1458
-1446
-1436
-14325
-1413
-1482
-1391

5148
5147
5148
5148
5154
5154
5151
5149
5149
5152
5152
5153
5153
5153
5158
5151
5151
5158
5158
5152
5151
5149
5146
5143
5145
5147
5147
5143
5143
5148
5142
5142
5143
5142
5143
5142

132

X. Appendix J: Receipt of repair of LPS sensor

e-m@iled 09 WL 208

Deden-Wustt tenbery Gooperative

A Leuze electronic

the cansar panple

Laupe slectronic GmbH + Co. WG | Posflach 1111 | 73277 Owen

Oiriqinal

Fostemvoranschlag DORM55939

Srate Universily Fmcerm e Dot Bl baa
Erzhergeratr. 121 TEIA0EL 03.03 2016 1
T6133 Farleruhe , Daden Fumdenfaename
Famncen Ust.~I0-Kr. Uuarns Lk s i rramamo
ey, Lina.. 016
Varsandanschri ft. Thee Beatallung Ar e tTar
Baden-Huert terinery Ooperakive Lisfermg vem 03032018 Service Center
Stabe University Liafartadinqung Talafon Fax
Erzhergeratr. 121 b Werk, ansachlisss]ich Verpacamg 07021 573 210 OhIEl 573 4581
™133 Farlanche , Beden Vorsandart E-#nil
LD service-centerdlere . de
Pod. Artikel Menge: Einh. Preis Wih, Freis- Betrag
Lieferdatum Rabark eirh.
10 50111%34 1,00 ac 354,00 R at 184, 00

LPS 36,/2 24.03. 2016

Limdenproti 1 senscr

ALt Artikeloode Warencode S316034

Fext iqungs-Tamer 1102E017250 004

Rrparaturaufcrag

Werkstattmuf tragetoxt Trmache: Stecker ist beschidigt,

Bofund: Sdmittstells ist dafalt.

Titigkeiten: Die Elektrnikioaugrmpe wuarde ersetzt.

Tatigkeiten: Artikel muss auf Standard- /Einscellparameter anickoesetzt werden,
(Reset duchgetihrt)

Befund: Artikel ist auf altem, techmischen Stard. (Hardd- /Software]

TAbigkeiten: Artikel muss auf technisch nevesten Stand qebrachs werden,
{Eerd-Safbwars)

mir bicren um sachriche zu dlesem roscemoranschlag bis spdcescens 31.03.2000
Fichten Sie dabei bitte die Paxaniworb s unser Ssrvloecenter:

Email: semice-pernterdleme ., de
FRX-He. OH21/573-451

Lawan slesirani Gmbh + B, K3, Silz Dwer | Regeirgenchi Sugart, HRA 20112 B Bk NUrdegen | om. B 6% 210 | BL2 GOSN 0

1ok S 1, D-73377 O | T o0 P20 730, F o Y 5730500 | ot i, v bt 0 BN DERISO0S)HNTEEESTD | BAC SOLADESTEN
Parnbnlich halies o Gussbashatrie: WO Kiecbobn-Hirtlagen | Ko 310 800 008 | BLZ §42 901 20
s bt vt Gawchafwlibiurgs Gkt Sir Cwan | Regeisgaricht Suagant HRE 131551 BN DS 11 20 A DEDODES, | BAC SERCDESRUE
GanchFte Thvar: Ukich bk MSK Desilages-Hirthgen | Rl 10 368 290 | BLZ &7 2003
LR DE S I5 | Salirgsnmes 7524717 TBAH DETN | KT CCECD | B P51 DESDO

Es pelley aysschbelioy unssn deivelen Wertasls s Liskabedinounosr

133

xi. Appendix K: Codes developed for final solution

Header file for LPS

/-k
*kkkkkkhkkkhkkhhkhhkhkhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhhkhhhhrhhhhhhhhhhhhhikhhhkihirkx
** | euze LPS Interface

*%

*%

**

** - UDP/IP communication

** - port 9008

** - port 5634

** -]|CMP echo messages

** - pyte order: BIG ENDIAN, high byte first, followed by low byte
** (Intel x86 CPUs, Siemens S7, ... uses little endian format,
** low byte first, followed by high byte)

**

** - measure mode:

** - free running measurement operating mode:

** - continuously, f_max = 100Hz

** - no measurement request needed

** - trigger mode:

** - after a trigger signal

** - after ethernet trigger command

** . command mode:

** - reaction to triggers

**
**

**

**
**
**

kkkkkkkkhkkkkkkkhkkkkkkkhkkhkhkkkkkhkhkkkkkhkkhkhkkkkkkkhkhkkkkkkkhkkkkkkkhkkkkkkkkkhkhkkkkkk

*/

#ifndef _ LEUZE_LPS H__
#define _ LEUZE_LPS H__

#ifdef _ cplusplus
extern "C" {
#endif

enum {
LPS_Status_MeasureMode,
LPS_Status_MenuMode,
LPS_Status_CommandMode,

134

LPS_Status_ErrorMode,

LPS_ Status_Activated, // 0|1 by activation function
LPS_Status_Warning,

LPS_Status_TriggeredMeasureMode, // O: free running, 1: triggered
LPS_Status_ErrorDetected

3

enum {
LPS Cmd_Ok = 0x4141, // Acknowledge, confirmed
LPS_Cmd_Error = 0x414E, // not Acknowledge, Error, not executed
LPS _Cmd_ConnectToSensor = 0x434E,
LPS_Cmd_DisconnectFromSensor = 0x4443,

// 0: Standard-Connect, 2 separate data packets for Z and X, 782 bytes
// 1: Hi-Connect, only LPS36HI/EN, 1 common data packet for Z and X, 990 bytes

LPS _Cmd_CmdModeEnter = 0x3132,
LPS_Cmd_CmdModeEXxit = 0x3133,

// in command mode:
LPS Cmd_SetLaserGate = 0x0001,
LPS_Cmd_TriggerSingleMeasurement = 0x0003,

LPS _Cmd_GetXCoordinates = 0x0011,

LPS Cmd_GetXCoordinates Ans = 0x0012,
Il - signed values, unit: 1/100mm, 376 values

LPS Cmd_GetZCoordinates = 0x0013,

LPS Cmd_GetZCoordinates_Ans = 0x0014,
Il - signed values, unit: 1/100mm, 376 values

LPS Cmd_GetZXCoordinats = 0x005F,
LPS_Cmd_GetzXCoordinats_Ans = 0x0060,
Il - signed values, unit: 1/100mm, 480 values

LPS Cmd_SetEncoderValues = 0x0029,
LPS_Cmd_GetActuallnspectionTask = 0x0049,
LPS_Cmd_GetActualinspectionTask_Ans = 0x004A,

/l user data: task number 0=TaskO ... 15=Task15

/*** Single Inspection Task Parameters */

LPS_Cmd_SetActuallinspectionTask = 0x004B,
LPS Cmd_SetScanNumber = 0x0053,
LPS Cmd_SetSingleUserParam = 0x0059,

135

LPS Cmd_GetSingleUserParam = 0x005B,
LPS_Cmd_GetSingleUserParam_Ans = 0x005C, // Parameter is output

/I Parameters:

LPS_ParamID_NumberOflnspectTask = 0x0BBS,
LPS_ParamID_NameOflnspectTask = 0x0BB9,
LPS ParamID_OperatingMode = O0x0BBA,
LPS_ParamID_EnablingActivation = 0x0BBB,
LPS_ParamID_EnablingCascadingOutput = 0x0BBC,
LPS_ParamID_LaserExposureDuration = 0x0BBD,

LPS ParamID_LaserExposureDurationManualAdjust = OxOBBE,

LPS_ParamlID_DetectRangeX = OxO0BBF,
// 2 values: min, max (-3000..+3000 LPS36, -700..+700 LPS36HI/EN)
/[unit: 1/10mm

LPS_ParamlID_DetectRangeZ = 0x0BCO,

// 2 values: min, max (+1900..+8100 LPS36, +1959..+6100 LPS36HI/EN)
/l unit: 1/20mm

/*** Single User Parameters */

[*** misc */
LPS_Cmd_EthernetTrigger = 0x4554,
LPS Cmd_EthernetTrigger_Ansl = Ox5A5A,

I/l with activated output of X coordinates:

/I - 1st of 2 packtes

Il - Z coordinates, 376 values

// with deactivated output of X coordinates:
/I - X coordinates, 376 values

LPS_Cmd_EthernetTrigger_Ans2 = 0x5858, // X
I/ with activated output of X coordinates:

/I - 2nd of 2 packtes

Il - X coordinates, 376 values

/[with HI-Connect activated (LPS36HI):

Il -Z and X coordinates

LPS_Cmd_EthernetActivation = 0x4541,
/I - connection to the sensor must exist before!

struct tLeuzeLPS_Header {

136

unsigned short
unsigned short
unsigned char
unsigned short
unsigned char
unsigned short
unsigned char

unsigned short

unsigned short
unsigned short
unsigned short
unsigned char
unsigned short

unsigned short

unsigned short

StartseqO;

Startseq1l;

FillChar0[2];

CmdNo;

FillCharl[2];

PacketNo;

FillChar2[2];

TransactionNo; /* measure mode:
* always 0x0000
* command mode:
* cmd number of the command
* that is answered
*/

Status;

EncoderH; //[0..1]1H, [2..3] L,

EncoderL; //[0..1]H, [2..3] L,

FillChar3[2];

ScanNo; /* 0x0000 .. OXFFFF, incremented by 1
*/

UserDataType; /* 0x0010 := 16 bit data
*

*/

UserDataN; /* number of user data elements
* of UserDataType
* possible values:

* 0x0000,
* 0x0001, 0x0002, 0x0003,
* 0x0178
* 0,1, 2,3, 376 or 480 data words
* 0,2,4,6, 752 or 960 bytes
*/
/lunsigned char UserData[2];

h

struct tLeuzeLPS_Msg {
struct tLeuzeLPS_Header Header;
unsigned char UserData[2];

h

typedef struct tLeuzeLPS_Header tLeuzelLPS_Header;
typedef struct tLeuzeLPS _Msg tLeuzelLPS_ Msg;

int LeuzeLPS_InitHeader (struct tLeuzeLPS_Header *h);
int LeuzeLPS_PrintMsg (struct tLeuzeLPS_Msg *h);

int LeuzeLPS_MsgToN (struct tLeuzeLPS_Msg *h);

int LeuzeLPS_TwoComp (struct tLeuzeLPS_Msg *h);

/lint LeuzeLPS_PrintXZ(struct tLeuzeLPS_Msg h,struct tLeuzeLPS_Msg j);

137

#ifdef __ cplusplus

}
#endif

#endif // of #ifndef _ LEUZE LPS H

Code for LPS Scanning with UR
/*
kkhkkkkkkkkkkkkkkkkkkkkkx

** Program for scanning with LPS sensor and saving data in desired file

*%

** Author: Alejandro Alpizar

**

**

**
**
**

kkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkhkkhkkkkkkkkkkkkkk

*/

#if defined(LINUX)

include <sys/types.h>
include <sys/socket.h>
include <netinet/in.h>
include <netdb.h>

include <arpal/inet.h>

#elif defined(WIN32)

include<winsock2.h>
include<windows.h>
include<fentl.h>

include<sys/stat.h>

#endif

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#include <errno.h>
#include "leuze-Ips.h"

/*** Byte Order StUﬁ ***/

#if O

138

static const int bsti = 1; // Byte swap test integer
#define is_bigendian() ((*(char*)&bsti) ==0)
/I swap to network byte order (big endian)

static void *

SwapBytes (int n, void *p)
inti;
static unsigned char buf[16]; lIn<1ie6!l
unsigned char *t = (unsigned char *)&buf[0];
unsigned char *s = (unsigned char *)p;

for (iI=0; i < n; i++) {
t[i] = s[n-i-1];

return (void*)t;

#if defined(LINUX) || defined(WIN32)

define S2N_USHORT(v) (unsigned short*) SwapBytes(2, v)

define S2N_SHORT(V) (short*) SwapBytes(2, v)

define AS2N_USHORT(v) (v) = (unsigned short*) SwapBytes(2, v)
define AS2N_SHORT(v) (v) = (short*) SwapBytes(2, v)

define S2N_UINT(v) (unsigned int *) SwapBytes(4, v)

define S2N_INT(v) (int *) SwapBytes(4, v)

define AS2N_UINT(v) (v) = (unsigned int *) SwapBytes(4, v)

define AS2N_INT(v) (v) = (int *) SwapBytes(4, v)

define S2N_FLOAT(V) (float*) SwapBytes(4, v)
define AS2N_FLOAT(v) (v) = (float*) SwapBytes(4, v)

define S2N_DOUBLE(v) (double*) SwapBytes(8, v)
define AS2N_DOUBLE(V) (v) = (double*) SwapBytes(8, v)

#elif defined(PPC)

define S2N_USHORT(v)

define S2N_SHORT(v)

define AS2N_USHORT(V) (v)
define AS2N_SHORT(V) (V)

define S2N_UINT(v)
define S2N_INT(v)
define AS2N_UINT(v) (v)

139

define AS2N_INT(v) (v)

define S2N_FLOAT(v)
define AS2N_FLOAT(V) (v)

define S2N_DOUBLE(V)
define AS2N_DOUBLE(V) (V)

#else
error ERROR Byte order not yet handled for swapping!
#endif

#endif

void
DumpMsg (const unsigned char *msg, int len)

inti;
const int n_wrap = 6;

for (i=0; i < len; i++) {
if (I%n_wrap == 0) {
const char *fmt = (i>0 ? "\n%03d: " : "%03d: ");
printf (fmt, i);

}
lprintf (" %02x", msq[i]);

}
if (i>0)
printf ("*****Msg dumped*******\n");
fflush(stdout);

int
main(int argc, char *argv([])

{

intrv=0,n=0,i=0;

struct sockaddr_in srv_tx;
struct sockaddr_in srv_rx;
struct sockaddr_in srv_other;
int srv_size = sizeof(srv_tx);
int sock _tx =0;

int sock_rx =0;

int waiting = 0;

140

int yvec=0;
int lecture=1;
long offset;

SOCKET s;

struct sockaddr_in server, si_other;
int slen , recv_len;

int client_conection;

int finish=0;

char read;

slen = sizeof(si_other);

#define BUFLEN 1024//512 //512
#define PORT 30002 //The port on which to listen for incoming data
#define MAXPENDING 5 /* Maximum outstanding connection requests */

char *srv_ip;
int srv_port_tx = 0;
int srv_port_rx = 0;

#define BUFLEN 1024
char buf[BUFLEN];
unsigned char *msg;
unsigned int msg_size;
char file_name[25];
const char *ply_headerl,*ply_header2;

short xvec[480];
unsigned short zvec[480];
int nxvec, nzvec, ycoord;

struct tLeuzeLPS_Msg Ipsdata, *plpsdata;

memset (&buf[0], 0, sizeof(buf));
memset (&lpsdata, 0, sizeof(lpsdata));

srv_ip = "192.168.28.50",
srv_port_tx = 9008;
srv_port_rx = 5634;

#if defined (WIN32)
WSADATA wsa;

/lnitialise winsock
printf("\ninitialising Winsock...");
fflush(stdout);
if (WSAStartup(MAKEWORD(2,2),&wsa) != 0)

printf("Failed. Error Code : %d",WSAGetLastError());
exit(EXIT_FAILURE);

141

printf("Initialised.\n");
fflush(stdout);
#endif

/I Create UDP client
sock_tx = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sock_tx <0){
printf("ERROR: opening tx socket, could not create socket, %s, returns %d\n",
strerror(errno), sock_tx);
fflush(stdout);
return 1;

}

memset(&srv_tx, 0, srv_size);
srv_tx.sin_family = AF_INET,;
srv_tx.sin_port = htons(srv_port_tx);

I/l convert IPv4 and IPv6 addresses from text to binary form
#if O
if ((rv=inet_aton(AF_INET, srv_ip, &srv_tx.sin_addr)) <=0) {
printf "ERROR: inet_pton error occured, returns %d, %s\n",
rv, strerror(errno));
return 1;
}
#else
srv_tx.sin_addr.S_un.S_addr = inet_addr(srv_ip);
#endif

/I Create UDP server
sock_rx = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sock_rx<0){
printf("ERROR: opening rx socket, could not create socket, %s\n",
strerror(errno));
fflush(stdout);
return 1,

}

memset(&srv_rx, 0, srv_size);
srv_rx.sin_family = AF_INET;
Srv_rx.sin_port = htons(srv_port_rx);
srv_rx.sin_addr.s_addr = htonl(INADDR_ANY);

// bind socket to port
rv = bind(sock_rx, (struct sockaddr*)&srv_rx, srv_size);
if (rv ==-1){
printf ("ERROR: binding rx socket, %s\n",
strerror(errno));
fflush(stdout);
return 1;

142

printf ("bind rx returns %d\n", rv);
fflush(stdout);

//**LJFQ S()Cﬂ(et C()nEECtk)n
/ICreate a socket for incoming connections of the UR

if((s = socket(PF_INET /*AF_INET */, SOCK_STREAM , IPPROTO_TCP)) ==
INVALID_SOCKET)

printf("Could not create UR socket : %d" , WSAGetLastError());
return -1;

}
printf("UR Socket created.\n");

/IPrepare the sockaddr_in structure
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_ANY);
server.sin_port = htons(PORT);

//Bind
if(bind(s ,(struct sockaddr *)&server , sizeof(server)) == SOCKET_ERROR)

printf("Bind UR failed with error code : %d" , WSAGetLastError());
closesocket(s);

WSACIleanup();

exit(EXIT_FAILURE);

}
puts("Bind UR done");

if(listen(s,MAXPENDING) == SOCKET_ERROR) //IMAXPENDING //1

{
printf("Listen UR failed with error code : %d" , WSAGetLastError());

closesocket(s);
WSACleanup();
exit(EXIT_FAILURE);

}
puts("Listening for UR...");

/Ikeep listening for data

//**LJFQ S(N:ket C(H1eCIk)n E”q[)

//***

/I prepare message Connect To Sensor

LeuzelLPS_InitHeader (&lpsdata.Header);
Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);

143

Ipsdata.Header.CmdNo =
LPS_Cmd_ConnectToSensor;//htons(LPS_Cmd_ConnectToSensor);

Ipsdata.Header.UserDataN = 0x0000;

Ipsdata.UserData[0]=0;

msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN ;

msg = (unsigned char*)&lpsdata;

/ILeuzelLPS_PrintMsg (&Ipsdata);
printf ("\n");

while(1){

/I send the message
printf ("Connecting..... \n");
fflush(stdout);

rv = sendto(sock_tx, (const char*)msg, msg_size, 0,

(struct sockaddr *) &srv_tx, srv_size);

if (rv<0){
printf ("ERROR: failed to send a message, %s\n", strerror(errno));
fflush(stdout);
return 1;

} else {
printf ("sendto: %d bytes\n", rv);
fflush(stdout);

memset (buf, 0, sizeof(buf));

n = recvfrom(sock_rx, (char*)buf, BUFLEN, O,
(struct sockaddr *) &srv_other, &srv_size);

printf ("ran recvfrom\n");
fflush(stdout);

if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
fflush(stdout);
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
fflush(stdout);
DumpMsg (buf, n);
plpsdata = (struct tLeuzeLPS_Msg*)buf;
LeuzeLPS_MsgToN (plpsdata);

printf ("\n");
LeuzelLPS_PrintMsg (plpsdata);
if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
printf ("\nConnected. \n");
fflush(stdout);

144

break;
} else {
printf ("\nError: NOT Connected. \n");
fflush(stdout);
/ kkkkkkkkkkkkkkkkkkkkkk
while(1){
printf("\nAttempt to reconnect? (y or n));
fflush(stdout);
scanf(" %c", &read);
if (read =="y' || read =="Y"){
printf("\nRe");
fflush(stdout);
break;
}
else if (read =='n' || read == 'N"){
printf("\nTerminating program...\n\n");

//**********

I/l prepare message Disconnect From Sensor

LeuzelLPS_InitHeader (&lpsdata.Header);

Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);

Ipsdata.Header.CmdNo =
LPS_Cmd_DisconnectFromSensor;//htons(LPS_Cmd_ConnectToSensor);

Ipsdata.Header.UserDataN = 0x0000;

msg_size = sizeof(lpsdata.Header);

msg = (unsigned char*)&lpsdata;
printf ("\nDisconnecting..... \n");

/ILeuzeLPS_PrintMsg (&Ipsdata);
/I send the message
rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
(struct sockaddr *) &srv_tx, srv_size);
if (rv<0){
printf ("ERROR: failed to send a message, %s\n", strerror(errno));
return 1;
} else {
printf ("sendto: %d bytes\n", rv);
}

memset (buf, 0, sizeof(buf));
n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
}else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
DumpMsg (buf, n);

145

}

//*'k********

return -1;
break;
}
else {
printf("\nPlease type a correct command\n");
fflush(stdout);

}
}

//***********-k**********

}

//puts (buf);

}
}
printf ("\n");

//***

Il prepare message Enter Command Mode

LeuzelLPS_InitHeader (&lpsdata.Header);
Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);
Ipsdata.Header.CmdNo = LPS_Cmd_CmdModeEnter;
Ipsdata.Header.UserDataN = 0x0000;
Ipsdata.UserData[0]=0;

msg_size = sizeof(lpsdata.Header)+Ipsdata.Header.UserDataN;

msg = (unsigned char*)&lpsdata;

/ILeuzeLPS_PrintMsg (&Ipsdata);
printf ("\n");

/I send the message
printf ("Entering command mode..... \n");
rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
(struct sockaddr *) &srv_tx, srv_size);

if (v <0) {
printf ("ERROR: failed to send command, %s\n", strerror(errno));
return 1;
} else {
printf ("sendto: %d bytes\n", rv);
waiting = 1;

/*a*a*a*a*a*a*a*a Reading Loop
while (waiting){

146

memset (buf, 0, sizeof(buf));
n = recvfrom(sock_rx, (char*)buf, BUFLEN, O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
DumpMsg (buf, n);
plpsdata = (struct tLeuzeLPS_Msg*)buf;

if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
printf (".");
}else {
waiting=0;
LeuzelLPS_MsgToN (plpsdata);
printf ("\n");
//LeuzelLPS_PrintMsg (plpsdata);
if ((plpsdata->Header.CmdNo==LPS_Cmd_OKk)||(((plpsdata-
>Header.Status)&0x00F0)==0x0040)){
printf ("\nCommand mode entered. \n");
fflush(stdout);
} else {
printf ("\nCommand mode NOT entered. Status: %x\n",((plpsdata-
>Header.Status)&0x00F0));
fflush(stdout);

}

}
}

[[*a*a*a*a*a*a*a*a

}

/ kkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkhkkkhkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
#if O
I/l prepare message Laser Toggle
for (i=0; i < 10; i++) {

LeuzelLPS_InitHeader (&lpsdata.Header);
Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);
Ipsdata.Header.CmdNo = LPS_Cmd_SetLaserGate;

Ipsdata.Header.UserDataN = 0x0001;
if (1%2 == 0) {
Ipsdata.UserData[0]=0x0000;

}

else{

Ipsdata.UserData[0]=0x0001;

}

msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;

msg = (unsigned char*)&lpsdata;

147

/ILeuzeLPS_PrintMsg (&Ipsdata);
printf ("\n");

/I send the message
printf ("Toggling laser..... \n");
fflush(stdout);
rv = sendto(sock_tx, (const char*)msg, msg_size, 0O,
(struct sockaddr *) &srv_tx, srv_size);
if (rv <0){
printf ("ERROR: failed to send command, %s\n", strerror(errno));
fflush(stdout);
return 1;
} else {
printf ("sendto: %d bytes\n", rv);
fflush(stdout);
waiting = 1;

/*a*a*a*a*a*a*a*a Reading Loop
while (waiting){

memset (buf, 0, sizeof(buf));
n = recvfrom(sock_rx, (char*)buf, BUFLEN, O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
DumpMsg (buf, n);
plpsdata = (struct tLeuzeLPS_Msg*)buf;

if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
printf (".");
}else {
waiting=0;
LeuzelLPS_MsgToN (plpsdata);
printf ("\n");
/ILeuzelLPS_PrintMsg (plpsdata);
if (plpsdata->Header.CmdNo==LPS_Cmd_OKk){
printf ("\nLaser Toggled. \n");
} else {
printf ("\nLaser NOT Toggled. \n");
}
}
}
}
/[*a*a*a*a*a*a*a*a

}

148

Sleep(1000); // Windows Sleep for 1000 ms (1 second)

}
#endif

//**C re ate fl Ie

printf("Enter the name of file to save the data:\n");
fflush(stdout);

memset (file_name,0, sizeof(file_name));
gets(file_name);

FILE *fw = fopen(file_name, "w"); //open in write mode

if (fw == NULL)
{
printf("Error creating file'\n");
exit(1);
}
else{
ply_headerl=
"ply\n"
"format ascii 1.0\n"
"comment author: Alejandro Alpizar\n"
"comment object: 3D object with Leuze sensor\n
"element vertex ";
ply_header2=
"\nproperty float x\n"
"property float y\n"
"property float z\n"
"end_header\n";

n

fprintf (fw,"%s",ply_headerl);
offset=ftell (fw);
fprintf (fw,"%10i%s",81*376,ply _header2);

}
fclose(fw);
FILE *f = fopen(file_name, "a");

if (f == NULL)
{
printf("Error opening file\n");
exit(1);
}

//**'k******-k*-k***********-k********************C re ate fl Ie E N D

//***********************-k***********-k***********-k*******************************

[[rreerreekiieakkReading loop for sensor and UR

149

/Ikeep listening for data
while(1)
{
printf("Waiting for data...");
fflush(stdout);

/[clear the buffer by filling null, it might have previously received data
memset(buf,"\O', BUFLEN);

/ltry to receive some data, this is a blocking call

client_conection= accept (s, (struct sockaddr *) &si_other , &slen);
if (client_conection==INVALID_SOCKET){
wprintf (L"accept() error with error:
%d\n",WSAGetLastError());//WSAGetLastError()//errno
closesocket(s);
WSACIeanup();
return -1;
}
else
printf("Client connected\n");

printf("Handling client %s:%d\n", inet_ntoa(si_other.sin_addr), ntohs(si_other.sin_port));
fflush(stdout);

recv_len=recv(client_conection,buf, BUFLEN, 0);

printf ("ran recv:%i\n",recv_len);
fflush(stdout);
if ((recv_len) == SOCKET_ERROR)

printf("recvfrom() failed with error code : %d" , WSAGetLastError());
exit(EXIT_FAILURE);

while(recv_len > 0)

/lprint details of the client/peer and the data received

printf("Received packet from %s:%d\n", inet_ntoa(si_other.sin_addr),
ntohs(si_other.sin_port));

printf("Data: %s\n" , buf);

fflush(stdout);

//********************

/[clear the buffer by filling null, it might have previously received data
memset(buf,"\0', BUFLEN);

while (lecture){

/[User interaction

while (1)

{

150

printf("\nMake new scan? (y or n) ");
fflush(stdout);

scanf(" %c", &read);

if (read =="'y' || read =="Y")

printf("\nYes selected\n");
strcpy(buf, "Yes");
recv_len=strlen(buf);
finish=0;

break;

else if (read =='n" || read =="N")
{
lecture=0;
/Irecv_len=0;
printf("\nNo selected\n");
strcpy(buf, "No™);
recv_len=strlen(buf);
break;
}
else
printf("\nPlease type a correct command\n");

}

/Inow reply the client with the response
if (send(client_conection, buf, recv_len, 0) !=recv_len)

printf("sendto() failed with error code : %d" , WSAGetLastError());
closesocket(s);

WSACIleanup();

exit(EXIT_FAILURE);

}
if(strcmp(buf,"No")==0)
{

recv_len=0;

finish=1;

}

while(finish==0)
{
/[clear the buffer by filling null, it might have previously received data
memset(buf,"\0', BUFLEN);
printf ("receiving final state\n");
fflush(stdout);
recv_len=recv(client_conection,buf, BUFLEN, 0);
//sleep(0.030);
printf ("State: *%s*\n",buf);
fflush(stdout);
if (strcmp(buf,"1")==0)
finish=1;

151

if ((recv_len) == SOCKET_ERROR)

printf("Recv final state failed with error code : %d\n" , WSAGetLastError());
closesocket(s);

WSACleanup();

exit(EXIT_FAILURE);

}

if(finish==1)
break;

/lclear the buffer by filling null, it might have previously received data
memset(buf,"\0', BUFLEN);
printf ("receiving coordinates\n");
fflush(stdout);
recv_len=recv(client_conection,buf, BUFLEN, 0);
//sleep(0.030);
yvec=yvec+1;
ycoord= (int) (atof(buf)*1000+0.5)*10;
printf("Y Coord: %i\n\n" , ycoord);
fflush(stdout);
if ((recv_len) == SOCKET_ERROR)
{
printf("Recv coordinates failed with error code : %d" , WSAGetLastError());
closesocket(s);
WSACleanup();
exit(EXIT_FAILURE);

}

[[FFFFFRRR kxR Rk Rkl _eutze Scan
#if 1
I/l prepare message Trigger Single Measurement
Iffor (i=0; i < 10; i++) {

LeuzelLPS_InitHeader (&lpsdata.Header);
Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);
Ipsdata.Header.CmdNo = LPS_Cmd_TriggerSingleMeasurement;
Ipsdata.Header.UserDataN = 0x0000;
Ipsdata.UserData[0]=0x0000;

msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;
msg = (unsigned char*)&lpsdata;

/ILeuzelLPS_PrintMsg (&Ipsdata);

printf ("\n");

/I send the message

152

printf ("Triggering Single Measurement..... \n");
rv = sendto(sock_tx, (const char*)msg, msg_size, O,
(struct sockaddr *) &srv_tx, srv_size);

if (v <0){
printf ("ERROR: failed to send command, %s\n", strerror(errno));
return 1;
} else {
printf ("sendto: %d bytes\n", rv);
waiting = 1;

/*a*a*a*a*a*a*a*a Reading Loop
while (waiting){

memset (buf, 0, sizeof(buf));
n = recvfrom(sock_rx, (char*)buf, BUFLEN, O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
DumpMsg (buf, n);
plpsdata = (struct tLeuzeLPS_Msg*)buf;

if (plpsdata->Header.TransactionNo!=Ipsdata.Header.CmdNo){
printf (".");
}else {
waiting=0;
LeuzelLPS_MsgToN (plpsdata);
printf ("\n");
//LeuzeLPS_PrintMsg (plpsdata);
if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
printf ("\nTriggered Single Measurement. \n");
} else {
printf ("\nNOT Triggered Single Measurement. \n");
}
}
}
}
[[*a*a*a*a*a*a*a*a

}

/ISleep(400); // Windows Sleep for 1000 ms (1 second)
I}
#endif

//**-k*-k*-k**-k*-k******-k****-k******-k****-k****-k*-k****-k****-k*-k*-k**********************
#if 1

I/l prepare message LPS_Cmd_GetXCoordinates

Iffor (i=0; i < 10; i++) {

LeuzelLPS_InitHeader (&lpsdata.Header);

153

Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);
Ipsdata.Header.CmdNo = LPS_Cmd_GetXCoordinates;
Ipsdata.Header.UserDataN = 0x0000;

Ipsdata.UserData[0]=0x0000;

msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;
msg = (unsigned char*)&Ipsdata;

/ILeuzelLPS_PrintMsg (&Ipsdata);

printf ("\n");

/I send the message
printf ("Getting X coordinates..... \n");
rv = sendto(sock_tx, (const char*)msg, msg_size, O,
(struct sockaddr *) &srv_tx, srv_size);

if (rv <0) {
printf ("ERROR: failed to send command, %s\n", strerror(errno));
return 1;
} else {
printf ("sendto: %d bytes\n", rv);
waiting = 1;

/*a*a*a*a*a*a*a*a Reading Loop
while (waiting){

memset (buf, 0, sizeof(buf));
n = recvfrom(sock_rx, (char*)buf, BUFLEN, O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
nxvec=n-30;
DumpMsg (buf, n);
plpsdata = (struct tLeuzeLPS_Msg*)buf;

if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
printf (".");
}else {
waiting=0;
LeuzelLPS_MsgToN (plpsdata);
printf ("\n");
/lLeuzeLPS_PrintMsg (plpsdata);
if (plpsdata->Header.CmdNo==LPS_Cmd_GetXCoordinates_Ans){
printf ("\nX Coordinates received. \n");
/ILeuzeLPS_TwoComp (plpsdata);
memset (xvec, 0, sizeof(xvec));

154

memcpy(xvec,&plpsdata->UserData,nxvec);
1l xvec=short
printf ("\n");
/lLeuzelLPS_PrintMsg (plpsdata);
} else {
printf ("\nX Coordinates NOT received. \n");
}

}
}
}
[[*a*a*a*a*a*a*a*a

}

/ISleep(400); // Windows Sleep for 1000 ms (1 second)

I}

#endif
//***
#if 1

Il prepare message LPS_Cmd_GetZCoordinates

ffor (i=0; i < 10; i++) {

LeuzelLPS_InitHeader (&lpsdata.Header);
Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);
Ipsdata.Header.CmdNo = LPS_Cmd_GetZCoordinates;
Ipsdata.Header.UserDataN = 0x0000;

Ipsdata.UserData[0]=0x0000;

msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;
msg = (unsigned char*)&Ipsdata;

/ILeuzeLPS_PrintMsg (&Ipsdata);

printf ("\n");

/I send the message
printf ("Getting Z coordinates..... \n");
rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
(struct sockaddr *) &srv_tx, srv_size);

if (rv<0){
printf ("ERROR: failed to send command, %s\n", strerror(errno));
return 1;
}else {
printf ("sendto: %d bytes\n", rv);
waiting = 1;

/[*a*a*a*a*a*a*a*a Reading Loop
while (waiting){
memset (buf, 0, sizeof(buf));
/lLeuzelLPS_PrintXZ (Xdata,Xdata);

155

n = recvfrom(sock_rx, (char*)buf, BUFLEN, O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
nzvec=n-30;
DumpMsg (buf, n);
plpsdata = (struct tLeuzeLPS_Msg*)buf;

if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
printf (".");
}else {
waiting=0;
LeuzelLPS_MsgToN (plpsdata);
printf ("\n");
//LeuzelLPS_PrintMsg (plpsdata);
if (plpsdata->Header.CmdNo==LPS_Cmd_GetZCoordinates_Ans){
printf ("\nZ Coordinates received. \n");
memset (zvec, 0, sizeof(zvec));
memcpy(zvec,&plpsdata->UserData,nzvec);
llZdata = (struct tLeuzeLPS_Msg*)&plpsdata;
/lLeuzelLPS_PrintXZ (Xdata,Zdata);
}else {
printf ("\nZ Coordinates NOT received. \n");
}
}
}

[[*a*a*a*a*a*a*a*a

}

/ISleep(400); // Windows Sleep for 1000 ms (1 second)
I}
#endif

/ kkkkkkkkkkkkkhkkkkkkkhkkhkkkkkkhhkhkkkkkhkkhkkkkhkhkhkkkkkhkkkhkkkkkkkkhkkkkkkkhkkkkkkkhkkkk

/lprint coordinates X, Y and Z to FILE
for (i=0; i < (nxvec/2); i++) {
fprintf (f,"%d\t%d\t%d\n", /*yvec*10,*/ycoord, xvec[i],zvec]i]);

1 fprintf (f,"%d\t%d\t%d\n", yvec*10, xvec]i],zvec]i]);
}

//*****-k****-k***********-k***********************-k********Le utze Scan E N D

}
}

//********************

156

}
if (lecture==0)
break;

}

[[rrxxekxerkakxReading loop for sensor and UR END
fclose(f);

//********************Ed |t header
printf("Editing header...\n");

FILE *fe = fopen(file_name, "r+");
if (fe == NULL)
{
printf("Error opening file'\n");
exit(1);
}
else{
fseek (fe, offset, SEEK_SET);
lloffset from beggining of file
fprintf (fe,"%10i",yvec*376);

fclose(fe);

//********************Ed It h e ad er E N D

/ kkkkkkkkkkkkkhkkhkkkkkhkkkhkkkkkhkhkhkkkkhkhkhkkkkkkkhkhkhkkkkkrhkhkhkkkkkkhkhkkkkkrkkhkkkkkkkhkkkk

Il prepare message Exit Command Mode

LeuzelLPS_InitHeader (&lpsdata.Header);
Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);
Ipsdata.Header.CmdNo = LPS_Cmd_CmdModeExit;
Ipsdata.Header.UserDataN = 0x0000;

msg_size = sizeof(lpsdata.Header);

msg = (unsigned char*)&lpsdata;

/ILeuzeLPS_PrintMsg (&Ipsdata);
printf ("\n");

/I send the message
printf ("Exiting command mode..... \n");
rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
(struct sockaddr *) &srv_tx, srv_size);
if (rv <0){
printf ("ERROR: failed to send command, %s\n", strerror(errno));

157

return 1;

} else {
printf ("sendto: %d bytes\n", rv);
waiting = 1;

/[*a*a*a*a*a*a*a*a Reading Loop
while (waiting){

memset (buf, 0, sizeof(buf));
n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf "ERROR: recvfrom error, %s\n", strerror(errno));
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
DumpMsg (buf, n);
plpsdata = (struct tLeuzeLPS_Msg*)buf;

if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
printf (".");
}else {
waiting=0;
LeuzelLPS_MsgToN (plpsdata);
printf ("\n");
/lLeuzelLPS_PrintMsg (plpsdata);
if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
printf ("\nCommand mode exited. \n");
} else {
printf ("\nCommand mode NOT exited. \n");
}
}
}
}
/[*a*a*a*a*a*a*a*a

}

/ kkkkkkkkkkkkkhkkkkkkkhkkhkkkkkkhhkhkkkkkhkkhkkkkhkhkhkkkkkhkkkhkkkkkkkkhkkkkkkkhkkkkkkkhkkkk

/I prepare message Disconnect From Sensor

LeuzelLPS_InitHeader (&lpsdata.Header);

Ipsdata.Header.UserDataType = 0x0010;//htons(0x0010);

Ipsdata.Header.CmdNo =
LPS_Cmd_DisconnectFromSensor;//htons(LPS_Cmd_ConnectToSensor);

Ipsdata.Header.UserDataN = 0x0000;

msg_size = sizeof(lpsdata.Header);

msg = (unsigned char*)&lpsdata;

printf ("\nDisconnecting..... \n");

158

/ILeuzeLPS_PrintMsg (&Ipsdata);
/I send the message
rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
(struct sockaddr *) &srv_tx, srv_size);
if (rv<0){
printf ("ERROR: failed to send a message, %s\n", strerror(errno));
return 1;
}else {
printf ("sendto: %d bytes\n", rv);
}

memset (buf, 0, sizeof(buf));
n = recvfrom(sock_rx, (char*)buf, BUFLEN, O,
(struct sockaddr *) &srv_other, &srv_size);
if (n<=-1){
printf ("ERROR: recvfrom error, %s\n", strerror(errno));
} else {
printf ("\nrecvfrom: %s:%d %d bytes\n",
inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
DumpMsg (buf, n);

plpsdata = (struct tLeuzeLPS_Msg*)buf;
LeuzelLPS MsgToN (plpsdata);
printf (":P\n");

printf ("\n");
/lLeuzelLPS_PrintMsg (plpsdata);
if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
printf ("\nDisconnected. \n");
} else {
printf ("\nError: NOT Disconnected. \n");
}

//puts (buf);
}

//***

closesocket(s);
close (sock_tx);
close (sock_rx);

return O;

159

Code for UR robot scanning sequence

Program
Init Variables
BeforeStart
set_tcp(p[0,0,0.20,0.013,-0.0073,0.3904])
port:=30002
ip_server:="192.168.28.51"
delta_max:=0.400
delta:=0.0010
dist x:=0.250
dist_y:=0.150
dist_z:=-0.400
home:=p[dist_x,dist_y,dist_z,0,0,0]
home:=pose_trans(Plane_1_var,home)
open:=socket_open(ip_server,port)
MoveJ
home
dist_x:=0.250
dist_y_start:=0.050
dist_z:=-.300
start_point:=p[dist_x,dist_y _start,dist_z,0,0,0]
start_point:=pose_trans(Plane_1_ var,start_point)
'MoveJ'
While open= False
open:=socket_open(ip_server,port)
string_1:=""
socket_send_string("Make a new scan?")
Wait: 0.01
Robot Program
finish:=0
While string_1=""
string_1l:=socket_read_string()
Wait: 0.01
If string_1<"No"
Halt
Moveld
start_point
dist_y:=dist_y_start
pos_table:=pose_trans(pose_inv(Plane_1_var),get_actual_tcp_pose())
socket_send_string(finish)
Wait: 0.15
socket_send_string(pos_table[1])
Wait: 0.15
While string_1+"Yes"
If pos_table[1]=dist_y start+delta_max
'‘Popup’
‘Wait'
dist_y:=dist_y+delta
next_point:=p[dist_x,dist_y,dist_z,0,0,0]
next_point:=pose_trans(Plane_1_var,next_point)

160

socket _send_string(finish)
Wait: 0.15
MovelL
next_point
pos_table:=pose_trans(pose_inv(Plane_1_var),get_actual_tcp_pose())
socket_send_string(pos_table[1])
Wait: 0.15
Else
finish:=1
socket_send_string(finish)
MoveJ
home
string_1:=""
'If pos_table[1]<dist_y_start+delta_max’

Code for Image detection and classification

#include "opencv2/core.hpp"

/[#include "opencv2/imgproc.hpp"
/f#include "opencv2/highgui.hpp”
#include "opencv2/videoio.hpp"

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>

#include <cstdio>

/IHinclude <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#include <errno.h>

using namespace cv;
using namespace std;

/Ivoid drawText(Mat & image);

Point prevPt(-1, -1);

Mat dst_borders, gray_borders,dst_gs,dst_gs_temp;
int selection;

static void onMouse(int event, int x, inty, int flags, void*)
{
if(X <0 || x >=dst_borders.cols || y <0 || y >= dst_borders.rows)
return;
if(event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON))
prevPt = Point(-1,-1);
else if(event == EVENT_LBUTTONDOWN)
{

161

prevPt = Point(x,y);
if ((int) dst_borders.at<unsigned char>(prevPt.y,(prevPt.x*3))!=0)

cout<<"coordinates= "<<prevPt<<end];

cout<<"pixel value= "<<(int) dst_borders.at<unsigned char>(prevPt.y,(prevPt.x*3))<<end];

cout<<"height value= "<<(((int) dst_borders.at<unsigned char>(prevPt.y,(prevPt.x*3))*6)-
100+30)<<end;

selection= (int) (gray_borders.at<unsigned char>(prevPt.y,prevPt.x)-1);

cout<<"Object "<<selection<<end];

}

}
else if(event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))

{
Point pt(x, y);
if(prevPt.x <0)
prevPt = pt;
MNine(markerMask, prevPt, pt, Scalar::all(255), 5, 8, 0);
line(dst_borders, prevPt, pt, Scalar::all(255), 1, 8, 0);
prevPt = pt;
imshow("Components", dst_borders);

int main(int argc, char** argv)

{
Mat image;

#if O
string imageName("image.png");//../..l..I..l../data/HappyFish.jpg"); // by default
if(argc > 1)

imageName = argv[1];

}

image = imread(imageName.c_str(), IMREAD_COLOR); // Read the file
if(image.empty()) /I Check for invalid input
{

cout << "Could not open or find the image" << std::endl ;
return -1;

}

namedWindow("Display window", WINDOW_AUTOSIZE); // Create a window for display.
imshow("Display window", image); /I Show our image inside it.

waitKey(0); // Wait for a keystroke in the window

destroyWindow("Display window");

162

#endif

/I destroyAllwWindows();
//**
/I cout << "Bye byeeee" << end];
/[capture.release();
char file_name[25],lines[200],word[200];
int ch;
int bottom_ offset=30;
int val_max=5150;
int maxh=val_max-bottom_offset;
int offset=100;
int border=5;
int stepx=0;
int stepy=0;
int i,j,k,coord,imat,jmat,jw,vertex_search;
int startx=0;
int error_allowed=21,
/I double yval;//xval,yval,zval;
unsigned short xval,zval,zmax,zmin,xmax,xmin,xval_pre;
signed short ymax,ymin,yval;
int lectures;
double mat[20][20];

memset (mat,0, sizeof(mat));
memset (file_name,0, sizeof(file_name));

/lread coordinates X, Y and Z from FILE
/lcout << "Enter the name of file you wish to open\n" << end];

printf("Enter the name of file you wish to open:\n");

fflush(stdout);

gets(file_name);

lffgets(file_name,sizeof(file_name),stdin);
[ffile_name="ff.txt";

FILE *f = fopen(file_name, "r"); //open in read mode

if (f == NULL)

{
printf("Error opening file'\n");
exit(1);

}

#if 1
/I while((ch = fgetc(fp)) = EOF)
I/l for (i=0; i1 < 20; i++) {
vertex_search=1;
while(1){
i=0;

163

jw=0;

memset (lines, "\0', sizeof(lines));
memset (word, \0', sizeof(word));
while((ch = fgetc(f)) '="\n" }{

lines[j]=ch;
=it
if(((ch)!="")&& vertex_search){
word[jw]=ch;
jw=jw+1;

else if(vertex_search){
if (strcmp(word,"vertex")==0){

lprintf("Vertex found\n");

/ffflush(stdout);

memset (word, \O', sizeof(word));

jw=0;

while((ch =fgetc(f)) ==""){
llprintf("ch=*%c*\n",ch);
/ffflush(stdout);

word[jw]=ch;

jw=jw+1;

while ((ch =fgetc(f)) I="" ¥
[lprintf("ch=*%c*\n",ch);
[ffflush(stdout);
[lprintf("Word progress=*%s*\n",word);
[ffflush(stdout);

if(ch=="\n"){
break;

word[jw]=ch;

jw=jw+1;
}
lectures=atoi(word);
lprintf("String Number=*%s*\n",word);
lectures=lectures/376;
printf("Number=*%d*\n" lectures);

fflush(stdout);
vertex_search=0;

}

else{

memset (word, \0', sizeof(word));
jw=0;

}

}
}

Ilprintf("Last lines value=*%s*\n" lines);
[printf("\n");

164

if (strcmp(lines,"end_header")==0){
[printf("*****EQH found*****\n");
break;

}
}

llprintf("Loop terminated\n");

/I Mat M(2,2, CV_16UC2, Scalar(0,8100));
float factor=1; //1.3

Mat M(lectures,376, CV_16UC3, Scalar(0,0,0));

i=0;

k=0;

xval=0;

while(feof(f) §

if (I==376){
i=0;
}

memset (lines, "\0', sizeof(lines));
j=0;
coord=0;

while((ch = fgetc(f)) I="\n"}{
if(feof(f)){
break;
}
if (ch!="\t"){
lines[j]=ch;
=i+
}
else{
if (coord==0){
xval_pre=atoi(lines)/10;
if (xvall=xval_pre)
{
k=k+1;
xval=xval_pre;
}
if (startx==0)
startx=xval; //first X value from the sensor lectures

}
else{
yval=atoi(lines);

}
165

coord=coord+1;
memset (lines, "\0', sizeof(lines));
i=0;
}
}

zval=atoi(lines);

M.at<short>(k-1,(i*3)+0)=xval;//(i*3)+0)=xval,
M.at<short>(k-1,(i*3)+1)=yval;//xval-startx
M.at<short>(k-1,(i*3)+2)=zval;

[[rrxerrreikkkkimprimir valores de documento
lprintf("x: % 10d\ty: %10d\tz: % 10d\n",xval,yval,zval);
[ffflush(stdout);

[[Frxxrrrsikkkxkimprimir valores de documento

i=i+1;

}

fclose(f);

[[Frixeeaseeimprimir valores de matriz
/lcout << "New Mat =" << endl << " " << M << endl << end|;
/lreturn -1;

[[prrrekxeeimprimir valores de matriz END

#endif

/I M=M*10;

/Il Apply Histogram Equalization
vector<Mat> spl;
Mat src, dst, tmp;

split(M,spl);
src=spl[2];

[[reeeeaasseimprimir valores de matriz Zval
/lcout << "New Mat =" << endl << " " << spl[1] << end| << endI;
/Ireturn -1;

[[Frxixrrskkkakimprimir valores de matriz Zval END

/I cout << "Val short =" << endl << " " << spl[1].at<short>(0,4) << endl << endl; //Access Yval
SIGNED

[[rrErekekesimprimir valores de matriz Zval
/I cout << "New Mat =" << endl << " " << src << end| << endl;
/l return -1;

[[Freexaaaaeimprimir valores de matriz Zval END

/I equalizeHist(M, dst);

166

[[FFxxrxkrexekEilter unknown values
/lcout<<sizeof(src)<<endl;
/lcout<<src.size()<<endl;
/lcout<<src.rows<<endl;
/lcout<<src.cols<<endl;

//*******'k*******b I ur |m age
Ilblur(src, tmp, Size(3,3));
lIsrc=tmp;

[rRrRiRkrRkxk BT im age

zmax=0;

zmin=0xffff:// 64
ymax=0x8000;
ymin=0x7fff;//8000; // -32768
xmax=0;

Xmin=0xffff;

for (i=0; i < src.rows; i++) { /[FIND MAX VALUE IN MAT
for (j=0; j < src.cols; j++) {
if (src.at<short>(i,j)>zmax){
zmax=src.at<short>(i,j);
}
if ((src.at<short>(i,j)<zmin)&&(src.at<short>(i,j)!=0))}{
zmin=src.at<short>(i,j);

}
if (spl[1].at<short>(i,j)>ymax){
ymax=spl[1].at<short>(i,j);

}
if (spl[1].at<short>(i,j)<ymin){
ymin=spl[1].at<short>(i,);

if (spl[0].at<short>(i,j)>xmax){
xmax=spl[0].at<short>(i,));

}
if (spl[0].at<short>(i,j)<xmin){
xmin=spl[0].at<short>(i,j);
}
}
}

cout<<"Max z value found="<<zmax<<endl;
cout<<"Min z value found="<<zmin<<end];
cout<<"Max y value found="<<ymax<<end];
cout<<"Min y value found="<<ymin<<end];
cout<<"Max x value found="<<xmax<<endlI;
cout<<"Min x value found="<<xmin<<endl;

/lreturn -1;
Mat Mnew((xmax-xmin+1),(int)((float)(ymax-ymin+1)/10+0.5), CV_16UC1, Scalar(0));

167

cout<<"Size new mat= "<<Mnew.size()<<endl;

for (i=0; i < spl[0].rows; i++) { I/ADJUST UNKNOWN VALUES IN MAT
for (j=0; j < spl[0].cols; j++) {
if ((spl[2].at<short>(i,j)>(maxh))||(spl[2].at<short>(i,j)==0)){ //offset of 3mm to filter ground
values of noise -30
spl[2].at<short>(i,j)=maxh+offset;//4600;//4560;zmax; //offset between figures and
base plane to find borders

xval= (spl[0].at<short>(i,j)-xmin);

yval= (int)((float)(spl[1].at<short>(i,j)-ymin)/10+0.5); //valor en mm redondeado a partir
de 0.5 mm
i zval= (zmax-spl[2].at<short>(i,j))/6; //factor de normalizacion a 256 para 15 cm de
altura maxima

zval= ((maxh+offset)-spl[2].at<short>(i,j))/6; //factor de normalizacion a 256 para 15 cm
de altura maxima

llcout<<"Control 2. line.364: i "<<i<<" | "<<j<<" xval "<<xval<<"\tyval "<<yval<<"\tzval
"<<zval<<end!;

/lcout<<"Size new mat= "<<Mnew.size()<<end!;

if((Mnew.at<short>(xval,yval))<zval){
1if(((Mnew.at<short>(xval,yval))==0)||((Mnew.at<short>(xval,yval))<zval)){
Mnew.at<short>(xval,yval)=zval,

}
}
}

gttt §1fTTe image
/lblur(src, tmp, Size(3,3));
l[src=tmp;

[[FrEkrRk Rk RRRER | image

//***************ZOOM Image X2
IlpyrUp(src, tmp, Size(src.cols*2, src.rows*2));
//***************ZOOM Image X2

//***************norm allze Image (

/Inormalize(tmp, dst, 0, 65535, NORM_MINMAX);
/Ibitwise_not (src, dst);
int val=1;

Mnew.convertTo(dst, CV_8UC1);

tmp=dst;

namedWindow("GSO0 proportional unfiltered",WINDOW_AUTOSIZE);//
WINDOW_NORMAL|WINDOW_KEEPRATIO); // Create a window for display.

imshow("GSO0 proportional unfiltered", dst); // Show our image inside it.

/lwaitKey(0);
/lreturn -1;

168

/lwaitKey(0); // Wait for a keystroke in the window

dst_borders = Mat::zeros(dst.rows, dst.cols, CV_8UC3);
dst_gs = Mat::zeros(dst.rows, dst.cols, CV_8UC1);
dst_gs_temp= Mat:.zeros(dst.rows, dst.cols, CV_8UC1);
Mat only_borders = Mat::zeros(dst.rows, dst.cols, CV_8UC23);
gray_borders = Mat:.zeros(dst.rows, dst.cols, CV_8UC1);//fondo negro
Mat rect_gradient = Mat::zeros(dst.rows, dst.cols, CV_8UC1);//fondo negro
/[Mat gray_borders = Mat::ones(dst.rows, dst.cols, CV_8UC1)*255;//fondo blanco
Mat poly_borders = Mat::zeros(dst.rows, dst.cols, CV_8UC3);
/lcout<<"size Mat: "<<dst_borders.size()<<endl;
/I return -1;
Mat element = getStructuringElement(
MORPH_RECT,Size(3,3));//Point(1,1));//MORPH_RECT //MORPH_CROSS
/IMORPH_ELLIPSE

namedWindow("GS proportional", WINDOW_NORMAL|WINDOW_KEEPRATIO); // Create
a window for display.

/limshow("GS proportional”, dst); /l Show our image inside it.
/IwaitKey(0);

dilate(tmp,dst,element);

tmp=dst;

/limshow("GS proportional”, dst); /I Show our image inside it.
/IwaitKey(0);

erode(tmp,dst,element);

tmp=dst;

/limshow("GS proportional”, dst); // Show our image inside it.
/IwaitKey(0);

erode(tmp,dst,element);

tmp=dst;

/limshow("GS proportional”, dst); // Show our image inside it.
/lwaitKey(0);

element = getStructuringElement(MORPH_RECT,Size(9,3)); //eliminate noise in the border
of the images

erode(tmp,dst,element);

tmp=dst;

/limshow("GS proportional”, dst); /l Show our image inside it.
/lwaitKey(0);

element = getStructuringElement(MORPH_RECT,Size(9,3));
dilate(tmp,dst,element);

tmp=dst;

/limshow("GS proportional”, dst); // Show our image inside it.
/IwaitKey(0);

169

for (i=0; i < dst.rows; i++) { /lcopy in dst_borders original filtered image
for (j=0; j < dst.cols; j++) {
dst_gs.at<unsigned char>(i,j)= dst.at<unsigned char>(i,);
dst_borders.at<unsigned char>(i,(j*3)+0)= dst.at<unsigned char>(i,j);
dst_borders.at<unsigned char>(i,(j*3)+1)= dst.at<unsigned char>(i,j);
dst_borders.at<unsigned char>(i,(j*3)+2)= dst.at<unsigned char>(i,j);

imshow("GS proportional”, dst_gs); /I Show our image inside it.
/IwaitKey(0);
/lreturn -1;
[[Frxxskikikkplur image //INOT NEEDED TO BLUR
//blur(tmp, dst, Size(3,3));
/ltmp=dst;
//blur(tmp, dst, Size(3,3));
[Itmp=dst;
//***************blur |mage

Canny(dst, dst, val, val*3, 3);

dilate(tmp,dst,element); /filter stage for borders found, to close objects completely
tmp=dst;

erode(tmp,dst,element);

tmp=dst;

/limwrite("objetos9_border.jpg", dst);

/InamedWindow("GS proportional borders",
WINDOW_AUTOSIZE);//WINDOW_NORMAL|WINDOW_KEEPRATIO); // Create a window for
display.

/limshow("GS proportional borders", dst); /I Show our image inside it.

/lwaitKey(0); // Wait for a keystroke in the window

/Isrc =src > 1;
namedWindow("Source", 1);
imshow("Source"”, dst);

vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

findContours(dst, contours, hierarchy,
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

170

/lcreate variables for next section
vector<vector<Point> > poly_contours(contours.size());
vector<Rect> boundRect(contours.size());
vector<Point2f>center(contours.size());
vector<vector<Point2f> > rect_vtx(contours.size());
Point2f vix[4];
vector<float>radius(contours.size());
vector<vector<Point2f> > boundTriang(contours.size());
vector<RotatedRect> boundRect2(contours.size());

vector<double> area_poly(contours.size());
vector<double> area_rect(contours.size());
vector<double> area_triang(contours.size());
vector<double> area_circle(contours.size());

vector<bool> is_object(contours.size());
vector<bool> is_rectangle(contours.size());
vector<bool> is_triangle(contours.size());
vector<bool> is_circle(contours.size());
vector<int> object_identified(contours.size());

Mat rot_M,;

bool closed=true;
int start_x;
int start_vy;
intend_x;
intend_y;
/lcreate variables for next section

/I iterate through all the top-level contours,
/I draw each connected component with its own random color
int idx = 0;
for(; idx >= 0; idx = hierarchy[idx][0])
{
//define color for each object
Scalar color(rand()&255, rand()&255, rand()&255);
Scalar color2(idx+1);//asigna valores escala grises a cada objeto encontrado (de O an
objetos)
/[Scalar color2(idx*255/contours.size(), idx*255/contours.size(), idx*255/contours.size());
//Scalar color2((idx+1)*255/(contours.size()+1));//asigna valores escala grises a cada
objeto encontrado (0-255)

//**-k****-k*********'k*-k********-k**-k*-k******-k****-k*********'k*-k**********************

// Calculate data required for each object found

approxPolyDP(contours][idx], poly_contours[idx], 3, closed); /lapproximate
polygon with obtained contours

boundRect[idx] = boundingRect(Mat(poly_contours[idx])); //bounding straight
rectangle

minEnclosingCircle((Mat)poly_contours[idx], center[idx], radius[idx]);

171

boundRect2[idx]=minAreaRect((Mat)poly_contours[idx]);
boundRect2[idx].points(vtx);
minEnclosingTriangle((Mat)poly_contours[idx], boundTriang[idx]);

I****draw surrounding rectangle
/Irectangle(poly _borders, boundRect[idx].tl(), boundRect[idx].br(), color, 1, 8, 0);
I****draw surrounding rectangle

I****draw surrounging circle
circle(poly_borders, center[idx], (int)radius[idx], Scalar(255, 0, 0), 1, 8, 0);
[****draw surrounging circle

/I Draw the triangle
[[Frixxeekkdraw triangles surrounding
for(i=0;i<3;i++)
line(poly_borders, boundTriang[idx][i], boundTriang[idx][(i+1)%3], Scalar(0, 255, 0), 1,

LINE_AA);

[[rexxxrxiikxdraw triangles surrounding

/**** Draw the bounding box tilted

for(i=0;i<4;i++){

line (poly_borders,vtx[i],vtx[(i+1)%4],Scalar(0, 0, 255),1,8);//LINE_AA);
rect_vtx[idx].push_back(vtx[i]);

}

/lcout<<endIl<<"poly "<<idx<<endl<<rect_vtx[idx];
[**** Draw the bounding box tilted
drawContours(poly_borders, poly_contours, idx, color, 1, 8, hierarchy);//CV_FILLED

drawContours(dst_borders, contours, idx, color, 1, 8, hierarchy);//CV_FILLED
drawContours(only_borders, contours, idx, color, 1, 8, hierarchy);//CV_FILLED
drawContours(gray_borders, contours, idx, color2 , -1, 8, hierarchy);//CV_FILLED

/ldraw center of objects (circles and cross) in center of each object

circle(poly_borders,(Point) boundRect2[idx].center , 5, Scalar(255,0,0), 1, 8, 0);
int length_cross=1;

line (poly_borders, (Point){boundRect2[idx].center.x-

length_cross,boundRect2[idx].center.y},

(Point}{boundRect2[idx].center.x+length_cross,boundRect2[idx].center.y},Scalar(255,0,0),1,8);//
LINE_AA);

line (poly_borders,(Point) {boundRect2[idx].center.x,boundRect2[idx].center.y-

length_cross},

(Point)

{boundRect2[idx].center.x,boundRect2[idx].center.y+length_cross},Scalar(255,0,0),1,8);//LINE_

AA);

/ldraw center of objects (circles and cross) in center of each object END

/lwrite number to each object in POLYBORDERS
char buffer[100] = {0};

172

putText(poly_borders, itoa(idx,buffer,10),
(Point) {(int)boundRect2[idx].center.x+4,(int)boundRect2[idx].center.y-4},
FONT_HERSHEY_SIMPLEX, 0.4, color, 1, 8, false); //to_string(idx)

/lwrite number to each object in COMPONENTS

putText(dst_borders, itoa(idx,buffer,10),

(Point) {(int)boundRect2[idx].center.x+4,(int)boundRect2[idx].center.y-4},
FONT_HERSHEY_SIMPLEX, 0.4, color, 1, 8, false); //to_string(idx)
/lwrite number to each object in COMPONENTS END

[[Frexekixcglculate different information

co ut<<"*-k***********-k*-k*****************"< <e n d I ,

cout<<"rect "<<idx<<" size= "<<(Point) boundRect2[idx].size<<endl;//
(width,height)

cout<<"rect "<<idx<<" width= "<< (float)boundRect2[idx].size.width<<endl;//
(width,height)

cout<<"rect "<<idx<<" height= "<< (float) boundRect2[idx].size.height<<end|;//
(width,height)

llcout<<"rect "<<idx<<" X= "<< boundRect2[idx].center.x<<endl;//(Point)

llcout<<"rect "<<idx<<" Y= "<< boundRect2[idx].center.y<<endl;//(Point)

cout<<"rect "<<idx<<" center= "<< (Point) boundRect2[idx].center<<endl;//
(Point)Position

cout<<"rect "<<idx<<" angle= "<< boundRect2[idx].angle<<endl;// (angle)

area_poly[idx] = contourArea(poly_contours[idx]);
area_rect[idx]= contourArea(rect_vitx[idx]);

area_triang[idx]= contourArea(boundTriang[idx]);
area_circle[idx]= radius[idx]*radius[idx]*3.14159;

cout << "area poly "<<idx <<"="<< area_poly[idx] << endl;

cout << "area rectangulo "<<idx <<"="<< area_rect[idx] << endl;
cout << "area triangulo "<<idx <<"="<< area_triang[idx] << endl;
cout << "area circulo "<<idx <<"="<< area_circle[idx] << endl;

if (area_poly[idx]>100) //value for an object of 1x1cm area
is_object[idx]=true;

if((abs(area_poly[idx]-area_circle[idx])/area_poly[idx]*100)<error_allowed) /lumbral de
error del 5% de coincidencia de areas

{
is_rectangle[idx]=false;
is_triangle[idx]=false;
is_circle[idx]=true;

}

else if((abs(area_poly[idx]-area_rect[idx])/area_poly[idx]*100)<error_allowed) //umbral
de error del 5% de coincidencia de areas

{
is_rectangle[idx]=true;
is_triangle[idx]=false;
is_circle[idx]=false;

}

173

else if((abs(area_poly[idx]-area_triang[idx])/area_poly[idx]*100)<error_allowed) //umbral

de error del 5% de coincidencia de areas

{ is_rectangle[idx]=false;
is_triangle[idx]=true;
is_circle[idx]=false;

}

}

else

{

is_object[idx]=false;
is_rectangle[idx]=false;
is_triangle[idx]=false;
is_circle[idx]=false;

}

cout << "***Eigure "<<idx <<"is ";
if (is_object[idx]==false)
cout<<"NOT and object **'<<endl;
else if (is_rectangle[idx]==true)
cout<<"a rectangle ***"<<endl;
else if (is_triangle[idx]==true)
cout<<"a triangle **"<<endl;
else if (is_circle[idx]==true)
cout<<"a circle **"<<end|;
else
cout<<"an UNKNOWN object ***"<<endl;

if (is_rectangle[idx]==true) //algoritmo para rotacion de prisma cuadrado y analisis de
gradiente
{
rot_M=getRotationMatrix2D((Point) boundRect2[idx].center,boundRect2[idx].angle,1);
/IRotation matrix, scale factor=1
cout<<rot_M<<endl;
dst_gs_temp= Mat::zeros(dst_gs.rows, dst_gs.cols, CV_8UC1);
for (i=0; i < dst_gs.rows; i++) { /lcopy in dst_borders original filtered image
for (j=0; j < dst_gs.cols; j++) {
if ((int)gray_borders.at<unsigned char>(i,j)==(idx+1)) //object n has GS value n+1
(zero reserved for background)
{
dst_gs_temp.at<unsigned char>(i,j)=dst_gs.at<unsigned char>(i,j);
}
}
}

warpAffine(dst_gs_temp, rect_gradient, rot_M, Size
(rect_gradient.cols,rect_gradient.rows));//(rect_gradient.cols,rect_gradient.rows));/, int

174

flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar&
borderValue=Scalar())
namedWindow("Components", WINDOW_NORMAL|WINDOW_KEEPRATIO);

cout<<"center: "<<(Point2f)boundRect2[idx].center<<end];
cout<<"X: "<<boundRect2[idx].center.x<<" Y: "<<boundRect2[idx].center.y<<endl;

start_x=(int)(boundRect2[idx].center.x-boundRect2[idx].size.width/2+border);
start_y=(int)(boundRect2[idx].center.y-boundRect2[idx].size.height/2+border);
end_x=(int)(boundRect2[idx].center.x+boundRect2[idx].size.width/2-border);
end_y=(int)(boundRect2[idx].center.y+boundRect2[idx].size.height/2-border);

cout<<"startx= "<<start_x<<", starty= "<<start_y<<", endx= "<<end_x<<", endy=
"<<end_y<<end];

cout<<"pixel value x0y0= "<<(int) rect_gradient.at<unsigned char>(start_y,start x)<<end];
cout<<"pixel value x0yl= "<<(int) rect_gradient.at<unsigned char>(end_y,start_x)<<endl;
cout<<"pixel value x1yl= "<<(int) rect_gradient.at<unsigned char>(end_y,end_x)<<end];

cout<<"pixel value x1y0= "<<(int) rect_gradient.at<unsigned char>(start_y,end_x)<<end|;

llline (rect_gradient,(Point2f)(boundRect2[idx].center),(Point){boundRect2[idx].center.x-
boundRect2[idx].size.width/2+border,boundRect2[idx].center.y-
boundRect2[idx].size.height/2+border},Scalar(255),1,8);//LINE_AA);

int pxn; //pxn

int pxnl; //px n+l

int contpx=0; //pixels counter
int gradx[end_x-start_x];

int grady[end_y-start_vy];

//*************g radient X

IF****gradient analisys top horizontal line

for (i=start_x;i<(end_x);i++)

{
llcout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<",";
pxn=(int) rect_gradient.at<unsigned char>(start_y,i);
if (pxn!=0)

pxnl=(int) rect_gradient.at<unsigned char>(start_y,i+1);
if (pxn1!=0)
{

gradx[contpx]=pxnl-pxn;
contpx=contpx+1;
}
}
}

/lcout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<endl;
cout<<"Top horizontal Gradients: ";

int cont_pos=0;
int cont_neut=0;
int cont_neg=0;

175

I

int actual=-1;
int last=-1;

[lfor (i=0;i<contpx;i++)
/lcout<<gradx[i]<<",";

cout<<endl<<end!:

for (i=0;i<contpx;i++)
/lcout<<gradx[i]<<",";
i{f (gradx[i]<0)

if (last!=1)
cont_neg=cont_neg+1,;
last=0;

}
else if (gradx[i]>0)
{

if (last!=0)
cont_pos=cont_pos+1;
last=1;
}

else

{

cont_neut=cont_neut+1;
last=2;

}
if ((last==0))1&&(actual!=0))

if(cont_neg>4)
{
/lactual=0;
cont_pos=0;
cont_neut=0;
cont_neg=1,;
llcout<<"neg "; [/prints every other neg
if (actual'=0)
{
cout<<"neg"; /lprints only one consecutive neg
actual=0;

}
}

}
else if ((last==1))//&&(actual!=1))
if(cont_pos>4)

cont_neg=0;

176

cont_neut=0;
cont_pos=1;
if (actuall=1)
{
cout<<"pos ";
actual=1;

}

/lcout<<"pos ";

}
else if (last==2)
if(cont_neut>4)
if(cont_neg>3)

cont_neut=0;
}
else if(cont_pos>3)
{

cont_neut=0;

}

else

if (actual!=2)
{
cout<<"neut ";
actual=2;

}

cont_neut=0;
cont_pos=0;
cont_neg=0;
}
}
}
}

cout<<endl<<end|;

IIF****gradient analisys top horizontal line END
contpx=0; //pixels counter

memset (gradx, \0', sizeof(gradx));

i int gradx[end_x-start_x];

I*****gradient analisys central horizontal line
for (i=start_x;i<(end_x);i++)

/lcout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<",";
pxn=(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i);

177

if (pxn!=0)

pxnl=(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i+1);
if (pxn1!=0)
{

gradx[contpx]=pxnl1-pxn;
contpx=contpx+1;
}
}
}

/lcout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<endl;
cout<<"Central horizontal Gradients: ";

cont_pos=0;
cont_neut=0;
cont_neg=0;
actual=-1,;
last=-1;

[ffor (i=0;i<contpx;i++)
/l[cout<<gradx[i]<<",";

/! cout<<endl<<end];

for (i=0;i<contpx;i++)

{

/lcout<<gradx]i]<<","; /] desactivar print gradient* ¥ xkkrkkibkkikikikokkkk
if (gradx[i]<0)
{

if (last!=1)
cont_neg=cont_neg+1;
last=0;

}
else if (gradx[i]>0)

if (last!=0)
cont_pos=cont_pos+1;
last=1;

}

else

{

cont_neut=cont_neut+1;
last=2;

}
if ((last==0))1&&(actual!=0))
if(cont_neg>4)
/lactual=0;

178

cont_pos=0;

cont_neut=0;

cont_neg=1;

/lcout<<"neg "; /lprints every other neg

if (actual!=0)

{
cout<<"neg"; /lprints only one consecutive neg
actual=0;

}

}

}
else if ((last==1))//&&(actual'=1))

if(cont_pos>4)
{
cont_neg=0;
cont_neut=0;
cont_pos=1,
if (actuall=1)
{
cout<<"pos ",
actual=1;

}

/lcout<<"pos ";

}
else if (last==2)

if(cont_neut>4)

{

if(cont_neg>3)

cont_neut=0;
}

else if(cont_pos>3)

{

cont_neut=0;

}

else

if (actual!=2)
{
cout<<"neut ";
actual=2;

}

cont_neut=0;
cont_pos=0;
cont_neg=0;

}

179

I

}
}
}

cout<<endl<<end!;
IF****gradient analisys central horizontal line END

contpx=0; //pixels counter
/lint gradx[end_ x-start_x];
memset (gradx, \O', sizeof(gradx));

IIF****gradient analisys bottom horizontal line
for (i=start_x;i<(end_x);i++)

/lcout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<",";
pxn=(int) rect_gradient.at<unsigned char>(end_y,i);

if (pxn!=0)

{

pxnl=(int) rect_gradient.at<unsigned char>(end_y,i+1);
if (pxn1!=0)

gradx[contpx]=pxnl-pxn;
contpx=contpx+1,;
}
}
}
/lcout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<end];
cout<<"Bottom horizontal Gradients: ";

cont_pos=0;
cont_neut=0;
cont_neg=0;
actual=-1,;
last=-1;

[ffor (i=0;i<contpx;i++)
/lcout<<gradx]i]<<",";

cout<<endl<<end];
for (i=0;i<contpx;i++)
/l[cout<<gradx[i]<<",";
if (gradx[i]<0)
{ if (last!=1)
cont_neg=cont_neg+1,;

last=0;

else if (gradx[i]>0)

180

if (last!=0)
cont_pos=cont_pos+1;

last=1;

}

else

{
cont_neut=cont_neut+1;
last=2;

}
if ((last==0))1&&(actual!=0))
{

if(cont_neg>4)

/lactual=0;

cont_pos=0;

cont_neut=0;

cont_neg=1;

/lcout<<"neg "; /lprints every other neg

if (actual!=0)

{
cout<<"neg"; /lprints only one consecutive neg
actual=0;

}

}

}
else if ((last==1))//&&(actual'=1))

if(cont_pos>4)

cont_neg=0;
cont_neut=0;
cont_pos=1,
if (actuall=1)

{

cout<<"pos ";
actual=1;

}

/lcout<<"pos ";

}
else if (last==2)
if(cont_neut>4)
i{f(cont_neg >3)

cont_neut=0;

else if(cont_pos>3)

181

{
cont_neut=0;
}
else
{
if (actual'=2)
{
cout<<"neut ";
actual=2;

}

cont_neut=0;
cont_pos=0;
cont_neg=0;
}
}
}
}

cout<<endl<<end|; I****gradient analisys bottom horizontal line END
[[rxexexxxeekgradient X END

IIwaitKey(0);

[* for (i=start_x;i<end_x;i++)
cout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<",";
cout<<endl;
for (i=start_x;i<end_x;i++)
cout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<",";
cout<<end!|;*/
co ut< <"********************************"< <e n d I ’
//******-k****-k*g rad |ent Y
I***gradient analisys first vertical line
[lffor (i=start_y;i<end_y;i++)
/I cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";
contpx=0; //pixels counter
for (i=start_y;i<end_y;i++)
/lcout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<",";
pxn=(int) rect_gradient.at<unsigned char>(i,start_x);
if (pxn!=0)
{
pxnl=(int) rect_gradient.at<unsigned char>(i+1,start_x);
if (pxn1!=0)

grady[contpx]=pxnl-pxn;
contpx=contpx+1,;
}
}
}

llcout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<endl;
cout<<"First vertical Gradients: ";

182

I

cont_pos=0;
cont_neut=0;
cont_neg=0;
actual=-1;
last=-1;

[lfor (i=0;i<contpx;i++)
/lcout<<gradx[i]<<",";

cout<<endl<<end];

for (i=0;i<contpx;i++)

{

/l[cout<<gradx[i]<<",";
if (grady[i]<0)
{

if (last!=1)
cont_neg=cont_neg+1;
last=0;

}
else if (grady[i]>0)
{

if (last!=0)
cont_pos=cont_pos+1;

last=1;

}

else

{
cont_neut=cont_neut+1;
last=2;

}
if ((last==0))1&&(actual!=0))
if(cont_neg>4)

/lactual=0;

cont_pos=0;

cont_neut=0;

cont_neg=1,

llcout<<"neg "; [/prints every other neg

if (actual'=0)

{
cout<<"neg "; //prints only one consecutive neg
actual=0;

}

}

}
else if ((last==1))//&&(actual!=1))

183

{

if(cont_pos>4)

cont_neg=0;
cont_neut=0;
cont_pos=1,;
if (actuall=1)
{
cout<<"pos ";
actual=1;

}

/[cout<<"pos ";

}
else if (last==2)

if(cont_neut>4)

{

if(cont_neg>3)
cont_neut=0;

else if(cont_pos>3)
{
cont_neut=0;

}

else

if (actual!=2)
{
cout<<"neut ";
actual=2;

}

cont_neut=0;
cont_pos=0;
cont_neg=0;
}
}
}
}

cout<<endl<<end|;
[****gradient analisys first vertical line END

contpx=0; //pixels counter
memset (grady, \0', sizeof(grady));
I int gradx[end_x-start_x];
[[for (i=start_y;i<end_y;i++)
/I cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";

184

IF****gradient analisys central vertical line
for (i=start_y;i<end_y;i++)
{
/lcout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<".";
pxn=(int) rect_gradient.at<unsigned char>(i,boundRect2[idx].center.x);
if (pxn!=0)
{

pxnl=(int) rect_gradient.at<unsigned char>(i+1,boundRect2[idx].center.x);
if (pxn1!=0)

grady[contpx]=pxnl-pxn;
contpx=contpx+1,;
}
}
}

/lcout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<endl;
cout<<"Central vertical Gradients: ";

cont_pos=0;
cont_neut=0;
cont_neg=0;
actual=-1;
last=-1;

[lfor (i=0;i<contpx;i++)
/lcout<<gradx[i]<<",";

i cout<<endl<<end];

for (i=0;i<contpx;i++)

{

/l[cout<<gradx[i]<<",";
if (grady[i]<0)
{

if (last!=1)
cont_neg=cont_neg+1;
last=0;

}
else if (grady][i]>0)
{

if (last!=0)
cont_pos=cont_pos+1;
last=1;

}

else

{

cont_neut=cont_neut+1;
last=2;

}

185

if (last==0)

if(cont_neg>4)
{
/lactual=0;
cont_pos=0;

cont_neut=0;

cont_neg=1;

/lcout<<"neg ";

if (actual'=0)

{

actual=0;

}
}

cout<<"neg"; /lprints only one consecutive neg

)1&&(actual!=0))

/lprints every other neg

}
else if ((last==1))//&&(actual!=1))

if(cont_pos>4)

{

cont_neg=0;

cont_neut=0;

cont_pos=1;
if (actuall=1)

{

actual=1;

}

cout<<"pos ";

/lcout<<"pos ";

}

else if (last==2)

if(cont_neut>4)
if(cont_neg>3)

cont_neut=0;

}

else if(cont_pos>3)

{
}

else

cont_neut=0;

if (actual!=2)

{

actual=2;

}

cout<<"neut ";

186

I

cont_neut=0;
cont_pos=0;
cont_neg=0;
}
}
}
}

cout<<endl<<endl;
II****gradient analisys central vertical line END

contpx=0; //pixels counter

/lint gradx[end_x-start_x];

memset (grady, \0', sizeof(grady));

/ffor (i=start_y;i<end_y;i++)

/I cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";

IF****gradient analisys last vertical line
for (i=start_y;i<end_y;i++)

/lcout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<".";
pxn=(int) rect_gradient.at<unsigned char>(i,end_x);
if (pxn!=0)

pxnl=(int) rect_gradient.at<unsigned char>(i+1,end_Xx);
if (pxn1!=0)

grady[contpx]=pxn1-pxn;
contpx=contpx+1,;

}
}
}
/lcout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<endl;
cout<<"Last vertical Gradients: ";

cont_pos=0;
cont_neut=0;
cont_neg=0;
actual=-1;
last=-1;

[ffor (i=0;i<contpx;i++)
/lcout<<gradx[i]<<",";

cout<<endl<<end];
for (i=0;i<contpx;i++)
/[cout<<gradx[i]<<",";

if (grady][i]<0)

187

if (last!=1)
cont_neg=cont_neg+1;
last=0;
}
else if (grady][i]>0)
{

if (last!=0)
cont_pos=cont_pos+1;

last=1;

}

else

{
cont_neut=cont_neut+1;
last=2;

}
if ((last==0))1&&(actual!=0))
if(cont_neg>4)

/lactual=0;

cont_pos=0;

cont_neut=0;

cont_neg=1;

llcout<<"neg "; //prints every other neg

if (actual'=0)

{
cout<<"neg"; /lprints only one consecutive neg
actual=0;

}

}

}
else if ((last==1))//&&(actual!=1))

if(cont_pos>4)

cont_neg=0;
cont_neut=0;
cont_pos=1,
if (actuall=1)
{
cout<<"pos ",
actual=1;

}

/lcout<<"pos ";

}

else if (last==2)

{

188

/*

if(cont_neut>4)
{
if(cont_neg>3)

{

cont_neut=0;

else if(cont_pos>3)
{
cont_neut=0;
}
else
{
if (actual!=2)
{
cout<<"neut ",
actual=2;

}

cont_neut=0;
cont_pos=0;
cont_neg=0;
}
}
}
}

cout<<endl<<endl!;
IIF****gradient analisys last vertical line END
//*************g I’adlent Y EN D

for (i=start_y;i<end_y;i++)

cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";
cout<<end|;
for (i=start_y;i<end_y;i++)

cout<<(int) rect_gradient.at<unsigned char>(i,boundRect2[idx].center.x)<<",";
cout<<end|;
for (i=start_y;i<end_y;i++)

cout<<(int) rect_gradient.at<unsigned char>(i,end_x)<<",";
cout<<endl;*/

/lrectangle analized from each rectangle
line

(rect_gradient,(Point){end_x,start_y},(Point){start_x,start_y},Scalar(255),1,8);//[LINE_AA);

line

(rect_gradient,(Point){start_x,start_y},(Point){start_x,end_y},Scalar(255),1,8);//LINE_AA);

line

(rect_gradient,(Point){start_x,end_y},(Point){end_x,end_y},Scalar(255),1,8);//[LINE_AA);

line

(rect_gradient,(Point){end_x,end_y},(Point){end_x,start_y},Scalar(255),1,8);//LINE_AA);

189

imshow("Components", rect_gradient);
waitKey(0);
/lreturn -1;

}

//***'k***********'k***************************

/I Show images of obtained results

namedWindow("Components", WINDOW_NORMAL|WINDOW_KEEPRATIO);
imshow("Components", dst_borders);

namedWindow("Only borders", WINDOW_NORMAL|WINDOW_KEEPRATIO);
imshow("Only borders", only_borders);

namedWindow("INT borders", WINDOW_NORMAL|WINDOW_KEEPRATIO);
imshow("INT borders", gray_borders);

namedWindow("Poly borders", WINDOW_NORMAL|WINDOW_KEEPRATIO
);//WINDOW_NORMAL|WINDOW_KEEPRATIO //WINDOW_AUTOSIZE

imshow("Poly borders", poly_borders);

cout<<endl<<"Obijects found: "<<contours.size()<<endl;

setMouseCallback("Components", onMouse, 0);

waitKey(0); // Wait for a keystroke in the window
return O;

190

