

INSTITUTO TECNOLÓGICO DE COSTA RICA

ÁREA ACADÉMICA INGENIERÍA MECATRÓNICA

PROYECTO DE GRADUACIÓN: Documento Final

"3D scanning and detection of objects for a subsequent manipulation by a collaborative

robot"

Institution where project will be developed: Duale Hochschule Baden Wuertemberg

(DHBW) University. Karlsruhe, Germany.

Profesor asesor: Prof. Dr. Juan Luis Crespo Mariño

Profesor guía: Prof. Dr. Clemens Reitze

Ejecutor: Alejandro Alpízar Cambronero

Carné: 200929524

Fecha: 22-06-2016

2

Content
I. Introduction ... 9

II. Context of the project ... 11

III. Definition of the problem ... 20

i. Overview .. 20

ii. Problem synthesis .. 23

IV. Solution approach .. 23

V. Cause – Effect Diagrams (Ishikawa) ... 29

VI. Objectives .. 31

i. General Objective ... 31

ii. Specific Objectives ... 31

VII. Project execution procedure ... 33

VIII. Chronogram for activities. ... 35

i. Gantt diagram for tasks ... 38

IX. Budget and expenses for the project ... 39

X. Solution's detailed description .. 41

i. Selection of the Robotic Arm .. 41

ii. Communication (Transport) Protocols ... 43

1. UDP Protocol ... 43

2. TCP Protocol .. 44

3. Error Codes for Socket Programming .. 48

iii. Setting up the programming environment ... 49

1. Programming language ... 49

2. Text editor ... 49

3. Builder and compiler ... 49

4. Makefile .. 50

iv. Programming Light Section Sensor Communication ... 50

1. Important safety indications ... 51

2. Operation Principle of the Light section sensor .. 53

3. Mounting and connection of the sensor ... 57

4. Communication Protocol Structure... 59

5. Programming the LPS communication .. 66

3

v. Programming the Object Detection and Recognition Phase .. 76

1. Selecting the programming tool .. 76

2. Setting up the programming environment.. 76

3. Vision solution proposal .. 78

4. Developing the solution .. 78

5. Edge detection algorithm .. 81

vi. Programming UR Communication ... 83

1. Getting to know the UR5 ... 83

2. Safety of the UR .. 85

3. Kinematics of the project .. 86

4. Initialization of the UR5... 87

5. The tool ... 88

6. A first approach to handle LPS sensor ... 89

7. Define a plane ... 89

8. Programming the robot .. 91

9. Results obtained ... 92

10. Problem presented ... 92

11. Assessment of damage.. 93

vii. Integration phase .. 94

1. Flood fill .. 94

2. Perspective correction .. 94

3. Filter algorithms .. 98

4. Poly Approximation ... 100

5. Best fit (circle and rectangle) .. 101

6. Improvement of UR program .. 102

7. Speed improvement .. 104

8. Best fit for rectangles, circles and triangles... 107

9. Comparing areas ... 107

10. Analyzing gradients on each object ... 109

XI. Solution's Analysis ... 113

i. Leuze sensor programming .. 113

ii. UR Programming .. 113

4

iii. Image recognition programming ... 114

iv. Integration phase .. 115

v. Final cost of the project ... 116

XII. Conclusions ... 117

XIII. Recommendations and Future work .. 117

i. Improvement of time .. 117

ii. Occlusion solving ... 118

iii. Use of Point Cloud Library .. 118

iv. Use of Qt to create an IDE .. 118

XIV. Bibliography .. 120

XV. Appendix section .. 123

i. Appendix A: Acceptance letter from DHBW ... 124

ii. Appendix B: Autenticity Declaration ... 125

iii. Appendix C: Final Evaluation .. 126

iv. Appendix D: Contact information from professor at DHBW .. 127

v. Appendix E: Objects available for research .. 128

vi. Appendix F: Makefile used for the Leuze program .. 129

vii. Appendix G: Different images acquired with LPS .. 130

viii. Appendix H: Error detected when scanning ... 131

ix. Appendix I: Sample of data file with coordinates ... 132

x. Appendix J: Receipt of repair of LPS sensor .. 133

xi. Appendix K: Codes developed for final solution ... 134

Header file for LPS... 134

Code for LPS Scanning with UR ... 138

Code for UR robot scanning sequence .. 160

Code for Image detection and classification ... 161

5

Table 1 Tasks chronogram ... 35

Table 2 Tasks chronogram (Continuation) ... 36

Table 3 Lists of costs ... 40

Table 4 LPS Header .. 60

Table 5 Status interpretation of LPS .. 62

Table 6 Commands in measure mode .. 63

Table 7 Commands in command mode .. 64

Table 8 Sent and received message from LPS ... 69

Table 9 Safety interface .. 85

Table 10 Different results obtained with filters ... 100

Table 11 Areas comparison .. 108

Table 12 Possible rectangle shaped profiles .. 109

Table 13 Real budget of the project ... 116

Figures content
Figure 1 Variables to consider during realization of the project ... 28

Figure 2 Problem 1 .. 29

Figure 3 Problem 2 .. 30

Figure 4 Problem 3 .. 30

Figure 5 Chronogram for November .. 38

Figure 6 Chronogram for December .. 38

Figure 7 Chronogram for January .. 38

Figure 8 Chronogram for February and March .. 39

Figure 9 Robotic arms at DHBW: (a) ABB IRB1600. (b) ABB IRB140. (c) UR5. (d) UR10. 42

Figure 10 Image from: National Instruments. www.ni.com ... 44

Figure 11 Communication diagram.. 45

Figure 12 UDP and TCP Diagrams ... 46

Figure 13 Error codes for Socket Programming .. 48

Figure 14 Laser warning ... 51

Figure 15 Laser prevention instructions Part 1 .. 52

Figure 16 Laser prevention instructions Part 2 .. 52

Figure 17 Laser prevention instructions Part 3 .. 53

Figure 18 Leuze LPS functioning scheme .. 53

Figure 19 Occlusion on Leuze LPS ... 54

Figure 20 Distance sensor-object vs. Resolution of lecture ... 56

Figure 21 Alignment of Leuze LPS .. 57

Figure 22 Screen output for aligning ... 57

Figure 23 Temporal mounting base for LPS .. 58

Figure 24 LPS connectors. Image from Leuze Electronic (2014) .. 59

Figure 25 LPS general algorithm ... 64

6

Figure 26 Sample of header file ... 67

Figure 27 Included libraries .. 68

Figure 28 First scanning scene .. 69

Figure 29 Obtained profile. Signal z in 1/0 mm. Signal x in 1/10 mm. .. 70

Figure 30 Measuring manual surface with millimetric bottom for simulating movement 70

Figure 31 Mesh of obtained image .. 72

Figure 32 Mesh obtained, second view... 72

Figure 33 Dots image with GNU Plot... 73

Figure 34 Dots image with MeshLab ... 74

Figure 35 Ply header ... 74

Figure 36 LPS measuring flowchart .. 75

Figure 37 Cmake configuration for building OpenCV .. 77

Figure 38 Explanation of transformation to grayscale image ... 79

Figure 39 Opening image from file .. 80

Figure 40 3-Channel XYZ image ... 80

Figure 41 First grayscale image ... 81

Figure 42 Original image in dots .. 81

Figure 43 First edge detection .. 82

Figure 44 Canny with low threshold of 10 ... 82

Figure 45 Canny with low threshold of 15 ... 82

Figure 46 Canny with low threshold of 20 ... 83

Figure 47 UR5 Joints ... 84

Figure 48 UR5 Workspace.. 84

Figure 49 UR Teach Pendant and Emergency button .. 85

Figure 50 Rotations' matrix ... 86

Figure 51 Rotation and Translation matrix.. 86

Figure 52 Joints parameters ... 87

Figure 53 UR initialization screen .. 88

Figure 54 UR5 actual Gripper... 88

Figure 55 UR5 Features screen ... 90

Figure 56 Defining the measuring plane ... 91

Figure 57 UR basic algorithm for a first scan ... 91

Figure 58 First scan obtained with UR .. 92

Figure 59 First scan obtained wit UR in MeshLab ... 92

Figure 60 Damage to LPS's connectors ... 93

Figure 61 Image obtained with UR in grayscale .. 94

Figure 62 Scan with flood fill at different values ... 94

Figure 63 Original location of image in grid .. 95

Figure 64 New location of image in grid .. 95

Figure 65 First proportional image obtained ... 96

Figure 66 First proportional image obtained (with flood fill) .. 96

Figure 67 Image with Canny with two different values .. 97

7

Figure 68 First Contour detector .. 97

Figure 69 Blur example ... 98

Figure 70 Dilate example .. 98

Figure 71 Erode example .. 99

Figure 72 Approximation with Poly Approx ... 101

Figure 73 Best fit circles and rectangles ... 102

Figure 74 LPS and UR algorithm. Part 1 .. 103

Figure 75 LPS and UR algorithm. Part 2 .. 103

Figure 76 Scan 1 every 2mm ... 104

Figure 77 Scan 2 every 2mm ... 105

Figure 78 Every 2mm image filtered .. 105

Figure 79 Canny and edge detector for every 2mm image 1 ... 106

Figure 80 Canny and edge detector for every 2mm image 2 ... 106

Figure 81 Best fit for rectangles, circles and triangles .. 107

Figure 82 Numbered objects .. 108

Figure 83 Pyramids .. 110

Figure 84 Prism .. 110

Figure 85 Cylinder .. 110

Figure 86 Gradient analyzing procedure ... 111

Figure 87 Final image for user interface ... 111

Figure 88 Information printed to user .. 112

8

Dedicatoria

"A mis padres que estuvieron durante todo momento dándome apoyo y fortaleza, y que

me hicieron creer que toda meta es posible de alcanzar."

9

I. Introduction

The present document is a brief description of what the project "3D scanning and

detection of objects for a subsequent manipulation by a collaborative robot" will be

about, and how the solution will be approached. The project is developed as a final

requirement to obtain the degree of "Licenciatura" in Mechatronic Engineering at the

Tecnológico de Costa Rica.

On the first part, the context of the project will be presented. It will be introduced

different applications for 3D mapping technologies that can be found nowadays, as well

as the different algorithms that are commonly used in this type of applications. It will be

presented an outlook of some of the obstacles that might occur when handling this type

of technology, and also the main authors and documents that were used to build a

prospect of the realization of the project.

On the consequent part, it will be defined the problem to be resolved, with the

environment where it will be developed. Also, the main problem will be divided in

several steps, to facilitate the achievement of the overall project. Finally, it will be

presented the motivation for the interested part to develop a project of such nature.

The next section will describe a strategy proposed to approach a solution for the entire

project. It will be explained in more detail what each stage of the solution consist, and

how every one of them is intended to be resolved.

Ishikawa diagrams will be used as a tool to identify different problems present on the

work, and the possible root causes that may be inducing each problem. After this, the

Objectives section will present both the general and specific objectives for this project,

together with a specific indicator for each objective.

In the "Project execution" section, it will be detailed a list of steps to realize, to achieve

the goals of the project. After this, a Gantt Diagram will be presented as an approximate

to distribute time efficiently for the project. After this, a small summary of the expenses

of the project will be presented, to understand the impact and feasibility of the project.

10

On the Solution's detailed description section, it will be described with detail all the steps

that were taken to develop the project and to achieve the desired objectives. This

section will be sub-divided to present the solution for each phase independently, with a

final integration phase that connects all the solutions developed.

After presenting the solutions developed, an analysis section will be described, where

the strengths and weaknesses of the project will be described. Followed by this section,

the conclusions of the project will be stated and after this, it will be presented a section

that mentions different recommendations and future work that can be developed after

this project, to give continuity and achieve more goals on the future.

Finally, it will be presented a list of the sources and authors used to develop this

document, as well as the important documents in the corresponding Appendix section.

11

II. Context of the project

In this section, it will be presented some of the most common uses that 3D mapping

has, not only in industry but on the Research and Development area (R+D). The ability

to obtain tridimensional information of certain space has been increasing over years,

and different technologies to achieve this are applied nowadays. Some of the

techniques and algorithms used will be presented on this document, as well as some of

the obstacles that usually present in this type of applications.

The evolution of robotics brings new opportunities for human development. Every

progress made in the research of new technologies brings not only benefits, but also

makes noticeable the deficits that had not been detected previously on the various

areas of growth among robotics and related areas (Sofge, Potter, Bugajska and Schultz,

2003). Robotics develops in a variety of shapes and functionalities, and it is evident

that acquiring abilities inspired in nature are one of the main goals among researchers.

Giving a robot the ability to interact with the world in a more real approach is one of the

main interests in robotics. One of the abilities desired in robots, that is inspired in nature

and also in human abilities is, the sense of sight. To achieve these, there are several

attempts that are still on the spot of researchers, and that have grown in the last years.

The 3D scanning has become the attempt to document the real world and understand it

better. There have been developed several techniques among time. As Ebrahim (2014)

states:

 3D laser scanning developed during the last half of the 20th century in an attempt

 to accurately recreate the surfaces of various objects and places. The technology

 is especially helpful in fields of research and design. The first 3D scanning

 technology was created in the 1960s. The early scanners used lights, cameras

 and projectors to perform this task. (p.4)

In the beginnings of robotics and development of technology, "blind" machines were

helping humans to fulfill their needs, but with the advance on both of them, the needs

increased, and with them the demands of evolved abilities for this robots. "Over the last

12

years, various research groups have made substantial progress in recognition and

manipulation of everyday objects" (Krainin, Henry, Ren and Fox, 2011, p.1), and many

different techniques have been developed for acquiring this 3D information. In this

document, some of the techniques for 3D scanning will be discussed as a reference.

There is for example, the use of RGB-D cameras. These specialized cameras capture

images as a common RGB camera, but they also capture depth information per pixel.

They get important visual information that is very helpful for loop closure detection

(which will be discussed further later). However, using RGB-D cameras has its

disadvantages. They have limited distance for information acquisition, the noise level on

the measured distances can be problematic depending on the application, and they also

have a restricted view angle (Henry, Krainin, Herbst, Ren and Fox, 2010).

There are many other restrictions or problems when using a camera technology for

acquiring 3D information, such as the light conditions in which the applications is

developed. The lack or excess of light or the uncontrolled conditions of it may cause

shadows or faulty information, which may affect the measurements of depth among

objects and scenarios. To avoid this problematic, laser technologies have been

implemented to get depth information, that is not affected in the same way as cameras

by the light on the environment (Valencia, Teniente, Trulls & Andrade-Cetto, 2009).

There are many attempts developed with both camera and laser technologies. Both of

them have their own advantages and disadvantages. By one side, the cameras provide

3D information with less cost for the hardware. Collet, Berenson, Srinivasa and

Ferguson (2009), for example, developed a vision system with a medium resolution

camera that was able to detect the position of particular objects, and give further

instructions to a Universal Robot to grip those objects. However, their method needed a

previous training phase for the vision system, in which the computer was given the

information of the possible objects to be observed. Needless to explain, this is a very

restricted approach if there is a necessity of identifying a wide variety of objects.

The project that is to be developed has two main phases: on the first stage, the intention

is to develop a vision system with laser technology for creating a 3D image of a given

13

surface with a variety of objects. The system will be used in an indoor environment,

however it is desired to measure the scope of the solution under different conditions,

especially illumination, to measure the capability of the system to operate under

uncontrolled conditions and which would be the restrictions of the system for this

variables. On this first stage, it is also desired to apply vision techniques that will allow

the system to identify, segment and locate the objects on the given surface (it could be

for example a table or a box). This stage will take most part of the project, since it is the

goal to create an optimum system which will be time and memory efficient. The second

stage comes after having the information classified. Once the needed information is

processed, it will be transmitted to a Universal Robot (UR), which will be programmed to

grab each item and complete a function (dispose, package, pile, classify the item, etc.).

Both stages will be discusses with more detail on this section, to understand better the

context in which they will be developed.

First of all, the environment for the project needs to be defined. There are several

applications currently for 3D mapping. They can be mainly classified within two

categories: outdoor and indoor applications. For outdoor applications we can mention

mainly navigation, either street navigation or building navigation. Despite building

navigation could happen within doors, it can be considered outdoor, since there are no

illumination controlled conditions and also a wide variety of static and dynamic

obstacles may appear. The application desired is going to be operated on indoor

environments, so there is no need to deepen on outdoor applications, however there

are important contributions on 3D mapping on previous studies for outdoor

environments that will be taken into consideration, especially the ones from Henry et al.

(2010), Valencia et al. (2009) and Hornung, Wurm, Bennewitz, Stachniss and Burgard

(2013).

For indoor applications, there are still several conditions to be specified for this project.

Inside mapping could be implemented for static scenes or for scenes where objects can

move, which will lead the investigation to a completely different course. For the purpose

of this application, a static scene will be the situation of study. Therefore, we need to

14

study the strengths and weaknesses of 3D scanning laser methods for indoor static

environments.

As Henry et al. (2010) mention in their study:

Building accurate, dense models of indoor environments has many applications

in robotics, telepresence, gaming, and augmented reality. Limited lighting, lack of

distinctive features, repetitive structures, and the demand for rich detail are

inherent to indoor environments, and handling these issues has proved a

challenging task for both robotics and computer vision communities. Laser

scanning approaches are typically expensive and slow and need additional

registration to add appearance information (visual details). Vision-only

approaches to dense 3D reconstruction often require a prohibitive amount of

computation, suffer from lack of robustness, and cannot yet provide dense,

accurate 3D models. (p.13)

Hence, it needs to be taken into consideration the characteristics of specific

components that might be troubling when scanning. For example, any part that has lack

of distinctive features among its body could be challenging to scan, since there are no

points of reference when computing the full 3D image. There is also an important need

to take into account the type of light that will be used on the working area, as well as the

time for the scanning and the amount of memory required for each scan, without giving

up resolution of the objects of interest. For this, different algorithms previously

experimented will be studied, to determine the best one that satisfies the limits

established for time and memory consumption.

As mentioned before, considering the illumination is important, despite the application

using a laser scan and not a camera. Laser scans are a type of Time-of-Flight sensor.

They use a light source, which could be a LED or in this case a laser. They also have

an array of pixels that detect and measure the incoming light and its correspondent

phase. This will be used to determine the distance from a specific point on space. The

measure of received light depends not only on the distance of the object, but also on the

reflectivity of the object that is been evaluated. Therefore, the light present on the

15

surroundings does affect the measurements and should be considered. To get a better

resolution of the scanned objects, an option would be to utilize a higher power laser, but

this would increase the power consumption and overall cost of the system. Another

option to avoid this would be to reduce the scanned area or to extend the scanning time

of the object (Gokturk, Yalcin and Bamji, 2004). There are then three variables that

need to be considered and pondered very cautiously: resolution of the images, cost of

operation and cost of the system, and time invested on the scan.

To approach the study to a more real situation, it needs to be considered that there a

different technologies within laser scanners, every one of them with certain restrictions.

There are also a wide variety of algorithms that have been implemented to fit every

requirement according to each specific application or need. Schwarz (2010), for

example, mentions two variations of LIDAR systems. The first variation functions with a

single laser that is directed to rotating mirrors (this refers to the usual LIDAR systems).

However, there is a variation for high definition scanning that uses a rotating head with

64 lasers. Every laser works on a frequency of 20 KHz. This makes possible to retrieve

higher amounts of information than common methods, which at the same time allows

the system to get better resolution on the outcome images. Schwarz also mentions that

some of the most common applications for these systems are robotics, mapping,

navigation and manufacturing. This last application would be a clue for this project,

since one of the possibilities for exploiting a system such as the one to be developed

would be manufacturing itself. Since the project is not developed for a company but for

a university, it doesn't have a specific use or end. On the contrary, it seeks to give use

to such technologies expanding the knowledge and researching the possibilities of use

for the system. Henry et al. (2010) introduce the reader to pure laser-based ICP

technologies, and discuss the robustness for 3D point clouds obtained with SICK

scanners and 3D Velodyne scanners.

The information supplied by the university DHBW indicates that the sensor available is a

light section sensor from Leuze-Electronic.de. However, there is no further information

regarding the sensor. The very first step to be taken care of would be acquiring specific

information on the sensor, on how it functions and which algorithms it uses at the

16

present time. Valencia et al. (2009) use a Leuze RS4 sensor for urban scanning and

mention a sensor noise of ±5cm in depth estimation, but this information is subject to

the applications and the environment, which are for this study very different than the

conditions present for Valencia et. al (2009). For the specific application on this project,

it is desired a much smaller noise than the one mentioned here.

A 3D scanning process is usually integrated by three main stages: 1) Obtaining

continuous frames from an object with depth information from different positions, 2)

detection of loop closure from information acquired, and 3) integration of all the scans

into one whole 3D object. (Henry et al., 2010 and Weise, Wismer, Leibe and Gool,

2009). A loop closure is basically the detection of reference features on an object that

determine the complete lecture of that object. It happens when the sensor has reached

a point where the scanner started recording information and has enough key features

that ensures the closure of the object. This loop closure has a common problem that

comes with the "accumulation of registration errors" (Weise et al., 2009) when

connecting the different frames previously obtained by the depth sensor. Every frame

connected to the next one may add a small error in degrees, but this will entail to an

important error, that will cause the complete object not to fit spatially. Henry et al. (2010)

propose to use the detection of loop closure as an additional constraint that will describe

better the spatial distribution of the frames obtained. Nonetheless, as Weise et al.

(2009) explain, this would cause a forced and artificial bending of the object to

compensate this error. They on the other hand propose to distribute the error globally,

distorting the entire model. This technique is also used by Krainin et all. (2011) when

they state:

To prevent all of the loop closure error from occurring in a single frame when a

second connected component comes into view, only one connected component

can be matched into each frame. The error is distributed over the whole structure

in a separate relaxation step. (p.18)

This technique helps solving the loop closure problematic, without forcing any solution

that might be inefficient or unnatural for the object.

17

Once the data is obtained from the 3D sensors, there is a need to store this information,

for treating the image and obtaining useful information when required. This is conformed

by both the previously mentioned stage (frame alignment and loop detection) and also

the optimization of the data stored to use the memory efficiently. As Hornung et al.

(2013) describe, "memory consumption is often the major bottleneck in 3D mapping

systems". In their work they describe a method for discretizing the space in same size

cubes to represent the scanned area. One of the drawbacks of this method is that there

needs to be known previously the size of the volume to be studied and a 3D grid for that

size needs to be previously initialized. This implies memory consumption that might be

unnecessary, and for outdoor applications or high resolution scans, the amount of

memory demanded could be counterproductive. For this project, an outdoor application

is not the case. However, a high resolution could be a characteristic desired in the

system. Voxels is the name that the authors give to the same size cubes.

Hornung et al. (2013) also compare the voxels method with one of the most common

method for 3D mapping: Point clouds. The advantage of voxels over point clouds falls in

memory consumption. Also, the point clouds only represent the measured points, and

do not allow the system to differentiate unmapped areas from free areas. On the

counterpart, voxel representation makes a difference between both conditions. They

further explain their OctoMap integrated framework, which functions with octrees very

similar than with voxels, while keeping the memory consumption at a minimum level.

Their implementation is open source, and is available on the web for several platforms.

Another approach for 3D representation is explained by Henry et al. (2010) with the

commonly used surfels. In their own words:

A surfel consists of a location, a surface orientation, a patch size and a color. As

more point clouds are added to the surfel representation, we follow rules… for

updating, adding, and removing surfels. Surfels store a measure of confidence,

which is increased through being seen from multiple angles over time. Surfels

with low confidence are removed from the representation.

18

With this method, the point clouds are reduced to a more compact representation,

preserving the important information while using less space in memory.

Krainin et all. (2011) make a comparison for the use of surfels against the previously

used triangle meshes. The triangle meshes provide occlusion information, but when

attempting to update a map it can become a more complicated problem, since this

method requires maintaining connections between vertices. This is not a problem with

the use of surfels since they can be separately updated, and they can be transformed

into one mesh when desired. They also mention the benefit of the surfel resolution

being updated when the object is closer to the sensor. Another advantage of the surfels

that Krainin et all. (2011) mention is that it can use "visibility confidence" which basically

means to give a value of confidence to each surfel depending on how many times it has

been observed by the sensor and from what angles it was observed. This increases the

confidence of the lecture for the system.

Henry et al. (2010) claim that the Iterative Closets Point method (ICP) is commonly

used for 3D frame alignment. Valencia et al. (2009) mention non-probabilistic methods

to solve the frame alignment problem. They mention the ICP and variations of the ICP

to be used for the alignment of two scans. However, they suggest probabilistic methods

to be better, since they allow the correct distribution of the loop closure error. They use

the delayed-state Extended Information Filter (EIF) algorithm as well as the delayed-

state Extended Kalman Filter (EKF).

Developing a system for the given Leuze sensor at the DHBW will need to consider all

the different algorithms and techniques commonly used in order to conceive the best

balance between resolution of the 3D images obtained given a purpose for the

application, cost of operation and cost of the system, and time invested on the scan. All

this variables strongly depend on the application in which the system will be used, and

the cost the owner of the system is minded to invest.

Despite this application is being developed for investigation, and will not be functioning

on a real industry environment, it is desired for the system to be energy and memory

efficient, while giving the most efficient behavior. On the future, this type of applications

19

will give robots a more accurate understanding on their surroundings, and with this,

accomplish more complicated tasks. As Krainin et all. (2011) mention accurately:

The goal of our work is to develop techniques that enable robots to autonomously

acquire models of unknown objects, thereby increasing their semantic

understanding. Ultimately, such a capability will allow robots to actively

investigate their environments and learn about objects in an incremental way,

adding more and more knowledge over time.

Achieving goals like this will expand the uses of robotics on the coming years

exponentially. Hopefully, this will allow robots to move around us as any other human

being, and also perform any type of action as we would, like navigating or performing

any job to help people with our daily tasks.

In this section, many of the applications for 3D mapping were mentioned, to locate

among them the specific application that wants to be developed on this project: an

indoor, static application, to build 3D maps of objects present on a specific surface or

area, with a light section sensor. Some of the main algorithms were mentioned, like the

use of surfels and how to solve the loop closure problem, the use of Octrees to store

information, and the improvement on the use of memory when storing the information

required. The main variables to have present during the realization of the project were

discussed: memory consumption, external light influence, material influence, cost of

operation, cost of the system and time spent by the system when scanning an area.

20

III. Definition of the problem

On the overview section, it will be explained the interest from the involved entity, in this

case, the Duale Hochschule Baden-Wurttemberg University (DHBW) located in

Karlsruhe, for developing the project that is presented in this document. It will be

mentioned the different stages that integrate the overall project, and what is wanted

from each of this stages. On the "Problem Synthesis" section, the project will be

explained in a simple phrase, that can be easily understood, and that describes the

main idea to be developed on the project.

i. Overview

The university Duale Hochschule Baden-Wurttemberg (DHBW) in Karlsruhe, Germany

has a Robotics and Automation laboratory that is part of the mechanical engineering

faculty, a division of the engineering or "Technics Department".

The DHBW owns a light section sensor from Leuze-Electronic.de. The sensor is

currently used by a demonstrator to pick rings lying unsorted in a box. The system is

running well, but it is only a demonstrator for these rings. Therefore, other objects can't

be handled by the system. They also have possession of one ABB IRB1600, two

IRB140 and from UniversalRobots an UR5 and UR10. At the moment the system

functions like this: The universal robot uses the light section sensor to make a scan of a

box that contains several metal rings. It then picks the rings and stacks them properly.

The project will be divided in several steps that will be explained next:

Step1: Collaborative Robot

Understand the functioning of the collaborative robots available at DHBW, their

differences, advantages and disadvantages. Learn on the specification for this robots

and how to program them. Understand the robot demonstrator which uses the light

section sensor to detect metal rings, pick and stack them.

21

Step 2: Light section sensor

It is desired to understand how the light section sensor works, its features and

limitations and how to get signals from it. The system is working at the moment to detect

metal rings; however there is no specific information on how it is done. Several testing

will be carried out to understand better the functioning of the system: how it performs

the scanning, and what communication protocol it uses to send this information to the

receiver. It is also important to understand what process it uses to build the frame

alignment to create the 3D images.

Step 3: Object detection, recognition

A first goal is to identify and understand the algorithms used to detect the metal rings at

the moment, and compare them, with different methods found in literature. It is desired

to develop algorithms to identify different objects with OpenCV. Also, it will be

implemented algorithms to identify different objects with Matlab or Octave software, to

compare performance.

Step 4: Combined work

The overall objective is to integrate the robotic system, sensor reading algorithms and

computer vision system to perform a complete function. The UR will aid rotate the

sensor for the initial lecture, the information will be processed by the system and data

will be sent back to the UR, so it can identify the different objects present on the work

area, decide how to pick up and pick up the objects, for further manipulation (reposition,

stack, relocate or store objects)

Step 5: Documentation

As a last step, it is intended to document the process that let the robot handle new or

additional objects. A user manual will be written so future investigations can be made

22

and new users will be able to manipulate and/or modify the 3D scanning and

manipulating system for different purposes.

Additional considerations need to be mentioned:

The goal of the project is to detect and handle new objects with the 3D scanning system

and the collaborative robot. For choosing different objects for the tests, it is desired to

pick different and challenging objects that can be handled with one gripper. However, it

can be an option to pick also objects that need to use different grippers (fingers, suction

cups, among others), which would elevate the complexity of the system because the

robot needs to make the decision of which gripper would be more appropriate to use.

The objects to handle by the robot will be produced or bought, depending on the

requirements. Also, the grippers can be used as supplied by the university, or they can

be adapted or designed new if needed to accomplish the objectives of the project.

The motivation for developing such a system is based on the availability of the hardware

(light section sensor and universal robot) at the DHBW, but also on the necessity to

increase knowledge and uses on this type of systems that use 3D scanning technology.

At the moment, the university has a very restricted use for the sensor, but the uses of it

can be increased and enhanced by developing further investigation. With the option of

scanning multiple objects, the applications also augment. Scanning objects in the given

environment for obtaining 3D images can be used for sorting different objects,

assembling entire components, augmented reality, service robots and others. The ability

to learn about the surroundings and about different objects allows robots to get a better

notion of the world, and with this, new applications can be developed. Lai and Fox

(2009), for example, synchronized 3D readings with Google 3D Warehouse models.

With this, a robot was able to identify real world objects and classify them using as base

similar 3D models found on this database. And with the growing use of 3D technologies,

understanding the world will be easier every day.

23

ii. Problem synthesis

To develop an integrated system that is able to scan a surface to get 3D images, and

with this information identify objects present and give instructions to a Universal Robot

to pick up the objects.

After this section, the reader should have a clearer view of the motivation that led to

develop this project, and an overview of the subdivision that will integrate the project.

Also, the problem synthesis is a very concise idea of what the project will be about.

IV. Solution approach

This section is a discussion about the problems to be resolved to achieve the goal of the

project. It will be presented the situation in which the equipment is found at the moment,

and the solution will be divided into different steps that will help to direct the developing

of the project in an efficient and ordered solution.

In the last years, 3D technologies have been increasing. Nowadays, it is common to

hear about 3D printing, modeling and scanning. They are all separate technologies;

however they complement each other, expanding the uses for all of them. Some of the

most common uses for 3D scanning are navigation, assembling, telepresence, gaming,

augmented reality, and in general terms, interaction of a robot with the world. For this

project, the DHBW University wants to expand the uses of a 3D scan that they own, so

they can have more complex uses of the sensor, and develop different applications with

it.

At the moment, the light section sensor from Leuze-Electronic.de that the university

owns has a very restricted use. The sensor is handled by a robotic arm which moves

the sensor over a scanning area, in their case, a box. The sensor captures the depth

information and transmits the information to a computer that analyzes the information.

After getting the data, the system is capable of detecting a specific type of metal rings,

pick the rings with the universal robot, and stack these rings. The application is not

simple. On the contrary, it shows several engineering challenges; however, the system

24

is only capable of working with the given rings, and cannot operate with any other

objects, making the application too restricted, and wasting capabilities of the sensor and

the UR.

The DHBW wants the ability of the system to be enhanced. It is desired to have the

system functioning as it is at the moment, with the added value of scanning and

identifying different type of objects, not only the metal rings. The goal is to experiment

with different type of objects that have challenging shapes, and also with different

materials. After scanning the work area, the system should be able to identify the

different present objects, take decisions on which objects the robot can take and take

them. When taking the objects, the final action may vary since this is not a real

application and the system might be used for different ends in real life. In this case, the

robot might be programmed to pile the objects, or just store them on a different box to

demonstrate the capabilities of the robot to interact with the environment and the

different objects.

As the system is functional at the moment, it will be used as a reference for

improvement. Several tests will be run and documented on the initial condition of the

system. Important data that need to be taken into account are: time for scan, overall

performance of the system, ability of the system to detect metal rings, ability to

accurately locate and pick up rings, influence of external light on the performance,

ability to detect rings from different materials (not metal). The goal is to establish these

results as a first parameter, and eventually match or surpass the results. However, it will

be taken into consideration that the time for achieving proper 3D scans is proportional to

the complexity of the objects being scanned.

As it was mentioned in the previous section, the problem consists on several steps that

need to be resolved in order to achieve the objective of the project. For a better

approach of the investigation, these steps will be implemented sequentially,

documenting the resolution on every step, and considering the necessary variables that

present on each stage.

25

Step1: Collaborative Robot

This stage is for getting to know the universal robots available at DHBW. As mentioned

before, there are four different models:

 ABB IRB1600

 ABB IRB140

 UniversalRobots UR5

 UniversalRobots UR10

The purpose is to get familiarized with each robot, their capabilities and restrictions, and

how they are programmed. One of the models will be selected for the remaining of the

project according to their capabilities and easiness for programming, as well as the

ability to adapt the sensor to the given robot.

Step 2: Light section sensor

The light section sensor from Leuze-Electronic.de is currently operating. This stage is

intended for understanding how the sensor works, at both hardware and software level.

It is a main objective to research about the communication protocol that the sensor uses

in order to determine if it is the best option for this type of applications, or if there is an

alternative for reaching higher speeds for data acquisition. It will be also of interest to

determine what technique the sensor uses for getting the depth information on the

environment, and what algorithms it implements to merge the various images to create

the 3D figure.

Step 3: Vision system: Object detection, recognition

After having created a 3D scan of the work space, the computer will only have one

whole 3D image that includes any object over the table and the table itself. The system

cannot differentiate between objects, base surface and noise by itself. Further

algorithms need to be applied to the resulting image to isolate the objects from the rest.

The image needs to be filtered if necessary to reduce sensor noise and the image

26

needs to be conditioned. After obtaining separate objects, they need to pass through a

vision system program that identifies each object and classifies them by physical

characteristics. Important features to keep in record when classifying the objects would

be: the main dimensions of the object, presence or absence of outstanding features

(like handles), and if the object was detected as a solid or hollow object. This

information will be helpful when making decisions for handling each object. The system

should also have information of the gripper that is being used to determine if the robot

can handle a certain object with the tool available, or if a different tool would be

necessary for an action to be taken. If a different tool is available that would suffice the

needs to handle the object, the robot should change the tool, but if there is no tool that

will meet this requirements, the system should inform the user about the situation, and

identify the object that leads to an exception.

Step 4: Combined work

The overall objective is to integrate the robotic system, sensor reading algorithms and

computer vision system to perform a complete process. The UR will aid move the

sensor for the initial lecture, the information will be processed by the system and data

will be sent back to the UR, so it can identify the different objects present on the work

area, decide how to pick up and pick up the objects, for further manipulation (reposition,

stack, relocate or store objects) as it is desired or needed (the final action depends on

the application that is given to the system and the specific company's needs). In this

final step, the mechatronic abilities become more evident, because there is a need to

integrate mechanics from the UR, the communication stage between sensor, computer

and robot, electrical knowledge for both sensor and robot, control for the complete

system and computer vision for the analysis and interpretation of the information

acquired. All these steps should have the other steps in consideration when developing

each one of them, since it is desired to have an integrated system, and not a

segmented system that may present conflict with previous or further steps.

Step 5: Documentation

27

As an important part of the project, all the development will be documented on a report

parallel to the progress, for each development achieved on every stage of the project.

This will be to procure order when performing the project, and to allow a high standard

when developing the project, as it is expected from an engineer from the Instituto

Tecnológico de Costa Rica.

It is presented below a diagram that contains each of the variables that will be

considered on each stage to determine the best solution possible. Every variable will be

measured and compared with other methods, or devices when available.

28

Figure 1 Variables to consider during realization of the project

Use a 3D sensor to scan an area,
to detect and identify the objects,
for further manipulation of a UR

3D sensor

Communication
protocol:

Speed, easiness
to install, to
operate, to
configure.

Sensing method:
laser functioning

Mobile or static
sensor

Memory
consumption

Scanning Speed

Sensor noise

External Light
influence

Object material
influence

Object
complexity
influence

UR

Working range

Speed of robot

Accuracy of
robot

Repeatability

Easiness to
adapt sensor to

robot's body.

Programming
arduousness

Tool availability
(gripper)

Vision System

Speed for object
identifying

Memory
consumption

Programming
arduousness

Cost for software
use

Integration with
3D sensor

Integration with
UR

Object
complexity
influence

All stages
together

Overall time
consumption

Overall memory
consumption

Correct
integration

sensor-robot

29

On the previous section, it was presented several steps that need to be followed to

achieve a proper solution for the project. Also, on the Figure 1 was given an overview of

the variables that need to be taken into consideration. These variables will be studied

during the development of the project, and well documented to understand the

functioning of the system, and how the environment affects the implementation of the

system.

V. Cause – Effect Diagrams (Ishikawa)

On this section it is presented three diagrams that name different causes for certain

problems. The problems cited were identified as the situations that may present during

the development of the project, and hence need to be premeditated, to avoid or reduce

their effect for the resulting system.

Three main problems were identified that may present on the developing of the project.

The Ishikawa diagram that links together cause and effect for each problem is showed

below:

Problem 1: System is not able to recognize objects

Figure 2 Problem 1

30

Problem 2: System takes too much time to scan and recognize objects

Figure 3 Problem 2

Problem 3: Robot is not able to grab objects accurately

Figure 4 Problem 3

On the diagrams showed previously, it was presented different variables that will be

taken into consideration during the performance of the project. They will guide the

solution desired, to accomplish specific goals.

31

VI. Objectives

On this section the general and specific objectives of the project will be presented. They

will be considered the spine of the project among the process, and will guide the overall

procedure and goals to be obtained. For each objective, it is given a specific indicator

that makes easy to identify if the goal was properly achieved, or which points should be

enhaced.

i. General Objective

To develop an integrated, low cost system with a 3D sensor, Vision Systems and a

Collaborative Robot, that allows the system to identify objects on a given work area, for

further manipulation of the Robot.

Indicator: The system is able to identify a series of different object using the 3D sensor

from Leuze Electronic.de, and the Universal Robot retrieves the information necessary

to grab the objects that it is supposed to grab, when the required conditions are met.

ii. Specific Objectives

 Implement the use of a light section sensor from Leuze Electronic.de to

acquire 3D images.

Indicator: Visual indicator. The 3D information is sent to a computer, and it is visually

possible (on screen) to identify the objects that were present on the work area.

 Implement a vision system environment that is capable of treating information

acquired from the light section sensor to identify objects present on the work

station.

Indicator: The system will identify with visual markers (on screen) the different objects

found on the working area. Also, characteristic features from the objects should also be

identified, for further usage and manipulation (dimensions, special features present like

handles, etc.)

32

 Program the Universal Robot to handle de light section sensor to scan the

desired area.

Indicator: The robot moves the sensor over the scanning area, so that the sensor is

capable to realize the needed scan procedure.

 Implement a code that allows the Universal Robot to interpret the resulting

information and grab the different present objects. (Optional as a further

objective to achieve).

Indicator: The robot interprets correctly the information resulting from the Vision System

Stage, and is capable of identifying which objects it can take, which objects it should

take, and take the objects.

The general objective presented above is the main goal of the project. The specific

objectives are previous goals that need to be accomplished for fulfilling the main

objective. After having specified the objectives of the project, it is easy to have a clearer

view of the steps that need to be taken.

33

VII. Project execution procedure

On this section, it will be presented a more detailed list of steps in which the solution of

the problem was divided. The main project is simplified into more specific tasks, in order

to achieve a better solution. The project will be divided in three main stages and one

final integration stage.

The main stages are:

 Stage 1: Light section sensor from Leuze Electronic.de functioning

 Stage 2: Universal Robot programming

 Stage 3: Vision System developing

And the final stage would be:

 Stage 4: System integration for the 3D sensor, the Universal Robot and the

 Vision System for identifying and further grabbing objects.

Each stage will be explained below:

1. Light section sensor from Leuze Electronic.de functioning

This task will have the following steps:

a. Recognize de sensor and read the Technical Documentation available for

the light section sensor from Leuze Electronic.de.

b. Research on possibilities for programming and establishing

communication with the sensor. Make simple tests with the sensor on

place.

c. Build a simplified prototype to simulate the environment where the sensor

will be operating (structure for holding sensor and electronics) and man

operated to simulate universal robot.

d. Implement communication with the sensor with interface for the user.

34

e. Develop tests with different objects, varying the previously discussed

variables (color, external light, shape and others) and document results.

f. Study results and improve performance.

2. Universal Robot programming

a. Recognize URs available and read Technical Documentation. Select the

UR to use according to its characteristics.

b. Develop different programs to understand the capabilities of the UR.

c. Program the UR to move the sensor according to the process defined on

the stage for the Light section sensor.

d. Compare results from the ones obtained on Stage 1, and improve

performance in both programming of the Light section sensor and the UR

if necessary.

3. Vision System developing

a. Gather results obtained from Stage 2.

b. Study different programming languages that could solve the problem (At

the moment it's in mind to use MatLab/Octave and Open CV).

c. Develop Vision System to evaluate results and obtain the information

needed. The solution may be developed with several programming

languages, to compare performance.

d. Compare results obtained with the different codes, and improve the

programming.

4. System integration for the 3D sensor, the Universal Robot and the Vision System

for identifying and grabbing objects.

a. Study results obtained from Stage 3.

b. Develop code to communicate information obtained by the Vision System

to the Universal Robot.

c. Integrate results from all 4 stages.

d. Develop tests to check functionality.

e. Study results and improve the whole system.

35

After having a list of detailed steps to be followed, the time available for the

development of the project should be distributed. This will be done in the next section.

VIII. Chronogram for activities.

In this section, it will be presented an estimated distribution of time for developing each

of the previously mentioned tasks, in order to achieve the objectives of the project. It will

be used a software tool for developing Gantt diagrams to have a visual distribution of

the tasks among time.

To achieve a successful accomplishment of the project, the rationing of all resources is

elemental, and this includes the correct use of time available. Specially, since the

project is being developed in a foreign country, with limited resources, a correct

distribution of tasks among time is essential. It is presented below a table and a Gantt

diagram with an estimated planning for the realization of the previously mentioned

tasks.

Table 1 Tasks chronogram

Task Task Mode Task Name Duration Start Finish Predecessors

1
Auto

Scheduled

Stage 1.a Recognize sensor

and read Technical

Documentation

3 days

Mon

26/10/15

08:00 a.m.

Wed

28/10/15

05:00 p.m.

2
Auto

Scheduled

Stage 1.b Research

programming options. Tests to

sensor

4 days
Thu 29/10/15

08:00 a.m.

Tue

03/11/15

05:00 p.m.

1

3 Auto

Scheduled

Stage 1.c Build simplified

prototype for simulation
2 days

Thu 29/10/15

08:00 a.m.

Fri 30/10/15

05:00 p.m.
1

4
Auto

Scheduled

Stage 1.d Implement

communication with sensor.

User interface.

10 days

Wed

04/11/15

08:00 a.m.

Tue

17/11/15

05:00 p.m.

2

5
Auto

Scheduled
Stage 1.e Develop tests 2 days

Wed

18/11/15

08:00 a.m.

Thu

19/11/15

05:00 p.m.

4,3

6
Auto

Scheduled

Stage 1.f Evaluate and

improve
3 days

Fri 20/11/15

08:00 a.m.

Tue

24/11/15

05:00 p.m.

5

36

Table 2 Tasks chronogram (Continuation)

7
Auto

Scheduled

Stage 2.a UR Technical

Documentation
2 days

Wed

25/11/15

08:00 a.m.

Thu

26/11/15

05:00 p.m.

6

8
Auto

Scheduled

Stage 2.b Develop test

programs for UR
2 days

Fri 27/11/15

08:00 a.m.

Mon

30/11/15

05:00 p.m.

7

9
Auto

Scheduled

Stage 2.c Program UR to move

sensor
3 days

Mon

04/01/16

08:00 a.m.

Wed

06/01/16

05:00 p.m.

8

10
Auto

Scheduled

Stage 2.d Compare and

improve
4 days

Thu 07/01/16

08:00 a.m.

Tue

12/01/16

05:00 p.m.

9

11
Auto

Scheduled

Stage 3.a Gather results from

stage 2
1 day

Wed

13/01/16

08:00 a.m.

Wed

13/01/16

05:00 p.m.

10

12
Auto

Scheduled

Stage 3.b Research

programming languages for

Vision System

2 days
Thu 14/01/16

08:00 a.m.

Fri 15/01/16

05:00 p.m.
11

13
Auto

Scheduled

Stage 3.c Develop Vision

System
12 days

Mon

18/01/16

08:00 a.m.

Tue

02/02/16

05:00 p.m.

12

14
Auto

Scheduled

Stage 3.d Compare and

improve
4 days

Wed

03/02/16

08:00 a.m.

Mon

08/02/16

05:00 p.m.

13

15
Auto

Scheduled

Stage 4.a Study results from

stage 3
1 day

Tue 09/02/16

08:00 a.m.

Tue

09/02/16

05:00 p.m.

14

16
Auto

Scheduled
Stage 4.b Develop UR code 4 days

Wed

10/02/16

08:00 a.m.

Mon

15/02/16

05:00 p.m.

15

17
Auto

Scheduled
Stage 4.c Integrate results 2 days

Tue 16/02/16

08:00 a.m.

Wed

17/02/16

05:00 p.m.

16

18
Auto

Scheduled

Stage 4.d Tests to check

functionality
4 days

Thu 18/02/16

08:00 a.m.

Tue

23/02/16

05:00 p.m.

17

19
Auto

Scheduled

Stage 4.e Study results and

improve
7 days

Wed

24/02/16

08:00 a.m.

Thu

03/03/16

05:00 p.m.

18

37

Notes:

The start day will be on Monday, October 26, 2015.

The vacation period is from December 1
st
 to December 31

st
, 2015.

The estimated date to finish the project is on Thursday, March 3, 2016.

38

i. Gantt diagram for tasks

Figure 5 Chronogram for November

Figure 6 Chronogram for December

Figure 7 Chronogram for January

39

Figure 8 Chronogram for February and March

Note:

Non-working days and vacation period are shown in bold on the Gantt diagram.

On this section was presented an estimated distribution of the tasks to be developed.

Each task was given a certain time to be completed, estimating the difficulty of the task.

The chronogram here presented is a guide for developing the project, and is intended to

easily identify when a task gives opportunity to advance faster, or on the contrary, when

a specific task will be taking more time than estimated, to make previous adjustments.

IX. Budget and expenses for the project

On this section, it will be presented the known expenses that are present for the

developing of the project. The information was given by Professor Dr. Clemens Reitze

from the DHBW, and is presented here to calculate a normal investment when intending

to develop a project such as the one desired. If there are any other expenses that may

present further, they will be included to the total list.

The project to be developed has specific costs that are expected: the cost for the

Universal Robot, the light section sensor from Leuze Electronic.de, the computer to

operate both sensor and UR, and others. While the DHBW from Karlsruhe already owns

the UR to be used and the 3D sensor, it is convenient to mention the investment made

by the university, so that a third party can visualize a budget needed to reproduce a

project like the one to be developed.

40

Hence, a breakdown of the outgoings is presented next:

Table 3 Lists of costs

Item Price (€)

UR10 23870.00

UR5 17870.00

Gripper 1378.00

2D Image Recognition 8571.00

3D Image Recognition 9714.00

Fittings, small parts 2000.00

Total 63403.00

Notes:

1) The "Image Recognition" prices are for hardware and software:

- Leuze Sensor (3D)

- CCD Camera (2D + 3D)

- IR PC with touchscreen

- Halcoon library, runtime license

- FIPS IR Software from Faude.de

2) The budget presented here is for all the inversion the university DHBW has made for developing the

project, among other projects that use the same parts. It is not the real cost for developing a project,

because the final project will not necessarily use all the components listed before. A complete analysis of

costs will be detailed when the project is completed.

41

X. Solution's detailed description

In this section, a detailed step-by-step description of the solution will be explained. As it

was described before, the execution of the project is divided in 3 main phases due to its

complexity:

i. Light section sensor

ii. Object detection and recognition

iii. Universal Robot

And a final fourth stage which integrates the first three, which was named "Combined

work" stage.

Hence, the description of the solution will also be sectioned in these phases, and a final

integration of all of them. The solutions will be presented in the order they were

developed, but first, a general investigation of communication protocols and definitions

will be presented, which will be used for both phase 1 and 3 of the solution.

i. Selection of the Robotic Arm

The DHBW University has for different robotic arms in the Robotics and Automation

Laboratory:

 ABB IRB1600

 ABB IRB140

 UR5

 UR10

42

(a)
(b)

(c)

(d)

Figure 9 Robotic arms at DHBW: (a) ABB IRB1600. (b) ABB IRB140. (c) UR5. (d) UR10.

The ABB robots where at the moment used for different projects from other research

students, and both Universal Robots where available for immediate use. The difference

between both UR5 and UR10 are in dimensions and capacity, where the UR10 is bigger

and can handle more weight. The programming of both robots makes no difference

since they run on the same language and environment, and the final decision of which

UR would be the best choice depends on the specific application the robot will be

developing and its requirements. Since the application developed is for research only

(not a real application in the industry), and the parts that will be handled by the robot

represent no high demand on power, the UR5 was selected for working on the

developing of the project during the semester. However, the solution developed will be

possible to use on both URs.

43

After selecting the Robotic Arm that will be used for the development of the project, a

brief research on the communication protocols that can be used for achieving the

objectives will be presented.

ii. Communication (Transport) Protocols

IP Communication provides the ability to send and receive information between different

devices, for a variety of purposes. It is an efficient service model when used properly.

The idea of implementing a network with a certain protocol is to hide to the end user the

physical network, and the technologies and architecture used, while securing a reliable

and complete communication (Chunyan Fu). To understand better the protocols

available, and select the best ones for the given applications to develop, a further

investigation will be presented.

A communication protocol is composed by the client and the server. They can also be

named as "Host 1" and "Host 2" if a differentiation between both is not needed. The

client is the host that requests to receive certain information. On the counterpart, the

server is the center of the information, where the message or data is stored. After the

client requests information, the server will follow some specific steps to send a response

to the other side. The steps to follow depend on the specific protocol that is used for the

communication. The most common protocols are the Transmission Control Protocol

(TCP) and the User Datagram Protocol (UDP). Both have different characteristics that

could be an advantage or disadvantage depending on the application. Hence, both will

be presented next with their characteristics.

1. UDP Protocol

The User Datagram Protocol is an unreliable but fast datagram service (Walrand and

Chunyan Fu). The protocol does not establish a connection between server and client.

There is no confirmation of received packages, and the packages may be lost, delayed

or received incorrect. It is commonly used in applications where the need of precision in

the message is not drastic, for example video or audio streaming. The advantage of

UDP over TCP is that it does not increase the delay over IP. However, any conflict with

lost packets must be resolved by the application itself. There is no buffer on any side of

44

the communication (sender or receiver). Finally, there is a limit for the size of the

messages sent and received.

2. TCP Protocol

The Transmission Control Protocol is widely used in many IP communication

applications. It is not as fast as UDP. However, it is more reliable with the information

exchanged between hosts. A connection is established, which allows a flow control of

the packets using a buffer and handling errors that may occur when sending messages,

for example: lost packets, delayed packets and duplicated packets. On this protocol, a

specific port is linked to only one application. Also, it is possible to handle different ports

by the same application, when there is need to handle communications with different

hosts simultaneously. The size of the messages can be arbitrary.

Figure 10 Image from: National Instruments. www.ni.com

As it is showed in the image, perhaps the main difference between UDP and TCP is that

while UDP is connection-less and the server just sends the information when it is

http://www.ni.com/

45

requested, the TCP establishes a connection, which allows the server to ensure that the

client received the packet as expected, and if an error occurred, resend the packet until

it is received properly.

For the development of this project, there are two different Ethernet communications

needed. The first one is between the Leuze sensor and the central computer, where the

laser sensor functions as the server and the PC as the client. The second

communication is between the PC and the UR Robot, where the UR behaves as a client

and the PC will be working as a server. A diagram is presented below:

Figure 11 Communication diagram

The next diagrams represent the main differences between a UDP and a TCP

connection:

46

Figure 12 UDP and TCP Diagrams

To understand the previous diagrams better, an explanation of the different phases will

be described below.

Both UDP and TCP start by initializing Winsock, which is the use of Windows Sockets

DLL. This enables the use of other calls on Winsock, and also ensures that the system

supports it. After initialized, the next step is to create the sockets that will be used.

On UDP, there must be created sockets for both sender and receiver. Since there will

not be any established connection, every packet sent to a determined socket should be

addressed to a previously created socket, with known IP address and port number. On

the counterpart, the TCP needs to create only a socket for incoming connections. The

bind phase is the one that ties in the IP addresses and Port numbers to a previously

created but empty socket. This is for both UDP and TCP communications.

47

The UDP communication is at this point ready for exchanging information. Any packet

sent from the server to the socket linked to the client will be addressed to the known IP

and port, and vice versa. However, if there is any conflict on the communication, for

some examples: one of the ends gets unexpectedly disconnected, the port number is

incorrect, one of the ends is currently busy transmitting or receiving data. In any of

these and other cases, the message will be simply sent by the sender, but the receiver

will not take in the packet. The sender will neither get a report of the failure, causing

lack of communication and lost information. To avoid this, the program should have an

error control on both sides.

After the TCP socket has performed the "Bind" function, it is time for the server to start

listening. The Listen function is a blocking call. A blocking call is a function that, when

executed, remains at that point of the program until a certain value is returned, or a

time-out is reached. On the specific case of the Listen function, the program of the

server will remain waiting to receive a message from another host (a request from the

client). It will remain listening as far as the time-out variable is not reached, after this it

will return an error value. However, if a request from the client is received, the program

continues its course, and runs the Accept function. At this point, a connection is made

between server and client. After a connection is successful, both client and server can

send and receive messages to the other part.

The TCP protocol uses a buffer; this allows sending messages with no restriction on

size. The protocol itself makes a revision of the information received, and if a message

was lost on transit, or received incorrect, the message will be requested again to the

counterpart. Also, if there is a saturation of packets on the receiver, the buffer will store

the data and deliver it accordingly.

At the end of both UDP and TCP, the sockets must be closed, to avoid further conflicts.

When deciding which protocol is better for each communication needed, it is clear that

the TCP would be preferable, since it assures the correct sending of the packets, and

therefore no information will be lost on the process. However, when making a revision of

the technical information of the Leuze sensor, it is described that "the LPS

48

communicates with the process control via UDP/IP" (Leuze Electronic, 2014), hence

UDP protocol will be implemented for the communication between the LPS and the

computer. The UR presents no restrictions for the IP communication, so the TCP will be

implemented between the UR and the computer.

3. Error Codes for Socket Programming

When programming for socket communications, the WSAGetLastError() function returns

to the user the last error that occurred when executing a WSA function, such as the

ones previously explained. An extract of a couple of error codes is shown below.

Figure 13 Error codes for Socket Programming

A complete table of errors can be found at MSDN Microsoft (n.d.) and the interpretation

of the error depends on the code that is returned by the function. For example, if the

code received is 10035, referring to the error "WSAEWOULDBLOCK", it means that the

function used at that point of the program would try to remain expecting a reply, while

the socket itself is not capable of doing that, if it was configured as a non-blocking

49

socket. The example given for the recv() function on this error needs to be taken on

account, since this function will be used for the socket communications amply.

iii. Setting up the programming environment

On this section, different software for developing the project will be mentioned. This first

stage of the project is important, since it will constitute the base for developing the

whole project. It is also important to have in mind that from the DHBW University, it is

desirable to create portable software that will allow the use of the software developed in

this project with different Operative Systems, or easily make the conversion to a desired

OS. It is specially desired to have the ability to run software on Windows and Linux OS,

as they are the most common.

1. Programming language

The software to be developed will be programmed in C or C++ language, depending on

the needs of each program. Both languages are easily adapted for functioning on

Windows and Linux, as the program can define the OS at the beginning of the program,

and include the necessary libraries for its correct functioning.

2. Text editor

For writing the code, any text editor can be used, for example Eclipse or ConTEXT. For

this project, ConTEXT was selected for its friendly environment to the programmer;

however this does not affect in any way the program itself as it is only a tool for writing

and comprehending the code easier.

3. Builder and compiler

The program MSYS 2015 will be used for building the applications and programs

needed for the project. It is basically a supplement of MinGW, and has certain

advantages over cmd shell. It is "a collection of GNU utilities such as bash, make, gawk

and grep to allow building of applications and programs which depend on traditionally

UNIX tools to be present" (jonY, 2008). For this project, the most useful utility will be

"make". After installing MSYS, it is important to add it to the Path variable, for its proper

functioning.

50

4. Makefile

The makefile is a generic file created to give instructions to Msys on how to build a

program. There exist a wide variety of commands for these makefiles. A tutorial on how

to construct these files can be found at GNU (n.d.). The resultant makefiles will be also

attached at the appendix D of the document. This file basically indicates to Msys where

to find the libraries to link, what name to confer to the object and executable, and also

indicates the dependencies between files.

There are also tools that assist on creating these makefiles, for example Cmake. This

software will be discussed later, when working on the Image recognition phase of the

project.

At this point, the user has set up the environment for programming and has an

appropriate makefile for creating executable programs. On the next sections, a detailed

explanation of the process of programing the three main phases of the project will be

explained. These phases are:

 Programming the Light Section Sensor Communication

 Programming the UR Communication

 Programming the Vision Phase

iv. Programming Light Section Sensor Communication

On this section, it will be developed the steps taken for programming the communication

between the Leuze Light Section Sensor and the host computer. To achieve this

communication, the sensor must first be studied, its technical characteristics, the

protocol used by Leuze for the communication and the different possibilities that the

sensor offers to the user, to define the scope and flexibility that the sensor will offer for

the desired objectives.

Important information about the Light Section Sensor is summarized in the following

section.

51

1. Important safety indications

Before starting to work with the Leuze sensor, it is important to first understand the

safety measures and indications for handling the item.

On the next image it is explained the symbol used on the technical description provided

by Leuze, and also present on the sensor shield. It is important to respect the

indications. Failure to follow these instructions may lead to damage.

Figure 14 Laser warning

Approved purpose of the sensor

Common uses for the light section sensor are for example (but not restricted to):

 3D Measurement of moving objects: for example in a transporting band

 Gripper control: location of the gripper with real coordinates in working area

On the counter part, completely forbidden uses include:

 Rooms with explosive atmospheres

 Operation for medical purposes

For the project, the intended use is for both gripper control and 3D measurement. The

difference in regard to the given example is that the objects will not be moving, the

sensor itself will be moved by the robotic arm assistant, allowing the program to make a

3D scan instead of receiving only a 2D profile.

Leuze Electronic's safety regulations

It is important to read carefully and always follow the indications given by the sensor's

manufacturer. These indications should always be accessible by the user. The

indications are presented next:

52

Figure 15 Laser prevention instructions Part 1

 Figure 16 Laser prevention instructions Part 2

53

Figure 17 Laser prevention instructions Part 3

These indications where extracted directly from Leuze Electronic (2014) as they are not

to be modified, and should be followed exactly as they are given by the manufacturer.

2. Operation Principle of the Light section sensor

This section is intended to explain how the laser sensor works, the limits it may present

on given circumstances and possible solutions to these limits.

On the next image, it is possible to observe a scheme of the functioning of the sensor.

Figure 18 Leuze LPS functioning scheme

Image from Leuze Electronic (2014)

54

As it is shown, the laser beam is projected over a surface from the laser. The laser line

will be projected to the CMOS planar detector accordingly to a position relative to the

point of reflection of the beam on the surface. This allows mapping the gradient of the

laser beam proportional to the real 2D cut. The sensor then converts these values to a

certain position, both in X and Z coordinates, that correspond to the real life surface.

With one isolated lecture, a 2D profile will be obtained. When making continuous

lectures, and if there is a relative movement between the sensor and an object, it is

possible to create a 3D map of the readings.

There is one common problem that may present when making lectures, and it is called

"Occlusion".

As the scanning of a surface is based on the reflection phenomenon from the laser

beam to the CMOS detector, if the beam is obstructed partially or completely, it will not

reach the destination as it is expected. This can be better explained when observing

these two images:

Figure 19 Occlusion on Leuze LPS

55

There can be mainly two types of occlusion. On the first image it is possible to observe

a "Receiver occlusion" and on the second image a "Laser occlusion".

Receiver occlusion

As it can be observed on the first image, given certain characteristics of an object

present on the scan area, when the laser beam reaches a certain point of the object, it

may be obscured by the object itself when reflecting to the CMOS, creating a "shadow

area" that will never reach it, and hence it will not be mapped. This occurs specially

when there are very high features on an object. The red area on the image shows all

the area that will not be mapped by the sensor due to the upper right corner of the

object.

Laser occlusion

In the second image, the occlusion is a little bit different as in the first. In this case, it's

the laser beam that will never reach certain points of the object, as they are obscured by

the object itself. The laser beam will effectively be mapped by the sensor, but as it never

reaches the features hidden by the top right corner, they will never be shown on the

CMOS. This occurs because the laser beam is projected with an angle from the sensor.

Leuze Electronic offers a suggestion for avoiding this type of problems, depending on

both cases.

Possible measure for receiver occlusion

One option is to align the sensor (or the object) in a position that allows measuring all

the features from the object. Another is to use a second sensor that faces 180° opposite

on the Z axis. This allows the sensor to receive information from both sides, capturing

the information that was missing on the first sensor.

Possible measure for laser occlusion

For this type of occlusion, an easy solution is using multiple light section sensors. They

are programmed in cascade so they don't affect the others, and this way is possible to

access most features of the objects.

56

Measure adopted for this project

The DHBW University owns only one light section sensor, so the use of multiple

sensors is not an option for the moment. Also, the idea for the project is to receive

objects in random order and of different shapes, so aligning the objects or the sensor for

a specific object and position is not viable either.

The actual project will be developed knowing the existence of these phenomena;

however, a very feasible solution will be exposed in the Recommendations and Future

work's section.

Resolution of the sensor

The following graphic shows the relation between the distance sensor-object vs. the

resolution of the lecture in mm.

Figure 20 Distance sensor-object vs. Resolution of lecture

Image from Leuze Electronic (2014)

As it can be seen on the image, the resolution is higher when the sensor is closer to the

object. This means that it is easier to obtain more accurate images when closer to the

object. This will be further discussed in the Recommendations and Future work's

section for a possible variation of the application developed that might enhance the

performance of the scanning and the time needed for the whole process.

It is also important to know the ranges within the sensor can work properly. The Z range

goes between 200 to 800 mm, and the maximum length of the laser line is 600mm (it

decreases when Z distance decreases). Also, the response time of the sensor or for a

measurement is of 10ms.

57

3. Mounting and connection of the sensor

The correct mounting of the sensor is relevant for acquiring proper lectures of a surface.

On this section it will be mentioned the steps taken for achieving a proper mounting of

the sensor and how to connect it.

Alignment

On the next image, the alignment of the sensor will be explained.

Figure 21 Alignment of Leuze LPS

Image from Leuze Electronic (2014)

The sensor should be mounted as the first image shows, aligned on the Y axis, with the

measuring surface parallel to the XY plane of the sensor. The sensor comes with a

screen that shows the Z distance at the beginning, middle and end of the laser beam.

The three measures should be equal, indicating a correct alignment of the sensor.

Figure 22 Screen output for aligning

58

When aligning the sensor, the screen should show values as the ones in the image

before, equal for the Left (L), Middle (M) and Right (R) value. The numeric value

corresponds to the distance between the sensor and the measuring surface in mm. If

the sensor shows 000(mm) it means that the measuring surface is out of the measuring

range of the sensor.

Mounting base

For the first phase of the project, the objective is to make measures with the sensor, but

the UR will be programmed on a further phase of the development. For this reason, a

temporal mounting base will be assembled. This base will be stationary, and the relative

motion between the sensor and the objects will be produced by manually translating the

objects as if they were on a transporting band.

The resulting base was built with materials available at the storage room of the Robotics

and Automation laboratory from the DHBW. It will not be for permanent use, but only for

making tests to the sensor, and taking simple measurements. The picture below shows

the resulting base. On the second picture, it is shown an L shaped plate that was

machined to connect the sensor with the base structure. The sensor has holes for its

proper mounting with screws, so the plate was machined with this purpose.

Figure 23 Temporal mounting base for LPS

59

It is important to place the safety labels of the laser beam on a visible place,

and to mount the sensor in a position that the laser beam will not reflect

directly to the eyes of the operator.

Electrical connection

The following image shows the connectors of the Leuze sensor.

Figure 24 LPS connectors. Image from Leuze Electronic (2014)

For the purpose of this project, only the X1 and X2 terminals will be used. The X1

terminal is the Power supply connection and the X2 terminal is the Ethernet connection

between the sensor and the PC.

On this first phase of the project, the sensor will be powered by a source of +24V DC,

with a restricted current of 2 A.

4. Communication Protocol Structure

After studying the basics of the Leuze LPS sensor and how to set it up, it is time to

study the protocol that the sensor employs for the Ethernet communication. On this

section, an explanation of the protocol and the most common codes that will be needed

for the project will be explained.

Measure Mode and Command Mode

First of all, the sensor can work in two different modes:

 Measure mode:

On this mode the sensor can be configured to measure on "Free Running",

where it will be measuring periodically by a previous set frequency or on "Input

60

Triggered", where it can receive an external signal that will trigger a single

measure from the sensor.

 Command mode:

On command mode, the sensor will receive instructions and configuration

parameters from the Ethernet connection via the X2 connector and a UDP

communication.

For this project, the Command Mode was chosen as the best option, as it enables the

user to configure parameters while operating the sensor, and gives more flexibility for

programming the interface of the program.

Header and User Data

The protocol that the LPS employs is integrated by 2 parts, the Header and the User

Data. The Header is 30 bytes long, and it is distributes as showed next:

Header:

Byte 0-1 Byte 2-3 Byte 4-5 Byte 6-7 Byte 8-9

Start seq. 1 Start seq. 2 Fill Char Command No. Fill Char

Byte 10-11 Byte 12-13 Byte 14-15 Byte 16-17 Byte 18-19

Packet No. Fill Char Transaction

No.

Status Encoder H

Byte 20-21 Byte 22-23 Byte 24-25 Byte 26-27 Byte 28-29

Encoder L Fill Char Scan No. Type No. of User

Words

Table 4 LPS Header

The User Data's size depends on the information sent by the sensor to the PC.

61

Start Seq. 1 & 2

Start sequence 1 and 2 have both a value of 0xFFFF. They are the indicators of a new

message.

Fill Characters

Every Fill Character has a value of 0x0000, and they are used to separate the different

information sent or received on the Header.

Command Number

These 2 bytes specify the command sent from the PC to the sensor, as well as the

response from the sensor to the PC. The different values that can be on this space will

be discussed further.

Packet Number

It’s a value used by the manufacturer.

Transaction number

In Measure mode, the value of Transaction No. will always be 0x0000. However, for

Command mode, the value will be the same value of the Command Number that the

sensor is answering for.

For example: if the command sent by the PC is 0x434E (Connect to Sensor), when the

sensor acknowledges with a response, the Transaction number will have the value of

0x434E.

62

Status

This word indicates the status of the sensor. A table with the different values is

presented next:

Table 5 Status interpretation of LPS

Table from Leuze Electronic (2014)

Encoder High & Low

The encoder is used for sensors with encoder input: however, it will not be implemented

on this project.

Scan Number

This value indicates the number of single consecutive measures that have been

processed. The X and Z values from a single lecture are identified with the same Scan

number.

63

Type

Its value is 0x0010, and indicates that it handles 16 bit data.

Number of user Data

It defines how many words of User Data are to be received on the actual packet. The

values can be 0, 1, 2, 3, 376 or 480.

User Data

When measuring, 376 values will be returned to the PC with X or Z values. The

resolution of the lectures is 1/10 mm. The X values are signed values in two's

complement that go from 0 to 65535. Values between 0 (0x0000) and 32767 (0x7FFF)

represent positive values, and values between 32768 (0x8000) and 65535 (0xFFFF) are

negative values, where 65535 represents -1.

Commands

The Leuze LPS has a wide list of commands for configuration and measuring of the

sensor. Some of the most important commands are listed below and their use will be

explained afterwards. The Acknowledge response is also listed, which would be the

response from the sensor to the PC. If the command is acknowledged, the response is

'Ack'=0x4141 and if the command is not processed the response is 'Not Ack'=0x414E

In measure mode

Action Command Ack Not Ack

Connect to sensor 0x434E 0x4141 0x414E

Disconnect from

sensor

0x4443 0x4141 0x414E

Enter command mode 0x3132 0x4141 0x414E

Exit command mode 0x3133 0x4141 0x414E

All other commands - - 0x414E

Table 6 Commands in measure mode

64

From this commands, the execution should be like this:

Figure 25 LPS general algorithm

The measuring process is shown separately because is the complete algorithm that will

be elaborated for measuring objects, sending data to the PC and storing the data with

the proper format. It will be detailed later.

In command mode

The complete list of commands when operating in Command Mode can be found in

Leuze Electronic (2014). A list of the commands that will be used for the purposes of

this project are listed next; however, for future extent of this project, it is important to

make a revision of the other available commands, to understand the extent and

possibilities offered by the LPS sensor.

Action Command Ack Not Ack

Set laser Gate 0x0001 0x4141 0x414E

Trigger single

measurement

0x0003 0x4141 0x414E

Get X coordinates 0x0011 0x0012 -

Get Z coordinates 0x0013 0x0014 -

Get ZX coordinates 0x005F 0x0060 -

Table 7 Commands in command mode

65

Set laser Gate

This command is used to toggle the state of the laser. When the laser is ON it will

change its state to OFF and vice versa. It is important to consider the use of this

command if the sensor is going to be at some point of the process looking to a direction

that is not the measuring surface, to avoid injury by looking at the laser beam.

Trigger single measurement

The trigger command executes one single measurement at the moment the command

is received. It stores both X and Z values (376 values for each coordinate) in the sensor

buffer.

Get X Coordinates

This command is a request from the PC to the LPS to send a packet with the X

coordinates acquired in the previous measurement. 376 signed Values will be sent to

the PC, each within a range between 0 and 32767 for the positive values, and between

32768 and 65535 for the negative values. The packet is transmitted to the PC with a

command number of 0x5858.

Get Z Coordinates

This command is a request from the PC to the LPS to send a packet with the Z

coordinates acquired in the previous measurement. The Z coordinates are 376

unsigned values the can have a value in a range between 0 and 8100. The packet is

transmitted to the PC with a command number of 0x5A5A

Both X and Z coordinates will be transmitted with the same Scan Number when they

belong to the same lecture.

Get ZX Coordinates

This command transmit both X and Z coordinates to the PC; however, this command is

only available for the LPS 36HI, and for the project the sensor available is the LPS 36.

Hence, this command will not be implemented in the project.

66

Set Single Inspection Task Parameter

This command, with the command number 0x006D can configure a series of

parameters of the sensor like:

 Name of inspection task: name used for the actual measurement (Parameter ID:

0x0BB9).

 Exposure Duration of the laser: configuration of laser exposure in µs depending

on the brightness of the objects to be measured. A normal exposure is of 261 µs.

For bright objects 97 µs are recommended, for dark objects a mayor exposure of

655 µs is advised and for normal to bright objects it is recommended an

exposure of 328 µs approximately (Parameter ID: 0x0BBD).

 Detection range of the LPS: the X coordinates and Z coordinates detection

ranges can be separately modified to ignore values out of the range of interest

(Parameter ID: 0x0BBF for X coordinates and Parameter ID: 0x0BC0 for Z

coordinates).

These task parameters are configured using 3 words from the User Data. The first word

is the parameter ID to be modified, and the next two words define certain values

depending on the parameter to be modified.

5. Programming the LPS communication

The programming of the LPS communication requires order and simplicity. The protocol to be

used (UDP) has to follow specific rules, which can be found on several tutorials. Some useful

tutorials and examples can be found in Silver Moon (2011) and Silver Moon (2012).

Header file

Most of the commands mentioned previously are the ones that will be used in the

program. Knowing all these commands, a header file with the name "leuze-lps.h" was

created to define a name for each command, and make the interaction with the

programmer friendlier. A sample of the header is shown below:

67

Figure 26 Sample of header file

Also, a Header structure with the format and size previously explained was defined.

After having defined all the variables needed for commands, the programming of the

sensor communication was developed. A file with the name "sensor_client.c" was

elaborated. Its different sections will be explained next:

Libraries inclusion

On the first section of the code, all libraries included are listed. A conditioning evaluation

of the OS of the system defines whether to include libraries for Windows or for Linux,

and finally those libraries needed for both. On the next image is shown how the program

includes the needed libraries depending on the OS making the program portable.

68

Figure 27 Included libraries

IP Configuration

After including the corresponding libraries, the algorithm for UDP communication was

developed for connecting the sensor with the PC. An IP address of 192.168.28.50 was

defined for the sensor with a Port Number on 9008. The port for the PC was defined as

5634. The communication between both hosts will happen in these two ports. The PC's

IP was defined as 192.168.28.51 as it needs to be on the same subnet. Both hosts use

a subnet mask of 255.255.255.0.

Use of Wireshark to read Ethernet data

After programming and debugging the UDP communication and configuring the proper

parameters for the sockets, the communication was finally established. To ensure that

the correct commands where send to the sensor, a Sniffer program was installed on the

PC. With the use of the free software Wireshark, the data sent and received by the

Ethernet connection of the PC was monitored. After a series of tests an correction of the

order of the bytes when sending them to the sensor because they were in Big Endian

format and were supposed to be in Little Endian format (Little byte first), the following

data was captured by Wireshark:

69

Word 1 2 3 4 5 6 7 8 9 10

Sent FFFF FFFF 0000 4E43 0000 0000 0000 0000 0000 0000

Response FFFF FFFF 0000 4141 0000 0000 0000 4E43 1001 0000

Word 11 12 13 14 15

Sent 0000 0000 0000 0000 0000

Response 0000 0000 0000 1000 0000

Table 8 Sent and received message from LPS

The command number (Word No. 4) of the message sent is 0x434E (4e4E43 in Little

Endian format) which represents the command "Connect to Sensor". On the response,

the Transaction Number is 0x434E, as it is the response from the received command.

The Command number of the response is 0x4141, which acknowledges that the

connection was successfully established.

First successful lecture

After implementing a simple lecture with the sensor and importing the X and Z

coordinates to a file, a graphic was created using a simple data tool, in this case

Microsoft Excel.

From the scene shown below, a profile was obtained.

Figure 28 First scanning scene

70

From these objects, the following profile of a single lecture was obtained:

Figure 29 Obtained profile. Signal z in 1/0 mm. Signal x in 1/10 mm.

The units on the graphic are in 1/10mm units and represent the X and Z distances

between the sensor and the objects on the table. The X and Z axis don't have the same

scale, which makes the image appear distorted. It is also observable the phenomenon

of occlusion present on the lecture, that was previously explained.

Improvement of the code for 3D measuring

After reading one single profile and storing it to a file, it is time to simulate a continuous

lecture with the sensor, with relative movement between the sensor and the objects on

the measuring surface. As the sensor at this point doesn't have the capability to move,

the measuring surface will be disposed as showed on the next image:

Figure 30 Measuring manual surface with millimetric bottom for simulating movement

71

As it can be observed on the image, a millimetric sheet was fixed to the surface of the

table. Over this sheet, another millimetric sheet was placed (not fixed). The objects will

be placed over the second sheet, allowing it to be manually moved every one millimeter

and making one lecture from the sensor on each position.

The code was modified to request permission to the user to make a new scan every

time, or to terminate the lectures. Every time a scan is made, the values are stored at

the end of a *.txt file with a name that the user indicated at the beginning of the

program. The final result is a file with multiple lectures of the sensor. The Y coordinate,

which is not provided by the sensor, was pseudo-assigned as the number of lecture,

starting from lecture number 1, until the user decided to terminate the program at

lecture number N.

Graphical interpretation of data

For interpreting the data acquired, more specialized software than Microsoft Excel is

needed. GNUPlot and MeshLab are both free software that allow visualizing 3D data.

Both will be tested and analyzed to choose the optimum program. This will be used only

for easily visualizing the obtained data after a complete lecture, and does not affect the

results of the project. An idea about the data visualizing will be proposed on the

Recommendations and Future work's section.

GNUPlot

The GNUPlot software is free software that is compatible with most common OS. It is

used for graphing and visualizing functions and data. It is controlled by console, which

allows the user to modify parameters and modify information of the input data. After

investigating on the different commands and possible the configurations that the

program uses, two types of images where obtained: Meshed images and Dots images.

The Meshed image creates a solid surface with the input 3D points that where

introduced, and allows the user to visualize the result as a whole object as showed next:

72

Figure 31 Mesh of obtained image

When rotating the graph, this was observed:

Figure 32 Mesh obtained, second view

As it can be appreciated, the figures present some "holes" on the surface. This occurs

because of the previously mentioned occlusion phenomenon, which doesn't allow

scanning completely the figures on the measuring surface.

73

The Dots image presents the same results, but it is a more exact representation of the

results, as it shows the data in a 3D space as it is on the input data. The image below

shows a Dots image obtained in another test:

Figure 33 Dots image with GNU Plot

The results obtained with GNUPlot are very clear, but require a certain amount of

commands to obtain images like the ones presented. The commands depend on the

size of the image, the quantity of points from the input data and the output desired by

the user.

MeshLab

MeshLab is an open source tool that allows creating 3D meshes with an input of points.

It can also create Dots Images using the *.ply format. It requires a header on the file

with information of the type of data (float, integer, etc.) and the quantity of points on the

input. Tutorials on how to create *.ply files can be found at FSU PLY Files (n.d.),

Paulbourke (n.d.) and FSU PLC Files (n.d.). Also an example on creating a mesh from

point clouds can be found at Tenney (2012).

74

After creating a proper header, the following result was obtained:

Figure 34 Dots image with MeshLab

MeshLab allows the user to obtain easy visualization of 3D data, and requires a small

amount of parameters to do so. For this, the rest of scans will be analyzed with this

software.

An example of the header for a *.ply file is as follows:

Figure 35 Ply header

The variable "vertex" indicates the total number of points with X, Y and Z coordinates.

This number is obtained from the number of lectures that were made when scanning the

surface. As every lecture returns 376 pairs of X and Z coordinates, the vertex can be

calculated as:

Vertex= 376 * No. of lectures

75

Measuring process

The final measuring process flowchart can be seen in the next image:

Figure 36 LPS measuring flowchart

An example of a file created with the Leuze program can be found on the Apendix F.

The program for measuring will be edited when the UR phase is working, as the user

will have no need to indicate to make a new measure. Instead, the UR will send a

command to the Leuze program requesting a new measure when it has reached a new

position. The details of these will be explained in the next section.

76

v. Programming the Object Detection and Recognition Phase

Originally, the UR phase was planned to be developed before the Vision Phase.

However, the Robotics and Automation Laboratory has certain restrictions when

working on the Laboratory. One of these restrictions is that any user has to be

accompanied by another professor or operator when working on the Laboratory. For this

reason, it was decided to work first on the Vision Program with the data already

acquired from the previous phase. It will most probably need adjustments when

integrating the three phases, but it will allow a continuous work on the project.

1. Selecting the programming tool

Until this point, the programming has been developed in C language, assisted with

MSYS for building the executables. For the Vision phase, there needs to be chosen a

Vision specialized software that has the capacity for achieving the desired objectives of

the project. Different software, such as MatLab, Octave and OpenCV have the utilities

needed for complex Image Analysis. There are other libraries that can be used in C that

will open more options for developing the project, as is Point Cloud Library (PCL).

One of the desired objectives is to have a low cost system developed. The use of open

source software when possible would decrease enormously the cost on software of the

overall project. With this in mind, MatLab would not be a desired software to use.

Octave is open source, and has a wide variety of tools. OpenCV is an image and video

dedicated library, and it is open source. There can be found plenty examples and

tutorials on literature and on the web, that can improve the programming. For this

reason, it was decided to use OpenCV for the Vision development of the project.

PCL is a powerful library; it allows the user to work with 2D and 3D point clouds in

space, and carry out a series of algorithms such as object detection in 3D, Point Cloud

Stitching (Fitting two or more Point clouds in one final mesh), and others. For this first

project, it will not be implemented; however, its possibilities will be discussed on the

Recommendations and Future work's section.

2. Setting up the programming environment

The setup of the environment for using OpenCV with C or C++ is a task that must be done

carefully. Otherwise, the final result may not function properly or may even cause the installation

to break. The installation depends on the OS, the version of the OpenCV to be used and the

complements to be used. There are certain complements that can be installed together to

expand the possibilities of use with the library. An example of a complement named Qt will be

described in the Recommendations and Future work's section.

Different tutorials and forums that discuss the subject can be found for installing

OpenCV in the PC and building it properly at M. Asad (2011), OoenCV.org(n.d.),

Stackoverflow (n.d.), Sahid Hasan (n.d.), and others. One suggestion found is to use

77

Cmake for building OpenCV. Cmake is an open source tool used to control the software

compilation process. It is basically a crossed-platform build environment that creates the

necessary Makefiles for later use at any compiler of choice.

The steps for building OpenCV where followed:

1. Set the path variable

2. Select the location where the source code is.

3. Select an location where to build the binaries

4. Select MSYS Makefiles as the generator of the project

5. Generate with Cmake

6. Specify the location of the Compilers for C and C++.

7. After the red screen shown in the next picture, select the parameters wanted for

the configuration and generate.

8. Close Cmake and on the Command Prompt go to the build folder and enter

Make. After it is done, enter Make Install.

Figure 37 Cmake configuration for building OpenCV

78

As it can be seen, the building process is not complicated, but it requires of caution. The

main problem is to find a process that fits the needs of the user (OS, OpenCV version,

compiler, building tool, and others).

Once the programming environment is ready, it is time to plan a solution to be

developed.

3. Vision solution proposal

The advantage when working with Point Clouds is that the data is managed in space as

it is obtained. Every point (xi, yi, zi) will have a specific coordinate with no possibility of

occupying the same space than another point. Libraries like PCL have developed

algorithms that handle these data, and allow to extract information and to transform the

data (transforming the coordinate system or stitching with another point cloud for

example). However, OpenCV cannot handle point clouds, which requires a different

approach for a solution.

At this point of the project, there are files created with a list of points with x, y and z

coordinates. A proposition for working with these data is to make a transformation from

a 3D point cloud to a 2D grayscale image. The intensity of the gray represents in a 2D

image the Z value of the 3D image, while the X and Y coordinates remain the same.

4. Developing the solution

Some adjustments need to be made for the transformation proposed, because the

sensor range of height is from 0 to 8100 in 1/10 mm, and a grayscale image is usually

within a range from 0 to 255.

For a better understanding of the transformation, the previously obtained profile will be

used.

79

Figure 38 Explanation of transformation to grayscale image

The Z coordinates are 0 when closer to the sensor, and can go up to 8100. However, if

a linear transformation was done from range [0 … 8100] to a range [0 … 255] the

contrast of the image would be very bad, as all the figures would be concentrated in a

small range of the possible values. The peak figure on the scan has a gradient of

approximately 100mm out of the 810mm that can be represented. When converting the

bottom value of 4900 and the top value of 3900 to grayscale, the following values are

obtained:

 Bottom value=154

 Top value=123

This means that any other figure present on the measuring surface and smaller than the

top figure will be within this range, and the rest will not be used. For this, it was defined

that the transformation will be calculated between a range that goes from the highest

level (the distance between the sensor and the measuring surface) and an established

maximum point a little higher than the peak point, in this example could be 1500 in 1/10

mm above the measuring surface.

It is important to note that the distance between the sensor and the measuring surface

is variable and should be set depending on the working area and the coordinates from

where the sensor will be placed , and that the that the maximum point depends on the

figures that will be handled. For the purpose of this project, no figures above 1500 in

80

1/10 of mm will be handled. The list of figures to be used can be found on the Appendix

C.

Since the previous program saves a file with the data, this program will part from that

point. It will be a separated program that opens the requested file and loads the data.

The following steps are taken:

Figure 39 Opening image from file

The resulting empty image is a 3 channel image that will store the file values as shown:

Figure 40 3-Channel XYZ image

The above image uses an analogy of the RGB format of images that is widely use on

color images because they also have 3 Channels, one for each color (Red, Green and

Blue). However, it does not represent a color image, as the values of each pixel

represent the numeric value of each coordinate. To locate a point in space one would

need to take the Ri, Gi and Bi values, and then represent them as an (x,y,z) coordinate.

To avoid confusion, instead of referring the image as RGB, it will be referred as XYZ

channels.

81

If the Z channel is output as a grayscale image, the above result is printed:

Figure 41 First grayscale image

As expected, the image is a grayscale representation of the 3D image that represents

the height with a different intensity of gray. The darkest zones represent what is farther

from the sensor, and the brightest zones represent what is closer to the LPS.

The image is a representation of the previously showed image:

Figure 42 Original image in dots

From the grayscale image, there are two conclusions to make:

 The range transformation works properly for this image

 The occlusion zones are clearly observable in color black (They are represented

as a value of 0).

The next step is to program a recognition algorithm to locate and identify objects in the

image.

5. Edge detection algorithm

OpenCV offers a wide variety of functions that can help to identify, locate, classify and

characterize objects on images. Usually, for doing so, the images need a conditioning

step, that enhances the image for the desired purposes. The process usually needs

feedback: enhance image, process and observe results. If results are not satisfactory,

82

enhance image, process again and observe results until the final result is satisfactory.

All functions from OpenCV can be found at OpenCV Documentation(n.d.).

First test will be made for finding contours on the image. After doing some research on

the possible functions to obtain borders, the Canny function was implemented, because

it gives equal priority for both X and Y directions. Other functions for finding borders are

for example: Gaussian filter, Sobel filter, Scharr filter. The canny edge detector uses the

Gaussian filter to filter out noise from the image, and then applies a similar to Sobel filter

to find the gradients on the image. It is also known as Optimal Detector.

The canny edge detector returned the following result:

Figure 43 First edge detection

As it can be observed, the edges were found, together with some noise on the resulting

image. The threshold parameters on the Canny function allow to make a more or less

sensible edge detector depending on the needs of the user. When configuring the

thresholds with different values, the following results were obtained:

Figure 44 Canny with low threshold of 10

Figure 45 Canny with low threshold of 15

83

Figure 46 Canny with low threshold of 20

As it can be observed, when augmenting the threshold values, the noise is reduced;

however, not completely eliminated. The above images are for a low threshold of 10, 15

and 20 respectively, and a high threshold of three times the low threshold.

Observing the resulting image, it was noticed that the image shows a perspective from

the sensor, and it is not a flat Top View from the sensor. This is observed because of

the section of wall of the cylinder that should not appear if it was a perspective-less Top

View image. This means that all the values assigned for the wall of the cylinder should

be projected to a single X and Y position, correcting the image to a proportional real life

image.

For better results, new images need to be created, so it was decided to start the next

phase of UR Programming, to enhance the process of data acquisition. The perspective

problem will be continued on the integrating phase, after the UR Communication is

programmed.

vi. Programming UR Communication

On this section, the process of programming the Universal Robot UR5 will be detailed.

But before starting to program, the UR5 needs to be studied, its safety measures

acknowledged and its commands understood.

1. Getting to know the UR5

The UR5 is a universal robot that has 6 joints; for this robot, this means 6 degrees of

freedom. The first 3 joints of the robot (A, B and C) form the body of the robot, and the

last 3 form the wrist (D, E and F). The robot is as shown below:

84

Figure 47 UR5 Joints

At the end of the wrist, different tools can be adapted depending on the application that

the robot will be developing. The tool has a Tool Center Point (TCP) that will be the

coordinate system of the tool. Each joint has its own coordinate system and with a

combination of kinematics and electronics, the robot is able to move the TCP to a

specific coordinate in space with a desired orientation. The only restrictions of

movement of the tool are directly above and below the robot, and outside the

workspace of the robot.

The UR5 has a reach of 850mm from the center of the base, which can be observed on

the next image:

Figure 48 UR5 Workspace

The workspace is a sphere of approximately 170cm of diameter, excluding a cylinder

volume that is formed above and under the robot base.

85

This workspace should be considered for defining the space where the robot

will be working, and should also be considered as a security restricted area

where no operator should remain, regardless of the programmed

movements of the robot. An error on the programming or operation of the UR could

severely injure a person. Also, the workspace is defined for a vertical floor mounting.

The proper adjustments should be made when using a different mounting (Tilted

mounting or roof mounting).

2. Safety of the UR

The UR5 has a safety interface integrated by two parts: the emergency stop and the

safeguard stop. A summary of their differences is provided by Universal Robots (2012)

and it's showed next:

Table 9 Safety interface

The Safeguard Stop can be activated by the UR when the motors of the joints are

exceeded on a specific movement or torque, or when a risk of collision is detected. The

Emergency Stop can be activated manually by the operator with the Teach Pendant's

Emergency Stop button showed in the next image (The red button):

Figure 49 UR Teach Pendant and Emergency button

!

86

If it is required to move the robot joints on an emergency, the operator can press the

back button on the teach pendant, which will activate a special mode of the robot. When

presses, it releases the breaks on the joints and allows the user to manually move the

joints.

It is highly important to train every operator on the safety use of the UR and how to

proceed on an emergency.

3. Kinematics of the project

Kinematics is a branch of mechanics that involves movement of points, bodies and

coordinate systems. It is widely used in the motion of robotic arms, as every joint works

on its own coordinate system. To calculate the position of the TCP at a certain moment,

a kinematic calculation from the base and all the way to the last joint should be

performed.

For the project, not only the UR's coordinate systems are involved, but also the

measuring surface's coordinates, the LPS's coordinates and the objects to be

manipulated coordinates. Hence, a good managing of kinematics is required. The UR

kinematics are performed by the UR's controller, and can be obtained with different

functions that the UR's software provide.

Rotations can be calculated with the functions:

Figure 50 Rotations' matrix

When using the Denavit-Hartenberg Notation, a rotation and translation from one

coordinate system to another would be as follows (Sina, 2009):

Figure 51 Rotation and Translation matrix

87

Where:

 θi is the angle between axes xi-1 and xi;

 αi is the angle between axes zi-1 and zi;

 di is the distance between the origin of the coordinate system and the common

perpendicular of the next coordinate system;

 ai is the distance between the two feet of the common perpendicular;

These values can be observed on the next image:

Figure 52 Joints parameters

The UR's controller realizes these calculations, and any external transformation should

be made by the program.

4. Initialization of the UR5

When turning ON the UR5, a series of steps have to be taken, to initialize the robot, as

the sensors on each joint need to be calibrated. When turning on the teach pendant, the

following screen shows up:

88

Figure 53 UR initialization screen

On this screen, the steps to follow are:

 Power the Robot ON: The motors are powered, and the brakes released.

 Press Auto to calibrate the Joints: When pressing auto (For the robot or

separately for each joint) the joints will move to some directions to calibrate and

align the encoders of each joint. The user does not have control over these

movements direction.

 Once aligned, the yellow indicators will turn green, and OK can be selected.

5. The tool

For this UR5, students from the area of Mechanics previously elaborated a Pneumatic

gripper to be used with the robot. The gripper is the one showed on the next image:

Figure 54 UR5 actual Gripper

89

As it can be observed, it uses a pneumatic Festo valve of double actuation, so the

aperture and closure of the gripper can be controlled.

6. A first approach to handle LPS sensor

As it is wanted to continue with the Image recognition program, a first UR's program will

be developed that enables the user to move the sensor with steps and control it

manually. A further Ethernet communication will be developed in the Integration phase

to make the process automatic.

To program the UR, the most common functions that the UR's software offers should be

studied:

 MoveJ(), MoveP(), MoveL(): commands for moving the robot with certain

characteristics, linear movement or fast route.

 pose_trans():Calculates the coordinate transformation between one coordinate

system and another.

 pose_inv(): Calculates the inverse transformation between a point and the base

coordinate system.

 get_actual_tcp_pose(): return the value of the actual TCP position from the base

coordinate.

 Halt: Stops the program execution.

 Wait: Waits a determined time in seconds to continue executing the program.

 socket_open(): Opens a socket with specified port and the IP from the server

(PC).

 Socket_send_string(): Send a string to the server.

There are other commands available; however, this are the ones the will be needed for

the program purposes.

7. Define a plane

The UR's software allows defining features to make the programming easy. The user

can define Points in space, Lines, and Planes. For this project, a plane is needed, which

will be the table or measuring surface.

90

Figure 55 UR5 Features screen

The previous image shows the interface for defining a plane. Three points need to be

defined, which can be taught to the UR by used the back button of the teach pendant, to

enter Teach Mode. For this program, the points where selected in this order:

Point 1: The origin of the working plane.

Point 2: A point on the direction of the movement desired of the scan.

Point 3: Any point on the surface of the table.

91

The next image explains the disposition of points on the plane created:

Figure 56 Defining the measuring plane

The coordinate system of the table will be located at Point 1.

8. Programming the robot

The next algorithm was developed to control the sensor:

Figure 57 UR basic algorithm for a first scan

The algorithm is very simple, and allows the user to control with steps the movement of

the sensor with a desired offset. In this case and offset of 1mm was established, to take

images every 1mm and later build the 3D image.

92

The detail on this programming is that the robot moves in Base coordinates, so a

transformation has to be done to move the robot linearly from the Table coordinates.

9. Results obtained

The next image was obtained on the first lecture:

Figure 58 First scan obtained with UR

Using MeshLab tool, the same image can be observed in 3D:

Figure 59 First scan obtained wit UR in MeshLab

10. Problem presented

When the sensor was installed on the UR, it was handled with no problem and the scan

previously showed was obtained. However, after turning OFF and ON the UR, the

Initialization of the Joints was done as it is normally done. The movements of the UR on

this phase are not controlled by the user, and the cables were pulled off the sensor, as

they were attached to the body of the robot. This resulted on the connectors of the

93

sensor un-wielded from the sensor, and the sensor needed to be sent for repair back to

Leuze Company.

The damage was documented on the following images:

Figure 60 Damage to LPS's connectors

The process of repairing took from February 25, 2016 (Day of damage) to March 18,

2016, when the sensor was received back at the DHBW University. The receipt of repair

can be found on the Appendix G.

11. Assessment of damage

The problem occurred because the cables that were previously installed on the UR for

communication with the Leuze sensor were too tight. This caused that a different

unexpected movement of the UR pulled the cables together with the connector, and tore

them from the sensor. The integration of Leuze communication with the UR will be

continued when the sensor is received back. For now, the Recognition program will be

improved with the image that was acquired. Future enhancements will be made when

more images can be obtained.

At this point, the UR algorithm is working properly, and it is time to continue improving

the Image detection system. Also, working on parallel, the UR program will be modified

to work by Ethernet and communicate with the PC. These next objectives will be

explained on the Integration Phase.

94

vii. Integration phase

On the previous section, the following image was obtained:

Figure 61 Image obtained with UR in grayscale

1. Flood fill

As it can be observed, the bottom of the image is not clearly distinguishable from some

points of the objects. A flood fill algorithm was applied to identify the measuring surface,

and separate it from the objects of interest. The next two images were obtained with

different levels of flood:

Figure 62 Scan with flood fill at different values

The second image uses a flood level of 15mm. It shows less noise on the image than

the first; however, it is also appreciable the deformation of certain images, as is the

case of the left bottom image, that corresponds to a ramp (tilted triangular prism). To

avoid loss of information, the flood will be applied with a very low value.

Also, the deformation for perspective is very noticeable on the top right image, which

corresponds to a cylinder. A solution for the perspective most be developed.

2. Perspective correction

To correct the perspective problem, a new image needs to be created, that has a

different size. The size of the new image should be proportional to the area scanned,

and then the Z values should be assigned to the proper X and Y coordinate.

95

To calculate the size of the new image, the old image needs to be evaluated, to find the

maximum and minimum values for X and Y, and create a proportional but translated to

the origin image. This may be easily to understand on the following image.

The image obtained is located as shown on a XY grid:

Figure 63 Original location of image in grid

And the new image should look like the following:

Figure 64 New location of image in grid

The image is translated to the origin, because images don't have negative pixels. Also,

a rescaling of 10 was made. Originally, the units were 1/10 of mm; now, each pixel will

represent 1 mm in real life. Multiple values of Z that correspond to the same X and Y

coordinates will be overlapped, leaving the highest value of all, and eliminating the

vertical values of the walls.

96

After all this transformations, the following image was obtained:

Figure 65 First proportional image obtained

As it can be appreciated, the perspective problem is not present on the image anymore,

and the image is completely proportional to the real life objects. Applying the flood fill

will obtain a better result as shown next:

Figure 66 First proportional image obtained (with flood fill)

There is still some noise present on the image that will be treated later.

97

Applying a canny edge detector, the following results were obtained:

Figure 67 Image with Canny with two different values

The first image was a Canny applied to the obtained proportional image as it was. The

second was obtained when applying the Canny algorithm after a Blur that was applied

to the image. As it can be seen, it reduces the noise considerably. A blur is a mask that

is applied to an image that softens the image by making an average on a pixel with the

neighbors' pixel values. It is useful for reducing doted noise and to soften borders.

After applying the canny edge detector, a Contour detection algorithm has to be applied.

This function evaluates the edges obtained and classifies them as independent

contours when they are connected to each other or as separate contours if they do not

belong to the same contour. The following image was the first attempt to identify

contours:

Figure 68 First Contour detector

98

Every color on the image represents a different independent contour. On this image, 85

contours were found. The objective is to reduce the amount of contours until every

contour represents only the objects present on the image. To reduce this noise, a

certain amount of filters has to be applied. The most common algorithms to reduce

noise are blur, dilate and erode.

3. Filter algorithms

Blur: as explained before, it produces an average of the values per pixel with its

neighbors, softening the image.

Example:

Figure 69 Blur example

Dilate: it increases the dark areas (or reduces the white areas) by applying a structuring

element to the borders.

Example:

Figure 70 Dilate example

99

Erode: it increases the white areas (or reduces the dark areas) by applying a structuring

element to the borders.

Example:

Figure 71 Erode example

It is not only important to understand what each filter algorithm does, but also in which

order to apply them, as it will generate different results. The working image presents

holes inside the objects that can be filtered applying dilation, but it also presents white

noise on the outside of the objects that can be reduce applying erosion.

Different combinations of filters were applied, to obtain the best results.

Combination applied Image obtained

Dilate-erode

Dilate-erode-erode-dilate

100

Dilate-erode-erode-dilate-blur

Dilate-erode-erode-dilate-blur-fill

Table 10 Different results obtained with filters

As it can be seen, very different results can be obtained when changing the combination

of filters. The last image is obtained from the previous one, but represents the contours

with a fill parameter. With this, the different objects where finally separated as different

contours, as it ignores the contours inside other contours.

4. Poly Approximation

The Poly_approx() function was applied to improve the shape of the rectangle shaped

objects. It calculates the best fit of a rectangle that contains the object. The following

result was obtained:

101

Figure 72 Approximation with Poly Approx

The new profiles found have a better rectangle shape; however; some of the resulting

contours seem to be rotated a little, which is not desirable, since the final objective is to

locate the objects with their X and Y coordinates and rotation. With this information, the

UR should be able to handle the objects. It was decided not to use the Poly

Approximation algorithm.

5. Best fit (circle and rectangle)

An algorithm for the best circle fit and best rectangle fit was applied to all the contours.

The idea with this is to find the best fit, compare the areas of the obtained figures with

the area of the original figures, and identify the shape of the objects.

102

The following image was obtained:

Figure 73 Best fit circles and rectangles

On the previous image, the top right figure is a cylinder (which was trimmed when

measuring). The best circle fit shows that it located a circle where the figure was

originally. On this image, the only circle-profile object was this cylinder, and it is trimmed

because it was out of the sensors range when the scan was made. New images are

necessary at this point to continue improving the classification algorithm.

6. Improvement of UR program

When the sensor was finally received back at the university, the work for integrating the

phases was continued. The UR program was modified to establish a TCP connection

and connect with the PC.

103

A sequence was defined for the UR and the LPS sensor. The algorithm was as showed

next:

Figure 74 LPS and UR algorithm. Part 1

On this first part of the algorithm, the communication between LPS and UR are

established. Once the connection is established, the LPS program requests to make a

new scan, and the UR starts the sequence for this, that can be shown on the next part

of the algorithm:

Figure 75 LPS and UR algorithm. Part 2

The algorithm might seem confusing at first sight. This is because two different

programs are running simultaneously. But it's actually pretty simple to understand the

flow of the programs. A brief verbal explanation is presented next:

104

Once the UR starts the scanning process, it moves the sensor to the starting point.

When it reaches the desired position it sends a request for scanning to the LPS. The

LPS was waiting for instructions, and once it receives the command it makes the new

scan. Also, the UR sent the actual TCP coordinates, which will be used to locate the

objects on the table. A delay is necessary in this case, because the sensor needs time

to perform the scan before the UR starts moving again. Once the delay is over, the

sensor requests the status of the scan. A total scanning distance was previously defined

to the UR that the user defines at the beginning of the configuration. If the total distance

is already scanned, the program is terminated. If it is not finished, the UR moves to the

new position with the offset defined (until now is 1mm) and requests a new scan.

7. Speed improvement

The complete algorithm was taking about 2 minutes to perform a complete scan for a

length of 60cm (600 lectures). To improve the speed, an offset of 2mm was tested. This

means that the sensor will make a scan every 2mm. The image obtained is as follows:

Figure 76 Scan 1 every 2mm

105

Figure 77 Scan 2 every 2mm

The first and third images are the images obtained every 2mm. The second and last

images are a close up of the originals. As expected, the objects are now made by lines

instead of been solid objects. This will affect the previous established filtering stage but

with some adjustments it can be corrected.

After a Canny filter, followed by a dilate-erode stage, the following images were

obtained:

Figure 78 Every 2mm image filtered

106

The images are now solid images, and the borders were changed from the first to the

second image shown below:

Figure 79 Canny and edge detector for every 2mm image 1

Figure 80 Canny and edge detector for every 2mm image 2

Note: More than one image is used to improve the algorithm as the algorithms may

behave different on different images.

107

8. Best fit for rectangles, circles and triangles

As the objects that are handled have mainly rectangle, circle and triangle profiles, and

algorithm for detecting the best fit on this figures is developed. The following results are

obtained:

Figure 81 Best fit for rectangles, circles and triangles

On every object has now been drawn the best fit for circle, triangle and rectangle. This

will be used to characterize each object.

9. Comparing areas

The idea of finding the best for circle, rectangle and circle is to compare the area of all

these best fit figures, and compare it with the area of the figure. All the areas were

calculated, and compared, and it was found that when the error was below 20% of the

original contour area, the figure coincided with the one evaluated. An example is

explained next.

108

The following image has several objects, some of them rectangles and a circle:

Figure 82 Numbered objects

The objects are numbered from 0 to 8 to differentiate them.

The following results from calculating areas were obtained for figures 0 and 7:

Area Figure 0 % Error Figure 7 % Error

Original Figure 2048.5 1563

Best fit Rectangle 2115 3.25 1893.13 21.12

Best fit Triangle 4050.09 97.7 2524.71 61.53

Best fit circle 3325.39 62.3 1777.12 13.7

Table 11 Areas comparison

The results of the error percentage on each figure show that the lowest error is the one

that corresponds to the best fit. Also, after several objects analyzed, it was conclusive

that in most cases the error percentage was not higher than 20%. This is useful

because if the 3 errors are higher than 20% error, it can be conclusive that the figure is

neither rectangle, triangle nor circle.

109

In the examples mentioned before, Figure 0 is effectively a Rectangle, while Figure 7 is

a circle.

10. Analyzing gradients on each object

Now that the objects are classified between circles, triangles and rectangles, it only

remains to sub-classify the rectangles. The following figures can present a rectangle

profile when observed from a top view:

Any prism laying down on any face

Pyramids when they are not laying

down on their triangular faces

Cylinders that are not laying on

their bottom

Different pieces that have a

rectangular top view

Table 12 Possible rectangle shaped profiles

110

This analysis is based on the pieces acquired from the university to work on this and

other projects; however, different profiles may be found in real life that would require a

different approach for identifying.

To distinguish from all these rectangular profiles, a gradient analysis needs to be made.

Pyramids, for example, will have a constantly growing gradient as shown in the next

images. The first one is like a simple ramp; the second one is a double ramp.

Figure 83 Pyramids

Prisms will have a constant value, with a null gradient as in the following image:

Figure 84 Prism

Cylinders will present a growing and decreasing not constant gradient:

Figure 85 Cylinder

For making the gradient analysis, first of all each figure was isolated and rotated to end

up with a straight single figure. After this, a gradient analysis was made in both X and Y

direction, to determine what figure it is, and which orientation it has.

111

The process is as follows:

Figure 86 Gradient analyzing procedure

After obtaining all gradients, the program is able to differentiate objects. An extra feature

was added to the program that allows to click on a figure and obtain information as

showed on the next image:

Figure 87 Final image for user interface

This is the image that the user handles, and when making click to an object, for

example Object 7, the following information is printed on screen:

112

Figure 88 Information printed to user

The coordinates are showed to the user, and the real value of the height in mm.

If the user wants to take an object, the coordinates have to be transformed first to

sensor coordinates (Inverse process as the one explained in the "Perspective

Correction" section). Once that the coordinates are known in the sensor coordinate

system, another transformation needs to be done, because the sensors coordinate

system is different than the one of the TCP. For the case of the gripper used, it needs to

be added an offset of 60mm in X and 210mm in Y; however, this value depends on the

gripper used, and needs to be calculated by the user when installing the LPS.

113

XI. Solution's Analysis

The solution developed is very wide, and has many details. As it was proposed at the

beginning, it is divided in 3 main phases:

1. Leuze sensor programming

2. UR Programming

3. Image recognition programming

i. Leuze sensor programming

The LPS program is in charge of making the scan of the surface to be analyzed. It also

manages part of the communication between the sensor and the Universal Robot. From

the Leuze interface, it should be possible to configure certain parameters of the sensor

that give the user a widespread amount of opportunities on different scenarios.

Some advantages of using laser depth sensors instead of cameras for object detection

and identification are that the ambient light is not as problematic as with cameras,

hence the working area doesn't need a controlled light ambient. Also, the possibility to

vary the laser exposition allows the user to quickly adapt the sensor for working with

different materials on the objects to be detected, from dark objects, to metallic bright

objects.

The interface for communicating the sensor with the UR is satisfactory, and the sensor

is able to scan surfaces in a proper mode. The result of the scanning process can be

evaluated when observing the images obtained. The time of scanning however is high

and should be improved in a next level of the project. The sensor uses a delay when

making each scan and this makes the code slow. A proposition for solving this problem

will be proposed in the Recommendations and Future work's section. The interface for

the program is console based, and could be improved to make it more user-friendly. An

idea for the interface will be proposed at the Recommendations and Future work's

section.

ii. UR Programming

The UR program is in charge of moving the sensor over the scanning area. It needs to

communicate with the LPS sensor to coordinate scanning and positioning, and to

114

exchange information such as actual position of the TCP, or the LPS sensor if the

conversion is made.

The Universal Robot software is very flexible for programming. The Ethernet connection

is easy to program, and does not need to take the programming to a low level to

achieve most of the work. If special programming is needed, UR offers a variant of the

programming by inserting Script code. A complete manual on Script programming can

be found at Universal Robots (2013) and Zacobria Lars (n.d.). The Ethernet

communication on this project was done using script code. The rest of the programming

was done by using the functions that the UR offer from the teach pendant.

The resultant program is effective and does what it is supposed to do. The same issue

as for the Leuze program is the time it takes to make a full scan. They are both

dependent and to improve one, the other should be improved as well. The actual code

moves the UR step by step, and this makes it slow, and also creates a small vibration

on the robot, which could introduce some noise on the scan. A solution will be proposed

together with the Leuze's solution on the Recommendations and Future work's section.

iii. Image recognition programming

The image recognition phase could probably be the most important of all the three as it

is the one in charge of interpreting the data acquired from the Leuze sensor. The First

two phases are in charge together of acquiring the data, but this last phase is the one

that defines if the project fulfills its objectives. The main objective is both acquiring the

3D images, and interpreting them for future manipulation.

The transformation from a 3D Point Cloud to a 2D Grayscale image is very useful to

analyze data with image recognition software. The possibilities with open-source

powerful software as is OpenCV are very wide, and the amount of information, forums

and tutorials that can be found on the web is very extensive. The solution developed

covers the objectives desired: to detect objects, identify and characterize them and

finally locate them in space. The project was based on a variety of objects that can be

found on the appendix C, and similar objects will be also identified by the program.

However, if the intention is to identify any object at all, a different approach needs to be

115

made. An alternative solution will be proposed at the Recommendations and Future

work's section that uses the Point Cloud Library (PCL) together with OpenCV.

Some errors were detected when two objects from similar height were very close to

each other. The program would detect both objects as one, because there is no

gradient variation between each. This can be observed in the Appendix E. A possible

solution would be to make the UR move the container of the objects, to re-arrange them

and make a new scan.

iv. Integration phase

The three phases that make the project (Leuze program, UR program and Vision

program) were integrated to function together, having in consideration the needs of the

other phases. The results were good but they can improve, mainly in time.

As an additional but optional objective, it was proposed to make a final program with the

UR receiving the coordinates of the objects, and picking them in their place. The

programming and knowledge behind this is already implicit in the other programs, as the

coordinates just need to be sent to the UR (data exchange has already been done), and

the UR needs to position on a specific coordinate (this was done in the scanning phase

every time the robot places on the next scanning position). The plan was to develop this

program, but with the time lost on the repairing of the Leuze sensor, the time left was

just enough to finish the other objectives, hence it was not developed.

116

v. Final cost of the project

The cost of the project was initially calculated with more elements than needed. After

developing the solution, a more accurate calculation can be done.

Item Price (€)

UR10 23870.00

UR5 17870.00

Gripper 1378.00

3D Image Recognition 9714.00

Fittings, small parts 2000.00

Total 54832.00

Table 13 Real budget of the project

This total is calculated including both UR5 and UR10 robots; however, if a more low

cost solution was required, using only the UR5 would give a total budget of €30962. The

main inversion is in the Universal Robot and the Leuze LPS sensor, but no big

investment was made for license on image processing software.

117

XII. Conclusions

The use of light section sensors is optimal for acquiring 3D images on scanning

surfaces, as it is very flexible to program, and offers the user a wide range of

possibilities of configuration for obtaining the desired results.

The use of an assisting robot, in this case the UR5, to assist a depth sensor on realizing

a scan over a measuring surface is very useful. It allows the user to make complicated

scans with a high precision when a transporting band is not an option to move objects.

Vision systems are very powerful for analyzing data, and the extent of their scope is tied

to the user's imagination and programming skills. An open-source tool such as OpenCV

gives the user more than enough options for developing object identification,

characterization and image treatment, but a background on image processing is

required.

The integration of different areas such as Sensor programming, Robotics programming

and kinematics, Image processing and others are a very useful quality for mechatronics,

as they allow the user to build a wide variety of solutions that can be applied on the

industry with success and for a large amount of applications.

The use of open-source software is growing every day, and the possibilities with these

tools are getting bigger. This type of software generally gets support from the users, and

the cost benefits are admirable.

XIII. Recommendations and Future work

As the solution developed is for a university for research purposes, the DHBW wants to

continue doing research and improving the results obtained from the realization of this

project. Hence, a series of recommendations will be listed as ideas to be developed and

enhancements that can be made to the solution obtained.

i. Improvement of time

As it was mentioned previously, the time for scanning is not very good, as it takes

approximately 1 minute to scan a surface of 50cm. This is because of the logic that was

used all along the programming of the algorithms.

118

A proposed solution is to make the Leuze sensor scan continuously and the UR also

move continuously from the start point to the end point. An algorithm for managing the

data sent from the sensor to the PC needs to be programmed, probably using a buffer

that stores all the data and then stores it properly. With no delays on the scanning

process, the scanning time should be reduced drastically, probably to less than a 10%

of the actual scanning time.

Another proposition for improving time is to make a coarse first scan that will get the

location of objects on the beginning, and after locating the present objects over the

scanning surface, a smoother scan can be made locally to obtain more clear scans of

each object. This will also reduce the time of scanning, as it uses most of the time only

where there are objects present, and very little time where no objects are found.

ii. Occlusion solving

There is no need to have multiple sensors to avoid the occlusion phenomenon because

the sensor is not fixed to a static surface. The advantage of having the Leuze sensor

fixed to a Universal Robot is that it can change position and orientation easily. If a

complete 3D image wants to be acquired, it's only a matter of making a scan on one

direction, rotating 180°, and making one second scan. The sensor can even be rotated

to obtain a different degree of detail. It will just need a kinematic transformation of

coordinates on each position and orientation of the sensor to fit all the images taken.

iii. Use of Point Cloud Library

PCL is a powerful tool that will allow treating the data as it is taken by the Leuze sensor.

It only requires point coordinates on a 3D space to analyze data. PCL has algorithms for

stitching more than one point cloud, which would allow making scans to an object from

different directions, and putting them together in only one image. With this, it is even

possible to create complete 3D images of objects that can later be used to reproduce

the objects with 3D printers or CNC machines.

iv. Use of Qt to create an IDE

The result produced is mainly for a user that knows of programming, as it is console

based. However, using a tool as Qt enables the user to create IDE's that can realize the

same functions as the program, but with a friendly-user interface. The configuring of the

119

Leuze sensor can be handled from this interface, and it should be possible also to

display the results in 3D to the user. With this, the operator would not need to worry on

entering commands, but would only see a final graphic interface program.

120

XIV. Bibliography

Henry, P., Krainin, M., Herbst, E., Ren, X., y Fox, D. (2010). RGB-D Mapping: Using

Depth Cameras for Dense 3D Modeling of Indoor Environments. Experimental Robotics,

79, 477-491. DOI: 10.1007/978-3-642-28572-1_33

Schwarz, B. (2010). LIDAR: Mapping the world in 3D. Nature photonics, 4, 429-430.

DOI: 10.1038/nphoton.2010.148

Valencia, R., Teniente, E., Trulls, E., and Andrade-Cetto, J. (2009). 3D mapping for

urban service robots. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ

International Conference on (pp. 3076-3081). IEEE.

Gokturk, S. B., Yalcin, H., & Bamji, C. (2004, June). A time-of-flight depth sensor-

system description, issues and solutions. In Computer Vision and Pattern Recognition

Workshop, 2004. CVPRW'04. Conference on (pp. 35-35). IEEE.

Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).

OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octree.

Autonomous Robots. 34 (3), pp(189-206). DOI 10.1007/s10514-012-9321-0

Weise, T., Wismer, T., Leibe, B., and Van Gool, L. (2009). Computer Vision Workshops

(ICCV Workshops), 2009 IEEE 12th International Conference on. pp (1630 - 1637).

IEEE. DOI: 10.1109/ICCVW.2009.5457479

Krainin, M., Henry, P., Ren, X., and Fox D. (2011). The International Journal of

Robotics. 30 (11), pp (1311-1327). DOI: 10.1177/0278364911403178

Collet, A., Berenson, D., Srinivasa, S., and Ferguson, D. (2009). Object Recognition

and Full Pose Registration from a Single Image for Robotic Manipulation. IEEE

International Conference on Robotics and Automation (ICRA '09), May, 2009. Source:

https://www.ri.cmu.edu/

Lai, K., and Fox, D. (2009). 3D Laser Scan Classification Using Web Data and Domain

Adaptation. Proc. of Robotics: Science and Systems, 2009. pp (1-8)

Ebrahim, M. (2014). 3D laser scanners: History, Applications, and Future. Research

Gate. DOI: 10.13140/2.1.3331.3284

GNU. Makefile manual. (n.d.). Retrieved 10-15-2015.

http://www.gnu.org/software/make/manual/html_node/index.html#SEC_Contents

jonY. (01-18-2008). MSYS. Retrieved 10-15-2015. http://www.mingw.org/wiki/msys

FSU.PLY Files: an ASCII Polygon Format. (n.d.) Retrieved 10-24-2015.

http://people.sc.fsu.edu/~jburkardt/data/ply/ply.html

https://www.ri.cmu.edu/
http://www.gnu.org/software/make/manual/html_node/index.html#SEC_Contents
http://www.mingw.org/wiki/msys
http://people.sc.fsu.edu/~jburkardt/data/ply/ply.html

121

Paulbourke. PLY-Polygon File Format. (n.d.) Retrieved 10-24-2015.

http://paulbourke.net/dataformats/ply/

Tenney, Matthew. 2012. Point Clouds to Mesh in “MeshLab”.CAST Technical Publications

Series. Number 10062. http://gmv.cast.uark.edu/scanning/point-clouds-to-mesh-in-meshlab/.

[Retrieved : 10-20-2015]. [Last Updated: 29 November 2012]. Disclaimer: All logos and

trademarks remain the property of their respective owners.

FSU.PLC Files. (n.d.) Retrieved 10-24-2015.

http://people.sc.fsu.edu/~jburkardt/data/plc/plc.html

Zacobria Lars. UR Script Programming. (n.d.) Retrieved 11-10-2015.

http://www.zacobria.com/universal-robots-zacobria-forum-hints-tips-how-to/universal-robots-ur-

script/

M. Asad. (12-09-2011). Linux Like Installation of OpenCV 2.3.0 on Windows. Retrieved 11-05-

2015. http://seevisionc.blogspot.co.uk/2011/09/linux-like-installation-of-opencv-230.html

opencv.org. Installation in Windows (n.d.). Retrieved 11-05-2015.

http://docs.opencv.org/2.4/doc/tutorials/introduction/windows_install/windows_install.html#windo

ws-installation

Stackoverflow. Compiling MinGW libs for OpenCV under Windows. (n.d.) Retrieved 11-05-2015.

http://stackoverflow.com/questions/26397657/compiling-mingw-libs-for-opencv-under-windows

Zahid Hasan. How to install OpenCV on Windows (64bit) using MinGW (64) and Codeblocks.

(n.d.) Retrieved 11-05-2015. https://zahidhasan.wordpress.com/2013/02/16/how-to-install-

opencv-on-windows-7-64bit-using-mingw-64-and-codeblocks/

OpenCV. OpenCV Documentation. (n.d.) Retrieved 11-05-2015.

 http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=gaussianblur#void

medianBlur(InputArray src, OutputArray dst, int ksize)

Silver Moon. (12-26-2011). Winsock tutorial-Socket programming in C on windows. Retrieved

10-12-2015. http://www.binarytides.com/winsock-socket-programming-tutorial/

Silver Moon (08-30-2012). UDP socket programming in winsock. Retrieved 10-12-2015.

http://www.binarytides.com/udp-socket-programming-in-winsock/

MSDN Microsoft. Windows Sockets Error Codes. (n.d.) Retrieved 10-13-2015.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms740668(v=vs.85).aspx

Walrand. Transport Protocols: UDP, TCP. (n.d.). Retrieved 10-13-2015.

http://robotics.eecs.berkeley.edu/~wlr/12203/transport-slides.pdf

Chunyan Fu. TCP/UDP Basics. (n.d.) Retrieved 10-14-2015.

http://users.encs.concordia.ca/~glitho/F09_TCP_UDP.pdf

http://paulbourke.net/dataformats/ply/
http://people.sc.fsu.edu/~jburkardt/data/plc/plc.html
http://www.zacobria.com/universal-robots-zacobria-forum-hints-tips-how-to/universal-robots-ur-script/
http://www.zacobria.com/universal-robots-zacobria-forum-hints-tips-how-to/universal-robots-ur-script/
http://seevisionc.blogspot.co.uk/2011/09/linux-like-installation-of-opencv-230.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation
http://docs.opencv.org/2.4/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation
http://stackoverflow.com/questions/26397657/compiling-mingw-libs-for-opencv-under-windows
https://zahidhasan.wordpress.com/2013/02/16/how-to-install-opencv-on-windows-7-64bit-using-mingw-64-and-codeblocks/
https://zahidhasan.wordpress.com/2013/02/16/how-to-install-opencv-on-windows-7-64bit-using-mingw-64-and-codeblocks/
http://www.binarytides.com/winsock-socket-programming-tutorial/
http://www.binarytides.com/udp-socket-programming-in-winsock/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms740668(v=vs.85).aspx
http://robotics.eecs.berkeley.edu/~wlr/12203/transport-slides.pdf
http://users.encs.concordia.ca/~glitho/F09_TCP_UDP.pdf

122

Sina. (01-05-2009). Basic Kinematics of Constrained Rigid Bodies. Retrieved 11-20-2015.

http://blog.sina.com.cn/s/blog_48571ec80100brx6.html

Leuze Electronic. (2014). Technical Description LPS. http://www.leuze.com

Universal Robots. (January, 2012). User manual. Version 1.5.

Universal Robots. (August, 2013). The URScript Programming language. Version 1.8.

http://blog.sina.com.cn/s/blog_48571ec80100brx6.html
http://www.leuze.com/

123

XV. Appendix section

124

i. Appendix A: Acceptance letter from DHBW

Acceptance letter for developing the Graduation Project as an exchange student in the

DHBW, in the period from October 2015 to March 2016.

125

ii. Appendix B: Autenticity Declaration

126

iii. Appendix C: Final Evaluation

127

iv. Appendix D: Contact information from professor at DHBW

Contact for the developing of the project:

Prof. Dr.-Ing. Clemens Reitze

c/o Duale Hochschule Baden-Württemberg Karlsruhe

Baden-Wuerttemberg Cooperative State University

Fakultät für Technik, Maschinenbau

Erzbergerstr. 121

D-76133 Karlsruhe

Postfach 100136

D-76231 Karlsruhe

GERMANY

Fon +49 721 9735 829

Fax +49 721 9735 77 829

Mobile +49 176 80140133

eMail clemens.reitze@dhbw-karlsruhe.de

http://www.dhbw-karlsruhe.de

http://www.dhbw-karlsruhe.de/

128

v. Appendix E: Objects available for research

129

vi. Appendix F: Makefile used for the Leuze program
file: Makefile

CC = gcc

OSTYPE := $(shell uname -s)
ifeq ($(OSTYPE), Linux)
 OSTYPE := linux
endif

CFLAGS = -g -O0 -Wall
LDFLAGS =
LD_LIBS =

ifeq ($(OSTYPE),linux)
CFLAGS += -DLINUX
else
CFLAGS += -DWIN64
LD_LIBS += -lWs2_32
endif

default: sensor_client

leuze-lps.o: leuze-lps.c leuze-lps.h Makefile
sensor_client.o: sensor_client.c leuze-lps.h Makefile
ptg.o: ptg.c Makefile
ur5_test1.o: ur5_test1.c Makefile
ur5_server.o: ur5_server.c Makefile
ur5_client.o: ur5_client.c Makefile
client.o: client.c Makefile

sensor_client: sensor_client.o leuze-lps.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
server: server.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
client: client.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
sensor_server: sensor_server.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
ptg: ptg.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
udpclient: udpclient.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
ur5_test1: ur5_test1.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
ur5_client: ur5_client.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)
ur5_server: ur5_server.o
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ ̂$(LD_LIBS)

clean:
 -rm -f *.o *~

130

vii. Appendix G: Different images acquired with LPS

131

viii. Appendix H: Error detected when scanning

132

ix. Appendix I: Sample of data file with coordinates

The tabled values are Y axis, X axis and Z axis.

…

133

x. Appendix J: Receipt of repair of LPS sensor

134

xi. Appendix K: Codes developed for final solution

Header file for LPS

/*
**
** Leuze LPS Interface
**
**
**
** - UDP/IP communication
** - port 9008
** - port 5634
** - ICMP echo messages
** - byte order: BIG ENDIAN, high byte first, followed by low byte
** (Intel x86 CPUs, Siemens S7, ... uses little endian format,
** low byte first, followed by high byte)
**
** - measure mode:
** - free running measurement operating mode:
** - continuously, f_max = 100Hz
** - no measurement request needed
** - trigger mode:
** - after a trigger signal
** - after ethernet trigger command
** - command mode:
** - reaction to triggers
**
**
** ---
**
**
**
**
*/

#ifndef __LEUZE_LPS_H__
#define __LEUZE_LPS_H__

#ifdef __cplusplus
extern "C" {
#endif

 enum {
 LPS_Status_MeasureMode,
 LPS_Status_MenuMode,
 LPS_Status_CommandMode,

135

 LPS_Status_ErrorMode,

 LPS_Status_Activated, // 0|1 by activation function
 LPS_Status_Warning,
 LPS_Status_TriggeredMeasureMode, // 0: free running, 1: triggered
 LPS_Status_ErrorDetected
 };

 enum {
 LPS_Cmd_Ok = 0x4141, // Acknowledge, confirmed
 LPS_Cmd_Error = 0x414E, // not Acknowledge, Error, not executed

 LPS_Cmd_ConnectToSensor = 0x434E,

 LPS_Cmd_DisconnectFromSensor = 0x4443,

 // 0: Standard-Connect, 2 separate data packets for Z and X, 782 bytes
 // 1: Hi-Connect, only LPS36HI/EN, 1 common data packet for Z and X, 990 bytes

 LPS_Cmd_CmdModeEnter = 0x3132,
 LPS_Cmd_CmdModeExit = 0x3133,

 // in command mode:
 LPS_Cmd_SetLaserGate = 0x0001,
 LPS_Cmd_TriggerSingleMeasurement = 0x0003,

 LPS_Cmd_GetXCoordinates = 0x0011,
 LPS_Cmd_GetXCoordinates_Ans = 0x0012,
 // - signed values, unit: 1/100mm, 376 values

 LPS_Cmd_GetZCoordinates = 0x0013,
 LPS_Cmd_GetZCoordinates_Ans = 0x0014,
 // - signed values, unit: 1/100mm, 376 values

 LPS_Cmd_GetZXCoordinats = 0x005F,
 LPS_Cmd_GetZXCoordinats_Ans = 0x0060,
 // - signed values, unit: 1/100mm, 480 values

 LPS_Cmd_SetEncoderValues = 0x0029,

 LPS_Cmd_GetActualInspectionTask = 0x0049,
 LPS_Cmd_GetActualInspectionTask_Ans = 0x004A,
 // user data: task number 0=Task0 ... 15=Task15

 /*** Single Inspection Task Parameters */

 LPS_Cmd_SetActualInspectionTask = 0x004B,
 LPS_Cmd_SetScanNumber = 0x0053,
 LPS_Cmd_SetSingleUserParam = 0x0059,

136

 LPS_Cmd_GetSingleUserParam = 0x005B,
 LPS_Cmd_GetSingleUserParam_Ans = 0x005C, // Parameter is output

 // Parameters:
 LPS_ParamID_NumberOfInspectTask = 0x0BB8,
 LPS_ParamID_NameOfInspectTask = 0x0BB9,
 LPS_ParamID_OperatingMode = 0x0BBA,
 LPS_ParamID_EnablingActivation = 0x0BBB,
 LPS_ParamID_EnablingCascadingOutput = 0x0BBC,
 LPS_ParamID_LaserExposureDuration = 0x0BBD,
 LPS_ParamID_LaserExposureDurationManualAdjust = 0x0BBE,

 LPS_ParamID_DetectRangeX = 0x0BBF,
 // 2 values: min, max (-3000..+3000 LPS36, -700..+700 LPS36HI/EN)
 // unit: 1/10mm

 LPS_ParamID_DetectRangeZ = 0x0BC0,
 // 2 values: min, max (+1900..+8100 LPS36, +1959..+6100 LPS36HI/EN)
 // unit: 1/10mm

 /*** Single User Parameters */

 /*** misc */

 LPS_Cmd_EthernetTrigger = 0x4554,

 LPS_Cmd_EthernetTrigger_Ans1 = 0x5A5A,
 // with activated output of X coordinates:
 // - 1st of 2 packtes
 // - Z coordinates, 376 values
 // with deactivated output of X coordinates:
 // - X coordinates, 376 values

 LPS_Cmd_EthernetTrigger_Ans2 = 0x5858, // X
 // with activated output of X coordinates:
 // - 2nd of 2 packtes
 // - X coordinates, 376 values
 // with HI-Connect activated (LPS36HI):
 // - Z and X coordinates

 LPS_Cmd_EthernetActivation = 0x4541,
 // - connection to the sensor must exist before!

 };

 struct tLeuzeLPS_Header {

137

 unsigned short Startseq0;
 unsigned short Startseq1;
 unsigned char FillChar0[2];
 unsigned short CmdNo;
 unsigned char FillChar1[2];
 unsigned short PacketNo;
 unsigned char FillChar2[2];

 unsigned short TransactionNo; /* measure mode:
 * always 0x0000
 * command mode:
 * cmd number of the command
 * that is answered
 */
 unsigned short Status;
 unsigned short EncoderH; // [0..1] H, [2..3] L,
 unsigned short EncoderL; // [0..1] H, [2..3] L,
 unsigned char FillChar3[2];
 unsigned short ScanNo; /* 0x0000 .. 0xFFFF, incremented by 1
 */
 unsigned short UserDataType; /* 0x0010 := 16 bit data
 *
 */
 unsigned short UserDataN; /* number of user data elements
 * of UserDataType
 * possible values:
 * 0x0000,
 * 0x0001, 0x0002, 0x0003,
 * 0x0178
 * 0, 1, 2, 3, 376 or 480 data words
 * 0, 2, 4, 6, 752 or 960 bytes
 */
 //unsigned char UserData[2];
 };

 struct tLeuzeLPS_Msg {
 struct tLeuzeLPS_Header Header;
 unsigned char UserData[2];
 };

 typedef struct tLeuzeLPS_Header tLeuzeLPS_Header;
 typedef struct tLeuzeLPS_Msg tLeuzeLPS_Msg;

 int LeuzeLPS_InitHeader (struct tLeuzeLPS_Header *h);
 int LeuzeLPS_PrintMsg (struct tLeuzeLPS_Msg *h);
 int LeuzeLPS_MsgToN (struct tLeuzeLPS_Msg *h);
 int LeuzeLPS_TwoComp (struct tLeuzeLPS_Msg *h);
 //int LeuzeLPS_PrintXZ(struct tLeuzeLPS_Msg h,struct tLeuzeLPS_Msg j);

138

#ifdef __cplusplus
}
#endif

#endif // of #ifndef __LEUZE_LPS_H__

Code for LPS Scanning with UR

/*
**
** Program for scanning with LPS sensor and saving data in desired file
**
** Author: Alejandro Alpizar
**
** ---
**
**
**
**
*/

#if defined(LINUX)
include <sys/types.h>
include <sys/socket.h>
include <netinet/in.h>
include <netdb.h>
include <arpa/inet.h>

#elif defined(WIN32)
include<winsock2.h>
include<windows.h>
include<fcntl.h>
include<sys/stat.h>

#endif

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include "leuze-lps.h"

/*** Byte Order stuff ***/

#if 0

139

static const int bsti = 1; // Byte swap test integer
#define is_bigendian() ((*(char*)&bsti) == 0)

// swap to network byte order (big endian)

static void *
SwapBytes (int n, void *p)
{
 int i;
 static unsigned char buf[16]; // n < 16 !!
 unsigned char *t = (unsigned char *)&buf[0];
 unsigned char *s = (unsigned char *)p;

 for (i=0; i < n; i++) {
 t[i] = s[n-i-1];
 }
 return (void*)t;
}

#if defined(LINUX) || defined(WIN32)

define S2N_USHORT(v) (unsigned short*) SwapBytes(2, v)
define S2N_SHORT(v) (short*) SwapBytes(2, v)
define AS2N_USHORT(v) (v) = (unsigned short*) SwapBytes(2, v)
define AS2N_SHORT(v) (v) = (short*) SwapBytes(2, v)

define S2N_UINT(v) (unsigned int *) SwapBytes(4, v)
define S2N_INT(v) (int *) SwapBytes(4, v)
define AS2N_UINT(v) (v) = (unsigned int *) SwapBytes(4, v)
define AS2N_INT(v) (v) = (int *) SwapBytes(4, v)

define S2N_FLOAT(v) (float*) SwapBytes(4, v)
define AS2N_FLOAT(v) (v) = (float*) SwapBytes(4, v)

define S2N_DOUBLE(v) (double*) SwapBytes(8, v)
define AS2N_DOUBLE(v) (v) = (double*) SwapBytes(8, v)

#elif defined(PPC)

define S2N_USHORT(v)
define S2N_SHORT(v)
define AS2N_USHORT(v) (v)
define AS2N_SHORT(v) (v)

define S2N_UINT(v)
define S2N_INT(v)
define AS2N_UINT(v) (v)

140

define AS2N_INT(v) (v)

define S2N_FLOAT(v)
define AS2N_FLOAT(v) (v)

define S2N_DOUBLE(v)
define AS2N_DOUBLE(v) (v)

#else
error ERROR Byte order not yet handled for swapping!
#endif

#endif

void
DumpMsg (const unsigned char *msg, int len)
{
 int i;
 const int n_wrap = 6;

 for (i=0; i < len; i++) {
 if (i%n_wrap == 0) {
 const char *fmt = (i>0 ? "\n%03d: " : "%03d: ");
 //printf (fmt, i);
 }
 //printf (" %02x", msg[i]);
 }
 if (i > 0)
 printf ("*******Msg dumped*******\n");
 fflush(stdout);
}

int
main(int argc, char *argv[])
{
 int rv = 0, n = 0,i = 0;

 struct sockaddr_in srv_tx;
 struct sockaddr_in srv_rx;
 struct sockaddr_in srv_other;
 int srv_size = sizeof(srv_tx);
 int sock_tx = 0;
 int sock_rx = 0;
 int waiting = 0;

141

 int yvec=0;
 int lecture=1;
 long offset;

 SOCKET s;
 struct sockaddr_in server, si_other;
 int slen , recv_len;
 int client_conection;
 int finish=0;
 char read;
 slen = sizeof(si_other);

 #define BUFLEN 1024//512 //512
 #define PORT 30002 //The port on which to listen for incoming data
 #define MAXPENDING 5 /* Maximum outstanding connection requests */

 char *srv_ip;
 int srv_port_tx = 0;
 int srv_port_rx = 0;

#define BUFLEN 1024
 char buf[BUFLEN];
 unsigned char *msg;
 unsigned int msg_size;
 char file_name[25];
 const char *ply_header1,*ply_header2;

 short xvec[480];
 unsigned short zvec[480];
 int nxvec, nzvec, ycoord;

 struct tLeuzeLPS_Msg lpsdata, *plpsdata;

 memset (&buf[0], 0, sizeof(buf));
 memset (&lpsdata, 0, sizeof(lpsdata));

 srv_ip = "192.168.28.50";
 srv_port_tx = 9008;
 srv_port_rx = 5634;

#if defined (WIN32)
 WSADATA wsa;

 //Initialise winsock
 printf("\nInitialising Winsock...");
 fflush(stdout);
 if (WSAStartup(MAKEWORD(2,2),&wsa) != 0)
 {
 printf("Failed. Error Code : %d",WSAGetLastError());
 exit(EXIT_FAILURE);

142

 }
 printf("Initialised.\n");
 fflush(stdout);
#endif

 // Create UDP client
 sock_tx = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 if (sock_tx < 0) {
 printf("ERROR: opening tx socket, could not create socket, %s, returns %d\n",
 strerror(errno), sock_tx);
 fflush(stdout);
 return 1;
 }

 memset(&srv_tx, 0, srv_size);
 srv_tx.sin_family = AF_INET;
 srv_tx.sin_port = htons(srv_port_tx);

 // convert IPv4 and IPv6 addresses from text to binary form
#if 0
 if ((rv=inet_aton(AF_INET, srv_ip, &srv_tx.sin_addr)) <= 0) {
 printf ("ERROR: inet_pton error occured, returns %d, %s\n",
 rv, strerror(errno));
 return 1;
 }
#else
 srv_tx.sin_addr.S_un.S_addr = inet_addr(srv_ip);
#endif

 // Create UDP server
 sock_rx = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 if (sock_rx < 0) {
 printf("ERROR: opening rx socket, could not create socket, %s\n",
 strerror(errno));
 fflush(stdout);
 return 1;
 }

 memset(&srv_rx, 0, srv_size);
 srv_rx.sin_family = AF_INET;
 srv_rx.sin_port = htons(srv_port_rx);
 srv_rx.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind socket to port
 rv = bind(sock_rx, (struct sockaddr*)&srv_rx, srv_size);
 if (rv == -1) {
 printf ("ERROR: binding rx socket, %s\n",
 strerror(errno));
 fflush(stdout);
 return 1;

143

 }
 printf ("bind rx returns %d\n", rv);
 fflush(stdout);

//**UR socket conection
 //Create a socket for incoming connections of the UR
 if((s = socket(PF_INET /*AF_INET */, SOCK_STREAM , IPPROTO_TCP)) ==
INVALID_SOCKET)
 {
 printf("Could not create UR socket : %d" , WSAGetLastError());
 return -1;
 }
 printf("UR Socket created.\n");

 //Prepare the sockaddr_in structure
 server.sin_family = AF_INET;
 server.sin_addr.s_addr = htonl(INADDR_ANY);
 server.sin_port = htons(PORT);

 //Bind
 if(bind(s ,(struct sockaddr *)&server , sizeof(server)) == SOCKET_ERROR)
 {
 printf("Bind UR failed with error code : %d" , WSAGetLastError());
 closesocket(s);
 WSACleanup();
 exit(EXIT_FAILURE);
 }
 puts("Bind UR done");

 if(listen(s,MAXPENDING) == SOCKET_ERROR) //MAXPENDING //1
 {
 printf("Listen UR failed with error code : %d" , WSAGetLastError());
 closesocket(s);
 WSACleanup();
 exit(EXIT_FAILURE);
 }
 puts("Listening for UR...");

 //keep listening for data

//**UR socket conection END

//***
 // prepare message Connect To Sensor

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);

144

 lpsdata.Header.CmdNo =
LPS_Cmd_ConnectToSensor;//htons(LPS_Cmd_ConnectToSensor);
 lpsdata.Header.UserDataN = 0x0000;
 lpsdata.UserData[0]=0;
 msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN ;

 msg = (unsigned char*)&lpsdata;

 //LeuzeLPS_PrintMsg (&lpsdata);
 printf ("\n");

while(1){
 // send the message
 printf ("Connecting..... \n");
 fflush(stdout);
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send a message, %s\n", strerror(errno));
 fflush(stdout);
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 fflush(stdout);
 }

 memset (buf, 0, sizeof(buf));

 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);

 printf ("ran recvfrom\n");
 fflush(stdout);

 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 fflush(stdout);
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 fflush(stdout);
 DumpMsg (buf, n);
 plpsdata = (struct tLeuzeLPS_Msg*)buf;
 LeuzeLPS_MsgToN (plpsdata);

 printf ("\n");
 LeuzeLPS_PrintMsg (plpsdata);
 if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
 printf ("\nConnected. \n");
 fflush(stdout);

145

 break;
 } else {
 printf ("\nError: NOT Connected. \n");
 fflush(stdout);
//**********************
 while(1){
 printf("\nAttempt to reconnect? (y or n) ");
 fflush(stdout);
 scanf(" %c", &read);
 if (read == 'y' || read == 'Y'){
 printf("\nRe");
 fflush(stdout);
 break;
 }
 else if (read == 'n' || read == 'N'){
 printf("\nTerminating program...\n\n");
 //**********
 // prepare message Disconnect From Sensor

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo =
LPS_Cmd_DisconnectFromSensor;//htons(LPS_Cmd_ConnectToSensor);
 lpsdata.Header.UserDataN = 0x0000;
 msg_size = sizeof(lpsdata.Header);

 msg = (unsigned char*)&lpsdata;

 printf ("\nDisconnecting..... \n");

 //LeuzeLPS_PrintMsg (&lpsdata);
 // send the message
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send a message, %s\n", strerror(errno));
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 }

 memset (buf, 0, sizeof(buf));
 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 DumpMsg (buf, n);

146

 }

 //**********

 return -1;
 break;
 }
 else {
 printf("\nPlease type a correct command\n");
 fflush(stdout);
 }
 }
//**********************
 }

 //puts (buf);
 }
 }
 printf ("\n");
//***
 // prepare message Enter Command Mode

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo = LPS_Cmd_CmdModeEnter;
 lpsdata.Header.UserDataN = 0x0000;
 lpsdata.UserData[0]=0;
 msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;

 msg = (unsigned char*)&lpsdata;

 //LeuzeLPS_PrintMsg (&lpsdata);
 printf ("\n");

 // send the message
 printf ("Entering command mode..... \n");
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send command, %s\n", strerror(errno));
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 waiting = 1;

 //*a*a*a*a*a*a*a*a Reading Loop
 while (waiting){

147

 memset (buf, 0, sizeof(buf));
 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 DumpMsg (buf, n);
 plpsdata = (struct tLeuzeLPS_Msg*)buf;

 if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
 printf (".");
 } else {
 waiting=0;
 LeuzeLPS_MsgToN (plpsdata);
 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 if ((plpsdata->Header.CmdNo==LPS_Cmd_Ok)||(((plpsdata-
>Header.Status)&0x00F0)==0x0040)){
 printf ("\nCommand mode entered. \n");
 fflush(stdout);
 } else {
 printf ("\nCommand mode NOT entered. Status: %x\n",((plpsdata-
>Header.Status)&0x00F0));
 fflush(stdout);
 }
 }
 }
 }
 //*a*a*a*a*a*a*a*a
 }
//***
 #if 0
 // prepare message Laser Toggle
 for (i=0; i < 10; i++) {

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo = LPS_Cmd_SetLaserGate;
 lpsdata.Header.UserDataN = 0x0001;

 if (i%2 == 0) {
 lpsdata.UserData[0]=0x0000;
 }
 else{
 lpsdata.UserData[0]=0x0001;
 }
 msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;

 msg = (unsigned char*)&lpsdata;

148

 //LeuzeLPS_PrintMsg (&lpsdata);
 printf ("\n");

 // send the message
 printf ("Toggling laser..... \n");
 fflush(stdout);
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send command, %s\n", strerror(errno));
 fflush(stdout);
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 fflush(stdout);
 waiting = 1;

 //*a*a*a*a*a*a*a*a Reading Loop
 while (waiting){

 memset (buf, 0, sizeof(buf));
 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 DumpMsg (buf, n);
 plpsdata = (struct tLeuzeLPS_Msg*)buf;

 if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
 printf (".");
 } else {
 waiting=0;
 LeuzeLPS_MsgToN (plpsdata);
 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
 printf ("\nLaser Toggled. \n");
 } else {
 printf ("\nLaser NOT Toggled. \n");
 }
 }
 }
 }
 //*a*a*a*a*a*a*a*a
 }

149

 Sleep(1000); // Windows Sleep for 1000 ms (1 second)
 }
 #endif

//**Create file
 printf("Enter the name of file to save the data:\n");
 fflush(stdout);
 memset (file_name,0, sizeof(file_name));
 gets(file_name);

 FILE *fw = fopen(file_name, "w"); //open in write mode

 if (fw == NULL)
 {
 printf("Error creating file!\n");
 exit(1);
 }
 else{
 ply_header1=
 "ply\n"
 "format ascii 1.0\n"
 "comment author: Alejandro Alpizar\n"
 "comment object: 3D object with Leuze sensor\n"
 "element vertex ";
 ply_header2=
 "\nproperty float x\n"
 "property float y\n"
 "property float z\n"
 "end_header\n";

 fprintf (fw,"%s",ply_header1);
 offset=ftell (fw);
 fprintf (fw,"%10i%s",81*376,ply_header2);
 }
 fclose(fw);

FILE *f = fopen(file_name, "a");
 if (f == NULL)
 {
 printf("Error opening file!\n");
 exit(1);
 }

//**Create file END

//***
//***************Reading loop for sensor and UR

150

 //keep listening for data
 while(1)
 {
 printf("Waiting for data...");
 fflush(stdout);

 //clear the buffer by filling null, it might have previously received data
 memset(buf,'\0', BUFLEN);

 //try to receive some data, this is a blocking call

 client_conection= accept (s, (struct sockaddr *) &si_other , &slen);
 if (client_conection==INVALID_SOCKET){
 wprintf (L"accept() error with error:
%d\n",WSAGetLastError());//WSAGetLastError()//errno
 closesocket(s);
 WSACleanup();
 return -1;
 }
 else
 printf("Client connected\n");

 printf("Handling client %s:%d\n", inet_ntoa(si_other.sin_addr), ntohs(si_other.sin_port));
 fflush(stdout);

 recv_len=recv(client_conection,buf, BUFLEN, 0);

 printf ("ran recv:%i\n",recv_len);
 fflush(stdout);
 if ((recv_len) == SOCKET_ERROR)
 {
 printf("recvfrom() failed with error code : %d" , WSAGetLastError());
 exit(EXIT_FAILURE);
 }
 while(recv_len > 0)
 {
 //print details of the client/peer and the data received
 printf("Received packet from %s:%d\n", inet_ntoa(si_other.sin_addr),
ntohs(si_other.sin_port));
 printf("Data: %s\n" , buf);
 fflush(stdout);

 //********************
 //clear the buffer by filling null, it might have previously received data
 memset(buf,'\0', BUFLEN);
 while (lecture){
 //User interaction
 while (1)
 {

151

 printf("\nMake new scan? (y or n) ");
 fflush(stdout);
 scanf(" %c", &read);
 if (read == 'y' || read == 'Y')
 {
 printf("\nYes selected\n");
 strcpy(buf, "Yes");
 recv_len=strlen(buf);
 finish=0;
 break;
 }
 else if (read == 'n' || read == 'N')
 {
 lecture=0;
 //recv_len=0;
 printf("\nNo selected\n");
 strcpy(buf, "No");
 recv_len=strlen(buf);
 break;
 }
 else
 printf("\nPlease type a correct command\n");
 }

 //now reply the client with the response
 if (send(client_conection, buf, recv_len, 0) != recv_len)
 {
 printf("sendto() failed with error code : %d" , WSAGetLastError());
 closesocket(s);
 WSACleanup();
 exit(EXIT_FAILURE);
 }
 if(strcmp(buf,"No")==0)
 {
 recv_len=0;
 finish=1;
 }

 while(finish==0)
 {
 //clear the buffer by filling null, it might have previously received data
 memset(buf,'\0', BUFLEN);
 printf ("receiving final state\n");
 fflush(stdout);
 recv_len=recv(client_conection,buf, BUFLEN, 0);
 //sleep(0.030);
 printf ("State: *%s*\n",buf);
 fflush(stdout);
 if (strcmp(buf,"1")==0)
 finish=1;

152

 if ((recv_len) == SOCKET_ERROR)
 {
 printf("Recv final state failed with error code : %d\n" , WSAGetLastError());
 closesocket(s);
 WSACleanup();
 exit(EXIT_FAILURE);
 }

 if(finish==1)
 break;

 //clear the buffer by filling null, it might have previously received data
 memset(buf,'\0', BUFLEN);
 printf ("receiving coordinates\n");
 fflush(stdout);
 recv_len=recv(client_conection,buf, BUFLEN, 0);
 //sleep(0.030);
 yvec=yvec+1;
 ycoord= (int) (atof(buf)*1000+0.5)*10;
 printf("Y Coord: %i\n\n" , ycoord);
 fflush(stdout);
 if ((recv_len) == SOCKET_ERROR)
 {
 printf("Recv coordinates failed with error code : %d" , WSAGetLastError());
 closesocket(s);
 WSACleanup();
 exit(EXIT_FAILURE);
 }
 //***Leutze Scan
 #if 1
 // prepare message Trigger Single Measurement
 //for (i=0; i < 10; i++) {

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo = LPS_Cmd_TriggerSingleMeasurement;
 lpsdata.Header.UserDataN = 0x0000;

 lpsdata.UserData[0]=0x0000;

 msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;

 msg = (unsigned char*)&lpsdata;

 //LeuzeLPS_PrintMsg (&lpsdata);
 printf ("\n");

 // send the message

153

 printf ("Triggering Single Measurement..... \n");
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send command, %s\n", strerror(errno));
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 waiting = 1;

 //*a*a*a*a*a*a*a*a Reading Loop
 while (waiting){

 memset (buf, 0, sizeof(buf));
 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 DumpMsg (buf, n);
 plpsdata = (struct tLeuzeLPS_Msg*)buf;

 if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
 printf (".");
 } else {
 waiting=0;
 LeuzeLPS_MsgToN (plpsdata);
 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
 printf ("\nTriggered Single Measurement. \n");
 } else {
 printf ("\nNOT Triggered Single Measurement. \n");
 }
 }
 }
 }
 //*a*a*a*a*a*a*a*a
 }

 //Sleep(400); // Windows Sleep for 1000 ms (1 second)
 //}
 #endif
//***
#if 1
 // prepare message LPS_Cmd_GetXCoordinates
 //for (i=0; i < 10; i++) {

 LeuzeLPS_InitHeader (&lpsdata.Header);

154

 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo = LPS_Cmd_GetXCoordinates;
 lpsdata.Header.UserDataN = 0x0000;

 lpsdata.UserData[0]=0x0000;

 msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;

 msg = (unsigned char*)&lpsdata;

 //LeuzeLPS_PrintMsg (&lpsdata);
 printf ("\n");

 // send the message
 printf ("Getting X coordinates..... \n");
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send command, %s\n", strerror(errno));
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 waiting = 1;

 //*a*a*a*a*a*a*a*a Reading Loop
 while (waiting){

 memset (buf, 0, sizeof(buf));
 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 nxvec=n-30;
 DumpMsg (buf, n);
 plpsdata = (struct tLeuzeLPS_Msg*)buf;

 if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
 printf (".");
 } else {
 waiting=0;
 LeuzeLPS_MsgToN (plpsdata);
 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 if (plpsdata->Header.CmdNo==LPS_Cmd_GetXCoordinates_Ans){
 printf ("\nX Coordinates received. \n");
 //LeuzeLPS_TwoComp (plpsdata);
 memset (xvec, 0, sizeof(xvec));

155

 memcpy(xvec,&plpsdata->UserData,nxvec);
// xvec=short
 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 } else {
 printf ("\nX Coordinates NOT received. \n");
 }
 }
 }
 }
 //*a*a*a*a*a*a*a*a
 }

 //Sleep(400); // Windows Sleep for 1000 ms (1 second)
 //}
 #endif
//***
#if 1
 // prepare message LPS_Cmd_GetZCoordinates
 //for (i=0; i < 10; i++) {

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo = LPS_Cmd_GetZCoordinates;
 lpsdata.Header.UserDataN = 0x0000;

 lpsdata.UserData[0]=0x0000;

 msg_size = sizeof(lpsdata.Header)+lpsdata.Header.UserDataN;

 msg = (unsigned char*)&lpsdata;

 //LeuzeLPS_PrintMsg (&lpsdata);
 printf ("\n");

 // send the message
 printf ("Getting Z coordinates..... \n");
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send command, %s\n", strerror(errno));
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 waiting = 1;

 //*a*a*a*a*a*a*a*a Reading Loop
 while (waiting){
 memset (buf, 0, sizeof(buf));
 //LeuzeLPS_PrintXZ (Xdata,Xdata);

156

 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 nzvec=n-30;
 DumpMsg (buf, n);
 plpsdata = (struct tLeuzeLPS_Msg*)buf;

 if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
 printf (".");
 } else {
 waiting=0;
 LeuzeLPS_MsgToN (plpsdata);
 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 if (plpsdata->Header.CmdNo==LPS_Cmd_GetZCoordinates_Ans){
 printf ("\nZ Coordinates received. \n");
 memset (zvec, 0, sizeof(zvec));
 memcpy(zvec,&plpsdata->UserData,nzvec);
 //Zdata = (struct tLeuzeLPS_Msg*)&plpsdata;
 //LeuzeLPS_PrintXZ (Xdata,Zdata);
 } else {
 printf ("\nZ Coordinates NOT received. \n");
 }
 }
 }
 }
 //*a*a*a*a*a*a*a*a
 }

 //Sleep(400); // Windows Sleep for 1000 ms (1 second)
 //}
 #endif
//***
 //print coordinates X, Y and Z to FILE

 for (i=0; i < (nxvec/2); i++) {
 fprintf (f,"%d\t%d\t%d\n", /*yvec*10,*/ycoord, xvec[i],zvec[i]);
// fprintf (f,"%d\t%d\t%d\n", yvec*10, xvec[i],zvec[i]);
 }

 //***Leutze Scan END

 }

 }
 //********************

157

 }
 if (lecture==0)
 break;

 }

//***************Reading loop for sensor and UR END

fclose(f);

//********************Edit header
printf("Editing header...\n");

FILE *fe = fopen(file_name, "r+");
 if (fe == NULL)
 {
 printf("Error opening file!\n");
 exit(1);
 }
 else{
 fseek (fe, offset , SEEK_SET);
 //offset from beggining of file
 fprintf (fe,"%10i",yvec*376);
 }
fclose(fe);

//********************Edit header END

//***

 // prepare message Exit Command Mode

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo = LPS_Cmd_CmdModeExit;
 lpsdata.Header.UserDataN = 0x0000;
 msg_size = sizeof(lpsdata.Header);

 msg = (unsigned char*)&lpsdata;

 //LeuzeLPS_PrintMsg (&lpsdata);
 printf ("\n");

 // send the message
 printf ("Exiting command mode..... \n");
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send command, %s\n", strerror(errno));

158

 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 waiting = 1;

 //*a*a*a*a*a*a*a*a Reading Loop
 while (waiting){

 memset (buf, 0, sizeof(buf));
 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 DumpMsg (buf, n);
 plpsdata = (struct tLeuzeLPS_Msg*)buf;

 if (plpsdata->Header.TransactionNo!=lpsdata.Header.CmdNo){
 printf (".");
 } else {
 waiting=0;
 LeuzeLPS_MsgToN (plpsdata);
 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
 printf ("\nCommand mode exited. \n");
 } else {
 printf ("\nCommand mode NOT exited. \n");
 }
 }
 }
 }
 //*a*a*a*a*a*a*a*a
 }
//***

 // prepare message Disconnect From Sensor

 LeuzeLPS_InitHeader (&lpsdata.Header);
 lpsdata.Header.UserDataType = 0x0010;//htons(0x0010);
 lpsdata.Header.CmdNo =
LPS_Cmd_DisconnectFromSensor;//htons(LPS_Cmd_ConnectToSensor);
 lpsdata.Header.UserDataN = 0x0000;
 msg_size = sizeof(lpsdata.Header);

 msg = (unsigned char*)&lpsdata;

 printf ("\nDisconnecting..... \n");

159

 //LeuzeLPS_PrintMsg (&lpsdata);
 // send the message
 rv = sendto(sock_tx, (const char*)msg, msg_size, 0,
 (struct sockaddr *) &srv_tx, srv_size);
 if (rv < 0) {
 printf ("ERROR: failed to send a message, %s\n", strerror(errno));
 return 1;
 } else {
 printf ("sendto: %d bytes\n", rv);
 }

 memset (buf, 0, sizeof(buf));
 n = recvfrom(sock_rx, (char*)buf, BUFLEN, 0,
 (struct sockaddr *) &srv_other, &srv_size);
 if (n <= -1) {
 printf ("ERROR: recvfrom error, %s\n", strerror(errno));
 } else {
 printf ("\nrecvfrom: %s:%d %d bytes\n",
 inet_ntoa(srv_other.sin_addr), ntohs(srv_other.sin_port), n);
 DumpMsg (buf, n);

 plpsdata = (struct tLeuzeLPS_Msg*)buf;

 LeuzeLPS_MsgToN (plpsdata);

 printf (":P\n");

 printf ("\n");
 //LeuzeLPS_PrintMsg (plpsdata);
 if (plpsdata->Header.CmdNo==LPS_Cmd_Ok){
 printf ("\nDisconnected. \n");
 } else {
 printf ("\nError: NOT Disconnected. \n");
 }

 //puts (buf);
 }
//***

 closesocket(s);
 close (sock_tx);
 close (sock_rx);

 return 0;
}

160

Code for UR robot scanning sequence

 Program
 Init Variables
 BeforeStart
 set_tcp(p[0,0,0.20,0.013,-0.0073,0.3904])

 port≔30002
 ip_server≔"192.168.28.51"

 delta_max≔0.400
 delta≔0.0010

 dist_x≔0.250
 dist_y≔0.150

 dist_z≔-0.400
 home≔p[dist_x,dist_y,dist_z,0,0,0]

 home≔pose_trans(Plane_1_var,home)
 open≔socket_open(ip_server,port)
 MoveJ
 home
 dist_x≔0.250
 dist_y_start≔0.050

 dist_z≔-.300
 start_point≔p[dist_x,dist_y_start,dist_z,0,0,0]

 start_point≔pose_trans(Plane_1_var,start_point)
 'MoveJ'

 While open≟ False
 open≔socket_open(ip_server,port)

 string_1≔""
 socket_send_string("Make a new scan?")
 Wait: 0.01
 Robot Program
 finish≔0
 While string_1≟""

 string_1≔socket_read_string()
 Wait: 0.01

 If string_1≟"No"
 Halt
 MoveJ
 start_point

 dist_y≔dist_y_start
 pos_table≔pose_trans(pose_inv(Plane_1_var),get_actual_tcp_pose())
 socket_send_string(finish)
 Wait: 0.15
 socket_send_string(pos_table[1])
 Wait: 0.15

 While string_1≟"Yes"
 If pos_table[1]≤dist_y_start+delta_max
 'Popup'
 'Wait'
 dist_y≔dist_y+delta
 next_point≔p[dist_x,dist_y,dist_z,0,0,0]

 next_point≔pose_trans(Plane_1_var,next_point)

161

 socket_send_string(finish)
 Wait: 0.15
 MoveL
 next_point
 pos_table≔pose_trans(pose_inv(Plane_1_var),get_actual_tcp_pose())
 socket_send_string(pos_table[1])
 Wait: 0.15
 Else
 finish≔1
 socket_send_string(finish)
 MoveJ
 home
 string_1≔""
 'If pos_table[1]≤dist_y_start+delta_max'

Code for Image detection and classification

#include "opencv2/core.hpp"
//#include "opencv2/imgproc.hpp"
//#include "opencv2/highgui.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>

#include <cstdio>
//#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#include <errno.h>

using namespace cv;
using namespace std;

//void drawText(Mat & image);
Point prevPt(-1, -1);
Mat dst_borders, gray_borders,dst_gs,dst_gs_temp;
int selection;

static void onMouse(int event, int x, int y, int flags, void*)
{
 if(x < 0 || x >= dst_borders.cols || y < 0 || y >= dst_borders.rows)
 return;
 if(event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON))
 prevPt = Point(-1,-1);
 else if(event == EVENT_LBUTTONDOWN)
 {

162

 prevPt = Point(x,y);
 if ((int) dst_borders.at<unsigned char>(prevPt.y,(prevPt.x*3))!=0)
 {
 cout<<"coordinates= "<<prevPt<<endl;
 cout<<"pixel value= "<<(int) dst_borders.at<unsigned char>(prevPt.y,(prevPt.x*3))<<endl;
 cout<<"height value= "<<(((int) dst_borders.at<unsigned char>(prevPt.y,(prevPt.x*3))*6)-
100+30)<<endl;
 selection= (int) (gray_borders.at<unsigned char>(prevPt.y,prevPt.x)-1);
 cout<<"Object "<<selection<<endl;
 }

 }
 else if(event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
 {
 Point pt(x, y);
 if(prevPt.x < 0)
 prevPt = pt;
 //line(markerMask, prevPt, pt, Scalar::all(255), 5, 8, 0);
 line(dst_borders, prevPt, pt, Scalar::all(255), 1, 8, 0);
 prevPt = pt;
 imshow("Components", dst_borders);
 }
}

int main(int argc, char** argv)
{
 Mat image;
#if 0
 string imageName("image.png");//../../../../../data/HappyFish.jpg"); // by default
 if(argc > 1)
 {
 imageName = argv[1];
 }

 image = imread(imageName.c_str(), IMREAD_COLOR); // Read the file

 if(image.empty()) // Check for invalid input
 {
 cout << "Could not open or find the image" << std::endl ;
 return -1;
 }

 namedWindow("Display window", WINDOW_AUTOSIZE); // Create a window for display.

 imshow("Display window", image); // Show our image inside it.

 waitKey(0); // Wait for a keystroke in the window

 destroyWindow("Display window");

163

#endif

// destroyAllWindows();
 //**
// cout << "Bye byeeee" << endl;
 //capture.release();
 char file_name[25],lines[200],word[200];
 int ch;
 int bottom_offset=30;
 int val_max=5150;
 int maxh=val_max-bottom_offset;
 int offset=100;
 int border=5;
 int stepx=0;
 int stepy=0;
 int i,j,k,coord,imat,jmat,jw,vertex_search;
 int startx=0;
 int error_allowed=21;
// double yval;//xval,yval,zval;
 unsigned short xval,zval,zmax,zmin,xmax,xmin,xval_pre;
 signed short ymax,ymin,yval;
 int lectures;
 double mat[20][20];

 memset (mat,0, sizeof(mat));
 memset (file_name,0, sizeof(file_name));

//read coordinates X, Y and Z from FILE
 //cout << "Enter the name of file you wish to open\n" << endl;

 printf("Enter the name of file you wish to open:\n");
 fflush(stdout);
 gets(file_name);
 //fgets(file_name,sizeof(file_name),stdin);
 //file_name="ff.txt";

 FILE *f = fopen(file_name, "r"); //open in read mode

 if (f == NULL)
 {
 printf("Error opening file!\n");
 exit(1);
 }

#if 1
// while((ch = fgetc(fp)) != EOF)
// for (i=0; i < 20; i++) {
 vertex_search=1;
 while(1){
 j=0;

164

 jw=0;
 memset (lines, '\0', sizeof(lines));
 memset (word, '\0', sizeof(word));
 while((ch = fgetc(f)) != '\n'){
 lines[j]=ch;
 j=j+1;
 if(((ch) != ' ')&& vertex_search){
 word[jw]=ch;
 jw=jw+1;
 }
 else if(vertex_search){
 if (strcmp(word,"vertex")==0){
 //printf("Vertex found\n");
 //fflush(stdout);
 memset (word, '\0', sizeof(word));
 jw=0;
 while((ch = fgetc(f)) == ' '){
 //printf("ch=*%c*\n",ch);
 //fflush(stdout);
 ;
 }
 word[jw]=ch;
 jw=jw+1;
 while ((ch = fgetc(f)) != ' '){
 //printf("ch=*%c*\n",ch);
 //fflush(stdout);
 //printf("Word progress=*%s*\n",word);
 //fflush(stdout);

 if(ch=='\n'){
 break;
 }
 word[jw]=ch;
 jw=jw+1;
 }
 lectures=atoi(word);
 //printf("String Number=*%s*\n",word);
 lectures=lectures/376;
 printf("Number=*%d*\n",lectures);
 fflush(stdout);
 vertex_search=0;
 }
 else{
 memset (word, '\0', sizeof(word));
 jw=0;
 }
 }
 }
 //printf("Last lines value=*%s*\n",lines);
 //printf("\n");

165

 if (strcmp(lines,"end_header")==0){
 //printf("*****EOH found*****\n");
 break;
 }
 }

 //printf("Loop terminated\n");

// Mat M(2,2, CV_16UC2, Scalar(0,8100));
float factor=1; //1.3

 Mat M(lectures,376, CV_16UC3, Scalar(0,0,0));

 i=0;
 k=0;
 xval=0;
 while(!feof(f)){

 if (i==376){
 i=0;
 }

 memset (lines, '\0', sizeof(lines));
 j=0;
 coord=0;

 while((ch = fgetc(f)) != '\n'){
 if(feof(f)){
 break;
 }
 if (ch != '\t') {
 lines[j]=ch;
 j=j+1;
 }
 else{
 if (coord==0){
 xval_pre=atoi(lines)/10;
 if (xval!=xval_pre)
 {
 k=k+1;
 xval=xval_pre;
 }
 if (startx==0)
 startx=xval; //first X value from the sensor lectures

 }
 else{
 yval=atoi(lines);
 }

166

 coord=coord+1;
 memset (lines, '\0', sizeof(lines));
 j=0;
 }
 }
 zval=atoi(lines);

 M.at<short>(k-1,(i*3)+0)=xval;//(i*3)+0)=xval;
 M.at<short>(k-1,(i*3)+1)=yval;//xval-startx
 M.at<short>(k-1,(i*3)+2)=zval;

//*************imprimir valores de documento
 //printf("x: % 10d\ty: %10d\tz: % 10d\n",xval,yval,zval);
 //fflush(stdout);
//*************imprimir valores de documento

 i=i+1;
 }

 fclose(f);

//*************imprimir valores de matriz
 //cout << "New Mat = " << endl << " " << M << endl << endl;
 //return -1;
//*************imprimir valores de matriz END

#endif
// M=M*10;
/// Apply Histogram Equalization
 vector<Mat> spl;
 Mat src, dst, tmp;

 split(M,spl);
 src=spl[2];

//*************imprimir valores de matriz Zval
 //cout << "New Mat = " << endl << " " << spl[1] << endl << endl;
 //return -1;
//*************imprimir valores de matriz Zval END

// cout << "Val short = " << endl << " " << spl[1].at<short>(0,4) << endl << endl; //Access Yval
SIGNED

//*************imprimir valores de matriz Zval
 // cout << "New Mat = " << endl << " " << src << endl << endl;
 // return -1;
//*************imprimir valores de matriz Zval END

// equalizeHist(M, dst);

167

//*************Filter unknown values
 //cout<<sizeof(src)<<endl;
 //cout<<src.size()<<endl;
 //cout<<src.rows<<endl;
 //cout<<src.cols<<endl;

//***************blur image
 //blur(src, tmp, Size(3,3));
 //src=tmp;
//***************blur image

 zmax=0;
 zmin=0xffff;// 64
 ymax=0x8000;
 ymin=0x7fff;//8000; // -32768
 xmax=0;
 xmin=0xffff;

 for (i=0; i < src.rows; i++) { //FIND MAX VALUE IN MAT
 for (j=0; j < src.cols; j++) {
 if (src.at<short>(i,j)>zmax){
 zmax=src.at<short>(i,j);
 }
 if ((src.at<short>(i,j)<zmin)&&(src.at<short>(i,j)!=0)){
 zmin=src.at<short>(i,j);
 }
 if (spl[1].at<short>(i,j)>ymax){
 ymax=spl[1].at<short>(i,j);
 }
 if (spl[1].at<short>(i,j)<ymin){
 ymin=spl[1].at<short>(i,j);
 }
 if (spl[0].at<short>(i,j)>xmax){
 xmax=spl[0].at<short>(i,j);
 }
 if (spl[0].at<short>(i,j)<xmin){
 xmin=spl[0].at<short>(i,j);
 }
 }
 }
 cout<<"Max z value found="<<zmax<<endl;
 cout<<"Min z value found="<<zmin<<endl;
 cout<<"Max y value found="<<ymax<<endl;
 cout<<"Min y value found="<<ymin<<endl;
 cout<<"Max x value found="<<xmax<<endl;
 cout<<"Min x value found="<<xmin<<endl;

 //return -1;

 Mat Mnew((xmax-xmin+1),(int)((float)(ymax-ymin+1)/10+0.5), CV_16UC1, Scalar(0));

168

 cout<<"Size new mat= "<<Mnew.size()<<endl;

 for (i=0; i < spl[0].rows; i++) { //ADJUST UNKNOWN VALUES IN MAT
 for (j=0; j < spl[0].cols; j++) {
 if ((spl[2].at<short>(i,j)>(maxh))||(spl[2].at<short>(i,j)==0)){ //offset of 3mm to filter ground
values of noise -30
 spl[2].at<short>(i,j)=maxh+offset;//4600;//4560;zmax; //offset between figures and
base plane to find borders
 }
 xval= (spl[0].at<short>(i,j)-xmin);
 yval= (int)((float)(spl[1].at<short>(i,j)-ymin)/10+0.5); //valor en mm redondeado a partir
de 0.5 mm
// zval= (zmax-spl[2].at<short>(i,j))/6; //factor de normalizacion a 256 para 15 cm de
altura maxima
 zval= ((maxh+offset)-spl[2].at<short>(i,j))/6; //factor de normalizacion a 256 para 15 cm
de altura maxima
 //cout<<"Control 2. line.364: i "<<i<<" j "<<j<<" xval "<<xval<<"\tyval "<<yval<<"\tzval
"<<zval<<endl;
 //cout<<"Size new mat= "<<Mnew.size()<<endl;

 if((Mnew.at<short>(xval,yval))<zval){
 //if(((Mnew.at<short>(xval,yval))==0)||((Mnew.at<short>(xval,yval))<zval)){
 Mnew.at<short>(xval,yval)=zval;
 }
 }
 }

 //***************blur image
 //blur(src, tmp, Size(3,3));
 //src=tmp;
 //***************blur image

 //***************ZOOM image x2
 //pyrUp(src, tmp, Size(src.cols*2, src.rows*2));
 //***************ZOOM image x2

//***************normalize image (

 //normalize(tmp, dst, 0, 65535, NORM_MINMAX);
 //bitwise_not (src, dst);
 int val=1;

 Mnew.convertTo(dst, CV_8UC1);

 tmp=dst;

 namedWindow("GS0 proportional unfiltered",WINDOW_AUTOSIZE);//
WINDOW_NORMAL|WINDOW_KEEPRATIO); // Create a window for display.
 imshow("GS0 proportional unfiltered", dst); // Show our image inside it.
 //waitKey(0);
 //return -1;

169

 //waitKey(0); // Wait for a keystroke in the window

 dst_borders = Mat::zeros(dst.rows, dst.cols, CV_8UC3);
 dst_gs = Mat::zeros(dst.rows, dst.cols, CV_8UC1);
 dst_gs_temp= Mat::zeros(dst.rows, dst.cols, CV_8UC1);
 Mat only_borders = Mat::zeros(dst.rows, dst.cols, CV_8UC3);
 gray_borders = Mat::zeros(dst.rows, dst.cols, CV_8UC1);//fondo negro
 Mat rect_gradient = Mat::zeros(dst.rows, dst.cols, CV_8UC1);//fondo negro
// Mat gray_borders = Mat::ones(dst.rows, dst.cols, CV_8UC1)*255;//fondo blanco
 Mat poly_borders = Mat::zeros(dst.rows, dst.cols, CV_8UC3);
 //cout<<"size Mat: "<<dst_borders.size()<<endl;
// return -1;
 Mat element = getStructuringElement(
MORPH_RECT,Size(3,3));//Point(1,1));//MORPH_RECT //MORPH_CROSS
//MORPH_ELLIPSE

 namedWindow("GS proportional", WINDOW_NORMAL|WINDOW_KEEPRATIO); // Create
a window for display.

 //imshow("GS proportional", dst); // Show our image inside it.
 //waitKey(0);
 dilate(tmp,dst,element);
 tmp=dst;
 //imshow("GS proportional", dst); // Show our image inside it.
 //waitKey(0);
 erode(tmp,dst,element);
 tmp=dst;
 //imshow("GS proportional", dst); // Show our image inside it.
 //waitKey(0);
 erode(tmp,dst,element);
 tmp=dst;
 //imshow("GS proportional", dst); // Show our image inside it.
 //waitKey(0);

 element = getStructuringElement(MORPH_RECT,Size(9,3)); //eliminate noise in the border
of the images

 erode(tmp,dst,element);
 tmp=dst;
 //imshow("GS proportional", dst); // Show our image inside it.
 //waitKey(0);

 element = getStructuringElement(MORPH_RECT,Size(9,3));

 dilate(tmp,dst,element);
 tmp=dst;
 //imshow("GS proportional", dst); // Show our image inside it.
 //waitKey(0);

170

 for (i=0; i < dst.rows; i++) { //copy in dst_borders original filtered image
 for (j=0; j < dst.cols; j++) {
 dst_gs.at<unsigned char>(i,j)= dst.at<unsigned char>(i,j);
 dst_borders.at<unsigned char>(i,(j*3)+0)= dst.at<unsigned char>(i,j);
 dst_borders.at<unsigned char>(i,(j*3)+1)= dst.at<unsigned char>(i,j);
 dst_borders.at<unsigned char>(i,(j*3)+2)= dst.at<unsigned char>(i,j);
 }
 }

 imshow("GS proportional", dst_gs); // Show our image inside it.
 //waitKey(0);
 //return -1;
 //***************blur image //NOT NEEDED TO BLUR
 //blur(tmp, dst, Size(3,3));
 //tmp=dst;
 //blur(tmp, dst, Size(3,3));
 //tmp=dst;
 //***************blur image

 Canny(dst, dst, val, val*3, 3);

 dilate(tmp,dst,element); //filter stage for borders found, to close objects completely
 tmp=dst;
 erode(tmp,dst,element);
 tmp=dst;

 //imwrite("objetos9_border.jpg", dst);

 //namedWindow("GS proportional borders",
WINDOW_AUTOSIZE);//WINDOW_NORMAL|WINDOW_KEEPRATIO); // Create a window for
display.
 //imshow("GS proportional borders", dst); // Show our image inside it.
 //waitKey(0); // Wait for a keystroke in the window

 //src = src > 1;
 namedWindow("Source", 1);
 imshow("Source", dst);

 vector<vector<Point> > contours;
 vector<Vec4i> hierarchy;

 findContours(dst, contours, hierarchy,
 CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

171

//create variables for next section
 vector<vector<Point> > poly_contours(contours.size());
 vector<Rect> boundRect(contours.size());
 vector<Point2f>center(contours.size());
 vector<vector<Point2f> > rect_vtx(contours.size());
 Point2f vtx[4];
 vector<float>radius(contours.size());
 vector<vector<Point2f> > boundTriang(contours.size());
 vector<RotatedRect> boundRect2(contours.size());

 vector<double> area_poly(contours.size());
 vector<double> area_rect(contours.size());
 vector<double> area_triang(contours.size());
 vector<double> area_circle(contours.size());

 vector<bool> is_object(contours.size());
 vector<bool> is_rectangle(contours.size());
 vector<bool> is_triangle(contours.size());
 vector<bool> is_circle(contours.size());
 vector<int> object_identified(contours.size());

 Mat rot_M;

 bool closed=true;
 int start_x;
 int start_y;
 int end_x;
 int end_y;
//create variables for next section

 // iterate through all the top-level contours,
 // draw each connected component with its own random color
 int idx = 0;
 for(; idx >= 0; idx = hierarchy[idx][0])
 {
 //define color for each object
 Scalar color(rand()&255, rand()&255, rand()&255);
 Scalar color2(idx+1);//asigna valores escala grises a cada objeto encontrado (de 0 a n
objetos)
 //Scalar color2(idx*255/contours.size(), idx*255/contours.size(), idx*255/contours.size());
 //Scalar color2((idx+1)*255/(contours.size()+1));//asigna valores escala grises a cada
objeto encontrado (0-255)

 //**
 // Calculate data required for each object found

 approxPolyDP(contours[idx], poly_contours[idx], 3, closed); //approximate
polygon with obtained contours
 boundRect[idx] = boundingRect(Mat(poly_contours[idx])); //bounding straight
rectangle
 minEnclosingCircle((Mat)poly_contours[idx], center[idx], radius[idx]);

172

 boundRect2[idx]=minAreaRect((Mat)poly_contours[idx]);
 boundRect2[idx].points(vtx);
 minEnclosingTriangle((Mat)poly_contours[idx], boundTriang[idx]);

 //****draw surrounding rectangle
 //rectangle(poly_borders, boundRect[idx].tl(), boundRect[idx].br(), color, 1, 8, 0);
 //****draw surrounding rectangle

 //****draw surrounging circle
 circle(poly_borders, center[idx], (int)radius[idx], Scalar(255, 0, 0), 1, 8, 0);
 //****draw surrounging circle

 // Draw the triangle
 //************draw triangles surrounding
 for(i = 0; i < 3; i++)
 line(poly_borders, boundTriang[idx][i], boundTriang[idx][(i+1)%3], Scalar(0, 255, 0), 1,
LINE_AA);
 //************draw triangles surrounding

 //**** Draw the bounding box tilted
 for(i = 0; i < 4; i++){
 line (poly_borders,vtx[i],vtx[(i+1)%4],Scalar(0, 0, 255),1,8);//LINE_AA);
 rect_vtx[idx].push_back(vtx[i]);
 }
 //cout<<endl<<"poly "<<idx<<endl<<rect_vtx[idx];

 //**** Draw the bounding box tilted

 drawContours(poly_borders, poly_contours, idx, color, 1, 8, hierarchy);//CV_FILLED

 drawContours(dst_borders, contours, idx, color, 1, 8, hierarchy);//CV_FILLED
 drawContours(only_borders, contours, idx, color, 1, 8, hierarchy);//CV_FILLED
 drawContours(gray_borders, contours, idx, color2 , -1, 8, hierarchy);//CV_FILLED

 //draw center of objects (circles and cross) in center of each object
 circle(poly_borders,(Point) boundRect2[idx].center , 5, Scalar(255,0,0), 1, 8, 0);
 int length_cross=1;
 line (poly_borders, (Point){boundRect2[idx].center.x-
length_cross,boundRect2[idx].center.y},

(Point){boundRect2[idx].center.x+length_cross,boundRect2[idx].center.y},Scalar(255,0,0),1,8);//
LINE_AA);
 line (poly_borders,(Point) {boundRect2[idx].center.x,boundRect2[idx].center.y-
length_cross},
 (Point)
{boundRect2[idx].center.x,boundRect2[idx].center.y+length_cross},Scalar(255,0,0),1,8);//LINE_
AA);
 //draw center of objects (circles and cross) in center of each object END

 //write number to each object in POLYBORDERS
 char buffer[100] = {0};

173

 putText(poly_borders, itoa(idx,buffer,10),
 (Point) {(int)boundRect2[idx].center.x+4,(int)boundRect2[idx].center.y-4},
 FONT_HERSHEY_SIMPLEX, 0.4, color, 1, 8, false); //to_string(idx)

 //write number to each object in COMPONENTS
 putText(dst_borders, itoa(idx,buffer,10),
 (Point) {(int)boundRect2[idx].center.x+4,(int)boundRect2[idx].center.y-4},
 FONT_HERSHEY_SIMPLEX, 0.4, color, 1, 8, false); //to_string(idx)
 //write number to each object in COMPONENTS END

 //***********calculate different information
 cout<<"*********************************"<<endl;
 cout<<"rect "<<idx<<" size= "<<(Point) boundRect2[idx].size<<endl;//
(width,height)
 cout<<"rect "<<idx<<" width= "<< (float)boundRect2[idx].size.width<<endl;//
(width,height)
 cout<<"rect "<<idx<<" height= "<< (float) boundRect2[idx].size.height<<endl;//
(width,height)
 //cout<<"rect "<<idx<<" X= "<< boundRect2[idx].center.x<<endl;//(Point)
 //cout<<"rect "<<idx<<" Y= "<< boundRect2[idx].center.y<<endl;//(Point)
 cout<<"rect "<<idx<<" center= "<< (Point) boundRect2[idx].center<<endl;//
(Point)Position
 cout<<"rect "<<idx<<" angle= "<< boundRect2[idx].angle<<endl;// (angle)

 area_poly[idx] = contourArea(poly_contours[idx]);
 area_rect[idx]= contourArea(rect_vtx[idx]);
 area_triang[idx]= contourArea(boundTriang[idx]);
 area_circle[idx]= radius[idx]*radius[idx]*3.14159;
 cout << "area poly "<<idx <<"= "<< area_poly[idx] << endl;
 cout << "area rectangulo "<<idx <<"= "<< area_rect[idx] << endl;
 cout << "area triangulo "<<idx <<"= "<< area_triang[idx] << endl;
 cout << "area circulo "<<idx <<"= "<< area_circle[idx] << endl;

 if (area_poly[idx]>100) //value for an object of 1x1cm area
 {
 is_object[idx]=true;
 if((abs(area_poly[idx]-area_circle[idx])/area_poly[idx]*100)<error_allowed) //umbral de
error del 5% de coincidencia de areas
 {
 is_rectangle[idx]=false;
 is_triangle[idx]=false;
 is_circle[idx]=true;
 }
 else if((abs(area_poly[idx]-area_rect[idx])/area_poly[idx]*100)<error_allowed) //umbral
de error del 5% de coincidencia de areas
 {
 is_rectangle[idx]=true;
 is_triangle[idx]=false;
 is_circle[idx]=false;
 }

174

 else if((abs(area_poly[idx]-area_triang[idx])/area_poly[idx]*100)<error_allowed) //umbral
de error del 5% de coincidencia de areas
 {
 is_rectangle[idx]=false;
 is_triangle[idx]=true;
 is_circle[idx]=false;
 }

 }
 else
 {
 is_object[idx]=false;
 is_rectangle[idx]=false;
 is_triangle[idx]=false;
 is_circle[idx]=false;

 }

 cout << "***Figure "<<idx <<" is ";
 if (is_object[idx]==false)
 cout<<"NOT and object ***"<<endl;
 else if (is_rectangle[idx]==true)
 cout<<"a rectangle ***"<<endl;
 else if (is_triangle[idx]==true)
 cout<<"a triangle ***"<<endl;
 else if (is_circle[idx]==true)
 cout<<"a circle ***"<<endl;
 else
 cout<<"an UNKNOWN object ***"<<endl;

 if (is_rectangle[idx]==true) //algoritmo para rotacion de prisma cuadrado y analisis de
gradiente
 {
 rot_M=getRotationMatrix2D((Point) boundRect2[idx].center,boundRect2[idx].angle,1);
//Rotation matrix, scale factor=1
 cout<<rot_M<<endl;
 dst_gs_temp= Mat::zeros(dst_gs.rows, dst_gs.cols, CV_8UC1);
 for (i=0; i < dst_gs.rows; i++) { //copy in dst_borders original filtered image
 for (j=0; j < dst_gs.cols; j++) {
 if ((int)gray_borders.at<unsigned char>(i,j)==(idx+1)) //object n has GS value n+1
(zero reserved for background)
 {
 dst_gs_temp.at<unsigned char>(i,j)=dst_gs.at<unsigned char>(i,j);
 }
 }
 }

 warpAffine(dst_gs_temp, rect_gradient, rot_M, Size
(rect_gradient.cols,rect_gradient.rows));//(rect_gradient.cols,rect_gradient.rows));//, int

175

flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar&
borderValue=Scalar())
 namedWindow("Components", WINDOW_NORMAL|WINDOW_KEEPRATIO);

 cout<<"center: "<<(Point2f)boundRect2[idx].center<<endl;
 cout<<"X: "<<boundRect2[idx].center.x<<" Y: "<<boundRect2[idx].center.y<<endl;

 start_x=(int)(boundRect2[idx].center.x-boundRect2[idx].size.width/2+border);
 start_y=(int)(boundRect2[idx].center.y-boundRect2[idx].size.height/2+border);
 end_x=(int)(boundRect2[idx].center.x+boundRect2[idx].size.width/2-border);
 end_y=(int)(boundRect2[idx].center.y+boundRect2[idx].size.height/2-border);

 cout<<"startx= "<<start_x<<", starty= "<<start_y<<", endx= "<<end_x<<", endy=
"<<end_y<<endl;

 cout<<"pixel value x0y0= "<<(int) rect_gradient.at<unsigned char>(start_y,start_x)<<endl;
 cout<<"pixel value x0y1= "<<(int) rect_gradient.at<unsigned char>(end_y,start_x)<<endl;
 cout<<"pixel value x1y1= "<<(int) rect_gradient.at<unsigned char>(end_y,end_x)<<endl;
 cout<<"pixel value x1y0= "<<(int) rect_gradient.at<unsigned char>(start_y,end_x)<<endl;
 //line (rect_gradient,(Point2f)(boundRect2[idx].center),(Point){boundRect2[idx].center.x-
boundRect2[idx].size.width/2+border,boundRect2[idx].center.y-
boundRect2[idx].size.height/2+border},Scalar(255),1,8);//LINE_AA);

 int pxn; //px n
 int pxn1; //px n+1
 int contpx=0; //pixels counter
 int gradx[end_x-start_x];
 int grady[end_y-start_y];

 //*************gradient X
 //*****gradient analisys top horizontal line
 for (i=start_x;i<(end_x);i++)
 {
 //cout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<",";
 pxn=(int) rect_gradient.at<unsigned char>(start_y,i);
 if (pxn!=0)
 {
 pxn1=(int) rect_gradient.at<unsigned char>(start_y,i+1);
 if (pxn1!=0)
 {
 gradx[contpx]=pxn1-pxn;
 contpx=contpx+1;
 }
 }
 }
 //cout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<endl;
 cout<<"Top horizontal Gradients: ";

 int cont_pos=0;
 int cont_neut=0;
 int cont_neg=0;

176

 int actual=-1;
 int last=-1;

 //for (i=0;i<contpx;i++)
 //cout<<gradx[i]<<",";

// cout<<endl<<endl;

 for (i=0;i<contpx;i++)
 {
 //cout<<gradx[i]<<",";

 if (gradx[i]<0)
 {
 if (last!=1)
 cont_neg=cont_neg+1;
 last=0;
 }
 else if (gradx[i]>0)
 {
 if (last!=0)
 cont_pos=cont_pos+1;
 last=1;
 }
 else
 {
 cont_neut=cont_neut+1;
 last=2;
 }

 if ((last==0))//&&(actual!=0))
 {
 if(cont_neg>4)
 {
 //actual=0;
 cont_pos=0;
 cont_neut=0;
 cont_neg=1;
 //cout<<"neg "; //prints every other neg
 if (actual!=0)
 {
 cout<<"neg "; //prints only one consecutive neg
 actual=0;
 }
 }
 }
 else if ((last==1))//&&(actual!=1))
 {
 if(cont_pos>4)
 {
 cont_neg=0;

177

 cont_neut=0;
 cont_pos=1;
 if (actual!=1)
 {
 cout<<"pos ";
 actual=1;
 }

 //cout<<"pos ";
 }
 }
 else if (last==2)
 {
 if(cont_neut>4)
 {
 if(cont_neg>3)
 {
 cont_neut=0;
 }
 else if(cont_pos>3)
 {
 cont_neut=0;
 }
 else
 {
 if (actual!=2)
 {
 cout<<"neut ";
 actual=2;
 }

 cont_neut=0;
 cont_pos=0;
 cont_neg=0;
 }
 }
 }
 }
 cout<<endl<<endl;

 //*****gradient analisys top horizontal line END

 contpx=0; //pixels counter
 memset (gradx, '\0', sizeof(gradx));
// int gradx[end_x-start_x];

 //*****gradient analisys central horizontal line
 for (i=start_x;i<(end_x);i++)
 {
 //cout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<",";
 pxn=(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i);

178

 if (pxn!=0)
 {
 pxn1=(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i+1);
 if (pxn1!=0)
 {
 gradx[contpx]=pxn1-pxn;
 contpx=contpx+1;
 }
 }
 }
 //cout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<endl;
 cout<<"Central horizontal Gradients: ";

 cont_pos=0;
 cont_neut=0;
 cont_neg=0;
 actual=-1;
 last=-1;

 //for (i=0;i<contpx;i++)
 //cout<<gradx[i]<<",";

// cout<<endl<<endl;

 for (i=0;i<contpx;i++)
 {
 //cout<<gradx[i]<<","; // desactivar print gradient**************************

 if (gradx[i]<0)
 {
 if (last!=1)
 cont_neg=cont_neg+1;
 last=0;
 }
 else if (gradx[i]>0)
 {
 if (last!=0)
 cont_pos=cont_pos+1;
 last=1;
 }
 else
 {
 cont_neut=cont_neut+1;
 last=2;
 }

 if ((last==0))//&&(actual!=0))
 {
 if(cont_neg>4)
 {
 //actual=0;

179

 cont_pos=0;
 cont_neut=0;
 cont_neg=1;
 //cout<<"neg "; //prints every other neg
 if (actual!=0)
 {
 cout<<"neg "; //prints only one consecutive neg
 actual=0;
 }
 }
 }
 else if ((last==1))//&&(actual!=1))
 {
 if(cont_pos>4)
 {
 cont_neg=0;
 cont_neut=0;
 cont_pos=1;
 if (actual!=1)
 {
 cout<<"pos ";
 actual=1;
 }

 //cout<<"pos ";
 }
 }
 else if (last==2)
 {
 if(cont_neut>4)
 {
 if(cont_neg>3)
 {
 cont_neut=0;
 }
 else if(cont_pos>3)
 {
 cont_neut=0;
 }
 else
 {
 if (actual!=2)
 {
 cout<<"neut ";
 actual=2;
 }

 cont_neut=0;
 cont_pos=0;
 cont_neg=0;
 }

180

 }
 }
 }
 cout<<endl<<endl;
 //*****gradient analisys central horizontal line END

 contpx=0; //pixels counter
 //int gradx[end_x-start_x];
 memset (gradx, '\0', sizeof(gradx));

 //*****gradient analisys bottom horizontal line
 for (i=start_x;i<(end_x);i++)
 {
 //cout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<",";
 pxn=(int) rect_gradient.at<unsigned char>(end_y,i);
 if (pxn!=0)
 {
 pxn1=(int) rect_gradient.at<unsigned char>(end_y,i+1);
 if (pxn1!=0)
 {
 gradx[contpx]=pxn1-pxn;
 contpx=contpx+1;
 }
 }
 }
 //cout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<endl;
 cout<<"Bottom horizontal Gradients: ";

 cont_pos=0;
 cont_neut=0;
 cont_neg=0;
 actual=-1;
 last=-1;

 //for (i=0;i<contpx;i++)
 //cout<<gradx[i]<<",";

// cout<<endl<<endl;

 for (i=0;i<contpx;i++)
 {
 //cout<<gradx[i]<<",";

 if (gradx[i]<0)
 {
 if (last!=1)
 cont_neg=cont_neg+1;
 last=0;
 }
 else if (gradx[i]>0)
 {

181

 if (last!=0)
 cont_pos=cont_pos+1;
 last=1;
 }
 else
 {
 cont_neut=cont_neut+1;
 last=2;
 }

 if ((last==0))//&&(actual!=0))
 {
 if(cont_neg>4)
 {
 //actual=0;
 cont_pos=0;
 cont_neut=0;
 cont_neg=1;
 //cout<<"neg "; //prints every other neg
 if (actual!=0)
 {
 cout<<"neg "; //prints only one consecutive neg
 actual=0;
 }
 }
 }
 else if ((last==1))//&&(actual!=1))
 {
 if(cont_pos>4)
 {
 cont_neg=0;
 cont_neut=0;
 cont_pos=1;
 if (actual!=1)
 {
 cout<<"pos ";
 actual=1;
 }

 //cout<<"pos ";
 }
 }
 else if (last==2)
 {
 if(cont_neut>4)
 {
 if(cont_neg>3)
 {
 cont_neut=0;
 }
 else if(cont_pos>3)

182

 {
 cont_neut=0;
 }
 else
 {
 if (actual!=2)
 {
 cout<<"neut ";
 actual=2;
 }

 cont_neut=0;
 cont_pos=0;
 cont_neg=0;
 }
 }
 }
 }
 cout<<endl<<endl; //*****gradient analisys bottom horizontal line END
 //*************gradient X END

 //waitKey(0);

 /* for (i=start_x;i<end_x;i++)
 cout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<",";
 cout<<endl;
 for (i=start_x;i<end_x;i++)
 cout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<",";
 cout<<endl;*/
 cout<<"********************************"<<endl;
 //*************gradient Y
 //*****gradient analisys first vertical line
 //for (i=start_y;i<end_y;i++)
 // cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";
 contpx=0; //pixels counter
 for (i=start_y;i<end_y;i++)
 {
 //cout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<",";
 pxn=(int) rect_gradient.at<unsigned char>(i,start_x);
 if (pxn!=0)
 {
 pxn1=(int) rect_gradient.at<unsigned char>(i+1,start_x);
 if (pxn1!=0)
 {
 grady[contpx]=pxn1-pxn;
 contpx=contpx+1;
 }
 }
 }
 //cout<<(int) rect_gradient.at<unsigned char>(start_y,i)<<endl;
 cout<<"First vertical Gradients: ";

183

 cont_pos=0;
 cont_neut=0;
 cont_neg=0;
 actual=-1;
 last=-1;

 //for (i=0;i<contpx;i++)
 //cout<<gradx[i]<<",";

// cout<<endl<<endl;

 for (i=0;i<contpx;i++)
 {
 //cout<<gradx[i]<<",";

 if (grady[i]<0)
 {
 if (last!=1)
 cont_neg=cont_neg+1;
 last=0;
 }
 else if (grady[i]>0)
 {
 if (last!=0)
 cont_pos=cont_pos+1;
 last=1;
 }
 else
 {
 cont_neut=cont_neut+1;
 last=2;
 }

 if ((last==0))//&&(actual!=0))
 {
 if(cont_neg>4)
 {
 //actual=0;
 cont_pos=0;
 cont_neut=0;
 cont_neg=1;
 //cout<<"neg "; //prints every other neg
 if (actual!=0)
 {
 cout<<"neg "; //prints only one consecutive neg
 actual=0;
 }
 }
 }
 else if ((last==1))//&&(actual!=1))

184

 {
 if(cont_pos>4)
 {
 cont_neg=0;
 cont_neut=0;
 cont_pos=1;
 if (actual!=1)
 {
 cout<<"pos ";
 actual=1;
 }

 //cout<<"pos ";
 }
 }
 else if (last==2)
 {
 if(cont_neut>4)
 {
 if(cont_neg>3)
 {
 cont_neut=0;
 }
 else if(cont_pos>3)
 {
 cont_neut=0;
 }
 else
 {
 if (actual!=2)
 {
 cout<<"neut ";
 actual=2;
 }

 cont_neut=0;
 cont_pos=0;
 cont_neg=0;
 }
 }
 }
 }
 cout<<endl<<endl;
//*****gradient analisys first vertical line END

 contpx=0; //pixels counter
 memset (grady, '\0', sizeof(grady));
// int gradx[end_x-start_x];
 //for (i=start_y;i<end_y;i++)
 // cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";

185

 //*****gradient analisys central vertical line
 for (i=start_y;i<end_y;i++)
 {
 //cout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<",";
 pxn=(int) rect_gradient.at<unsigned char>(i,boundRect2[idx].center.x);
 if (pxn!=0)
 {
 pxn1=(int) rect_gradient.at<unsigned char>(i+1,boundRect2[idx].center.x);
 if (pxn1!=0)
 {
 grady[contpx]=pxn1-pxn;
 contpx=contpx+1;
 }
 }
 }
 //cout<<(int) rect_gradient.at<unsigned char>(boundRect2[idx].center.y,i)<<endl;
 cout<<"Central vertical Gradients: ";

 cont_pos=0;
 cont_neut=0;
 cont_neg=0;
 actual=-1;
 last=-1;

 //for (i=0;i<contpx;i++)
 //cout<<gradx[i]<<",";

// cout<<endl<<endl;

 for (i=0;i<contpx;i++)
 {
 //cout<<gradx[i]<<",";

 if (grady[i]<0)
 {
 if (last!=1)
 cont_neg=cont_neg+1;
 last=0;
 }
 else if (grady[i]>0)
 {
 if (last!=0)
 cont_pos=cont_pos+1;
 last=1;
 }
 else
 {
 cont_neut=cont_neut+1;
 last=2;
 }

186

 if ((last==0))//&&(actual!=0))
 {
 if(cont_neg>4)
 {
 //actual=0;
 cont_pos=0;
 cont_neut=0;
 cont_neg=1;
 //cout<<"neg "; //prints every other neg
 if (actual!=0)
 {
 cout<<"neg "; //prints only one consecutive neg
 actual=0;
 }
 }
 }
 else if ((last==1))//&&(actual!=1))
 {
 if(cont_pos>4)
 {
 cont_neg=0;
 cont_neut=0;
 cont_pos=1;
 if (actual!=1)
 {
 cout<<"pos ";
 actual=1;
 }

 //cout<<"pos ";
 }
 }
 else if (last==2)
 {
 if(cont_neut>4)
 {
 if(cont_neg>3)
 {
 cont_neut=0;
 }
 else if(cont_pos>3)
 {
 cont_neut=0;
 }
 else
 {
 if (actual!=2)
 {
 cout<<"neut ";
 actual=2;
 }

187

 cont_neut=0;
 cont_pos=0;
 cont_neg=0;
 }
 }
 }
 }
 cout<<endl<<endl;
 //*****gradient analisys central vertical line END

 contpx=0; //pixels counter
 //int gradx[end_x-start_x];
 memset (grady, '\0', sizeof(grady));
 //for (i=start_y;i<end_y;i++)
 // cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";

 //*****gradient analisys last vertical line
 for (i=start_y;i<end_y;i++)
 {
 //cout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<",";
 pxn=(int) rect_gradient.at<unsigned char>(i,end_x);
 if (pxn!=0)
 {
 pxn1=(int) rect_gradient.at<unsigned char>(i+1,end_x);
 if (pxn1!=0)
 {
 grady[contpx]=pxn1-pxn;
 contpx=contpx+1;
 }
 }
 }
 //cout<<(int) rect_gradient.at<unsigned char>(end_y,i)<<endl;
 cout<<"Last vertical Gradients: ";

 cont_pos=0;
 cont_neut=0;
 cont_neg=0;
 actual=-1;
 last=-1;

 //for (i=0;i<contpx;i++)
 //cout<<gradx[i]<<",";

// cout<<endl<<endl;

 for (i=0;i<contpx;i++)
 {
 //cout<<gradx[i]<<",";

 if (grady[i]<0)

188

 {
 if (last!=1)
 cont_neg=cont_neg+1;
 last=0;
 }
 else if (grady[i]>0)
 {
 if (last!=0)
 cont_pos=cont_pos+1;
 last=1;
 }
 else
 {
 cont_neut=cont_neut+1;
 last=2;
 }

 if ((last==0))//&&(actual!=0))
 {
 if(cont_neg>4)
 {
 //actual=0;
 cont_pos=0;
 cont_neut=0;
 cont_neg=1;
 //cout<<"neg "; //prints every other neg
 if (actual!=0)
 {
 cout<<"neg "; //prints only one consecutive neg
 actual=0;
 }
 }
 }
 else if ((last==1))//&&(actual!=1))
 {
 if(cont_pos>4)
 {
 cont_neg=0;
 cont_neut=0;
 cont_pos=1;
 if (actual!=1)
 {
 cout<<"pos ";
 actual=1;
 }

 //cout<<"pos ";
 }
 }
 else if (last==2)
 {

189

 if(cont_neut>4)
 {
 if(cont_neg>3)
 {
 cont_neut=0;
 }
 else if(cont_pos>3)
 {
 cont_neut=0;
 }
 else
 {
 if (actual!=2)
 {
 cout<<"neut ";
 actual=2;
 }

 cont_neut=0;
 cont_pos=0;
 cont_neg=0;
 }
 }
 }
 }
 cout<<endl<<endl;
 //*****gradient analisys last vertical line END
 //*************gradient Y END
/* for (i=start_y;i<end_y;i++)
 cout<<(int) rect_gradient.at<unsigned char>(i,start_x)<<",";
 cout<<endl;
 for (i=start_y;i<end_y;i++)
 cout<<(int) rect_gradient.at<unsigned char>(i,boundRect2[idx].center.x)<<",";
 cout<<endl;
 for (i=start_y;i<end_y;i++)
 cout<<(int) rect_gradient.at<unsigned char>(i,end_x)<<",";
 cout<<endl;*/

 //rectangle analized from each rectangle
 line
(rect_gradient,(Point){end_x,start_y},(Point){start_x,start_y},Scalar(255),1,8);//LINE_AA);
 line
(rect_gradient,(Point){start_x,start_y},(Point){start_x,end_y},Scalar(255),1,8);//LINE_AA);
 line
(rect_gradient,(Point){start_x,end_y},(Point){end_x,end_y},Scalar(255),1,8);//LINE_AA);
 line
(rect_gradient,(Point){end_x,end_y},(Point){end_x,start_y},Scalar(255),1,8);//LINE_AA);

190

 imshow("Components", rect_gradient);
 waitKey(0);
 //return -1;

 }

 }

//***
// Show images of obtained results

 namedWindow("Components", WINDOW_NORMAL|WINDOW_KEEPRATIO);
 imshow("Components", dst_borders);

 namedWindow("Only borders", WINDOW_NORMAL|WINDOW_KEEPRATIO);
 imshow("Only borders", only_borders);

 namedWindow("INT borders", WINDOW_NORMAL|WINDOW_KEEPRATIO);
 imshow("INT borders", gray_borders);

 namedWindow("Poly borders",WINDOW_NORMAL|WINDOW_KEEPRATIO
);//WINDOW_NORMAL|WINDOW_KEEPRATIO //WINDOW_AUTOSIZE
 imshow("Poly borders", poly_borders);

 cout<<endl<<"Objects found: "<<contours.size()<<endl;

 setMouseCallback("Components", onMouse, 0);

 waitKey(0); // Wait for a keystroke in the window
 return 0;
}

