
Analysis of source separation algorithms in
industrial acoustic environments

Clevis Lozano∗†, Andrés Gómez∗, Alfonso Chacón-Rodrı́guez∗, Fernando Merchán†, and Pedro Julian‡

∗ DCILab, Escuela de Ingenierı́a Electrónica, Tecnológico de Costa Rica

Email: alchacon@tec.ac.cr
†Facultad de Ingenierı́a Eléctrica, Universidad Tecnológica de Panamá

Email: anaclevis.lozano@utp.ac.pa, fernando.merchan@utp.ac.pa
‡Instituto de Investigaciones en Ingenierı́a Eléctrica, IIIE (UNS-CONICET)

Departamento de Ingenierı́a Eléctrica y de Computadoras

Universidad Nacional del Sur, Bahı́a Blanca, Argentina

Email: pjulian@uns.edu.ar

Abstract—This paper shows the results from the computation
cost evaluation of three blind source separation algorithms. The
algorithms tested were: FastICA, Adaptive Algorithm Based on
Natural Gradient, and Adaptive EASI Based on Relative Gradi-
ent. The algorithms were chosen for their relative simplicity, and
taking into account their hardware implementation feasibility,
either on a FPGA or an ASIC, as part of a system for acoustic
localization of mobile agents in industrial environments.

Index Terms—Blind Source Separation (BSS), FastICA, Adap-
tive Algorithm Based on Natural Gradient, Adaptive EASI Based
on Relative Gradient, FPGA, acoustic localization.

I. INTRODUCTION

It has been shown that is possible to estimate the distance

at which a sound source is located by either processing the

acoustic signals obtained by a set of microphones in a partic-

ular environment [1], or by using the time and phase difference

between the signals received by a network of sensors [2].

However, before being able to spatially locate an object by the

sound it emits, it is necessary to extract that same sound from

the acoustic signal in which other sounds (or even echoes and

reflections of the target signal) come bundled. This means that

Blind Source Separation (BSS) has to be performed on the raw

sound data, in order to extract the signal in question, before

proceeding to the localization process. However, BSS usually

means complex signal processing algorithms, which requires

a lot of matricial and statistical arithmetic, representing high

computational loads [3].
In industrial environments, where different sounds are emit-

ted at the same time, and where physical obstacles (some of

them mobile) unavoidably produce multi-path distortion and

reflections, audio signal analysis becomes a complex problem,

even more complex if you want to apply the techniques of

BSS [4]. These techniques are based on some probabilistic

assumptions, especially related to the statistical independence

among the signals to be extracted [4], [5]. Considering the

feasibility of having BSS in an integrated circuit, a sensible

step is to analyze and evaluate the required arithmetic opera-

tions by the most common algorithms, in order to rank them

in terms of implementation costs (mainly: a reasonable power

consumption on a relatively small silicon area), but keeping in

mind identification robustness. With this objective, Section II

presents the algorithmic description and preliminary computa-

tional cost analysis of three BSS algorithms, selected because

of their relatively low complexity, implemented using National

Instruments’ LabView programming framework. Section III

discusses the evaluation of the performance of each algorithm,

using signals captured from various wood processing machines

at an industrial workshop. Section IV presents conclusions and

future work.

II. DESCRIPTION AND COMPUTATIONAL COST OF THE

CHOSEN ALGORITHMS

Three BSS algorithms were chosen because of their relative

simplicity and their high potential of implementation in an

integrated circuit of low-cost in acoustic applications. For the

extraction of a sound source of interest in a mixture, statistical

independence is assumed among the sources for the signals

captured by the microphones [5]. Mixtures can be either

instantaneous or convolutive, and may be analyzed either in the

time domain or the frequency one. In the case reported here,

samples are instantaneous and analyzed in the time domain,

following examples in the literature of BSS applied in real

environments (see [6]). The following conventions are defined

in the implementation of the algorithms:

• P: Number of microphones.
• N: Sample size of data.
• J: Number of sources.
• A: Mixing matrix, P × J .
• B: Final separation matrix, J × P .
• s = [s1, s2, . . . , sJ]

T : Sound sources from the environment.
• v = [v1, v2, . . . , vP]

T : Observed signals in the microphones.
• x = [x1, x2, . . . , xP]

T : Observed signals after pre-processing.
• y = [y1, y2, . . . , yJ]

T : Estimated original sources.

A. FastICA Algorithm

FastICA is one of the most known algorithms for BSS, and

it is used especially because of its robustness and speed of

978-1-4799-8332-2/15/$31.00 c© 2015 IEEE

convergence [4], [7]. This algorithm operates with data blocks,

which entails having memory enough to store the blocks of

N data at each stage of processing. FastICA consists of three

phases, as shown in figure 1.

Fig. 1. Phases of the FastICA algorithm. The centering and the whitening
processes are indeed pre-processing operations that optimize the subsequent
ICA core processing.

The centering is the estimated data average of the input

array v and each of its rows v1, v2, . . . , vP , as follows:

v̄i = vi −
1

N

N∑

j=1

vij (1)

The basic arithmetic operations needed to center a row

vector are listed in table I. In hardware, this block should

be replicated P times in order to calculate the average of all

in parallel rows; an alternative is to insert sequencing logic to

use the same resources in P different times (pipelining thus

the process).

TABLE I
BASIC ARITHMETIC OPERATIONS NEEDED TO CENTER A VECTOR

Operations Estimated number Total

Sums N PN

Multiplications 1 P

Subtractions N PN

Total 2N + 1 2PN + P

The whitening process focuses on the estimation of the

covariance matrix from the data block. Table II shows the

total of arithmetic operations needed.

TABLE II
NUMBER OF ARITHMETIC OPERATIONS FOR THE WHITENING PROCESS,

WHERE k IS THE NUMBER OF ITERATIONS, A PARAMETER THAT

DETERMINES THE CONVERGENCE OF THE ALGORITHM.

Operations Total

Sums 1

2
(3N−1)P 2

−
1

2
(N+1)P+k((2P−1)

∑P−1

j=1
j+

P 3
− P)

Multiplications 3

2
(N + 1)P 2 + 1

2
(N + 3)P + k(P 3 + 3P 2 +

3P
∑P−1

j=1
j)

Subtractions kP
∑P−1

j=1
j

Divisions kP + 1
Square Roots kP + P

Total (3N + 1)P 2 + 2P + 1 + k(2P 3 + 3P 2 + ((6P −
1)

∑P−1

j=1
j) + P)

The FastICA technique has two core versions: one based

on kurtosis and one based on negentropy. In this case, an ICA

core version based on kurtosis was selected, considering that

its speed of convergence is 10 to 100 times faster compared

with others algorithms [8]. Table III summarizes the number

of arithmetic operations involved in the FastICA algorithm.

TABLE III
NUMBER OF ARITHMETIC OPERATIONS NEEDED FOR THE FASTICA CORE

ALGORITHM, BASED ON KURTOSIS. EVALUATED ON A N=20,000
SAMPLES INPUT DATA VECTOR.

Operations Total

Sums k
[

(J − 1)P 2 + 2NJP − J(N + 2) + 1
]

+ (J −

1)2
P 2 + P

2
Multiplications k

[

(J − 1)P 2 + (6J + 2NJ − 2)P + 2NJ
]

+

J(J − 1)(
P 2 + P

2
)

Subtractions kP (2J − 1)
Divisions k(2J − 1)
Square Roots k(2J − 1)
Total k

[

2(J − 1)P 2 + (4NJ + 8J − 3)P + NJ + 2J − 1
]

+

(2J − 1)(J − 1)(
P 2 + P

2
)

B. Adaptive Algorithm Based on Natural Gradient.

This algorithm operates from sample to sample in each

of the mixtures, which represents an advantage by not re-

quiring large amounts of memory to store input data blocks.

In addition, being adaptive, this algorithm minimizes the

statistical dependence between the sources, estimated on the

basis of the mutual information parameter; however, it has the

disadvantage that it may require a significant time to converge

[9]. The algorithm only requires centering of the input data

before applying the samples to the central core; a low-pass

filter (Eq. 2) is used for this operation, where α is the gain

of the filter. This calculation performs two multiplications, an

addition and a subtraction.

mi(t) = αxi(t) + (1 − α)mi(t− 1) (2)

The central core of the algorithm executes the following steps:

y(t) = B(t− 1)x(t) (3)

B(t) = B(t− 1)− µ[f(y)yT − I]B(t− 1) (4)

where, B is the matrix of size J × P and f(y) is the

activation function, defined as

f(y) =
3

4
y11 +

25

4
y9 −

14

3
y7 −

47

4
y5 +

29

4
y3

Table IV shows the total of arithmetic operations from the

previous two steps.

TABLE IV
NUMBER OF ARITHMETIC OPERATIONS NEEDED FOR THE CORE OF THE

ADAPTIVE ALGORITHM BASED ON NATURAL GRADIENT.

Operations Estimated number

Sums PJ2
− J

Multiplications (1 + P)J2 + (2P)J
Subtractions (1 + P)J

Total (2P + 1)J2 + 3PJ

C. Adaptive Algorithm EASI Based on Relative Gradient.

This adaptive algorithm was proposed by J. Cardoso [11].

This algorithm integrates whitening within the processing,

so data are not correlated and have unit variance. Like the

former algorithm, it requires only two stages, for a total of

two multiplications, a sum and a subtraction (for the centering

of the data). The number of operations for the EASI algorithm

is shown in table V, where a great variation in the number of

operations needed is not noticed with respect to the natural

gradient algorithm.

TABLE V
NUMBER OF ARITHMETIC OPERATIONS FOR THE CORE OF THE EASI

ALGORITHM.

Operations Estimated number

Sums (1 + P)J2
− J

Multiplications (2 + P)J2 + (2P)J
Subtractions J2 + (1 + P)J

Total 2(P + 2)J2 + (3P)J

III. EVALUATION OF THE ALGORITHMS’S EFFECTIVENESS

For the analysis and validation of the three implemented

algorithms, several sets of data were prepared. The first set

included three sounds coming from an industrial environment:

a truck’s horn, a tractor engine in steady-state and a chain-

saw that accelerates and decelerates (all super Gaussians).

These sounds were downloaded from the internet and were

used to check the algorithms’ performance on LabView. The

second data set included real data from several woodworking

machines, recorded at an industrial wood workshop. Signals

were acquired with a conventional LifeChat LX-6000 micro-

phone, located at 1 m distance from three different machines,

with each machine recorded one at a time. The recorded

machines were: an edger saw, a wood planer and a straight

saw (see figure 2). Data were sampled at 44.1 KHz. This

preliminary data allowed for the determination of the higher

energy components of each machine’s spectrogram, mainly

centered for all between 100 and 1000 Hz. A third data set

included two reference signals (a sine tone and a square

waveform with duty cycle of 10%), that were synthesized at

two different frequencies: 600 Hz and 1 kHz. These signals

were chosen after evaluating their non-Gaussianity to make

sure they are extractable (one of the requirements of the tested

BSS algorithms). The same test was performed on the recorded

sources and the results are indicated in table VI. A fourth data

set was obtained recordings the three machines simultaneously

with a network of omnidirectional microphones (this last data

set is still under analysis as of the writing of this paper).

To estimate the quality of the separation, a metric based on

the signal-to-interference ratio (S/I or SIR) was used (see [10]).

For the validation of the three algorithms’s effectiveness, four

linear and instantaneous mixtures y = [y1, y2, y3, y4]
T were

created as follows.

v = As (5)

where s = [s1, s2, s3, s4]
T are three real sources and one

reference signal (a square waveform with a duty cycle of 10%),
all with a size of 20,000 samples.

A =







0.173137 0.206178 0.808512 0.008549
0.477643 −0.681523 −0.995208 0.325804
−0.099216 −0.830972 −0.894772 0.130999
−0.549044 0.788603 −0.013563 0.298793







Fig. 2. Picture of the data collection setting: a small wood workshop.
Encircled are the three machines recorded: (A) A wood planer, (B) An edger
saw, (C) A straight saw.

TABLE VI
ESTIMATED KURTOSIS FOR EACH SOURCE. EACH SOURCE’S DATA BLOCK

IS 20000 SAMPLES LONG.

Source Kurtosis Classification

Edger saw 0.0145959 Super Gaussian
Wood planer −1.09793 Sub Gaussian
Straight saw 0.190877 Super Gaussian

Square waveform 38.989 Sub Gaussian
Sine tone −1.499 Sub Gaussian

The analysis was based on the number of iterations executed

and the quality of the separation for each algorithm, as shown

in Fig. 3. These results show that all signals were extracted.

The FastICA algorithm converged at the fourth iteration. More

iterations did not remarkably increase separation quality. By

three iterations, all estimations had exceeded 90% of the

expected value. In Fig. 3, we can observe that two signals,

the square waveform (in blue) and the wood planer (in green),

reached a very high SIR while the other two (edger saw and

straight saw) reached around 12 dB. We have noticed that

these two signals have a kurtosis near zero.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

160

Square wavef

Wood planer

Edge saw

Straight saw

Number of iterations

A
v
er

ag
e

S
IR

(d
B

)

Fig. 3. Number of iterations needed for the FastICA’s core algorithm.

To evaluate the two adaptive algorithms, the same blocks

of data, the function of non-linearity f(y) = tanh(y) and

a learning rate of 0.0001 were used. Table VII shows the

results. The first observed effect is that the quality of the

separation was very low (3 dB aprox.). Also, neither of the

adaptive algorithms was able to separate the four sources,

although the number of iterations was much greater compared

with FastICA algorithm. The reason for these results could

be the presence of two signals with kurtosis near zero. This

means that their distributions are not very different from the

Gaussian distribution. Results showed no big difference on the

behavior of the adaptive algorithms, in terms of the number

of iterations taken to converge.

TABLE VII
SEPARATION QUALITY RESULTS FOR THE NATURAL GRADIENT AND EASI

ALGORITHMS (µ = 0.0001).

Algorithm SIR (dB) Natural Gradient SIR(dB) EASI

Edger saw 3.27346 3.53114
Wood planer 3.04441 0.721997
Straight saw 2.29507 2.96695
Unidentified -3.03844 -1.41929

Iterations 30 30

Another test was carried out using a different version of

FastICA [5]. This algorithm was implemented in Matlab.

According to Table VIII, all four signals were extracted. The

lowest two SIR correspond to the edger saw and the straight

saw as in the first evaluation. This shows that the FastICA’s

Labview implementation performs as well as Matlab’s one.

TABLE VIII
RESULTS OF THE EVALUATION OF THE QUALITY OF THE SEPARATION FOR

FASTICA IMPLEMENTED IN MATLAB

Algorithm SIR (dB) FastICA in Matlab

Edger saw 13.9533
Wood planer 29.6524

Straight saw 12.6654
Square waveform 26.6341

From the total number of basic arithmetic operations of

the each algorithm, with P= 4 and J= 4, table IX was built.

Extra complexity of divisions and square roots are taken into

account1. Adaptive algorithms are simpler but sequential, lead-

ing to greater converging times, but with much less memory

requirements.

TABLE IX
NUMBER OF BASIC ARITHMETIC OPERATIONS OF EACH ALGORITHM

(*µ = 0.001) AND k=8.

Algorithm FastICA Grad. Natural* EASI*

Sums+Subtractions 2,741,476 3,930,000 4,710,000
Multiplications 3,862,530 5,640,000 5,580,000

Divisions 89 (2,536) 0 0
Square Roots 92 0 0

Total 6,606,654 9,570,000 10,290,000

1For FastICA, division using a SRT division algorithm is supposed, (number
of operations given inside the parenthesis are the number of subtractions and
multiplications for this implementation: two multiplications and a subtraction
for each iteration). For the square root, a special computing block is assumed.

IV. CONCLUSIONS

Three BSS algorithms have been analyzed because of their

relative simplicity and their high potential for implementation

in a low cost integrated circuit. Algorithms showed favorable

results in initial evaluations with signals downloaded from

Internet but, when tested with sounds from a real industrial

setting, results were no longer as good for the adaptive

algorithms. Also, an approximate computational cost required

by each of them has been estimated, in terms of the number

of simple arithmetic operations executed. Results point to

FastICA as the best candidate for hardware implementation, if

an extra stage of deflationary orthogonalization and negentropy

is added. This analysis is extendable to a frequency version

with convolutional mixtures. An evaluation with the fourth set

of data described above and the algorithm chosen is still being

worked on, before moving on to a FPGA prototype.

ACKNOWLEDGMENTS

Authors thank Dr. Alexander Berrocal and his collaborators

at the wood workshop in Escuela de Ingenierı́a Forestal at

Tecnológico de Costa Rica. Thanks also to Reinaldo Castro,

Ronald Soto, Fabian Coto and Asdrúal Rojas of the Escuela de

Ingenierı́a Electrónica at Tecnológico de Costa Rica, for their

help during data collection. Thanks to National Instruments

(NI) for their advice. Part of this project is sponsored by PICT

Bicentenario 2010 code 2657, Agencia Nacional de Promoción

Cientı́fica y Técnica of Argentina.

REFERENCES

[1] J. Lanslots, F. Deblawe, K. Janssens, “Selecting Sound Source Localiza-
tion Techniques for Industrial Applications”, The Noise and Vibration
Control Magazine, pp. 6-9, Junio 2010.

[2] A. Chacon., F. Martin-Pirchio, S. Sanudo, and P. Julian, “A low-power
integrated circuit for interaural time delay estimation without delay lines”,
IEEE Trans. Circuits Systems II, Express Briefs, 56, (7), 2009.

[3] A. Van Schaik, S. Shamma, “A Neuromorphic Sound Localizer for a

Smart MEMS System”, Analog Integrated Circuits and Signal Processing,
39, pp. IV-864-867, 2004.

[4] P. Common and C. Jutten. Handbook of Blind Source Separation, chapter
1: Introduction, pages 1–22. Elsevier Ltd, 1 edition, 2010.

[5] A. Hyvarinen, J. Karhunen, E. Oja, “Independent component analysis”,
Wiley & Sons, 2001.

[6] M. Stanacevic and G. Cauwenberghs. Gradient flow adaptive beamform-
ing and signal separation in a miniature microphone array. In Proc.
IEEE Int. Conf. Acoustic Speech and Signal Processing (ICASSP’2002),
Orlando FL, pages 13–17, 2002.

[7] C. Alvarez, J. Monzón, “Aplicaciones de ICA con conceptos de es-
tabilidad para separar señales”, Departamento de Ingenierı́a, Facultad
de Ciencias Exactas, Universidad Nacional del Nordeste, Corrientes –
Argentina. Resumen: E-004, Comunicaciones Cientı́ficas y tecnológicas.
2006.

[8] A. Hyvärinen. New approximations of differential entropy for indepen-
dent component analysis and projection pursuit. In Advances in Neural
Information Processing Systems, 10:273–279, 1998.

[9] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for
blind signal separation. In Advances in Neural Information Processing
Systems, pages 757–763. MIT Press, 1996.

[10] D. Schobben, K. Torkkola, and P. Smaragdis. Evaluation of blind signal
separation methods. Proceedings Int. Workshop Independent Component
Analysis and Blind Signal Separation, pp. 261-266, Aussois, France,
January 11-15, 1999.

[11] J. F. Cardoso and B. Laheld. Equivariant adaptive source separation.
IEEE Trans. on Signal Processing, 44:3017-3030, 1996.

