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Abstract  

 

 In the recent years UAV´s have become very popular. Due to the acquire fame of 

these devices, a wide number of applications have been developed in order to satisfy a 

demanding market that seeks new ways to improve the flight capability. Because of this the 

Department of measurement- Aeronautical Instrumentation of Czech Technical Univers ity 

in Prague (CVUT), has decided to control a Drone using Open-Source software in order to 

enhance its performance by implementing a control algorithm that upgrades the stability in 

the vertical position. 

 The system design allows the software to control the Drone with your PC whether it 

is remotely (Joystick) or by interpreting instructions from generated code, also it is flexib le 

due to the fact that enables the possibility to modify its vertical control loop algorithm 

 In order to accomplish the system mentioned above, the technology incorporated 

inside the UAV was used. For example, the ultrasonic sensor and the bottom camera were 

used to increase the stability of the vertical position.  

A GPS module was attached, so the system could use it as a reference to flight through 

selected waypoints programed by the software.  

Keywords: UAV, software, control algorithms, waypoints, ultrasonic sensor, bottom 

camera. 

 



Resumen 

 

 En los últimos años los sistemas UAV se han popularizado. Debido a la fama que han 

adquirido estos dispositivos, un gran número de aplicaciones se han desarrollado para poder 

satisfacer un mercado demandante que busca nuevas formas de mejorar la capacidad de vuelo 

de estos dispositivos. Debido a esto el Departamento de medición-Instrumentac ión 

Aeronáutica del Instituto Técnico Checo en Praga (CVUT), ha decidido controlar una unidad 

Drone usando un software Open-Source para poder mejorar su rendimiento al implementar 

un algoritmo de control que permita mejorar la estabilidad en la posición vertical. 

 El sistema a diseñar debe de permitir controlar el Drone con el computador ya sea de 

vía remota (Palanca de mando) o interpretando instrucciones de código generado a través del 

software. Debe de ser también flexible permitiendo modificar sus archivos, para que de esta 

forma se pueda incorporar el nuevo algoritmo de posición vertical. 

 Para poder alcanzar el sistema propuesto, se utilizó la tecnología incorporada dentro 

del UAV.  Por ejemplo para estabilizar la posición vertical se utilizó el sensor ultrasónico y 

la cámara inferior. 

 Un módulo GPS fue incorporado, de forma que se pudiera utilizar como referencia 

para permitir el sistema volar por puntos de navegación definidos programados en el 

software. 

Palabras clave: UAV, software, algoritmo de control, puntos de navegación, sensor 

ultrasónico, cámara inferior. 
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1  Introduction 

 

1.1. Context of the problem 

 

The first system of this kind was created by the army for military the purposes. Over 

the years these systems have improve, because of the extended research and investigation, so 

the areas of applications have grown.  

 

Currently these devices are being used for multiple utilities, such as: Precision 

farming where they can extract data with their sensors that would be used later for analyzing 

whether the land is fertile or not, for aerial photography and videos, for monitoring wind 

turbines, for inspecting pipelines, etc. 

 

One of the great challenges facing the UAV industry is security, this due to the number 

of utilities that these devices are given that involve interaction with civilians. Another aspect 

to consider is that these systems consist of expensive electronic equipment, so their safety is 

paramount. Also it is important to consider that the laws that revolve around this industry are 

becoming more severe and are demanding high-quality devices. For this reasons there is a 

need to incorporate control algorithms to ensure optimal and safe operation. 

 

Considering the aspects listed above the problem for this project can be defined as to 

use an Open-Source software that allows to implement a control algorithm in order to 

stabilize the vertical position. 
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1.2. Description of the system to innovate  

 

Since the invention of UAV systems, there has always been a need to improve their 

performance. Therefore, this project seeks to implement a control algorithm that would 

enable to stabilize the vertical position. This was achieved by using a software that 

allows to implement Open-Source code and combined it with the hardware inside the 

device. 

 

1.3. Stakeholder analysis  

 

The main involved in this project is the Department of Measurement - Aeronautical 

Instrumentation Laboratory from the Czech Technical University in Prague (CVUT), 

currently in charge by Ing. Martin Sipos Ph.D. 

 

This department shows interest in this project due to commercial growth that has 

experience this industry, so they are looking for new ways to enhanced an UAV performance  

in order to ensure a better quality device. 

Obviously the users will be the last ones to use this sort of devices they can use it for all 

kind of purposes such as: Flight tests or adding new improvements. 

 

1.4. Description of the problem 

 

Drones or unmanned aerial vehicles (UAVs) were created by the army for 

reconnaissance operations. Like many military inventions, as the years went by civilian 

applications started to appear such as: search, rescue, monitoring, mapping various areas, 

flights hobby, etc.    
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 The popularity of UAVs has increase due to the development of new applications 

in different areas, so innovative ways to control them must be found. This project aims to 

enhance the drone’s performance in stabilizing the vertical position by taking advantage of 

the technology incorporated in it.  

 

 It is important to stand out that the data recorded in the experimental flights will be 

analyzed and evaluated to confirm proper operation. 

 

1.5. Synthesis problem 

 

Implement open-source software code that incorporates an autopilot system 

and ground station software for rotorcrafts, in order to flight through selected 

waypoints and stabilize the vertical position.  

 

1.6. Solution approach  

 

To solve this problem first a software must be picked up that allows to control the 

drone from the computer, then algorithms must be developed that will enable autonomous 

flights. It is important to notice that in this project autonomous flight is understand as the 

capability of the device to move in the air without any remotely tool, so all the tasks 

assign are done by interpreting code from the software.    

After investigating and understanding the software, a GPS module will be attached. 

The necessary code must be developed so the drone can fly through selected waypoints. 

Once the UAV can flight autonomously through different selected waypoints, a 

control algorithm was implemented to enhanced the stabilization of the vertical position. 

This was accomplished by seizing the electronics inside the drone such as: HD camera, 

ultrasound sensors, brushless in runner motors, among others. 
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The next step consists in developing several experimental flights, so that the 

performance of the drone can be tested. In figure 1.1 it can be seen a block diagram of 

the expected electronic system. 

 

Figure 1.1 Electronic system diagram 
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2 Goal and Objectives 

 

2.1. Goal 

Improve the flight performance of the ARDrone 2 by combining the software with a 

GPS module and technology incorporate in the Drone. 

 

2.2.  General objective  

Improve the estimation of altitude from the ARDrone 2 by implementing a control system 

capable of enhancing the stabilization of the vertical position.  

 

2.3.  Specific objectives  

1. Investigate for software that allows creating algorithms for autonomous flights. 

 

2. Attach a GPS model that enables the drone to flight through several selected waypoints. 

 

3. Implement a control algorithm that allows the drone to estimate the correct altitude for 

the flight. 

 

 

4. Develop experimental flights to test the system functionality. 
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3 Theoretical framework 
 

 In this section all necessary theoretical foundations that were involved in the design 

process will be detailed in order to reach the appropriate solution using the engineer ing 

designs criteria. 

 

3.1.  Description of the UAV system 

  

 Due to the complexity of this system it is mentioned only the relevant technical 

aspects to solve the problem posed above. 

 

 The UAV to use is the Parrot ARDrone 2, its structure is composed by: Carbon 

fiber tubes with a total weight of 380g with outdoor hull and 420g with indoor hull, foam to 

isolate engine vibrations and it is full reparable. Also it is designed to handle aerobatic 

maneuvers. 

 

 It has an onboard technology gives control and automatic stabilization features. The 

electronic characteristics worth mentioning are: 1GHz 32 ARM Cortex A8 processor, Linux 

2.6.32, Wi-Fi, 3 axis gyroscope 2000 deg/s precision, 3 axis accelerometer ±50mg precision, 

3 axis magnetometer 6° precision, ultrasound sensor and four brushless in runner motors 14.5 

W 28500RPM.   

 



 

7 
 

 

Figure 3.1 ARDrone 2 dimensions and illustrations [16]. 

 

3.1.1. GPS module 

 The module to use is the Parrot Flight Recorder its technical characteristics can be 

seen in Table 3.1. 

Table 3.1 Technical specifications for the Flight Recorder 

Dimensions 77.7x38.3x12.5 mm 

Weight 31g 

Accuracy ±2m 

Frequency 5Hz 

Voltage 5V 

Flash Memory 4GB 
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Figure 3.2. Flight Recorder [16]. 

 

3.2. Fundamental Concepts  

 In this section important concepts are explained in order to reach a suitable solution 

for the proposed problem above. 

 

3.2.1.  Accelerometer 

 An accelerometer works by measuring the inertial force generated when a suspended 

proof mass accelerates. It has three main components a proof mass, a suspension to hold the 

mass and a picoff for the output signal, see Figure 3.3. 

 Generally, accelerometers contain capacitive plates internally that are attached to 

miniscule springs, they move internally as acceleration forces act upon the sensor. As these 

plates move the capacitance changes and from these changes the acceleration can be 

determined. 

 The output is called specific force and is given by: 

𝒇 = 𝒂 − 𝒈 (3. 1) 
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Figure 3.3. Basic accelerometer [1].  

 

 The Parrot company has really strict confidential rules, due to this no datasheet was 

acquire.  Although in [6] there is a thorough explanation of the technical specifications for 

the ARDrone, where it indicates that a BMA150 was used with a precision of ±2g. Compare 

to the ARDrone 2 with ±50mg, it can be observed that this unit is more precise than the older.  

 

3.2.2. Gyroscopes 

 Gyroscopes, or gyros, are devices that measures rotational motion. Almost all 

gyroscopes use vibrating mechanical elements, which are used on the principle of energy 

transfer between two vibration modes caused by the Coriolis force, see Figure 3.4. 

 Due to the effect of Coriolis force a body moving from A to B will have an 

acceleration given by: 

𝒂𝒄⃗⃗⃗⃗ = −𝟐𝒘⃗⃗⃗  𝒙 𝒗⃗⃗     (3. 2) 

 

 Through this Coriolis effect is how gyroscopes measure angular rates. 
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Figure 3.4. Coriolis force [1]. 

 

 In the ARDrone for the gyroscope there is a 2 axis gyro IDG500 with rotation rates 

up to 500 deg/s and a precision gyro Epson XV3700 for the vertical axis. Comparing with 

ARDrone 2 that has a 3 axis gyro with 2000 deg/s it can be observed that it is more precise, 

but lacks accuracy in the vertical axis. 

 

3.2.3. Magnetometer 

 Is a device that measures magnetic fields at a point in space. Usually inside this 

mechanism there are tiny coils and a beam, for each axis there is a beam. That beam has a 

pressure sensor on each side, and a coil wrapped around it passing current through it. Due to 

Lorentz force, the stronger the magnetic field, the more the bar with the current passing 

through it bends. The pressure sensors measure this bending; and do the correct calculat ion 

for the magnetic field. 

 There is no way to compare with the old unit, due to the fact that the ARDrone has 

no magnetometer, so these proves that the ARDrone 2 has more available data for a better 

performance. 
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3.2.4. Inertial Measurement Unit  

 

 The Inertial Measurement Unit (IMU) is an electronic device, that usually comprises 

an accelerometer, a gyroscope and sometimes a magnetometer; it outputs the given position, 

velocity and altitude. 

 The angular rate measure by the gyros is used to maintain its altitude and by 

integrating the acceleration produces the velocity solution and by integrating the velocity it 

gives the position solution. 

 

Figure 3.5. IMU algorithm [21]. 

 

3.2.5.  Inertial Navigation System 

 Inertial Navigation System (INS) is very similar to the IMU. It uses the information 

given by the accelerometers and gyros in order to compute the current velocity and 

position. The main difference lies that it uses initial conditions in order to have a reference 

to realize its algorithms. These algorithms consist on comparing the data given from the 

sensors with the reference, so a proper navigation of the system can be done. They may 

change depending on the systems frame reference, see Figure 3.6. 
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 Due to the latest advances in microelectromechanical systems the range of possible 

areas have increase in recent years. Typically, these systems are used in aircrafts, 

submarines and spacecraft.  

 

 

Figure 3.6. Schematic of an INS [1]. 

 

3.2.6. Global Positioning System 

 

The Global Positioning System (GPS) is a system that consists on a network of 24 

satellites. These satellites were placed in orbit by the army for military purposes, but now 

the system is available to anyone around the world. 

The GPS satellites are circling the Earth gathering information, in order to determine 

how far the receiver is. In order to determine the receiver distance, it uses a time 

difference between the time the signal was transmitted and the time it was received. Once 

the user has this information it uses trilateration to calculate the exact position. 

There are several global reference systems use by the GPS, the one used in this project 

is the WGS84 were the Earths center of mass is the origin for the reference system and 

the geodetic datum [9]. 

  

 



 

13 
 

3.3. Optical Flow 

 

Optical flow is a computer vision analysis method which computes the pixel 

displacements between two frames from a camera, this displacement is due to the 

horizontal and vertical movements of the Drone. Once known the pixel displacement, 

velocity can be calculated. Usually this method is used to derive the groundspeed of the 

Drone, but there are other applications such as obstacle avoidance and automatic landing 

where the optical flow estimation evaluates the time it takes to make contact with an 

obstacle [11]. 

The optical flow is modelled by equation (3.3) were: I2 is the new image captured by 

the camera, I1 is the previous image and I is the Intensity between I2 and I1. 

 

𝝏𝑰𝟐(𝒙,𝒚)

𝝏𝒙
𝒖 +

𝝏𝑰𝟐(𝒙,𝒚)

𝝏𝒚
𝒗 = −

𝝏𝑰

𝝏𝒕
 

(3.3) 

 With u been the optic flow pixel in the X direction and v in the Y direction, this 

equation can be written in a more simplified way:  

𝛁𝑰𝟐 (
𝒖
𝒗
) = −

𝝏𝑰

𝝏𝒕
 

 (3.4) 

 

By analyzing equation 3.3 there are two unknown variables, for this reason a constraint 

must be added and this can change depending on the resolution method. 

 Horn-Schunk method: Is a smooth constraint based on the assumption that one pixel 

doesn’t change a lot between its neighbors. The computation is the result of finding 

the minimum in the next expression: 

 

∬(𝛁𝑰 (
𝒖
𝒗
) +

𝝏𝑰

𝝏𝒕
) + 𝜶𝟐 ((

𝝏𝒖

𝝏𝒙
)
𝟐

+ (
𝝏𝒖

𝝏𝒚
)
𝟐

+ (
𝝏𝒗

𝝏𝒙
)
𝟐

+ (
𝝏𝒗

𝝏𝒚
)
𝟐

)𝒅𝒙𝒅𝒚 
 (3.5) 
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 Lucas-Kanade method: The optical flow is computed in a small window where the 

pixel of interest is surrounded, each pixel gives one equation so in order to get to a 

solution, the following equation must be minimized: 

∑ (𝛁𝑰(𝒑)(
𝒖
𝒗
) +

𝝏𝑰(𝒑)

𝝏𝒕
)

𝒑 ∈ Ω

 
 (3.6) 

 

These two are two main methods, further work has been developed throughout the years 

with methods such as: Block matching, features tracking method, pyramidal Lucas-Kanade 

and many others. 

 

In order to calculate the speed from the optical flow, as mentioned above optical flow 

computes pixel displacements, this depends on six maneuvers on the rotation in the three 

axis (wx, wy, wz), the horizontal translation (TX, Ty) and the vertical translation (TZ). 

 

𝒗𝒙 =
𝑻𝒛𝒙 − 𝑻𝒙𝒇

𝒁
− 𝒘𝒚𝒇 − 𝒘𝒛𝒙+

𝒘𝒙𝒚
𝟐 − 𝒘𝒚𝒙𝒚

𝒇
 

 

 (3.7) 

 

𝒗𝒚 =
𝑻𝒛𝒚 − 𝑻𝒚𝒇

𝒁
+ 𝒘𝒙𝒇 + 𝒘𝒛𝒚 +

𝒘𝒙𝒙𝒚 − 𝒘𝒚𝒙
𝟐

𝒇
 

(3.8) 

 

Where f stands for focal length of the camera and Z for the distance between the 

camera and the filmed plane. 

The algorithm used in this project is a combination of features tracking and Lucas-

Kanade. First the feature tracking algorithm is in charge of extracting corners from the 

picture. This extraction is done by analyzing the 16 neighbor pixels, if at least 12 of these 

are brighter or darker than the pixel been analyzed, then it is classified as a corner. The 

Lucas-Kanade algorithm is in charge of detecting points, after detecting these points the 
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displacement of the pixels is calculated in order to determine the average optic flow. Once 

the optic flow is determined it is translated in order to obtain the ground speed.    
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4 Methodological Procedure 

 

4.1. Recognition and definition of the problem 

 

 To define the problem a visit was made to CVUT, where the lab manager Ing. 

Martin Sipos Ph.D expose the need for a UAV system that would fly autonomously and also 

to improve the stabilization of the vertical position. 

 

 Given the information above, a software capable of autonomous flight and also with 

flexibility to modify the automatic control system files was found. Once the software was 

defined, objectives were elaborate in order to allow solutions to the different stages that are 

required. 

 

 

4.2. Collection and analysis of information 

 

 Once known the needs of the system it took a literature search to complete 

knowledge and see that by combining the software with the GPS module, autonomous flights 

could be achieved. The stabilization of the vertical position was done by implementing Open-

Source code and by taking advantage of technology incorporated inside the Drone. 

 

 The analysis of data was achieved by using the knowledge acquired during all the 

years of study. In addition, the advice of the advisors professors was crucial in order to 

encompass any doubt regarding the project. 
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4.3. Evaluation of alternatives  

 

 The system requirements are an ARDrone 2 that enables the possibility to flight 

through waypoints. This was achieved by attaching a GPS module and programing it with 

Open-Source code. The software used also is flexible by allowing to add a controller that 

stabilizes the vertical position. 

 

 For each specific objective an evaluation was made, in order to adjust them for the 

necessities of the system. The first objective was to selected a software, different were 

considered, but it was chosen the one that adjust to the system necessities. In the second 

objective different GPS were considered, the Parrot Flight Recorder was selected due to the 

capacity of storing flight data. For third objective different control algorithms designs were 

considered, finally it was selected the one that allowed a vertical stabilization using the 

resources in hand. In the last objective different test were done, this are discussed and 

evaluated in this project. 

 

4.4. Solution implementation 

 

 For the development of the final system a division of work was done so that it was 

possible to attack the different problems according to the specific objectives. The first 

problem encounter was to connect the software with ARDrone 2, it was required a thorough 

investigation and understanding of the software. Once the software was connected to the 

Drone, the interface was programed in order to fulfill the system requirements. Then the GPS 

module was attached, it had to be configured manually due to the fact that is not the default 

GPS that the software uses. After attaching the GPS, code was generated in order to flight 

the Drone through waypoints, the results are evaluated in this project. Then a control 

algorithm was implemented using the ultrasonic sensor and the bottom camera incorporate 

in the Drone in order to stabilize the vertical position, results are discussed in this project. 
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4.5. Re-evaluation and design 

 

 In the design process different tests where elaborate in order to check the correct 

operation of the system. 

 The data recollect can be used to improve the system and to develop in the future 

new applications. 
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5 Design Process 

 

 In this chapter the solution that was implemented to solve the problems encountered 

in each specific objective would be addressed. 

 

5.1. Selection of the software  

 

 The selection of the software was made taking into account several factors, the most 

relevant are that the software was Open-Source, also that it could allow autonomous flights. 

It needed to be flexible enough to modify the files, so that a new controller for stabilizing the 

vertical position could be added. 

 

 By investigating two software where encountered that fulfill the requirements state 

above for the ARDrone 2. The first one Paparazzi UAV, highly recommended for 

applications outside, besides this software has been used on previous projects in CVUT. The 

second one is QgroundControl used by several Parrot users for autonomous flights.   

 

 After an analysis of the two software selected, Paparazzi UAV was the one which 

adapted better to the necessities of the project. In Table 5.1 there is an evaluation of the 

characteristics evaluated in order to choose the program mentioned above. 

 

Table 5.1. Comparison of the software selected 

 Paparazzi UAV QGroundControl 

Autonomous flight Yes Yes 

Allows to modify files Yes Yes 

Open-Source Yes Yes 

Feedback information Yes Not too much. 
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5.1.1. Overview of the software  

 

 Paparazzi UAV is a complete system of open-source hardware and software that 

contains autopilot systems for multicopters, fixedwing, hybrid aircraft, etc. Also it includes 

the complete ground station for planning and monitoring by using a bi-directional datalink 

for telemetry and control. 

 

 Due to its open characteristic it allows users to add new features and improve the 

system. Another feature worth mentioning is that this software was mainly created for 

autonomous flight as the main goal and manual flying as the second.  

 

 

 The key components can be observed on the figure above, it’s important to notice 

that this is an example of fixedwing in this project a rotorcraft was used, but the components 

also applied for this kind of aircraft.    

Figure 5.1. Key components of Paparazzi UAV [18]. Figure 5.1. Key components of Paparazzi UAV [18]. 
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5.1.2. How the software works  

 

 The code runs on the main autopilot control board, this code is written in C and it 

features a level of hardware abstraction. Paparazzi UAV uses XML files in order to allow 

easy configuration, this process can be seen in Figure 5.2. 

 

 

Figure 5.2. Paparazzi UAV software built process [18]. 
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 This onboard code divides in two: periodic tasks and event tasks. The periodic tasks 

are the time sensitive tasks, for example: control loops and telemetry messages. The event 

tasks are a response to something for example new GPS data. 

 

5.1.3. Understanding and configuring the software 

5.1.3.1. Paparazzi Center 

 Paparazzi Center is the initial window of the software; it is used to configure an 

aircraft as the union of the XML files explain in Table 5.2 Also it allows building the code 

and running session whether it is to flight, a simulation or to replay a flight, see Figure 5.4. 

 As mention above the aircraft is the union of the XML files, these files were 

configured in order to be able to compile correctly the code inside the autopilot of the 

ARDrone 2. 

Table 5.2. Aircraft configuration files 

XML File Task 

Airframe Defines the autopilot parameters: Which 

modules will be used, configure control 

loops and hardware configurations.  

Flight Plan Autonomous flight behavior.  

Radio Radio transmitter under manual control. 

Telemetry Describes what messages are sent and at 

what rate. 

Settings Describes the available and the valid 

settings for the autopilot parameters. 

 

 In Figure 5.3 it is shown in more detail how this configuration works. It is important 

to highlight that in this diagram there are only mention the general configurations. In the 
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airframe file the sensors and the hardware that were configure where the IMU, ultrasound 

sensor, the bottom camera and the pressure sensor. Also control loops were configured first 

for the navigation with the GPS reference, then with new controller in order to stabilize the 

vertical position. In the flight plan code was generated in order to make the Drone flight 

through waypoints. In the telemetry file all data that was needed in order to analyze the 

behavior of the Drone was configured, such as: The roll angle, the pitch angle, the yaw angle, 

velocity, altitude, pressure, acceleration and others. In the settings file modifications were 

made in order to use several interactive buttons and to display data in the Ground Control 

Station interface (GCS), this is explained with more detail in the next section. In the radio 

file the communication used between the Drone and software is bidirectional through Wi-Fi.   

 The code of the autopilot is built from the configuration files, during the building all 

the details are reported in the console, also all the compiling errors. Then the code is uploaded 

through Wi-Fi to the Drone. 
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Figure 5.3. Configuration files diagram 

 

 Execution of the built code is done with a set of communication agents; these running 

agents can be stopped and restarted at any minute. These agents can be accessed through the 

Paparazzi Center by using the Tools menu. In this document only the Tools that were used 

will be specify: 

 Messages: It allows seeing the numerical data of the respective telemetry. 

 The Real Time Plotter: It allows to graphically plotting data from the telemetry 

messages. 

 Data Link: Enables connection to modems, in it you can specify type of device that 

will be used and the baud rate. 

 Log File Player: Allows recreating previous flights. 

 Joystick: Allows to use joystick to send commands to the aircraft. 
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These tools helped to analyzed the behavior of the aircraft in real time, for 

example by combining the Messages with Real Time Plotter data was displayed in a 

graphical way. Also with Joystick the Drone was controlled manually.  

 

 

Figure 5.4. Paparazzi Center [18]. 

 

5.1.3.2. Ground Control Station (GCS) 

 

 It is the main interface of the software; it displays information during the flight or 

simulation. It also allows the user to interact with the UAV by moving waypoints or changing 

parameters of navigation and settings. In Figure 5.5 the GCS interface is showed, all 

functions and configurations are explained below.  
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Figure 5.5. Ground Control Station [18]  

 

 Each aircraft has an associate Strip, this is the name of the window that allows for the 

available information to be display and also there are some interactive buttons for common 

commands. This window was configured through the settings file, although the software 

displays this command buttons, this had to be configured in order for them to execute the 

function showed in Figure 5.6. The buttons configured are the ones located in the bottom 

such as: Takeoff, standby, line and others. Also the altitude and lateral shift were enabled. 
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Figure 5.6. GCS Strip [18] 

 

The 2D map in Figure 5.5 displays the following information: 

 The waypoints defined in the Flight Plan (Blue diamonds in Figure 5.5). 

 The default background is black, but it can be automatically filled with Google 

calibrated images from there servers. 

 The intended trajectory of the aircraft is marked in green. 

 The GPS coordinates are displayed at the top right hand corner, the WGS84 

system reference is used. 

This map follows the code generated in the Flight Plan in order for the aircraft to 

move through waypoints, it is important to stand out that the waypoints can be placed 

by programing them in the Flight Plan. Another important option in the map is the 

possibility to edit the waypoints through the waypoint editor; it allows you to change 

the coordinates and also the height, see Figure 5.7 

It is important to highlight that during navigation it is possible to zoom in and out 

in the map, also there is an option that allows to center and fit the map in order to see 

where all the waypoints are located. 
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Figure 5.7. Waypoint Editor 

 

 The Notebook itself is divided in subpages displaying different kinds of data such as 

telemetry data or autopilot tuning parameters in Table 5.2 there is summary of what can be 

found in this part of the GCS. In the Notebook section the Flight Plan was configured as 

stated in the last section. The settings section was also configured, so the different variables 

configured in the telemetry file can be displayed, also it is presented the stabilization loops 

this were configured in order that the PID values could be change through the GCS interface. 

Also other modules were configured such as calibration, logger file to store data, the camera 

and the Optic Flow control algorithm, this are going to be discussed later. 
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Table 5.3. Notebook Subpages 

Subpages Function 

Flight Plan Gives a detail view at the functions in the 

flight plan, every active block is 

highlighted and to switch to another a 

double click is necessary. 

GPS It gives the level of tracked satellites and 

estimate position accuracy. 

PFD Displays the estimate altitude of the aircraft 

and the ground speed. 

Settings The Settings subpage is the more complex 

due to the amount of data that can be 

handled by it. First the telemetry can be 

access through here so different messages 

such as Euler Angles or measurements 

from the IMU can be display. Then there is 

the option of selecting the different 

navigation modes and also tuning 

parameters can be done through here. At 

last modules such as loggers can be 

controlled in here.  

 

 At last in the GCS the Console in Figure 5.5 is in charge of indicating any block 

change or alarm, this meaning that it will alert when a function on the Flight Plan is starting 

or if it is over. Also if the Drone is running out of battery or if it is flying too low. This alarms 

were configured in the settings file. 

 In Figure 5.8 there is a block diagram that summarizes the interaction between the 

software and the ARDrone 2. 
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Figure 5.8. Software interaction with Drone 

 

5.2. Attach a GPS module   

 

 In order to attach a GPS module several changes were made due to the fact that 

Paparazzi UAV works by default with uBlox GPS systems. The first thing was to identified 

which order type of GPS were available for ARDrone 2, by checking the Airframe file it was 

notice that for the Parrot Flight Recorder it was necessary to use the Sirf Binary subsystem. 

(Appendix 1) 

 

 The second thing that was notice is that inside Paparazzi the GPS was configure 

automatically, due to this the Flight Recorder had to be configure manually. Also the GPS 

module created by Parrot works with NMEA and Sirf Binary protocols, so SIRF Demo was 

used in order to configure the module in Sirf Binary protocol. In Figure 5.9 shows a block 

diagram explaining the configuration done to change the Flight Recorder protocol from 

NMEA to Sirf Binary. 
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Figure 5.9. GPS configuration 

 

 After doing the configuration in the block diagram above, Sirf Demo should display 

a window like Figure 5.10. It can be notice that in the Map View, shows the coordinates and 

altitude where the configuration was made and in the Radar View it is shown how many 

satellites the GPS can have linked. 
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Figure 5.10. SIRF Demos Software 

 

 After configuring the Flight Recorder with the SIRF Demo software and making the 

necessary changes in the Airframe file, the module was successfully attached. 

 

 

 

5.2.1. Fly through selected waypoints  

 

In order to ensure a successful flight a correct calibration for the accelerometer and 

the magnetometer was necessary, this was done because these sensors are critical for the 

INS execution. It is important to highlight that this calibration should be done always 

before starting the flight. 
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With Paparazzi UAV this can be done, due to fact that it uses a preloaded algorithm 

to calculate the scaling (sf) and neutral (n) factors for the calibration, see Equation 5.1 and 

Equation 5.2. 

 

𝒗𝒂𝒍𝒖𝒆 = (𝒔𝒇) ∗ (𝒔𝒆𝒏𝒔𝒐𝒓 − 𝒏) (5. 1) 

 

𝟗. 𝟖𝟏𝟐 = (𝒔𝒇𝒙(𝒔𝒆𝒏𝒔𝒐𝒓 − 𝒏𝒙)
𝟐 + (𝒔𝒇𝒚(𝒔𝒆𝒏𝒔𝒐𝒓 − 𝒏𝒚)

𝟐 + (𝒔𝒇𝒛(𝒔𝒆𝒏𝒔𝒐𝒓−

𝒏𝒛)
𝟐  

(5. 2) 

 

Equation 5.2 is derived from the fact that at a static position the drone will measure a 

constant vector of gravity. The way the algorithm works is that first an initial guess is 

calculated, whose values are close to the average gravity value, then a data fitting algorithm 

is used to optimized the first guess.   

 

For the accelerometer it is not necessary a calibration, if the components of the 

acceleration in x and y axis does not exceed the ±4 m/s2, this was done by using the Real 

Time Plotter and Messages in the Paparazzi Center Tools men, see Figure 5.11 
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Figure 5.11. Calibration of accelerometer 

 

 The calibration is necessary for the magnetometer, this was done by using also the 

Real Time Plotter and Messages tools, once the three axes are plotted the Drone must be 

moved around all its axes, in order to checked if the collected data was done appropriately, 

run the command: sw/tools/calibration/calibrate.py -s MAG 

var/logs/YY_MM_DD__hh_mm_ss.data -vp, in the Linux console. An ellipsoid will be 

generated, if the blue points are well distributed all around the ellipsoid, then the calibration 

was successful. In Figure 5.12 two ellipsoid are shown showing the distribution of 

measurements taken with preloaded algorithm, the difference between the figures is that the 

one on the right is normalized. 

 

 Another way to checked if the magnetometer is well adjusted is by checking the 

heading of the Drone in the GCS map, once this is done the Drone is ready to flight.  
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Figure 5.12. Magnetometer Calibration 

 

5.3.  Improve the altitude  stabilization with a new controller 

 

5.3.1.  Recorded Data 

 

 In order to implement a new controller, it was necessary to use the memory in the 

Flight Recorder in order to store the necessary data for further analysis. First it was necessary 

to use a logger module this can be seen in Appendix 1, called logger file which was modify 

in order to record the data that was of interest. In Table 5.3 the variables that were recorded 

are presented. The angles phi, psi and theta represent the roll, the yaw and the pitch. For the 

accelerometer, the gyros and magnetometers the three axis were recorded, in order to verify 

proper functionality. The other variables such as: Longitude, latitude altitude, the 

measurement from the ultrasound sensor and the velocity were recorded in order to 

implement properly the stabilization for the vertical position.  
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Table 5.4. Data Recorded 

Data Scaling factor Units 

Phi (Roll) No scale Rad 

Psi (Yaw) No scale Rad 

Theta (Pitch) No scale Rad 

Gyro (In the 3 axis) 0.0139882 deg/s 

Accelerometer(In the 3 axis) 0.0009766 m/s2 

Magnetometer(In the 3 axis) No scale T 

Altitude No scale M 

Latitude 107 Deg 

Longitude 107 Deg 

Ultrasound (measuredata-880)*0.00047 Cm 

Velocity (In the 3 axis) No scale mm/s 

 

5.3.2. Implement a new controller 

 

The new controller was added with the help of the modules created by the Paparazzi 

developers. The selected module was the Optic Flow that uses the bottom camera and 

ultrasonic sensors to accomplish stability. The Optic Flow control algorithm was 

implemented due to the results obtain with the Flight Recorder (See Section 6.2). 

As mentioned above a new controller independent from the GPS was necessary, this 

presented a challenge because Paparazzi UAV is program to use all its control loops with the 

reference from the GPS coordinates.  
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       In Figure 5.13 the architecture of the algorithm is explained, from the video camera with 

the Optic-Flow algorithm the groundspeed is used to calculate the horizontal velocity. 

Combine with the gyros, accelerometers and ultrasound sensors the altitude can be estimated. 

Once known the altitude an angular corrector and a velocity corrector is used to stabilize the 

Drone, this is done through two symmetrical PI loops in phi and theta.    

 

 

Figure 5.13. Optic Flow Loops [23] 

 

In order to execute this controller some changes were needed in the Airframe file, first 

the camera was configured in order to obtain an image, after this the Optic Flow algorithm is 

implemented the vision loop constants can be seen (Appendix 4). Once the changes were 

made the camera was tested in order to see if the software capture the image from the bottom 

camera. Then some variables had to be added in order to ensure a proper functionality of the 

algorithm, see Figure 5.14. 
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Figure 5.14. Configurations to add new controller 

 

5.4. Flight Tests  

 

5.4.1. With GPS 

 

 The flight tests were done by editing the flight plan, the first aspect to consider are 

the main attributes of a flight: 

 Latitude 0 and Longitude 0: It defines the reference point {0,0} in the WGS84 

coordinates. 

 Ground Altitude: The ground altitude in meters above the sea level. 

 Altitude: It defines the altitude of the waypoints. 

 Security Altitude: The lowest altitude the aircraft can flight. 

 Maximum distance from home: A representative radius of how far the aircraft can 

get away from the HOME waypoint. 
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Another relevant aspect is the waypoints which are geographic locations to specify 

trajectories, these are specified by a name and relative coordinates: <waypoint name x y 

[alt]/>. This x y are coordinates from point {0,0}, also another way edit is as explain in 

section 5.1.3.2. 

The blocks are the main part of the plan they are in charge to describe each unit of the 

mission. They are made of stages and exceptions, when a stage or block ends it go to 

next one. Through the blocks the Navigation Modes are used this are explained in Table 

5.5. 

Table 5.5. Navigation Modes 

Navigation Modes Function 

Attitude Keeps a fixed attitude in the waypoint. 

Heading Keeps a heading course. 

Go Goes to a given waypoint. 

Path List of waypoints linked by the navigat ion 

mode go. 

Circle Circles around a waypoint. 

Oval Two and half circles between two 

waypoints. 

Eight Fly a figure of eight through several 

waypoints. 

Stay Hold position in a desired waypoint. 

Follow Follows another aircraft. 

 

 In Figure 5.15 and Figure 5.16 are examples of how the block programming works, 

Figure 5.17 shows a block diagram of how the Flight Plan code was designed.   
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Figure 5.15. Circle Navigation Mode Code 

 

 

Figure 5.16. Line Navigation Code 

 

 

Figure 5.17 Flight Plan Configuration 
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5.4.2.    With Optic Flow Module  

 

 

       In order to realize this tests a Joystick was needed, due to the fact that the flight plan 

couldn’t be used, because of the lack of GPS. Inside the Paparazzi UAV software, it includes 

several manual flight modes which can be selected in Settings through the GCS: 

 Attitude Direct (ATT): Full control of the Drone with the Joystick. 

 Attitude Z Hold (A_ZH): Drone holds the altitude, still full control with Joystick. 

 Hover Z Hold (H_ZH): The Drone hovers in the 3D position when entering this mode.  

      There are more manual flight modes which can be used for different application, in this 

case only these three modes where used. First with ATT the Drone was flown until the wanted 

altitude was achieve so A_ZH was activated, then H_ZH was used in order to record data for 

further analysis, see Figure 5.18. 

 

Figure 5.18. Manual Flight Mode 
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6  Experimental Results and Analysis 

 

 This section presents and discusses the results obtained, this in order to justify 

the operation obtained from the proposed solutions to each specific objective.  

 

6.1. Software 

6.1.1. Data visualized from the software  

 

 Once the Paparazzi UAV software was understand collecting data from it was 

very straight forward, just by changing the telemetry different data could be observed 

with the Messages Tool and could be graphic with the Real Time Plotter Tool, see Figure 

6.1 and Figure 6.2. 

 

Figure 6.1. Euler Angles from Paparazzi UAV 
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Figure 6.2. Navigation data from Paparazzi UAV 

 

In Figure 6.1 there is a plot of the Euler Angles in green psi, in blue theta and in red 

phi the variations are really high due to fact that this data was recorded while the Drone 

was rotated through all its axes.  Figure 6.2 displays the navigation data from the 

ARDrone 2 driver while it was hold about 20 cm from the ground (See Table 5.4 for 

ultrasound scaling) this values were configured in telemetry file in order to be shown, 

the high values are due to a scaling factor. 
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Figure 6.1 and 6.2 are just examples to show the correct functionality of the 

configuration done in telemetry file and the use of the Tool menu in order to display 

these data.  

 

6.1.2. Flight the Drone Control by the software  

  

 Flying the Drone was easily done with the Tool Joystick from the Paparazzi Center 

where the software has different Joystick files that can be selected and just by choosing the 

correct file the Drone can be flown with it. 

 In Figure 6.3 there is a plot where the Joystick commands were tested: The throttle in 

orange, the roll in red, the pitch in blue and the yaw in green. 

 

 

Figure 6.3.Commands from Joystick Tool 
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 The Joystick commands agree with the movements of the Drone, which result in a 

successful flight by controlling with Paparazzi UAV. 

 

6.2.  GPS module attached 

6.2.1. Overview of the GCS 

 

 Once the GPS module was configured and attached a Google Map was downloaded 

in order to move around the waypoints and a better view of where the aircraft was heading 

during the flight, see Figure 6.4. 

 

Figure 6.4. GCS with GPS Fix 
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 This Figure 6.4 has taken in a flight test where the map was downloaded and the first 

blocks of the Flight Plan worked appropriately when the GPS signal was detected. Also GPS 

accuracy was recorded during other flight tests, see Table 6.1. 

Table 6.1. GPS accuracy 

Flight Test Number Accuracy (m) 

1 7.2 

2 7.3 

3 6.8 

4 6.7 

5 7.1 

Average 7 

 

 From Table 6.1 it can be analyzed that there is a discrepancy from the theoretical 

accuracy of the Flight Recorder which is ±2m. The measures took in Table 6.1 show that the 

error is higher than the technical specifications dictated. 

 

6.2.2. Flight Results  

 

A number of approximately five flights were done in order to test the autonomous 

flight, unfortunately a successful one wasn’t achieved.  The quadrotor understands the 

commands written in the Flight Plan, for example the GPS is recognized by the 

software and the engine can be started, but when it takes off in order to start the flight 

instead of staying in its position (hovering), it rolls down to the ground. 

This behavior was review and analyzed, thanks to the expertise of [10] a forum of 

Paparazzi UAV developers, it was understood that the Flight Recorder is not a reliable 

GPS and its autonomous flights have a poor performance. Another issue encounter for 
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the ARDrone 2 is their sensitive magnetometer, this must be well calibrated if not 

heading problems can be presented. 

Once known the main problems presented in the quadrotor a straightforward 

experiment was done to test the GPS, a simple route was done where the initial point 

matches the ending point, the plots for latitude and longitude can be seen below, see 

Figure 6.5 and Figure 6.6. 

 

Figure 6.5. Latitude Plot 
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Figure 6.6. Longitude Plot 

 

 As it can be seen in both plots the initial point doesn’t match the final point, for this 

in Google Maps the distance between this two points was measure, see Figure 6.7. 

 

Figure 6.7. GPS Error 
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 An error of almost 8 m is measure which confirms the data recorded in Table 6.1, this 

proves the GPS is not very reliable, due to the fact that the error is greater than the one 

specified in the technical specifications. 

 Then another measure that was acquire was the local magnetic field which is obtain 

also by the GPS, so this was compare with the theoretical magnetic field from [16], see Table 

6.2 and Table 6.3. 

Table 6.2. Theoretical Magnetic Field 

Values North Component 

(Hx) 

East Component 

(Hy) 

Vertical Component 

(Hz) 

Without 

normalize 

19, 861.4 nT 1,292.5 nT 44,800.7 nT 

Normalize 0.405145 nT 0.02636 nT 0.913872 nT 
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Table 6.3. Measure Magnetic Field Normalize 

Flight Test Magnetic Components  Values (nT) Percentage Error (%) 

 Hx 0.393066 3 

1 Hy 0.00293 88 

 Hz 0.918945 0.55 

 Hx 0.381836 6 

2 Hy 0.00295 89 

 Hz 0.923828 1.1 

 Hx 0.39555 2 

3 Hy 0.00293 88 

 Hz 0.918945 0.55 

 

 In Table 6.3 there is a big error in the East Component from the acquire data, this can 

result in heading errors. 

 

 

6.3. Adding a new controller 

 

6.3.1.  Recorded data 

 Once the data was recorded it was analyzed with the help of Matlab, this was done by 

storing the data in a logger, then a CSV file was generated which incorporated the data of 

interest. This data was imported to Matlab, see Figure 6.8. 
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 The data shown on Figure 6.8 are the phi, psi and theta from an indoor flight in order 

to test the log file, this Euler Angles agree with the flight movements that were realized. 

 

 

 

 

Figure 6.8. Data Recorded from Log File 
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6.3.2. Flight Tests with the new controller 

 

First the camera was tested in order to verify if the configuration done in the 

airframe file was done correctly, see Figure 6.9. Then the Messages was used in order 

to check if the telemetry variables were configured correctly, see Figure 6.10. 

 

 

                             Figure 6.9. Verify camera functionality 



 

53 
 

 

Figure 6.10. Optic Flow variables 
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After checking the correct functionality of the Optic Flow algorithm, its PI 

control constants for phi and theta were tuned using the heuristic method. In order to 

achieved the best possible outcome, see Table 6.4. 

Table 6.4. PI control Values for Optic Flow Controller 

P constant I constant Average altitude (m) 

1500 800 0.8 

1250 800 0.6 

1000 800 0.6 

1500 700 0.8 

1250 600 0.6 

1000 600 0.7 

 

In Table 6.4 different values of PI control are presented which were used to 

tuned the Optic Flow controller, also the average measure altitude is given, in all the 

tests the altitude was kept at 1 m.  

Analyzing the altitude values there seems to be a slight change which can be 

neglected due to the low altitude that the Drone is flying. 

In Figure 6.11 and Figure 6.12 the phi and theta values for the different PI 

constants are plotted in order to analyze which constants give a better flight 

performance. 
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Figure 6.12. Theta for different PI values 

 

 

Figure 6.11. Phi for different PI values 
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 For the plots above is important to point that the default values are KP= 1500 

and KI = 800.  

Analyzing the trending of the phi graph it can be seen that when the constants 

lowers its value, the Drone rolls more drastically. The same behavior can be observed 

in the theta plot where a decrease in the constants results in a more drastic pitch.  

It is important to remember that the goal of this controller is to stabilize the 

vertical position of the Drone at a certain height. During the tests, stabilization was 

achieved only for a few seconds, then the UAV change its course and kept heading 

straight with no control. The reasons for this behavior are due to the errors presented 

with the magnetometer and the altitude calculation from the ultrasound which 

occasionally registered erratic values of the vertical height. This erratic behavior is 

due to a false interpretation of data provided by the Drone to Paparazzi messages, for 

example during a flight test at low altitudes the ultrasound sensors detected altitudes 

of fifty meters or more. 

The errors commented above are frequently known for users who use the 

ARDrone 2 with Paparazzi UAV, this are usually solved by buying another autopilot 

unit.
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7 Conclusions and Recommendations 

 

7.1. Conclusions 

 

 Paparazzi UAV is an excellent tool for generating rotorcrafts application due to its 

open-source characteristic that allows you to improve its performance. 

 A great accuracy is necessary in the GPS modules, due to the unbound error growth 

from the IMU and the external sensors from the Drone. 

 ARDrone 2 is ideal for developing different applications, due to the simplicity of 

uploading new code into its autopilot and the technology incorporated in it.  

 Optic Flow stabilization loops are suitable for indoor applications, because they don’t 

depend on GPS references, but instead they rely on DSP algorithms to compute its position. 

 Tuning is imperative in order to enchased a controller performance, so that the error 

can be quickly eliminated without causing the process variable to fluctuate excessively. 

 

7.2. Recommendations  

 

 Before every flight it is recommend to calibrate the sensors, in order to avoid 

unexpected errors during a flight test. 

 Use a different GPS module due to the fact that it is not very accurate as its technica l 

specifications specifies. 

 Use a uBlox system for the GPS is advise, because Paparazzi UAV works with these 

type of GPS by default and it has better accuracy than the Parrot Flight Recorder. 
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 There are several ARDrone 2 units who have issues communicating with the software 

Paparazzi UAV that result in false interpretation of data leading to errors. By adding a 

reliable GPS this errors should be solved, otherwise it is advised to change the autopilot 

unit. 
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9 Appendix 
 

 

 Paparazzi UAV is a complete open-source software, meaning that code is already 

developed, so in this section only the modifications to this code are presented. 

 

Appendix 1. Airframe file modifications to use the flight recorder 

 

 <!-- Subsystem section --> 

    <subsystem name="telemetry" type="transparent_udp"/> 

    <subsystem name="radio_control" type="datalink"/> 

    <subsystem name="motor_mixing"/> 

    <subsystem name="actuators" type="ardrone2"/> 

    <subsystem name="imu" type="ardrone2"/> 

    <!-- gps: "ublox" or change to "sirf" for usage with parrot flight recorder --> 

    <subsystem name="gps" type="sirf"/> 

    <subsystem name="stabilization" type="int_quat"/> 

     <subsystem name="ahrs" type="int_cmpl_quat"/> 

    <subsystem name="ins" type="extended"/> 

  <modules main_freq="512"> 

    <load name="bat_voltage_ardrone2.xml"/> 

    <!-- remove the gps_ubx_ucenter module if you use the sirf gps (flight recorder) --> 

    <!-- load name="gps_ubx_ucenter.xml"/--> 

    <load name="send_imu_mag_current.xml"/> 

    <load name="air_data.xml"/> 

    <load name="geo_mag.xml"/> 

    <load name="logger_file.xml"/> 
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    </modules> 

 

 

Appendix 2. Airframe file modifications for testing the camera 

  <modules main_freq="512"> 

    <load name="bat_voltage_ardrone2.xml"/> 

    <!-- remove the gps_ubx_ucenter module if you use the sirf gps (flight recorder) --> 

    < !--load name="gps_ubx_ucenter.xml"/--> 

    <load name="send_imu_mag_current.xml"/> 

    <load name="air_data.xml"/> 

    <load name="geo_mag.xml"/> 

    <load name="logger_file.xml"/> 

    <load name="video_thread.xml"> 

<define name="VIDEO_THREAD_FPS" value="4"/> 

<define name="VIDEO_THREAD_CAMERA" value="bottom_camera"/> 

<define name="VIDEO_THREAD_SHOT_PATH" 

value="/data/ftp/internal_000/images"/> 

</load> 

<load name="video_rtp_stream.xml"> 

<define name="VIEWVIDEO_DOWNSIZE_FACTOR" value="1"/> 

<define name="VIEWVIDEO_QUALITY_FACTOR" value="70"/> 

</load> 

    </modules> 

Appendix 3. Airframe file modifications for the optic flow controller 

 

  <modules main_freq="512"> 

    <module name="bat_voltage_ardrone2.xml"/> 

    <module name="gps_ubx_ucenter.xml"/> 

    <module name="send_imu_mag_current.xml"/> 

    <module name="logger_file.xml"/> 

    <module name="video_thread"> 
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     <define name="VIDEO_THREAD_FPS" value="4"/> 

     <define name="VIDEO_THREAD_CAMERA" value="bottom_camera"/> 

   <define name="VIDEO_THREAD_SHOT_PATH" 

value="/data/ftp/internal_000/images"/> 

    </module> 

     

     <module name="cv_opticflow"> 

      <define name="OPTICFLOW_CAMERA" value="bottom_camera"/> 

    </module> 

  </modules> 

 

   <section name="VISION" prefix="VISION_"> 

    <define name="HOVER" value="FALSE"/> 

    <define name="PHI_PGAIN" value="1500"/> 

    <define name="PHI_IGAIN" value="800"/> 

    <define name="THETA_PGAIN" value="1500"/> 

    <define name="THETA_IGAIN" value="800"/> 

    <define name="DESIRED_VX" value="0"/> 

    <define name="DESIRED_VY" value="0"/> 

   </section> 

 

 

 

Appendix 4. Flight Plan file modifications with line and circle commands 

<!DOCTYPE flight_plan SYSTEM "flight_plan.dtd"> 

 

<flight_plan alt="152" ground_alt="147" lat0="50.1316888" lon0="14.3860203" 

max_dist_from_home="150" name="Rotorcraft Basic (Enac)" security_height="2"> 

  <header> 

#include "autopilot.h" 
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  </header> 

  <waypoints> 

    <waypoint name="HOME" x="0.0" y="0.0"/> 

    <waypoint name="CLIMB" x="0.0" y="5.0"/> 

    <waypoint name="STDBY" x="-2.0" y="-5.0"/> 

    <waypoint name="p1" x="3.6" y="-13.9"/> 

    <waypoint name="p2" x="27.5" y="-48.2"/> 

    <waypoint name="p3" x="16.7" y="-19.6"/> 

    <waypoint name="p4" x="13.7" y="-40.7"/> 

    <waypoint name="CAM" x="-20" y="-50" height="2.0"/> 

    <waypoint name="TD" x="5.6" y="-10.9"/> 

  </waypoints> 

  <blocks> 

<!--Don’t change GPS blocks if not flight plan would not work--> 

    <block name="Wait GPS"> 

      <call fun="NavKillThrottle()"/> 

      <while cond="!GpsFixValid()"/> 

    </block> 

    <block name="Geo init"> 

      <while cond="LessThan(NavBlockTime(), 10)"/> 

      <call fun="NavSetGroundReferenceHere()"/> 

      <!-- call fun="NavSetAltitudeReferenceHere()"/--> 

      <call fun="nav_set_heading_current()"/> 

    </block> 

    <block name="Holding point"> 

      <call fun="NavKillThrottle()"/> 

      <attitude pitch="0" roll="0" throttle="0" vmode="throttle" until="FALSE"/> 

    </block> 

    <block name="Start Engine"> 

      <call fun="NavResurrect()"/> 

      <attitude pitch="0" roll="0" throttle="0" vmode="throttle" until="FALSE"/> 
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    </block> 

    <block name="Takeoff" strip_button="Takeoff" strip_icon="takeoff.png"> 

      <exception cond="stateGetPositionEnu_f()->z > 2.0" deroute="Standby"/> 

      <call fun="NavSetWaypointHere(WP_CLIMB)"/> 

      <stay vmode="climb" climb="nav_climb_vspeed" wp="CLIMB"/> 

    </block> 

    <block name="Standby" strip_button="Standby" strip_icon="home.png"> 

      <stay wp="STDBY"/> 

    </block> 

    <block name="stay_p1"> 

      <stay wp="p1"/> 

    </block> 

    <block name="go_p2"> 

      <call fun="nav_set_heading_deg(90)"/> 

      <go wp="p2"/> 

      <deroute block="stay_p1"/> 

    </block> 

    <block name="line_p1_p2"> 

      <go from="p1" hmode="route" wp="p2"/> 

      <stay wp="p2" until="stage_time>10"/> 

      <go from="p2" hmode="route" wp="p1"/> 

      <deroute block="stay_p1"/> 

    </block> 

    <block name="circle CAM" 

pre_call="nav_set_heading_towards_waypoint(WP_CAM)"> 

      <circle radius="10" wp="CAM"/> 

    </block>  </blocks> 

</flight_plan> 

 

Appendix 5. Modifications in logger file to record data 
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#include "file_logger.h" 

#include "subsystems/ins/vf_extended_float.h"  

#include "subsystems/ahrs/ahrs_int_cmpl_quat.h" 

#include <stdio.h> 

#include "std.h" 

#include "modules/sonar/sonar_adc.h"  

#include "navdata.h" 

#include "mcu_periph/adc.h" 

#include "subsystems/abi.h"  

#include "subsystems/gps.h" 

#include "subsystems/imu.h" 

#include "firmwares/rotorcraft/stabilization.h" 

#include "state.h" 

#include "math/pprz_algebra_int.h"  

#include "math/pprz_orientation_conversion.h"  

 

 

 

 

 

 

/** Set the default File logger path to the USB drive */ 

#ifndef FILE_LOGGER_PATH 

#define FILE_LOGGER_PATH /data/video/usb 

#endif 

 

/** The file pointer */ 

static FILE *file_logger = NULL; 

 

/** Start the file logger and open a new file */ 

void file_logger_start(void) 
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{ 

  uint32_t counter = 0; 

  char filename[512]; 

 

  // Check for available files 

  sprintf(filename, "%s/%05d.csv", STRINGIFY(FILE_LOGGER_PATH), counter); 

  while ((file_logger = fopen(filename, "r"))) { 

    fclose(file_logger); 

 

    counter++; 

    sprintf(filename, "%s/%05d.csv", STRINGIFY(FILE_LOGGER_PATH), counter); 

  } 

 

  file_logger = fopen(filename, "w"); 

 

  if (file_logger != NULL) { 

    fprintf( 

      file_logger, 

      

"counter,phi,psi,theta,gyro_p,gyro_q,gyro_r,gyro_bias_p,gryo_bias_q,gyro_bias_r,accel_b

ias,z_meas,accel_x,accel_y,accel_z,COMMAND_THRUST,COMMAND_ROLL,COMMAN

D_PITCH,COMMAND_YAW,altitude,lat,lon,ultrasound,vx,vy,vz,mx,my,mz,qi,qx,qy,qz\n" 

    ); 

  } 

} 

 

/** Stop the logger an nicely close the file */ 

void file_logger_stop(void) 

{ 

  if (file_logger != NULL) { 

    fclose(file_logger); 
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    file_logger = NULL; 

  } 

} 

 

/** Log the values to a csv file */ 

void file_logger_periodic(void) 

{ 

  if (file_logger == NULL) { 

    return; 

  } 

  static uint32_t counter; 

   

  struct Int32Quat *quat = stateGetNedToBodyQuat_i(); 

   

*In here you add the variables that need to be recorded, check if it is %d or %f 

 

  fprintf(file_logger, 

"%d,%f,%f,%f,%d,%d,%d,%d,%d,%d,%f,%f,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%

d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n", 

          counter, 

          stateGetNedToBodyEulers_f()->phi, 

          stateGetNedToBodyEulers_f()->psi, 

          stateGetNedToBodyEulers_f()->theta, 

          imu.gyro.p, 

          imu.gyro.q, 

          imu.gyro.r, 

          ahrs_icq.gyro_bias.p, 

          ahrs_icq.gyro_bias.q, 

          ahrs_icq.gyro_bias.r, 

          vff.bias, 

          vff.z, 
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          imu.accel.x, 

          imu.accel.y, 

          imu.accel.z, 

          stabilization_cmd[COMMAND_THRUST], 

          stabilization_cmd[COMMAND_ROLL], 

          stabilization_cmd[COMMAND_PITCH], 

          stabilization_cmd[COMMAND_YAW], 

          gps.lla_pos.alt, 

          gps.lla_pos.lat, 

          gps.lla_pos.lon, 

          navdata.measure.ultrasound, 

          navdata.measure.vx, 

          navdata.measure.vy, 

          navdata.measure.vz, 

          imu.mag.x, 

          imu.mag.y, 

          imu.mag.z, 

          quat->qi, 

          quat->qx, 

          quat->qy, 

          quat->qz 

         ); 

  counter++; 

} 

 

 

 


	General Index
	Index of Figures
	Index of Tables
	List of Abbreviations
	1  Introduction
	1.1. Context of the problem
	1.2. Description of the system to innovate
	1.3. Stakeholder analysis
	1.4. Description of the problem
	1.5. Synthesis problem
	1.6. Solution approach

	2 Goal and Objectives
	2.1. Goal
	2.2.  General objective
	2.3.  Specific objectives

	3 Theoretical framework
	3.1.  Description of the UAV system
	3.1.1. GPS module
	3.2. Fundamental Concepts
	3.2.1.  Accelerometer
	3.2.2. Gyroscopes
	3.2.3. Magnetometer
	3.2.4. Inertial Measurement Unit
	3.2.5.  Inertial Navigation System


	3.2.6. Global Positioning System
	3.3. Optical Flow

	4 Methodological Procedure
	4.1. Recognition and definition of the problem
	4.2. Collection and analysis of information
	4.3. Evaluation of alternatives
	4.4. Solution implementation
	4.5. Re-evaluation and design
	5 Design Process
	5.1. Selection of the software
	5.1.1. Overview of the software
	5.1.2. How the software works
	5.1.3. Understanding and configuring the software
	5.1.3.1. Paparazzi Center
	5.1.3.2. Ground Control Station (GCS)


	5.2. Attach a GPS module
	5.2.1. Fly through selected waypoints

	5.3.  Improve the altitude stabilization with a new controller
	5.3.1.  Recorded Data
	5.3.2. Implement a new controller

	5.4. Flight Tests
	5.4.1. With GPS
	5.4.2.    With Optic Flow Module

	6  Experimental Results and Analysis
	6.1. Software
	6.1.1. Data visualized from the software
	6.1.2. Flight the Drone Control by the software

	6.2.  GPS module attached
	6.2.1. Overview of the GCS
	6.2.2. Flight Results

	6.3. Adding a new controller
	6.3.1.  Recorded data
	6.3.2. Flight Tests with the new controller

	7 Conclusions and Recommendations
	7.1. Conclusions
	7.2. Recommendations
	8  References
	9 Appendix

