

Instituto Tecnológico de Costa Rica

School of Electronic Engineering

Optical system for measuring position of metallic colored pellets on a platform.

Graduation project report to qualify for the title of Electronic Engineer with the

academic degree of Bachelor

Robert J. Barnes Pérez

Prague, Spring Semester 2016

ii

iii

iv

Abstract

This thesis is the result of an investigation research on alternatives to develop a

computerized vision system to measure the position of colored pellets on a planar noncontact

magnetic manipulation platform (MagMan). This has been achieved before using MATLAB

& Simulink environment, however, this thesis explores different options in order to improve

the processing performance. First, the problem is going to be defined to set goals and

objectives. Second, the research work is going to be discussed with the purpose of selecting

and then describing the most adequate environment of the new computer vision system. The

image processing methods considered for implementation are explained in the main body of

the work, covering mainly color-detection techniques and object position measuring

algorithms; which derived two productions: in Verilog Hardware Description Language and

C code; both implemented on a Terasic tPad. The design processes in which the vision

systems were implemented is included, both deviations are characterized in detail and then

tested and compared against each other to finally conclude which is more effective to solve

the given problem.

Keywords

FPGA, Computer vision system, digital image processing, image segmentation, color

detection, position measuring, Terasic tPad, camera, Hardware description Language

(HDL), Verilog, C code, Heterogeneous computer.

v

Resumen

Esta tesis es el resultado de un proceso de investigación sobre las alternativas para

desarrollar un sistema de visión computarizado para medir la posición de balines coloreados

en una plataforma plana de manipulación magnética sin contacto (MagMan). Esto se ha

logrado antes usando el ambiente de desarrollo MATLAB y Simulink; sin embargo, esta tesis

explora diferentes opciones con el fin de mejorar el rendimiento de procesamiento. En primer

lugar, el problema será definido para establecer metas y objetivos. En segundo lugar, el

trabajo de investigación será discutido con el propósito de seleccionar y luego describir el

entorno más adecuado del nuevo sistema de visión computarizado. Los métodos de

procesamiento de imágenes considerados para la aplicación se explican en el cuerpo principal

de la tesis, que cubre principalmente técnicas de detección de color y algoritmos que miden

la posición del objeto; los cuales derivaron en dos producciones: tanto en el lenguaje de

descripción de hardware Verilog, como en código de lenguaje C; ambos implementados en

un Terasic tPad. Los procesos de diseño en el que se aplicaron a los sistemas de visión están

incluidos, ambas desviaciones se caracterizan en detalle y luego son probadas y comparadas

entre sí para finalmente concluir cuál es más eficaz para resolver el problema dado.

Palabras Clave

Arreglo de Compuertas Programable (FPGA), sistema de visión computarizado,

procesamiento digital de imágenes, segmentación de imágenes, detección de color, medición

de posición, Terasic tPad, cámara, lenguaje de descripción de hardware (HDL), Verilog,

código C, computador heterogéneo.

vi

Dedication

To my parents, whose constant effort has resulted in the consummation of this work.

vii

Acknowledgments

Foremost, I would like to acknowledge to my supervisor Ing. Jirí Zemánek, first for providing

the opportunity to develop my undergraduate project abroad, which has been a major goal

for me; and second for his valuable advices and support during its progress.

Also, I would like to thank Ing. Ivo Herman, Ing. Štefan Knotek and Ing. Martin Gurtner, the

other members of the Control Engineering department with whom I shared the work

environment, interesting discussions and other experiences that stretched my vision of life.

Last but not least, I would like to thank to my parents and my family for their biggest,

inspiring and unconditional support during this studying process which made me grow

personally and professionally, always guided to self-improvement while maintaining

humility.

viii

General Index

Chapter 1. Introduction... 1

1.1. Environment of the Project .. 1

1.2. Definition the problem ... 3

1.3. Synthesis of the problem.. 4

1.4. Solution approach .. 4

Chapter 2. Goal and objectives... 6

2.1. Goal .. 6

2.2. General objective .. 6

2.3. Specific objectives .. 6

Chapter 3. Computer Vision Systems .. 7

3.1. Processing Unit... 7

3.2. Image Sensor Technology .. 9

Chapter 4. Digital Image Processing .. 12

4.1. Problem Setting.. 12

4.2. Color Detection .. 13

4.2.1. RGB and HSV color models... 13

4.2.2. HSV Threshold in RGB colorspace.. 15

4.2.3. Pixel Threshold ... 17

4.2.4. Segmentation in RGB Vector Space .. 17

4.3. Image Segmentation [13] ... 18

4.3.1. Basic line and edge detection ... 18

4.3.2. The Marr-Hildreth edge detector [13] .. 19

4.3.3. Center of Mass .. 20

4.3.4. Foreground Model .. 21

4.4. Alternatives Assessment .. 22

Chapter 5. System Analysis and Design .. 24

5.1. Terasic tPad overview .. 24

5.1.1. CMOS camera sensor [22, 23].. 26

5.1.2. LCD touch screen [7, 23].. 28

5.1.3. Nios II processor ... 28

5.1.4. RS-232 serial transmission port [21, 27] .. 30

5.2. Design Software ... 30

5.2.1. Quartus II .. 31

ix

5.2.2. Nios II Software Build Tools for Eclipse. .. 31

5.3. Programming Languages ... 32

5.3.1. Hardware Description Language .. 32

5.3.2. Software Programming Language .. 33

Chapter 6. Design of the solution ... 34

6.1. Acquisition of the image and Heterogeneous Computer. 34

6.2. Image Processing via Dedicated Hardware ... 37

6.2.1. Hue and Saturation Filter.. 38

6.2.2. Frame Storer ... 39

6.2.3. Frame Buffer... 40

6.2.4. Function Selector .. 41

6.2.5. FSM Cerebro .. 41

6.2.6. Memory Read ... 42

6.2.7. Convolution Executor ... 42

6.2.8. ROI Generator .. 43

6.2.9. UART Serial Port Controller .. 43

6.3. System Initialization: Dynamic Regions of Interest .. 44

Chapter 7. Result Analysis ... 47

7.1. Heterogeneous computer.. 47

7.2. Dedicated Hardware... 50

7.2.1. Functionality and operating conditions .. 50

7.2.2. Accuraccy and Response Time... 52

Chapter 8. Conclusions and Recommendations ... 58

8.1. Conclusions .. 58

8.2. Recommendations and Future work .. 58

Bibliography ... 59

Appendices ... 62

Appendix A: Glossary .. 62

Appendix B: FSM Cerebro... 63

Appendix C: FSM Convolutioner .. 65

Appendix D: FSM Read & Sum ... 67

Appendix E: Computer Vision System User Manual. ... 68

x

Index of Figures

Figure 1.1. MagMan laboratory platform with a steel ball. [11] 1

Figure 1.2. Photograph of a single magnetic module. [11] 2
Figure 1.3. Simplified modular diagram of the MagMan platform. 2
Figure 1.4 Scheme of camera model. 3

Figure 4.1. Schematic of the normalized RGB colorspace cube. [13] 14
Figure 4.2. Conceptual relationship between RGB and HSV color models. [13] 14

Figure 4.3. Hue and Saturation in the HSV color model. [13] 15
Figure 4.4. RGB cube extrusion to HSV color model. [13] 15
Figure 4.5. Value isosurfaces in the RGB color space for 𝑉 = 0.25 (red), 𝑉 = 0.5 (green)

and 𝑉 = 0.75 (blue). [18] 16

Figure 4.6. Saturation isosurfaces in the RGB color space for 𝑆 = 0.25 (red), 𝑆 = 0.5

(green) and 𝑆 = 0.75 (blue). [18] 16
Figure 4.7. Hue isosurfaces in the RGB color space for 𝐻 = 0 (yellow), 𝐻 = 0.25 (red), 𝐻 =

0.5 (green) and 𝐻 = 0.75 (blue). [18] 16

Figure 4.8. Line detection masks for different orientations. [13] 19
Figure 4.9. Laplacian of Gaussian 5× 5 mask. [13] 20

Figure 4.10. Length of parallel secant lines of a circle with radius 70 px as a function of
their distance from the circle’s center (red line), i.e. the coefficients of filter 𝑓𝑐. The blue

circle represents projection of a ball to the image plane. A few sample secant lines are
shown as well, plotted with cyan color [18] 22

Figure 5.1. Altera Terasic tPad (bottom view). [21] 25
Figure 5.2. Altera Terasic tPad (top view). [23] 26

Figure 5.3. Bayer pixel format and readout direction of the D5M sensor. [22] 27
Figure 5.4. Nios II processor block diagram. [3] 29
Figure 5.5. Pin connections between Cyclone IV FPGA and ZT3232E chip. [21] 30

Figure 5.6. Nios II development flow. [2] 32
Figure 6.1. Modular diagram of the heterogeneous computer used as first solution. 35

Figure 6.2. Modular diagram of the Computer Vision System designed as second solution.
 38
Figure 6.3. Hue filters used to detect colors. a) Red and cyan threshold planes. b) Green

and magenta threshold planes. c) Blue and yellow threshold planes. d) Orange threshold
planes (lower plot). 40

Figure 6.4. Modular diagram specified for the Digital Image Processor. 42
Figure 6.5. Kernel used as foreground model in the Convolution operation. Values
according to equation 4-13 (green) and discrete approximation for practical purposes (blue).

 43
Figure 6.6. Illustration of one region of interest (yellow square) and the section where

found centers are valid (white square). 45
Figure 7.1. Evolution of location adjustment from Avalon Memory-Mapped Converter to
Pixel Buffer memory with a) resolution different than 800x600; b) standard frame size with

an incorrect location assigned by the processor; c) correct location without pixel
quadruplicate; and d) shows the correct adjustment to fit the image on the screen 48

file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244361
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244362
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244363
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244364
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244365
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244366
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244367
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244368
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244369
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244369
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244370
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244370
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244371
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244371
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244372
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244374
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244374
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244374
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244374
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244375
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244376
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244377
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244378
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244380
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244381
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244382
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244382
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244383
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244383
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244383
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244384
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244385
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244385
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244385
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244386
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244386
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244387
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244387
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244387
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244387

xi

Figure 7.2. Illumination structure for the scene and welcome screen for the Computer

Vision System. 51
Figure 7.3. Received coordinates for a single-ball test using a static frame. 52

Figure 7.4. Received coordinates for a multiple-ball test using continuously acquired
frames. 53
Figure 7.5. Multiple-ball test using a static frame: a) Set-up; b) Results obtained 54

Figure 7.6. Multiple-ball test using continuously acquired frames: a) Set-up; b) Results
obtained 55

Figure B.1. State Diagram for the FSM Cerebro. 64
Figure C.1. State Diagram for the FSM Convolutioner. 66
Figure D.1. State Diagram for the FSM Read & Sum 67

file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244388
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244388
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244389
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244390
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244390
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244391
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244392
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244392
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244393
file:///C:/Users/Robert/Desktop/Documentos%20Proyecto/Docs/FinalReport%20v2.2.docx%23_Toc457244394

xii

Index of Tables

Table 5.1 Technical specification of tPad board. [23] ... 24
Table 5.2. Resources of Cyclone IV EP4CE115 FPGA. [20, 21].. 25
Table 5.3.Table of picture sizes with maximum frame rate achievable. [22] 27

Table 5.4. Technical details of the LCD touchscreen. [7] ... 28
Table 6.1. Configuration parameters for the CMOS sensor. ... 36

Table 6.2. List of pixel channels constraints in order to comply with different levels of
saturation... 39
Table 6.3. Hue and Saturation conditions and the code to be assigned if the evaluated pixel

meets the requirements. .. 41
Table 6.4. Format of the data sent by the computer vision system. 44

Table 6.5. Initial coordinates for the different regions of interest used to initialize the
computer vision system. ... 46
Table 7.1. Time needed in average to process one frame using different versions of the

Heterogeneous Computer. .. 49
Table 7.2. Typical execution time and frequency for the computer vision system based on

dedicated hardware. .. 56
Table B.1. Inputs, outputs and states for the FSM Cerebro ... 63
Table C.1. Inputs, outputs and states for the FSM Convolutioner. 65

Table D.1. Inputs, outputs and states for the FSM Read & Sum ... 67

1

Chapter 1. Introduction

This project is based on an existing laboratory platform, which was developed by AA4CC

group at the Department of Control Engineering, in the Faculty of Electrical Engineering at

Czech Technical University in Prague. The overall project studies the problem of handling

the non-contact manipulation on a flat surface using a magnetic force field [25].

1.1. Environment of the Project

The laboratory platform for flat magnetic manipulation (MagMan) has a flat touch foil

that is used as a running floor for metal pellets (fig. 1.1). Under the foil there are four

electromagnetic modules located adjacently, with dimensions of 50x50x75 mm. These

sections are composed of four iron core coils; intended to create the magnetic field above.

The modules allow independent PWM current control for each of their coils, so they can act

simultaneously and independently to guide the pellets on the desired way (fig. 1.2).

The position of the balls on the surface can be set from two possible sources: either from

a Matlab file or from an iPad app made especially for the MagMan [25]. The platform offers

two options of position measurement of the steel ball in real time: the resistive touch sheet

that is used as surface or a RGB camera set above [11]. The processing unit of the platform

uses an ARM Cortex M3 processor at 72 MHz.

Figure 1.1. MagMan laboratory platform with a steel ball. [11]

2

From the point of view of control engineering, the platform

is capable of operate with one or more pellets, which makes it a

multiple- input multiple-output system (MIMO). As explained

before, the board has four magnetic modules composed of four iron

core coils. The magnetic field generated by each of these coils is

continuous. Since they are located next to each other in a square

matrix, the attractive energy created by one coil affects the

surrounding coils and so on; inducing a complex force field in the

platform. The project was conceived as a model and tool to

investigate strategies to control this type of dynamic systems [26].

Fig. 2 shows a simplified modular diagram of the system

The ultimate motivation for the project is to contribute to development of effic ient

distributed feedback manipulation schemes [25]. Although the configuration shown is in the

centimeter scale, it can be extrapolated to show the essence of some problems occurring in

micrometer scale; which could be useful in fields such as biotechnology and analyt ica l

chemistry and electrophoresis.

The experimental setup of the platform was awarded first place in the “Matlab &

Simulink Student Design Challenge” event of 2013 [15].

Figure 1.2. Photograph
of a single magnetic

module. [11]

Figure 1.3. Simplified modular diagram of the MagMan platform.

3

1.2. Definition the problem

The main problem of the MagMan platform lies in the visual system of position

measurement. Although there is the resistive foil, the visual method is needed because it can

process multiple elements on the platform, provided that they are optically distinguishab le.

The key drawback of the optical method is that it has slower response than the resistive sheet.

There are two stages for the visual method for measuring the ball’s position: Image

acquisition and Computer vision (Fig. 1.4) [11].

The first phase comprises of a camera Basler acA2000-340kc attached to a Bitflow Neon-

CLB frame grabber using the Camera Link interface [18]. At this block, the lens’s exposure

time is set to 7.5 ms, while it takes approximately 14 ms to transfer the image from the frame

grabber to Simulink environment via USB [11].

On the second stage, the Simulink tool converts the RGB image signal into a matrix of

hue and color saturation, making segmentation of the balls on the platform easier [1].This

algorithm requires on average 4.6 ms to determine the pellet’s location from the image,

according to [11]. Therefore, the place where the ball is cannot be known sooner than 26.1

ms after the start of the camera exposure. In summary, the time delay caused by the computer

vision algorithm limits the performance of the control system.

To advance in the dielectrophoresis research and the tests for control of distributed

manipulation for which Magman was devised, the visual feedback system needs to be

improved. This way investigators would have a more accurate placement of the pellets on

the platform.

Figure 1.4 Scheme of camera model.

4

1.3. Synthesis of the problem

The observing system of metallic colored balls of the Magman platform is not capable of

acquire and process information at the speed required by the controller, hence the overall

performance is restricted.

1.4. Solution approach

As depicted in the previous section, the main problem is that the visual method used to

measure position is too slow compared to the controller, limiting its precision.

In the first place, the project executor must learn how does the current system processes

the image, based on the documents of the previous implementations. The next step is to gain

insights into algorithms for detection of position of one (or more) steel balls in a video-

sequence obtained from camera. After evaluation of different procedures, the most effic ient

has to be chosen, accordingly with the hardware to be used.

In parallel with the algorithms’ investigation, different hardware options shall be

evaluated. For example, hardware available options will be investigated to determine whether

the existing camera is sufficient or if a new one is needed. The new proposal should be a

specialized system capable to obtaining a real-time detection that would give a better speed

of detected position, for applicability of the image based feedback. According with this, it

will be considered to develop the new system using a Field Programmable Gate Array

(FPGA).

As explained in the previous section, the current scheme transfers the image from the

camera to the frame grabber via Camera Link interface, and then the data is sent via PCI to

Simulink environment. According to [11], a specialized system such as FPGA would solve

the inherent problems of serial transmission; given that using a high speed camera with a

built-in FPGA board will allow a significant increase in the frequency of the position

measurement not only by running the computer vision algorithms on the board, but also by

avoiding the lengthy transfer of the whole image to the PC. The higher frequency achieved,

5

the better the feedback. Consequently, one of the foremost options for developing the project

will be the FPGA.

Nevertheless, for the solution of the problem there will be shown at least two different

options, and the definitive solution will be chosen based on the comparison of the

characteristics of the possibilities depicted.

6

Chapter 2. Goal and objectives

2.1. Goal

In the long term, it is intended that the magnetic field manipulator becomes extremely

useful in a research of the response of objects exposed to an electric field, their polarizat ion

and subsequent interaction of their dipole (quadrupole, octopole) with the surrounding

electric field [26]. This phenomenon is called dielectrophoresis, and its results can be used

to steer, characterize and sort objects as delicate as cells; hence its appeal for fields such as

biochemistry and bioanalytical instrumentation [26].

2.2. General objective

Implement a specialized computer vision system to measure the position of colored

metallic balls, to improve the performance of the image based feedback of the laboratory

platform for magnetic manipulation (MagMan).

2.3. Specific objectives

1. Implement an algorithm for detection of objects in a video stream obtained from a

camera.

Indicator: The object must highlight a proof that it has been recognized.

2. Develop a process capable of distinguish different colors in a video stream obtained

from a camera.

Indicator: After the image processing, the system must be able to differentiate colors

and label them.

3. Implement a system capable of measure the position of one or more objects on a flat

surface from an image.

Indicator: The system must send via RS-232 the absolute position of the objects

according with the dimensions of the surface.

7

Chapter 3. Computer Vision Systems

The initial phase of this project consisted on a survey over cameras and computer systems

available in the market, in parallel with a research of related projects. The search was mainly

focused on cameras compatible with FPGAs or microcontrollers, in order to come up with

the device that fits best the requirements of the system, without ignoring the current

implementation. The main requirements to consider are the processing time and the cost of

the device to use.

Since the main body of the project, including all the designs of architectures that develop

the operations will be performed on the processing unit, it will be discussed first. Then, the

camera options will be reviewed based primarily in their compatibility with the selected

processing unit.

3.1.Processing Unit

Before starting the engineering design for the new computer vision system, the options

for developing such structure must be reviewed. This is a critical choice because it will

directly impact on the rest of the design cycle. The main characteristic to consider is the

complexity of the application, besides the cost, capacity and the flexibility the technology

offers [9].

The current vision system transfers the image to a Personal Computer via USB, to

Simulink environment where the processing occurs. This provides all the flexibility the

workspace can give (libraries, algorithms, tools and commands), with the disadvantage that

the operations will be handled mainly by software, which does not take full advantage of the

hardware [14]. Also, the bottleneck caused by transferring the image (as explained in section

1.2) limits the performance of the platform, so it’s necessary to find a new solution.

Given the nature of the project, image processing systems usually are computationa lly

intensive but also structured. This type of applications can be mapped on FPGA or

application specific integrated circuit (ASIC) (Khan, 2010). Both options differ in some key

8

features as flexibility, cost, size and performance. According to Bailey (2011), dedicated

hardware as an ASIC would be definitively the optimal option for several reasons: a custom

made circuit will always be smaller, faster and more efficient in terms of power than an

FPGA. The main drawbacks of an ASIC are the economic cost of manufacture a specific chip

and its certainly null flexibility. Since the computer vision system may need to be changed

in the future, the ASIC is discarded as option for the project. There is also the possibility to

develop the image processor in a microcontroller.

After ruling out the ASIC, the remaining options are the FPGA and the microcontrol ler.

There is a wide range of options in both markets including variety in prices and performance.

For terms of this project, were considered microcontrollers that the department owns and

some other options that will be described shortly.

With the microcontroller, the first option would be a Raspberry Pi 3 model B, which has

a 1.2 GHz 64-bit quad-core ARM v8 CPU, Camera and display interfaces and VideoCore IV

3D graphics core [17]. This is way too advanced in single threading processing, and it offers

the option of 3D image handling for further investigations. Another advantage of this device

is its size, what makes it discrete.

There is also the Terasic Video Embedded Evaluation Kit (VEEK/tPad) has a Cyclone

IV FPGA that works at a frequency of 50 MHz and provides 114480 logic elements, plus

RS-232, USB and Flash memory ports. This kit features a 5 MP camera and a LCD

touchscreen, and it is addressed to host embedded processing-based systems. It also offers

different picture sizes, which varies inversely proportional the frame rate [23].

The Optomotive Velociraptor HS has an embedded Spartan-GLX FPGA and is designed

for high speed image processing at JPEG format. This device features a gigabit Ethernet port

and a 4 pin trigger connector, which would require to set up a small server to upload the

measured position.

9

Last but not least, there is the industrial-aimed DSP-PCIe/104 board. This board features

a Xilinx Virtex-5 FPGA which has 12 960 logic slices and supports PCI-Express interface

which provides fast communication with a host computer. This device can also be connected

with the Basler camera using an FG-400CL expansion package [19].

The most practical of all the previous options is the Optomotive camera because it also

has the FPGA attached, all together in a small device. The main drawback of this camera is

its few options of connectivity [16], given that the project is to be designed for continuous

serial transmission. The next one is the powerful Virtex-5 FPGA because it would provide

fewer processing limitations, which can be translated in more parallelism possibility in the

design; besides it is compatible with the Basler camera previously used. Unfortunately, this

board is not owned by the university; and its price is roughly 4000 USD [19] plus the adapter

for the camera, which leaves it out of the question.

The Raspberry Pi, as a microcontroller is a good processor of general applications, being

highly efficient executing instructions from software. However, it does not offer the

possibility of parallel threading, which makes it inappropriate for the task of processing

images. On the other hand, the tPad offers flexibility both in hardware (FPGA) and software

processing. This is particularly useful in this kind of applications given that the image can be

analyzed either way: the more convenient. Also, the tPad has its camera attached, it has a

wide range of connectivity options (Ethernet, USB, RS-232, PS2, SMA, among others) [21]

to transmit the measured position, what results in not needing more devices. Its main

drawback are its size and the fact that it’s phased out by a new model from Altera (VEEK-

Multi Touch) [24].

3.2.Image Sensor Technology

After selecting the FPGA as optimal choice to host the processor, the next argument is

about what camera is the most adequate for the image acquisition.

10

The Magman platform’s first vision system was composed by a Basler acA2000-340kc

camera, attached to a Bitflow Neon-CLB frame grabber [18]. Both components will be

portrayed in this chapter, and then other hardware options will be described for the new

implementation , to finally conclude on which alternative will be used and why was it chosen.

The Basler camera is a high speed industrial camera based on a CMOS sensor, and is able

to deliver up to 340 frames per second (fps) at 2 Megapixels resolution (2046 x 1086),

providing images of 8, 10 or 12 bits wide. It supports Camera Link interface and its typical

power consumption is 3.0 W. This camera worked on a frame rate of 112 fps because it was

not possible to process the data at camera’s full rate without a specialized hardware such an

FPGA or GPU (Simonian, 2014). It would be possible to attach this camera to an FPGA or a

microcontroller but in most cases this would require an undercard that make the connection

possible. For example, this camera can be attached to a PCIe 104 FPGA though an FG-400

CL daughter card, given that it is based on Camera Link interface [19].

The Optomotive Velociraptor HS is, by far, the fastest option considered for this project.

It has an embedded Spartan-GLX FPGA and is able to achieve a frame rate of 178 fps at

maximum resolution (2048x2048) [16]. As discussed in the previous section, it is also the most

practical in terms of the size to functionality ratio but this artifact is not in the faculty; it

would have to be bought.

The Terasic tPad may not have the fastest camera or the best image resolution but the

truth is that the algorithms for image segmentation do not require the largest camera

resolution to work properly; this will be discussed with more detail in the design stage. The

main advantage of this device is that it can use the Nios II processor (described in section

4.1.3). According to [3], the Nios II is the ideal real-time mainframe to use with DSP (Digita l

Signal Processing) Builder-based hardware accelerators to provide deterministic, high

performance real-time results. This particular feature makes it the best choice to develop the

new computer vision system for the Magman platform.

11

Based on the previous argument, the selected device to host the computer vision system

will be the Altera Terasic tPad due its practicality, flexibility and its high compatibility with

several pheripherals.

12

Chapter 4. Digital Image Processing

In this chapter are described different algorithms used for image processing in order to

detect diverse colors and shape from an array of pixels. The goal is to implement a system

capable of measure the position of one or several colored steel balls in the Magman Platform

in an empirically estimated frame rate of 50 Hz; while the position calculated has to be good

enough to be used as feedback for the control system of the platform.

4.1.Problem Setting

For the detection problem we are aiming to solve, there are some considerations to be

taken before describing digital processing algorithms, given their effectiveness can vary

according to the environment they are going to be used. First, the distance from the camera

to the platform is considered constant, even though there is a small difference between the

distance to the camera is from the edges and from the center of the platform. Second, the

illumination of the scene is stable, which means that long exposure periods before acquiring

the image are not necessary. Third, the platform in the image is static, the only moving objects

are going to be the steel balls. Fourth, the objects to be detected have known shape and are

symmetric and one object cannot hide another, which simplifies the identification process.

Since the main constraint for the new computer vision system is speed, the algorithms to

be implemented cannot be too complex because this would mean more response time as a

result of dense computation. Another consideration in order to improve processing speed is

that, once the objects are identified there is no need to scan the whole frame again because

the movement of the ball in the platform cannot be more than a certain number of pixels. In

this course of actions, the scanned section will be called region of interest (ROI); where its

center is the point where the ball was located in the last frame.

One of the advantages the Altera Terasic tPad is its flexibility: it can process the image

via hardware or software or both. The algorithms can be described and synthesized in Verilog

by the Quartus II design software or can also be programmed by software using the Nios II

13

Software Build tools for Eclipse. The Design Software are described further in Chapter 5 in

sections 5.2 and 5.3.

4.2. Color Detection

The human eye is capable to distinguish hundreds of shades of different colors, and this

expanded perception of our reality encouraged the development and optimization of devices

able to acquire, store and show full-colored frames. According to [13], the use of color in

image processing is encouraged for its practicality in object identification from a frame.

An important portion of the image segmentation that requires this project is to discern

between colored elements, so this branch is fundamental for the development. This section

explains briefly the basic concepts of colored pictures to then explain some algorithms that

can be used in order to detect the colored balls in the platform.

All colored displays from the Cathode Ray Tube (CRT) monitors and TVs, to the digital

Plasma, LCD and LED screens used nowadays are based on producing all color variations

with the three primary colors: Red, Green and Blue; where the characteristics used to

distinguish one color from another are brightness, hue and saturation [13]. There are other

protocols for color encoding such as Cyan, Magenta and Yellow (CMY); Hue, Saturation

and Value (HSV); Luminance and Chrominance (YCbCr), among others; but cover them all

goes beyond the scope of this document, so we will focus only in RGB and HSV color spaces.

4.2.1. RGB and HSV color models

The RGB color model is based on the three dimensional Cartesian coordinate system,

where each axis represents the value of one of the three primary colors: Red, Green and Blue,

hence its name. If all the values of these axes are normalized in the interval [0,1], the color

space can be modeled as a cube that contains all achievable colors; furthermore, the primary

colors are in three different corners, while the secondary colors are in other three corners. A

straight line traced from the origin [0,0,0] to the point [1,1,1] runs the entire grayscale from

black to white[13], as shown in fig.4.1.

14

According to González and Woods (2007), RGB color model is useful to build colors in

hardware implementations, however it is not well suited to describe colors. Humans describe

colors based on its hue, saturation and brightness; being hue the attribute that describes a

pure color, saturation is the measure of white light and value is a measure of brightness. The

HSV colorspace is mapped putting the vector of RGB grayscale in vertical position with the

black vertex at the bottom and the white vertex above it, becoming the intensity axis (fig 4.2).

The cube can then be extruded into a hexagonal shape where the vertices are the primary and

secondary colors (fig 4.4). Henceforward, primary colors are separated by 120° each other

and 60° to the secondary counterparts as shown in the fig. 4.3, where the dot is an arbitrary

Figure 4.1. Schematic of the normalized RGB colorspace cube. [13]

Figure 4.2. Conceptual relationship between

RGB and HSV color models. [13]

15

color point, the saturation value is radial and the hue is the angle from the red vertex,

incrementing in counter clockwise direction. If the values of R, G and B axes are normalized

in the interval [0,1], the equations 4-1, 4-2 and 4-3 allow to calculate the Hue, Saturation and

Intensity respectively [13].

𝐻 = {𝜃 𝑖f 𝐵 ≤ 𝐺
360 − 𝜃 if 𝐵 > 𝐺

 (4-1)

Where

𝜃 = cos−1 {

1
2

∙ [(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)2 + (𝑅 − 𝐵) ∙ (𝐺 − 𝐵)]
1

2⁄
}

Saturation is given by

𝑆 = 1 −
3

(𝑅+𝐺+𝐵)
∙ [𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)] (4-2)

Value is given by

𝑉 =
1

3
∙ (𝑅 + 𝐺 + 𝐵) (4-3)

4.2.2. HSV Threshold in RGB colorspace

This method relies on the concepts described in the previous section but without the

conversion from one space to another. In another words, it offers the effectiveness of

thresholding in HSV colorspace without the expense of transforming each pixel. According

to [18] hue, saturation and value isosurfaces are linear or piecewise linear in terms of RGB

Figure 4.4. RGB cube extrusion to HSV color

model. [13]

Figure 4.3. Hue and Saturation in the HSV

color model. [13]

16

components. So, if the isosurfaces corresponding to the hue, saturation and value are

described analytically using plane equations, we will be able to do the HSV thresholding by

simply checking whether a pixel lays above or below a set of boundary planes in the RGB

space [18]. Figures 4.5 through 4.7 show the HSV isosurfaces in RGB colorspace for the

reader’s understanding.

Figure 4.5. Value isosurfaces in the RGB

color space for 𝑉 = 0.25 (red), 𝑉 = 0.5 (green)
and 𝑉 = 0.75 (blue). [18]

Figure 4.7. Hue isosurfaces in the RGB color

space for 𝐻 = 0 (yellow), 𝐻 = 0.25 (red), 𝐻 =

0.5 (green) and 𝐻 = 0.75 (blue). [18]

Figure 4.6. Saturation isosurfaces in the RGB

color space for 𝑆 = 0.25 (red), 𝑆 = 0.5 (green) and

𝑆 = 0.75 (blue). [18]

17

4.2.3. Pixel Threshold

This is a very simple method based in the merely concept of thresholding the pixels that

meet certain value. For example: in an RGB image, by simply verifying the channels of each

pixel, can we can examine if it belongs to a red object we need to track. Following this idea,

in a pixel depth of 30 bits (just as used in the tPad) each channel has 10 bits, making the

possible values in the interval [0,1023]. In order to detect a red object, the thresholding would

be as simple to set an arbitrary value of red channel, and every pixel above this limit is

considered foreground; while those don’t as background.

It is almost superfluous to explain the fragility of a color detection algorithm based on

this purpose. Here it is mentioned only for completeness but for a real implementation it

would be less than useless. First, it would only allow (in the best case scenario) to detect red,

green or blue colors in their purest versions, excluding similar shades. Second, a system based

on linear threshold would also be highly susceptible to light changes. The only advantage

this procedure can have among other algorithms is that it is the fastest: just needs three

comparators; but does not meet the requirements of this project.

4.2.4. Segmentation in RGB Vector Space

This is an improved version of the previous procedure. It is also mapped in the RGB

colorspace with the difference that the color identification is not based on a fixed value of R,

G or B but on a region around the color we desire to detect. The objective of segmentation is

to classify each RGB pixel as inside the region stated or not [13]. In order to determine the

proximity of each pixel to the average of the region selected, the simplest way is to calculate

the Euclidean distance. Depending on how the distance is calculated, the tridimensiona l

region can be either a cube, a sphere or an ellipsoid. For example, equation 4-4 is used to

calculate the Euclidean distance between the average color we want to discriminate (vector

a) and an arbitrary point in RGB color space (vector z). Therefore, the color denoted by z is

considered as similar to a if the distance between them is less than the specified threshold

[13].

18

𝐷(𝒛, 𝒂) = ‖𝒛 − 𝒂‖ = [(𝒛 − 𝒂)𝑇 ∙ (𝒛 − 𝒂)]
1

2 (4-4)

If a maximum distance D0 is set, the similar points in the color space will look like a

sphere of radius D0. Since calculating the square root for images of useful sizes takes a heavy

processing because of the number of pixels, it’s simpler to perform this threshold in a cubical

shape centered in a. This can be done comparing separately the distance in the three

directions (R.G.B) between z and a, which, according to [13] is simpler computationally than

calculating the spherical enclosure.

4.3.Image Segmentation [13]

According to [13] image segmentation in computer vision systems is the process to

subdivide the image into regions or objects whose pixels share a characteristic feature, in

order to obtain information from it. In our case, the goal is to measure the position of the

object of interest, with the advantages that it has known shape and if there is more than one,

they cannot occlude each other; which simplifies the segmentation.

4.3.1. Basic line and edge detection

In a digital image, typically an edge pixel is found when there is a discontinuity in the

intensity function, while an edge segment is a set of connected edge pixels. The detection of

edges in digital image processing is based on derivatives guided by the following rules for

the first derivative:

a) Must be zero in areas of constant intensity;

b) Must be nonzero at the onset of an intensity step or ramp;

c) Must be nonzero at points along an intensity ramp.

For the second derivative, the following rules apply:

a) Must be zero in areas of constant intensity;

b) Must be nonzero at the onset and end of an intensity step or ramp;

c) Must be zero along intensity ramps.

Based on these statements, an expression for the first order derivative is obtained by

expanding a linear function in Taylor series, being the function f(x +Δx) and Δx =1.

19

Equations 4.5 and 4.6 show the result of this approximation of one-dimension first

and second order differentials, respectively.

𝑑𝑓

𝑑𝑥
= 𝑓 ′(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥) (4-5)

𝑑2𝑓

𝑑𝑥 2
= 𝑓 ′′(𝑥) = 𝑓 ′(𝑥 + 1) − 𝑓 ′(𝑥)

𝑓 ′′(𝑥) = 𝑓(𝑥 + 1) + 𝑓(𝑥 − 1) + 𝑓(𝑥) (4-6)

An interesting example where an 8-bit image is subjected to the previous equations is

shown in [13], pp 693-695. For our interest, the conclusions of such experiment are: (1) First-

order derivatives produce thicker edges in an image. (2) Second-order derivatives have

stronger response to fine detail. (3) Second-order derivatives produce a double-edge response

at ramp and step transitions in intensity. (4) The sign of the second-order derivatives can be

used to determine whether a transition into edge is from dark to light or vice-versa.

The previous explanation is useful as an introduction to the general process of

segmentation, but is still in one direction. For real image processing applications, the

common procedure is to encompass the frame using a filter mask or a kernel, which is usually

a matrix of different values depending of the target. Some example of masks are shown in

fig. 4.8, being a) a mask optimized to find horizontal lines through d)-45° lines.

4.3.2. The Marr-Hildreth edge detector [13]

David Marr and Ellen Hildreth proposed in 1980 two premises in which they based their

model of edge detection: a) intensity changes are not independent of image scale, and b) a

sudden intensity change will give raise to a peak in the first derivative, or a zero crossing at

the second derivative, as proven in the previous section. To fulfill this requirements, Marr

Figure 4.8. Line detection masks for different orientations. [13]

20

and Hildreth suggested the Laplacian operator was the one who fulfilled best their

expectations, applied to a 2-Dimensional Gaussian function. (eq. 4-7). The final expression

is called Laplacian of Gaussian (LoG), and it is depicted in eq. 4.8.

𝐺(𝑥,𝑦) = 𝑒−
𝑥2+𝑦2

2∙𝜎2 (4-7)

∇2𝐺(𝑥, 𝑦) =
𝜕2 𝐺(𝑥, 𝑦)

𝜕𝑥 2
+

𝜕2𝐺(𝑥, 𝑦)

𝜕𝑦2

∇2𝐺(𝑥, 𝑦) = [
𝑥2+𝑦2 −2∙𝜎2

𝜎4] ∙ 𝑒−
𝑥2+𝑦2

2∙𝜎2 (4-8)

The Laplacian of Gaussian can then be converted into a low-pass filter mask of variable

size (for an example, see fig. 4.9.). As a rule, the size of an n× n LoG filter should be that n

is the smallest odd integer greater than or equal to 6σ; being σ the standard deviation. Since

the mask is isotropic, its convolution with the frame yields a blurred picture where the

intensity of the structures is decreased in any direction, thus

avoiding to use several masks depending of the direction of the

edges of interest. The algorithm by itself consists of convolving

the LoG filter with an image f(x,y) (eq. 4-9) and then finding zero

crossings in g(x,y) to determine the locations of edges in f(x,y).

𝑔(𝑥, 𝑦) = ∇2[𝐺(𝑥, 𝑦) ∗ 𝑔(𝑥,𝑦)] (4-9)

The principal feature of the Marr-Hildreth edge detection

algorithm is the zero detection of g(x,y) because its simplicity and its good results. Its main

drawback is the treatment of negative numbers in hardware which may imply denser

processing and slower performance.

4.3.3. Center of Mass

This method is a simple procedure to calculate the center of a shape in a binary image.

It is based upon accumulating the weight of each pixel times the indexed position in one

dimension (x for demonstration) for each row, divided by the sum of the weights of each

pixel for each row, as shown in eq. 4-10.

Figure 4.9. Laplacian of

Gaussian 5× 5 mask. [13]

0 0 -1 0 0

0 -1 -2 -1 0

-1 -2 16 -2 -1

0 -1 -2 -1 0

0 0 -1 0 0

21

𝑋𝑐𝑚 =
∑ ∑ 𝑥∙𝑔(𝑥,𝑦)

∑ ∑ 𝑔(𝑥,𝑦)
 (4-10)

One disadvantage of this method is that it calculates the center of the concentrations of

the pixels for virtually any shape, and for the purposes of this project it is required that the

method does so for only circular shapes. For this reason this method was discarded for the

final implementation.

4.3.4. Foreground Model

This method was proposed by [18] as a procedure to detect the position of the balls

from a background subtracted image. This image is considered as a two-dimensional matrix

of the same size of a region of interest D(i,j), where each pixel is classified between two

threshold values t1 and t2 to have three different classes, where t1 < t2. (eq. 4-11)

𝐶(𝐷𝑖𝑗) = {

0 iff 0 < 𝐷𝑖𝑗 ≤ 𝑡1

 1 iff 𝑡1 < 𝐷𝑖𝑗 ≤ 𝑡2

2 otherwise

 (4-11)

According to eq. 4-11, the pixels with classification C(Dij)=0 belong to the background,

C(Dij)=2 belongs to foreground and C(Dij)=1 means “not determined” tier. The higher

threshold t2 is chosen empirically as a quantile of the difference image pixel values, while t1

is chosen as one half of the threshold t2. After the pixel classification we form two vectors

whose lengths are equal to the width M and the height N on the image. These vectors, v1 and

v2 contain sums of rows and columns respectively (see eqs. 4-12)

𝑣1 = ∑ 𝐶(𝐷𝑖𝑗)

𝑁

𝑗=1

(4-12)

𝑣2 = ∑ 𝐶(𝐷𝑖𝑗)

𝑀

𝑖=1

After having the rows and columns in vectors, the next step is to create a digital filter to

detect the shape we are interested in. Simonian proposes an analysis based on the projections

of the secant lines of the circle in a column sum vector, which provides the filter shown in

22

eq. 4-13 for any fixed circle radius. The evaluation for this filter in a circle with radius of 70

pixels can be seen in fig. 4.10.

𝑓𝑐(𝑥) = {2 ∙ √𝑟2 − 𝑥2 iff x ϵ [−r,r]

0 otherwise
 (4-13)

Finally, the procedure to know the center of the ball is as simple as the location of the

maximum result of the convolution between image vectors (v1 and v2) and the digital filter

shown in fig 4.10. The mathematical expression for this operation is described in eq. 4-14.

𝑥𝑐 = arg max
𝑖

{(𝒗1 ∗ 𝒇𝑐)(𝑖)}

(4-14)

𝑦𝑐 = arg max
𝑗

{(𝒗2 ∗ 𝒇𝑐)(𝑗)}

4.4.Alternatives Assessment

In this section we discuss briefly which methods are the most appropriated for the main

parts of the computer vision system, being color detection and circle detection in the image.

For color detection, the pixel threshold based only in R, G or B channels at the same time

the easiest and less reliable approach, given that the hue cannot be judged based on the value

of only one channel. The optimal solution for color detection would be to transform each

Figure 4.10. Length of parallel secant lines of a circle with radius 70 px as a function of their distance
from the circle’s center (red line), i.e. the coefficients of filter 𝑓𝑐. The blue circle represents projection

of a ball to the image plane. A few sample secant lines are shown as well, plotted with cyan color [18]

23

pixel to the HSV colorspace to evaluate if it belongs to a color of interest, but this requires

dense calculations that would slow the performance of the system. The same thing happens

with segmentation in RGB colorspace because the Euclidean distance for each pixel would

need to be calculated and compared to different values of the different colors to identify. The

best option is the HSV threshold in RGB colorspace because it only needs the parametrizat ion

of the thresholds needed and two comparators for hue and for saturation.

For image segmentation, the pure edge detection based on differentials leads to the Marr-

Hildreth edge detection algorithm, but this turns out to be overly complicated to handle

because of the negative coefficients in the kernel. Besides, edge detection is not the main

goal but detection of the whole shape; so despite its effectiveness is discarded. For the center

of mass calculation, as mentioned in section 4.3.3, it can calculate the center of any shape so

it provides no filtering at all. Finally, the Foreground model proposed by [18] holds a balance

between effectiveness and difficulty, so that if it’s synthesizable in Verilog, the pixels can be

first classified as background or foreground in different levels or colors; and then this method

could be used to locate the circles in the image.

24

Chapter 5. System Analysis and Design

This chapter presents the constraints analysis according to the selected FPGA’s

processing time and data consistency. It also presents the FPGA development board used for

the new computer vision system, the Quartus II design software and the Nios II Build Tools

for Eclipse. All considered options are described in terms of programming language, FPGA

development board, CMOS sensor used, embedded operating system and the soft-core

mainframe

5.1. Terasic tPad overview

The Terasic tPad is a design environment capable to perform processing based systems.

It is composed by the DE2-115 development board attached to a multimedia daughter card

via HSMC port. The core of the DE2-115 board, where the Nios II processor is installed and

all logic is performed, is the Cyclone IV FPGA. The tPad and Cyclone IV FPGA technical

specifications are presented in table 5.1, and table 5.2 respectively.

Table 5.1 Technical specification of tPad board. [23]

Feature Value [unit]

Operation Voltage DC 12 [V]

Flash Memory 8 [MB]

EEPROM 32 [Kbit]

SRAM 2 [MB]

SDRAM 128 [MB]

Clock frequency 50 [MHz]

Width 160 [mm]

Large 223 [mm]

Depth 47 [mm]

The board is to be configured via USB blaster, but it supports JTAG AS configura t ion

as well. As it can be seen in fig.5.1, the device counts also with many peripheral connectors,

which signifies a wide range of possibilities for processing digital signals including audio

25

and video in real time. The board has on its back side a 5 Mega Pixel camera with an LCD

8” touch screen (fig. 5.2).

Table 5.2. Resources of Cyclone IV EP4CE115 FPGA. [20, 21]

Logic Elements [LEs] 114480

Embedded Memory [kbits] 3888

Embedded 18x18 multipliers 266

General Purpose PLLs 4

Global Clock Networks 20

User I/O Banks 8

On the top side, the board has 9 green and 18 red leds for output or display, it also has

18 slide switches and 4 push buttons for inputs. It also shows a 16x2 LCD screen where can

Figure 5.1. Altera Terasic tPad (bottom view). [21]

26

be shown messages as desired. It also has various types of memories: SDRAM, SRAM,

FLASH and EEPROM. Among its connectors features an IR receiver, a TV decoder, a CD-

quality audio CODEC with line-in, out, and microphone- in jacks; VGA DAC with VGA-out

connector, USB ports type A and B, 2 SMA connectors, 2 Gigabit Ethernet PHY ports and a

RS-232 transceiver.

For the development of the computer vision system, the tPad offers a set of IP cores that

can be selected, connected and synthesized using the Qsys tool for building architectures.

This tool is also useful to instantiate the softcore Nios II Processor, which can be built in the

FPGA; operated through a RISC instructions set (see section 5.2).

5.1.1. CMOS camera sensor [22, 23]

The tPad is equipped with a 5-Megapixel digital image sensor module (D5M) that

provides an active imaging array of 2,592 x 1,944 pixels as maximum resolution. It features

low-noise CMOS technology that achieves CCD quality. The sensor can be operated in its

default mode (maximum resolution) or programmed by the user through I2C serial interface

for frame size. Other sizes supported by the 5DM are listed in table 5.3 with the

corresponding frame rate achievable with an input clock of 96 MHz.

Figure 5.2. Altera Terasic tPad (top view). [23]

27

The CMOS sensor acquires the image in Bayer pixel format plus a blank region

regardless the frame size (see fig. 5.3). This implies that the blank area of the acquired array

of pixels need to be cropped, and the active image must be converted to RGB format before

any further changes. Further specifications of the camera’s readout sequence can be found in

[22]

Table 5.3.Table of picture sizes with
maximum frame rate achievable. [22]

Resolution H x V

[pixels]

Frame

Rate [fps]

2592 x 1944 15.15

2048 x 1536 23

1600 x 1200 35.2

1280 x 1024 48

1024 x 768 73.4

800 x 600 107.7

640 x 480 150

Figure 5.3. Bayer pixel format and readout direction of the D5M sensor. [22]

28

5.1.2. LCD touch screen [7, 23]

The tPad features an 8-inch LCD panel that supports resolution of (800x600) pixels with

backlight. The LCD panel works with an 18-bit parallel RGB data interface and an input

clock of 40 MHz. The tPad is also equipped with an Analog Devices AD7843 touch screen

chip that digitizes analog x and y coordinates of touch points to 12-bit coordinates, which

can be read in the FPGA through the serial port interface on the AD7843. Table 4.4 shows

some technical details of the screen (note the touch characteristics were ignored due to its

futility in this project). Further specifications of the LCD can be found in [7]

Table 5.4. Technical details of the LCD touchscreen. [7]

Feature Value [unit]

Screen size 8 inches (diagonal)

Power supply 3.3 [V]

Digital operating current (max) 120 (132) [mA]

Power consumption (max) 396 (436) [mW]

Backlight LED voltage (max) 9.9 (10.5) [V]

Backlight LED current (max) 180 (200) [mA]

Resolution 800 x 600 pixels @ RGB

Active area 162.0(W) x 121.5(H) [mm]*

Module size 183.0(W) x 141.0(H) x 7.2(D) [mm]*

Color arrangement 18 bits RGB

Interface Digital

*(W): width; (H): height.

5.1.3. Nios II processor

There are two kinds of mainframes in FPGAs according to Antunes (2010): hard and

soft core. The Hardware based processors (hard-core) are located in a specific area of the

integrated circuit, while the soft-core processors are installed in the general-purpose FPGA

logic cells [8]. Altera’s Nios II is a soft-core general-purpose RISC processor that can be

instantiated on an Altera FPGA device. In the Quartus II development environment are three

different alternatives: economic, standard and fast [3].

29

Economic: Ideal for microcontroller applications. It uses the fewest FPGA logic and

memory resources [4].

Standard: is designed to implement a small processor core without a significant trade

off in performance This core is optimal for cost-sensitive, medium-performance

applications, such as computers running a full- featured operating system [6].

Fast: designed for high performance. Optimal for performance-critical applications

as well as applications with large amounts of code and data, such as running a full-

featured operating. The Nios II fast core can use a memory management unit (MMU)

to run embedded Linux [5].

Figure 5.4 shows a simplified modular diagram of the Nios II structure. Some other

features of the Nios II processor are listed below:

 Full 32-bit instruction set, data path, and address space

 32 general-purpose registers

 32 interrupt sources

 External interrupt controller interface for more interrupt sources

 Single- instruction 32 × 32 multiply and divide producing a 32-bit result

 Dedicated instructions for computing 64-bit and 128-bit products of multiplication

Figure 5.4. Nios II processor block diagram. [3]

30

 Optional floating-point instructions for single-precision floating-point operations

 Single- instruction barrel shifter

 Access to a variety of on-chip peripherals, and interfaces to off-chip memories and

peripherals

 Hardware-assisted debug module enabling processor start, stop, step, and trace

under control of the Nios II software development tools

5.1.4. RS-232 serial transmission port [21, 27]

The DE2-115 board uses a ZT3232 transceiver chip and a 9-pin DB9 connector for RS-

232 communications, with flexible power supply from 3V to 5.5V. The chip supports both

EIA/TIA-232 and V.28/V.24 communication interfaces, consisting of two line drivers, two

line receivers and the proprietary switch-capacitor regulated voltage converters.

The ZT3232E chip supports NSOIC, WSOIC, SSOP and TSSOP package types for

transmission and reception, at a data rate of 250 kbps. Image 5.5 shows the connections

between the FPGA and the ZT3232E chip.

Figure 5.5. Pin connections between Cyclone IV FPGA and ZT3232E chip. [21]

5.2. Design Software

In order to work with the Terasic tPad, the software development environment that this

board requires must be briefly introduced. The main tools to be used will be the Altera

Quartus II System Development Software for hardware and the Eclipse Nios II for software.

31

5.2.1. Quartus II

The Quartus II development environment is useful for analysis and synthesis of the

structures based on hardware description languages like Verilog or VHDL. The Altera

Quartus II design software provides a complete, multiplatform design environment for

system-on-a-programmable-chip (SOPC) designs. This environment synthesizes the scheme

implemented and fits it on the tPad. It also performs various tests including connectivity

checks, timing constraints and cell occupancy, all this in order to evidence the (in) validity

of the proposed schemes.

The Altera Quartus II design software also includes the Qsys tool, which is a powerful

environment where the core of the Nios II processor can be instantiated and connected with

the peripheral modules as required by the design. It also includes templates of hardware

described modules compatible with the built-in architecture of the tPad, which will simplify

the implementation of the systems.

Another useful tool included in the Quartus II software is the TimeQuest Timing

Analyzer. As its name says, its main function is to review the described system searching for

any kind of errors related to timing, such as clocks, fan out, delay, slack, among others. Other

tools used are the pin planner, that allows to assign the FPGA pins where the input and output

signals will be connected and the Programmer, which downloads the compiled design into

the board.

5.2.2. Nios II Software Build Tools for Eclipse.

This tool allows to create and modify the software code run by the Nios II soft core

processor, if included in the design. The programming language is C/C++, and after

compilation this tool transforms the code into the binary file executed by Nios II. The Eclipse

environment also allows access to the libraries ran by the hardware described modules

created with the Qsys tool, which expands its utility in heterogeneous systems. Fig. 5.6 shows

the development flow required to build an ASIC controlled by the Nios II processor. Note

32

that this image includes the workflow integrating all the three main tools of the environment

(Quartus II, Qsys and Eclipse)

5.3.Programming Languages

This section briefly describes the programming languages used in this project, includ ing

the purposes of each one. Given that the system has both hardware and software components,

a hardware description language and a high level language are going to be used respectively

to develop each domain.

5.3.1. Hardware Description Language

At the lowest level, the digital systems are composed by logical gates. To design and

compile a complex structure at this level would be unmanageably tedious and error prone.

According to Bailey (2011), it is possible to program an FPGA at this level, but it would be

as programming a microprocessor in assembly language; while using a Hardware Description

Language (HDL) allows to describe the operation of a circuit in a “human readable” form.

Figure 5.6. Nios II development flow. [2]

33

“A Verilog design consists of a hierarchy of modules. Modules communicate with each

other through a set of declared input, output, and bidirectional ports.”[8]. Since the design in

code actually represents hardware, the main difference it has with software programming is

that the diverse blocks can work and communicate simultaneously when instantiated in the

FPGA or even in simulations.

For this project, the chosen HDL is Verilog, given that it is the most common for digita l

designs in the data-transfer level of abstraction. Besides, it also has a lot of support in the

internet via forums, which is a helpful advantage.

5.3.2. Software Programming Language

Given the complexity of the new computer vision system, a portion of the processing of

the images could be done via software. C is a procedural structured programming language

and it is supported by a wide number of software compilers.

As mentioned before, the Nios II microprocessor can be programmed in C programming

language via the Eclipse Software Building Tools. Furthermore, each one of the Altera

University Program’s modules have a set of functions defined in Hardware Abstraction

Layers (HALs), which are compiled in C libraries. This particularity can facilitate the

treatment of basic operations as memory addressing or interruption handling.

34

Chapter 6. Design of the solution

Even on the same device, there are several ways to implement a system that executes a

given function. Is in this stage when the selection of the architecture, the algorithms and the

procedure become variables that can play on favor or against the performance of the final

circuit. In the chapter 3 was discussed how the Terasic tPad was selected as the background

hardware to host the new computer vision system; and its features have been described in

chapter 5. In this chapter the outline of the structure will be depicted from the acquisition of

the image through two possible ways of processing it.

6.1. Acquisition of the image and Heterogeneous Computer.

Acquisition of the image is a key feature in this project. A very important part of the final

performance of the new vision system depends on the rate at which it can collect and store

one complete frame. Since the main restriction is speed, the pipeline was designed to classify

the pixels as they were input instead of storing the image first and then execute the

classification. In the other hand, a Heterogeneous computer provides the advantages of

hardware parallelism in the Video-In pipeline combined with the ease of algorithm

instantiation via C code as described in section 5.3.2.

The architecture of this version of the new computer vision system is a mixture of two

different examples that use the tPad Camera. The first part of the framegrabber is based on

the camera example provided with the tPad’s CD. The second part is an adaptation of the

VEEK media computer. Its core is the Nios II processor and it is instantiated with its

peripherals using the Qsys tool (see section 5.2.1 for further details). The Video-In pipeline

is depicted in the image 6.1 inside the orange square while the tasks for the mainframe are

inside the blue square. The different modules that compose the whole diagram in fig 6.1 are

described below.

CMOS Configuration: Originally developed by Altera. This module was designed to

communicate with the CCD via I2C port to set up several operational parameters such

as row and column size, analog channel gains, starting exposure, among others. These

35

were changed in order to fit the system requirements. Table 6-1 shows the parameters

that were modified. Note that gain values are unit less because they represent

multiplication coefficients.

CCD Capture: Originally developed by Altera, this module was not modified. Its

function is to receive the incoming data and signals from the CMOS sensor. The data

is then converted to the frame captured using two counters that give the address of

the pixels received. These are switched to the system clock domain and sent to the

Bayer Pattern Resampler.

Bayer Pattern Resampler: (Raw to RGB). This module converts a video stream from

the Bayer Pattern format to the 30-bit RGB format combining four adjacent pixels

from the incoming stream into one. Since for each four pixels are two green, one red

and one blue, the green values are averaged in the final array. It is important to

highlight that this module diminishes the image to half of its original resolution.

Originally developed by Altera, this module was not modified.

Figure 6.1. Modular diagram of the heterogeneous computer used as first solution.

36

Dual Port SDRAM: this is a dual clock FIFO

memory that stores the frames. It is composed

by two parallel blocks of 240 kb. Origina lly

developed by Altera, this module was not

modified.

Avalon Memory-Mapped Converter: this

module was originally developed by [10], and

it was not modified. The purpose of this block

is to allow Nios II processor to read the frames

temporarily stored in the SDRAM and convert

them to the Avalon Memory-Mapped bus

format.

NIOS II: the processor is instantiated in Qsys and it is used to move the pixels read

by the CMOS controller and store them in the SRAM memory. For this case the

obvious choice is the fast core, given it is the most powerful. This core also offers

hardware divide and multiplication, which are both useful to perform complex

operations if needed. The Nios II processor is also useful to control the RS-232 serial

port to transmit the coordinates of the found objects.

SRAM Memory Controller: This block represents both a 2 MB memory and its

controller. This module is used to store the pixels and is controlled by both the

processor and the Pixel Buffer DMA Controller.

Once the image is successfully converted to the Avalon Memory-Mapped bus format

and then stored in the SRAM memory, we consider it has been successfully acquired. Image

display is not part of the objectives of this project, however, is a powerful tool in order to

control if the frame is being acquired correctly. It also allows to practically check other

parameters as noise, colors and object detection. The rest of the pipeline is described below

for completeness, but it is not part of the final design.

Pixel Buffer DMA Controller: It uses its Avalon memory-mapped master interface to

read video frames from an external memory (a SRAM), and then sends them out via

Table 6.1. Configuration parameters

for the CMOS sensor.

Parameter Value [unit]

PLL output freq. 144 [MHz]

Exposure time 16,567 [ms]

Row size 599 [pixels]

Column size 799 [pixels]

G1 gain 4,469

R gain 6,781

B gain 5,328

G2 gain 1,625

37

its Avalon streaming interface. This module can be programmed from software using

the Nios II processor to read and modify the image stored in the memory.

Dual Clock FIFO: buffers video data and help transfer a stream between two clock

domains. It is necessary due to the difference between the clocks of the system and

the LCD touchscreen.

VGA Controller: The VGA controller IP core takes the incoming data, and then sends

that information to either the on-board VGA DAC or the LCD with touchscreen

daughtercard synchronously either with an external clock (for the LTM touchscreen)

or a clock generated by the module (for the VGA DAC).

LCD Screen: Shows the image acquired. This screen, the FIFO memory and the VGA

controller are included in the design even though they are not necessary for the ball

detection, but they are useful in order to control the procedures applied.

The Heterogeneous computer was also useful to develop the Dynamic Region of Interest

logic. This procedure places the center of the ROI of the next iteration in the coordinates

found for the ball, and it is explained in section 6.3 for System Initialization.

6.2. Image Processing via Dedicated Hardware

The definitive version of the computer vision system uses some elements from the

previous design and adds new components (see fig. 6.2). The first modules: CCD

configuration through Raw to RGB converter are still used, but the SDRAM FIFO was

replaced by a dual port RAM memory. The pixels are received by the Saturation Filter, where

their RGB values are evaluated in accordance with the HSV thresholding in RGB colorspace

described in chapter 4 in two saturation levels (0.25 and 0.50) and seven possible colors plus

black denoting background. Each pixel is then decoded in three bits according to color and

stored in the dual port RAM memory.

In the output, the read signals and output from Frame Buffer are multiplexed in order to

fulfill both operation modes of the computer vision system: screen or position measure. The

idea is to be able to align the visual space of the camera using the screen mode and then to

turn it to Position Measuring Mode. The screen mode also allows to show the pixels that are

38

understood as foreground, which can be taken as reference to adjust either hue or saturation

in the circuit, or lightning in the scene.

The processing stage is depicted in detail in fig. 6.4.This section is controlled by a Master

FSM that globally controls the main blocks as Read & Sum, Convolutioners and UART

Transmission. This last block is controlled by a slave FSM that controls the protocol for

transmission of two bytes at a time. The core of the transmission code was developed by [12]

and suffered no changes. A slave FSM was designed to control this core and to make it send

two bytes per command from Master FSM.

6.2.1. Hue and Saturation Filter

This is one of the key modules of the system because it executes the whole color

detection. Its design is based on the color filtering proposed by [18] explained briefly in

section 4.2.2 with several modifications in the hue channel, while the saturation level was

kept as proposed.

The system was devised to work with up to seven different colored balls, so for the color

filtering in hue the basic six colors (red, yellow, green, cyan, blue, and magenta) plus orange

were selected (see fig. 6.3). The saturation filter is set to restrict two levels: S=0.50 and

Figure 6.2. Modular diagram of the Computer Vision System designed as second solution.

39

S=0.25 as depicted previously in image 4.6. Based on the conditions of table 6.2, the regions

for the saturation threshold are shown in eq. 6-1 and 6-2, and the whole regions are shown in

fig. 6.3.

𝑆50 = ~(𝐴|𝐵|𝐶|𝐷|𝐸|𝐹|𝑄) (6-1)

𝑆25 = ~(𝐴|𝐵|𝐶|𝐷|𝐸|𝐹|𝑄) (6-2)

To be able to make the comparison of

each pixel against this strict threshold in

RGB color space, the values are compared

according to the plane equations shown in

fig. 6.3. Note that the planes shown in

image a) work for both red and cyan colors.

This happens since these colors are

opposite in the symmetric RGB color

space; so the inequation of the pixel against

the planes is just inverted. The same

situation happens between green and

magenta, and blue and yellow.

The final stage of the hue and

saturation filter assigns a 3-bits code to

each pixel instead of their original RGB values if it meets any of the hue and saturation filters

for the configured colors. If the pixel does not belong to any of the predefined colors, the

assigned code will be zero. The codes assigned for the set conditions are shown in table 6.3.

The hue conditions have been scaled to avoid negative decimal numbers handling; while the

saturation constraints are shown as they were mapped.

6.2.2. Frame Storer

As its name says, takes the pixels and address from CCD Capture to decode them

through the Hue and Saturation Filter according to the colors we desire to use.

Table 6.2. List of pixel channels constraints in

order to comply with different levels of saturation.

N S>0.50 S>0.25

A
(R-B<B) &

(2*G-R<R)

(3*B-3*G<G)&

 (4*R-3*B<B)

B
(G-B<B) &

 (2*R-G<G)

(3*R-3*B<B)&

(4*G-3*R<R)

C
(G-R<R) &

 (2*B-G<G)

(3*G-3*B<B)&

(4*R-3*G<G)

D
(B-R<R) &

(2*G-B<B)

(3*G-3*R<R)&

(4*B-3*G<G)

E
(B-G<G) &

 (2*R-B<B)

(3*R-3*G<G)&

(4*B-3*R<R)

F
(R-G<G) &

 (2*B-R<R)

(3*B-3*R<R)&

(4*G-3*B<B)

Q
(R>512)&(G>512)

&(B>512)

(R>768)&(G>768)

&(B>768)

40

6.2.3. Frame Buffer

Is a 32 bit wide memory that has two ports: one read and one write port. It covers two

necessities at the same time: it stores the image captured to make possible its analysis and it

is also useful to separate the 144 MHz clock domain (PIXCLK) from the 50 MHz clock

(CLOCK_50) when position measuring mode is selected, and the 40 MHz clock when image

display mode is selected (CLK_LCD).

Figure 6.3. Hue filters used to detect colors. a) Red and cyan threshold planes. b) Green and magenta

threshold planes. c) Blue and yellow threshold planes. d) Orange threshold planes (lower plot).

41

6.2.4. Function Selector

This module is basically a multiplexor for the inputs basically a multiplexor for the

inputs and outputs of the read port of the Frame Buffer. The main purpose for this module is

to alternate between Image Display mode or Position Measuring mode as the user desires.

6.2.5. FSM Cerebro

This is the Master Finite State Machine (FSM) that controls all the process to perform

the position measurement task. It has been designed with 16 states that control the principal

Color Hue Constraint Saturation Constraint
Assigned

Code [bin]

Red

3 ∙ R + 7 ∙ G > 10 ∙ B

&
10 ∙ G < 3 ∙ R + 7 ∙ B

S > 0.50 001

Green

3 ∙ G + 7 ∙ B > 10 ∙ R

&
10 ∙ B < 3 ∙ G + 7 ∙ R

S > 0.25 010

Blue
3 ∙ B + 7 ∙ R > 10 ∙ G

&

10 ∙ R < 3 ∙ B + 7 ∙ G

S > 0.25 011

Yellow

3 ∙ B + 7 ∙ R < 10 ∙ G

&
10 ∙ R > 3 ∙ B + 7 ∙ G

S > 0.25 100

Cyan
3 ∙ R + 7 ∙ G < 10 ∙ B

&

10 ∙ G > 3 ∙ R + 7 ∙ B

S > 0.25 101

Magenta

3 ∙ G + 7 ∙ B < 10 ∙ R

&
10 ∙ B > 3 ∙ G + 7 ∙ R

S > 0.50 110

Orange

3 ∙ R + 7 ∙ B < 10 ∙ G

&
10 ∙ G < 3 ∙ B + 7 ∙ R

S > 0.25 111

Default (none) - - 000

Table 6.3. Hue and Saturation conditions and the code to be assigned if the evaluated pixel

meets the requirements.

42

modules of the computer Vision system, besides the sum, convolution and transmiss ion

FSMs. The state diagram is depicted in Appendix A, including the inputs and outputs.

6.2.6. Memory Read

This module performs the double task to read the pixels from memory and count the

quantity of the same color inside of each row and column. These results are stored in two 8-

bits wide RAM memories modeled as array registers of dimensions 150x6 (Pixel

accumulators in image 6.4). These memories are the center of the process because after run

the ROI, these results are used in the convolution modules to identify the round shape we’re

looking for. This module is controlled by a slave FSM, whose state diagram is depicted in

Appendix C, including the inputs and outputs.

6.2.7. Convolution Executor

This module is used twice in the design, and it is controlled by a slave FSM, whose state

diagram is depicted in Appendix B. It is devised to apply the method described in chapter 4

for Foreground Modelling based on linear convolution. The kernel used for convolution is

101 pixels long and the values stored were established on a ball radius of 50 pixels (fig 6.5),

Figure 6.4. Modular diagram specified for the Digital Image Processor.

43

which according to previous tests was an approximation of the size in the frame of the ball

at the fixed distance of 64 cm from the CCD sensor to the surface of the platform. As labeled

in the method, the maximum result of the convolution is stored with the position where the

kernel is centered in the row or column which have the most pixels of each color. However,

there is a requirement of detection of at least 88% of the ball area for the data to be recognized

as a ball in the next stage.

6.2.8. ROI Generator

When Convolution has been performed, this modules prepares the new locations for

the ROIs to be used in the next iteration. This values are used for both reading the memory

and also for adjust the position of the found centers according to the initial coordinates.

6.2.9. UART Serial Port Controller

This module simply receives the data from Offset to be sent and transmits to the platform

via RS-232 serial port at a baud rate of 115200 bps. The data is sent in on package of twelve

bytes as maximum and two as minimum. The distribution of the location bytes are shown in

Figure 6.5. Kernel used as foreground model in the Convolution operation. Values according to

equation 4-13 (green) and discrete approximation for practical purposes (blue).

44

table 6.4 in arrival order. The center coordinates are sent only when a ball has been

successfully detected.

Table 6.4. Format of the data sent by the computer vision system.

6.3. System Initialization: Dynamic Regions of Interest

The system is programmed to follow two routines: the initialization routine and the

regular routine. The initialization procedure is configured to analyze twelve Regions of

Interest overlapped between them with the goal to find the first reference for the position of

the circles in the acquired frame.

Number Name Description Data Format

0

Initialization Its value is always 0x0FF. This value

indicates that the system has read the

memory and is starting to perform

convolution

Init. Value [7:0]

1
ROI indicator Specifies the Region of Interest that is

being processed at the time

ROI [7:4]

Zero [3:0]

2
Horizontal

position

Contains the 8 LSB of the found

position of the ball.

XLSB[7:0]

3

Horizontal

position

Information

Includes the information of the Region

of Interest and the color of the found

ball. Also the MSB of the found position

of the ball is in this byte.

Active ROI [7]

ROI [6:4]

Color[3:1]

XMSB[0]

4
Vertical

position

Contains the 8 LSB of the found

position of the ball.

YLSB[7:0]

5

Vertical

position

Information

Includes the information of the Region

of Interest and the color of the found

ball. Also the MSB of the found position

of the ball is in this byte.

Active ROI [7]

ROI [6:4]

Color[3:1]

YMSB[0]

45

Since the diameter of the balls is between 80 and 90 pixels, the size of the ROIs is 150

x 150 pixels separated 75 pixels from one another, so is not possible for the ball to be

completely in two ROIs at the same time. However, in the experimental results, the same ball

could be detected twice during First Run due to this ROI overlap; so an additional restriction

had to be made to prevent double detection. If a ball’s center is closer than 30 pixels to the

end of the ROI, it is better to be detected properly in another one only during First Run. Thus,

the range where the results are considered as effective if the detected center is between 30

and 120pixels into the ROI. Image 6.6 illustrates this concept.

The initial regions of interest are listed in the table 6.5. Every time the system finishes

to analyze one of this sections of the image, if a ball is detected a new dynamic ROI with the

code of the color is activated; being the initial location 75 pixels left and 75 up from the

detected center. This ROI will be used after the calibration process. If the digital image

processor finishes analyzing the twelve ROIs and no ball is found, it would need a manual

reset.

After this first run, the system only works with the regions where a ball was located

during the initialization routine. All regions found can move independently and their starting

position will be always 75 pixels left and 75 up from the detected center in the previous

iteration. Therefore, the analyzed section of the image varies with the position of the ball,

Figure 6.6. Illustration of one region of interest (yellow square) and the

section where found centers are valid (white square).

46

resulting in a time-saving procedure given that it allows not to scan the whole frame each

iteration.

N Initial X Initial Y

0 0 0

1 75 0

2 150 0

3 225 0

4 0 75

5 75 75

6 150 75

7 225 75

8 0 150

9 75 150

A 150 150

B 225 150

Table 6.5. Initial coordinates for the different regions of interest

used to initialize the computer vision system.

47

Chapter 7. Result Analysis

After explaining extensively how the two versions of the computer vision system work, is

logical to measure the obtained performance for each type to see which one is better. In this

chapter are going to be presented first the results separately for the characteristics that

cannot be compared and then a final comparison.

7.1. Heterogeneous computer

In the constant search for maximum performance, the heterogeneous computer

developed to measure the position of the balls has several versions itself. This happened in

an iterative process, until it was decided that this instantiation was obsolete and had no further

practical use. However, it was a powerful tool to understand some properties of the tPad

camera as the scalability of the frame, the effect of changing the exposure time and the values

of the RGB channels gain for the CMOS sensor. The flexibility provided by the Nios II

processor also allowed to test different ways of image segmentation programmed in C

language, which meant an important influence to the selection of the algorithm used in the

definitive design of the dedicated hardware.

The first tests done with the tPad were to apply the procedures depicted in the user

manuals such as [7, 21, 22 and 23] with the goal of acquire the image and display it on the

LCD screen. After the instantiation and set up of the whole system described in the section

6.1, one of the first obstacles was to adjust correctly the snap to the screen. The camera was

configured to row size of 600 and column size of 800 due to the time it takes to acquire the

image; but after the raw to RGB resampling, the resolution is reduced to 400x300. The tPad

screen has a frame size of 800x600, so each acquired pixel needs to be quadruplicated to fit

the picture in the screen without flickering. Besides, the Pixel Buffer DMA controller works

independently from the Avalon Memory-Mapped Converter, so if the processor is not

continuously moving the frame from the Converter to the Pixel Buffer, the screen would

always show either the same picture or the uninitialized memory (usually randomly colored

dots).

48

Image 7.1 illustrates the evolution of the adjustment of the screen: a) shows the result of

programming the camera to resolution different than standard (800x600); b), c) and d) shows

the frame when the camera is programmed to standard resolution with the difference that b)

has an incorrect location assigned by the processor; c) shows correct location without pixel

quadruplicating and d) shows the correct adjustment to fit the image on the screen. For the

next pictures, the used adjustment is the same that delivered the result shown in fig 7.1-d).

a) c)

b) d)

After being able to acquire and display correctly the image, the one issue that was

remarkably notorious was the response time of the system. For example, when an object was

moved in front of the camera, there was a delay in the LCD display that was notorious even

to the naked eye. So, in order to have a real measure of this delay, the next step was to adjust

the hue and saturation filters explained in section 6.2.1, implement them via software using

Figure 7.1. Evolution of location adjustment from Avalon Memory-Mapped Converter to Pixel
Buffer memory with a) resolution different than 800x600; b) standard frame size with an incorrect
location assigned by the processor; c) correct location without pixel quadruplicate; and d) shows the

correct adjustment to fit the image on the screen

49

the Software build tools for Eclipse, to finally calculate the center of mass as first approach.

The second version of the heterogeneous computer, the hue and saturation filtering was done

via hardware, and the position was still measured as the center of mass. The third version of

this system featured simple thresholding color filtering (as explained in section 4.2.3) via

software with center of mass calculation.

With the three different versions of the system, it was time to prove which one was the

best for the assigned task. Preliminarily the purpose of the first two versions was to compare

the effectiveness of the image segmentation via hardware and via software, and the third was

aimed to be the fastest but the least robust. The test was simple: take 500 similar pictures and

calculate the average time it takes the computer to process the entire frame. Additionally, the

system wouldn’t show the picture in screen in order to save instructions and therefore, time.

The results are shown in table 7.1. It is important to highlight the fact that the results only

include processing time, they don’t include the camera exposition time nor the storage in

Dual Clock FIFO memory.

Table 7.1. Time needed in average to process one frame using different versions of the

Heterogeneous Computer.

Version Description Number of

Clock Cycles

Time

[ms]

Avg. Freq.

[Hz]

First Software HSV color filtering with

center of mass calculation
6033318 120,66 8,29

Second Software RGB color thresholding

with center of mass calculation
3097705 61,95 16,14

Third Hardware HSV color filtering with

center of mass calculation
2970132 59,40 16,83

As the reader can infer from table 7.1, even in the best case scenario, the time to process

one frame is not enough to achieve 50 fps. So, at this point it was possible to compress the

image as it was received in order to reduce the instructions needed to move one frame from

the Avalon Converter to the Pixel buffer, but it would carry the problem of the number of

cycles it takes to Nios II processor to execute one instruction. Another option was to increase

the input clock frequency but the Quartus II tool prevented strongly against this because of

safety and results repeatability. So the final decision was to declare this approach as obsolete,

50

keep the hue and saturation filters in hardware and develop from scratch the processing stage

that would detect the circles in a stored frame and calculate their centers. The new system

would most likely to be controlled by one or several Finite State Machines (FSMs)

instantiated in Verilog HDL.

7.2. Dedicated Hardware

After implementation and instantiation, the computer vision system was having some

functionality problems that were not perceptible in the simulations. This meant some extra-

dense debugging time that required evaluations in implementation, scenery and timing

constraints in the design. In the following sections the behavior of the system will be exposed

and the corrections done will be justified. The original artificial illumination was provided

by two fluorescent lights placed at the same distance as the camera, powered by the regular

electric supply.

7.2.1. Functionality and operating conditions

Most of the slack and routing problems were corrected by pipelining the different

modules, but the system still failed to start properly in Position Measuring Mode. Fortunately,

the Image Display Mode worked as expected almost from the beginning of the

implementation, so this situation was helpful in the troubleshooting process. Some features

were disabled to diagnose which ones were failing, and as a result of this procedure, the first

tests were done under natural lightning with only one ball. Another obstacle was the

compiling time: due to the size of the project, it would take at least 20 minutes to Quartus II

to synthesize, place and route the whole project.

As mentioned before, the first tests regarding ball detection were aimed to find a single

ball in both stationary and real-time frames. However, there were initial problems with the

early stages: for some reason, the system was able to detect the ball in the first run, then it

switched to the Dynamic ROIs and then, after a few iterations the track of the ball was lost.

This happened with both balls, even when applying different illumination. At first this

problem was partially solved lowering the minimum convolution value to consider valid a

51

circle, but the issue persisted when finding the red ball. This subject was completely solved

with the replacement of the deficient illumination, as will be explained later.

After single-ball tests, started the multiple balls experiments in real time, and then

another problem popped out: detection under natural light was possible to track only the blue

ball, while artificial light allowed to detect only the red one. After making lots of

modifications to the gain in RGB channels of the camera in order to adapt it to this

illumination, it was still not possible to detect both balls at the same time. Furthermore, the

tracking of the red ball was lost after a few iterations because the lighting used at the time

(fluorescent light bulbs) was powered by the European standard AC current, which works at

50 Hz. In summary, the small difference between the image acquisition and scene lighting

frequencies was the cause for the monitoring loss.

Once this relationship was fund, it was undeniable the need to change the lighting to a

system under a frequency that did not match the image acquisition rate; therefore white LEDs

were chosen for their accessibility and because they are powered by DC. The new set of lights

was mounted using Merkur Robotic Kit as depicted in figure 7.2 at a distance of 20 cm from

the surface. As a support, natural light was blocked using window blinds. The Camera’s RGB

Figure 7.2. Illumination structure for the scene and

welcome screen for the Computer Vision System.

52

channel gains were adjusted one more to this lighting and then the system was capable to

detect both balls continuously at 50.25 [Hz].

7.2.2. Accuraccy and Response Time

After proving functionality and setting the definitive operating conditions, it was time to

test the accuraccy and performance of the digital image processor based on Verilog hardware

description language. This version proved to be a better implementation from the beginning

because, unlike the Heterogeneous computer, there was no perceptible delay between the

movement of the objects and its reaction in the screen when the system was operated in Image

Display Mode.

A significant problem found in single-ball detection was an uncanny detection

uncertainty even when the system was working with a static frame. As it can be seen in image

7.3, the found locations were different even for a motionless picture. Furthermore, this issue

worsened when the image was acquired continuously because of the noise makes vary the

quantity of identified pixels; therefore the error was propagated to both axes (fig. 7.4.). The

source couldn’t be the Memory Reader module because it has proved functionality, given it

is commanded by a slave FSM and it has no slack glitches. The only problematic with signal

Figure 7.3. Received coordinates for a single-ball test using a static frame.

53

delay in the whole design can indirectly cause this uncertainty: slack between two nodes

inside the Frame Buffer. This path cannot be segmented because it is inside one of the IP

cores provided by Altera, and there wasn’t any other slack issue on the paths connected to

this memory, so there was not an actual tool to mend this problem.

The Magman Platform was not available to do tests when the computer vision system

was ready to work, however, in order to test roughly the validity of the acquired coordinates

was devised: A sheet of paper was put under the camera, and the boundaries of the acquired

frames were found using the screen mode (result is the background in image 7.5 a)). Two

types of tests were done: with static and dynamic frames. Figure 7.5 shows the set-up for the

test with a static frame (a)) and the results obtained (b)). Likewise, figure 7.6 shows the set-

up for the test with a dynamic frame (a)) and the results obtained (b)). Looking at both results

the accuracy difference between both modes is manifest. Unfortunately, to provide a statistic

measure of the uncertainty the surface would have to be mapped to a rectangular shape using

Homography; and the circumstances for these tests are not the same as the definitive scenario

with the MagMan Platform, so this can be done as continuance for the project.

The performance of the computer vision system is measured in two parameters: the

frequency of image acquisition and the frequency data is sent. As explained in section 6.1,

Figure 7.4. Received coordinates for a multiple-ball test using continuously acquired frames.

54

the exposure time is set to roughly 16,6 ms; while the time to collect all pixels, filter them by

color and store them in memory is around 3 ms. This is the same configuration for the

Heterogeneous Computer, thus the image gathering rate is experimental result is 50,25 [Hz].

The picture acquisition rate is shown in real time in the tPad in hexadecimal format in the

leftmost 7-segment displays. In the other hand, image segmentation time is shown in the

following two displays, being typically at 182 packages per second. The typical time to

perform this task is shown in table 7.2.

a) Scene with two balls for testing.

b) Coordinates received as locations for the scenario shown in sub-figure a).

Figure 7.5. Multiple-ball test using a static frame: a) Set-up; b) Results obtained

55

a) Scene with two balls for testing.

b) Coordinates received as locations for the scenario shown in sub-figure a).

Since camera and processing stages work independently, and the second is almost four

times faster than the first, there are some considerations to make. First: the system will send

one location per colored ball in one frame within the time constraints only if the number of

balls is equal to three. Second: if the number of balls is two or one, the computer will transmit

more than one coordinate for the same ball in the same frame, so these values could be

averaged in order to compensate the uncertainty explained previously. Third: if the number

of balls is higher than three, the system will work at the same processing time but the

frequency of data arrival for each color will be inversely proportional to the number of balls

Figure 7.6. Multiple-ball test using continuously acquired frames: a) Set-up; b)

Results obtained

56

in the scene e.g. if there are six balls it will take two frames to transmit the locations of the

six pellets, which could cause tracking loss. In conclusion, to ensure functionality includ ing

tracking and data arrival within requirements, the number of balls must not be higher than

three.

Table 7.2. Typical execution time and frequency for the computer vision system based on dedicated

hardware.

Stage Tasks Time [ms] Frequency [Hz]

Img. Acquisition

Exposure Time

Image capture

Color filtering

Storage in memory

19.900 50.25

Img.

Segmentation

Read from memory

Measure ball’s position

Adjust ROIs

Transmit measured position

5.502 181.75

Despite the restriction explained in the preceding paragraph, performance in processing

stage could be improved by modifying both Cerebro and Convolution FSMs and the circuitry

they control. The Convolution Executor completes its task for every color in all active ROIs,

indistinctly of First Run. This is necessary in the initialization process but not in the image

segmentation because every active ROI is assigned to the code of the color it is supposed to

track. Consequently, if the Convolution Executor can be modified to only track one color per

ROI scan after First Run, the whole process of the image will have a significant boost in

performance, given that convolution phase is the part that takes most of the time.

In general terms the project complies with the main objective, which was to implement

a specialized computer vision system to measure the position of colored metallic balls. The

main constraint was to make it work above 50 Hz because that’s the rate the MagMan

controller needs to maintain a stable control over the position of the balls. Regarding the

specific objectives, the system does indeed recognize different colors (which can be

modified), recognizes the circular shape of the ball and measures its center. The system can

57

of course be improved, but considering this was supposed a short project of 16 weeks, and

two versions of a computer vision system were designed, implemented and tested, is an

important progress in terms of the MagMan Platform project.

58

Chapter 8. Conclusions and Recommendations

8.1. Conclusions

 Color detection is more effective in HSV colorspace than in RGB, at the expense of

more processing.

 White LEDs as artificial illumination provides no stroboscopic effects.

 Digital image processing using a heterogeneous computer eases the implementat ion

of algorithms at the expense of more execution time.

 It is not possible to provide a statistic measure of the system’s uncertainty.

 The number of balls in the scene must not be higher than three.

8.2. Recommendations and Future work

 The Convolution Executor module can be modified to improve the computer’s

processing time.

 Detection’s accuracy can be improved by averaging the received data.

 DC powered illumination is recommended due to the AC frequency matches the

image capture frequency.

 The balls are recommended to be repainted to improve the accuracy of the computer .

 A Matlab program can be developed in order to acquire the transmitted position in

real time.

 The dimensions of the surface can be mapped using Homography.

 The tests done can be repeated with the balls on the MagMan Platform.

59

Bibliography

[1] Advanced Algorithms for Control and Communications [aa4cc] (2013-may-28) Magn

 etic manipulator Magman and Matlab [Video file] Consulted at:

 https://www.youtube.com/watch?v=AhS_2gU1qW0

[2] Altera Co. (2011). Nios II Hardware development tutorial. Consulted at:

 https://www.altera.com/content/dam/alterawww/global/en_US/pdfs/-

 literature/tt/tt_nios2_hardware_tutorial.pdf

[3] Altera Co. (no date) Nios II processor: the world’s most versatile embedded

 processor. Consulted at: http://wl.altera.com/devices/processor/nios2/ni2-

 index.html

[4] Altera Co. (no date) Nios II/e core: Economy. Consulted at:

 http://wl.altera.com/devices/processor/nios2/cores/economy/ni2-economy-

 core.html

[5] Altera Co. (no date) Nios II/f core: Fast for performance-critical applications.

 Consulted at: http://wl.altera.com/devices/processor/nios2/cores/fast/ni2-fas t-

 core.html

[6] Altera Co. (no date) Nios II/s core: Standard. Consulted at:

 http://wl.altera.com/devices/processor/nios2/cores/standard/ni2-standard-

 core.html

[7] Ampire Co., LTD. (7, 2009) Specifications for LCD module. Consulted at:

 http://mail.terasic.com.cn/~wyzhou/tPad_v2.0.0_CDROM.rar

[8] Antunes, F. (2010) IP camera on FPGA with a web server. (Master Thesis) Universidade

 do Minho, Portugal.

[9] Bailey, D. G. (2011). Design for Embedded Image Processing on FPGAs. Hoboken,

 SG: Wiley-IEEE Press. Retrieved from http://www.ebrary.com

[10] CN blogs. “How to read CMOS from the Nios II’s image on the SDRAM?” Consulted

 at: http://www.cnblogs.com/oomusou/archive/2008/08/31/de2_70_cmos_-

 controller.html

[11] Filip, J. (2015) Extension of the control system for the magnetic manipulator with a

 non-flat surface. (Bachelor’s thesis) Czech Technical University in Prague,

 Czech Republic.

60

[12] Gomez, G. (no date) UART transmission on the de2-115 board. University of Nevada,

 Las Vegas, United States of America. Retrieved from: http://cmosedu.com/-

 jbaker/students/gerardo/Documents/UARTonFPGA.pdf

[13] González, R. and Woods, R. (2007) Digital Image Processing. (Third edition) New

 Jersey, U.S.A: Prentice Hall.

[14] Khan, S. A. (2011). Digital Design of Signal Processing Systems. GB: Wiley.

 Retrieved from http://www.ebrary.com.

[15] Mathworks (2013) “Matlab and Simulink student design challenge” Consulted at:

 http://www.mathworks.com/academia/student-challenge/spring-2013/

[16] OptoMotive, Mechatronics Ltd. (2011) Velociraptor HS user manual. Consulted at:

 http://www.optomotive.com/products/velociraptor-hs

[17] Raspberry Pi Foundation. (2016). Raspberry pi 3 model b. Consulted at:

 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[18] Simonian, A. (2014) Feedback control for planar parallel magnetic

 manipulation. (Diploma thesis) Czech Technical University in Prague, Czech

 Republic.

[19] Sundance DSP INC. (2013) DSP-PCIe/104, Virtex-5 FPGA module with expansion

 card. Consulted at: http://www.sundancedsp.com/carriers-/platforms/dsp-

 pcei104

[20] Terasic Inc. (2010) Cyclone IV device handbook, Volume 1. Consulted at:

 http://mail.terasic.com.cn/~wyzhou/tPad_v2.0.0_CDROM.rar

[21] Terasic Inc. (2010) DE2-115 user manual. Consulted at:

 http://www.terasic.com.tw/cgi/bin/page/archive.pl?Language=English&

 CategoryNo=165&No=502&PartNo=4

[22] Terasic Inc. (2010) Terasic D5M hardware specification Consulted at:

 http://mail.terasic.com.cn/~wyzhou/tPad_v2.0.0_CDROM.rar

[23] Terasic Inc. (2010) Tpad user manual. Consulted at: http://www.terasic.com.tw/cgi-

 bin/page/archive.pl?Language=English&CategoryNo=183&No=637

[24] Terasic Inc. (2013) Video and Embedded Evaluation Kit - Multi-touch. Consulted at:

 http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=

 670

61

[25] Zemánek, J., and Hurák, Z. "Feedback linearization approach to distributed

 feedback manipulation." In 2012 American Control Conference (ACC), 991-

 996.Montréal, Canada: American Automatic Control Council (AACC), 2012

 Consulted at: http://aa4cc.dce.fel.cvut.cz/content/distributed-manipulation-

 shaping-magnetic-field-magman-platform

[26] Zemánek, J., Tomáŝ M., and Hurák, Z. "Feedback control for noise-aided parallel

 micromanipulation of several particles using dielectrophoresis." Electropho-

 resis 36, no. 13 (2015): 1451-1458. Consulted at:

 http://aa4cc.dce.fel.cvut.cz/content/distributed-feedback-micromanipulation

 shaping-electric- field-dielectrophoresis

[27] Zywyn Co. (5, 2005) ZT32xxE low power +3V to +5.5V, 250kbps RS232 transcei-

 vers. Consulted at: bin/page/archive.pl?Language=English&Category

 No=165&No=502&PartNo=4

62

Appendices

Appendix A: Glossary

AC: Alternate Current

ASIC: Application Specific Integrated Circuit.
CCD: Charged Coupled Device.
CMOS: Complementary Metal Oxide Semiconductor.

CPU: Central Processing Unit.
DAC: Digital to Analog Converter

DC: Direct Current
DMA: Direct Memory Access.
FIFO: First Input-First Output.

FPGA: Field Programmable Gate Array.
FSM: Finite State Machine.

HDL: Hardware Description Language.
HSV: Hue Saturation and Value color space.
Img.: Image. Depending on the context it can mean either the pixel matrix on the system or

the scene to be acquired by the camera. (also fig.)
LCD: Liquid Crystal Display.

LED: Light Emitting Diode.
LSB: Least Significant Bit.
MagMan: Planar Non-contact Magnetic Manipulation Platform. The device is described in

chapter 1.
MSB: Most Significant Bit.

RAM: Random Access Memory.
RGB: Red, Green and Blue color space.
ROI: Region of Interest for scanning.

SDRAM: Synchronous Dynamic Random Access Memory.
tPad: Terasic Prototype of board that includes an FPGA, LCD screen and 5-Mega Pixel

camera. The device is described in chapter 5.
USB: Universal Serial Bus.
VGA: Video Graphics Array.

63

Appendix B: FSM Cerebro

*FirstRun condition is set to negative logic.

Table B.1. Inputs, outputs and states for the FSM Cerebro

Current State Condition (Input) Next State Output

0

~DLY_RST_4 0
ResetSum,
ResetSumRegisters,

ResetConvolution,
ResetResultCount,

ResetROICount.
DLY_RST_4 E

1
~BusySum F ResetConvolution,

ResetResultCount. BusySum 1

2
~BusyConvolution 3 ResetResultCount,

 BusyConvolution 2

3
~ActiveColor 4

None
ActiveColor 5

4
~ResultFinish 3 EnableResultCount.

 ResultFinish 9

5 none 6
ResetSumRegisters,
EnableWriteMemories.

6 none 7
ResetSumRegisters,

StartTx.

7
~BusyTx 8

ResetSumRegisters.
BusyTx 7

8
~ResultEven 9 ResetSumRegisters,

EnableResultCount. ResultEven 5

9
~FirstRun* B

ResetSumRegisters.
FirstRun* D

A none E
ResetSum,
ResetSumRegisters.

B
~ROI_FR_Finish A ResetSumRegisters

ResetConvolution,

EnableROICount. ROI_FR_Finish C

C none A
ResetSumRegisters
ResetConvolution,

DisableFirstRun.

D
~ROI_Finish A ResetSumRegisters

EnableROICount. ROI_Finish C

E
~(ValidROI|FirstRun) 9 StartSum

ResetConvolution,
ResetResultCount. (ValidROI|FirstRun) 1

F none 2
StartConvolution,

ResetResultCount.

64

Figure B.1. State Diagram for the FSM Cerebro.

65

Appendix C: FSM Convolutioner

Table C.1. Inputs, outputs and states for the FSM Convolutioner.

Current

State
Condition (Input) Next State Output

0

~Start 0
ResetSum

Reset_i_Count
Reset_j_Count

Reset_k_Count
ResetRegisters

Enable_ij_adjust

Start 1

1 None 2 Reset_i_Count

2
~End_i 3

EnableSum
End_i 4

3 None 2 Enable_i_Count

4
~Sum>Quant 6

None
Sum>Quant 5

5 None 6 EnableRegisters

6 None 7 ResetSum

7
~End_j B

Enable_j_Count
End_j 8

8
~End_k 9

None
End_k A

9 None B
Reset_j_Count

Enable_k_Count

Enable_ij_adjust

A None C
Reset_j_Count

End

B None 1 Enable_ij_adjust

C
~EnableROICount C

None
EnableROICount 0

66

Figure C.1. State Diagram for the FSM Convolutioner.

67

Appendix D: FSM Read & Sum

Table D.1. Inputs, outputs and states for the FSM Read & Sum

Current

State
Condition Next State Output

0
~Start 0 Reset_10_Count

Reset_R_Count
Reset_C_Count Start 1

1 None 2
EnableMemoryRead

Busy

2
~End_10 2 Enable_10_Count

Busy End_10 3

3
~EndR 1 Reset_10_Count

Enable_R_Count
Busy EndR 4

4
~EndC 1 Reset_R_Count

Enable_C_Count
Busy EndC 0

Figure D.1. State Diagram for the FSM Read & Sum

68

Appendix E: Computer Vision System User Manual.

The document starts on the next page

Instituto Tecnológico de Costa Rica

České Vysoké Učení Technické v Praze

Department of Control Engineering,

Faculty of Electrical Engineering

Optical system for measuring position of metallic colored pellets on a platform.

User Manual

Robert J. Barnes Pérez

Prague, Spring Semester 2016

Abstract

This document is the user manual for a computer vision system for measuring the

position of colored balls instantiated in a Terasic tPad. First, an overview of the device’s

interface will be given and then will be a description of how to set it up on its traditiona l

purpose. Second, there is a guide through the hue filter if the user wants to change the colors

to identify. Third, overviews the camera configuration, in order for the user to be aware of

the conditions in which the image is continuously acquired.

Keywords

FPGA, Computer vision system, digital image processing, Terasic tPad, camera, Hardware

description Language (HDL), Verilog.

2

Resumen

Este documento es el manual de usuario para un sistema de visión computarizado

para medir la posición de balines coloreados, instanciado en un Terasic tPad. En primer lugar,

se da una descripción general del dispositivo para luego explicar cómo configurarlo para su

propósito tradicional. En segundo lugar, se da una guía a través del filtro de matices si el

usuario quiere cambiar los colores a identificar. En tercer lugar, se describe la configurac ión

de la cámara, con el fin de que el usuario sea consciente de las condiciones en las que la

imagen se adquiere de forma continua.

Palabras Clave

Arreglo de Compuertas Programables (FPGA), Sistema de visión computarizado,

Procesamiento digital de imágenes, Terasic tPad, Cámara, Lenguajes de descripción de

Hardware, Verilog.

3

General Index

Chapter 1. System Overview .. 4

1.1. Computer Vision System ... 6

1.2. Set Up .. 7

Chapter 2. Color Filtering .. 10

2.1. Hue Filter .. 10

2.2. Color Adjustment... 13

Chapter 3. Camera Configuration .. 16

3.1. Frame Properties Modification... 16

3.2. Lightning Change... 19

Bibliography ... 21

4

Chapter 1. System Overview

The Terasic tPad is a design environment capable to perform processing based systems.

It is composed by the DE2-115 development board attached to a multimedia daughter card

via HSMC port. The core of the DE2-115 board is the Cyclone IV FPGA, where all logic is

performed. The tPad and Cyclone IV FPGA technical specifications are presented in table

1.1, and table 1.2 respectively.

Table 1.1 Technical specification of tPad board. [6]

Feature Value [unit]

Operation Voltage DC 12 [V]

Flash Memory 8 [MB]

EEPROM 32 [Kbit]

SRAM 2 [MB]

SDRAM 128 [MB]

Clock frequency 50 [MHz]

Width 160 [mm]

Large 223 [mm]

Depth 47 [mm]

The board is to be configured via USB blaster, but it supports JTAG AS configura t ion

as well. The board is shown on the top side with the FPGA and its peripherals in figure 1.1;

and fig. 1.2 shows its back side, including a 5 Mega Pixel camera with an LCD 8” touch

screen.

Table 1.2. Resources of Cyclone IV EP4CE115 FPGA. [3, 4]

Logic Elements [LEs] 114480

Embedded Memory [kbits] 3888

Embedded 18x18 multipliers 266

General Purpose PLLs 4

Global Clock Networks 20

User I/O Banks 8

5

On the top side, the board has 9 green and 18 red leds for output or display; it also

has 18 slide switches (SW), 4 push buttons (KEY) for inputs and 8 7-segment displays

(HEX). Other peripherals are available but are not used for the application described in this

document. For full device description please refer to [6].

Figure 1.1. Altera Terasic tPad (bottom view). [4]

6

1.1. Computer Vision System

This section describes briefly how the whole system works for the user. The Video-

In pipeline is depicted in the image 1.3 inside the orange square while the tasks for the

mainframe are inside the blue square. The different modules that compose the whole diagram

in fig 1.3 are fully described in chapter 6 of [1].

The camera is programmed by the CMOS Configure module, and the incoming pixels

are arranged in CMOS Capture. Since the image is required to be in RGB format, the

conversion is done in Raw to RGB module. Transformed pixels are received by the Saturation

Filter, where their RGB values are evaluated in accordance with the HSV thresholding in

RGB colorspace described in chapter 4 of [1] in two saturation levels (0.25 and 0.50) and

seven possible colors plus black denoting background. Each pixel is then decoded in three

bits according to color and stored in the dual port RAM memory.

 In the output, the read signals and output from Frame Buffer are multiplexed in order

to fulfill both operation modes of the computer vision system: screen or position measure.

The idea is to be able to align the visual space of the camera using the screen mode and then

to turn it to Position Measuring Mode with the sliding switch SW[2]. The screen mode also

allows to show the pixels that are understood as foreground, which can be taken as reference

Figure 1.2. Altera Terasic tPad (top view). [6]

7

to adjust either hue or saturation in the circuit, or lightning in the scene. The whole circle

detection and position measure is performed in the Digital Image Processor, which also

controls the RS-232 Serial port in order to transmit the found coordinates for the balls in the

platform.

1.2. Set Up

The computer vision system on the tPad board needs no additional programming if the

functionality is not going to be changed. Functional peripherals to control the device are

described with their respective function in table 1.3. The steps to set up the board to work in

normal operation are listed below:

1. Connect the 12 V DC Power Supply.

2. Connect an RS-232 male cable to the corresponding port.

3. Arrange the Switches as shown in table 1.1.

4. Set the switches as described below:

a. SW[0]: On.

b. SW[1]: Off.

c. SW[2]: On.

d. SW[17]: On.

Figure 1.3. Modular diagram of the Computer Vision System designed as second solution.

8

5. Turn on the device. The Welcome Screen (fig. 1.4) should appear for about half a second

while the system starts, and then the scene caught by the camera will be updated in real

time in the screen.

Component Function description

KEY[0] Master Reset

KEY[1] Set the new exposure time (use with SW[0])

KEY[2] Trigger the Image Capture (take a shot)

KEY[3] Switch to Free Run mode

SW[0] Off: Extend the exposure time

On: Shorten the exposure time

SW[1] Off: Image Display Mode

On: Position Measuring Mode

SW[2] Enable Memory Write (On/Off)

SW[17] Mirror Image (On/Off)

HEX[7:6] Image Acquisition rate per second (Display only

in Hexadecimal format)

HEX[5:4] Location Packages sent per second (Display only
in Hexadecimal format)

HEX[3:0] Number of acquired frames (Display only in

Hexadecimal format)

 Table 1.3. Functional peripherals to control the computer vision

system on tPad board.

Figure 1.4. Illumination structure for the scene and
welcome screen for the Computer Vision System.

9

6. On the back side of the tPad, the two leftmost 7-segment displays (HEX[7] and HEX[6])

will be showing the camera’s rate to acquire the image in real time on hexadecimal

format. If the Exposure time needs to be adjusted to achieve at least 50 (0x032) frames

per second, press just once KEY[1]. Furthermore, exposure time can be modified using

different combinations of KEY [1] and SW[0].

7. Align the frame acquired by the camera with the desired scene to measure the position

of the balls. For aligning purposes a straight, colored, identifiable object can be used.

The camera is recommended to be around 64 cm above the surface to scan.

8. Turn on the selected illumination system, and check the balls to identify are shown in

the screen with a circular shape and with a reasonable number of pixels. An example is

provided in figure 1.5.

9. Your system is now ready to start measuring the ball’s position. To do so, just switch

SW[1] to On position, and the system will start the stream of locations. If by any reason

the dataflow stops, the system can be reset by just pressing KEY[0]. Please note that to

return to this point, Camera exposure will need to be adjusted again.

10. The rate at which the data is being sent is now shown at the two 7-segment displays

(HEX[5] and HEX[4]) in real time on hexadecimal format.

Figure 1.5. Example of reflection on tPad screen of identifiable balls.

10

Chapter 2. Color Filtering

As mentioned in the previous chapter, the color identification occurs in the module named

as Hue and Saturation Filter. In this chapter the method it uses to discern between colors will

be explained, so it can be modified by the user in order to trace different colors of balls.

Saturation levels can be modified as well, but the principle used to threshold this property is

far more complicated in terms of implementation than Hue. For this reason Saturation has

been set to two levels: S>0.25 and S>0.5.

2.1.Hue Filter

This module evaluates each pixel using the HSV threshold in RGB colorspace method,

which is theoretically described in [2] and its implementation is outlined in [1]. The module

was devised to work with up to seven different levels of hue: the basic six colors (red, yellow,

Figure 2.1. Hue filters used to detect colors. a) Red and cyan threshold planes. b) Green and magenta
threshold planes. c) Blue and yellow threshold planes. d) Orange threshold planes (lower plot).

11

green, cyan, blue, and magenta) plus orange were selected for standard operation (see fig

2.1).

As Simonian explains the Hue threshold in RGB color space is done using the identity

vector, which goes from (0,0,0) to (1,1,1), and a point that represents the color we aim to

recognize (note from figure 2.1 that all planes include this line segment). The hue filter

implemented is based on this principle with the difference that these elements were used as

base to define regions in the color space to be recognized as one pigment. For example, in

figure 2.1-a) the hue for Red (left bottom) and Cyan (upper right) are shown. These plots are

the result of the process of selecting a range of hue, mapping it to RGB color space and find

the plane equations that boundary the region of the desired color. Hence, each color has an

upper threshold and a lower threshold, being both of them planes in the RGB color space.

The plane boundaries for the colors shown in figure 2.1 are shown in table 2.1.

In the module seen in Verilog, the equations are scaled by a factor of 10 to avoid decimal-

number handling. The part of the code where the equations are defined has been transcribed

in Listing 2.1 to remark some features: First, R, G and B factors are registers inside the

module that contain the pixel’s values of Red, Green and Blue channels respectively. Second,

as the reader can see, the bits to indicate the detection of each color are assigned as a AND

function of the equations depicted in table 2.1. These signals are evaluated in order to assign

a color code to the bit as shown in table 2.1 using the code depicted in Listing 2.2.

Listing 2.1. Color planes implementation and pixel evaluation.

Module: tPad_Camera/FrameStore/SatFilter

assign rHue=(((3*R+7*G)>(10*B))&&((10*G)<(3*R+7*B))),//red

 gHue=(((3*G+7*B)>(10*R))&&((10*B)<(3*G+7*R))),//green

bHue=(((3*B+7*R)>(10*G))&&((10*R)<(3*B+7*G))),//blue

 yHue=(((3*B+7*R)<(10*G))&&((10*R)>(3*B+7*G))),//yellow

 cHue=(((3*R+7*G)<(10*B))&&((10*G)>(3*R+7*B))),//cyan

 mHue=(((3*G+7*B)<(10*R))&&((10*B)>(3*G+7*R))),//magenta

 oHue=(((3*R+7*B)<(10*G))&&((10*G)<(3*B+7*R)));//orange

12

Color Hue Constraint
Assigned

Code [bin]

Red

3 ∙ R + 7 ∙ G > 10 ∙ B
&

10 ∙ G < 3 ∙ R + 7 ∙ B
001

Green
3 ∙ G + 7 ∙ B > 10 ∙ R

&

10 ∙ B < 3 ∙ G + 7 ∙ R

010

Blue

3 ∙ B + 7 ∙ R > 10 ∙ G
&

10 ∙ R < 3 ∙ B + 7 ∙ G
011

Yellow

3 ∙ B + 7 ∙ R < 10 ∙ G
&

10 ∙ R > 3 ∙ B + 7 ∙ G
100

Cyan
3 ∙ R + 7 ∙ G < 10 ∙ B

&

10 ∙ G > 3 ∙ R + 7 ∙ B

101

Magenta

3 ∙ G + 7 ∙ B < 10 ∙ R
&

10 ∙ B > 3 ∙ G + 7 ∙ R
110

Orange
3 ∙ R + 7 ∙ B < 10 ∙ G

&

10 ∙ G < 3 ∙ B + 7 ∙ R

111

Default (none) - 000

Code from both Listing 2.1 and 2.2 are part of the same module (Hue & Saturation

Filter) but they are presented separately to facilitate the explanation process. Note from

Listing 2.2 that for the case statement are considered both hue and saturation conditions

before assigning the color code that denotes the pixel as foreground or background.

Listing 2.2. Hue and Saturation evaluation and color code assignment.

Module: tPad_Camera/FrameStore/SatFilter

always@(posedge CLK)

begin

case({rHue&sat50,gHue&sat25,bHue&sat25,yHue&sat25,

 cHue&sat25,mHue&sat50,oHue&sat25})//input bus

 //with Hue&Sat conditions

7'b0000001: oSat<=3'h7;// orange code 7

Table 2.1. Hue conditions and the code to be assigned if the

evaluated pixel meets the requirements.

13

 7'b0000010: oSat<=3'h6;// magenta code 6

 7'b0000100: oSat<=3'h5;// gray code 5

 7'b0001000: oSat<=3'h4;// yellow code 4

 7'b0010000: oSat<=3'h3;// blue code 3

 7'b0100000: oSat<=3'h2;// green code 2

 7'b1000000: oSat<=3'h1;// red code 1

 default: oSat<=3'h0;//background code 0

 endcase

end

2.2. Color Adjustment
If the user wants to change one of the colors to be detected, he or she must first

identify where the color is located in the RGB color space, then set the planes that delimit

the desired color to replace them for one of the colors defined in Listing 2.1. Pay special

attention to the name of the wire whose equations are being changed in Listing 2.1 because

of this wire is summoned in the case statement in Listing 2.2; where it is assigned the desired

saturation level (0.50 or 0.25). Wire position on the list represents the code it will be assigned,

which is reflected in the display and for transmission purposes.

Of course, the past changes only affect the functional part; and now the system will

identify the new colors if the equations were established correctly. For display purposes, the

user must select an RGB value to represent this new color in the display and replace it in 6-

bits Hex format to the color channel outputs oR, oG and oB in the code in Listing 2.3; which

belongs to FrameRead module. Case section in Listing 2.3 is based on evaluating Qsel

register, which happens to contain the color code of the current pixel to be shown in the

screen.

Listing 2.3. Color value assignment for display purposes according to code.

Module: tPad_Camera/FrameRead

always@(Qsel) //color out decoder

begin

 case(Qsel)

 0:begin//background

 oR <= 6'h00;

 oG <= 6'h00;

 oB <= 6'h00;

14

 end

 1:begin//red

 oR <= 6'h3f;

 oG <= 6'h00;

 oB <= 6'h00;

 end

 2:begin//green

 oR <= 6'h00;

 oG <= 6'h3f;

 oB <= 6'h00;

 end

 3:begin//blue

 oR <= 6'h00;

 oG <= 6'h00;

 oB <= 6'h3f;

 end

 4:begin//yellow

 oR <= 6'h3f;

 oG <= 6'h3f;

 oB <= 6'h00;

 end

 5:begin//gray

 oR <= 6'h1f;

 oG <= 6'h1f;

 oB <= 6'h1f;

 end

 6:begin//magenta

 oR <= 6'h3f;

 oG <= 6'h00;

 oB <= 6'h3f;

 end

 7:begin//orange

 oR <= 6'h3f;

 oG <= 6'h08;

 oB <= 6'h00;

 end

 default:begin

 oR <= 6'h00;

 oG <= 6'h00;

 oB <= 6'h00;

 end

 endcase

 end

15

Please note that color in Hex format is usually in eight bits per channel and tPad’s

screen uses 6-bits wide RGB channels; so, each R, G and B values must be scaled from a

maximum value of 255 to 63. For example: Red (color code 1) in its purest shade is

represented as #FF0000, the values scaled are #3F0000, hence in Listing 2.3 case 1 are

represented as oR=3F, oG=00 and oB=00.

After these modifications, the whole project must be compiled, built and programmed

again in the tPad board to check if the color is recognized as desired. If not, the selected

region must be verified and (if needed) redefine the plane equations to repeat the process.

16

Chapter 3. Camera Configuration

The camera is the very beginning of the computer vision system, so it needs to be

programmed properly in order to acquire the image according to the specifications. This

chapter shows how it is done through Hardware Description Language.

3.1.Frame Properties Modification

The CMOS sensor is programmed from the FPGA to the camera’s registers using I2C

communication. This port is controlled by an FSM provided by Altera, so to change the

configuration, the parameters of the FSM must be modified. For example, Listing 3.1

represents a section of the CMOS Configuration module, where the main parameters values

are declared. In this section, the names are usually self-descriptive, except the

sensor_row_mode and sensor_column_mode variables. For the user it is recommended not

to change these variables before further reading D5M hardware specification [5].

Listing 3.1. Color value assignment for display purposes according to code.

Module: tPad_Camera/I2C_CCD_Config

parameter default_exposure = 16'h0351;

parameter exposure_change_value = 16'd100;

(…)

assign sensor_start_row = 24'h010036;//

assign sensor_start_column = 24'h020010;//

assign sensor_row_size = 24'h030257;//300*2-1

assign sensor_column_size = 24'h04031f;//400*2-1

assign sensor_row_mode = 24'h220011;

assign sensor_column_mode = 24'h230011;

assign Mirror_d = iMIRROR_SW ? 24'h20C000 : 24'h208000;

As the reader can see, in this section some of the parameters for the camera are defined

here. The start row and column are just for frame adjusting purposes, while the row and

column sizes are set to twice because the CMOS sensor receives the image in Raw format. If

the user wants to change image resolution the exposure time must be changed accordingly to

achieve the desired frame rate. Initial exposure time can be approximated using equation 3-

1, using the value defined as the parameter default_exposure. Equation 3-2 and table 3.1

17

describe how to calculate the PLL output frequency that drives PIXCLK, which means the

clock signal that drives the whole image acquisition pipeline (orange dashed rectangle in fig.

1.3)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∙ 22.119 × 10−6 (3-1)

Table 3.1. PLL output frequency according to bit distribution. [5]

Bits Name Description

15:8 Multiplication

Factor (MF)

PLL output frequency multiplier. Legal

values: [16, 255]

7:6 X Reserved

5:0 Division Factor

(DF)

PLL output frequency divider minus 1. Legal

values: [0, 63]

𝑃𝐿𝐿 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞. = 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑒𝑞.∙
𝑀𝐹

𝐷𝐹
 (3-2)

In Listing 3.2 the case statement includes all the steps in the Camera configura t ion

routine, executed by the FSM. In each case, the register LUT_DATA takes a different value

in which the FSM interprets the eight MSB as the number of register, and the 16 LSB as the

value to write given registers are 16 bits wide (some of these values were declared in Listing

3.1). The computer vision system does not modify all the camera registers shown; actually

most of them remain on their default value. The complete list of the registers with its values

and descriptions can be found in [5], while the initial conditions for the system using the

configuration provided in both listings are presented in table 3.2.

Listing 3.2. Color value assignment for display purposes according to code.

Module: tPad_Camera/I2C_CCD_Config

///////////////// Config Data LUT/////////////////////

always

begin

 case(LUT_INDEX)

 0: LUT_DATA <= 24'h000000;

 1: LUT_DATA <= Mirror_d;//Mirror Row and

 //Columns

18

 2: LUT_DATA <= {8'h09,senosr_exposure};

 //Exposure Time

 3: LUT_DATA <= 24'h050000;// H_Blanking

 4: LUT_DATA <= 24'h060019;// V_Blanking

 5: LUT_DATA <= 24'h0A8000;// change latch

 6: LUT_DATA <= 24'h2B034d;// Green 1 Gain

 7: LUT_DATA <= 24'h2c061f;// Blue Gain

 8: LUT_DATA <= 24'h2d031f;// Red Gain

 9: LUT_DATA <= 24'h2e000d;// Green 2 Gain

 10: LUT_DATA <= 24'h100051;// PLL power on

11: LUT_DATA <= 24'h113008;

 //PLL_m_Factor<<8+PLL_n_Divider

 12: LUT_DATA <= 24'h120001;

 // PLL_p1_Divider

 13: LUT_DATA <= 24'h100053;// set USE PLL

 14: LUT_DATA <= 24'h624000;// enable

 //calibration

 15: LUT_DATA <= 24'h60015f;// green offset

 16:LUT_DATA <= 24'h630010;// red offset

 17: LUT_DATA <= 24'h640012;// blue offset

 25: LUT_DATA <= 24'hA00048;//Test pattern

 //control

 26: LUT_DATA <= 24'hA103ff;// Test green

 //pattern value

 27: LUT_DATA <= 24'hA203ff;// Test red

 //pattern value

 28: LUT_DATA <= 24'hA303ff; // Test blue

 //pattern value

 18: LUT_DATA <= sensor_start_row;// set

 //start row

 19: LUT_DATA <= sensor_start_column;//set

 //start column

 20: LUT_DATA <= sensor_row_size; //set row

 //size

 21: LUT_DATA <= sensor_column_size;// set

 //column size

 22: LUT_DATA <= sensor_row_mode; // set row

 //mode in bin mode

 23: LUT_DATA <= sensor_column_mode;// set

 //column mode in bin mode

19

 24: LUT_DATA <= 24'h4901E8;//row black target

 default:LUT_DATA <= 24'h000000;

 endcase

end

Table 3.2. Initial Conditions of the Computer Vision System

Parameter Value [unit]

PLL output freq. 144 [MHz]

Exposure time 18,779 [ms]

Row size 599 [pixels]

Column size 799 [pixels]

G1 gain 4,469

R gain 6,781

B gain 5,328

G2 gain 1,625

3.2. Lightning Change

If the user wants to change the light on the scene, the effect must be considered. The

Channel gains for the CMOS sensor are adjusted for the white LED lightning on a Merkur

kit shown in figure 1.4. If this needs to be changed for any reason, the steps where

LUT_INDEX value is 6, 7, 8, and 9 on the case statement in Listing 3.2 must be reviewed.

As mentioned before, the CMOS sensor acquires the image in raw mode. The values

selected in these steps are the gain provided to each channel (R, G1, G2, and B). Different

lightning means different channel gains, but these values are nonlinear; so equation 3-3 and

table 3.3 describe how to calculate the actual channel gain represented by the 16 LSB

assigned.

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐺𝑎𝑖𝑛 = (
𝐷𝐺

8
+ 1) ∙ (𝐴𝑀 + 1) ∙ (

𝐴𝐺

8
) (3-3)

For example, G1 channel in Listing 3.2 has a value of 0x034d, hence DG=3; AM=1 and

AG=13. Evaluating these values in eq. 3-2 we obtain the result ECG=4.469.

20

Table 3.3. Channel gain according to bit distribution. [5]

In summary, the actions shown in this document have been simplified to facilitate

understanding. However, if the exposed documentation is not enough, please refer to the

bibliography.

Bits Name Description

15 X Reserved

14:8 Digital Gain

(DG)

The actual digital gain is (1 + value/8). Legal

values: [0, 120]

7 X Reserved

6 Analog

Multiplier (AM)

Analog gain multiplier for the channel minus

1. Legal values: [0, 1]

5:0 Analog Gain

(AG)

Analog gain setting for the channel times 8.

Legal values: [8, 63]

21

Bibliography

[1] Barnes, R. (2016) Optical system for measuring position of metallic colored pellets on a

 platform. (unpublished Bachelor thesis) Costa Rica Institute of Technology,

 Cartago,Costa Rica.

[2] Simonian, A. (2014) Feedback control for planar parallel magnetic

 manipulation. (Diploma thesis) Czech Technical University in Prague, Czech

 Republic.

[3] Terasic Inc. (2010) Cyclone IV device handbook, Volume 1. Consulted at:

 http://mail.terasic.com.cn/~wyzhou/tPad_v2.0.0_CDROM.rar

[4] Terasic Inc. (2010) DE2-115 user manual. Consulted at:

 http://www.terasic.com.tw/cgi/bin/page/archive.pl?Language=English&

 CategoryNo=165&No=502&PartNo=4

[5] Terasic Inc. (2010) Terasic D5M hardware specification Consulted at:

 http://mail.terasic.com.cn/~wyzhou/tPad_v2.0.0_CDROM.rar

[6] Terasic Inc. (2010) Tpad user manual. Consulted at: http://www.terasic.com.tw/cgi-

 bin/page/archive.pl?Language=English&CategoryNo=183&No=637

