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Abstract 

  

This thesis is the result of an investigation research on alternatives to develop a 

computerized vision system to measure the position of colored pellets on a planar noncontact 

magnetic manipulation platform (MagMan). This has been achieved before using MATLAB 

& Simulink environment, however, this thesis explores different options in order to improve 

the processing performance. First, the problem is going to be defined to set goals and 

objectives. Second, the research work is going to be discussed with the purpose of selecting 

and then describing the most adequate environment of the new computer vision system. The 

image processing methods considered for implementation are explained in the main body of 

the work, covering mainly color-detection techniques and object position measuring 

algorithms; which derived two productions: in Verilog Hardware Description Language and 

C code; both implemented on a Terasic tPad. The design processes in which the vision 

systems were implemented is included, both deviations are characterized in detail and then 

tested and compared against each other to finally conclude which is more effective to solve 

the given problem. 
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Resumen 

 

Esta tesis es el resultado de un proceso de investigación sobre las alternativas para 

desarrollar un sistema de visión computarizado para medir la posición de balines coloreados 

en una plataforma plana de manipulación magnética sin contacto (MagMan). Esto se ha 

logrado antes usando el ambiente de desarrollo MATLAB y Simulink; sin embargo, esta tesis 

explora diferentes opciones con el fin de mejorar el rendimiento de procesamiento. En primer 

lugar, el problema será definido para establecer metas y objetivos. En segundo lugar, el 

trabajo de investigación será discutido con el propósito de seleccionar y luego describir el 

entorno más adecuado del nuevo sistema de visión computarizado. Los métodos de 

procesamiento de imágenes considerados para la aplicación se explican en el cuerpo principal 

de la tesis, que cubre principalmente técnicas de detección de color y algoritmos que miden 

la posición del objeto; los cuales derivaron en dos producciones: tanto en el lenguaje de 

descripción de hardware Verilog, como en código de lenguaje C; ambos implementados en 

un Terasic tPad. Los procesos de diseño en el que se aplicaron a los sistemas de visión están 

incluidos, ambas desviaciones se caracterizan en detalle y luego son probadas y comparadas 

entre sí para finalmente concluir cuál es más eficaz para resolver el problema dado. 
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Chapter 1. Introduction 

 

This project is based on an existing laboratory platform, which was developed by AA4CC 

group at the Department of Control Engineering, in the Faculty of Electrical Engineering at 

Czech Technical University in Prague. The overall project studies the problem of handling 

the non-contact manipulation on a flat surface using a magnetic force field [25].  

 

1.1.  Environment of the Project 

 

The laboratory platform for flat magnetic manipulation (MagMan) has a flat touch foil 

that is used as a running floor for metal pellets (fig. 1.1). Under the foil there are four 

electromagnetic modules located adjacently, with dimensions of 50x50x75 mm. These 

sections are composed of four iron core coils; intended to create the magnetic field above. 

The modules allow independent PWM current control for each of their coils, so they can act 

simultaneously and independently to guide the pellets on the desired way (fig. 1.2). 

The position of the balls on the surface can be set from two possible sources: either from 

a Matlab file or from an iPad app made especially for the MagMan [25]. The platform offers 

two options of position measurement of the steel ball in real time: the resistive touch sheet 

that is used as surface or a RGB camera set above [11]. The processing unit of the platform 

uses an ARM Cortex M3 processor at 72 MHz. 

 

Figure 1.1. MagMan laboratory platform with a steel ball. [11] 
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From the point of view of control engineering, the platform 

is capable of operate with one or more pellets, which makes it a 

multiple- input multiple-output system (MIMO). As explained 

before, the board has four magnetic modules composed of four iron 

core coils. The magnetic field generated by each of these coils is 

continuous. Since they are located next to each other in a square 

matrix, the attractive energy created by one coil affects the 

surrounding coils and so on; inducing a complex force field in the 

platform. The project was conceived as a model and tool to 

investigate strategies to control this type of dynamic systems [26]. 

Fig. 2 shows a simplified modular diagram of the system 

 

 

The ultimate motivation for the project is to contribute to development of effic ient 

distributed feedback manipulation schemes [25]. Although the configuration shown is in the 

centimeter scale, it can be extrapolated to show the essence of some problems occurring in 

micrometer scale; which could be useful in fields such as biotechnology and analyt ica l 

chemistry and electrophoresis. 

 

The experimental setup of the platform was awarded first place in the “Matlab & 

Simulink Student Design Challenge” event of 2013 [15]. 

 

Figure 1.2. Photograph 
of a single magnetic 

module. [11] 

Figure 1.3. Simplified modular diagram of the MagMan platform. 
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1.2.  Definition the problem 

 
The main problem of the MagMan platform lies in the visual system of position 

measurement. Although there is the resistive foil, the visual method is needed because it can 

process multiple elements on the platform, provided that they are optically distinguishab le. 

The key drawback of the optical method is that it has slower response than the resistive sheet. 

There are two stages for the visual method for measuring the ball’s position: Image 

acquisition and Computer vision (Fig. 1.4) [11]. 

 

The first phase comprises of a camera Basler acA2000-340kc attached to a Bitflow Neon-

CLB frame grabber using the Camera Link interface [18]. At this block, the lens’s exposure 

time is set to 7.5 ms, while it takes approximately 14 ms to transfer the image from the frame 

grabber to Simulink environment via USB [11]. 

 

On the second stage, the Simulink tool converts the RGB image signal into a matrix of 

hue and color saturation, making segmentation of the balls on the platform easier [1].This 

algorithm requires on average 4.6 ms to determine the pellet’s location from the image, 

according to [11]. Therefore, the place where the ball is cannot be known sooner than 26.1 

ms after the start of the camera exposure. In summary, the time delay caused by the computer 

vision algorithm limits the performance of the control system. 

 

To advance in the dielectrophoresis research and the tests for control of distributed 

manipulation for which Magman was devised, the visual feedback system needs to be 

improved. This way investigators would have a more accurate placement of the pellets on 

the platform. 

 

Figure 1.4 Scheme of camera model. 
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1.3.  Synthesis of the problem 

 

The observing system of metallic colored balls of the Magman platform is not capable of 

acquire and process information at the speed required by the controller, hence the overall 

performance is restricted. 

 

1.4.  Solution approach 

 
As depicted in the previous section, the main problem is that the visual method used to 

measure position is too slow compared to the controller, limiting its precision. 

 

In the first place, the project executor must learn how does the current system processes 

the image, based on the documents of the previous implementations. The next step is to gain 

insights into algorithms for detection of position of one (or more) steel balls in a video-

sequence obtained from camera. After evaluation of different procedures, the most effic ient 

has to be chosen, accordingly with the hardware to be used. 

 

In parallel with the algorithms’ investigation, different hardware options shall be 

evaluated. For example, hardware available options will be investigated to determine whether 

the existing camera is sufficient or if a new one is needed. The new proposal should be a 

specialized system capable to obtaining a real-time detection that would give a better speed 

of detected position, for applicability of the image based feedback. According with this, it 

will be considered to develop the new system using a Field Programmable Gate Array 

(FPGA). 

 

As explained in the previous section, the current scheme transfers the image from the 

camera to the frame grabber via Camera Link interface, and then the data is sent via PCI to 

Simulink environment. According to [11], a specialized system such as FPGA would solve 

the inherent problems of serial transmission; given that using a high speed camera with a 

built-in FPGA board will allow a significant increase in the frequency of the position 

measurement not only by running the computer vision algorithms on the board, but also by 

avoiding the lengthy transfer of the whole image to the PC. The higher frequency achieved, 
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the better the feedback. Consequently, one of the foremost options for developing the project 

will be the FPGA. 

 

Nevertheless, for the solution of the problem there will be shown at least two different 

options, and the definitive solution will be chosen based on the comparison of the 

characteristics of the possibilities depicted. 
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Chapter 2. Goal and objectives 

 

2.1.  Goal 

 
In the long term, it is intended that the magnetic field manipulator becomes extremely 

useful in a research of the response of objects exposed to an electric field, their polarizat ion 

and subsequent interaction of their dipole (quadrupole, octopole) with the surrounding 

electric field [26]. This phenomenon is called dielectrophoresis, and its results can be used 

to steer, characterize and sort objects as delicate as cells; hence its appeal for fields such as 

biochemistry and bioanalytical instrumentation [26]. 

 

2.2.  General objective 

 

Implement a specialized computer vision system to measure the position of colored 

metallic balls, to improve the performance of the image based feedback of the laboratory 

platform for magnetic manipulation (MagMan). 

 

2.3.  Specific objectives 

 

1. Implement an algorithm for detection of objects in a video stream obtained from a 

camera. 

Indicator: The object must highlight a proof that it has been recognized. 

 

2. Develop a process capable of distinguish different colors in a video stream obtained 

from a camera. 

Indicator: After the image processing, the system must be able to differentiate colors 

and label them. 

 

3. Implement a system capable of measure the position of one or more objects on a flat 

surface from an image. 

Indicator: The system must send via RS-232 the absolute position of the objects 

according with the dimensions of the surface. 

  



7 
 

Chapter 3. Computer Vision Systems 

 

The initial phase of this project consisted on a survey over cameras and computer systems 

available in the market, in parallel with a research of related projects. The search was mainly 

focused on cameras compatible with FPGAs or microcontrollers, in order to come up with 

the device that fits best the requirements of the system, without ignoring the current 

implementation. The main requirements to consider are the processing time and the cost of 

the device to use. 

 

Since the main body of the project, including all the designs of architectures that develop 

the operations will be performed on the processing unit, it will be discussed first. Then, the 

camera options will be reviewed based primarily in their compatibility with the selected 

processing unit. 

 

3.1.Processing Unit 

Before starting the engineering design for the new computer vision system, the options 

for developing such structure must be reviewed. This is a critical choice because it will 

directly impact on the rest of the design cycle. The main characteristic to consider is the 

complexity of the application, besides the cost, capacity and the flexibility the technology 

offers [9]. 

 

The current vision system transfers the image to a Personal Computer via USB, to 

Simulink environment where the processing occurs. This provides all the flexibility the 

workspace can give (libraries, algorithms, tools and commands), with the disadvantage that 

the operations will be handled mainly by software, which does not take full advantage of the 

hardware [14]. Also, the bottleneck caused by transferring the image (as explained in section 

1.2) limits the performance of the platform, so it’s necessary to find a new solution. 

 

Given the nature of the project, image processing systems usually are computationa lly 

intensive but also structured. This type of applications can be mapped on FPGA or 

application specific integrated circuit (ASIC) (Khan, 2010). Both options differ in some key 
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features as flexibility, cost, size and performance. According to Bailey (2011), dedicated 

hardware as an ASIC would be definitively the optimal option for several reasons: a custom 

made circuit will always be smaller, faster and more efficient in terms of power than an 

FPGA. The main drawbacks of an ASIC are the economic cost of manufacture a specific chip 

and its certainly null flexibility. Since the computer vision system may need to be changed 

in the future, the ASIC is discarded as option for the project. There is also the possibility to 

develop the image processor in a microcontroller. 

 

After ruling out the ASIC, the remaining options are the FPGA and the microcontrol ler. 

There is a wide range of options in both markets including variety in prices and performance. 

For terms of this project, were considered microcontrollers that the department owns and 

some other options that will be described shortly. 

 

With the microcontroller, the first option would be a Raspberry Pi 3 model B, which has 

a 1.2 GHz 64-bit quad-core ARM v8 CPU, Camera and display interfaces and VideoCore IV 

3D graphics core [17]. This is way too advanced in single threading processing, and it offers 

the option of 3D image handling for further investigations. Another advantage of this device 

is its size, what makes it discrete. 

 

There is also the Terasic Video Embedded Evaluation Kit (VEEK/tPad) has a Cyclone 

IV FPGA that works at a frequency of 50 MHz and provides 114480 logic elements, plus 

RS-232, USB and Flash memory ports. This kit features a 5 MP camera and a LCD 

touchscreen, and it is addressed to host embedded processing-based systems. It also offers 

different picture sizes, which varies inversely proportional the frame rate [23]. 

 

The Optomotive Velociraptor HS has an embedded Spartan-GLX FPGA and is designed 

for high speed image processing at JPEG format. This device features a gigabit Ethernet port 

and a 4 pin trigger connector, which would require to set up a small server to upload the 

measured position. 
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Last but not least, there is the industrial-aimed DSP-PCIe/104 board. This board features 

a Xilinx Virtex-5 FPGA which has 12 960 logic slices and supports PCI-Express interface 

which provides fast communication with a host computer. This device can also be connected 

with the Basler camera using an FG-400CL expansion package [19]. 

 

The most practical of all the previous options is the Optomotive camera because it also 

has the FPGA attached, all together in a small device. The main drawback of this camera is 

its few options of connectivity [16], given that the project is to be designed for continuous 

serial transmission. The next one is the powerful Virtex-5 FPGA because it would provide 

fewer processing limitations, which can be translated in more parallelism possibility in the 

design; besides it is compatible with the Basler camera previously used. Unfortunately, this 

board is not owned by the university; and its price is roughly 4000 USD [19] plus the adapter 

for the camera, which leaves it out of the question. 

 

The Raspberry Pi, as a microcontroller is a good processor of general applications, being 

highly efficient executing instructions from software. However, it does not offer the 

possibility of parallel threading, which makes it inappropriate for the task of processing 

images. On the other hand, the tPad offers flexibility both in hardware (FPGA) and software 

processing. This is particularly useful in this kind of applications given that the image can be 

analyzed either way: the more convenient. Also, the tPad has its camera attached, it has a 

wide range of connectivity options (Ethernet, USB, RS-232, PS2, SMA, among others) [21] 

to transmit the measured position, what results in not needing more devices. Its main 

drawback are its size and the fact that it’s phased out by a new model from Altera (VEEK-

Multi Touch) [24]. 

 

3.2.Image Sensor Technology 

 
After selecting the FPGA as optimal choice to host the processor, the next argument is 

about what camera is the most adequate for the image acquisition. 
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The Magman platform’s first vision system was composed by a Basler acA2000-340kc 

camera, attached to a Bitflow Neon-CLB frame grabber [18]. Both components will be 

portrayed in this chapter, and then other hardware options will be described for the new 

implementation , to finally conclude on which alternative will be used and why was it chosen. 

 

The Basler camera is a high speed industrial camera based on a CMOS sensor, and is able 

to deliver up to 340 frames per second (fps) at 2 Megapixels resolution (2046 x 1086), 

providing images of 8, 10 or 12 bits wide. It supports Camera Link interface and its typical 

power consumption is 3.0 W. This camera worked on a frame rate of 112 fps because it was 

not possible to process the data at camera’s full rate without a specialized hardware such an 

FPGA or GPU (Simonian, 2014). It would be possible to attach this camera to an FPGA or a 

microcontroller but in most cases this would require an undercard that make the connection 

possible. For example, this camera can be attached to a PCIe 104 FPGA though an FG-400 

CL daughter card, given that it is based on Camera Link interface [19]. 

 

The Optomotive Velociraptor HS is, by far, the fastest option considered for this project. 

It has an embedded Spartan-GLX FPGA and is able to achieve a frame rate of 178 fps at 

maximum resolution (2048x2048) [16]. As discussed in the previous section, it is also the most 

practical in terms of the size to functionality ratio but this artifact is not in the faculty; it 

would have to be bought. 

 

The Terasic tPad may not have the fastest camera or the best image resolution but the 

truth is that the algorithms for image segmentation do not require the largest camera 

resolution to work properly; this will be discussed with more detail in the design stage. The 

main advantage of this device is that it can use the Nios II processor (described in section 

4.1.3). According to [3], the Nios II is the ideal real-time mainframe to use with DSP (Digita l 

Signal Processing) Builder-based hardware accelerators to provide deterministic, high 

performance real-time results. This particular feature makes it the best choice to develop the 

new computer vision system for the Magman platform. 
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Based on the previous argument, the selected device to host the computer vision system 

will be the Altera Terasic tPad due its practicality, flexibility and its high compatibility with 

several pheripherals. 
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Chapter 4. Digital Image Processing 

 
In this chapter are described different algorithms used for image processing in order to 

detect diverse colors and shape from an array of pixels. The goal is to implement a system 

capable of measure the position of one or several colored steel balls in the Magman Platform 

in an empirically estimated frame rate of 50 Hz; while the position calculated has to be good 

enough to be used as feedback for the control system of the platform. 

 

4.1.Problem Setting 

 
For the detection problem we are aiming to solve, there are some considerations to be 

taken before describing digital processing algorithms, given their effectiveness can vary 

according to the environment they are going to be used. First, the distance from the camera 

to the platform is considered constant, even though there is a small difference between the 

distance to the camera is from the edges and from the center of the platform. Second, the 

illumination of the scene is stable, which means that long exposure periods before acquiring 

the image are not necessary. Third, the platform in the image is static, the only moving objects 

are going to be the steel balls. Fourth, the objects to be detected have known shape and are 

symmetric and one object cannot hide another, which simplifies the identification process. 

 

Since the main constraint for the new computer vision system is speed, the algorithms to 

be implemented cannot be too complex because this would mean more response time as a 

result of dense computation. Another consideration in order to improve processing speed is 

that, once the objects are identified there is no need to scan the whole frame again because 

the movement of the ball in the platform cannot be more than a certain number of pixels. In 

this course of actions, the scanned section will be called region of interest (ROI); where its 

center is the point where the ball was located in the last frame. 

 

One of the advantages the Altera Terasic tPad is its flexibility: it can process the image 

via hardware or software or both. The algorithms can be described and synthesized in Verilog 

by the Quartus II design software or can also be programmed by software using the Nios II 
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Software Build tools for Eclipse. The Design Software are described further in Chapter 5 in 

sections 5.2 and 5.3. 

 

4.2. Color Detection 

 

The human eye is capable to distinguish hundreds of shades of different colors, and this 

expanded perception of our reality encouraged the development and optimization of devices 

able to acquire, store and show full-colored frames. According to [13], the use of color in 

image processing is encouraged for its practicality in object identification from a frame. 

 

An important portion of the image segmentation that requires this project is to discern 

between colored elements, so this branch is fundamental for the development. This section 

explains briefly the basic concepts of colored pictures to then explain some algorithms that 

can be used in order to detect the colored balls in the platform. 

 

All colored displays from the Cathode Ray Tube (CRT) monitors and TVs, to the digital 

Plasma, LCD and LED screens used nowadays are based on producing all color variations 

with the three primary colors: Red, Green and Blue; where the characteristics used to 

distinguish one color from another are brightness, hue and saturation [13]. There are other 

protocols for color encoding such as Cyan, Magenta and Yellow (CMY); Hue, Saturation 

and Value (HSV); Luminance and Chrominance (YCbCr), among others; but cover them all 

goes beyond the scope of this document, so we will focus only in RGB and HSV color spaces. 

 

4.2.1. RGB and HSV color models 

 

The RGB color model is based on the three dimensional Cartesian coordinate system, 

where each axis represents the value of one of the three primary colors: Red, Green and Blue, 

hence its name. If all the values of these axes are normalized in the interval [0,1], the color 

space can be modeled as a cube that contains all achievable colors; furthermore, the primary 

colors are in three different corners, while the secondary colors are in other three corners. A 

straight line traced from the origin [0,0,0] to the point [1,1,1] runs the entire grayscale from 

black to white[13], as shown in fig.4.1. 
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According to González and Woods (2007), RGB color model is useful to build colors in  

hardware implementations, however it is not well suited to describe colors. Humans describe 

colors based on its hue, saturation and brightness; being hue the attribute that describes a 

pure color, saturation is the measure of white light and value is a measure of brightness. The 

HSV colorspace is mapped putting the vector of RGB grayscale in vertical position with the 

black vertex at the bottom and the white vertex above it, becoming the intensity axis (fig 4.2). 

The cube can then be extruded into a hexagonal shape where the vertices are the primary and 

secondary colors (fig 4.4). Henceforward, primary colors are separated by 120° each other 

and 60° to the secondary counterparts as shown in the fig. 4.3, where the dot is an arbitrary 

Figure 4.1. Schematic of the normalized RGB colorspace cube. [13] 

Figure 4.2. Conceptual relationship between 

RGB and HSV color models. [13] 
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color point, the saturation value is radial and the hue is the angle from the red vertex, 

incrementing in counter clockwise direction. If the values of R, G and B axes are normalized 

in the interval [0,1], the equations 4-1, 4-2 and 4-3 allow to calculate the Hue, Saturation and 

Intensity respectively [13]. 

𝐻 = {𝜃              𝑖f 𝐵 ≤ 𝐺
360 − 𝜃 if 𝐵 > 𝐺

   (4-1) 

Where 

𝜃 = cos−1 {

1
2

∙ [(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)2 + (𝑅 − 𝐵) ∙ (𝐺 − 𝐵)]
1

2⁄
} 

Saturation is given by 

𝑆 = 1 −
3

(𝑅+𝐺+𝐵)
∙ [𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)]   (4-2) 

 

Value is given by  

𝑉 =
1

3
∙ (𝑅 + 𝐺 + 𝐵)    (4-3) 

 

 

4.2.2. HSV Threshold in RGB colorspace 

 
This method relies on the concepts described in the previous section but without the 

conversion from one space to another. In another words, it offers the effectiveness of 

thresholding in HSV colorspace without the expense of transforming each pixel. According 

to [18] hue, saturation and value isosurfaces are linear or piecewise linear in terms of RGB 

Figure 4.4. RGB cube extrusion to HSV color 

model. [13] 

Figure 4.3. Hue and Saturation in the HSV 

color model. [13] 
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components. So, if the isosurfaces corresponding to the hue, saturation and value are 

described analytically using plane equations, we will be able to do the HSV thresholding by 

simply checking whether a pixel lays above or below a set of boundary planes in the RGB 

space [18]. Figures 4.5 through 4.7 show the HSV isosurfaces in RGB colorspace for the 

reader’s understanding. 

  

Figure 4.5. Value isosurfaces in the RGB 

color space for 𝑉 = 0.25 (red), 𝑉 = 0.5 (green) 
and 𝑉 = 0.75 (blue). [18] 

Figure 4.7. Hue isosurfaces in the RGB color 

space for 𝐻 = 0 (yellow), 𝐻 = 0.25 (red), 𝐻 = 

0.5 (green) and 𝐻 = 0.75 (blue). [18] 

Figure 4.6. Saturation isosurfaces in the RGB 

color space for 𝑆 = 0.25 (red), 𝑆 = 0.5 (green) and 

𝑆 = 0.75 (blue). [18] 
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4.2.3. Pixel Threshold 

 

This is a very simple method based in the merely concept of thresholding the pixels that 

meet certain value. For example: in an RGB image, by simply verifying the channels of each 

pixel, can we can examine if it belongs to a red object we need to track. Following this idea, 

in a pixel depth of 30 bits (just as used in the tPad) each channel has 10 bits, making the 

possible values in the interval [0,1023]. In order to detect a red object, the thresholding would 

be as simple to set an arbitrary value of red channel, and every pixel above this limit is 

considered foreground; while those don’t as background. 

 

It is almost superfluous to explain the fragility of a color detection algorithm based on 

this purpose. Here it is mentioned only for completeness but for a real implementation it 

would be less than useless. First, it would only allow (in the best case scenario) to detect red, 

green or blue colors in their purest versions, excluding similar shades. Second, a system based 

on linear threshold would also be highly susceptible to light changes. The only advantage 

this procedure can have among other algorithms is that it is the fastest: just needs three 

comparators; but does not meet the requirements of this project. 

 

4.2.4. Segmentation in RGB Vector Space 

 
This is an improved version of the previous procedure. It is also mapped in the RGB 

colorspace with the difference that the color identification is not based on a fixed value of R, 

G or B but on a region around the color we desire to detect. The objective of segmentation is 

to classify each RGB pixel as inside the region stated or not [13]. In order to determine the 

proximity of each pixel to the average of the region selected, the simplest way is to calculate 

the Euclidean distance. Depending on how the distance is calculated, the tridimensiona l 

region can be either a cube, a sphere or an ellipsoid. For example, equation 4-4 is used to 

calculate the Euclidean distance between the average color we want to discriminate (vector 

a) and an arbitrary point in RGB color space (vector z). Therefore, the color denoted by z is 

considered as similar to a if the distance between them is less than the specified threshold 

[13]. 
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𝐷(𝒛, 𝒂) = ‖𝒛 − 𝒂‖ = [(𝒛 − 𝒂)𝑇 ∙ (𝒛 − 𝒂)]
1

2   (4-4) 

If a maximum distance D0 is set, the similar points in the color space will look like a 

sphere of radius D0. Since calculating the square root for images of useful sizes takes a heavy 

processing because of the number of pixels, it’s simpler to perform this threshold in a cubical 

shape centered in a. This can be done comparing separately the distance in the three 

directions (R.G.B) between z and a, which, according to [13] is simpler computationally than 

calculating the spherical enclosure. 

 

4.3.Image Segmentation [13] 

 
According to [13] image segmentation in computer vision systems is the process to 

subdivide the image into regions or objects whose pixels share a characteristic feature, in 

order to obtain information from it. In our case, the goal is to measure the position of the 

object of interest, with the advantages that it has known shape and if there is more than one, 

they cannot occlude each other; which simplifies the segmentation. 

 

4.3.1. Basic line and edge detection 

 
In a digital image, typically an edge pixel is found when there is a discontinuity in the 

intensity function, while an edge segment is a set of connected edge pixels. The detection of 

edges in digital image processing is based on derivatives guided by the following rules for 

the first derivative: 

a) Must be zero in areas of constant intensity; 

b) Must be nonzero at the onset of an intensity step or ramp; 

c) Must be nonzero at points along an intensity ramp. 

For the second derivative, the following rules apply: 

a) Must be zero in areas of constant intensity; 

b) Must be nonzero at the onset and end of an intensity step or ramp; 

c) Must be zero along intensity ramps. 

Based on these statements, an expression for the first order derivative is obtained by 

expanding a linear function in Taylor series, being the function f(x +Δx) and Δx =1. 
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Equations 4.5 and 4.6 show the result of this approximation of one-dimension first 

and second order differentials, respectively. 

𝑑𝑓

𝑑𝑥
= 𝑓 ′(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥)     (4-5) 

𝑑2𝑓

𝑑𝑥 2
= 𝑓 ′′(𝑥) = 𝑓 ′(𝑥 + 1) − 𝑓 ′(𝑥) 

𝑓 ′′(𝑥) = 𝑓(𝑥 + 1) + 𝑓(𝑥 − 1) + 𝑓(𝑥)          (4-6) 

An interesting example where an 8-bit image is subjected to the previous equations is 

shown in [13], pp 693-695. For our interest, the conclusions of such experiment are: (1) First-

order derivatives produce thicker edges in an image. (2) Second-order derivatives have 

stronger response to fine detail. (3) Second-order derivatives produce a double-edge response 

at ramp and step transitions in intensity. (4) The sign of the second-order derivatives can be 

used to determine whether a transition into edge is from dark to light or vice-versa. 

The previous explanation is useful as an introduction to the general process of 

segmentation, but is still in one direction. For real image processing applications, the 

common procedure is to encompass the frame using a filter mask or a kernel, which is usually 

a matrix of different values depending of the target. Some example of masks are shown in 

fig. 4.8, being a) a mask optimized to find horizontal lines through d)-45° lines. 

 

4.3.2. The Marr-Hildreth edge detector [13] 

 

David Marr and Ellen Hildreth proposed in 1980 two premises in which they based their 

model of edge detection: a) intensity changes are not independent of image scale, and b) a 

sudden intensity change will give raise to a peak in the first derivative, or a zero crossing at 

the second derivative, as proven in the previous section. To fulfill this requirements, Marr 

Figure 4.8. Line detection masks for different orientations. [13] 
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and Hildreth suggested the Laplacian operator was the one who fulfilled best their 

expectations, applied to a 2-Dimensional Gaussian function. (eq. 4-7). The final expression 

is called Laplacian of Gaussian (LoG), and it is depicted in eq. 4.8. 

𝐺(𝑥,𝑦) = 𝑒− 
𝑥2+𝑦2

2∙𝜎2            (4-7) 

 

∇2𝐺(𝑥, 𝑦) =
𝜕2 𝐺(𝑥, 𝑦)

𝜕𝑥 2
+

𝜕2𝐺(𝑥, 𝑦)

𝜕𝑦2
 

∇2𝐺(𝑥, 𝑦) = [
𝑥2+𝑦2 −2∙𝜎2

𝜎4 ] ∙ 𝑒− 
𝑥2+𝑦2

2∙𝜎2          (4-8) 

 

The Laplacian of Gaussian can then be converted into a low-pass filter mask of variable 

size (for an example, see fig. 4.9.). As a rule, the size of an n× n LoG filter should be that n 

is the smallest odd integer greater than or equal to 6σ; being σ the standard deviation. Since 

the mask is isotropic, its convolution with the frame yields a blurred picture where the 

intensity of the structures is decreased in any direction, thus 

avoiding to use several masks depending of the direction of the 

edges of interest. The algorithm by itself consists of convolving 

the LoG filter with an image f(x,y) (eq. 4-9) and then finding zero 

crossings in g(x,y) to determine the locations of edges in f(x,y). 

𝑔(𝑥, 𝑦) = ∇2[𝐺(𝑥, 𝑦) ∗ 𝑔(𝑥,𝑦)]           (4-9) 

 

The principal feature of the Marr-Hildreth edge detection 

algorithm is the zero detection of g(x,y) because its simplicity and its good results. Its main 

drawback is the treatment of negative numbers in hardware which may imply denser 

processing and slower performance. 

 

4.3.3. Center of Mass 

 
This method is a simple procedure to calculate the center of a shape in a binary image. 

It is based upon accumulating the weight of each pixel times the indexed position in one 

dimension (x for demonstration) for each row, divided by the sum of the weights of each 

pixel for each row, as shown in eq. 4-10.  

Figure 4.9. Laplacian of 

Gaussian 5× 5 mask. [13] 

0 0 -1 0 0 

0 -1 -2 -1 0 

-1 -2 16 -2 -1 

0 -1 -2 -1 0 

0 0 -1 0 0 
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𝑋𝑐𝑚 =
∑ ∑ 𝑥∙𝑔(𝑥,𝑦)

∑ ∑ 𝑔(𝑥,𝑦)
     (4-10) 

One disadvantage of this method is that it calculates the center of the concentrations of 

the pixels for virtually any shape, and for the purposes of this project it is required that the 

method does so for only circular shapes. For this reason this method was discarded for the 

final implementation. 

 

4.3.4. Foreground Model 

 

This method was proposed by [18] as a procedure to detect the position of the balls 

from a background subtracted image. This image is considered as a two-dimensional matrix 

of the same size of a region of interest D(i,j), where each pixel is classified between two 

threshold values t1 and t2 to have three different classes, where t1 < t2. (eq. 4-11) 

𝐶(𝐷𝑖𝑗) = {

0     iff   0 <  𝐷𝑖𝑗  ≤  𝑡1

 1     iff   𝑡1 <  𝐷𝑖𝑗  ≤  𝑡2

2                   otherwise

     (4-11) 

According to eq. 4-11, the pixels with classification C(Dij)=0 belong to the background, 

C(Dij)=2 belongs to foreground and C(Dij)=1 means “not determined” tier. The higher 

threshold t2 is chosen empirically as a quantile of the difference image pixel values, while t1 

is chosen as one half of the threshold t2. After the pixel classification we form two vectors 

whose lengths are equal to the width M and the height N on the image. These vectors, v1 and 

v2 contain sums of rows and columns respectively (see eqs. 4-12) 

𝑣1 = ∑ 𝐶(𝐷𝑖𝑗)

𝑁

𝑗=1

 

(4-12) 

𝑣2 = ∑ 𝐶(𝐷𝑖𝑗)

𝑀

𝑖=1

 

After having the rows and columns in vectors, the next step is to create a digital filter to 

detect the shape we are interested in. Simonian proposes an analysis based on the projections 

of the secant lines of the circle in a column sum vector, which provides the filter shown in 
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eq. 4-13 for any fixed circle radius. The evaluation for this filter in a circle with radius of 70 

pixels can be seen in fig. 4.10. 

𝑓𝑐(𝑥) = {2 ∙ √𝑟2 − 𝑥2     iff   x ϵ [−r,r]

0                   otherwise
   (4-13) 

Finally, the procedure to know the center of the ball is as simple as the location of the 

maximum result of the convolution between image vectors (v1 and v2) and the digital filter 

shown in fig 4.10. The mathematical expression for this operation is described in eq. 4-14. 

𝑥𝑐 = arg max
𝑖

{(𝒗1 ∗ 𝒇𝑐)(𝑖)} 

(4-14) 

𝑦𝑐 = arg max
𝑗

{(𝒗2 ∗ 𝒇𝑐)(𝑗)} 

 

4.4.Alternatives Assessment 

In this section we discuss briefly which methods are the most appropriated for the main 

parts of the computer vision system, being color detection and circle detection in the image.  

 

For color detection, the pixel threshold based only in R, G or B channels at the same time 

the easiest and less reliable approach, given that the hue cannot be judged based on the value 

of only one channel. The optimal solution for color detection would be to transform each 

Figure 4.10. Length of parallel secant lines of a circle with radius 70 px as a function of their distance 
from the circle’s center (red line), i.e. the coefficients of filter 𝑓𝑐. The blue circle represents projection 

of a ball to the image plane. A few sample secant lines are shown as well, plotted with cyan color [18] 
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pixel to the HSV colorspace to evaluate if it belongs to a color of interest, but this requires 

dense calculations that would slow the performance of the system. The same thing happens 

with segmentation in RGB colorspace because the Euclidean distance for each pixel would 

need to be calculated and compared to different values of the different colors to identify. The 

best option is the HSV threshold in RGB colorspace because it only needs the parametrizat ion 

of the thresholds needed and two comparators for hue and for saturation. 

 

For image segmentation, the pure edge detection based on differentials leads to the Marr-

Hildreth edge detection algorithm, but this turns out to be overly complicated to handle 

because of the negative coefficients in the kernel. Besides, edge detection is not the main 

goal but detection of the whole shape; so despite its effectiveness is discarded. For the center 

of mass calculation, as mentioned in section 4.3.3, it can calculate the center of any shape so 

it provides no filtering at all. Finally, the Foreground model proposed by [18] holds a balance 

between effectiveness and difficulty, so that if it’s synthesizable in Verilog, the pixels can be 

first classified as background or foreground in different levels or colors; and then this method 

could be used to locate the circles in the image. 
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Chapter 5. System Analysis and Design 

 
This chapter presents the constraints analysis according to the selected FPGA’s 

processing time and data consistency. It also presents the FPGA development board used for 

the new computer vision system, the Quartus II design software and the Nios II Build Tools 

for Eclipse. All considered options are described in terms of programming language, FPGA 

development board, CMOS sensor used, embedded operating system and the soft-core 

mainframe 

 

5.1.  Terasic tPad overview 

 
The Terasic tPad is a design environment capable to perform processing based systems. 

It is composed by the DE2-115 development board attached to a multimedia daughter card 

via HSMC port. The core of the DE2-115 board, where the Nios II processor is installed and 

all logic is performed, is the Cyclone IV FPGA. The tPad and Cyclone IV FPGA technical 

specifications are presented in table 5.1, and table 5.2 respectively. 

 

Table 5.1 Technical specification of tPad board. [23] 

Feature Value [unit] 

Operation Voltage DC 12 [V] 

Flash Memory 8 [MB] 

EEPROM 32 [Kbit] 

SRAM 2 [MB] 

SDRAM 128 [MB] 

Clock frequency 50 [MHz] 

Width 160 [mm] 

Large 223 [mm] 

Depth 47 [mm] 

 

The board is to be configured via USB blaster, but it supports JTAG AS configura t ion 

as well. As it can be seen in fig.5.1, the device counts also with many peripheral connectors, 

which signifies a wide range of possibilities for processing digital signals including audio 
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and video in real time. The board has on its back side a 5 Mega Pixel camera with an LCD 

8” touch screen (fig. 5.2). 

 

Table 5.2. Resources of Cyclone IV EP4CE115 FPGA. [20, 21] 

Logic Elements [LEs] 114480 

Embedded Memory [kbits] 3888 

Embedded 18x18 multipliers 266 

General Purpose PLLs 4 

Global Clock Networks 20 

User I/O Banks 8 

 

 

On the top side, the board has 9 green and 18 red leds for output or display, it also has 

18 slide switches and 4 push buttons for inputs. It also shows a 16x2 LCD screen where can 

Figure 5.1. Altera Terasic tPad (bottom view). [21] 
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be shown messages as desired. It also has various types of memories: SDRAM, SRAM, 

FLASH and EEPROM. Among its connectors features an IR receiver, a TV decoder, a CD-

quality audio CODEC with line-in, out, and microphone- in jacks; VGA DAC with VGA-out 

connector, USB ports type A and B, 2 SMA connectors, 2 Gigabit Ethernet PHY ports and a 

RS-232 transceiver. 

 

 

For the development of the computer vision system, the tPad offers a set of IP cores that 

can be selected, connected and synthesized using the Qsys tool for building architectures. 

This tool is also useful to instantiate the softcore Nios II Processor, which can be built in the 

FPGA; operated through a RISC instructions set (see section 5.2). 

 

5.1.1. CMOS camera sensor [22, 23] 

 
The tPad is equipped with a 5-Megapixel digital image sensor module (D5M) that 

provides an active imaging array of 2,592 x 1,944 pixels as maximum resolution. It features 

low-noise CMOS technology that achieves CCD quality. The sensor can be operated in its 

default mode (maximum resolution) or programmed by the user through I2C serial interface 

for frame size. Other sizes supported by the 5DM are listed in table 5.3 with the 

corresponding frame rate achievable with an input clock of 96 MHz. 

 

Figure 5.2. Altera Terasic tPad (top view). [23] 
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The CMOS sensor acquires the image in Bayer pixel format plus a blank region 

regardless the frame size (see fig. 5.3). This implies that the blank area of the acquired array 

of pixels need to be cropped, and the active image must be converted to RGB format before 

any further changes. Further specifications of the camera’s readout sequence can be found in 

[22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3.Table of picture sizes with 
maximum frame rate achievable. [22] 

Resolution H x V 

[pixels] 

Frame 

Rate [fps] 

2592 x 1944 15.15 

2048 x 1536 23 

1600 x 1200 35.2 

1280 x 1024 48 

1024 x 768 73.4 

800 x 600 107.7 

640 x 480 150 

Figure 5.3. Bayer pixel format and readout direction of the D5M sensor. [22] 
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5.1.2. LCD touch screen [7, 23] 

 
The tPad features an 8-inch LCD panel that supports resolution of (800x600) pixels with 

backlight. The LCD panel works with an 18-bit parallel RGB data interface and an input 

clock of 40 MHz. The tPad is also equipped with an Analog Devices AD7843 touch screen 

chip that digitizes analog x and y coordinates of touch points to 12-bit coordinates, which 

can be read in the FPGA through the serial port interface on the AD7843. Table 4.4 shows 

some technical details of the screen (note the touch characteristics were ignored due to its 

futility in this project). Further specifications of the LCD can be found in [7] 

 

Table 5.4. Technical details of the LCD touchscreen. [7] 

Feature  Value [unit] 

Screen size 8 inches (diagonal) 

Power supply 3.3 [V] 

Digital operating current (max) 120 (132) [mA] 

Power consumption (max) 396 (436) [mW] 

Backlight LED voltage (max) 9.9 (10.5) [V] 

Backlight LED current (max) 180 (200) [mA] 

Resolution 800 x 600 pixels @ RGB 

Active area 162.0(W) x 121.5(H) [mm]* 

Module size 183.0(W) x 141.0(H) x 7.2(D) [mm]* 

Color arrangement  18 bits RGB 

Interface Digital 

*(W): width; (H): height. 

 

5.1.3. Nios II processor 

 
There are two kinds of mainframes in FPGAs according to Antunes (2010): hard and 

soft core. The Hardware based processors (hard-core) are located in a specific area of the 

integrated circuit, while the soft-core processors are installed in the general-purpose FPGA 

logic cells [8]. Altera’s Nios II is a soft-core general-purpose RISC processor that can be 

instantiated on an Altera FPGA device. In the Quartus II development environment are three 

different alternatives: economic, standard and fast [3]. 
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Economic: Ideal for microcontroller applications. It uses the fewest FPGA logic and 

memory resources [4]. 

Standard: is designed to implement a small processor core without a significant trade 

off in performance This core is optimal for cost-sensitive, medium-performance 

applications, such as computers running a full- featured operating system [6]. 

Fast: designed for high performance. Optimal for performance-critical applications 

as well as applications with large amounts of code and data, such as running a full-

featured operating. The Nios II fast core can use a memory management unit (MMU) 

to run embedded Linux [5]. 

 

Figure 5.4 shows a simplified modular diagram of the Nios II structure. Some other  

features of the Nios II processor are listed below: 

 Full 32-bit instruction set, data path, and address space 

 32 general-purpose registers 

 32 interrupt sources 

 External interrupt controller interface for more interrupt sources 

 Single- instruction 32 × 32 multiply and divide producing a 32-bit result 

 Dedicated instructions for computing 64-bit and 128-bit products of multiplication 

Figure 5.4. Nios II processor block diagram. [3] 
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 Optional floating-point instructions for single-precision floating-point operations 

 Single- instruction barrel shifter 

 Access to a variety of on-chip peripherals, and interfaces to off-chip memories and 

peripherals 

 Hardware-assisted debug module enabling processor start, stop, step, and trace 

under control of the Nios II software development tools  

 

5.1.4. RS-232 serial transmission port [21, 27] 

 

The DE2-115 board uses a ZT3232 transceiver chip and a 9-pin DB9 connector for RS-

232 communications, with flexible power supply from 3V to 5.5V. The chip supports both 

EIA/TIA-232 and V.28/V.24 communication interfaces, consisting of two line drivers, two 

line receivers and the proprietary switch-capacitor regulated voltage converters. 

 

The ZT3232E chip supports NSOIC, WSOIC, SSOP and TSSOP package types for 

transmission and reception, at a data rate of 250 kbps. Image 5.5 shows the connections 

between the FPGA and the ZT3232E chip.  

 

Figure 5.5. Pin connections between Cyclone IV FPGA and ZT3232E chip. [21] 

5.2. Design Software 

 

In order to work with the Terasic tPad, the software development environment that this 

board requires must be briefly introduced. The main tools to be used will be the Altera 

Quartus II System Development Software for hardware and the Eclipse Nios II for software.  
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5.2.1. Quartus II 

 
The Quartus II development environment is useful for analysis and synthesis of the 

structures based on hardware description languages like Verilog or VHDL. The Altera 

Quartus II design software provides a complete, multiplatform design environment for 

system-on-a-programmable-chip (SOPC) designs. This environment synthesizes the scheme 

implemented and fits it on the tPad. It also performs various tests including connectivity 

checks, timing constraints and cell occupancy, all this in order to evidence the (in) validity 

of the proposed schemes. 

 

The Altera Quartus II design software also includes the Qsys tool, which is a powerful 

environment where the core of the Nios II processor can be instantiated and connected with 

the peripheral modules as required by the design. It also includes templates of hardware 

described modules compatible with the built-in architecture of the tPad, which will simplify 

the implementation of the systems. 

 

Another useful tool included in the Quartus II software is the TimeQuest Timing 

Analyzer. As its name says, its main function is to review the described system searching for 

any kind of errors related to timing, such as clocks, fan out, delay, slack, among others. Other 

tools used are the pin planner, that allows to assign the FPGA pins where the input and output 

signals will be connected and the Programmer, which downloads the compiled design into 

the board. 

 

5.2.2. Nios II Software Build Tools for Eclipse. 

 
This tool allows to create and modify the software code run by the Nios II soft core 

processor, if included in the design. The programming language is C/C++, and after 

compilation this tool transforms the code into the binary file executed by Nios II. The Eclipse 

environment also allows access to the libraries ran by the hardware described modules 

created with the Qsys tool, which expands its utility in heterogeneous systems. Fig. 5.6 shows 

the development flow required to build an ASIC controlled by the Nios II processor. Note 



32 
 

that this image includes the workflow integrating all the three main tools of the environment 

(Quartus II, Qsys and Eclipse) 

 

5.3.Programming Languages 

 

This section briefly describes the programming languages used in this project, includ ing 

the purposes of each one. Given that the system has both hardware and software components, 

a hardware description language and a high level language are going to be used respectively 

to develop each domain. 

 

5.3.1. Hardware Description Language 

 

At the lowest level, the digital systems are composed by logical gates. To design and 

compile a complex structure at this level would be unmanageably tedious and error prone. 

According to Bailey (2011), it is possible to program an FPGA at this level, but it would be 

as programming a microprocessor in assembly language; while using a Hardware Description 

Language (HDL) allows to describe the operation of a circuit in a “human readable” form. 

 

Figure 5.6. Nios II development flow. [2] 
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“A Verilog design consists of a hierarchy of modules. Modules communicate with each 

other through a set of declared input, output, and bidirectional ports.”[8]. Since the design in 

code actually represents hardware, the main difference it has with software programming is 

that the diverse blocks can work and communicate simultaneously when instantiated in the 

FPGA or even in simulations. 

 

For this project, the chosen HDL is Verilog, given that it is the most common for digita l 

designs in the data-transfer level of abstraction. Besides, it also has a lot of support in the 

internet via forums, which is a helpful advantage. 

 

5.3.2. Software Programming Language 

 

Given the complexity of the new computer vision system, a portion of the processing of 

the images could be done via software. C is a procedural structured programming language 

and it is supported by a wide number of software compilers. 

 

As mentioned before, the Nios II microprocessor can be programmed in C programming 

language via the Eclipse Software Building Tools. Furthermore, each one of the Altera 

University Program’s modules have a set of functions defined in Hardware Abstraction 

Layers (HALs), which are compiled in C libraries. This particularity can facilitate the 

treatment of basic operations as memory addressing or interruption handling. 
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Chapter 6. Design of the solution 

 

Even on the same device, there are several ways to implement a system that executes a 

given function. Is in this stage when the selection of the architecture, the algorithms and the 

procedure become variables that can play on favor or against the performance of the final 

circuit. In the chapter 3 was discussed how the Terasic tPad was selected as the background 

hardware to host the new computer vision system; and its features have been described in 

chapter 5. In this chapter the outline of the structure will be depicted from the acquisition of 

the image through two possible ways of processing it. 

 

6.1. Acquisition of the image and Heterogeneous Computer. 

Acquisition of the image is a key feature in this project. A very important part of the final 

performance of the new vision system depends on the rate at which it can collect and store 

one complete frame. Since the main restriction is speed, the pipeline was designed to classify 

the pixels as they were input instead of storing the image first and then execute the 

classification. In the other hand, a Heterogeneous computer provides the advantages of 

hardware parallelism in the Video-In pipeline combined with the ease of algorithm 

instantiation via C code as described in section 5.3.2. 

 

The architecture of this version of the new computer vision system is a mixture of two 

different examples that use the tPad Camera. The first part of the framegrabber is based on 

the camera example provided with the tPad’s CD. The second part is an adaptation of the 

VEEK media computer. Its core is the Nios II processor and it is instantiated with its 

peripherals using the Qsys tool (see section 5.2.1 for further details). The Video-In pipeline 

is depicted in the image 6.1 inside the orange square while the tasks for the mainframe are 

inside the blue square. The different modules that compose the whole diagram in fig 6.1 are 

described below. 

CMOS Configuration: Originally developed by Altera. This module was designed to 

communicate with the CCD via I2C port to set up several operational parameters such 

as row and column size, analog channel gains, starting exposure, among others. These 
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were changed in order to fit the system requirements. Table 6-1 shows the parameters 

that were modified. Note that gain values are unit less because they represent 

multiplication coefficients. 

CCD Capture: Originally developed by Altera, this module was not modified. Its 

function is to receive the incoming data and signals from the CMOS sensor. The data 

is then converted to the frame captured using two counters that give the address of 

the pixels received. These are switched to the system clock domain and sent to the 

Bayer Pattern Resampler. 

Bayer Pattern Resampler: (Raw to RGB). This module converts a video stream from 

the Bayer Pattern format to the 30-bit RGB format combining four adjacent pixels 

from the incoming stream into one. Since for each four pixels are two green, one red 

and one blue, the green values are averaged in the final array. It is important to 

highlight that this module diminishes the image to half of its original resolution.  

Originally developed by Altera, this module was not modified. 

Figure 6.1. Modular diagram of the heterogeneous computer used as first solution. 
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Dual Port SDRAM: this is a dual clock FIFO 

memory that stores the frames. It is composed 

by two parallel blocks of 240 kb. Origina lly 

developed by Altera, this module was not 

modified. 

Avalon Memory-Mapped Converter: this 

module was originally developed by [10], and 

it was not modified. The purpose of this block 

is to allow Nios II processor to read the frames 

temporarily stored in the SDRAM and convert 

them to the Avalon Memory-Mapped bus 

format. 

NIOS II: the processor is instantiated in Qsys and it is used to move the pixels read 

by the CMOS controller and store them in the SRAM memory. For this case the 

obvious choice is the fast core, given it is the most powerful. This core also offers 

hardware divide and multiplication, which are both useful to perform complex 

operations if needed. The Nios II processor is also useful to control the RS-232 serial 

port to transmit the coordinates of the found objects. 

SRAM Memory Controller: This block represents both a 2 MB memory and its 

controller. This module is used to store the pixels and is controlled by both the 

processor and the Pixel Buffer DMA Controller. 

 

Once the image is successfully converted to the Avalon Memory-Mapped bus format 

and then stored in the SRAM memory, we consider it has been successfully acquired. Image 

display is not part of the objectives of this project, however, is a powerful tool in order to 

control if the frame is being acquired correctly. It also allows to practically check other 

parameters as noise, colors and object detection. The rest of the pipeline is described below 

for completeness, but it is not part of the final design. 

 

Pixel Buffer DMA Controller: It uses its Avalon memory-mapped master interface to 

read video frames from an external memory (a SRAM), and then sends them out via 

Table 6.1. Configuration parameters 

for the CMOS sensor. 

Parameter Value [unit] 

PLL output freq. 144 [MHz] 

Exposure time 16,567 [ms] 

Row size 599 [pixels] 

Column size 799 [pixels] 

G1 gain 4,469 

R gain 6,781 

B gain 5,328 

G2 gain 1,625 
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its Avalon streaming interface. This module can be programmed from software using 

the Nios II processor to read and modify the image stored in the memory. 

Dual Clock FIFO: buffers video data and help transfer a stream between two clock 

domains. It is necessary due to the difference between the clocks of the system and 

the LCD touchscreen.  

VGA Controller: The VGA controller IP core takes the incoming data, and then sends 

that information to either the on-board VGA DAC or the LCD with touchscreen 

daughtercard synchronously either with an external clock (for the LTM touchscreen) 

or a clock generated by the module (for the VGA DAC). 

LCD Screen: Shows the image acquired. This screen, the FIFO memory and the VGA 

controller are included in the design even though they are not necessary for the ball 

detection, but they are useful in order to control the procedures applied. 

 

The Heterogeneous computer was also useful to develop the Dynamic Region of Interest 

logic. This procedure places the center of the ROI of the next iteration in the coordinates 

found for the ball, and it is explained in section 6.3 for System Initialization. 

 

6.2. Image Processing via Dedicated Hardware 

 
The definitive version of the computer vision system uses some elements from the 

previous design and adds new components (see fig. 6.2). The first modules: CCD 

configuration through Raw to RGB converter are still used, but the SDRAM FIFO was 

replaced by a dual port RAM memory. The pixels are received by the Saturation Filter, where 

their RGB values are evaluated in accordance with the HSV thresholding in RGB colorspace 

described in chapter 4 in two saturation levels (0.25 and 0.50) and seven possible colors plus 

black denoting background. Each pixel is then decoded in three bits according to color and 

stored in the dual port RAM memory. 

  

In the output, the read signals and output from Frame Buffer are multiplexed in order to 

fulfill both operation modes of the computer vision system: screen or position measure. The 

idea is to be able to align the visual space of the camera using the screen mode and then to 

turn it to Position Measuring Mode. The screen mode also allows to show the pixels that are 
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understood as foreground, which can be taken as reference to adjust either hue or saturation 

in the circuit, or lightning in the scene. 

The processing stage is depicted in detail in fig. 6.4.This section is controlled by a Master 

FSM that globally controls the main blocks as Read & Sum, Convolutioners and UART 

Transmission. This last block is controlled by a slave FSM that controls the protocol for 

transmission of two bytes at a time. The core of the transmission code was developed by [12] 

and suffered no changes. A slave FSM was designed to control this core and to make it send 

two bytes per command from Master FSM. 

 

6.2.1. Hue and Saturation Filter 

 

This is one of the key modules of the system because it executes the whole color 

detection. Its design is based on the color filtering proposed by [18] explained briefly in 

section 4.2.2 with several modifications in the hue channel, while the saturation level was 

kept as proposed. 

 

The system was devised to work with up to seven different colored balls, so for the color 

filtering in hue the basic six colors (red, yellow, green, cyan, blue, and magenta) plus orange 

were selected (see fig. 6.3). The saturation filter is set to restrict two levels: S=0.50 and 

Figure 6.2. Modular diagram of the Computer Vision System designed as second solution. 
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S=0.25 as depicted previously in image 4.6. Based on the conditions of table 6.2, the regions 

for the saturation threshold are shown in eq. 6-1 and 6-2, and the whole regions are shown in 

fig. 6.3. 

𝑆50 = ~(𝐴|𝐵|𝐶|𝐷|𝐸|𝐹|𝑄) (6-1) 

𝑆25 = ~(𝐴|𝐵|𝐶|𝐷|𝐸|𝐹|𝑄) (6-2) 

To be able to make the comparison of 

each pixel against this strict threshold in 

RGB color space, the values are compared 

according to the plane equations shown in 

fig. 6.3. Note that the planes shown in 

image a) work for both red and cyan colors. 

This happens since these colors are 

opposite in the symmetric RGB color 

space; so the inequation of the pixel against 

the planes is just inverted. The same 

situation happens between green and 

magenta, and blue and yellow. 

 

The final stage of the hue and 

saturation filter assigns a 3-bits code to 

each pixel instead of their original RGB values if it meets any of the hue and saturation filters 

for the configured colors. If the pixel does not belong to any of the predefined colors, the 

assigned code will be zero. The codes assigned for the set conditions are shown in table 6.3. 

The hue conditions have been scaled to avoid negative decimal numbers handling; while the 

saturation constraints are shown as they were mapped.  

 

6.2.2. Frame Storer 

 

As its name says, takes the pixels and address from CCD Capture to decode them 

through the Hue and Saturation Filter according to the colors we desire to use. 

Table 6.2. List of pixel channels constraints in 

order to comply with different levels of saturation. 

N S>0.50 S>0.25 

A 
(R-B<B) & 

(2*G-R<R) 

(3*B-3*G<G)& 

 (4*R-3*B<B) 

B 
(G-B<B) & 

 (2*R-G<G) 

(3*R-3*B<B)& 

(4*G-3*R<R) 

C 
(G-R<R) & 

 (2*B-G<G) 

(3*G-3*B<B)& 

(4*R-3*G<G) 

D 
(B-R<R) &  

(2*G-B<B) 

(3*G-3*R<R)& 

(4*B-3*G<G) 

E 
(B-G<G) & 

 (2*R-B<B) 

(3*R-3*G<G)& 

(4*B-3*R<R) 

F 
(R-G<G) & 

 (2*B-R<R) 

(3*B-3*R<R)& 

(4*G-3*B<B) 

Q 
(R>512)&(G>512) 

&(B>512) 

(R>768)&(G>768) 

&(B>768) 
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6.2.3. Frame Buffer 

 

Is a 32 bit wide memory that has two ports: one read and one write port. It covers two 

necessities at the same time: it stores the image captured to make possible its analysis and it 

is also useful to separate the 144 MHz clock domain (PIXCLK) from the 50 MHz clock  

(CLOCK_50) when position measuring mode is selected, and the 40 MHz clock when image 

display mode is selected (CLK_LCD). 

Figure 6.3. Hue filters used to detect colors. a) Red and cyan threshold planes. b) Green and magenta 

threshold planes. c) Blue and yellow threshold planes. d) Orange threshold planes (lower plot). 
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6.2.4. Function Selector 

 

This module is basically a multiplexor for the inputs basically a multiplexor for the 

inputs and outputs of the read port of the Frame Buffer. The main purpose for this module is 

to alternate between Image Display mode or Position Measuring mode as the user desires. 

 

6.2.5. FSM Cerebro 

 

This is the Master Finite State Machine (FSM) that controls all the process to perform 

the position measurement task. It has been designed with 16 states that control the principal 

Color Hue Constraint Saturation Constraint 
Assigned 

Code [bin] 

Red 

3 ∙ R + 7 ∙ G > 10 ∙ B 

& 
10 ∙ G < 3 ∙ R + 7 ∙ B 

S > 0.50 001 

Green 

3 ∙ G + 7 ∙ B > 10 ∙ R 

& 
10 ∙ B < 3 ∙ G + 7 ∙ R 

S > 0.25 010 

Blue 
3 ∙ B + 7 ∙ R > 10 ∙ G 

& 

10 ∙ R < 3 ∙ B + 7 ∙ G 

S > 0.25 011 

Yellow 

3 ∙ B + 7 ∙ R < 10 ∙ G 

& 
10 ∙ R > 3 ∙ B + 7 ∙ G 

S > 0.25 100 

Cyan 
3 ∙ R + 7 ∙ G < 10 ∙ B 

& 

10 ∙ G > 3 ∙ R + 7 ∙ B 

S > 0.25 101 

Magenta 

3 ∙ G + 7 ∙ B < 10 ∙ R 

& 
10 ∙ B > 3 ∙ G + 7 ∙ R 

S > 0.50 110 

Orange 

3 ∙ R + 7 ∙ B < 10 ∙ G 

& 
10 ∙ G < 3 ∙ B + 7 ∙ R 

S > 0.25 111 

Default (none) - - 000 

Table 6.3. Hue and Saturation conditions and the code to be assigned if the evaluated pixel 

meets the requirements. 
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modules of the computer Vision system, besides the sum, convolution and transmiss ion 

FSMs. The state diagram is depicted in Appendix A, including the inputs and outputs. 

6.2.6. Memory Read 

 

This module performs the double task to read the pixels from memory and count the 

quantity of the same color inside of each row and column. These results are stored in two 8-

bits wide RAM memories modeled as array registers of dimensions 150x6 (Pixel 

accumulators in image 6.4). These memories are the center of the process because after run 

the ROI, these results are used in the convolution modules to identify the round shape we’re 

looking for. This module is controlled by a slave FSM, whose state diagram is depicted in 

Appendix C, including the inputs and outputs. 

 

6.2.7. Convolution Executor 

 

This module is used twice in the design, and it is controlled by a slave FSM, whose state 

diagram is depicted in Appendix B. It is devised to apply the method described in chapter 4 

for Foreground Modelling based on linear convolution. The kernel used for convolution is 

101 pixels long and the values stored were established on a ball radius of 50 pixels (fig 6.5), 

Figure 6.4. Modular diagram specified for the Digital Image Processor. 
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which according to previous tests was an approximation of the size in the frame of the ball 

at the fixed distance of 64 cm from the CCD sensor to the surface of the platform. As labeled 

in the method, the maximum result of the convolution is stored with the position where the 

kernel is centered in the row or column which have the most pixels of each color. However, 

there is a requirement of detection of at least 88% of the ball area for the data to be recognized 

as a ball in the next stage. 

 

6.2.8. ROI Generator 

 
When Convolution has been performed, this modules prepares the new locations for 

the ROIs to be used in the next iteration. This values are used for both reading the memory 

and also for adjust the position of the found centers according to the initial coordinates. 

 

6.2.9. UART Serial Port Controller 

 
This module simply receives the data from Offset to be sent and transmits to the platform 

via RS-232 serial port at a baud rate of 115200 bps. The data is sent in on package of twelve 

bytes as maximum and two as minimum. The distribution of the location bytes are shown in 

Figure 6.5. Kernel used as foreground model in the Convolution operation. Values according to 

equation 4-13 (green) and discrete approximation for practical purposes (blue). 
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table 6.4 in arrival order. The center coordinates are sent only when a ball has been 

successfully detected. 

 

Table 6.4. Format of the data sent by the computer vision system. 

 

 

6.3. System Initialization: Dynamic Regions of Interest 

 

The system is programmed to follow two routines: the initialization routine and the 

regular routine. The initialization procedure is configured to analyze twelve Regions of 

Interest overlapped between them with the goal to find the first reference for the position of 

the circles in the acquired frame. 

 

Number Name Description Data Format  

0 

Initialization Its value is always 0x0FF. This value 

indicates that the system has read the 

memory and is starting to perform 

convolution 

Init. Value [7:0] 

1 
ROI indicator Specifies the Region of Interest that is 

being processed at the time 

ROI [7:4] 

Zero [3:0] 

2 
Horizontal 

position 

Contains the 8 LSB of the found 

position of the ball. 

XLSB[7:0] 

3 

Horizontal 

position 

Information 

Includes the information of the Region 

of Interest and the color of the found 

ball. Also the MSB of the found position 

of the ball is in this byte. 

Active ROI [7] 

ROI [6:4] 

Color[3:1] 

XMSB[0] 

4 
Vertical 

position 

Contains the 8 LSB of the found 

position of the ball. 

YLSB[7:0] 

5 

Vertical 

position 

Information 

Includes the information of the Region 

of Interest and the color of the found 

ball. Also the MSB of the found position 

of the ball is in this byte. 

Active ROI [7] 

ROI [6:4] 

Color[3:1] 

YMSB[0] 
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Since the diameter of the balls is between 80 and 90 pixels, the size of the ROIs is 150 

x 150 pixels separated 75 pixels from one another, so is not possible for the ball to be 

completely in two ROIs at the same time. However, in the experimental results, the same ball 

could be detected twice during First Run due to this ROI overlap; so an additional restriction 

had to be made to prevent double detection. If a ball’s center is closer than 30 pixels to the 

end of the ROI, it is better to be detected properly in another one only during First Run. Thus, 

the range where the results are considered as effective if the detected center is between 30 

and 120pixels into the ROI. Image 6.6 illustrates this concept. 

 

The initial regions of interest are listed in the table 6.5. Every time the system finishes 

to analyze one of this sections of the image, if a ball is detected a new dynamic ROI with the 

code of the color is activated; being the initial location 75 pixels left and 75 up from the 

detected center. This ROI will be used after the calibration process. If the digital image 

processor finishes analyzing the twelve ROIs and no ball is found, it would need a manual 

reset. 

 

After this first run, the system only works with the regions where a ball was located 

during the initialization routine. All regions found can move independently and their starting 

position will be always 75 pixels left and 75 up from the detected center in the previous 

iteration. Therefore, the analyzed section of the image varies with the position of the ball, 

Figure 6.6. Illustration of one region of interest (yellow square) and the 

section where found centers are valid (white square). 
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resulting in a time-saving procedure given that it allows not to scan the whole frame each 

iteration. 

 

N Initial X Initial Y 

0 0 0 

1 75 0 

2 150 0 

3 225 0 

4 0 75 

5 75 75 

6 150 75 

7 225 75 

8 0 150 

9 75 150 

A 150 150 

B 225 150 

 

 

  

Table 6.5. Initial coordinates for the different regions of interest 

used to initialize the computer vision system. 
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Chapter 7. Result Analysis 

 

After explaining extensively how the two versions of the computer vision system work, is 

logical to measure the obtained performance for each type to see which one is better. In this 

chapter are going to be presented first the results separately for the characteristics that 

cannot be compared and then a final comparison. 

 

7.1. Heterogeneous computer 

 
In the constant search for maximum performance, the heterogeneous computer 

developed to measure the position of the balls has several versions itself. This happened in 

an iterative process, until it was decided that this instantiation was obsolete and had no further 

practical use. However, it was a powerful tool to understand some properties of the tPad 

camera as the scalability of the frame, the effect of changing the exposure time and the values 

of the RGB channels gain for the CMOS sensor. The flexibility provided by the Nios II 

processor also allowed to test different ways of image segmentation programmed in C 

language, which meant an important influence to the selection of the algorithm used in the 

definitive design of the dedicated hardware. 

 

The first tests done with the tPad were to apply the procedures depicted in the user 

manuals such as [7, 21, 22 and 23] with the goal of acquire the image and display it on the 

LCD screen. After the instantiation and set up of the whole system described in the section 

6.1, one of the first obstacles was to adjust correctly the snap to the screen. The camera was 

configured to row size of 600 and column size of 800 due to the time it takes to acquire the 

image; but after the raw to RGB resampling, the resolution is reduced to 400x300. The tPad 

screen has a frame size of 800x600, so each acquired pixel needs to be quadruplicated to fit 

the picture in the screen without flickering. Besides, the Pixel Buffer DMA controller works 

independently from the Avalon Memory-Mapped Converter, so if the processor is not 

continuously moving the frame from the Converter to the Pixel Buffer, the screen would 

always show either the same picture or the uninitialized memory (usually randomly colored 

dots). 
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Image 7.1 illustrates the evolution of the adjustment of the screen: a) shows the result of 

programming the camera to resolution different than standard (800x600); b), c) and d) shows 

the frame when the camera is programmed to standard resolution with the difference that b) 

has an incorrect location assigned by the processor; c) shows correct location without pixel 

quadruplicating and d) shows the correct adjustment to fit the image on the screen. For the 

next pictures, the used adjustment is the same that delivered the result shown in fig 7.1-d). 

 

a)         c) 

b)         d) 

 

 

  

After being able to acquire and display correctly the image, the one issue that was 

remarkably notorious was the response time of the system. For example, when an object was 

moved in front of the camera, there was a delay in the LCD display that was notorious even 

to the naked eye. So, in order to have a real measure of this delay, the next step was to adjust 

the hue and saturation filters explained in section 6.2.1, implement them via software using 

Figure 7.1. Evolution of location adjustment from Avalon Memory-Mapped Converter to Pixel 
Buffer memory with a) resolution different than 800x600; b) standard frame size with an incorrect 
location assigned by the processor; c) correct location without pixel quadruplicate; and d) shows the 

correct adjustment to fit the image on the screen 
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the Software build tools for Eclipse, to finally calculate the center of mass as first approach. 

The second version of the heterogeneous computer, the hue and saturation filtering was done 

via hardware, and the position was still measured as the center of mass. The third version of 

this system featured simple thresholding color filtering (as explained in section 4.2.3) via 

software with center of mass calculation.  

With the three different versions of the system, it was time to prove which one was the 

best for the assigned task. Preliminarily the purpose of the first two versions was to compare 

the effectiveness of the image segmentation via hardware and via software, and the third was 

aimed to be the fastest but the least robust. The test was simple: take 500 similar pictures and 

calculate the average time it takes the computer to process the entire frame. Additionally, the 

system wouldn’t show the picture in screen in order to save instructions and therefore, time. 

The results are shown in table 7.1. It is important to highlight the fact that the results only 

include processing time, they don’t include the camera exposition time nor the storage in 

Dual Clock FIFO memory. 

 

Table 7.1. Time needed in average to process one frame using different versions of the 

Heterogeneous Computer. 

Version Description Number of 

Clock Cycles 

Time 

[ms] 

Avg. Freq. 

[Hz] 

First Software HSV color filtering with 

center of mass calculation 
6033318 120,66 8,29 

Second Software RGB color thresholding 

with center of mass calculation 
3097705 61,95 16,14 

Third Hardware HSV color filtering with 

center of mass calculation 
2970132 59,40 16,83 

 

As the reader can infer from table 7.1, even in the best case scenario, the time to process 

one frame is not enough to achieve 50 fps. So, at this point it was possible to compress the 

image as it was received in order to reduce the instructions needed to move one frame from 

the Avalon Converter to the Pixel buffer, but it would carry the problem of the number of 

cycles it takes to Nios II processor to execute one instruction. Another option was to increase 

the input clock frequency but the Quartus II tool prevented strongly against this because of 

safety and results repeatability. So the final decision was to declare this approach as obsolete, 
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keep the hue and saturation filters in hardware and develop from scratch the processing stage 

that would detect the circles in a stored frame and calculate their centers. The new system 

would most likely to be controlled by one or several Finite State Machines (FSMs) 

instantiated in Verilog HDL. 

 

7.2. Dedicated Hardware 

 
After implementation and instantiation, the computer vision system was having some 

functionality problems that were not perceptible in the simulations. This meant some extra-

dense debugging time that required evaluations in implementation, scenery and timing 

constraints in the design. In the following sections the behavior of the system will be exposed 

and the corrections done will be justified. The original artificial illumination was provided 

by two fluorescent lights placed at the same distance as the camera, powered by the regular 

electric supply. 

 

7.2.1. Functionality and operating conditions 

 

Most of the slack and routing problems were corrected by pipelining the different 

modules, but the system still failed to start properly in Position Measuring Mode. Fortunately, 

the Image Display Mode worked as expected almost from the beginning of the 

implementation, so this situation was helpful in the troubleshooting process. Some features 

were disabled to diagnose which ones were failing, and as a result of this procedure, the first 

tests were done under natural lightning with only one ball. Another obstacle was the 

compiling time: due to the size of the project, it would take at least 20 minutes to Quartus II 

to synthesize, place and route the whole project. 

 

As mentioned before, the first tests regarding ball detection were aimed to find a single 

ball in both stationary and real-time frames. However, there were initial problems with the 

early stages: for some reason, the system was able to detect the ball in the first run, then it 

switched to the Dynamic ROIs and then, after a few iterations the track of the ball was lost. 

This happened with both balls, even when applying different illumination. At first this 

problem was partially solved lowering the minimum convolution value to consider valid a 
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circle, but the issue persisted when finding the red ball. This subject was completely solved 

with the replacement of the deficient illumination, as will be explained later. 

 

After single-ball tests, started the multiple balls experiments in real time, and then 

another problem popped out: detection under natural light was possible to track only the blue 

ball, while artificial light allowed to detect only the red one. After making lots of 

modifications to the gain in RGB channels of the camera in order to adapt it to this 

illumination, it was still not possible to detect both balls at the same time. Furthermore, the 

tracking of the red ball was lost after a few iterations because the lighting used at the time 

(fluorescent light bulbs) was powered by the European standard AC current, which works at 

50 Hz. In summary, the small difference between the image acquisition and scene lighting 

frequencies was the cause for the monitoring loss. 

 

Once this relationship was fund, it was undeniable the need to change the lighting to a 

system under a frequency that did not match the image acquisition rate; therefore white LEDs 

were chosen for their accessibility and because they are powered by DC. The new set of lights 

was mounted using Merkur Robotic Kit as depicted in figure 7.2 at a distance of 20 cm from 

the surface. As a support, natural light was blocked using window blinds. The Camera’s RGB 

Figure 7.2. Illumination structure for the scene and 

welcome screen for the Computer Vision System. 
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channel gains were adjusted one more to this lighting and then the system was capable to 

detect both balls continuously at 50.25 [Hz]. 

 

7.2.2. Accuraccy and Response Time 

 

After proving functionality and setting the definitive operating conditions, it was time to 

test the accuraccy and performance of the digital image processor based on Verilog hardware 

description language. This version proved to be a better implementation from the beginning 

because, unlike the Heterogeneous computer, there was no perceptible delay between the 

movement of the objects and its reaction in the screen when the system was operated in Image 

Display Mode. 

 

A significant problem found in single-ball detection was an uncanny detection 

uncertainty even when the system was working with a static frame. As it can be seen in image 

7.3, the found locations were different even for a motionless picture. Furthermore, this issue 

worsened when the image was acquired continuously because of the noise makes vary the 

quantity of identified pixels; therefore the error was propagated to both axes (fig. 7.4.). The 

source couldn’t be the Memory Reader module because it has proved functionality, given it 

is commanded by a slave FSM and it has no slack glitches. The only problematic with signal 

Figure 7.3. Received coordinates for a single-ball test using a static frame. 
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delay in the whole design can indirectly cause this uncertainty: slack between two nodes 

inside the Frame Buffer. This path cannot be segmented because it is inside one of the IP 

cores provided by Altera, and there wasn’t any other slack issue on the paths connected to 

this memory, so there was not an actual tool to mend this problem. 

The Magman Platform was not available to do tests when the computer vision system 

was ready to work, however, in order to test roughly the validity of the acquired coordinates 

was devised: A sheet of paper was put under the camera, and the boundaries of the acquired 

frames were found using the screen mode (result is the background in image 7.5 a)). Two 

types of tests were done: with static and dynamic frames. Figure 7.5 shows the set-up for the 

test with a static frame (a)) and the results obtained (b)). Likewise, figure 7.6 shows the set-

up for the test with a dynamic frame (a)) and the results obtained (b)). Looking at both results 

the accuracy difference between both modes is manifest. Unfortunately, to provide a statistic 

measure of the uncertainty the surface would have to be mapped to a rectangular shape using 

Homography; and the circumstances for these tests are not the same as the definitive scenario 

with the MagMan Platform, so this can be done as continuance for the project. 

 

The performance of the computer vision system is measured in two parameters: the 

frequency of image acquisition and the frequency data is sent. As explained in section 6.1, 

Figure 7.4. Received coordinates for a multiple-ball test using continuously acquired frames.  
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the exposure time is set to roughly 16,6 ms; while the time to collect all pixels, filter them by 

color and store them in memory is around 3 ms. This is the same configuration for the 

Heterogeneous Computer, thus the image gathering rate is experimental result is 50,25 [Hz]. 

The picture acquisition rate is shown in real time in the tPad in hexadecimal format in the 

leftmost 7-segment displays. In the other hand, image segmentation time is shown in the 

following two displays, being typically at 182 packages per second. The typical time to 

perform this task is shown in table 7.2. 

a) Scene with two balls for testing. 

b) Coordinates received as locations for the scenario shown in sub-figure a). 

 

Figure 7.5. Multiple-ball test using a static frame: a) Set-up; b) Results obtained 



55 
 

a) Scene with two balls for testing. 

b) Coordinates received as locations for the scenario shown in sub-figure a). 

Since camera and processing stages work independently, and the second is almost four 

times faster than the first, there are some considerations to make. First: the system will send 

one location per colored ball in one frame within the time constraints only if the number of 

balls is equal to three. Second: if the number of balls is two or one, the computer will transmit 

more than one coordinate for the same ball in the same frame, so these values could be 

averaged in order to compensate the uncertainty explained previously. Third: if the number 

of balls is higher than three, the system will work at the same processing time but the 

frequency of data arrival for each color will be inversely proportional to the number of balls 

Figure 7.6. Multiple-ball test using continuously acquired frames: a) Set-up; b) 

Results obtained 
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in the scene e.g. if there are six balls it will take two frames to transmit the locations of the 

six pellets, which could cause tracking loss. In conclusion, to ensure functionality includ ing 

tracking and data arrival within requirements, the number of balls must not be higher than 

three. 

 

Table 7.2. Typical execution time and frequency for the computer vision system based on dedicated 

hardware. 

Stage Tasks Time [ms] Frequency [Hz] 

Img. Acquisition 

Exposure Time 

Image capture 

Color filtering 

Storage in memory 

19.900 50.25 

Img. 

Segmentation 

Read from memory 

Measure ball’s position 

Adjust ROIs 

Transmit measured position 

5.502 181.75 

 

Despite the restriction explained in the preceding paragraph, performance in processing 

stage could be improved by modifying both Cerebro and Convolution FSMs and the circuitry 

they control. The Convolution Executor completes its task for every color in all active ROIs, 

indistinctly of First Run. This is necessary in the initialization process but not in the image 

segmentation because every active ROI is assigned to the code of the color it is supposed to 

track. Consequently, if the Convolution Executor can be modified to only track one color per 

ROI scan after First Run, the whole process of the image will have a significant boost in 

performance, given that convolution phase is the part that takes most of the time. 

In general terms the project complies with the main objective, which was to implement 

a specialized computer vision system to measure the position of colored metallic balls. The 

main constraint was to make it work above 50 Hz because that’s the rate the MagMan 

controller needs to maintain a stable control over the position of the balls. Regarding the 

specific objectives, the system does indeed recognize different colors (which can be 

modified), recognizes the circular shape of the ball and measures its center. The system can 
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of course be improved, but considering this was supposed a short project of 16 weeks, and 

two versions of a computer vision system were designed, implemented and tested, is an 

important progress in terms of the MagMan Platform project. 
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Chapter 8. Conclusions and Recommendations 

 

8.1. Conclusions 

 Color detection is more effective in HSV colorspace than in RGB, at the expense of 

more processing. 

 White LEDs as artificial illumination provides no stroboscopic effects. 

 Digital image processing using a heterogeneous computer eases the implementat ion 

of algorithms at the expense of more execution time. 

 It is not possible to provide a statistic measure of the system’s uncertainty. 

 The number of balls in the scene must not be higher than three. 

 

8.2. Recommendations and Future work 

 The Convolution Executor module can be modified to improve the computer’s 

processing time. 

 Detection’s accuracy can be improved by averaging the received data. 

 DC powered illumination is recommended due to the AC frequency matches the 

image capture frequency. 

 The balls are recommended to be repainted to improve the accuracy of the computer . 

 A Matlab program can be developed in order to acquire the transmitted position in 

real time. 

 The dimensions of the surface can be mapped using Homography. 

 The tests done can be repeated with the balls on the MagMan Platform. 
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Appendices 

Appendix A: Glossary 

AC: Alternate Current 

ASIC: Application Specific Integrated Circuit. 
CCD: Charged Coupled Device. 
CMOS: Complementary Metal Oxide Semiconductor. 

CPU: Central Processing Unit. 
DAC: Digital to Analog Converter 

DC: Direct Current 
DMA: Direct Memory Access. 
FIFO: First Input-First Output. 

FPGA: Field Programmable Gate Array. 
FSM: Finite State Machine. 

HDL: Hardware Description Language. 
HSV: Hue Saturation and Value color space. 
Img.: Image. Depending on the context it can mean either the pixel matrix on the system or 

the scene to be acquired by the camera. (also fig.) 
LCD: Liquid Crystal Display. 

LED: Light Emitting Diode. 
LSB: Least Significant Bit. 
MagMan: Planar Non-contact Magnetic Manipulation Platform. The device is described in 

chapter 1. 
MSB: Most Significant Bit. 

RAM: Random Access Memory. 
RGB: Red, Green and Blue color space. 
ROI: Region of Interest for scanning. 

SDRAM: Synchronous Dynamic Random Access Memory. 
tPad: Terasic Prototype of board that includes an FPGA, LCD screen and 5-Mega Pixel 

camera. The device is described in chapter 5. 
USB: Universal Serial Bus. 
VGA: Video Graphics Array. 
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Appendix B: FSM Cerebro 

 
 

*FirstRun condition is set to negative logic. 

Table B.1. Inputs, outputs and states for the FSM Cerebro 

Current State Condition (Input) Next State Output 

0 

~DLY_RST_4 0 
ResetSum, 
ResetSumRegisters, 

ResetConvolution, 
ResetResultCount, 

ResetROICount. 
DLY_RST_4 E 

1 
~BusySum F ResetConvolution, 

ResetResultCount. BusySum 1 

2 
~BusyConvolution 3 ResetResultCount, 

 BusyConvolution 2 

3 
~ActiveColor 4 

None 
ActiveColor 5 

4 
~ResultFinish 3 EnableResultCount. 

 ResultFinish 9 

5 none 6 
ResetSumRegisters, 
EnableWriteMemories. 

6 none 7 
ResetSumRegisters, 

StartTx. 

7 
~BusyTx 8 

ResetSumRegisters. 
BusyTx 7 

8 
~ResultEven 9 ResetSumRegisters, 

EnableResultCount. ResultEven 5 

9 
~FirstRun* B 

ResetSumRegisters. 
FirstRun* D 

A none E 
ResetSum, 
ResetSumRegisters. 

B 
~ROI_FR_Finish A ResetSumRegisters 

ResetConvolution, 

EnableROICount. ROI_FR_Finish C 

C none A 
ResetSumRegisters 
ResetConvolution, 

DisableFirstRun. 

D 
~ROI_Finish A ResetSumRegisters 

EnableROICount. ROI_Finish C 

E 
~(ValidROI|FirstRun) 9 StartSum 

ResetConvolution, 
ResetResultCount. (ValidROI|FirstRun) 1 

F none 2 
StartConvolution, 

ResetResultCount. 
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Figure B.1. State Diagram for the FSM Cerebro. 
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Appendix C: FSM Convolutioner 

 
Table C.1. Inputs, outputs and states for the FSM Convolutioner. 

Current 

State 
Condition (Input) Next State Output 

0 

~Start 0 
ResetSum 

Reset_i_Count 
Reset_j_Count 

Reset_k_Count 
ResetRegisters 

Enable_ij_adjust 

Start 1 

1 None 2 Reset_i_Count 

2 
~End_i 3 

EnableSum 
End_i 4 

3 None 2 Enable_i_Count 

4 
~Sum>Quant 6 

None 
Sum>Quant 5 

5 None 6 EnableRegisters 

6 None 7 ResetSum 

7 
~End_j B 

Enable_j_Count 
End_j 8 

8 
~End_k 9 

None 
End_k A 

9 None B 
Reset_j_Count 

Enable_k_Count 

Enable_ij_adjust 

A None C 
Reset_j_Count 

End 

B None 1 Enable_ij_adjust 

C 
~EnableROICount C 

None 
EnableROICount 0 

  



66 
 

 

 

  

Figure C.1. State Diagram for the FSM Convolutioner. 
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Appendix D: FSM Read & Sum 

 

Table D.1. Inputs, outputs and states for the FSM Read & Sum 

Current 

State 
Condition Next State  Output 

0 
~Start 0 Reset_10_Count 

Reset_R_Count 
Reset_C_Count Start 1 

1 None 2 
EnableMemoryRead 

Busy 

2 
~End_10 2 Enable_10_Count 

Busy End_10 3 

3 
~EndR 1 Reset_10_Count 

Enable_R_Count 
Busy EndR 4 

4 
~EndC 1 Reset_R_Count 

Enable_C_Count 
Busy EndC 0 

 

 

Figure D.1. State Diagram for the FSM Read & Sum 
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Appendix E: Computer Vision System User Manual. 

 
The document starts on the next page 
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Abstract 

  

This document is the user manual for a computer vision system for measuring the 

position of colored balls instantiated in a Terasic tPad. First, an overview of the device’s 

interface will be given and then will be a description of how to set it up on its traditiona l 

purpose. Second, there is a guide through the hue filter if the user wants to change the colors 

to identify. Third, overviews the camera configuration, in order for the user to be aware of 

the conditions in which the image is continuously acquired. 
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Resumen 

 

Este documento es el manual de usuario para un sistema de visión computarizado 

para medir la posición de balines coloreados, instanciado en un Terasic tPad. En primer lugar, 

se da una descripción general del dispositivo para luego explicar cómo configurarlo para su 

propósito tradicional. En segundo lugar, se da una guía a través del filtro de matices si el 

usuario quiere cambiar los colores a identificar. En tercer lugar, se describe la configurac ión 

de la cámara, con el fin de que el usuario sea consciente de las condiciones en las que la 

imagen se adquiere de forma continua. 

 

Palabras Clave 

Arreglo de Compuertas Programables (FPGA), Sistema de visión computarizado, 

Procesamiento digital de imágenes, Terasic tPad, Cámara, Lenguajes de descripción de 

Hardware, Verilog. 
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Chapter 1. System Overview 

 
The Terasic tPad is a design environment capable to perform processing based systems. 

It is composed by the DE2-115 development board attached to a multimedia daughter card 

via HSMC port. The core of the DE2-115 board is the Cyclone IV FPGA, where all logic is 

performed. The tPad and Cyclone IV FPGA technical specifications are presented in table 

1.1, and table 1.2 respectively. 

 

Table 1.1 Technical specification of tPad board. [6] 

Feature Value [unit] 

Operation Voltage DC 12 [V] 

Flash Memory 8 [MB] 

EEPROM 32 [Kbit] 

SRAM 2 [MB] 

SDRAM 128 [MB] 

Clock frequency 50 [MHz] 

Width 160 [mm] 

Large 223 [mm] 

Depth 47 [mm] 

 

The board is to be configured via USB blaster, but it supports JTAG AS configura t ion 

as well. The board is shown on the top side with the FPGA and its peripherals in figure 1.1; 

and fig. 1.2 shows its back side, including a 5 Mega Pixel camera with an LCD 8” touch 

screen. 

 

Table 1.2. Resources of Cyclone IV EP4CE115 FPGA. [3, 4] 

Logic Elements [LEs] 114480 

Embedded Memory [kbits] 3888 

Embedded 18x18 multipliers 266 

General Purpose PLLs 4 

Global Clock Networks 20 

User I/O Banks 8 
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On the top side, the board has 9 green and 18 red leds for output or display; it also 

has 18 slide switches (SW), 4 push buttons (KEY) for inputs and 8 7-segment displays 

(HEX). Other peripherals are available but are not used for the application described in this 

document. For full device description please refer to [6]. 

Figure 1.1. Altera Terasic tPad (bottom view). [4] 
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1.1. Computer Vision System 
 

This section describes briefly how the whole system works for the user. The Video-

In pipeline is depicted in the image 1.3 inside the orange square while the tasks for the 

mainframe are inside the blue square. The different modules that compose the whole diagram 

in fig 1.3 are fully described in chapter 6 of [1]. 

 

The camera is programmed by the CMOS Configure module, and the incoming pixels 

are arranged in CMOS Capture. Since the image is required to be in RGB format, the 

conversion is done in Raw to RGB module. Transformed pixels are received by the Saturation 

Filter, where their RGB values are evaluated in accordance with the HSV thresholding in 

RGB colorspace described in chapter 4 of [1] in two saturation levels (0.25 and 0.50) and 

seven possible colors plus black denoting background. Each pixel is then decoded in three 

bits according to color and stored in the dual port RAM memory. 

 

 In the output, the read signals and output from Frame Buffer are multiplexed in order 

to fulfill both operation modes of the computer vision system: screen or position measure. 

The idea is to be able to align the visual space of the camera using the screen mode and then 

to turn it to Position Measuring Mode with the sliding switch SW[2]. The screen mode also 

allows to show the pixels that are understood as foreground, which can be taken as reference 

Figure 1.2. Altera Terasic tPad (top view). [6] 
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to adjust either hue or saturation in the circuit, or lightning in the scene. The whole circle 

detection and position measure is performed in the Digital Image Processor, which also 

controls the RS-232 Serial port in order to transmit the found coordinates for the balls in the 

platform. 

 

1.2. Set Up 

 
The computer vision system on the tPad board needs no additional programming if the 

functionality is not going to be changed. Functional peripherals to control the device are 

described with their respective function in table 1.3. The steps to set up the board to work in 

normal operation are listed below: 

1. Connect the 12 V DC Power Supply. 

2. Connect an RS-232 male cable to the corresponding port. 

3. Arrange the Switches as shown in table 1.1. 

4. Set the switches as described below: 

a. SW[0]: On. 

b. SW[1]: Off. 

c. SW[2]: On. 

d. SW[17]: On. 

Figure 1.3. Modular diagram of the Computer Vision System designed as second solution. 
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5. Turn on the device. The Welcome Screen (fig. 1.4) should appear for about half a second 

while the system starts, and then the scene caught by the camera will be updated in real 

time in the screen. 

 

Component Function description 

KEY[0] Master Reset 

KEY[1] Set the new exposure time (use with SW[0] ) 

KEY[2] Trigger the Image Capture (take a shot) 

KEY[3] Switch to Free Run mode 

SW[0] Off: Extend the exposure time 

On: Shorten the exposure time 

SW[1] Off: Image Display Mode 

On: Position Measuring Mode 

SW[2] Enable Memory Write (On/Off) 

SW[17] Mirror Image (On/Off) 

HEX[7:6] Image Acquisition rate per second (Display only 

in Hexadecimal format) 

HEX[5:4] Location Packages sent per second (Display only 
in Hexadecimal format) 

HEX[3:0] Number of acquired frames (Display only in 

Hexadecimal format) 

 Table 1.3. Functional peripherals to control the computer vision 

system on tPad board. 

Figure 1.4. Illumination structure for the scene and 
welcome screen for the Computer Vision System. 
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6. On the back side of the tPad, the two leftmost 7-segment displays (HEX[7] and HEX[6]) 

will be showing the camera’s rate to acquire the image in real time on hexadecimal 

format. If the Exposure time needs to be adjusted to achieve at least 50 (0x032) frames 

per second, press just once KEY[1]. Furthermore, exposure time can be modified using 

different combinations of KEY [1] and SW[0]. 

7. Align the frame acquired by the camera with the desired scene to measure the position 

of the balls. For aligning purposes a straight, colored, identifiable object can be used. 

The camera is recommended to be around 64 cm above the surface to scan. 

8. Turn on the selected illumination system, and check the balls to identify are shown in 

the screen with a circular shape and with a reasonable number of pixels. An example is 

provided in figure 1.5. 

 

9. Your system is now ready to start measuring the ball’s position. To do so, just switch 

SW[1] to On position, and the system will start the stream of locations. If by any reason 

the dataflow stops, the system can be reset by just pressing KEY[0]. Please note that to 

return to this point, Camera exposure will need to be adjusted again. 

10. The rate at which the data is being sent is now shown at the two 7-segment displays 

(HEX[5] and HEX[4]) in real time on hexadecimal format. 

  

Figure 1.5. Example of reflection on tPad screen of identifiable balls. 
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Chapter 2. Color Filtering 

 
As mentioned in the previous chapter, the color identification occurs in the module named 

as Hue and Saturation Filter. In this chapter the method it uses to discern between colors will 

be explained, so it can be modified by the user in order to trace different colors of balls. 

Saturation levels can be modified as well, but the principle used to threshold this property is 

far more complicated in terms of implementation than Hue. For this reason Saturation has 

been set to two levels: S>0.25 and S>0.5. 

 

2.1.Hue Filter 

This module evaluates each pixel using the HSV threshold in RGB colorspace method, 

which is theoretically described in [2] and its implementation is outlined in [1]. The module 

was devised to work with up to seven different levels of hue: the basic six colors (red, yellow, 

Figure 2.1. Hue filters used to detect colors. a) Red and cyan threshold planes. b) Green and magenta 
threshold planes. c) Blue and yellow threshold planes. d) Orange threshold planes (lower plot). 
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green, cyan, blue, and magenta) plus orange were selected for standard operation (see fig 

2.1). 

 

As Simonian explains the Hue threshold in RGB color space is done using the identity 

vector, which goes from (0,0,0) to (1,1,1), and a point that represents the color we aim to 

recognize (note from figure 2.1 that all planes include this line segment). The hue filter 

implemented is based on this principle with the difference that these elements were used as 

base to define regions in the color space to be recognized as one pigment. For example, in 

figure 2.1-a) the hue for Red (left bottom) and Cyan (upper right) are shown. These plots are 

the result of the process of selecting a range of hue, mapping it to RGB color space and find 

the plane equations that boundary the region of the desired color. Hence, each color has an 

upper threshold and a lower threshold, being both of them planes in the RGB color space. 

The plane boundaries for the colors shown in figure 2.1 are shown in table 2.1. 

 

In the module seen in Verilog, the equations are scaled by a factor of 10 to avoid decimal-

number handling. The part of the code where the equations are defined has been transcribed 

in Listing 2.1 to remark some features: First, R, G and B factors are registers inside the 

module that contain the pixel’s values of Red, Green and Blue channels respectively. Second, 

as the reader can see, the bits to indicate the detection of each color are assigned as a AND 

function of the equations depicted in table 2.1. These signals are evaluated in order to assign 

a color code to the bit as shown in table 2.1 using the code depicted in Listing 2.2.  

 

Listing 2.1. Color planes implementation and pixel evaluation. 

Module: tPad_Camera/FrameStore/SatFilter 

assign rHue=(((3*R+7*G)>(10*B))&&((10*G)<(3*R+7*B))),//red 

 gHue=(((3*G+7*B)>(10*R))&&((10*B)<(3*G+7*R))),//green 

bHue=(((3*B+7*R)>(10*G))&&((10*R)<(3*B+7*G))),//blue 

 yHue=(((3*B+7*R)<(10*G))&&((10*R)>(3*B+7*G))),//yellow 

 cHue=(((3*R+7*G)<(10*B))&&((10*G)>(3*R+7*B))),//cyan 

 mHue=(((3*G+7*B)<(10*R))&&((10*B)>(3*G+7*R))),//magenta 

 oHue=(((3*R+7*B)<(10*G))&&((10*G)<(3*B+7*R)));//orange 
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Color Hue Constraint 
Assigned 

Code [bin] 

Red 

3 ∙ R + 7 ∙ G > 10 ∙ B 
& 

10 ∙ G < 3 ∙ R + 7 ∙ B 
001 

Green 
3 ∙ G + 7 ∙ B > 10 ∙ R 

& 

10 ∙ B < 3 ∙ G + 7 ∙ R 

010 

Blue 

3 ∙ B + 7 ∙ R > 10 ∙ G 
& 

10 ∙ R < 3 ∙ B + 7 ∙ G 
011 

Yellow 

3 ∙ B + 7 ∙ R < 10 ∙ G 
& 

10 ∙ R > 3 ∙ B + 7 ∙ G 
100 

Cyan 
3 ∙ R + 7 ∙ G < 10 ∙ B 

& 

10 ∙ G > 3 ∙ R + 7 ∙ B 

101 

Magenta 

3 ∙ G + 7 ∙ B < 10 ∙ R 
& 

10 ∙ B > 3 ∙ G + 7 ∙ R 
110 

Orange 
3 ∙ R + 7 ∙ B < 10 ∙ G 

& 

10 ∙ G < 3 ∙ B + 7 ∙ R 

111 

Default (none) - 000 

 

Code from both Listing 2.1 and 2.2 are part of the same module (Hue & Saturation 

Filter) but they are presented separately to facilitate the explanation process. Note from 

Listing 2.2 that for the case statement are considered both hue and saturation conditions 

before assigning the color code that denotes the pixel as foreground or background. 

 

Listing 2.2. Hue and Saturation evaluation and color code assignment. 

Module: tPad_Camera/FrameStore/SatFilter 

always@(posedge CLK) 

begin 

case({rHue&sat50,gHue&sat25,bHue&sat25,yHue&sat25, 

 cHue&sat25,mHue&sat50,oHue&sat25})//input bus 

 //with Hue&Sat conditions 

7'b0000001: oSat<=3'h7;// orange  code 7 

Table 2.1. Hue conditions and the code to be assigned if the 

evaluated pixel meets the requirements. 
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 7'b0000010: oSat<=3'h6;// magenta code 6 

 7'b0000100: oSat<=3'h5;// gray  code 5 

 7'b0001000: oSat<=3'h4;// yellow  code 4 

 7'b0010000: oSat<=3'h3;// blue  code 3 

 7'b0100000: oSat<=3'h2;// green  code 2 

 7'b1000000: oSat<=3'h1;// red  code 1 

 default:  oSat<=3'h0;//background code 0 

  endcase 

end 

 

2.2. Color Adjustment 
If the user wants to change one of the colors to be detected, he or she must first 

identify where the color is located in the RGB color space, then set the planes that delimit 

the desired color to replace them for one of the colors defined in Listing 2.1. Pay special 

attention to the name of the wire whose equations are being changed in Listing 2.1 because 

of this wire is summoned in the case statement in Listing 2.2; where it is assigned the desired 

saturation level (0.50 or 0.25). Wire position on the list represents the code it will be assigned, 

which is reflected in the display and for transmission purposes. 

 

Of course, the past changes only affect the functional part; and now the system will 

identify the new colors if the equations were established correctly. For display purposes, the 

user must select an RGB value to represent this new color in the display and replace it in 6-

bits Hex format to the color channel outputs oR, oG and oB in the code in Listing 2.3; which 

belongs to FrameRead module. Case section in Listing 2.3 is based on evaluating Qsel 

register, which happens to contain the color code of the current pixel to be shown in the 

screen. 

 

Listing 2.3. Color value assignment for display purposes according to code. 

Module: tPad_Camera/FrameRead 

always@(Qsel) //color out decoder 

begin 

 case(Qsel) 

  0:begin//background 

   oR <= 6'h00; 

   oG <= 6'h00; 

   oB <= 6'h00; 
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  end 

  1:begin//red 

   oR <= 6'h3f; 

   oG <= 6'h00; 

   oB <= 6'h00; 

  end 

  2:begin//green 

   oR <= 6'h00; 

   oG <= 6'h3f; 

   oB <= 6'h00; 

  end 

  3:begin//blue 

   oR <= 6'h00; 

   oG <= 6'h00; 

   oB <= 6'h3f; 

  end 

  4:begin//yellow 

   oR <= 6'h3f; 

   oG <= 6'h3f; 

   oB <= 6'h00; 

  end 

  5:begin//gray 

   oR <= 6'h1f; 

   oG <= 6'h1f; 

   oB <= 6'h1f; 

  end 

  6:begin//magenta 

   oR <= 6'h3f; 

   oG <= 6'h00; 

   oB <= 6'h3f; 

  end 

  7:begin//orange 

   oR <= 6'h3f; 

   oG <= 6'h08; 

   oB <= 6'h00; 

  end 

   

  default:begin 

   oR <= 6'h00; 

   oG <= 6'h00; 

   oB <= 6'h00; 

  end 

 endcase 

 end 
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Please note that color in Hex format is usually in eight bits per channel and tPad’s 

screen uses 6-bits wide RGB channels; so, each R, G and B values must be scaled from a 

maximum value of 255 to 63. For example: Red (color code 1) in its purest shade is 

represented as #FF0000, the values scaled are #3F0000, hence in Listing 2.3 case 1 are 

represented as oR=3F, oG=00 and oB=00. 

 

After these modifications, the whole project must be compiled, built and programmed 

again in the tPad board to check if the color is recognized as desired. If not, the selected 

region must be verified and (if needed) redefine the plane equations to repeat the process. 
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Chapter 3. Camera Configuration 

 
The camera is the very beginning of the computer vision system, so it needs to be 

programmed properly in order to acquire the image according to the specifications. This 

chapter shows how it is done through Hardware Description Language. 

3.1.Frame Properties Modification 
 

The CMOS sensor is programmed from the FPGA to the camera’s registers using I2C 

communication. This port is controlled by an FSM provided by Altera, so to change the 

configuration, the parameters of the FSM must be modified. For example, Listing 3.1 

represents a section of the CMOS Configuration module, where the main parameters values  

are declared. In this section, the names are usually self-descriptive, except the 

sensor_row_mode and sensor_column_mode variables. For the user it is recommended not 

to change these variables before further reading D5M hardware specification [5]. 

Listing 3.1. Color value assignment for display purposes according to code. 

Module: tPad_Camera/I2C_CCD_Config 

parameter    default_exposure  = 16'h0351; 

parameter    exposure_change_value = 16'd100; 

 

(…) 

 

assign sensor_start_row   = 24'h010036;// 

assign sensor_start_column  = 24'h020010;// 

assign sensor_row_size   = 24'h030257;//300*2-1 

assign sensor_column_size   = 24'h04031f;//400*2-1 

assign sensor_row_mode   = 24'h220011; 

assign sensor_column_mode  = 24'h230011; 

assign Mirror_d     = iMIRROR_SW ?  24'h20C000 : 24'h208000; 

 

 

As the reader can see, in this section some of the parameters for the camera are defined 

here. The start row and column are just for frame adjusting purposes, while the row and 

column sizes are set to twice because the CMOS sensor receives the image in Raw format. If 

the user wants to change image resolution the exposure time must be changed accordingly to 

achieve the desired frame rate. Initial exposure time can be approximated using equation 3-

1, using the value defined as the parameter default_exposure. Equation 3-2  and table 3.1 
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describe how to calculate the PLL output frequency that drives PIXCLK, which means the 

clock signal that drives the whole image acquisition pipeline (orange dashed rectangle in fig. 

1.3) 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∙ 22.119 × 10−6      (3-1) 

Table 3.1. PLL output frequency according to bit distribution. [5] 

Bits Name Description 

15:8 Multiplication 

Factor (MF) 

PLL output frequency multiplier. Legal 

values: [16, 255] 

7:6 X Reserved 

5:0 Division Factor 

(DF) 

PLL output frequency divider minus 1. Legal 

values: [0, 63] 

 

𝑃𝐿𝐿 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑒𝑞. = 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑒𝑞.∙
𝑀𝐹

𝐷𝐹
     (3-2) 

In Listing 3.2 the case statement includes all the steps in the Camera configura t ion 

routine, executed by the FSM. In each case, the register LUT_DATA takes a different value 

in which the FSM interprets the eight MSB as the number of register, and the 16 LSB as the 

value to write given registers are 16 bits wide (some of these values were declared in Listing 

3.1). The computer vision system does not modify all the camera registers shown; actually 

most of them remain on their default value. The complete list of the registers with its values 

and descriptions can be found in [5], while the initial conditions for the system using the 

configuration provided in both listings are presented in table 3.2. 

Listing 3.2. Color value assignment for display purposes according to code. 

Module: tPad_Camera/I2C_CCD_Config 

///////////////// Config Data LUT///////////////////// 

always 

begin 

 case(LUT_INDEX) 

  0: LUT_DATA <= 24'h000000; 

  1: LUT_DATA <= Mirror_d;//Mirror Row and  

        //Columns 
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  2: LUT_DATA <= {8'h09,senosr_exposure};  

        //Exposure Time 

  3: LUT_DATA <= 24'h050000;// H_Blanking 

  4: LUT_DATA <= 24'h060019;// V_Blanking  

  5: LUT_DATA <= 24'h0A8000;// change latch 

 

  6: LUT_DATA <= 24'h2B034d;// Green 1 Gain 

  7: LUT_DATA <= 24'h2c061f;// Blue Gain 

  8: LUT_DATA <= 24'h2d031f;// Red Gain 

  9: LUT_DATA <= 24'h2e000d;// Green 2 Gain 

  10: LUT_DATA <= 24'h100051;// PLL power on 

 

11: LUT_DATA <= 24'h113008; 

 //PLL_m_Factor<<8+PLL_n_Divider 

  12: LUT_DATA <= 24'h120001; 

     // PLL_p1_Divider 

  13: LUT_DATA <= 24'h100053;// set USE PLL 

  14: LUT_DATA <= 24'h624000;// enable  

        //calibration  

 

  15: LUT_DATA <= 24'h60015f;// green offset  

  16:LUT_DATA <= 24'h630010;// red offset 

  17: LUT_DATA <= 24'h640012;// blue offset 

  

  25: LUT_DATA <= 24'hA00048;//Test pattern 

        //control 

  26: LUT_DATA <= 24'hA103ff;// Test green 

        //pattern value 

  27: LUT_DATA <= 24'hA203ff;// Test red  

        //pattern value 

  28:  LUT_DATA <= 24'hA303ff; // Test blue  

        //pattern value 

  

  18: LUT_DATA <= sensor_start_row;// set  

         //start row 

  19: LUT_DATA <= sensor_start_column;//set  

        //start column   

  20: LUT_DATA <= sensor_row_size; //set row  

         //size  

  21: LUT_DATA <= sensor_column_size;// set  

         //column size 

  22: LUT_DATA <= sensor_row_mode; // set row 

        //mode in bin mode 

  23: LUT_DATA <= sensor_column_mode;// set  

      //column mode in bin mode 
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  24: LUT_DATA <= 24'h4901E8;//row black target 

 

 default:LUT_DATA <= 24'h000000; 

 endcase 

end 

 

Table 3.2. Initial Conditions of the Computer Vision System 

Parameter Value [unit] 

PLL output freq. 144 [MHz] 

Exposure time 18,779 [ms] 

Row size 599 [pixels] 

Column size 799 [pixels] 

G1 gain 4,469 

R gain 6,781 

B gain 5,328 

G2 gain 1,625 

 

3.2. Lightning Change 
 
If the user wants to change the light on the scene, the effect must be considered. The 

Channel gains for the CMOS sensor are adjusted for the white LED lightning on a Merkur 

kit shown in figure 1.4. If this needs to be changed for any reason, the steps where 

LUT_INDEX value is 6, 7, 8, and 9 on the case statement in Listing 3.2 must be reviewed. 

As mentioned before, the CMOS sensor acquires the image in raw mode. The values 

selected in these steps are the gain provided to each channel (R, G1, G2, and B). Different 

lightning means different channel gains, but these values are nonlinear; so equation 3-3 and 

table 3.3 describe how to calculate the actual channel gain represented by the 16 LSB 

assigned. 

 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐺𝑎𝑖𝑛 = (
𝐷𝐺

8
+ 1) ∙ (𝐴𝑀 + 1) ∙ (

𝐴𝐺

8
)   (3-3) 

For example, G1 channel in Listing 3.2 has a value of 0x034d, hence DG=3; AM=1 and 

AG=13. Evaluating these values in eq. 3-2 we obtain the result ECG=4.469. 
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Table 3.3. Channel gain according to bit distribution. [5] 

 

 

 

 

 

 

 

 

 

 

 

In summary, the actions shown in this document have been simplified to facilitate 

understanding. However, if the exposed documentation is not enough, please refer to the 

bibliography. 

  

Bits Name Description 

15 X Reserved 

14:8 Digital Gain 

(DG) 

The actual digital gain is (1 + value/8). Legal 

values: [0, 120] 

7 X Reserved 

6 Analog 

Multiplier (AM) 

Analog gain multiplier for the channel minus 

1. Legal values: [0, 1] 

5:0 Analog Gain 

(AG) 

Analog gain setting for the channel times 8. 

Legal values: [8, 63] 
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