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Resumen 
 

La presente Tesis de Maestría aborda el área de Estimulación Eléctrica 

NeuroMuscular (NMES por sus siglas en inglés), la cual consta de la activación de 

fibras nerviosas y musculares por medio de la aplicación de pulsos eléctricos usando 

dos electrodos colocados sobre la piel. La NMES es utilizada como entrenamiento 

muscular, rehabilitación y una herramienta de recuperación después del ejercicio. Un 

gel conductor es utilizado entre el electrodo y la piel para obtener una impedancia de 

contacto menor y evitar daños cutáneos, sin embargo, estos sistemas todavía deben 

mejorar en la obtención de una distribución uniforme de la corriente a lo largo de los 

electrodos. Por tanto, surge la necesidad de estudiar las características eléctricas de 

la interfaz entre el electrodo y la piel. En la presente Tesis de Maestría se describe y 

desarrolla un modelo 3D de elementos finitos basado en parámetros obtenidos 

experimentalmente y de referencias bibliográficas para simular el comportamiento 

eléctrico de esta interfaz y así obtener dichas características. Una serie de 

simulaciones son realizadas para determinar el conjunto de parámetros de señal y 

configuración de electrodos que logran una distribución más equitativa a lo largo de 

la interfaz gel-piel concluyendo con lineamientos a tener en cuenta para obtener dicha 

distribución. 
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Abstract 
 
The following Master’s Thesis engages in the area of NeuroMuscular Electrical 

Stimulation (NMES), which comprises the activation of nerves and muscle fibers by 

applying electrical current pulses using two electrodes placed on the skin. NMES has 

great potential to serve as strength training, rehabilitation and post-exercise recovery 

tool. A conductive electrolyte (gel) is applied between the electrodes and the skin to 

obtain lower contact impedance and prevent skin damage; nevertheless, these 

systems need to improve to obtain a more uniform distribution of the electric current 

throughout the electrodes. Therefore, the need to study the electrical characteristics 

of the gel-skin interface arises. In this Master’s Thesis a 3D Finite Element Model 

based on experimentally obtained parameters is described and developed to simulate 

the electrical behavior of the gel-skin interface and obtain said characteristics. A 

series of simulations are performed to determine the group of signal parameters and 

electrode configuration that achieve the best uniformity in electrical current 

distribution throughout the gel-skin interface. In the end, the guidelines to obtain 

said uniform distribution are listed. 
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Chapter 1 

Introduction 

The Neuromuscular Electrical Stimulation (NMES) is a method used to activate 

nerves and muscle fibers by applying electrical current pulses using two 

electrodes placed on the skin. A conductive electrolyte (gel) is applied between 

the electrodes and the skin to obtain lower contact impedance and prevent skin 

damage. The current intensity used is slightly beyond the motion threshold, 

provoking visible muscle contractions. NMES has potential to serve as strength 

training, rehabilitation and post-exercise recovery tool. Previous studies have 

discovered that only about 20% of the applied voltage is dropped in the tissues, 

the rest is could be attributed to the electrode-electrolyte (gel)-skin interfaces, 

giving an idea of the importance of the study of these layers. A deeper 

understanding of the phenomena taking place in these interfaces is necessary to 

take full advantage of the therapeutic and diagnostic applications of the nerve 

stimulation technologies. 

Unfortunately, the measurement of the electrical properties of the tissues 

presents several issues, such as the inhomogeneity of human skin, the 

anisotropy of muscle fibers and the non-linear phenomena of human skin. These 

facts make the electrical properties of the skin vary depending on the frequency 

and current density of the signal used for stimulation. In an effort to facilitate 

the studies of the NMES process, precise equivalent circuit (EC) models have 

been developed, including all the regions from the transcutaneous electrodes to 

the neuron cell membrane and then compared the experimentally obtained 

voltage response across the transcutaneous electrodes. In these models, the 

interface between the electrolyte gel and the human skin is commonly 
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represented by a resistance and a capacitance in parallel; however, these 
parameters cannot be measured unless ex vivo experiments are performed, 

resulting in unnatural measurements due to the conditions of the experiment, 
therefore not accounting for the full impact of this interface in current 
distribution.  

A more in depth understanding of the gel-skin interface would help develop a more 
accurate model to promote more scientific advances in NMES. A simulation study 
of this interface, using the finite element method (FEM), would provide a 

comprehensive understanding of its electrical properties due to its capability to 
analyze complex geometries (e.g. human skin). Using FEM, a more detailed 
voltage and current distribution across the gel-skin interface can be obtained. 

Based on previous data of experimental neuromuscular electrical stimulation 
gathered from the literature, this Master’s Thesis proposes the use of FEM 
software COMSOL to develop and analyze a model that will properly simulate the 

electrical behavior of the gel-skin interface when applying different biphasic 
rectangular waveform conditions, i.e. varying pulse width and amplitude of 
applied current.  

1.1. Objectives 
1.1.1. General Objective 
Design a 3D geometric model that enables the proper simulation of the electrical 

behavior of the gel-skin interface under different rectangular signal conditions 

1.1.2. Specific Objectives 
- Create a model capable of assisting the further study of neuromuscular electric 

stimulation 
- Simulate the voltage and current distribution across the gel-skin interface with 
an applied biphasic rectangular waveform with current intensities ranging from 

14.19 to 52.89 mA 
- Determine the gel-skin interface and signal conditions that accomplish the most 
even distribution of voltage and current throughout the area of the electrode. 
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1.2. Structure of the Thesis 
This thesis is composed by 5 chapters. The current chapter presents an 
introduction to the area of study, problem description and a brief description of 
the proposed solution. The next chapter will provide theoretical information that 

might be needed for the understanding of the whole thesis such as neuromuscular 
system physiology, electric stimulation methods, electrical properties of materials; 
currently developed models to simulate electrical behavior of tissues are also 

described. Chapter 3 provides a description of the developed model for finite 
element simulation, including features, geometry, parameters, boundary 
conditions, and performed studies. Chapter 4 discloses the obtained simulation 

results and analysis of the implications of these results; and Chapter 5 lists a 
series of conclusions and recommendations for further research.  
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Chapter 2 

Theoretical Background 

This chapter provides the needed theoretical information during the 

development of the thesis. Initially, anatomical and physiological information of 

the nervous system is resumed, where the mechanisms of muscle activation will 

be described. Afterwards, an introduction to Electrical Stimulation (ES) is given, 

where the main focus is NMES. Subsequently, the electrical properties of the 

tissues involved in the NMES process will be described. Finally, a description of 

the FEM software COMSOL will be introduced, focusing on the Electric 

Currents Study, which is the most suited for the present problem. 

2.1 Neuromuscular System 

2.1.1  Nerve Fiber Electrophysiology 

The neuron is the primary electrically excitable cell for processing and 

transmitting electrochemical information through the nervous system. The 

 

Figure 2.1: Structure and parts of a typical neuron [1] 
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neuron is composed of three major regions: cell body (soma), dendrites and axon 

(nerve fiber) (Fig. 2.1). The cell body or soma is the main body of the neuron, 

containing the nucleus and organelles. Numerous branches project out from the 

soma acting as an antenna to increase the area available for receiving signals, 

these are the dendrites. Finally, the axon, or nerve fiber, is an elongated 

projection responsible for the transmission of signals away from the cell body 

and eventually activating another cell or fiber. If the neuron is a motor neuron, 

the signal transmits from the central nervous system to the muscle fiber 

(efferent nerve fiber); if it is a sensory neuron, the signal is transmitted from the 

sensory system to the central nervous system (afferent nerve fiber). The neuron 

is surrounded by a membrane whose main function is to control the passage of 

substances into and out of the cell, including ions. A transmembrane potential 

(TP: electrical potential difference caused by the separation of positive and 

negative charges near the membrane) is always present in the cell. When the 

neuron is resting (not producing electrical signals), this TP is between −60mV 

and −90mV (typically −70mV) and is called the resting potential (RP). This 

charge of the cell is related to an uneven distribution of sodium (Na+) and 

potassium (K+) ions on the membrane [1]. To provoke the activation and 

contraction of a muscle fiber, a signal called action potential (AP) needs to be 

triggered (Fig 2.2). To initiate the AP, the Na+ channels of the membrane open 

by order of the brain, which increases the Na+ permeability, and sodium 

positively charged ions enter to exponentially depolarize the membrane, which 

was initially at RP, until it reaches the threshold potential (typically between 

−50mV and −55mV). After this point, the TP abruptly changes to a positive peak 

potential, typically between +30mV and +40mV, due to an explosive increase in 

Na+ permeability. When the peak voltage is reached, the sodium gates close 

preventing the entry of further Na+ ions and potassium gates open to let 

positively charged K+ ions to come out of the cell, rapidly restoring the TP to its 

RP after a slight hyperpolarization phase, caused by an excess K+ outflow when 

attempting to restore the balance. This process is sequentially repeated through 

the whole axon until it reaches the axon terminals, where they form a chemical 

synapse with the motor end plate called neuromuscular junction. This gives the 
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Figure 2.2: Changes in the TP while an AP occurs [1] 

order of initiating an AP to the muscle fiber, which provokes its contraction. 

2.1.2  Skeletal Muscle Contraction 

A skeletal muscle is composed of several muscle fibers, ranging from only a few 

hundred to several hundred thousand. Each axon terminal of a motor neuron 

supplies a single muscle fiber. When the motor neuron is activated, all the 

muscle fibers it innervates simultaneously contract. This group of one motor 

neuron plus all the muscle fibers it innervates is called a motor unit. The 

strength of the muscle contraction is controlled by the number of motor units 

recruited and/or by the frequency of the contractions. Also, the innervation ratio 

of the motor unit plays an important role. In muscles where fine control and 

precision are required, like in the ocular muscles, one motor neuron controls 

about four muscle fibers (innervation ratio 1:4). Whereas stronger but less 

precise muscle, like leg muscles, reach innervation ratios of about 1:2000 [2]. 

Further, the motor units have a fixed order of recruitment with increasing 

demand of tensile strength in accordance to the Henneman’s size principle [3], 

which states that slow and small motor units are first activated, followed in the 

order of increasing size to the larger and faster motor units, as shown in Fig. 2.3. 

Typically, the slower and smaller motor units are way more fatigue resistant 

than their larger counterparts, making the Henneman principle very useful to 

prevent early fatigue in voluntary contractions. Things are very different in   



2 Theoretical Information  7 

 

 

Figure 2.3: Graphic representation of the Henneman’s Principle. MVC = Maximal Volutary 

Contraction [4] 

this manner when the contractions are elicited by electrical stimulation (ES). In 

the next section the different ways of applying ES are described as well as a 

description of the issues currently hindering the optimization of electrical 

stimulation systems.  

2.2 Electrical Stimulation 

2.2.1  Methods and Applications of Electrical Stimulation 

ES is a technique used for artificial activation of nerve and muscle fibers by 

applying electrical current pulses to the body. The current pulse is applied 

between the active or different (cathode) and indifferent (anode) electrodes, 

causing a depolarization of the cellular membranes in excitable tissues (e.g. 

muscle fiber and motor and sensory neurons). ES systems can be divided in 

implantable, percutaneous and transcutaneous [5]. Implantable techniques 

make use of needle-like electrodes to provoke deep brain stimulation or cuff 

electrodes which are wrapped around nerves (axon) to make the stimulation as 

regionally specific as possible. These techniques are used for brain research [6], 

implanted devices for prosthesis control, treating of mental illness such as 

Parkinson’s disease and even mood control has been demonstrated [7]–[9]. 

Unfortunately, the bio-compatibility of these systems when long term use is 

implemented is a problematic issue. Percutaneous electrical stimulation also 

uses needle-like electrodes but they are only slightly inserted into the skin to 

produce nerve activation, but infection problems may still occur. This technique 
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is mostly used for pain relief therapy [10], [11]. On the other hand, in 

transcutaneous electrical stimulation (TES) the electrodes are placed on the 

skin, making it possible to easily remove them after the therapy is finished, so 

biocompatibility and infection are no longer a problem. There are two general 

ways of applying TES: transcutaneous electrical nerve stimulation (TENS) and 

neuromuscular electrical stimulation (NMES). According to the American 

Physical Therapy Association, TENS is application of electrical stimulation to 

the skin for pain control. TENS is noninvasive, inexpensive, safe and easy to use 

[12]. Many variables such as pulse duration, frequency, amplitude, treatment 

duration and frequency have been controlled to obtain minimal to moderate pain 

inhibition effects in the treatment of chronic low back pain, post-stroke shoulder 

pain, knee osteoarthritis, acute postoperative pain, and others [13], [14]. On the 

other hand, NMES places a minimum of two transcutaneous electrodes on the 

skin, as depicted in Fig. 2.4, and uses them to apply an electrical signal with 

sufficiently high current intensities to elicit muscle contractions. The best 

sections to place the cathode are called motor points, that is where the nerves 

are closer to the skin surface and can be activated with minimal current 

intensity [5]. 

 

Figure 2.4: Flow of electrical current between different and indifferent electrodes during NMES 

[5]  

This technique has received increasing attention in the last few years because it 

has potential to be used as strength training tool for healthy subjects and 
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athletes, rehabilitation and preventive tool for partially or completely 

immobilized patients, testing tool for evaluating the neural and/or muscular 

function in vivo and a post-exercise recovery tool for athletes [15]. To optimize 

NMES to deliver better performance in the mentioned applications, it is 

important to understand the mechanisms underlying the motor unit activation 

when applying ES, which greatly differs from the physiological way.  

2.2.2 Recruitment Patterns Under NMES 

In the previous section, the Henneman size principle was introduced, which 

dictates the order of motor unit recruitment in voluntary muscle contractions. 

Unfortunately, the order and mechanism of motor unit recruitment is very 

different when using NMES and not well know yet. It is generally accepted that 

a reversal of the recruitment pattern (order) is present when activating motor 

units with NMES. This assumption is based on two commonly agreed facts: a) 

motor units with higher innervation ratio are generally faster conductors of APs 

and have a lower resistance to electrical current [16] and b) subjects experience 

more fatigue when using NMES in comparison to voluntary muscle contractions 

[17]. Nevertheless, other investigators claim that experimental data support 

that ES recruits motor units in a non-selective, spatially fixed and temporarily 

synchronous manner [4], [18], [19]. Most experiments are performed with 

isometric contraction conditions, where the muscle torque is constant. If the 

isometric contraction is voluntary, an alternating recruitment pattern is 

observed, which allows for recruitment of additional motor units when the ones 

initially used become fatigued. However, with NMES a direct non-selective 

activation of the motor neurons below the electrode, regardless of size, is likely 

to be the case. Also, the alternating recruitment pattern does not occur in 

NMES, whereby the same muscle fibers are activated during the whole 

stimulation and some investigators attribute the increased fatigue to this 

situation. Accordingly, more selective and less aggressive motor unit recruitment 

might help to obtain better results in NMES therapy. Therefore to accomplish 

this goal various signal conditions and electrode distributions have been tested, 

but there is still much room for improvement. 
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2.2.3 Signal Conditions and Strength-Duration Curve 

In TES, a stimulation signal is applied through the skin to artificially evoke 

muscle contractions. This electrical signal can be either voltage regulated or 

current regulated and is commonly of rectangular shape (Fig. 2.5). 

 

 

Figure 2.5: Rectangular current pulse normally used in TES [5] 

These signals have a certain rise time, pulse duration, pulse amplitude, 

frequency and sometimes a balancing pulse can be added to reverse the modified 

charge distribution. The stimulation signal changes the TP of the axons under 

the electrodes, depolarizing under de cathode and hyperpolarizing under the 

anode. If the TP reaches the threshold potential for activation, an AP is 

generated and the muscle fiber contraction is theoretically evoked in the same 

way as with voluntary contraction theoretically (remember that the major 

problem is the non-selectiveness of the NMES process). In order to select the 

best signal conditions for the stimulation, an understanding of the Strength-

Duration Curve (SDC) is necessary. The SDC is a plot of the least stimulus 

intensities required at various stimulus durations to excite a nerve [20]. In this 

plot, two major characteristics can be extracted a) Rheobase, the least theoretical 

current amplitude required to stimulate a fiber with a stimulus pulse of infinite 

duration and b) Chronaxie, the duration required to stimulate a fiber with a 

stimulus amplitude of double the rheobase [21]. In a motor nerve, the typical 

chronaxie is between 50 and 100µs [22]. In Fig. 2.6, the SDC of certain fiber is 

plotted, where we can observe the change in the TP until it reaches the 

threshold potential and fires. If we focus on the red plot, it can be seen how the 
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threshold potential is reached rapidly due to a high amplitude current source. 

On the other hand, the purple plot needs more time to reach the threshold 

potential since it has a lower amplitude current source; the SDC resumes all this 

information. 

 

Figure 2.6: The SDC with rheobase and chronaxie [21]  

Based on this fiber behavior, it can be inferred that to achieve a higher muscle 

recruitment percentage and consequently a stronger muscle contraction, the 

following actions can be taken: a) increase the pulse amplitude, b) increase the 

pulse duty cycle (stimulation signal ON time) and/or c) increase the pulse 

frequency while maintaining stimulation signal ON time. Additionally, a faster 

rise time would evoke more APs, because the cell would have less time to counter 

the change in the TP, allowing for more axons to reach the threshold potential.  

2.3 Electrical Properties of Materials Involved 

The electrical properties of human tissue have been of medical interest for over a 

century and the investigators in the field of ES are particularly interested in
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them. Every material involved in the NMES has been subject of deep study 

everything from the electrode, going through the electrolyte, skin, fat, muscles, 

bones and the nerve itself. This section reviews the electrical properties that 

have been discovered for these materials and tissues, focusing mostly on the 

electrode, electrolyte and skin. The selected material properties to be introduced 

in the model are disclosed in Table 1 (Chapter 3). 

2.3.1 Electrode and Electrolyte 

This layered system is one of the most important parts to study in NMES, 

because contains the variables that can be changed and materials that can be 

engineered. Furthermore, previous studies [2] have discovered that only around 

20% of the applied electric potential is dropped in the tissues, making the 

electrode-gel-skin interfaces a very important field of study. A good electrode-

electrolyte system should be able to provide a) maximum electrode-skin contact 

area, where the electrode interfaces with the microscopically inhomogeneous 

topography of the skin in the largest area possible (liquid gel electrolytes 

perform the best here, being able to adapt to the irregular surface);                      

b) homogeneous current density, applying the same current amplitude 

throughout the whole area of the electrode; and c) high electrode or gel 

impedance, which would theoretically reduce the influence of tissue electrical 

inhomogeneities on the spatial distribution of current [23]. Therefore, 

understanding the phenomena taking place here is very important for the 

optimization of NMES. First of all, the current is carried by electrons in 

electronic system, but it is carried by ions in the body, e.g. K+ and Na+. The 

charge transfer mechanism between the different carriers takes place at the 

electrode-electrolyte-skin system by means of the well known redox 

electrochemical reaction, i.e. metal atoms M loose an electron and pass it to the 

electrolyte in the form of ions M+ (oxidation), simultaneously some M+ tend to 

flow towards the electrode and join a group of electrons to form a metal atom M 

in the electrode (reduction). This phenomenon gives rise to potentials and 

impedances in the electrode-electrolyte(gel) interface that can distort the 

stimulation signal [24]. Various electrode and gel materials have been tested to 
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reduce these distortions. Commonly used materials for transcutaneous 

electrodes are silver-silver chloride (Ag/AgCl) and carbon (C), which provide high 

electrical performance. These electrodes together with the appropriate gel make 

a contact with low level of intrinsic noise, relatively nonpolarizable and small 

interface impedance, but still very significant. The potential generated in this 

interface is called the “half-cell” potential which depends of the concentrations of 

ions from the electrolyte taking part in the redox reaction, temperature, 

materials and other variables, making it very difficult to prevent this potential 

from distorting the stimulation signal.  The resistance to the current flow 

experienced by the redox reaction is termed the “charge transfer resistance” RCT. 

Additionally, if the electrode is negatively charged with respect to the 

electrolyte, positively charged ions will adsorb to the electrode surface. As a 

consequence, there is an accumulation of equal but opposite charges in the two 

sides of the interface, creating an “electric double layer” and such a system 

behaves like a capacitor, often called “double layer capacitance” CDL. At low 

frequencies, the impedance is dominated by RCT, but as frequency increases, the 

capacitive impedance decreases, therefore current flows through CDL, and the 

total impedance of the interface is reduced. In conclusion, it’s not designing a 

good electrode or a good electrolyte, but engineering a good interface between the 

two what matters to achieve a clean stimulation signal.   

2.3.2 Skin 

The skin is a tissue with a layered structure composed of two major layers: the 

dermis and the superficial epidermis. The dermis is an area of connective tissue 

between the superficial epidermis and the underlying subcutis, with a thickness 

ranging from 0.6mm for the eyelids and 3mm for the palms and soles. The 

dermis contains sweat glands, hair roots, nervous cells and fibers and blood 

vessels [25]. The epidermis is a stratified tissue made of several distinguishable 

layers that are composed almost entirely (95%) of keratinocytes [26], i.e. cells 

whose main function is providing physical and chemical protection from the 

exterior environment. The epidermis is mainly divided in four distinct layers: 

stratum basale or germinativum, stratum spinosum, stratum granulosum and 
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stratum corneum (SC) (Fig. 2.7). The keratinocytes are formed in the stratum 

basale and get surrounded by keratin (protein used for protection) and slowly 

ascend through the other layers until reaching the SC and eventually dying and 

falling off. The agglomeration of keratinized cells in the SC makes it the layer  

 

Figure 2.7: Structure of superficial epidermis [25] 

with the highest impedance, almost rendering the rest negligible. This fact has 

been proven experimentally more than once [27]–[29], where a rapid resistance 

decrease is observed owing to continuous stripping of the stratum corneum with 

cellulose adhesive tape; when this uncomfortable process (called mild abrasion) 

is repeated around 15 times, the skin impedance is reduced by a factor of 100 to 

1000, so it is a very common technique used to improve the contact with the 

electrode [30]. After the SC, all the lower layers of the skin (rest of the 

epidermis, dermis and subcutaneous fat) have similar and much lower electrical 

properties [21]. It is very important to note that the impedance of most 

materials, including the skin [31], is also highly dependent of the frequency and 

intensity of the applied signal (stimulation), which is an effect called dispersion 

[32]. It has been stated that the SC dominates the impedance of the skin at 

frequencies below 10 kHz. At low frequencies, the behavior is nearly resistive, 

but capacitive effects become more relevant at higher frequencies. One of the two 

most common equivalent circuits used to simulate this behavior is the Debye-

type circuit, which is a parallel combination of a capacitor and a conductor. In 

this circuit, the dispersion is represented by complex-valued relative permittivity 

(  
 ) and conductivity (σ*) 



2 Theoretical Information  15 

 

 
  
     

       

       
         (2.1) 

 

 

and 

 
      

       

       
 (2.2) 

 

where ω is the angular frequency, τ = 1/RC is the time constant, and the 

subscripts ∞ and S refer to frequency well above and well below the dispersion. 

Even though the Debye-type is a good approximation, a more precise circuit is 

commonly used if the dispersion is too wide spread in the material, the Cole-Cole 

response. This model proposes changing the conductivity and permittivity to 
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 (2.4) 

 

where α is a parameter that changes according to the nature of the material; it 

equals 1 for a Debye-type model, and decreases as the dispersion becomes wider. 

The equivalent circuit for this model is obtained by replacing the capacitor in the 

Debye-type model with a “Constant Phase Element” (CPE) with a complex-

valued impedance of 

     
          (2.5) 

 

where   is a constant and    . This impedance becomes a simple resistor for 

    and a capacitive reactance for    , allowing an ample range of materials 

to be modeled. Therefore, it is generally accepted when not too much precision is 

required, to use these circuits to represent the electrical properties of many 

tissues in simulation models, including the skin and the lower layers.
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2.3.3 Muscles and Bones 

Skeletal muscles comprise the largest group of tissues in the body, being 

responsible for almost half of the body’s total weight [1]. As mentioned before 

(Section 2.1.2), a skeletal muscle is composed of several muscle fibers. These 

fibers are relatively large, elongated and cylinder shaped, measuring from 10 to 

100µm in diameter and up to 2.5 feet in length (Sartorius, thinnest and longest 

thigh muscle). As seen with skin, muscles also have a dependency on frequency; 

the conductivity of the muscle dominates the impedance at low frequencies and 

the permittivity becomes more dominant at high frequencies [33]. Further, the 

muscle fibers have been categorized as highly anisotropic materials, the 

conduction is much easier in the longitudinal than in the transversal direction 

[21]. Given this peculiar property, muscle tissue must be treated differently in 

simulations. In finite element analysis, electrical conductivity and relative 

permittivity of muscle are described with a 3x3 matrix where the diagonal 

components contain the magnitude of these properties in the three directions. 

2.4 Modeling Human Tissues 

Different methods have been developed to model human tissues. A common 

approach is implementing an EC model like the one described in section 2.3.4. 

Luján et al [2] developed a precise equivalent circuit model including all the 

materials and tissues involved in NMES, creating a system consisting of a series 

of tissue “”sub-systems” (Figure 2.8). This EC takes into consideration the 

dispersion effect of electrode-gel interface, gel-skin interface and tissues to 

simulate strength-duration curves obtained during experimental transdermal 

stimulation of the extensor muscles in the forearm of one subject. Biphasic 

rectangular waveform was selected as stimulation signal because it has been 

used as standard shape for NMES. The gel-skin interface is modeled by a 

resistance RGS and a capacitor CGS, which were adapted to match the voltage 

response obtained experimentally (these parameters cannot be measured unless 

ex vivo experiments are performed). This EC gives a fundamental understanding 

of the magnitudes of the different layers of human tissue involved in NMES.  
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Figure 2.8.  Equivalent Circuit Model for transdermal neuromuscular stimulation including all 

the tissue sub-systems [2] 

Alternatively,  in the last few years, the Finite Element Method (FEM) became a 

well established and convenient technique for solving complex problems in the 

fields of engineering and applied physics through computer simulations, since it 

is a powerful tool for obtaining an approximate solution of the differential 

equations that describe these field problems [34]. A field problem aims to obtain 

the spatial distribution of one or more dependent variables (structural 

displacement, fluid velocity, heat transfer, electric potential, etc). FEM requires 

a mathematical model that describes the geometry, material properties, loads 

and boundary conditions in terms of differential equations or integral 

expressions [35]. In this model, a discretization of the geometry is made, dividing 

the structure into a number of finite elements that are interconnected by nodes. 

This compound of arranged finite elements is called mesh which is represented 

by a series of equations that are solved for unknowns at the nodal points (these 

could be points where loads are applied or points where the variation of the 

studied field is calculated). These nodal quantities are then included in 

interpolation functions to determine an approximated value of the field quantity 
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variation within each element. Finally, the field quantity is approximated in the 

entire structure, element by element in a piecewise fashion. This means that a 

FEM analysis will never obtain exact results mostly due to discretization errors 

(as the mesh gets coarser, the precision becomes poorer). Nevertheless, FEM 

offers many advantages, such as: analysis of any geometry (no matter how 

complex it might be), no restriction on boundary conditions or loads, different 

material properties can be implemented in one model and the approximation of 

the result can be readily improved by using smaller elements (refine the mesh) 

[36]. All these characteristics make FEM a desirable method for simulating 

spatial distribution of current in such complex geometries as the skin and other 

human tissues. Kuhn [5] developed a geometry to describe the potential 

distribution changes when the size and resistivity of the electrode is changed. 

The research aimed to find ways to reduce high current peaks in some areas that 

could cause discomfort or even skin burns. The main reasons for these high 

current density peaks were the fact that current densities are higher at the 

edges of the electrodes (Edge Effects) and also due to the inhomogeneities of the 

skin that lead to irregular resistance changes. An ANSYS 3D model is used to 

simulate the effects of small inhomogeneities within the electrode and skin in 

potential distribution; this is shown in Figure 2.9. These inhomogeneities 

represent human pores and glands that introduce new variation of resistance 

into the model. Figure 2.10 shows the results obtained for the current 

distribution. Figure 2.10 (a) shows the relative change in current density 

comparing a model with pores and one without pores for different electrolyte gel 

resistances. It can be seen how the difference in current density in the electrode-

skin interface (gel) between the two models is reduced with a higher gel 

resistivity. Figure 2.10 (b) plots the current densities within the 

inhomogeneities, where it can be seen that it is higher in deeper tissues and 

towards the center of the electrode. Due to the aim of the research the gel-skin 

interface properties were not taken into account for the sake of simplicity. The 

mentioned models have studied the electrical properties of the human tissues, 

but given little importance to the gel-skin interface, which is a region where 

potential drops occur. 
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Figure 2.9.  Geometry (a) and mesh (b) of the model used to analyze small inhomogeneities [5] 

 

Figure 2.10.  Simulation results using the model with the small inhomogeneities 

2.4.1 COMSOL Electric Currents Interface 

In the particular case of this thesis, the FEM software COMSOL is used to 

determine the spatial distribution of the voltage field using the Electric Currents 

Interface (ECI). The ECI is within the AC/DC Module, which uses different 

formulations of the Maxwell Equations to describe various electromagnetic 

effects. Maxwell Equations are a set of four equations that describe the 

relationship between the electric and magnetic fields on a macroscopic level, 

being the foundations of classic electromagnetic theory [37], being them Gauss’ 

Law, Gauss’ Law for Magnetism, Maxwell-Faraday Law and Ampere’s Law, 
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respectively listed: 

       (2.6) 

       (2.7) 

 
     

  

  
 (2.8) 

 
    

  

  
   (2.9) 

 

where D is the electric displacement, ρ is the charge density, B is the magnetic 

flux density, E is electric field intensity, H is magnetic field intensity and J is 

current density. The stimulation signal frequencies commonly used in NMES are 

below 10kHz. This means that the Maxwell equations can be used with a 

quasistatic approximation, in which the time-derivative of the magnetic flux 

density is neglected but the field components for electric field and current 

density are non-zero in every direction (x, y, z). This is the perfect condition for 

simulating electric behavior of human tissues. In this approximation the 

magnetic and electric fields are uncoupled, meaning that the wave propagation 

and inductive effects in the medium can be neglected. This consideration leaves 

us with a new system of equations 

 

       (2.10) 

       (2.11) 

       (2.12) 
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On the other hand, it is important to take into account the charge conservation 

principle which implies that electric charge can neither be created nor destroyed. 

This principle is defined in terms of charge density and electric current density 

by the equation of continuity 

 

 
     

  

  
 (2.14) 
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which states that the only way for the charge density to change in a point is for 

an electric current charge to flow into or out of the point. Additionally, 

constitutive relations that describe the reaction of materials to applied electric 

fields have to be taken into account  

 

         (2.15) 

      (2.16) 

 

where P is the electric polarization vector. These equations describe how the 

material can get electrically charged or polarized when an electric field is 

present. In the NMES model, ECI is used to apply a current regulated signal in 

the indifferent electrode and solve for the electric potential at the nodal points of 

the mesh and finally obtaining a graphical spatial distribution of the field. A 

more detailed description of the model is given in Chapter 3. 
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Chapter 3[1]–[37] 

Finite Element Model 

The Finite Element Model further described is a three dimensional model that 

uses COMSOL’s Electric Currents Interface with a Time Dependent Study with 

the purpose of calculating the spatial distribution of the current on the Gel-Skin 

Interface. This chapter describes the parameters and methods used to develop 

the finite element model. First, an introduction to the parameters used in the 

model is made. Then, the stimulation signal to be used will be described, as well 

as the way to simulate it, followed by a description of the geometry, material 

properties, boundary conditions, meshing and solver used in the model. 

Quotations marks in this Chapter will be used to denote commands, modules or 

nodes used within the COMSOL User’s Interface to develop the model, e.g. 

“Rectangular Function” 

3.1 Parameters 

“Parameters” are expressions or values accessible in all parts of the model and 

they are defined on the “Global Definitions Node”. For this particular model, 

parameters are used to define geometry dimensions, stimulation signal 

conditions and electrical properties. Table 3.1 summarizes all the parameters 

used in the model. Signal conditions were defined in the parameters to facilitate 

changes to the model when different signals need to be studied. Some 

parameters such as electrode separation distance and positive pulse duration 

were subject to a “Parametric Sweep”, which iterates different combinations of 

values to determine the influence on the current spatial distribution. The 

electrical property parameters are based on experimental data gathered by 

Luján et al [2], where NMES was applied to the forearm of various subjects, 
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Signal Conditions 
 

Electrical Properties 

Amp = Stimulation Signal Amplitude (A/m2) 
 

c_E = Electrode Conductivity (S/m) 

Rt = Stimulation Signal Rise Time (s) 
 

p_E = Electrode Relative Permittivity 

Per = Stimulation Signal Period (s) 
 

c_GSI = Gel-Skin Interface Conductivity (S/m) 

Pd = Stimulation Positive Pulse Duration (s) 
 

p_GSI = Gel-Skin Interface Relative Permittivity 

Des = Stimulation Signal Initial Continuity Time Gap (s) 
 

c_SC = Stratum Corneum Conductivity (S/m) 

   
p_SC = Stratum Corneum Relative Permittivity 

Geometry Dimensions 
 

c_LL = Lower Layer Conductivity (S/m) 

dis_ele = Distance between electrodes (mm) 
 

p_LL = Lower Layer Relative Permittivity 

w_ele = Width of the Electrodes (mm) 
 

c_F = Subcutaneous Fat Conductivity (S/m) 

l_ele = Length of the Electrodes (mm) 
 

p_F = Subcutaneous Fat Relative Permittivity 

tisover = Tissue Overlap with Electrodes (mm) 
 

c_Ml = Longitudinal Muscle Conductivity (S/m) 

   
p_Ml = Longitudinal Muscle Relative Permittivity 

   
c_Mt = Transverse Muscle Conductivity (S/m) 

   
p_Mt = Transverse Muscle Relative Permittivity 

Table 3.1.  Global parameters to be used in the finite element model 

therefore the developed finite element model represents the surface of the 

forearm, but parameters can be adjusted to simulate other parts of the body. 

Additionally, the literature was also reviewed to assign parameters of the model 

that were not measured in the experiment. The values of these parameters will 

be disclosed in the following corresponding sections. 

3.2 Stimulation Signal 

Many waveforms have been used for NMES e.g. sine, spike, square. The 

rectangular (square) waveform is often used because it has been proven to be 

relatively more comfortable for the patient [38]. Therefore, a current regulated 

biphasic square signal with 4 different combinations of intensities and 

frequencies are simulated, as described on Table 3.2, to verify the effect of these 

conditions on the electrical behavior of the interface. The electrodes simulated 

are rectangular with a cross section area of 4,5cm x 8cm = 0.0036m2. These 

amplitudes together with the electrode sizes correspond to the range of study set  

Signal Current Intensity (A/m2) Period (µs) 

1 ±3.9417 1024 

2 ±5.7333 512 

3 ±7.5250 256 

4 ±14.6916 128 

Table 3.2.  Stimulation signal conditions implemented in the model 
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on the objectives (14.19 to 65.79mA). Each signal is studied on a different 

simulation; therefore, four separate simulations are performed. The signal 

condition parameters listed on the previous section are used to define: 

- Amp: The amplitude of the signal. The values of this parameter are listed 

on the second column of Table 3.2. 

- Rt: A transition time (the time it takes to switch states) for the signal has 

to be included to give the design continuity, which is extremely necessary 

on FEM. If abrupt changes happen the solver will not be able to provide 

the correct estimations, crashing the simulation. A transition time of 2µs 

is used for every signal. 

- Per: Period of the stimulation signal. The designated values are listed on 

Table 3.2 

- Pd:  It has been observed that the pulse duration also has an effect on the 

electrical behavior of tissues; therefore, a “Parametric Sweep” is done to 

simulate three different cases of positive pulse duration: 30%, 50% and 

70% of the signal period (Pd = {0.3*Per, 0.5*Per, 0.7*Per})  

- Des: To avoid problems that might arise with the initial values of the 

model, an initial time gap is defined in which the signal is at 0V. This 

value is 15µs for all signals. 

 

Figure 3.1.  Plot of the first period of Stimulation Signal 1 
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Signal 1 is plotted in Fig. 3.1. To implement these signals two “Rectangle 

Function” from the “Definitions Branch” were used; one for positive pulse and 

other for negative pulse (these functions determine the pulse durations). These 

two functions were then introduced into an “Analytic Function”, where they were 

added together. In this function, the amplitude and the physical unit of the 

signal are specified. This “Analytic Function” represents the stimulation signal 

and will be the input current density of the model. The configuration of the 

functions in COMSOL is resumed on Table 3.3.  

Rectangle Function 1 
 

Rectangle Function 2 

Section Field Value  Section Field Value 

Function 
Name 

Function 
Name 

rect1 
 

Function 
Name 

Function 
Name 

rect2 

Parameters 
Lower Limit Des 

 Parameters 
Lower Limit Pd + Des 

Upper Limit Pd +  Des 
 

Upper Limit Per + Des 

Smoothing 
Size of 

transition zone Rt 

 

Smoothing 
Size of 

transition zone Rt 

 

Analytic Function 1 

Section Field Value 

Function 
Name 

Function 
Name 

I_in 

Definition 
Expression Amp*(mod1.rect1(t)-mod1.rect2(t)) 

Arguments T 

Units 
Arguments S 

Function A/m^2 

Table 3.3.  Stimulation signal configuration for all signals 

3.3 Geometry 

The whole geometry is defined in mm. For the sake of saving computational 

power and simplicity, the geometry is based solely on blocks. The complete 

geometry consists of a total of six “Blocks” and a “Copy Transform”, representing 

areas of material or tissue from the electrode to the muscle. Simulations were 

made taking into account bone material, but no significant changes were 

observed on the spatial distribution of current density in the Gel-Skin Interface. 

A few parameters were defined to facilitate the customization of the original 

geometry: 

- dis_ele: The distance between the electrodes is also included in the
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“Parametric Sweep” to determine which distance achieves a better spatial 

distribution of the current density. Three values are studied: 85mm, 

105mm and 125mm. 

- w_ele: Width of the electrodes are set to be the same as the ones used by 

Luján [2] (45mm) to provide a better agreement with the material 

properties used in the model. 

- l_ele: The same case as the width of the electrodes. The length is set to 

80mm 

- tisover: This parameter refers to the amount of coverage the tissue has 

over the electrode, i.e. the length from the edge of the gel block to the edge 

of the stratum corneum block and is set to 15mm.  

Table 3.4 summarizes the configuration of the six blocks. To simplify the table, 

the following formulas are defined: 

                             (3.1) 

                   (3.2) 

                            (3.3) 

 

Section Field blk1 blk2 blk3 blk4 blk5 blk6 

Name Electrode Gel 
Stratum 
Corneum 

Lower 
Layers 

Fat Muscle 

Size and Shape 

Width w_ele w_ele S* S* S* S* 

Depth l_ele l_ele T* T* T* T* 

Height 1 1 0.04 1.5 2.5 20 

Position 

x 0 0 U* U* U* U* 

y 0 0 -tisover -tisover -tisover -tisover 

z 1 0 -0.04 -1.54 -4.04 -24.04 
Table 3.4.  Configuration of building blocks to assemble the geometry 

*These variables are defined on (3.1-3) 

The “Copy Transform” is used to build the second electrode-gel group (different 

electrode) by selecting blk1 and blk2 as “Input Objects” and setting the x field 

under the “Displacement Section” to -(dis_ele+w_ele). The completely built 

geometry is shown on Figure 3.2.  



3 Finite Element Model  27 

 

Figure 3.2.  Complete geometry of the model with dis_ele = 105mm 

 

3.4 Materials 

A total of six custom materials were created (Electrode, Gel, Stratum Corneum, 

Skin Lower Layers, Subcutaneous Fat and Muscle) to specify the electrical  

 

Parameter Signal 1* Signal 2* Signal 3* Signal 4* 

c_E 1.70x10-2 2.10 x10-2 2.13 x10-2 2.03 x10-2 

p_E 1.18x104 1 x104 7.76 x103 9.06 x103 

c_G 5.24x10-3 5.24x10-3 5.24x10-3 5.24x10-3 

p_G 1 1 1 1 

c_SC 2.70x10-5 6 x10-5 8 x10-5 1.4 x10-4 

p_SC 2x103 2 x103 1.90 x103 1.42 x103 

c_LL 0.2 0.2 0.2 0.2 

p_LL 2.20x105 1.80 x105 1.40 x105 1.10 x105 

c_F 3.10x10-2 3.10x10-2 3.10x10-2 3.10x10-2 

p_F 3x104 3x104 3x104 3x104 

c_Ml 0.24 0.25 0.3 0.34 

p_Ml 2x105 2x105 2x105 2x105 

c_Mt 0.12 0.12 0.157 0.158 

p_Mt 8x104 8x104 8x104 8x104 

Table 3.5.  Material electrical properties for the four different signal conditions. Values obtained 

from experimental data and literature [2], [5], [31]. * Stimulation signal characteristics are 

specified on Table 3.2 
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properties of all the materials involved. Each material is assigned to the 

corresponding block of the geometry and assigned the corresponding conductivity 

and relative permittivity parameters. As explained in Chapter 2, these values 

are frequency and current density dependant; therefore each signal requires 

different values of electrical properties for the materials. The values selected for 

the parameters introduced on Table 3.1 are disclosed on Table 3.5. 

3.5 Meshing 

Due to the incredible difference in the geometry dimensions, a custom mesh had 

to be made based on “Swept”, “Free Triangular” and “Edge” nodes. The regions of 

the model that require smaller elements are those close to the Gel-Skin Interface 

and the edge of the gel blocks, because the rest of the geometry is relatively 

uniform. The sequence for the meshing consists of two “Edge”, one “Free 

Triangular”, one “Swept” and one “Free Tetrahedral” node. The “Distribution” 

and “Size” nodes are used to define the number of elements and their proper 

arrangement. Experimental stationary simulations were carried out to 

determine the best balance between precision and computational power; 

progressively smaller elements (finer meshing) were used for the mesh until no 

significant change in the results were observed. The values further mentioned 

are the ones that achieve this balance. By default, a general “Size” node is the 

first one in the Geometry sequence and will provide the guidelines for the sizing 

of all the elements in the mesh; the option “Custom” is selected to manually set 

some element size parameters. The “Maximum element size” is set to 9mm and 

the “Maximum element growth rate” is set to 1.2; this node will prevent the 

elements that are farther from the electrode to get excessively big, which would 

be detrimental for precision. The two “Edge” nodes were applied on the bottom 

edges of the gel blocks (blk2 and the corresponding copy). One node is applied to 

the shorter edges (45mm) and the other to the longer edges (80mm). A 

“Distribution” node is created under both “Edge” nodes for the purpose of 

specifying the “Number of Elements” these that will be used for this portion of 

the mesh, setting this field to 85 elements for the shorter edges and 150 for the 

longer edges. Following with the sequence, the “Free Triangular” node is created, 
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applying it to the three boundaries that comprise the top face of the Stratum 

Corneum, no further customization is necessary for this node; the general “Size” 

node will provide the appropriate characteristics. The “Free Triangular” mesh 

will serve as source for the “Swept” node, which is a specialized meshing tool for 

thin geometries which takes the mesh of a source face and sweeps it through the 

specified domain onto the opposite destination face, creating column like 

elements connecting both faces. For this node, the selected domains are the 

Stratum Corneum and the Lower Layers blocks, the source faces are the 

boundaries comprising the top area of the Stratum Corneum and the destination 

face is the boundary between the Lower Layers and Fat. A “Distribution” node is 

created for “Swept” and the “Number of elements” field is set to 1; setting a 

higher number in this field would decrease the quality of the elements on the 

Stratum Corneum and Lower Layers domains. Finally, a “Free Tetrahedral”  

 

Figure 3.3.  Different angles of the meshed geometry a) Top view with a close-up of the different 

electrode b) Isometric view c) bottom view 
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node is included and is set to mesh the remaining domains: electrode, gel, fat 

and muscle. The complete mesh consists of a little over 200.000 elements and 

different views of the same are shown on Figure 3.3 

3.6 Boundary Conditions 

The boundary conditions (BC) are defined to describe how the Maxwell 

Equations and constitutive relations introduces in the previous chapter will 

interact with the material properties and geometry of the model. There are three 

default nodes in the “Electric Currents (ec)” sequence: 

- Current Conservation: This is a property applicable to complete domains 

which adds the continuity equation and constitutive relations for electric 

potential and provides an interface for introducing electric conductivity 

and relative permittivity for the displacement current. Every domain in 

the model is included in this node as a default condition. 

- Electric Insulation: This BC is applied by default to every external 

boundary and it prevents electric current to flow into the boundary, that 

means n· J = 0 is applied. The top boundaries of the electrode blocks will 

get overridden by latter boundary conditions that don’t obey the 

mentioned equation. 

- Initial Values: All the domains are selected for this node also and it 

specifies the initial magnitude of the electric potential in selected 

domains. Human tissues posses a resting potential in the range of mV 

which is negligible compared to the magnitude of tens of volts that are 

observed on the tissues due to the stimulation signal; therefore the initial 

value for every domain is left as default: 0V. 

Apart from the default nodes, other three boundary conditions were added to 

determine the input/output of the stimulation signal and describe the electric 

properties of the Gel-Skin Interface: 

- Normal Current Density: This BC is applicable to external boundaries 

that represent either a source or sink of current. In this case it represents 

the input of the stimulation signal (source) representing the normal 

current density as the inward current flow 
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(3.4) 

 

Where Jn is the stimulation signal created as described on section 3.2; 

therefore, the “Normal Current Density” field is set to mod1.I_in(t). 

Logically, this BC is applied to the top of the indifferent electrode block 

(right electrode, picked arbitrarily, the electrode in the model are 

interchangeable) 

- Ground: BC in which the electric potential is set to zero (V=0). This is the 

area of outflow of current from the model and the top boundary of the 

different electrode is selected (left electrode). 

- Contact Impedance: This BC is used to model thin layers of material on 

interior boundaries, which makes it perfect to simulate the electric 

properties of the Gel-Skin Interface. The two boundaries between the 

electrode and gel blocks are selected. On the “Surface thickness” field, the 

value 0.03[mm] is set. Subsequently, both the electric conductivity and 

relative permittivity fields are set to user defined and the values c_GSI 

and p_GSI respectively; according to Table 3.6. These values are defined 

in the Parameters node described at the beginning of the chapter. These 

values were calculated by Luján et al as a result of the NMES 

experiments performed on the forearm. 

 

Parameter Signal 1 Signal 2 Signal 3 Signal 4 

c_GSI 4.62E-05 4.84E-05 1.31E-04 5.36E-04 

p_GSI 1.44E+04 1.18E+04 1.11E+04 1.03E+04 

Table 3.6.  Electric properties of the Gel-Skin Interface for the four different signal conditions 

3.7 Study and Solver Configuration 

In the “Study” node is where the “Parametric Sweep” for the parameters dis_ele 

and Pd is configured, which prepares the software to run the simulation 

sequence as many times as needed to study all the variations of parameters 

specified. “Sweep Type” is set to All Combinations so every possible combination
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of dis_ele and Pd is studied. In the “Study Settings” table the first parameter is 

dis_ele with values set to 85, 105, 125; in the second row is Pd with the values 

set to 0.3*Per, 0.5*Per, 0.7*Per. Arranging them in this order will take advantage 

of the “Parametric Solver” which takes the results of one simulation sequence to 

make approximations of the results for the next one as long as the degrees of 

freedom don’t change, reducing the needed computation time. Following with the 

“Time Dependent” node, only the first period of the stimulation signal is studied. 

The values for the time steps are set so that the calculations are done 20 times 

through the signal, as resumed on the Table 3.7. For every simulation the 

“Direct” attribute is enabled for the “Time Dependent Solver”. Doing so selects 

MUMPS as the linear solver for the calculation of the spatial distribution of 

electric potential, which benefits from shared memory parallelism. The PC used 

for the simulations runs on two 2.93GHz Intel Xeon processors so the Direct 

solver can take advantage of both of them.  

 

Signal Start Step Stop 

1 0 0.00005275 0.001055 

2 0 0.000027 0.00054 

3 0 0.000014 0.00028 

4 0 0.0000075 0.00015 

Table 3.7. Time steps defined for the time dependant study 

 

In the next chapter, the obtained results for the four simulations are shown and 

also the performed analysis of these results will be disclosed.  
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Chapter 4[1]–[38][39][40] 

Results and Analysis 

The model described on Chapter 3 provides as default output the instantaneous 

electrical potential of 20 time steps along the first period of the biphasic 

stimulation signal. This electrical potential is calculated all around the geometry 

using as input the parameters disclosed on the previous chapter, resulting in a 

spatial distribution of the electrical potential, which can be used for calculating 

other electrical variables such as current density and power consumption. The 

analysis of these results is made on this chapter, providing valuable information 

to study the electrical behavior of the Gel-Skin interface. 

4.1 Electrical Potential Distribution 

The default output of the model consists of a 3D multislice plot of the electrical 

potential distribution throughout the entire geometry, generating a group of 

data for every time step. In Fig 4.1 there is an example showing the 

instantaneous electrical potential distribution obtained for Signal 1 with a 

positive pulse duration (Pd) of 50% of the period and an electrode separation 

distance of dis_ele=125mm at t=2.64x10-4 seconds. It can be seen how the 

greatest amount of voltage drop occurs on the reference (indifferent) electrode. 

For the sake of focusing on the gel-skin interface two Surface “Data Sets” were 

defined under the Results node, setting the surface between the gel of the 

reference (Surface 1) and active (Surface 2) electrodes and the Stratum Corneum 

as selection. These Data Sets select only the values of instantaneous electrical 

potential calculated by COMSOL on the nodes that sit on the surfaces (both Gel-

Skin Interfaces). The data of the Surface Data Sets were added to the 
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“Export” node and exported the values on a spreadsheet format that could be 

processed on Microsoft Office Excel® to obtain the RMS value for every point 

node in the surface using 

 

      
 

 
   

 

 

   

 (4.1) 

 
Fig. 4.1.  Example of default result output for the model. Multislice plot of the electrical potential 

distribution for signal 1 with electrode separation of 105mm (dis_ele=105mm) and a positive 

pulse duration (Pd) of 50% of the signal period (Pd = 0.5) at t = 2.64x10-4 

Using the RMS values, the mean and standard deviation were calculated, 

obtaining the values shown on Table 4.1 (Reference Electrode) and Table 4.2 

(Active Electrode), where  is the arithmetic mean of the RMS voltage 

throughout the surface between the gel of the electrodes and the stratum 

corneum in the model, σ is the standard deviation and σ (%) is the standard 

deviation expressed in percentages. These values can be used as a way to 

measure the uniformity of the electrical potential distribution on the gel-skin 

interfaces; if the standard deviation is higher, the values are more disperse 

apart, making the distribution less uniform. The graph in Fig 4.2 shows a 

comparison of the standard deviation of the electric potential distribution for 

various cases depending on electrode separation distance, Pd (duration of the 

positive portion of the biphasic stimulation signal) and amplitude of the signal.  
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Signal 
ID 

Signal 
Amplitude 

(A/m2) 

Electrode 
Separation 

(mm) 
Pd  (V) σ (V) σ (%) 

Range 
(V) 

1-1 

±3.9417 

85 

30% 7.39707 ± 0.21148 2.86% 1.11948 

1-2 50% 6.89309 ± 0.20073 2.91% 1.06034 

1-3 70% 8.09133 ± 0.18491 2.29% 1.09855 

1-4 

105 

30% 7.84781 ± 0.21418 2.73% 1.14475 

1-5 50% 7.32168 ± 0.20449 2.79% 1.08719 

1-6 70% 8.47574 ± 0.18927 2.23% 1.13217 

1-7 

125 

30% 8.29057 ± 0.21625 2.61% 1.13992 

1-8 50% 7.75021 ± 0.20772 2.68% 1.08641 

1-9 70% 8.86492 ± 0.19295 2.18% 1.12725 

2-1 

±5.7333 

85 

30% 6.30978 ± 0.22707 3.60% 1.11685 

2-2 50% 5.90149 ± 0.23265 3.94% 1.09899 

2-3 70% 6.41151 ± 0.22898 3.57% 1.13043 

2-4 

105 

30% 6.78148 ± 0.23070 3.40% 1.13980 

2-5 50% 6.38719 ± 0.23487 3.68% 1.11605 

2-6 70% 6.89208 ± 0.23166 3.36% 1.15054 

2-7 

125 

30% 7.29283 ± 0.23426 3.21% 1.14501 

2-8 50% 6.88079 ± 0.23656 3.44% 1.11589 

2-9 70% 7.37178 ± 0.23346 3.17% 1.14806 

3-1 

±7.5250 

85 

30% 8.20611 ± 0.35115 4.28% 1.65079 

3-2 50% 7.94126 ± 0.35339 4.45% 1.63884 

3-3 70% 8.39310 ± 0.34095 4.06% 1.63949 

3-4 

105 

30% 8.90601 ± 0.35234 3.96% 1.66571 

3-5 50% 8.65979 ± 0.35496 4.10% 1.65591 

3-6 70% 9.07508 ± 0.34351 3.79% 1.65984 

3-7 

125 

30% 9.60610 ± 0.35302 3.67% 1.66195 

3-8 50% 9.36428 ± 0.35619 3.80% 1.65454 

3-9 70% 9.76318 ± 0.34558 3.54% 1.65891 

4-1 

±14.6916 

85 

30% 13.84526 ± 0.61055 4.41% 2.89161 

4-2 50% 13.15603 ± 0.60046 4.56% 2.81582 

4-3 70% 13.76606 ± 0.60046 4.36% 2.86751 

4-4 

105 

30% 14.96555 ± 0.61153 4.09% 2.90536 

4-5 50% 14.31022 ± 0.60234 4.21% 2.83678 

4-6 70% 14.92378 ± 0.60289 4.04% 2.89366 

4-7 

125 

30% 16.18508 ± 0.61222 3.78% 2.90502 

4-8 50% 15.46462 ± 0.60344 3.90% 2.83343 

4-9 70% 16.08677 ± 0.60498 3.76% 2.89126 
 

Table 4.1.  Arithmetic mean ( ) and standard deviation (σ) of the electrical potential throughout 

the gel-skin interface located below the reference electrode. Positive pulse duration expressed in 

percentage of time of the signal period. 
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Signal 
ID 

Signal 
Amplitude 

(A/m2) 

Electrode 
Separation 

(mm) 
Pd  (V) σ (V) σ (%) 

Range 
(V) 

1-1 

±3.9417 

85 

30% 1.08123 ± 0.10075 9.32% 0.72561 

1-2 50% 1.01884 ± 0.09493 9.32% 0.65695 

1-3 70% 1.07732 ± 0.10302 9.56% 0.75214 

1-4 

105 

30% 1.08133 ± 0.10086 9.33% 0.72759 

1-5 50% 1.01869 ± 0.09464 9.29% 0.65797 

1-6 70% 1.07765 ± 0.10319 9.58% 0.75218 

1-7 

125 

30% 1.08206 ± 0.10207 9.43% 0.73667 

1-8 50% 1.01916 ± 0.09548 9.37% 0.66536 

1-9 70% 1.07766 ± 0.10354 9.61% 0.75920 

2-1 

±5.7333 

85 

30% 1.04448 ± 0.12790 12.25% 0.78491 

2-2 50% 1.02663 ± 0.12940 12.60% 0.76396 

2-3 70% 1.06509 ± 0.12782 12.00% 0.80055 

2-4 

105 

30% 1.04597 ± 0.13007 12.44% 0.79564 

2-5 50% 1.02695 ± 0.12978 12.64% 0.76842 

2-6 70% 1.06492 ± 0.12755 11.98% 0.80209 

2-7 

125 

30% 1.04723 ± 0.13135 12.54% 0.80511 

2-8 50% 1.02687 ± 0.12975 12.64% 0.77120 

2-9 70% 1.06494 ± 0.12780 12.00% 0.80621 

3-1 

±7.5250 

85 

30% 1.88083 ± 0.23453 12.47% 1.28202 

3-2 50% 1.87634 ± 0.24511 13.06% 1.30556 

3-3 70% 1.86065 ± 0.23020 12.37% 1.26038 

3-4 

105 

30% 1.88115 ± 0.23475 12.48% 1.28873 

3-5 50% 1.87573 ± 0.24373 12.99% 1.30958 

3-6 70% 1.86082 ± 0.23030 12.38% 1.26658 

3-7 

125 

30% 1.88109 ± 0.23507 12.50% 1.29240 

3-8 50% 1.87586 ± 0.24430 13.02% 1.31329 

3-9 70% 1.86116 ± 0.23079 12.40% 1.27114 

4-1 

±14.6916 

85 

30% 3.59158 ± 0.43525 12.12% 2.34728 

4-2 50% 3.55465 ± 0.43877 12.34% 2.30576 

4-3 70% 3.49734 ± 0.42357 12.11% 2.27342 

4-4 

105 

30% 3.59186 ± 0.43733 12.18% 2.36071 

4-5 50% 3.55597 ± 0.43958 12.36% 2.32029 

4-6 70% 3.49838 ± 0.42381 12.11% 2.28580 

4-7 

125 

30% 3.59122 ± 0.43610 12.14% 2.36428 

4-8 50% 3.55559 ± 0.44040 12.39% 2.32565 

4-9 70% 3.49928 ± 0.42487 12.14% 2.29392 
 

Table 4.2.  Arithmetic mean ( ) and standard deviation (σ) of the electrical potential throughout 

the gel-skin interface located below the active electrode. Positive pulse duration expressed in 

percentage of time of the signal period. 
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Fig. 4.2.  Comparative chart of the effect of electrode distance, positive pulse duration and 

amplitude of the signal on the uniformity of the electrical potential distribution on the gel-skin 

interface 

Analyzing the reference electrode in the case of the positive pulse duration, the 

worst uniformity is present when it takes 50% of the period, leaving the other 

50% to the negative pulse. This is probably due to the fact that stimulations 

signals with 30% and 70% Pd stay at a steady value of current density for longer 

times. Furthermore, applying longer positive pulses and shorter negatives pulses 

has better results for the uniformity of electrical potential distribution, seeing 

that Pd=70% provides the best uniformity of the three options in every case, 

which can be seen most clearly on Signal 1-9, where Pd=70% can have a 

standard deviation as little as 2.14%. On the other hand, with electrode 

separation it can be observed how the tendency is to decrease the standard 

deviation (increase uniformity) with increasing the distance; nevertheless this is 

variable, as in the case of positive pulse duration, has little effect on the 

uniformity of the electrical potential distribution along the gel-skin interface. 

When only the electrode separation is changed in the simulation characteristics, 

the maximum variation in the standard deviation is from 4.56% (signal 1-7) to 

3.83% (signal 1-1). The variable that proves to have more effect on the 
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uniformity on the electrical potential distribution is the amplitude of the signal; 

as seen before, this variable can even affect the properties of the tissues, and 

therefore it is not unexpected that it can alter the electrical potential 

distribution. It is noted that the lowest standard deviation of 2.14% (signal 1-9) 

is accomplished with the lowest amplitude studied and reaching a value of 3.48% 

(signal 4-2) in the signal with highest amplitude studied. Now, analyzing the 

active electrode gel-skin interface, it can be seen that standard deviation is 

relatively constant; the electrode distance and positive pulse duration have little 

effect on the uniformity of the electric potential distribution. The amplitude is 

again the variable with more affect on the uniformity; signals with amplitude of 

3.9417 A/m2 have the lowest standard deviations but the rest of the studied  

 

Fig. 4.3.  Probabilistic distribution of the electrical potential RMS values through the gel-skin 

interface when applying signal 1-9. (a) Active Electrode (b) Reference Electrode 
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amplitudes show a relatively equal value of standard deviation. The graph 

clearly shows a higher percentage of dispersion of the data for the active 

electrode, nevertheless the range (difference between the maximum and 

minimum values on a data set) for the most dispersed signal (signal 3-2) is only 

1.305V, making the differences in electric potential almost negligible. Making a 

probabilistic study of the surface data sets of the signal with the lowest standard 

deviation (signal 1-9) with the software Oracle Crystal Ball®, a probabilistic 

distribution of the data was performed, obtaining the graphs in Fig. 4.3. The 

reference electrode shows a little dispersed distribution that tend to be in the 

higher values of electric potential, while the active electrode has a more defined 

group of preferred values in the low electric potential. To understand the 

distribution more clearly, a 3D surface graph was obtained for both interfaces as  

 

Fig. 4.4.  Surface 3D graphs of the electric potential distribution of the gel-skin interface for (a) 

active electrode and (b) reference electrode observed for signal 1-9 
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shown on Fig. 4.4, which readily separates areas of the surfaces according to its 

values and a histogram was created with the frequency of the repetitions for 

each level of electric potential. For the reference electrode (Fig. 4.4 (b)) it can be 

seen how the electric potential reaches peak values on an area that is centered 

and away from the active electrode (most of the nodes on the surface are located 

on this area) and then the electric potential decreases gradually while 

approaching the edges of the surface. On the other hand, the active electrode has 

smaller range of values and most of them on a region between 0.95 and 1.1 V. 

4.2 Current Density Distribution 

The same study was performed for the current density distribution, using the 

same Surface “Data Sets” the expression “Current Density Norm” was selected 

on the “Export” node and the values were exported to Excel to obtain the RMS 

and statistical values shown on Table 4.3 (Reference electrode) and Table 4.4 

(Active electrode). Likewise, a graph summarizing these values was created as 

shown on Fig 4.5.  

 

Fig. 4.5.  Comparative chart of the effect of electrode distance, positive pulse duration and 

amplitude of the signal on the uniformity of the current density distribution on the gel-skin 

interface 
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Signal 
ID 

Signal 
Amplitude 

(A/m2) 

Electrode 
Separation 

(mm) 
Pd 

 
(A/m2) 

σ (A/m2) σ (%) 
Range 
(A/m2) 

1-1 

±3.9417 

85 

30% 3.90993 ± 0.16623 4.25% 1.41187 

1-2 50% 3.87328 ± 0.15373 3.97% 1.40900 

1-3 70% 3.90720 ± 0.15258 3.91% 1.30379 

1-4 

105 

30% 3.90927 ± 0.16741 4.28% 1.44692 

1-5 50% 3.86941 ± 0.15629 4.04% 1.45427 

1-6 70% 3.90708 ± 0.15399 3.94% 1.33949 

1-7 

125 

30% 3.90411 ± 0.16618 4.26% 1.42420 

1-8 50% 3.86874 ± 0.15481 4.00% 1.42781 

1-9 70% 3.90655 ± 0.15282 3.91% 1.32248 

2-1 

±5.7333 

85 

30% 3.94339 ± 0.16499 4.18% 1.28296 

2-2 50% 3.93595 ± 0.17392 4.42% 1.35475 

2-3 70% 3.92711 ± 0.16123 4.11% 1.28380 

2-4 

105 

30% 3.92294 ± 0.16638 4.24% 1.29686 

2-5 50% 3.93302 ± 0.17537 4.46% 1.37073 

2-6 70% 3.92642 ± 0.16227 4.13% 1.30337 

2-7 

125 

30% 3.92488 ± 0.16735 4.26% 1.30788 

2-8 50% 3.93531 ± 0.17469 4.44% 1.37454 

2-9 70% 3.92543 ± 0.16159 4.12% 1.30325 

3-1 

±7.5250 

85 

30% 7.28119 ± 0.24399 3.35% 1.69060 

3-2 50% 7.21665 ± 0.26821 3.72% 1.86297 

3-3 70% 7.19707 ± 0.22427 3.12% 1.64064 

3-4 

105 

30% 7.27226 ± 0.24519 3.37% 1.69018 

3-5 50% 7.26652 ± 0.27044 3.72% 1.86629 

3-6 70% 7.21598 ± 0.22535 3.12% 1.63244 

3-7 

125 

30% 7.27221 ± 0.24370 3.35% 1.72900 

3-8 50% 7.26508 ± 0.26878 3.70% 1.90098 

3-9 70% 7.22208 ± 0.22491 3.11% 1.66852 

4-1 

±14.6916 

85 

30% 13.83194 ± 0.45005 3.25% 2.84616 

4-2 50% 13.77802 ± 0.42804 3.11% 2.68930 

4-3 70% 13.53156 ± 0.40545 3.00% 2.70001 

4-4 

105 

30% 13.75168 ± 0.45050 3.28% 2.85508 

4-5 50% 13.73483 ± 0.43068 3.14% 2.73331 

4-6 70% 13.52910 ± 0.40795 3.02% 2.72694 

4-7 

125 

30% 13.82411 ± 0.44808 3.24% 2.90195 

4-8 50% 13.76324 ± 0.42570 3.09% 2.69688 

4-9 70% 13.54809 ± 0.40075 2.96% 2.75632 
 

Table 4.3.  Arithmetic mean ( ) and standard deviation (σ) of the current density throughout the 

gel-skin interface located below the reference electrode. Positive pulse duration expressed in 

percentage of time of the signal period. 
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Signal 
ID 

Signal 
Amplitude 

(A/m2) 

Electrode 
Separation 

(mm) 
Pd 

 
(A/m2) 

σ (A/m2) σ (%) 
Range 
(A/m2) 

1-1 

±3.9417 

85 

30% 4.03786 ± 0.34896 8.64% 2.37972 

1-2 50% 3.99983 ± 0.34176 8.54% 2.39875 

1-3 70% 4.05156 ± 0.36820 9.09% 2.36373 

1-4 

105 

30% 4.03670 ± 0.34733 8.60% 2.37187 

1-5 50% 3.99624 ± 0.34210 8.56% 2.40225 

1-6 70% 4.05267 ± 0.36926 9.11% 2.34458 

1-7 

125 

30% 4.03378 ± 0.34971 8.67% 2.36508 

1-8 50% 3.99697 ± 0.34307 8.58% 2.39700 

1-9 70% 4.05378 ± 0.37098 9.15% 2.34397 

2-1 

±5.7333 

85 

30% 4.14560 ± 0.49264 11.88% 2.80628 

2-2 50% 4.14298 ± 0.50656 12.23% 2.95179 

2-3 70% 4.12085 ± 0.47343 11.49% 2.76642 

2-4 

105 

30% 4.12571 ± 0.49174 11.92% 2.79126 

2-5 50% 4.14121 ± 0.50704 12.24% 2.93190 

2-6 70% 4.12007 ± 0.47187 11.45% 2.74629 

2-7 

125 

30% 4.13073 ± 0.49720 12.04% 2.80459 

2-8 50% 4.14501 ± 0.50893 12.28% 2.93081 

2-9 70% 4.12071 ± 0.47386 11.50% 2.73880 

3-1 

±7.5250 

85 

30% 7.71184 ± 0.92372 11.98% 4.57345 

3-2 50% 7.66694 ± 0.96563 12.59% 4.91643 

3-3 70% 7.61833 ± 0.89531 11.75% 4.51106 

3-4 

105 

30% 7.70280 ± 0.92047 11.95% 4.50520 

3-5 50% 7.72255 ± 0.97313 12.60% 4.87643 

3-6 70% 7.63868 ± 0.89533 11.72% 4.44014 

3-7 

125 

30% 7.70538 ± 0.92335 11.98% 4.50503 

3-8 50% 7.72416 ± 0.97666 12.64% 4.86887 

3-9 70% 7.64898 ± 0.90138 11.78% 4.44902 

4-1 

±14.6916 

85 

30% 14.69395 ± 1.72815 11.76% 8.36330 

4-2 50% 14.66013 ± 1.75382 11.96% 8.39220 

4-3 70% 14.36645 ± 1.65505 11.52% 8.05956 

4-4 

105 

30% 14.61307 ± 1.72049 11.77% 8.18360 

4-5 50% 14.61662 ± 1.74775 11.96% 8.25125 

4-6 70% 14.36629 ± 1.65361 11.51% 7.93715 

4-7 

125 

30% 14.69303 ± 1.72993 11.77% 8.26058 

4-8 50% 14.65172 ± 1.75471 11.98% 8.28599 

4-9 70% 14.38922 ± 1.65540 11.50% 7.95756 
 

Table 4.4.  Arithmetic mean ( ) and standard deviation (σ) of the current density throughout the 

gel-skin interface located below the active electrode. Positive pulse duration expressed in 

percentage of time of the signal period. 
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Data dispersion on the active electrode is very similar to the one observed for the 

electric potential distribution, showing similar values of standard deviation for 

variations of Pd and electrode distance but showing better uniformity when 

applying a signal amplitude of 3.9417 A/m2. On the other hand, the data 

dispersion on the reference electrode differs from the one observed for electric 

potential distribution. In this case, a relatively constant standard deviation is 

observed for Pd and electrode distance variation, but there is a slight difference 

when applying current densities higher than 5.7333 A/m2. A probabilistic 

distribution was also obtained for the current density distribution as shown on 

Fig. 4.6. 

 

Fig. 4.6.  Probabilistic distribution of the current density RMS values through the gel-skin 

interface when applying signal 1-9. (a) Reference Electrode (b) Active Electrode 
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Fig. 4.7.  Cut Line Data Set for obtaining current density RMS values 

Signal 1-9 was used as example, the same used for the electric potential 

distribution results. The probabilistic distribution for the gel-skin interface of 

the active electrode is similar from the one obtained for the electric potential 

distribution, but with some high peaks obtained for some preferred current 

density values. Meanwhile, the reference electrode shows high preference for a 

high value of current density. These high current peaks might be attributed to 

the edge effect mentioned on Chapter 2 (Kuhn [5]). To observe this effect on the 

finite element model, a Cut Line Data Set was defined through the center of the 

geometry as shown on Fig. 4.7 and the values of current density RMS were 

calculated for the nodes on that line are plotted on Fig. 4.8, and it can be seen 

how to current density tends to be higher at the edges of the interface below the 

reference electrode, specially for the inner edge (the one closest to the reference 

electrode), showing that the edge effect of the electrodes (refer to section 2.4) also 

affects the current density distribution on the gel-skin interfaces. Using the data 

set ranges shown on Tables 4.3 and 4.4 it is clear that the higher the amplitude 

of the stimulation signal the greater is the difference from the lowest value to 

the highest value of current density, which can be attributed to higher peaks of 

current on the edges of the gel-skin interface.  
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Fig. 4.8.  Current Density over the Cut Line Data Set for Signal 1-9 

 

 

Fig. 4.9.  3D surface graphs of the current density distribution of the gel-skin interface below the 

(a) active electrode and (b) reference electrode
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The same 3D graphs were also created for the current density distribution 

(Fig.4.9), where the edge effect can also be observed. Given that the exported 

values necessary for the creation of these graphs that calculated interpolations 

and due to the rapid variations in current densities, some values at the edges are 

peaks of low current densities. In these graphs it becomes more evident that the 

edge effect affects almost exclusively the reference electrode, while the active 

electrode shows a distribution very much like the one seen for electric potential 

distribution. 

4.3  Total Power Dissipation 

In the case of power dissipation, only the 3D surface graphs were obtained to 

observe the areas with greater power dissipations in the gel-skin interface, this 

is shown on Fig. 4.10. The power dissipation distribution is very much like the 

current density distribution, showing peaks of high values for the reference 

electrode and relatively uniform values for the active electrode. Table 4.5 shows 

a summary of average power dissipations for all studied cases and Fig. 4.11 is 

the comparison chart for these values. 

 

 

Fig. 4.10.  3D surface graphs for average power dissipation on gel-skin interface below the (a) 

active electrode and (b) reference electrode 
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Electrode 

Electrode 
Separation 

Distance 
(mm) 

Positive 
Pulse 

Duration 

Average Power Dissipation (W/m) 

Signal 1 Signal 2 Signal 3 Signal 4 

Active 
Electrode 

85 

30% 99.2847821 94.8904448 87.1353946 101.014121 

50% 97.9143191 93.3541122 85.254897 94.5553706 

70% 177.902287 169.672601 151.493394 155.984943 

105 

30% 99.3418216 94.3981721 87.4057149 97.5997067 

50% 97.9260258 93.6797725 84.7014218 94.2085065 

70% 177.878382 170.331013 150.947394 156.003869 

125 

30% 98.8830065 94.5246186 87.1677586 100.969917 

50% 97.3267123 93.0812969 84.9083066 94.2346262 

70% 177.12188 169.574219 150.953221 154.68925 

Reference 
Electrode 

85 

30% 98.822136 94.5113056 86.2166078 101.014121 

50% 97.4482753 93.2295952 84.3736005 94.5553706 

70% 177.439636 169.915904 150.474649 155.984943 

105 

30% 98.8790869 94.5547024 86.4876895 97.5997067 

50% 97.4557631 93.2643325 83.8286122 94.2085065 

70% 177.411452 169.914721 149.934615 156.003869 

125 

30% 98.4316249 94.1189294 86.2539106 100.969917 

50% 96.8663425 92.6646927 84.0329953 94.2346262 

70% 176.664843 169.167688 149.943101 154.68925 
Table 4.5.  Average of the power dissipation throughout the gel-skin interface located below the 

active and reference electrodes. Positive pulse duration expressed in percentage of time of the 

signal period 

 

Fig. 4.11.  Comparative chart of the effect of electrode distance, positive pulse duration and 

amplitude of the signal on the average power dissipation on the gel-skin interface 
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On contrary to electric potential and current density, the amplitude of the signal 

does not have much effect on the average power dissipation, almost all studied 

variations have similar values, nevertheless, for Pd = 70% there are peaks of 

very high power dissipation that render these signals inefficient in terms of 

energy, compared to the other options. 
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Chapter 5[1]–[38] 

Conclusions and Recommendations 

A model for simulating the electrical behavior of the gel-skin interface in 

NeuroMuscular Electrical Stimulation (NMES) was developed using the 

COMSOL Multiphysics® software. The Electric Currents Module was used, 

which employs the Finite Element Method to apply the Maxwell Equations for 

calculating the electrical potential spatial distribution of a geometry based on 

resistivity and relative permittivity of its materials. 

With the model, 36 different variations of signal properties and electrode 

configurations were studied (summarized on table 5.1), obtaining the electric 

potential and current density distributions, as well as average power dissipation 

of the gel-skin interface. 

A uniform distribution of electric potential and current density on the gel-skin 

interface is important for patient comfort and therapy efficiency. Achieving a 

higher uniformity would help improve both aspects. The electric potential 

distribution is more uniform and stable than the current density distribution. 

The best electric potential distribution is achieved with longer electrode 

separation distances, smaller stimulation signal amplitude and positive pulse 

duration of 70% or 30% of the time of the period (positive pulse duration of 50% 

showed the worst results). For the evaluated cases, the signal with best electric 

potential distribution uniformity is signal 1-9 with stimulation signal amplitude 

of 3.9417 A/m2, positive pulse duration of 70% and an electrode separation 

distance of 125mm. The current density distribution on the active electrode is 

also relatively uniform; resembling the one seen for the electric potential, but the 
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reference electrode is greatly affected by electrode edge effects, presenting high 

peaks of current on the edges of the interface. For both electrodes, a lower 

stimulation signal amplitude provides a good uniformity, nevertheless the 

electrode separation distance and positive pulse duration make practically no 

difference, making all signals with the lowest amplitude (3.9417A/m2) a good 

choice. The current density distribution exerts the greatest effect on power 

dissipation, given that both spatial distributions are very alike (higher at the 

edges). Further, the average power dissipation is very similar for all variations 

of amplitude and electrode separation distances but it spikes at positive pulse 

durations of 70%. Taking into account all three variables (electric potential, 

current and power) it would be signal 1-7 the one with the best global uniformity 

and energy efficiency with amplitude of 3.9417 A/m2, electrode separation of 

125mm and positive pulse duration of 30%. 

Unfortunately, these signal properties and electrode configuration can’t be 

applied to every muscle and patient; amplitude of 3.9417 A/m2 might achieve too 

little muscle fiber recruitment and the muscle might not be large enough to place 

the electrodes 125mm apart and such a separation might not provide very good 

accuracy (not region specific). Therefore, the guidelines to achieve good 

distribution uniformity would be: 

1) Apply low amplitude stimulation signals 

2) Place electrode as far apart as possible without compromising stimulation 

accuracy 

3) Apply stimulation signals with positive pulse durations (or duty cycles for 

monophase signals) lower than 50%   

The described model was developed to be easily customizable, so it might also be 

used to further study other types of stimulation waves (triangular, sine, 

monophase), electrode configurations and sizes and material properties by 

simply changing the parameters described on Chapter 3. This could provide a 

way to save on experimentation time and expenses by narrowing down the 

independent variables of experimentation to the most promising ones. 
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Finally, it is recommended to explore other output expressions in the results 

node of COMSOL to obtain more useful information about the simulations 

performed with the described model. 
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