
Instituto Tecnológico de Costa Rica

Escuela de Ingenieŕıa en Electrónica

Improvement of small satellite’s software design

with build system and continuous integration

tools

para optar por el t́ıtulo de

Ingeniero en Electrónica con énfasis en sistemas

empotrados

con el grado académico de

Maestŕıa

Allan Granados
allangj1618@gmail.com

Cartago, Diciembre, 2015

2

Contents

1 Introduction 8
1.1 Previous work focus on small satellites 9
1.2 Problem statement . 11
1.3 Proposed solution . 13

1.3.1 Proposed development . 13

2 Software development approaches for small satellites 15
2.1 Software methodologies used for satellites design 15
2.2 Small satellite design and structure 17
2.3 Central computation system in satellites. Homogeneous and Het-

erogeneous systems . 18
2.4 Different approach on software development for small satellites . 20

2.4.1 Software development: Monolithic approach 20
2.4.2 Software development: Development by component 21

2.5 Open Source tools on the design and implementation of software
satellite . 23

3 Integration of build system for small satellite missions 24
3.1 Build systems as an improvement on the design methodology . . 24

3.1.1 Yocto build system . 29

4 Development platforms 32
4.1 Beagleboard XM . 32
4.2 Pandaboard . 35
4.3 Beaglebone . 38

5 Design and implementation of the construction system 41
5.1 Construction System . 41

5.1.1 The hardware independent layer: meta-tecSat 42
5.1.2 The hardware dependent later: meta-tecSat-target 43
5.1.3 Integration of the dependent and independent hardware

layers in the construction system 44
5.1.4 Adding a new recipe to a layer 46

5.2 Continuous integration system in the tecSat project 46

3

CONTENTS 4

5.2.1 Integration of Jenkins with tecSat Project 47

6 Development and results using the construction system 53
6.1 Construction system information recollected from the build system 53

6.1.1 Construction time . 53
6.2 Required size for construction . 55
6.3 Stability of the construction system 55
6.4 Application development of a hardware independent application . 56

6.4.1 Color space conversion, RGB to YCbCr 57
6.4.2 Development of a hardware independent recipe 58
6.4.3 Deployed images for different targets 58
6.4.4 Result of RBG to YCbCr using the GPP 59

7 Future Work 61
7.1 Support of DSPLINK API . 61

7.1.1 Validation test on the DSP for the Beagleboard XM . . . 63
7.2 RBG to YCbCr using the DSP 64

8 Conclusion 68

List of Figures

1.1 Software development methodology for space exploration projects 12
1.2 Proposed solution for software development on small satellites . . 13

2.1 Cubesat design example1 . 17
2.2 Monolithic development2 . 21
2.3 Development by component3 . 22

3.1 The Y chart approach with the different development stages4 . . 26
3.2 Yocto Project Development Environment5 30
3.3 Building an Image with Yocto6 30

4.1 Beagleboard XM7 . 33
4.2 Pandaboard development board8 35
4.3 Pandaboard general block diagram9 37
4.4 Beaglebone Black10 . 39

5.1 Directories of the construction system11 42
5.2 Layers inside the build system12 45
5.3 Principal Jenkins panel for tecSat project13 48
5.4 Principal Jenkins panel for tecSat project from a cellphone14 . . 49
5.5 Configuration for the tecSat SDK Jenkins job 50
5.6 Console output for the tecSat image beagleboard Jenkins job15 . 51
5.7 Jenkins artifacts on a build16 . 52

6.1 Constructions statistics of the different Jenkins jobs17 54
6.2 Color space transformation in the Beagleboard XM. A) Base im-

age. B) Octave representation of algorithm. C) Conversion by
the GPP18 . 59

7.1 DSPLINK software architecture19 63
7.2 Design representation for the rgb2ycbcr dsp application20 65

5

List of Tables

3.1 Comparison between different build systems21 28

4.1 Beagleboard XM features22 . 34
4.2 Pandaboard ES features23 . 36
4.3 Beaglebone Black features24 . 40

6.1 Construction time for every platform 54
6.2 Required size of the construction system for each platform 55
6.3 Footprint of the different images (minimum packages required) . 59
6.4 Color space transformation on the GPP of the Lena image 60
6.5 Color space transformation on the GPP 60

7.1 Result of DSPLINK examples . 64

6

Abstract

The space exploration is a field that requires the interconnection of different
research disciplines including medicine, biology, physics and of course electron-
ics and embedded systems. Because of this integration of different disciplines,
the development of software for this system can become a challenge. Because
of this, it is important to have a common way to introduce pieces of software
without alter or risk the deployment of the whole system. This work is focus on
the design, development, and result data recollection of a deployment system of
software focus on the space exploration field. It implement the Yocto project as
its main construction system, by which the user can include and/or customize
different pieces of software reducing the dependencies between different mod-
ules. It is also part of this work, the implementation of a continuous integration
system (CI), in charge of reviewing and reporting the status of the final de-
ployed image. This CI system also recollects important information about the
construction of the deployed image as well as its stability during the project
development. Results of the deployed images were tested on different develop-
ment platforms.
Keywords:
Yocto, Linux, OBC, SDR, UML, Stakeholder, Continous Integration, Jenkins.

7

Chapter 1

Introduction

The space exploration is the field which study outer space by using scientific
equipment. It requires the interconnection of different research disciplines in-
cluding medicine, biology, physics and of course electronics and embedded sys-
tems. Space exploration is not new, for centuries the human race have dreamed
about space flights and what is beyond. Since antiquity the Chinese used rock-
ets for ceremonial and military purposes, but it was not until the last hundred
years when the efforts were focus into a new frontier, the space beyond the
Earth. Overcome the Earth gravity was not an easy task, but it led to an inves-
tigation race in the early 20th century between powerful nations as Germany,
Russia and the United States. It was until October 4, 1957, when the Soviet
Union accomplish the first successful orbital launch, the first satellite, called
Sputnik 1. The success of the Soviet satellite program, led to an escalation of
their competitors in order to achieve the same results. Further development in
the related fields help to improve the scope of the different missions, which in
the end, led to many scientific discoveries, including important research in the
electronics field and communications. But why is space exploration so impor-
tant?. Space exploration is important because as humans it helps to address
fundamental question about our existence, our place in the Universe and the
history of the universe around us. It help to expand our technological advance
in different fields and speed up the communication of this advances to all human
race.

The space exploration goes from sending a remote controlled or autonomous
device to outer space, to planetary exploration with manned missions. The
present work focus on the devices placed into orbit in order to recollect and
transmit information, commonly known as satellites. Because outer space is
a hazardous environment, the exploration become a difficult task. The imple-
mentation of low cost, low power and simple embedded systems becomes an
ideal solution, reducing the risk of accidents and speeding up the recollection
of data. The construction of such devices become an important topic, which
comprehend hardware and software development. The methodologies and im-
plementation of the software for satellites are investigated in the present work,

8

CHAPTER 1. INTRODUCTION 9

seeking for an implementation which improve the quality of software and speed
up the development process.

The development of software for small satellites is a challenge, it includes
the budget of the project, the experience of the team members, the development
time and many others [9]. This challenges combines with the need of stable,
efficient and reliable software, making the task even harder. Because of this, the
need for a well defined design, development and construction process is required.
It is a common problem on the small satellites projects, the lack of reusable
and portable software, which usually is wrap in a monolithic design, making
it hard to be of use in other missions in order to speed up the development
or even take advantages of experience obtained in the past. If the design and
development method is defined and consistent, it will help to accurate schedule
the project, take advantages of the experience and reuse pieces of stable and
efficient software. A good and accurate schedule in spacial exploration projects
can result in the execution of the project or its cancellation, specially in a field
were different investigation groups are racing for the same objective[18].

In order to achieve a consistent design and development process, the use of
well know tools and methodologies can be incorporate in the project. These
tools can be from the Open Source community or licensed product for a vendor.
Is a common fear around developers that sometimes, good stable code is only
found on commercial software, while open source code fluctuates with latest re-
leases and improvements [24]. In reality, stable and reliable packages, tools and
code can be found in either commercial or Open Source products, it depends on
the developers integrating the product, to select those projects which demon-
strate its stability. An example of a Open Source project which has proven its
stability is the Yocto project. It balances between the dynamics of the Open
Source cooperative development and the commercial requirements of time line,
cost effective and stable releases [24]. This work present the development of a
software construction project, using Yocto as a central build system. It takes
advantage of the layer methodology to separate different packages in different
levels of abstraction, where platform dependent and independent code can be
separate in order to increase re-utilization. A central configuration system is
designed and implemented in order to fetch, configure and construct the soft-
ware in a way users not familiar to build systems or Yocto can use it and obtain
an image or an SDK for a specific platform in a easy way.

1.1 Previous work focus on small satellites

The space exploration projects has rapidly increase in the last few years. Several
space exploration missions has been developed using small satellites. Those mis-
sions are designed to recollect important data, not only about space, but about
the project development itself. The idea is to give feedback about challenges,
opportunities and what to have into account for a successful mission.

• UPMSat-2 [3]: Project aimed to develop a micro-satellite that can be used
as a demonstration for several research groups. This project uses a LEON

CHAPTER 1. INTRODUCTION 10

family processor for the OBC, which is a 32 bit synthesizable VHDL pro-
cessor core from SPARC V8 architecture. The design of the project is
created on a high level graphical model to capture the different compo-
nents, which finally are traduced into ADA. This project focuses on the
analysis of the WCET (Wort’s Case Execution Time) for the performance
of the system. It shows the power in the uses of a VHDL specialized
processor for a space exploration mission and its flexibility.

• ION Project [9]: The ION satellite are a two micro-satellite constructed by
the University of Illinois. The main purpose of the project is to provide
a large interdisciplinary educational project for engineer students. On
this project is researched the use of off of the shell components and the
difficulties on the satellite designs like cost and development time. This
project implements several external components like cameras and other
sensors and was an evolving project giving more than one implementation
of a satellite. It is shown how the integration of different components is a
very important part of the development and how it can affect the release
for the final satellite.

• RinconSat [13]: This project was developed for the study of a RTOS
for small satellites by the University of Arizona. The OBC used was
base on a PIC16C77 micro-controller from Microchip Corporation. This
project reveals the OS limitation base on the available memory, and for
that reason a simple serial scheduling process was supported. Although
the development time of the project was short and the cost of the satellites
was very low, the hardware limitations reveal the lack of scalability for
future missions using this satellite design.

• DANDE [18]: Started as a student developed nano-satellite project by
the Colorado Space Grant Consortium, its main mission was to study the
effects of space weather and atmospheric drag on a small satellite platform.
They bring the use of a more complex OS, the uClinux version for micro-
controllers. However this version of Linux brings the need for good data
and program separation, because its designed for systems where a memory
management unit (MMU) its not present. They implement a simple single
control loop, where a process checks the memory integrity in case of cosmic
rays memory corruption. Its shows the space exploration community the
advantages of a more complex OS implementation and how the problems
like data corruption may be overcome.

• AlcaSat [19]: This project was born with the RinconSat project, basing its
design on the PIC16C77 and some peripheral ICs. Following the discovers
from its brother project, the limitation on hardware bring the need of
more peripherals to fulfill requirements, for example the need for external
memory to store the program software. It shows how the lack of scalability
on the hardware limit the scope of the project and what could be achieved.

CHAPTER 1. INTRODUCTION 11

• USS Langley [2]: The project objective was to demonstrate the ability to
host a web server in a small satellite using TCP/IP internet protocols and
be accessible to any internet user. In addition, testing space based net-
works against terrestrial networks was intended. This project is specially
interesting because of the use of a Beagleboard TI development board as
the host for the web server. The developers of the project choose the Bea-
gleboard because of its small from factor, customizability and low power
requirements. However the kernel of the board was a 2.6 version, been a
very old kernel version. In addition, the project integrate several process-
ing units, each one with a specific task, which increment the complexity
and power consumption. For example, the Beagleboard, hosting only the
web server, consumed 600mA, increasing the power requirements of the
small satellite.

Each one of the projects mention before, recollected important data and
invaluable experience, however, the implemented software has proven to lack
in scalability and in many cases was impossible to adapt into further missions
because of its platform dependent nature and the monolithic design of the whole
software in the project.

1.2 Problem statement

The design and implementation of software for satellites, even for small satellites,
is a time consuming and multi-disciplinary process, which require great effort
[15]. The demand for more complex functionality arises day to day, in company
of contractions on the development schedules, seeking faster times to market
[31]. In addition, the available resources, money, equipment and personal, de-
termine the development time required [19]. Hence, a good methodology and
development process is required.

In the development of a space exploration projects, in many cases, the de-
tailed specification of the satellite, or the scope of the mission are not known
beforehand, it is necessary to be reverse engineered from the capabilities of the
components and the available development vehicles [9]. In other projects, a well
defined scope is defined and traduced into a System Requirement Specification
(SRS), where the expected behavior and the needs are well documented [26].
On both cases, it is necessary to study the limitations of the design and the
development process[13]. If the development process is not flexible enough it
can not be re-used or adapted in the presence of changes. The lack of flexibility
will require extra development time for its adaptation.

With the available hardware today, greater capacities on the central com-
puter of a satellite can be achieved, given the possibility of using a more robust
software [13]. For example, designs using microcontrollers, usually need exter-
nal memory to store executable programs. Like it is shown on [19], a design
using the PIC16F877, with the available hardware today it can be embedded
in the same chip. However, with the increase of capabilities and versatility, an

CHAPTER 1. INTRODUCTION 12

increase of the software complexity and the occurrence of system errors may be
present[18], more importantly when new software is incorporated. Therefore,
the importance on the development software planning is reflected, which need
to account for the possibility of future work [14], incorporate new technology
and making development advances for future missions. The actual software de-
velopment for space exploration mission is shown in figure 1.1.

Figure 1.1: Software development methodology for space exploration projects

As shown in figure 1.1, for a specific space exploration project, many soft-
ware sources are incorporated. However, the construction and integration use
to be project specific, showing troubles in scalability and software re-utilization.
In addition, when the scope of the project is achieved, the development and in-
tegration process is usually discarded. Its shown the necessity of a development
process capable of fetching from the available software sources and construct
a customize image for the satellite, but with the capability to be use in future
space exploration process and incorporate new software.

To recapitulate, several problems on the actual development for small satel-
lites are found, which can be solve by the incorporation of a scalable and reusable
development methodology.

1. The increase of the software requirements for small satellites.

2. Increase on the time for software components integration.

3. Reduce of the cost and development time of a project.

4. Reduce the learning curve for new developers.

5. Breach between the design methods and the software implementation.

6. Little credibility on the use of open source tools for software development
on space exploration mission.

CHAPTER 1. INTRODUCTION 13

1.3 Proposed solution

Many challenges have been stated, revealing the hard task of working on the
design and development of the small satellite software. Knowing these chal-
lenges, is important to structure and implement a development methodology
which can be easy to implement by developers, adopt currently available tech-
nologies, easy to adapt to the current production process and improve scalability
and re-usability. Because of this, the implementation of a construction system,
using the Yocto project as its internal build system is propose to be incorpo-
rate into the development process for small satellites. This construction system
seeks to separate into different layers of abstraction different software packages,
improving modularization and ease the re-usability of software. The use of a
continuous integration system like Jenkins is added into the project. The con-
tinuous integration system is intended to collect information about the project,
check the stability by schedule constructions and ease the access for users to
deployed images.

1.3.1 Proposed development

One of the main objectives on this research is to study how the proposed con-
struction system using Yocto as its build system, can be used for the software
development of small satellites. In addition, the development of software for
different processors and co-processors is study, incorporating the required de-
velopment tools into the construction systems. On figure 1.2, the proposed
construction system is shown.

Figure 1.2: Proposed solution for software development on small satellites

The proposed solution shown in figure 1.2, separate into abstraction lay-
ers the construction and integration system, using Yocto as the central build
system. The different layers are divided into platform dependent and platform
independent. The platform independent layer contains software independent of
the vehicle. The software contained in this layer can be easy constructed for dif-
ferent projects using different hardware targets, which increase the re-usability

CHAPTER 1. INTRODUCTION 14

of software. The platform dependent layers contains the specific packages imple-
mented for the small satellite vehicle. It also is capable to perform patches and
fine-tuning packages in the layer independent layer, increasing the performance
in the specific satellite vehicle.

Yocto project, as the internal build system for the embedded software of
a satellite, and the implementation of its layer subsystem, can overcome the
problems presented before, and still give support on some of the important
development process used until today. For example, Yocto allows the creation
and packing of an SDK, which can be use by development teams using off-of-
the-shell solution. This will reduce the compatibility risks on the creation of the
different pieces of software with the main operating system of the small satellite
main computer.

It is also possible to open the door on new ways for innovation without risking
the project. It allows an inexperience user to construct an custom software
package for a defined target in a very fast and independent way, leaving the
integration problem to the build system.

Finally a configuration and construction project is proposed. The main
purpose for this project is the easy configuration, selecting from pre-tested con-
figurations the more suited for the selected platform. This configuration fetch
the platform specific and platform independent layers and its in the construc-
tion process when the packages of software are fetched and constructed. The
result output is an specific image or SDK for the selected platform representing
the central computer for the small satellite.

Following on this document, chapter two contain a literature review on soft-
ware methodologies implemented on the software development for space ex-
ploration. It discuss the hardware and software structure for small satellites.
Chapter include a review of open source technologies. Chapter three explores
the integration of the build system to our construction solution. It also dis-
cuss the benefits of Yocto as our central build system. Chapter four review
the platform used as study for the construction system. On chapter five the
design of our solution is implemented. It include the methods to add new pieces
of software from the developers. Chapter six show relevant results compiled
from the use of the implemented construction system. Chapter seven presents
future work on which this research can expand. Finally, in chapter eight, the
conclusions of the present work are stated.

Chapter 2

Software development
approaches for small
satellites

According to Carvajal in [6], the design gap in the field of space explorations
have two dimensions, hardware and software. In the present chapter different
software methodologies used on the development of software for small satellites
are reviewed. Understand how the development process as evolve from the
early days of space exploration will help to comprehend the arising needs in
the field regarding the software development. Once the review of the actual
development are completed, proposing development methodology is possible,
one which not only capable to sustain the actual development, but capable to
create opportunities to improve and innovate.

2.1 Software methodologies used for satellites
design

The development methodology in a project can determine its success or failure.
It is the one in charge of trace the design, limit the scope of what needs to be
done and administrate the available resources in the best possible manner [23].
The space exploration projects do not escape from this, specially the design of
small satellites, which by its size requirements and mission scope, have limited
resources, and limited development time.

Because of the high requirements on quality for the satellites design, very
little room exist for innovation. This causes to use space proven, though often
outdated technologies [9]. Also a lot of money and effort is placed on the devel-
opment of those systems, but with the limitation exposed, the development of
satellites has historically been limited to first world countries with large budgets.

The high integrity of a project is reflected on the standards used. These

15

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES16

regulates the software development due to the high importance of the projects
and the components involved on it [31]. The satellite development lacks of a
well defined standard. There exist several initiatives for standards, however
they are still in the process of acceptance. One example is the presented by the
European Cooperation for Space Standardization (ECSS), an institution that
release several standard documents for space engineering, like the one shown in
[34]. I seek for harmonization of software methodologies for satellites designs.
It centers in modularization of pieces of software in order to increase the re-
utilization. With the modularization, the quality and stability of the code is
increased, been able to corner the pieces of software that may present problems.

Several researches has been done on different methodologies for the design of
small satellites, all of those having in common the search for a simple and intel-
ligent way to expose the design and share the knowledge between a development
team. Known methods used on other fields has been implemented, for example
the use of UML (Unified Modeling Language) diagrams to set the requirements
into a design model. The UML language, take advantage of the graphical facil-
ity to communicate the design model in order to understand the requirements.
Other graphical tool used for the satellite software design is the Matlab tool
Simulink [15]. It uses the blocks to describe the movement of information and
processing data, giving quick simulation results and allowing the validation of
the design.

A very common methodology used on the design of small satellites is the
model driven design [33]. It is an approach that structures the specifications
and guidelines in different models for its study. In addition, different approaches
like the one in [26] are commonly developed. In this approach [26], a new
paradigm is introduced by the use of OPEN-SBM modeling (a methodology
using graphical interface), using the System Requirements Design (SRD) to
generate the development environment.

The University of Southern California made several studies on the optimiza-
tion of the tool SPIDR, which uses a graphical interface to model the system and
test the validity of the model, however the most important part of the project
was to transform those models into software in a automated way, something
that was not achieved [15]. The use of formal languages for the description of
the desire implementation was also approached [11]. This approach was hard to
follow by the development teams because of the high level of knowledge required,
resulting hard to include new personal

As seen, several approaches as been emerging in the last years, specially
with the proliferation of small satellites projects, however, each approach tend
to be an specific solution on the necessities of the immediate missions, lacking
in scalability for future missions. One thing on common amount the different
approaches, is the necessity to separate the software in a modular way. The
proposed solution follow this line of though, encapsulating each piece of software
as its own. In addition, the encapsulation of platform specific and platform
independent code is achieved by the separation in different layers.

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES17

2.2 Small satellite design and structure

In order to design software for a satellite is important to get to know the hard-
ware for what it is designed. The small size satellites, often called pico-sats,
nano-sats or micro-sats, are generally less than 200kg. Its size goes from a
refrigerators to small soda cans [9]. Those small satellites give potential bene-
fits over traditional space satellites, for example, the fast development and the
project cost.

Small satellites provide amazing alternatives to the developer community.
They are driven by ”smaller, faster, better, cheaper, smarter” mentality which
allows these satellites to be build with a fraction of time and cost of traditional
satellites [9].

A design who gaining a lot of acceptance in the developer community is the
Cubesat design. A simple Cubesat is a small satellite, a 10cm cube with the
requirement to be less than 1kg of mass [19]. The dimension of the Cubesat
are one of the only hard restrictions of the design, which needs at least two
dimension of 1U, 1U being 10cm, while the third dimension can be a multiple
of 1U, for example 2U of 3U [8]. Nowadays the Cubesat design is the most pop-
ular because of its development low cost and structural simplicity. A example
Cubesat is shown in figure 2.1.

Figure 2.1: Cubesat design example1

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES18

Small satellites have, as the brain of the mission, an On Board Computer
(OBC). The OBC is the one in charge of the main operation of the system,
including the control of several subsystems. As mention in [3], the software
system of the satellite may be divided in several subsystems.

• Platform monitoring: Is the subsystem in charge of review the state of the
satellite by periodically reading important data and comparing it against
expected performance values.

• Telemetry and telecommand: Satellites are not completely autonomous
systems, they need to communicate the information collected to other
station, or receive orders to perform their mission. This subsystem is in
charge to interact with the telecommunication hardware in order to send
or receive messages.

• Attitude determination and control system: This subsystem is in charge
of the orientation of the satellite with respect to the Earth, and if needed,
takes corrective actions in order to keep within specific values.

Usually all these tasks are handled and controlled by fully separate systems,
but the one in charge of the control and interaction of data is the central pro-
cessing unit OBC. A good integration in a platform with higher capabilities,
may escalate into better performance and more flexibility. In addition the need
for modular software components are shown. This modules will directly map
the different subsystems of the satellite, maintaining coherency.

2.3 Central computation system in satellites. Ho-
mogeneous and Heterogeneous systems

An homogeneous architecture is one with only symmetrical processing units.
It has been the simplest approach for small satellites approach, in some cases,
the used of only one processing unit is prefer by the developers because of its
simplicity. In counter part, the heterogeneous architecture, its a new approach
gaining strength in satellites projects because of its versatility. It involve differ-
ent processing units, each one specialized for a defined task, sharing information
sharing information between each others. The development on heterogeneous
systems is more complicate, which provoke rejection on the developers without
experience, regardless of the possible advantages it may bring. Great debates
have been around the use of different architectures in the space exploration
projects, but all have one point in common, which relate the correct selection of
the architecture to use with the study of the requirements for the final system.

1FUNcube-1 CubeSat Satellite in the ISIS clean room in Delft prior to being launched.
Image taken by Wouter Weggelaar. FUNcube-1 image is reproduced from work created and
shared by Google and used according to terms described in the Creative Commons 3.0 Attri-
bution License

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES19

An incorrect selection of the architecture may involve the failure of the whole
project.

Homogeneous systems are simple, all the processing is performed by one kind
of processing unit. The behavior and the management of data is the same, which
make the things easier for the developers. The memory coherency is an exam-
ple of simplicity on homogeneous systems, which has been taken for granted
in homogeneous multiprocessor and multi-core systems for decades. Instead,
allowing heterogeneous processors with CPU, GPU, DSP, FPGA to maintain
coherency in a shared memory environment is a revolutionary concept. In ad-
dition to heterogeneous systems complexity in software is the communication
between the various processing units[5]. It reveal to be not only a challenge for
the software developers but also for the system designers. They need to have in
mind not only how to unlock the computational performance in parallel systems
by keeping a high integration of the blocks, but also to provide the system with
the means of giving the separate blocks a way to access shared memory and
data to communicate between each other. As mention before, the communica-
tion between different units is a very important and delicate task. As stated
in [22], is important to know the path between the sender and the receiver of
data, in order to determine if the bandwidth for a communication matches the
requirements for an application. If not, it should be redesigned. The energy
requirements of the system are very important, and become specially relevant
when discussing space exploration projects. Satellites energy subsystems must
provide with energy for a large amount of time and with reduce waste. An
evaluation algorithm can be implemented in order to optimize the energy con-
sumption of the system [22]. This algorithm will allow to determine if the use
of a heterogeneous over a homogeneous system justify the developing effort,
however this is left to future research.

For the reasons stated before, the use of heterogeneous systems has not been
very common on space exploration systems, because the increase of complexity
in the project. This increase of complexity has been present even in some ho-
mogeneous systems. For example, the increase on complexity on an application
develop in [5] using x86 processors, provoke the lack of performance and make
it susceptible to radiation, which leads to discard this kind of architectures for
satellites. A 2012 survey by Ramon Chips of processors for high performance
space missions space from 2012, describes the still commonly used the platform
BAE RAD750 achieving 300 MIPS, which has 10.4 million transistors and its
cost is around $200000 USD. Another example from [5] describes the higher
end state-of-the-art Proton 200k single board computer using a TI 320C64xx
DSP sporting 900MFLOP. These systems are expensive and not compatible in
size smallest satellites. By contrast, most small space missions using satellites
in the range of 1-10kg today use low performance and low cost parts. The
simple microcontroller devices use to be commonly selected. Devices such as 8
bit microcontrollers and lower end RISC architectures are frequently used, but
they are not capable of great capacities. Higher performance and capabilities
can be achieve by more complex and robust architectures. Advanced FPGAs
with built in ARM, PowerPC, Microblaze processors are also commonly used on

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES20

space project research, which improves the performance significantly compared
to the lower end microcontrollers, but the complexity of the system and the
code running on it is increased.

The increase of the complexity in the design for a heterogeneous system is
a reality, but its important to have into account conclusions given by [5]. Its
necessary to break the old way of thinking were all high integrated systems
will be useless against radiation. Its proven that a good design make tolerate
the average radiation in space exploration missions. The performance between
architectures is also compared by [5], were state-of-the-art processors for space
usually performs at 900 MFLOP, while the one developed and tested using a het-
erogeneous architecture performs at least 1510 MFLOP at a comparable power
consumption. The significant speed improvement using the co-processors on a
heterogeneous system is important. It lead to the investigation and implemen-
tation of better algorithms to obtain better results. For example in [5] the use
of the GPU for accelerated image analysis using OpenCL, enables the hardware
to reach up to 1000 PAL resolution frames per seconds for certain functions,
which certainly could not be accomplished using simple homogeneous system
with general purpose processing units. It reveals the need of the space explo-
ration development to move to development procedures which allow to take
advantage of new architectures with better capacities. In addition, because of
the complexity to develop for more robust architecture, it is necessary to have
a way to check for the develop code and its integration with the systems, a task
which could be automate by the use of continuous integration systems.

2.4 Different approach on software development
for small satellites

In the review of different methodologies of software design for small satellites,
two software development approaches are clearly defined. The most common
and used method until now is the monolithic design. With this approach, the
software is develop as one entity, having clear interaction and dependency be-
tween the different algorithms implemented. The second development approach
is the design by component. This approach define different components of soft-
ware into a basic modules, where each algorithm can be develop in separate.
Each development process is reviewed in order to understand its benefits.

2.4.1 Software development: Monolithic approach

In the development of software for small satellites, the monolithic was in the
beginning, the simplest and faster development process. The main idea is to
incorporate the applications of the satellite with the main core processes, includ-
ing the operative system if any. On this kind of approach, the result software
for the small satellite can not exist if one of they component is missing or is not
executing correctly.

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES21

Figure 2.2: Monolithic development2

The monolithic software development, as shown in figure 2.2 has its ad-
vantages. Each software part of the system is designed and optimize to work
taking the best capacity possible from the available resources. The designed and
implemented code is highly optimize for the developed platform and strongly
coupled with the other algorithms for the satellites. The code develop with this
approach lacks portability. In case another space exploration is required using
another platform for the satellite, it is required to redesign and re-implement
the software solution. This approach use to be the best for small systems which
only perform a little number of task, as each task must be highly couple with the
others. Nowadays small satellites complexity grows in hardware, and software,
which leads in problems implementing this development approach.

2.4.2 Software development: Development by component

The space exploration gained strength in the last years, specially with the pro-
liferation of small satellites projects, because of this, the need for better designs
arises. Different developers groups are investigating new methodologies and de-
sign paradigms. Something they all have in common is the need of modular
reusable designs in order to reduce cost and development time. The main idea

2Original image. Exemplify the concept from [13] on monolithic development

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES22

is to separate the problem in different modules and use different pieces of soft-
ware and algorithms in order to solve specific problems. This idea is widely
spread in the satellite developers community. One solution is the use of off-
of-the-shell components[9]. Those components are usually bought from third
parties companies or created by specialized research teams inside the project.
The components are later integrated in the project.

Figure 2.3: Development by component3

The use of components allow developers to treat the problems for a mis-
sion in a modular way, as shown in figure 2.3. It leaves the big work load of
the algorithm implementation to a specialized team. The developer team in
charge of each module use to have deeper understanding on the requirements
of the component and how to implement it in a proper way. Development by
component approach is rapidly gaining strength in the satellite development
community, but also arise the need of high quality pieces of software, with high
compatibility, optimize for its sustainability and performance. Development us-
ing this approach need for a integration phase, where compatibility between the
different components are tested and modified in order to construct an image
containing all the software packages.

Yocto as a solution follow this approach. It is a build system that take care
system integration. It allows the developer to focus in the component develop-
ment and rapidly test for the integration of a module with the complete system.
Yocto can include third parties designers only capable of provide the source
code or the binary representation of the component because Yocto build system
is capable of produce an SDK. This SDK has the basic required packages and
development tools to compile an application. By this way, the developers com-
pile their software modules with the same toolchain and tools used to generate
the main OS. It reduces compatibility on the integration phase.

3Original image. Exemplify the concept from [4] on design by component

CHAPTER 2. SOFTWAREDEVELOPMENTAPPROACHES FOR SMALL SATELLITES23

2.5 Open Source tools on the design and imple-
mentation of software satellite

The use of Open Source tools on space exploration projects are usually rejected
by the instability of packages between versions and releases. It is common to
think that the required stability will only be found from commercial software,
however, this is not true. There are several Open Source software with very
stable lines of development. This project have big developer communities be-
hind, which give support and provide a good quality to the product. One good
example is the Yocto Project, a build system which come to bring stable releases
and serves to build stable constructions systems [24].

From the presented challenges until now in the development for small satel-
lites, the opportunity to create a better development process is available. In
this research, different stable Open Source projects are proposed to address
a solution for these problems. To ease the configuration and construction, a
construction project is created. This construction system envelop several ab-
straction layers separating platform dependent and independent code. It also
abstract the configuration and construction of the underlying build system, pre-
senting only the output images to the user. The use of a Open Source build
system to take care of the construction and integration of code is used by the
construction systems. It takes the different layers of abstraction and integrate
into one build. In addition a Open Source continuous integration system is in-
cluded in the analysis of the project. Its function is to capture important data
about the development process, capture possible errors introduced and report
the stability of the different layers of code.

Chapter 3

Integration of build system
for small satellite missions

A build system is a suite of programming tools arrange to perform a construction
task without the intervention of the user. This process can be as simple as
generating the structure for a project, to the hard task of creating a complex
operative systems and specific pieces of software. The selection of the correct
build system to use depends on the requirements of your project and how can
be adjusted to it. In addition, how well supported the project is and how the
developer can adapt to work under it must be take into consideration. In this
chapter we focus on the study of different build systems available on the Open
Source community, and determine which one is the best fit for the proposed
solution on software development for small satellites.

Several types of build systems are available today, each one trying to solve
a specific necessity. The problem they are designed to solve determine the way
it works and how it is implemented. The study build systems are Buildroot,
PtxDist, LTIB, OpenWRT, OpenEmbedded,, Geento. There are many more
build systems available in the Open Source community, however, the selected
are the more robust and with the biggest support by active communities. This
avoid to use a solution that will be deprecated in a few mounts.

3.1 Build systems as an improvement on the de-
sign methodology

The design of a embedded system is not an easy task specially for small satellites.
There are several groups of design and development for software and hardware.
They are working together on the creation of a functional system which solve
in the best way the specified requirements. Several design approaches can be
choose in the development of a small satellite. It may go from the aspect of using
available hardware or one that can be created, to which software is available

24

CHAPTER 3. INTEGRATIONOF BUILD SYSTEM FOR SMALL SATELLITEMISSIONS25

or can be implemented, basically hardware versus software approach. How to
connect both aspect in a final product will define how effective the development
process is. As more complex design and implementation is required, the final
cost and development time for the release of a system is increase. This time can
be the inflection point on the decision to launch or not a project. Because of this
is important to find an approach that could coexist and improve the hardware
and software development.

This research focus on the software for the small satellite, however the pos-
sible development solutions proposed doesn’t have to ignore the fact that the
platform running the software may not be already available. This is the real-
ity several projects today, where the hardware of the system is under design,
development, or studies to be acquired when the software begging its design
and development. Because of this, a flexible approach of development should
be selected. It should be able to show results on early stages of development
and can be quickly ported to new platforms. On the cases where changes on
the platform are perform, build systems are a great decision for a project, but it
must be in companion of a good development methodology. For example, if the
Y chart methodology is implemented, the software development can advance
on the system level and detect malfunctions or lack of accomplishment on the
requirements. The use of a build system will bring the flexibility to rearrange
the software to still be functional on the next iteration of development where
changes on the platform can be implemented.

As stated in [20], the Y chart it is a methodology to provide designers with
quantitative data by analyzing the performance of architectures by a given set
of different application. It gives the designers a concrete idea of how the final
product behave, but the important part of the methodology is the flexibility
on going back to stages where deep infrastructural changes can be made. As
stated in [10], the methodology makes the assumption that each design can
be modeled in three basic ways, which emphasize different properties, those
properties are design behavior (function, specification), design structure (netlist
, block diagram), and physical design (layouts, boards, packages).

This kind of methodology approach allow to develop several phases in a par-
allel way. More important, it allows to obtain early results on the performance of
a system. By these results, the designers are able to detect problems, or change
the approach of a problem solution in a early stage of the project, reducing the
risk. With this approach there’s room for the application software developers,
to adapt in the best possible way its development, base on the performance re-
sults and the modifications performed by hardware. This is only possible with
the use a good build and construction methodology. With a modular develop-
ment in stages like the one shown in figure 3.1 is where a flexible build system
increase the productivity of the software developers, where with small changes
on the only required pieces of software, the final software can be available to be
run on on the available platform on early stages of development. This kind of
development will return early performance results to designers.

CHAPTER 3. INTEGRATIONOF BUILD SYSTEM FOR SMALL SATELLITEMISSIONS26

Figure 3.1: The Y chart approach with the different development stages1

The use of a build system can improve the development on a project, how-
ever, What is the best build system to use?. The response to this question
depends on the specific requirements of the project, because a solution which
work for the development of automotive projects will not be the suited on the
design of software for space exploration. There are a number of build systems
available which solve different necessities and they are better suited for differ-
ent applications. Next we cite the different build system that were taken into
consideration.

• Buildroot: It is a very easy to use build system to generate Linux sys-
tems, base on a set of Makefiles and patches, which are in charge of the
generation. It can generate the toolchain, a root filesystem, kernel and
bootloader images. It is very popular and mainly used between people
working with small embedded systems which required customization [21].
Buildroot is better suited for kernel developer more than application devel-
opers, although they are not excluded as Buildroot has a simple structure
to understand.

• PtxDist: It is a build system designed for the creation of your own Linux
distribution, as they state, it is not a distribution, but what they call ”a
executable documentation”, comprising all the steps necessary to create
a customize complex distribution for the target system, been in majority
easy to use for a inexperience user.[36]. PtxDist is a easy build system,
however several steps on its configuration are better if they are performed
by experience users. Once configured, the creation of build systems are
straight forward. This build system has really good documentation about
Linux porting, drivers incorporation and bootloader porting.

1Original image. Exemplify the concept from [20] on the early results on development

CHAPTER 3. INTEGRATIONOF BUILD SYSTEM FOR SMALL SATELLITEMISSIONS27

• LTIB: It stand for Linux Target Image Builder and is a tool that can
be used to develop and deploy board support packages (BSP). It supports
different architectures like ARM and PowerPC [16]. LTIB has a very gran-
ular configuration and incorporate over two hundred packages, however for
the non experience user its configuration can be tricky and exhausting.

• OpenWRT: It is know as a Linux base distribution, which instead of pro-
viding a static single firmware, provides a fully writable filesystem with
package management, freeing the user from the target application config-
uration [25]. Its easy to use but it stay as only a Linux base distribution.

• OpenEmbedded: It is a build framework for embedded Linux. It offers
a best-in-class cross-compile environment. It allows developers to create
a complete Linux Distribution for embedded systems supporting many
architectures, multiple releases peer architecture, easy configuration, tools
to increase the speed of construction and with a lot of supported packages
which can be integrated in the final image [28]. It is the base for other build
system like Yocto, on which this document discusses in further sections,
however, because is so big, its structure is a little messy and developers
can be easy mislead on the quantity of files and configuration knobs.

• Yocto: The Yocto Project is an open-source collaboration project focused
on embedded Linux developers. Among other things, the Yocto Project
uses a build system based on the OpenEmbedded (OE) project, which
uses the BitBake tool, to construct complete Linux based images. The
BitBake and OE components are combined together to form Poky, a ref-
erence build system [32].You can use components from the Yocto Project
to design, develop, build, debug, simulate, and test the different packages
for different platforms.

• Geento: It is a free operating system based on either Linux or FreeBSD
that can be automatically optimized and customized for just about any
application or need. Extreme configurability, performance and a top-notch
user and developer community are all hallmarks of the Gentoo experience
[12]. However as OpenWRT it is only a System distribution.

The construction system proposed on this research will use a build system
as the central point of configuration and construction. This build system must
accomplish several requirements beside fit the solution proposed. It also must
support modularity of the solution, been stable and well documented and have
a good community support between other characteristics. On the next table is
shown a review of the different features of the mention build systems. The build
systems focus as only base distribution are not taken into account as its design
as only distribution systems do not fit into the proposed modular solution.

2Comparison between different build systems. Information taken from [12], [32], [28], [25],
[16] and [36]

CHAPTER 3. INTEGRATIONOF BUILD SYSTEM FOR SMALL SATELLITEMISSIONS28

Table 3.1: Comparison between different build systems2

Feature Yocto BuildRoot LTIB PtxDist
Runtime
package

management

Yes No No No

Requirement
for full
builds

No Yes No Yes

Support for
multiple

HW

Yes Yes Yes Yes

Number of
sponsors

47 11 1 11

Available
packages

more than
7500

more than
600

Data not
available

Data not
available

Base license
of the

project

Mix of MIT
and GPLv2

GPLv2 GPLv2 GPL

Base
language

Phyton Makefiles
syntax

Kconfig and
Perl files

Makefiles
syntax

Allow new
packages

Yes Yes Yes Yes

Each build system counts with their special characteristics which make them
unique. Is up to the developer to choose a build system which fit the best for
its application. In the case of software development for space exploration, and
specially for the proposed solution, the modular capability is very important.
Having runtime package management allow to apply modification to the config-
uration and construction of a package in a dynamic and modular way, having
the build system resolve the order of modification by priorities set beforehand.
It is very important the support the build system has from the community,
because it assure a longest live, more documentation available and more devel-
opers capable of bringing help around the world. In addition, the development
for small satellites has not grow enough on the software side, relaying on tools
or third parties for the software development. Because of this seeking for a easy
to learn language for the development of the build system is necessary. Yocto
base its recipes of Python language, it is not the best language around, but it
is very easy to learn and understand in a high level.

A very important steps of the research is the selection of a build system
as center piece of the construction system. Yocto build system fulfill several
of the requirements mentioned before on the construction of the small satellite
software. The reason of the selection of Yocto as build system are listed as
follow.

CHAPTER 3. INTEGRATIONOF BUILD SYSTEM FOR SMALL SATELLITEMISSIONS29

• Allow OS customization.

• Allow package customization and version selection.

• Minimal or none impact on packages customization.

• Reduce developers effort on software modification.

• Good support for the Open Source community.

• Count with stable and proven releases.

• Flexibility on platform changes, intending to reduce packages changes.

3.1.1 Yocto build system

The Yocto Project is an open-source collaboration project focused on embedded
Linux developers. Among other things, the Yocto Project uses a build system
based on the OpenEmbedded (OE) project, which uses the BitBake tool, to
construct complete Linux based images. The BitBake and OE components are
combined together to form Poky, a reference build system [32]. You can use
components from the Yocto Project to design, develop, build, debug, simulate,
and test the different packages for different platforms. Yocto is not just aim to
develop an OS distribution, or a piece of software, Yocto is more complete than
that. It allows the developer, by the use of different recipes, to describe pro-
cess of construction for any kind of project. The different projects to construct
with Yocto goes from the construction of a toolchain or the construction of
the OS for a specific board, to the compiling process of a simple hello world ap-
plication. On figure 3.2 is illustrated the development environment using Yocto.

For the development process presented on this research, the Yocto project
is used as the core build system of a construction system capable to construct
the operative system of the small satellite. It is also capable of construct and
deploy an SDK with the available packages and the tools by which the software
of the small satellite is generated. The packages of software that will be run on
this OS can be also be constructed by itself, giving the choice to construct only
the required package. The selection of the final output is selected by the user
of the build systems. This process is exemplify in the figure 3.3.

Using a build system like Yocto for the design and implementation of small
satellites will be an improvement on the development methodology used until
now. It increase the availability of resources and its maintenance, taking advan-
tage of a big community behind it. The use of the build system will impact on
the development time, the cost, the scalability and the stability of the project.
The modularity given by this tools will also help to improve the development
process, allowing more specialized groups to include and work on different pieces
of software without disrupting the integrity of the whole project.

3Original image. Illustration of the Yocto environment from [32]
4Original image. Exemplify the building output selection taken from [4]

CHAPTER 3. INTEGRATIONOF BUILD SYSTEM FOR SMALL SATELLITEMISSIONS30

Figure 3.2: Yocto Project Development Environment3

Figure 3.3: Building an Image with Yocto4

Yocto Layers

The Yocto project allows the creation of different layers to organize the different
Metadata and recipes that will be use in a project. This layers allow to encapsu-
late all the necessary packages and configuration necessary. The main purpose
of layers is to isolate different types of customization from each others[32]. This
layer methodology allow developers to keep things in a modular way, encapsu-
lating images with certain packages, and deploying the correct output(an image
or a package) for the selected target.

Inside each the layers, the developers can keep all packages separated and
well organized by using recipes. The recipes may be divided by the kind of
support they give. For example you could divide the BSP configuration on one
recipe, while keeping the GUI packages in other, or the networking packages in
another, and so on. On the current proposed solution, the layer subsystems is an

CHAPTER 3. INTEGRATIONOF BUILD SYSTEM FOR SMALL SATELLITEMISSIONS31

important exploited advantage. Hardware dependent and independent pieces of
code are separated and grouped in different layers. In addition, different target
dependent layers are develop in parallel, which allow developers to switch from
platform to platform in a easy and quick way.

Chapter 4

Development platforms

The flexibility in the support for different platforms is one of the advantages
of the current implementation. It allow the support for different development
boards with different capacities and different cores. It even allow to include new
targets in the future. For example, platforms with single or multiple processing
units in symmetric or asymmetric architecture can be added to the construc-
tion system. Supporting different targets may help in the fast development for
different missions with different requirements. In addition, having support for
different target can be used to compare performance and determine which one
is better suited for an specific mission. The small satellite development lower
the cost of the its target vehicles, however the are not available to all develop-
ers groups, having prices around $4000 USD to even $15000 USD. Because of
the high prices, researching about new available vehicles which meet the desire
requirements for a space mission becomes really important. Even the research
on target vehicles with similar characteristic on the final available target can
enable developers to start the software development. The target development
boards for this project are developed by Texas Instruments, they are Open
Hardware projects which allow the user to have knowledge and some specific
insights on the used architecture and BSP. Some of these vehicles were used for
space projects or are in the scope for possible future missions.

4.1 Beagleboard XM

The Beagleboard XM is a low cost ARM Cortex A8 board which has compat-
ibility with several Cortex A8 processors manufactured by Texas Instrument.
Which processor is used depends on the revision and the capabilities desired for
the board. There are version of the board with a DM3730 and AM3715 pro-
cessors. The main difference is the DSP, which is not included in the AM3715
version. The version used on this project is the one with the DM3730 processor.

The Beagleboard XM was born from the original Beagleboard project, which
was a development board with a Omap3530 SoC. The newest version, the Bea-

32

CHAPTER 4. DEVELOPMENT PLATFORMS 33

gleboard XM, is a more powerful board, with higher operation frequency of
its processor and its DSP, with new features like a uSD, camera header and
over-voltage protection.

Figure 4.1: Beagleboard XM1

The Beagleboard XM shown in figure 4.1 is a development board aimed to
the Open Source community, equipped with the many features to experience the
processor capabilities but not intended as a full development platform, instead
is a first step for a more complete design. This board used standard interfaces
making it highly extensible to add more features. All of the design information
is freely available and can be used as the basis for a product [35].

Many of the Beagleboard XM features are shown in the next table.
The Beagleboard XM used on this project is the one with the DM3730CBP

1GHz processor which comes in PoP package, a technique where the processor
is mounted on top of the processor. This is a important piece of information,
although the benefits of a PoP package at electrical level, also because when you
look into the board, you will not see the number part of the processor, instead
you will see the part number of the memory.

The Beagleboard XM has been use in space exploration missions before. One
example is the USS Langley mission, on which the Beagleboard was include on

1Original image. Picture of Beagleboard used for development
2Beagleboard XM features taken from [35]

CHAPTER 4. DEVELOPMENT PLATFORMS 34

Table 4.1: Beagleboard XM features2

Component Feature
Processor Texas Instruments Cortex A8 1GHz

processor
PoP Memory Micron 4Gb MDDR SDRAM

(512MB) 200MHz
PMIC TPS65950 Power Regulators, Audio CODEC,

Reset, USB OTG PHY
Debug Support 14-pin JTAG, GPIO Pins, UART, 3

LEDs
PCB 3.1 x 3.0 (78.74 x 76.2mm), 6 layers

Indicators Power, Power Error, 2-User
Controllable, PMU, USB Power

HS USB 2.0 OTG Port Mini AB USB connector, TPS65950
I/F

HS USB Host Port SMSC LAN9514 Ethernet HUB, Up
to 500mA per Port if adequate
power is supplied, 4 FS/LS/HS

Ethernet 10/100 from USB hob
Audio Connectors 3.5mm L+R out, 3.5mm Stereo In

SD/MMC Connectors MicroSD
User Interface 1-User defined button, Reset Button

Video DVI-D, S-Video, Supports Leopard
Imaging Module

Power Connector USB Power, DC Power
Overvoltage Protection Shutdown at Over voltage

2 LCD Connectors Access to all of the LCD control
signals plus I2C, 3.3V, 5V, 1.8V

Auxiliary Audio 4 pin connector, McBSP2
Auxiliary Expansion MMC3, GPIO,ADC,HDQ

the research for an internet server to access the satellite. The research study the
radiation levels on which the vehicle where still functional. The Beagleboard was
fully functional to a total dose of 35 Krad(Si). After a dose of 40 Krad(Si)/s, the
functions in the board start to present errors [1]. However, the Beagleboard SoC
has bee detected to not be too stable working on batteries as power source. The
instability of a power source can be troublesome for the OMAP family SoC’s.
Regard this limitation, the use of the Beagleboard caught the attention in this
research as a target vehicle because it allow developers the early development
of software for a space exploration.

CHAPTER 4. DEVELOPMENT PLATFORMS 35

4.2 Pandaboard

The Pandaboard is a development board designed by Texas Instrument. The
SoC of the Pandaboard may vary between the Omap4430 or the Omap4460
(it depends on the board revision), been the latest the one known as the re-
vision ES of the Pandaboard. It has a dual core ARM cortex A9, giving a
Symmetric Multiprocessing (SMP) capability. It counts with a graphics core, a
POWERVR SGX540, capable of supporting actual graphics API’s as OpenGL
or OpenVG. The SoC of the Pandaboard contain a DSP subsystem, base on
TMS320DMC64x very long instruction word DSP Core. Also a IVA-HD sub-
system image and video acceleration. The Pandaboard also counts with a ARM
Cortex M3 processors. The M3 may be programmed for specialized purposes
and communication between the different subsystems. The Pandaboard have
peripherals to interact with the processing system as USB ports to connect key-
boards, mouse, camera, and other USB devices, HDMI ports, a 3.5 jack for input
and output audio allowing stereo input support, SD connector card, 10/100Mb
capable Ethernet connection, wireless connection by WiLink, supporting 802.11
b/g/n and bluetooth, and many other peripherals[30]. The Pandaboard ES used
on this research is shown in figure 4.2.

Figure 4.2: Pandaboard development board3

3Original image. Picture of Pandaboard used for development

CHAPTER 4. DEVELOPMENT PLATFORMS 36

The available Pandaboard in which the generated OS is tested is the ES
revision. This revision contains an Omap4460 SoC, however the build system
is intended to support the Omap4430 version. For the rest of this document we
refer to the Pandaboard ES. The next table, taken from the system reference
manual of the board [29], list the different features of the board.

Table 4.2: Pandaboard ES features4

Component Feature
Processor Omap4460

PoP Memory Elpida 8Gb LPDDR2
(EDB8064B1PB-8D-F)

PMIC TI (TWL6030 Power Management
Companion IC)

Debug Support 14-pin JTAG, GPIO Pins, UART
via DB-9 connector, LEDs

PCB 4.5 x 4.0 (114.3 x 101.6 mm), 8
layers

Indicators 3 LEDs (two user-controlled, one
overvoltage indicator)

HS USB 2.0 OTG Port Mini-AB USB connector, sourced
from OMAP USB Transceiver

HS USB Host Port Four USB HS Ports, up to 500mA
current out on each, two onboard

connectors, two expansion
connectors

Audio Connectors 3.5mm, L+R out, 3.5mm, Stereo In
SD/MMC Connectors 6 in 1 SD/MMC/SDIO, 4/8 bit

support, Dual voltage
User Interface 1-User defined button, Reset

Button, SYSBOOT3 switch
Video DVI-D or HDMI, Optional user

provided plug-in display
Power Connector USB Power, DC Power

The Pandaboard ES, using an OMAP SoC present the same problems as
the Beagleboard regarding instability when powered by batteries or alternate
power supplies which may present variations. However, the Pandaboard present
a powerful core processor, the Arm Cortex A9, very common in the development
of advance embedded systems and with great capabilities for the development of
space exploration missions. It also present different subsystems, which extend
the possibilities for developers to develop and test software which communicate
between each other. On figure 4.3 is shown the architectural block diagram of
the Pandaboard ES and its subsystems.

4Pandaboard features taken from [29]
5Image which exemplify the different subsystems in the Pandaboard [29]

CHAPTER 4. DEVELOPMENT PLATFORMS 37

Figure 4.3: Pandaboard general block diagram5

As shown in figure 4.3, the OMAP4460 is composed of the following subsys-
tems.

1. Cortex-A9 microprocessor unit (MPU) subsystem, including two ARM
Cortex-A9 cores capable of operation at 1.2GHz.

2. Digital signal processor (DSP) subsystem.

3. Image and video accelerator high-definition (IVA-HD) subsystem.

4. Cortex-M3 MPU subsystem, including two ARM Cortex-M3 microproces-
sors.

5. Display subsystem.

6. Audio back-end (ABE) subsystem.

7. Imaging subsystem (ISS), consisting of image signal processor (ISP) and
still image co-processor (SIMCOP) block.

8. 2D/3D graphic accelerator (SGX) subsystem.

9. Emulation (EMU) subsystem.

The Pandaboard has an Omap4460 processor, the heart of the development
board, which implements a 38.4 MHz 1.8V CMOS square-wave oscillator share
with the TWL6040 audio companion. This clock is also used as a PLL input
within the OMAP processor so that it can generate all the internal clock frequen-
cies required for the system. The processor is based on the OMAP architecture
of Texas Instrument, which uses 45nm technology. Because of the high integra-
tion of the technology used for the OMAP architecture of the Pandaboard, it
very susceptible to radiation. It is recommendable to perform further analysis
in order to validate the effects of radiation in the board. This analysis is beyond
the scope of this research. The Omap4460 support high level operating systems
such as Windows CE, WinMobile, Symbian, Linux, Palm OS and Android[29].

CHAPTER 4. DEVELOPMENT PLATFORMS 38

The Pandaboard ES is a great development board with a lot of capabilities.
It counts with the support of Open Source community which move with the
latest news available, making it easy to use, specially for the central processing.
The available diversity in different subsystems make available to developers to
design, develop and test pieces of software which can be ported later if necessary.

4.3 Beaglebone

The Beaglebone development board is a platform developed by Texas Instru-
ment, with the main purpose to create a easy to use target to experimented
developers and the new developers joining to the embedded world. There are
two flavors of the Beaglebone. The white version, a development board around
the $89 USD, with a DSP, integrated DFI chip and on chip JTAG for debugging
purposes. The black version is the latest edition, designed to address the Open
Source Community, early adopters, and anyone interested in a low cost ARM
Cortex-A8 based processors because its price its around the $45 USD [2]. The
construction system has support for both version of the Beaglebone, as its main
differences are addressed by they device tree files, however the related testing
shown in this research its developed on the Beaglebone Black (BBB).

The BBB has been equipped with minimum set of features to experiment
with, however its not designed to be a full development platform, neither to
be the main computer for a satellite, as some features of the processor are not
accessible from the BBB interfaces. Both version allow the use of add-ons boards
called capes, to add many different combinations or features to the ones already
provided [7]. On figure 4.4 is shown the Beaglebone Black used for the research.

Both version of the Beaglebone are design to be compatible between each
other as much as possible, but there are several areas of differences between
both of them. The more important difference is in the processor, which continue
being part of the AM3xx family, but present an increase in its speed (1GHz).
In addition, there’s no JTAG emulation over USB on the BBB as no serial port
by default is present. The BBB add an on-board managed NAND (eMMC) of
2GB and 512MB DDR3L, which is a increase of size and a performance boost
with cost reduction. Next are shown some of the BBB features [7].

The Beaglebone Black has been widely accepted on the Open Source Com-
munity, opening the embedded world to a lot of new developers. On this project,
the BBB support is added to show the scalability and the capability of multiple
platform support of the build system. Its beyond of this research a radiation
analysis and other requirements to validate the board as a satellite vehicle. In-
stead, we focus in its capability of supporting the software of the satellite and
the advantages it may add to the project. In addition, its support allows the
developers to use a simple board, easy to acquire, with good support and easy
to program, increasing its experience with embedded systems. Furthermore, the

6Original image. Picture of Beaglebone Black used for development
7Beaglebone Black features taken from [7]

CHAPTER 4. DEVELOPMENT PLATFORMS 39

Figure 4.4: Beaglebone Black6

capabilities shown on the SoC of the BBB can be compared with more com-
plex board which may be complaint with the requirements of space exploration
missions.

CHAPTER 4. DEVELOPMENT PLATFORMS 40

Table 4.3: Beaglebone Black features7

Component Feature
Processor Sitara AM3359AZCZ100 1GHz,

2000 MIPS
Graphics Engine SGX530 3D, 20M Polygons/S
SDRAM Memory 512MB DDR3L 800MHZ

Onboard Flash 2GB, 8bit Embedded MMC
PMIC TPS65217C PMIC regulator and

one additional LDO
Debug Support Optional Onboard 20-pin CTI

JTAG, Serial Header
Power Source miniUSB USB or DC Jack, 5VDC

External Via Expansion Header
PCB 3.4 x 2.1, 6 layers

Indicators 1-Power, 2-Ethernet, 4-User
Controllable LEDs

HS USB 2.0 Client Port Access to USB0, Client mode via
miniUSB

HS USB 2.0 Host Port Access to USB1, Type A Socket,
500mA LS/FS/HS

Serial Port UART0 access via 6 pin 3.3V TTL
Header. Header is populated

Ethernet 10/100, RJ45
SD/MMC Connector microSD , 3.3V

User Input Reset Button, Boot Button, Power
Button

Video Out 16b HDMI, 1280x1024 (MAX),
1024x768,1280x720,1440x900

,1920x1080@24Hz, w/EDID Support
Audio Via HDMI Interface, Stereo
Weight 1.4 oz (39.68 grams)

Chapter 5

Design and implementation
of the construction system

On the present chapter, the design and development of the construction system
is reviewed. The construction system is constructed in a modular way to fulfill
the requirements of scalability and reusable pieces of software. The construction
system follow the design pattern described in figure 1.2. It is intended to take
pieces of software for different sources and integrate it into one construction
system in order to generate a functional image.

The construction systems uses Yocto project as its internal build system,
abstracting the set up process from the user. It encapsulate the basic packages
needed and the for a target board, which allow the easy selection and configu-
ration of a custom Linux OS distribution, ready for the deploy and testing on
the selected target.

5.1 Construction System

The construction system is the principal abstraction layer of the proposed so-
lution. It is a simple but powerful encapsulation made around the principal
components of the proposed solution. The basic idea of this encapsulation is to
be able to overcome the difficulties of change or modification of internal com-
ponents, including the build system. This abstraction layer allow developers to
focus on specific tasks without worrying about integration, leaving this task to
developers specialized in the construction systems itself.

The construction system structures is shown on figure ??. The construction
directory structure is designed to be as simple as possible in order to avoid
proliferation of files, on which developers may get lost. The Makefile.inc file
contains definitions of variables necessary for the construction of the project. It
includes the URL’s of the different repositories, the configuration files needed
and the required structure of the project once is configured. The different
configuration files are located at tools/config files. Each pair of bblayers.conf

41

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM42

and local.conf files exist by available hardware target and are in charge of the
full configuration of the system. On tools/scripts there is the principal script
of the construction system, build script.sh. This script source the environment
of the core build system, in this case Yocto build system. It also take care of
triggering the construction of the system.

Figure 5.1: Directories of the construction system1

All the process is controlled by the Makefile. It is the one in charge of provide
the different targets available to the user as config, build, clean, distclean and
help. It is the one in charge to interact with the user of the build system. It is
designed to be as simple as possible to the user, which is in charge of provide
a few simple targets in order to construct an image for a target. In order for
the construction of an image the only necessary targets are config and build
targets. The config target will fetch all the layers necessary, dependent and
independent from the hardware. The build target will trigger the build system
for the construction of the image.

5.1.1 The hardware independent layer: meta-tecSat

The meta-tecSat layer is a custom Yocto layer created to keep all the hardware
independent configurations and packages for the system. It allows the user add
this layer and it dynamically select the wanted packages to create a simple and
functional image, including the configuration for the custom distribution. The
created images are base on Linux. Currently the layer support three different

1Original image. Directories of the construction system

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM43

image types, tecSat-image-minimal, tecSat-image and tecSat-image-dbg. It also
declare an environment standard variable indicating the inclusion of packages
from a hardware dependent layer. The tecSat-image-minimal is a minimal cus-
tomize image base on Linux, which allow a functional system to boot up with the
minimal support of a Linux system. The tecSat-image is base on the minimal
image, but it add the more packages defined by the user which will represent the
specialized software for the satellite. When developers add independent pieces
of code for specialized functions in space exploration, they will be added to this
image. The third image available is a debug image, base on the tecSat-image.
It adds debug packages with capabilities to support eclipse debug and packages
to review performance. For example, this images add packages capable to do
tracing at user or kernel level.

Inclusion of the meta-tecSat layer allow the customization of the distribu-
tion. By specifying in the local.conf file the distribution type wanted, it may
be a tecSat distribution or a normal poky distribution. The tecSat distribu-
tion contains special configuration which avoid not needed packages in order
to reduce footprint of the whole image. By itself, the meta-tecSat layer is not
capable of the entire construction of the system. It is require to associate this
layer with a platform dependent layer in order to assure the correct construction
of the image. Otherwise the target platform for which the construction is made
may not be available or may contain undesired features.

The different layer implemented has its own priority. The meta-tecSat layer
has lower priority than the hardware dependent layers. The reason for this
design constrain is to allow platform specific modification, which should be
append to the original recipes in the meta-tecSat layer by the recipe appends
methodology. Those appends could include patches and new pieces of software
in order to increase the performance of the package but only if necessary.

5.1.2 The hardware dependent later: meta-tecSat-target

The hardware dependent layers are the custom Yocto layers created in order
to keep all configuration and special packages which depends strongly of the
target platform they are executed. Example of this packages are the kernel and
the bootloader. The hardware dependent layers are interchangeable between
each others, been only one needed and used at the time. Which layer is used
depends on the selected target and specified in the local.conf file of the Yocto
build system. If other layers besides the one referring the target exist, they are
simply ignore.

The convention for the name of the layer follow the pattern meta-tecSat-
target, where target must be replaced with the name of our target platform.
For example, if our target platform will be a Beagleboard, the name of our
hardware dependent layer will be meta-tecSat-beagleboard. This approach allow
developers to create new layers in the future for new platforms.

All the hardware dependent layers have the same priority and is up to the
user to specified which one to use by configuration. The hardware dependent
layers have higher priority than the meta-tecSat layer. This priority allow devel-

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM44

oper to include support for new targets in the future in an easy way. In addition,
the higher priority in these layers allow to include modifications and patches to
the code which are intended to increase the performance and efficiency in the
specific target.

On the present research several development platforms are supported. To
each one of these a specific layer is created. The supported development plat-
forms supported are the Beagleboard, the Beaglebone and the Pandaboard and
the created layers for each target are meta-tecSat-beagleboard, meta-tecSat-
beaglebone and meta-tecSat-pandaboard respectively. On the section develop-
ment platforms the capabilities of each target are reviewed.

5.1.3 Integration of the dependent and independent hard-
ware layers in the construction system

The different layers created separate in a modular way the pieces of code which
depend and do not depend in the hardware. Using any of those layers will allow
the creation of a result image. However, the real powerful advantage of the
construction systems comes with the integration of both layers in a common
ecosystem. The layer independent layer will provide pieces of software special-
ize for space exploration missions and the target specific layer will provide the
ones specialized in the hardware. This combination will allow the best and more
flexible integration of the software. The ecosystems that will combine the layers
and provide the configuration will be the tecSat-project. In the figure 5.2 show
the relation of the different layers inside the build system (Yocto) wrapped by
the construction system.

As seen in 5.2, the hardware independent layer will sit on top the hardware
independent, meaning it has a higher priority and it is able to modify packages
and configuration made by the hardware independent layer. On the bottom,
the basic and always needed Yocto layers are represented as well as they can
not be removed. These layers contains basic configuration of the build system
itself and will be always present on our construction.

Once the construction system is in your system, by execution the config-
uration, all the needed layers and the build system itself is fetched. The con-
struction systems perform the configuration within the build system to take this
burden from the user, however the manual configuration is also possible. Next
are shown the required steps to configure the project.

Configuration for the platform
$ make config PLATFORM=<desire platform>
$ vim yocto/build/conf/bblayer.conf // Layer manual config if necessary
$ vim conf/local.conf // Packages manual config if necessary

If you want to add a special available package to your recipe, edit the lo-
cal.conf file and add the desire configuration. This may be accomplish by adding

2Original image. Representation of the layer on the build system

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM45

Figure 5.2: Layers inside the build system2

IMAGE INSTALL append = ”package name” on the file. After adding the re-
quired packages for your image, you may continue the build process. Is impor-
tant to know that adding extra package is not necessary, it is only necessary
for a special package out of the ones contained in the default configuration.
When you have performed all those steps, the environment is ready to create
the selected image. You only need to perform the construction by make.

Execute construction for the platform
$ make

The build process fetch the require packages from the web, however some
packages can not be downloaded directly because of access request or licensing.
Those package need to be downloaded manually into the download directory.
After download it, you need to add the ¡name package¿.done file to the download
directory.

At the end of the construction process, all the required images, bootloader,
kernel, file system, will be at the yocto/buildDir/tmp/deploy/¡board¿/ direc-
tory. For simplicity, the construction system construct a symbolic link to this
directory on the root of the project under the name of images. These images
are the ones you will need to move to the SD or the internal memory of your
system, it will depend on the boot up process of your system.

In addition, the construction system allow the construction of an SDK, nec-
essary to construct your own applications. In order to create your SDK is only
needed to call the correct target in the Makefile. The result of this process

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM46

will be a script containing the toolchain and scripts to configure the construc-
tion environment. The libraries and headers necessary to construct the image
are included as well. To construct the SDK you need to perform the following
command.

Construct SDK for the platform
$ make sdk

5.1.4 Adding a new recipe to a layer

Adding a new recipe is a simple task following the Yocto guidelines of recipe
creation. The first you need is to to evaluate in what layer your recipe belong
to. In the second step, you need to evaluate the recipe directories available at
the moment, and see if it fits into that recipe. If not, a new recipe directory
within the corresponding layer need to be created. If the recipe directory is
needed, add it and create a recipe. With this recipe BitBake can fetch, compile
and deploy your package. If you need to understand the Yocto build system
and the way on how to create a new recipe, you can review the Yocto tutorials
[32].

Once you have created your image, you can instruct BitBake to compile your
package, or you may add it to you local.conf. In that way the package will be
included in the result image. If you are using the construction system you need
to call the corresponding target in the Makefile to construct your package. The
correct target is shown next.

Construct a package for the platform
$ make RECIPE=<desire_recipe>

Developers creating new recipes within a layer, need to have in mind the
current repository they are working on. Its necessary to remember that each
layer correspond to a different repository and the construction system as well.
Changes made into a specific repository need to be pushed in it in order to pre-
serve the changes, otherwise in the process of distclean the project the developer
may lose the changes.

5.2 Continuous integration system in the tecSat
project

Continuous Integration (CI) systems are automated process by which several
developers merge they working copies of work to a mainline several times a
day and integrity check are made. On those merges several actions can take
place, like review the integrity of the code, perform testing and even emailing
the developers. Continuous Integration systems were first incorporated on the
techniques of extreme programming as a way to increase productivity and also
keep the quality of the generated code. At the beginning the CI system were

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM47

used to run test several time a day on the mainline branches of code, but later
it evolve on build servers which not only run test but also build the code and
review its integrity. This evolution make popular the use of continuous integra-
tion systems, not only inside the extreme programming paradigm. The main
advantage of having a CI system its the proven increase of the quality of the
software and reduction of the delivery time, advantages which impact in a very
positive way the development of a project.

For the development of software for small satellites, a CI system capable
of meet important requirements is needed. This CI system will also be use to
collect important information about the construction system. Some of these
requirements on the CI system are:

• Must be easy to use.

• Can construct the code to check consistency.

• Must be scalable to support future upgrades on the project.

• Must provide ways to inform about status of the project.

• Must have good documentation and references.

• Easy integration with other tools.

• Must be a stable system.

Base on the previous needs, and looking for the available continuous integra-
tion systems available, the selection of one may not be an easy task. Not only
because there is a huge amount of CI systems available, but because a lot of
them can fulfill our requirements. A decisive factor on our selection is the easy
integration with other tools and its scalability. Favoring the fact that Jenkins
CI is a Open Source tools, and its license doesn’t require a fee from us, Jenkins
CI is a well supported and stable project, which with is capability to include
plugins its very scalable in a project that can grow and sum new requirements.
Some of these plugins allow the recollection of data and statistics about our
construction system.

5.2.1 Integration of Jenkins with tecSat Project

The continuous integration system used for the project is the Jenkins CI, an
open source continuous integration system. It has a lot of open source plugins
for customization and great flexibility to be set as the CI for a great variety of
projects. In the case of the current research the CI is customize to contain a set
of jobs, which represent the creation of images for the different platform targets
available. Jenkins CI uses Cron jobs, a time base jobs scheduler. It is possible
to schedule commands or even scripts to be executed in a selected order. In
addition it allows taking results from each construction phase, which allow us
to gather information about our construction system. Jenkins CI contain user
security, creating different users with different permissions and accessibility, to

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM48

ensure the protection of the project for unknown intruders. For each platform
target a construction job is created in order to collect statistics, those jobs are
listed next.

1. tecSat image beagleboard: This jobs construct the tecSat-image for
the Beagleboard platform. This include the Beagleboard and the Beagle-
board XM.

2. tecSat image beaglebone: This jobs construct the tecSat-image for
the Beaglebone platform. This include the Beaglebone White and the
Beaglebone Black.

3. tecSat image pandaboard: This jobs construct the tecSat-image for
the Pandaboard platform.

4. tecSat SDK: This job construct the SDK for the selected platform and
deliver the script to install this toolchain on the user machine.

The jobs created on Jenkins, specially the tecSat-image-platform jobs, test
the integration of the project on the master development branch. It allow to
detect possible problems on the different components involved. This feature
contribute to the stability of the project, giving security on its deliverable, as
it is constantly tested. In addition, the implementation of different jobs allow
abstraction to the users of the construction system, as it can be configured to
create output artifacts from each build of the jobs. These artifacts can be the
output images created, used on the different platforms to boot (the bootloader,
the device tree, the kernel image and the root file system). In the figure 5.3 the
front panel in the CI page is shown.

Figure 5.3: Principal Jenkins panel for tecSat project3

The front panel of the CI, allow users to show a job for a particular platform,
review the basic statistics of construction and have access to the different output
artifacts. As the CI system is installed as a build server, and can be access from
any explorer, the users can connect even from their cellphones, which allow the
analysis of the results from any place as long as connection to the same network
as the build server is available. In figure 5.4 access from a cellphone is shown.

3Original image. CI front panel for the tecSat project

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM49

Figure 5.4: Principal Jenkins panel for tecSat project from a cellphone4

Each job is created to construct the SDK for the desired machine. It com-
press the used toolchain and all the necessary packages and configuration to
set up the developing environment. The generated SDK created is base on the
selected machine as the some features are platform dependent. The creation of
the SDK is made taking advantage of the Yocto capabilities. It is possible to
export this toolchain and create an output which contain all the necessary to
develop pieces of software for the desire platform. This is very useful as one of
the methods of software development for small satellite is the incorporation of
third parties IP of software. It usually bring integration problems because it
doesn’t focus on the platform configuration and OS in which will be deployed.
The creation of a SDK, can be distributed to the different developers groups,
which can use it to create the binary executable that will run on the platform.
Furthermore, it can be use to check for complaint of its code with the platform
software infrastructure on which will be deployed, reducing compatibility issues.
Because of this a job to create an SDK is made, the job panel is shown in figure
5.5.

4Original image. CI front panel for the tecSat project accessed from a cellphone

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM50

Figure 5.5: Configuration for the tecSat SDK Jenkins job

The SDK job output its an script, which contains all the necessary to install
the toolchain on your developing machine. The installation contains all the nec-
essary for the toolchain to cross compile and deploy your package for the output
platform. When you execute the script, you will be asked for the installation
path where you want your SDK, then it will unpack in the selected directory. In
addition the SDK contains an environment script, which can be source when you
are starting your development process. This environment script will add to the
environment PATH the cross compiler and set in different environment variables
needed to start developing for your machine. For example CROSS COMPILER,
ARCH, LDFLAGS, and many other variables will be added to your environment.

When the user select a job for a selected platform, he can trigger its build
process. This process will fetching the latest version of the tecSat project and
construct and deploy the image for the selected target. Whether the construc-
tion process succeed or fail, an output log can be accessed from the CI system.
This log can be also reviewed at construction time, functioning as console out-
put of the running process. For example, on figure 5.6 is shown the displayed
output of the construction of the images for the Beagleboard job.

The last function in which the CI system is configured is to access the results
of the build. These outputs are configured as artifacts of the Jenkins CI job and
can be archived. By archiving the image as artifacts, the Jenkins CI allow the
user to access an output image constructed on a specific day, and compare it
between builds. On the figure 5.7 the archived artifacts for a Beagleboard build
are shown.

4Original image. CI job for the SDK creation
5Original image. CI output log for the creation of a Beagleboard image
6Original image. CI output artifacts for the creation of a Beagleboard image

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM51

Figure 5.6: Console output for the tecSat image beagleboard Jenkins job5

CHAPTER 5. DESIGN AND IMPLEMENTATIONOF THE CONSTRUCTION SYSTEM52

Figure 5.7: Jenkins artifacts on a build6

Chapter 6

Development and results
using the construction
system

On the last chapters, several tools, platforms and proposed solutions have been
reviewed. On the present chapter important information recollected is reviewed
as well as examples of how the build system can be used to measure and compare
platforms, a very useful capability needed on the selection of small computers
for small satellites.

6.1 Construction system information recollected
from the build system

The measure of the construction system is not an easy task. First is needed the
parameters by which it will be measure and it depends on the target application
on which it will be used. The space exploration missions, specially the devel-
opment of small satellites need clean outputs and stability of the code. Its also
necessary too use as less as resources as possible to make the project profitable.
Because of this the required memory size required for the project, the average
construction time and influences over the project are shown.

To recollect the important data about the construction system, the Jenkins
CI is used. It is configured to gather statistics about the project and display
then in a human readable form.

6.1.1 Construction time

Using the Jenkins CI, data about the construction time required to deploy an
image is gather. This information depends on the available resources of the
machine in which the developers are making the construction, however this

53

CHAPTER 6. DEVELOPMENTANDRESULTS USING THE CONSTRUCTION SYSTEM54

data gives developers information to compare with the resources available for
their projects.

The base system used as a server for the constructions is a machine with an
Intel i7-4810MQ. It has eight core processors running at 2.80GHz. The system
has 16Gb of RAM memory and is running Ubuntu Desktop 14.04 as the OS.
The data is recollected in a period of time around three months, running the
construction for all available images one time each day. The recollected data is
shown in figure 6.1.

Figure 6.1: Constructions statistics of the different Jenkins jobs1

Important information is recollected from the construction statistics, which
allow developers to plan ahead in terms of how many time will be necessary to
deploy a release for a customer. This results are taking in a machine with a
Intel i7-4810MQ with 8 core processor 2.80GHz. The average construction time
is shown next.

Table 6.1: Construction time for every platform
Platform Average construction time

Beagleboard XM 41min
Beaglebone Black 40ms

Pandaboard 44ms

The average time in the last table reflects the construction time for a release
image. This time doesn’t take into account the fetching time for packages,
as it depends on the bandwidth of the internet connection. This may result
on variations depending on users internet connections. Ignoring the fetching
packages, the construction time will be a stable value around users with the

1Original image. Statistic data from tecSat project recollected using Jenkins CI

CHAPTER 6. DEVELOPMENTANDRESULTS USING THE CONSTRUCTION SYSTEM55

same construction machine resources. The construction time shown represent
the whole construction process from its beginning. After the first time the
construction process is made, forward construction may take few minutes to be
made depending on the deep of the performed changes on the infrastructure.
This is because the construction system take advantage of the construction
cache of the Yocto build system know as sstates. The sstates make possible to
improve the construction speed by only re-build packages with dependencies on
the change recipes.

6.2 Required size for construction

A construction system require storage space in the machine its executed. The
required space needed may vary between one target platform and another, nev-
ertheless is important to have a reference of how many of my resources will
be necessary, including storage. This is very important to have into account
from the beginning of the project because it may represent a cost on the budget
for the total project. On space exploration projects on rare cases the available
storage on the building machines is a limitation, however its important to have
it into account.

The average size on the construction for each platform differ because of the
packages they contain, however they allow to measure an approximate required
for other platforms. In this project the analysis of size for each of the supported
platforms are studied and shown in the next table. The data do not include the
fetch package, as they may differ strongly from platform to platform.

Table 6.2: Required size of the construction system for each platform
Platform Average size

Beagleboard XM 23Gb
Beaglebone Black 17Gb

Pandaboard 19Gb

As shown in the last table, the construction system required great amount
of storage space for its construction. This amount of storage is one of the
downsides of Yocto as a build system, which include the construction of each
package require, for example the toolchain. Nevertheless this amount of storage
require, today systems may support this requirement, where this storage may
be in the construction system itself or on a shared storage. If the storage needed
for the downloaded packages is taken into account, it may rise up around 5Gb
in total.

6.3 Stability of the construction system

The stability of the construction system refer to the reproducibility of the re-
sults. It is important to have the same results each time the developer invoke

CHAPTER 6. DEVELOPMENTANDRESULTS USING THE CONSTRUCTION SYSTEM56

the process of construction. Its a common error on the software production to
encounter strange errors difficult to reproduce. The phrase ”it works on my
machine” or ”it works the second time I configure it” has become a real trouble
on the development community of new software packages. Space exploration
projects need stable projects with configuration steps that reproduce the same
output each time invoke.

The stability of the proposed construction system is analyzed by periodically
constructions performed each day. One construction for each available platform
is done, performing all the initial configuration from the start. The process
include fetch the tecSat project itself, configure, construct and deploy the re-
quired output. This information was already shown in figure 6.1. The errors on
the construction are represented as red stripes in the chart. Only three errors
were detected on the period of time of analysis. The first error was detected as
a error introduced on the project itself, which classify as a developer error. The
error itself was the introduction of a piece of code not tested enough. It was not
capture in the development phase because of the use of previous states on the
construction. As our analysis wipe out the entire project and execute the con-
struction process from start, it was possible to capture the error and resolve it
right in the moment. The second and third error detected were fetching errors.
The main purpose of this errors comes from problems on the connection of the
system, making it unavailable to download the pieces of software. This was the
case for both errors encounter, were the loss of connection from the machine
performing the construction made unavailable to clone the tecSat project itself.
It is important to be aware of this kind of errors, as the construction system
fetch several pieces of software from the web, the movement or deprecation of
those packages may produce errors on the system. Nevertheless this limitation
on external packages, the construction system may be configure to fetch this
packages from different mirrors on the web, and when a package get deprecated
or moved uncommon that package disappear completely.

6.4 Application development of a hardware in-
dependent application

The most important feature of the construction system is the fast development
and porting of code between different platforms. This allow comparison and
fast interchangeability. A probe of concept developing a hardware independent
application is develop. This development will show the advantages the con-
struction system have when is necessary to measure the application in different
targets in a easy and fast way. In this example the application as been executed
on the GPP, allowing the measure of different GPP workloads. The select task
is a color space conversion of an image, a computational application which re-
quire a lot of resources and is very used on today applications. The color space
conversion is RGB to YCbCr. It is an application used mostly for the easy
encoding of images and decrease the effect of noise on its transport. It is also

CHAPTER 6. DEVELOPMENTANDRESULTS USING THE CONSTRUCTION SYSTEM57

used on space exploration missions combined with several compression methods
when an image need to be transferred from a device in the space to a ground
station.

6.4.1 Color space conversion, RGB to YCbCr

The color space of an Image is a specific organization of the image color. It
allows different representations, some which may be suited for the human inter-
pretation, other for computational advantages like compression, transmission,
immunity to noise and others. It allow for a reproducible representation of a
color image, digital and analog. Color space is a specific term to talk about the
identification and mapping of the color on images, however it can be used also
as a method to identify a color model for it.

The most common color model used on image, for its simplicity, is the RGB
color space. On this color space every pixel on an image is represented as
the combination of three basic colors, Reed, Green and Blue which are called
chromaticities. A RGB color space can be explained plain simple as all the color
that can be made by the combination of a triangle defined by the three primary
colors. This color space is widely used on computer graphics because of its
similarity with the human visual system, however its important to make clear it
is not the same. Its important to notice that for computational representation,
there are finite numbers to use on the representation for each color, so if we
define each color as the channels of the image, the number of bits used to
represent each channel will be called the depth of the channel. For example, a
depth image of 8 bits on each channel, allow the representation of each color
form 0 to 255.

The developed application will take a RGB image and convert it to a color
space named YCbCr. The YCbCr is a family of color spaces used for video
and photography, where Y is called the luma component, Cb the blue difference
of chroma component and Cr the red difference of chroma component. It is
not really a color space but rather a method to encode RGB information of an
image, because in this conversion, although information from the RGB image
is loss, is better suited for image transmission. The resulting image do not loss
quality for the human eye.

The standard used of the YCbCr image is the BT.601 conversion, which map
every pixel directly from the RGB values to the YCbCr values. The mapping
between this two color spaces is shown next: Y

Cb
Cr

 = D ∗

RG
B

 + C (6.1)

Being the values of D and C define a 3x3 and 3x1 matrix in that order.

C =

 16
128
128

 (6.2)

CHAPTER 6. DEVELOPMENTANDRESULTS USING THE CONSTRUCTION SYSTEM58

D =

 0.257 0.502 0.0975
−0.148 −0.289 0.438
0.438 −0.366 −0.0711

 (6.3)

This mapping is done on each pixel of the image, obtaining the new rep-
resentation of the color space. To test the mapping, a model using Octave is
created to review the representation of the image.

6.4.2 Development of a hardware independent recipe

The piece of software develop uses only the GPP of the target. It is intended to
get an image from a specified location in the filesystem and them process the
image. Because the software is not intended to use a specialized hardware of the
board, it is possible to include this code in the hardware independent layer. In
this layer a directory of recipes-tecSat-examples is created in order to contain
the recipe. In addition a directory of files containing the code is created. The
code was included because of its simplicity, but more robust pieces of code are
recommendable to be created and fetched from its own repositories.

The recipe of this package fetch the code, compile it using the construction
tools of the system and deploy it into the build system intended for our target.
Next is shown the recipe use to construct this piece of code.

Recipe for color space conversion: RGB to YCbCr
SUMMARY = "RGB to YCbCr image conversion"
DESCRIPTION = "RGB to YCbCr image conversion using only the GPP"

AUTHOR = "Allan Granados Jimnez"
SECTION = "bin"
LICENSE = "BSD"

LIC_FILES_CHKSUM = "file://CMakeLists.txt;md5=67c6ec0c059c284670ff186946a36d0e"

DEPENDS = "libpng"

inherit pkgconfig cmake

SRC_URI = "file://rgb2ycbcr_gpp.c \
file://CMakeLists.txt"

S = "${WORKDIR}"

OBJECT = "rgb2ycbcr_gpp"

do_install () {
install -d ${D}${bindir}
install -m 0755 ${OBJECT} ${D}${bindir}

6.4.3 Deployed images for different targets

The construction system is intended to deploy the output images in a easy to see
form for the user, because of this an image directory is created on the root of the

CHAPTER 6. DEVELOPMENTANDRESULTS USING THE CONSTRUCTION SYSTEM59

project for easy access. For each platform, the result images are studied as the
footprint of these image are of importance for small satellites project, been the
images on the storage system of the satellites. The footprint of the tecSat image
resulting from the construction system depends on which packages are added,
however we can measure the default set up of the image, the bootloader, the
kernel and its filesystem. It can give us a general view of the required resources
for our system. From the available image to construct the study image its the
tecSat-image base version. Next are shown the footprint of the tecSat-image for
the different platforms.

Table 6.3: Footprint of the different images (minimum packages required)
Image Beagleboard Beaglebone Pandaboard
MLO 48K 100K NA

u-boot.img 369K 348K NA
u-boot.bin 47K NA 185K

uImage 4,1M 4,9M 4,2M
device tree 57K 29K NA
FileSystem 13M 20M 18M

Total 18M 25M 23M

6.4.4 Result of RBG to YCbCr using the GPP

A C application is created to perform the task of reading an image and convert
if from RGB to YCbCr. This application is created in the most basic way and
it uses resources only from the GPP of the selected target.

To first test the application, the program is executed to convert the classic
image of Lena, the image has dimension for 512x512 pixels. The result are
shown of figure 6.2.

Figure 6.2: Color space transformation in the Beagleboard XM. A) Base image.
B) Octave representation of algorithm. C) Conversion by the GPP3

3Original image. Color space transformation using the image of Lena as base.

CHAPTER 6. DEVELOPMENTANDRESULTS USING THE CONSTRUCTION SYSTEM60

The first step was to test the conversion algorithm on each of the supported
platforms. A custom image of our system was deployed using the Jenkins CI.
The Jenkins process made use of the construction system for the image deploy-
ment. For each platform the algorithm implementation using C code was run,
recollecting the execution time it took to process the whole image.

Table 6.4: Color space transformation on the GPP of the Lena image
Platform Execution time

Beagleboard XM 152,069ms
Beaglebone Black 400,0ms

Pandaboard 125,100ms

As expected, having a better GPP and running a faster clock, the Pand-
aboard perform the image conversion faster than the other platforms, however
this board has many more resources and its bigger that the others not only in
size, but in price too. The Beagleboard XM and the Beaglebone run at the
same speed, however the core CPU in the Beagleboard is more powerful that
the one in the Beaglebone Black and its probe of that is the require time needed
to process the same image.

For more detailed testing on the conversion time and the capacities of the
boards, a measure using several images is made. For this, a data base of RGB
image is used, you can review the used database in [27]. The image has 455
images with dimension of 160x120 pixels. The result of the conversion of the
database are shown in the next table.

Table 6.5: Color space transformation on the GPP
Platform Average time Standard deviation

Beagleboard XM 11,102ms 89,248us
Beaglebone Black 28,835ms 9,622ms

Pandaboard 8.586ms 90,86us

This results show how is possible to compare different platforms, however
the most important topic is to see how similar images for different targets can
be easy deploy in a fast way. In this case three different images are deploy only
by changing the hardware dependent layer.

Chapter 7

Future Work

With a stable and robust construction system, the next step on the development
process is adding special recipes oriented to the space exploration and to take
advantage of the resources available on the different platforms. One example is
the development of software which take advantage of the DSP in the Beagleboard
XM. On this research, support for the DSPLINK and basic testing is added,
giving the possibility for future development using this API.

7.1 Support of DSPLINK API

DSPLINK is foundation software for the inter-processor communication across
the GPP-DSP boundary. It provides a generic API that abstract the charac-
teristics of the physical link connecting GPP and DSP from the application
[17]. This abstraction layer eliminates the needs from the user to worry about
the development of this link from scratch, and focus on the application devel-
opment. The DSPLINK API is a package of software develop for the Texas
Instrument boards, because of this it is a hardware dependent piece of software.
The DSPLINK API is a very old and out of date piece of software, however,
for the Beagleboard XM (one of our development board) is a very easy way to
access the DSP capabilities. New pieces of software like RPM-MESSAGE and
REMOTEPROC are way more efficient, however they lack in support for the
Beagleboard XM.

DSPLINK support is added to the meta-tecSat-beagleboard layer. It allows
development for the DSP on selected target, the Beagleboard XM. The package
is encapsulated to be added to the image as a module, including example of
how it can be use and how it perform operations. In addition this package
include a dependency on another module package, the local power manager of
Texas Instrument, therefore it is included on the meta-tecSat-beagleboard layer
as well. Local power manager module allow the user to bring up and down the
DSP. This operation is needed on every execution of a different application on
the DSP, to ensure the memory and resources are in a clean initial state.

61

CHAPTER 7. FUTURE WORK 62

DSPLINK execute the DSP/BIOS from Texas Instrument on the DSP pro-
cessor, while the GPP can be running any kind of OS. Not an specific OS is
necessary, as DSPLINK abstract the API calls and the application using an
OSAL sub-layer on its development. It means that if you provide the specific
functions for the API on a specific OS, you can port DSPLINK and your appli-
cations to this new OS. Specific support is already provided to some operative
systems like Linux and Windows, however if a new OS support is required on
the GPP, it is up to the user to create the abstraction layer for the OS (OSAL).

Depending on the target platform, DSPLINK brings support to a different
set of services. The list of the different services can be found in [17]. All these
services allow communication and processing capabilities using the DSP and
GPP. Some of these capabilities are:

• Basic processor control

• Shared/synchronized memory pool across multiple processors

• Notification of user events

• Mutually exclusive access to shared data structures

• Linked list based data streaming

• Data transfer over logical channels

• Messaging (based on MSGQ module of DSP/BIOS)

• Ring buffer based data streaming

Depending on the desire application, its development may use one or several
of these services. It is up to the application developer to analyze and determine
the best way it may perform and take advantages of its resources.

The DSPLINK architecture depends on pieces of code in the GPP side as
pieces of code on the DSP side. The communication of the different pieces is
what create the flow of date in order to our application to work as expected.
This flow is already defined by the DSPLINK API, but the developer is the
one in charge to take advantage from it. In figure 7.1 is shown the DSPLINK
software architecture.

As show in figure 7.1 on the GPP side of the DSPLINK a specific OS is
running, on which a OS Adaptation Layer was used to encapsulate generic OS
services required by the API instead of using direct OS calls. The Link Driver
encapsulates the physical link between the GPP and the DSP using a defined
protocol. The Processor Manager keep information for all components and
exposes control operations through the API layer. Finally the DSPLINK API
layer is basically a wrapper which provide an abstraction layer to the user, it
doesn’t do to much other than parameter validation [17].

1Original image. Representation of the DSPLINK software architecture taken from [17]

CHAPTER 7. FUTURE WORK 63

Figure 7.1: DSPLINK software architecture1

On the DSP side, the Link Driver is one of the DSP/BIOS drivers on the
DSP, specialized in communication to the GPP over the physical link. The com-
munication (data/ message transfer) is done using the DSP/BIOSTM modules-
SIO/ GIO/ MSGQ. There are specific DSPLINK API on the DSP for the other
modules RingIO, MPCS, MPLIST, NOTIFY, POOL [17].

7.1.1 Validation test on the DSP for the Beagleboard XM

The DSPLINK API from Texas Instrument contain a set of examples, so you can
test the operation of the DSP and GPP as also interact with the communication
system between processor and co-processor. The examples explore the different
methods used to share information, like using buffers, a list or a ring buffer for
example. All those examples can be modified and customize for the user to be
in a selected application. The available examples are shown next, refer to [17]
for further information.

• loopgpp: This sample transfer data between a task running in the GPP to
the DSP, then it send it back to the GPP. This example show the creation
and use of channels to send and receive data by a buffer in a pool of
memory.

• messagegpp: This example show simple messaging between the GPP and
the DSP. This message is send to the DSP where it is put in a queue back
to the GPP where its verified.

• mplistgpp: Show the use of a MP list component to stream data between
the GPP and the DSP using multiprocessor list instances.

• mpcsxfergpp: This sample illustrates data transfer between the GPP and
DSP through a basic mechanism of shared buffers with mutually exclusive
access protection.

CHAPTER 7. FUTURE WORK 64

• ringiogpp: This example show the use of a ring buffer to stream data
between the GPP and the DSP and back to the GPP from the DSP.

• scalegpp: This sample its a combination of data streaming and messaging
between the DSP, where it sends data from a task running in the GPP
to another running in the DSP using channels. A message is send to
communicate the scaling factor to the DSP in which the data will be
scaled.

Following are the results obtained from running the examples.

Table 7.1: Result of DSPLINK examples
Sample Buffer size Number of

iteration
Bytes to
transfer

Result

loopgpp 1024 2000 NA Successful
messagegpp NA 10000 NA Successful
mplistgpp 1024 128 128 Successful

mpcsxfergpp 128 1000 NA Successful
ringiogpp 2048 NA 128 Successful
scalegpp 128 500 NA Successful

Unfortunately, not all the examples show the average execution time and is
up to the developer to analyze and decide which method is better suited for its
application. Only the messagegpp sample show the execution time, which for a
message to do a round trip, from GPP to DSP and then back to the GPP, is
about 282 microseconds.

7.2 RBG to YCbCr using the DSP

The application of color space transformation will be analyzed using a special-
ized processor, the DSP. It will be intended to be in charge of the mathematical
operation of the image transformation. The basic idea is to leverage the map-
ping to the DSP because this processor can make faster mathematical operations
and also do a multiple data single instruction operations in a more efficient way.
In this case is intended to perform the matrix operation for the RGB to YCbCr
conversion.

The communication between the DSP and the GPP is done by using the
DSPLINK API. A common memory space is reserve to pass data between
each processor. The design of the application use a buffer and MSGQ API
of DSPLINK to transport data between the different processors. This buffers
and its channels created an access to the pool on a selected shared region of
memory. On figure 7.2 is shown the chosen design approach.

2Original image. Representation of communication selected for the RGB to YCbCr appli-
cation

CHAPTER 7. FUTURE WORK 65

Figure 7.2: Design representation for the rgb2ycbcr dsp application2

As shown on figure 7.2, a selected shared memory region is created as a
pool, in which the buffer of data live. The GPP operates with a OS which uses
a MMU, translation between virtual address and physical address is required.
The OS of the DSP, the DSPBIOS, doesn’t have a MMU, for that reason there
is a direct mapping of its memory and the shared memory, performing direct
access to the memory.

NOTE: At first the design only contemplate a single transaction of all data,
however, on image analysis, great amount of data is required, so the
design need to be changed to use multiple transactions. For example,
a 512x512 image, required 786432 bytes of processing. Also the test
of loopgpp demonstrate a maximum transfer of 16Mbytes of data in a
single transaction of the buffer.

The basic flow of the application begin on the GPP. It start the DSP and
send the executable it will run from the GPP to the DSP. When the DSP has
the application, the GPP open a pool on the shared memory space, the size of
the pool will be enough to have two communication buffer with two channel for
each processor to access, one to read and another to write. The creation of all
this components are perform on the setup of the application. When ready to
start the execution, the GPP will open the image and fill the buffer with the
pixel information of the image. On the DSP side of the application, the attach
to the buffer and the pool is done in the setup. In the execution time, the DSP
receive data from the GPP using the buffer. This data is obtained by the DSP
and the algorithm of color space conversion is performed. The resulting data
is place in the output buffer of the DSP to be send to the GPP side of the
application, to finally be part of the resulting image.

The code can be located of the application is located in the next URL,
however, it is not complete yet. It is available to any developer to access it and
review it.

CHAPTER 7. FUTURE WORK 66

https://github.com/allangj/rgb2ycbcr-dsp

The code on the repository is divided in the GPP side and the DSP side
following the structure of the DSPLINK source examples, this is because of the
construction recipe deploy for this kind of application. A recipe were created
on which the application code is added as one of the DSPLINK examples. A
rebuild of the source examples is done in order to include the new code. This
allow to generate the executable for the application and insert those on our final
image. Developers implementing a new application using the DSPLINK, must
create a recipe for its construction, were the next recipe can be take as example.

Recipe for color space conversion: RGB to YCbCr using DSPLINK
SUMMARY = "RGB to YCbCr image conversion using the DSP"
DESCRIPTION = "RGB to YCbCr image conversion using only the DSP"
AUTHOR = "Allan Granados Jimnez"
HOMEPAGE = "https://github.com/allangj/rgb2ycbcr-dsp"
SECTION = "bin"
LICENSE = "GPLv2"

INSANE_SKIP_${PN} = "installed-vs-shipped"

require ../../recipes-ti/includes/ti-paths.inc
require ../../recipes-ti/includes/ti-staging.inc

DEPENDS = "libpng ti-dsplink-module ti-dsplink-examples ti-lpm-module"
PROVIDES = "rgb2ycbcr-dsp"

BRANCH = "master"

SRCREV = "0f631084775595acc00b9d25d2f645dc78dabc10"
LIC_FILES_CHKSUM = "file://${WORKDIR}/git/README.md;md5=d1381886e92ddc20cf4ff7e97bfa4f9a"
SRC_URI = "git://github.com/allangj/rgb2ycbcr-dsp.git;branch=${BRANCH}"

DSPLINK = "${LINK_INSTALL_DIR}/dsplink"

S = "${WORKDIR}/git"

DSPLINKPLATFORM_omap3 = "OMAP3530"
DSPLINKPLATFORM ?= "<UNDEFINED_DSPLINKPLATFORM>"

DSPLINKDSP_omap3 = "OMAP3530_0"
DSPLINKDSP ?= "<UNDEFINED_DSPLINKDSP>"

TECSAT_INSTALL_DIR_RECIPE = "${installdir}/tecsat-examples"
do_configure() {

echo "------------------Configuring rgb2ycbcr-dsp-------------------"
Create symbolic links between this app and the DSPLINK samples folders
ln -s -f ${S}/gpp ${DSPLINK}/gpp/src/samples/rgb2ycbcr-dsp
ln -s -f ${S}/dsp ${DSPLINK}/dsp/src/samples/rgb2ycbcr-dsp
Move the DIR file to use custom ones
mv ${DSPLINK}/gpp/src/samples/DIRS ${DSPLINK}/gpp/src/samples/DIRS.old
mv ${DSPLINK}/dsp/src/samples/DIRS ${DSPLINK}/dsp/src/samples/DIRS.old
ln -s ${S}/DIRS_GPP ${DSPLINK}/gpp/src/samples/DIRS
ln -s ${S}/DIRS_DSP ${DSPLINK}/dsp/src/samples/DIRS

CHAPTER 7. FUTURE WORK 67

}

do_compile() {
echo "------------------COMPILING-------------------"
Build the gpp samples
echo "------------------GPP SAMPLES-------------------"
cd ${DSPLINK}/gpp/src/samples && make \
BASE_TOOLCHAIN="${TOOLCHAIN_PATH}" \
BASE_CGTOOLS="${BASE_TOOLCHAIN}/bin" \
OSINC_PLATFORM="${TOOLCHAIN_PATH}/lib/gcc/${TARGET_SYS}/$(${TARGET_PREFIX}gcc \
-dumpversion)/include" \
OSINC_TARGET="${BASE_TOOLCHAIN}/target/usr/include" \
CROSS_COMPILE="${TARGET_PREFIX}" \
CC="${TOOLCHAIN_PATH}/${TARGET_PREFIX}gcc" \
LD="${TOOLCHAIN_PATH}/${TARGET_PREFIX}gcc" \
AR="${TOOLCHAIN_PATH}/${TARGET_PREFIX}ar" \
COMPILER="${TOOLCHAIN_PATH}/${TARGET_PREFIX}gcc" \
LINKER="${TOOLCHAIN_PATH}/${TARGET_PREFIX}gcc" \
ARCHIVER="${TOOLCHAIN_PATH}/${TARGET_PREFIX}ar" \
KERNEL_DIR="${STAGING_KERNEL_DIR}" \
DSPLINK="${LINK_INSTALL_DIR}/dsplink" \
all

Build the dsp samples (debug and release)
echo "------------------DSP SAMPLES-------------------"
cd ${DSPLINK}/dsp/src/samples && make \
BASE_CGTOOLS="${CODEGEN_INSTALL_DIR}" \
BASE_SABIOS="${BIOS_INSTALL_DIR}" \
DSPLINK="${LINK_INSTALL_DIR}/dsplink" \
all

}

do_install () {

Install the example apps (gpp and dsp)
install -d ${D}${bindir}
install -m 0755 \
${DSPLINK}/gpp/export/BIN/Linux/${DSPLINKPLATFORM}/RELEASE/rgb2ycbcr-dspgpp ${D}${bindir}
install -m 0755 \
${DSPLINK}/dsp/export/BIN/DspBios/${DSPLINKPLATFORM}/${DSPLINKDSP}/RELEASE/rgb2ycbcr-dsp.out \
${D}${bindir}

}

Chapter 8

Conclusion

On the software development for space exploration systems there is a great
amount of possibilities in the work been develop around the world. The present
research allow to implement a construction system intended to speed up the
process of software development and reduce the complexity and cost of it. By
the introduction of a construction system for the software development of small
satellites several conclusions are made.

A construction system can reduce the complexity of the construction and
integration of code. By reducing the number of commands needed for configu-
ration and construction, the possibility of errors are reduced. This reduction is
achieved by the incorporation of abstraction between the construction process,
the pieces of software and the interaction with the user and developer.

The incorporation of Yocto as the core build system allow the creation of
abstraction layers. It separates the pieces of software which depends on the hard-
ware from the ones who don’t. This separation include the benefit of reducing
the software development necessary for the migration of the system between
platforms. This increase on the escalation of software create opportunities to
reduce the development and debugging time. In addition, the pieces of software
can evolve to be more robust and incorporate new functionality and abstraction.
The inclusion of a new supported platform only need the development of the
corresponding abstraction layer. Interchangeability between different platform
in a easy way depends only on the available platform dependent layers and a
configuration file. On space exploration mission this allow the quick deployment
of a satellite in a totally new platform.

The develop construction system prove to be stable in time. Errors coming
from the developer side were hardly found, and when there were present, the
use of the CI system allow for an early detection and correction. Having the
construction system in the web prove to add a dependency on the internet
connection. However the construction system has the functionality to work in
a internal network or totally local in the system, if the packages were fetched at
least one time.

The approximate construction time of the system depends on the selected

68

CHAPTER 8. CONCLUSION 69

platform. It proves to required around an hour of execution. It separates the
different construction packages in order to speed up the process. The construc-
tion time may be high, however this time is required only if full construction.
In the cases were only some packages were change, the construction time may
take only a few minutes. The analysis of the construction time prove to be
stable, requiring the same amount of time for a complete build to be deployed.
This predictable behavior is very desirable on the system. It allow developers
to know for certain how much time is required in order to deploy an image.

Space exploration mission hardly have the available time for innovation in
pieces of code. The construction systems allow the easy development and in-
corporation of new code. This new code can be ease develop and tested against
the same compilation tools used to create the software for the satellite. It re-
duces the integration risk of new code and open the door for incorporation of
pieces of software for the innovation. An example of this development was tested
by the introduction of a image color space transformation code. Once develop
this software, it was easy to test it in different platforms without the need to
modify it or perform adaptations. It opens the door for new methods on the
software development for small satellites, seeking to remove the dependencies
on the development platforms.

Using the construction system, the possibility of build and compare a piece
of software was possible. Developing a simple color image transformation as a
hardware independent software, it was ease to deploy a testing image on each
of the available platforms. The importance of having the possibility to compare
target platforms in a easy way is a very important advantage on the design
of small satellites. It allow developers to test the most important software on
different platform and decide which fit best the requirements. In addition, gives
the opportunity for a developer on a space exploration mission to early develop
software, an later change to the final target.

The required configuration for the construction system was able to be ab-
stracted from the user. However the possibility of adding new packages is al-
ways possible. The basic configuration for each system are intended to have all
the required packages, removing the need of analysis from the user side, which
may introduce errors. However it gives the possibility to developers who knows
the architecture of the construction system to include new pieces of software
and extend the functionality. In addition, the construction systems include the
functionality of construction of only the required package, which speed of the
development and testing of a particular piece of code.

Bibliography

[1] Keith Avery, Jeffery Finchel, Jesse Mee, William Kemp, Richard Netzer,
Donald Elkins, Brian Zufelt, and David Alexander. Total Dose Test Results
for CubeSat Electronics. 2011 IEEE Radiation Effects Data Workshop,
pages 1–8, 2010.

[2] Beagleboard.org. Beagleboard, official page. http://beagleboard.org/,
2015. [Online; accessed 08-January-2015].

[3] D Brosnan Blázquez. Analysis of WCET in an experimental satellite soft-
ware development. i:1–10, 2012.

[4] Pieter Johannes Botma. The Design and Development of an ADCS OBC
for a CubeSat. (December), 2011.

[5] Fredrik Bruhn, Lars Asplund, Kjell Brunberg, John Hines, Independent
Consultant, San Francisco, and Magnus Norgren. Introducing Radiation
Tolerant Heterogeneous Computers for Small Satellites. pages 1–10, 2015.

[6] Johan Carvajal, Morteza Haghaayegh, Jaan Viru, Jian Guo, and Allan
Granados. Increasing computing performance of ADCS subsystems in small
satellites for earth observation (IAA-B10-0901).

[7] Gerald Coley. BeagleBone Black System Reference Manual. page 239, 2013.

[8] Cubesat. Cubesat program, official page. http://www.cubesat.org/,
2014. [Online; accessed 25-June-2014].

[9] MJ Dabrowski. The design of a software system for a small space satellite.
2005.

[10] Daniel D Gajski. System-Level Design Methodology. 2003.

[11] Xiang Gan, Jori Dubrovin, and Keijo Heljanko. Electronic Communications
of the EASST 11th International Workshop on Automated Verification of
Critical Systems (AVoCS 2011) A Symbolic Model Checking Approach
to Verifying Satellite Onboard Software A Symbolic Model Checking Ap-
proach to Verifying Sate. 46, 2011.

70

http://beagleboard.org/
http://www.cubesat.org/

BIBLIOGRAPHY 71

[12] Inc. Gentoo Foundation. Geento, official page. https://www.gentoo.org/,
2015. [Online; accessed 17-August-2015].

[13] John Gruenenfelder. Operating system for control of small satellite systems.
. . . AIAA/USU Conference on Small Satellites, . . . , pages 1–8, 2002.

[14] Hank Heidt, J Puig-Suari, A Moore, S Nakasuka, and R Twiggs. CubeSat:
A new generation of picosatellite for education and industry low-cost space
experimentation. 2000.

[15] Lucy Hoag, Tatiana Kichkaylo, and David Barnhart. A systems architecting
approach to automation and optimization of satellite design in SPIDR.
International Conference on Engineering . . . , 2010.

[16] Stuart Hughes. LTIB, official page. http://ltib.org/home-intro, 2015.
[Online; accessed 17-August-2015].

[17] Texas Instrument. DSPLINK User guide. 2010.

[18] I Introduction. Implementation of a Real-Time Operating System on a
Small. pages 1–9, 2007.

[19] Hirofumi Kawakubo. Hardware Development of a Microcontroller Board
for a Small Satellite. pages 1–9.

[20] Bart Kienhuis, Deprettere Ed, Pieter Van der Wolf, and Kees Vissers. A
methodology to Design Programmable Embedded Systems. Article, 2001.

[21] Peter Korsgaard. Buildroot, official page. http://buildroot.uclibc.

org/about.html, 2015. [Online; accessed 13-July-2015].

[22] Marcio Kreutz, Cesar a. Marcon, Luigi Carro, Flavio Wagner, and Al-
tamiro a. Susin. Design Space Exploration Comparing Homogeneous and
Heterogeneous Network-on-Chip Architectures. 2005 18th Symposium on
Integrated Circuits and Systems Design, (August 2015):190–195, September
2005.

[23] Fu-Ren Lin, Meng-Chyn Yang, and Yu-Hua Pai. A generic structure for
business process modeling. Business Process Management Journal, 8(1):19–
41, 2002.

[24] Chase Maupin, Henry Wiechman, and Denys Dmytriyenko. The Yocto
Project : Changing the way embedded Linux software.

[25] Gerry Rozema Mike Baker. OpenWRT, official page. https://openwrt.

org/, 2015. [Online; accessed 17-August-2015].

[26] Atif Mohammad, Jeremy Straub, Christoffer Korvald, and Emanuel Grant.
Model-based software engineering for an imaging CubeSat and its extrap-
olation to other missions. 2013 IEEE Aerospace Conference, pages 1–6,
March 2013.

https://www.gentoo.org/
http://ltib.org/home-intro
http://buildroot.uclibc.org/about.html
http://buildroot.uclibc.org/about.html
https://openwrt.org/
https://openwrt.org/

BIBLIOGRAPHY 72

[27] University of Edinburgh. afreightdata image data base. http://

homepages.inf.ed.ac.uk/amos/movies/afreightdata.zip, 2015. [On-
line; accessed 08-May-2015].

[28] Openembedded.org. OpenEmbedded, official page. http://www.

openembedded.org/wiki/Main_Page, 2015. [Online; accessed 17-August-
2015].

[29] Pandaboard.org. Pandaboard ES Hardware System Reference Manual.
2013.

[30] Pandaboard.org. Pandaboard, official page. http://pandaboard.org/,
2015. [Online; accessed 08-January-2015].

[31] Marco Panunzio and Tullio Vardanega. A Component Model for On-board
Software Applications. 2010 36th EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 57–64, September 2010.

[32] A Linux Foundation Collaborative Project. Yocto build system, official
page. https://www.yoctoproject.org/, 2013. [Online; accessed 25-June-
2014].

[33] Juan A De Puente. Design of On-Board Software for an Experimental
Satellite. 01:1–10.

[34] European Cooperation for Space Standardization. ECSS-E-ST-40C.
(March), 2009.

[35] Texas Instruments. BeagleBoard-xM System Reference Manual Rev C1.
pages 1–164, 2010.

[36] Letzte nderung. Pengutronix, official page. http://www.pengutronix.de/
software/ptxdist/, 2015. [Online; accessed 17-August-2015].

http://homepages.inf.ed.ac.uk/amos/movies/afreightdata.zip
http://homepages.inf.ed.ac.uk/amos/movies/afreightdata.zip
http://www.openembedded.org/wiki/Main_Page
http://www.openembedded.org/wiki/Main_Page
http://pandaboard.org/
https://www.yoctoproject.org/
http://www.pengutronix.de/software/ptxdist/
http://www.pengutronix.de/software/ptxdist/

	Introduction
	Previous work focus on small satellites
	Problem statement
	Proposed solution
	Proposed development

	Software development approaches for small satellites
	Software methodologies used for satellites design
	Small satellite design and structure
	Central computation system in satellites. Homogeneous and Heterogeneous systems
	Different approach on software development for small satellites
	Software development: Monolithic approach
	Software development: Development by component

	Open Source tools on the design and implementation of software satellite

	Integration of build system for small satellite missions
	Build systems as an improvement on the design methodology
	Yocto build system

	Development platforms
	Beagleboard XM
	Pandaboard
	Beaglebone

	Design and implementation of the construction system
	Construction System
	The hardware independent layer: meta-tecSat
	The hardware dependent later: meta-tecSat-target
	Integration of the dependent and independent hardware layers in the construction system
	Adding a new recipe to a layer

	Continuous integration system in the tecSat project
	Integration of Jenkins with tecSat Project

	Development and results using the construction system
	Construction system information recollected from the build system
	Construction time

	Required size for construction
	Stability of the construction system
	Application development of a hardware independent application
	Color space conversion, RGB to YCbCr
	Development of a hardware independent recipe
	Deployed images for different targets
	Result of RBG to YCbCr using the GPP

	Future Work
	Support of DSPLINK API
	Validation test on the DSP for the Beagleboard XM

	RBG to YCbCr using the DSP

	Conclusion

