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Abstract

This thesis addresses the principles and algorithms of image reconstruction used
in electrical impedance tomography (EIT). It is a low cost, portable and non-invasive

medical imaging technique.

In this development EIT is used for the nerve location in the human forearm. The
work addresses the current injection and voltage acquisition methods, geometry
definitions and the finite element method for meshing and impedance map reconstruction.

In order to analyze different features, a software tool kit called EIDORS was used

for the target application of EIT applied for human forearm tomography.

This thesis most important contribution is the development of an EIT methodology

for image reconstruction from the impedance map of a human forearm using EIDORS.

Different image reconstruction algorithms and prior information methods are
evaluated and analyzed to solve the EIT inverse problem for the human forearm. It was
found that although the methodology could be successfully implemented, the desired
resolution for the precise identification of nerves was not sufficient for practical

configurations.

Keywords: EIT, Impedance, Conductivity, Finite Element Method, Constant Current,
SNR, Inverse Problem, Forward Problem, EIDORS.
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Resumen

Esta tesis aborda los principios y los algoritmos de reconstruccion de imagenes
utilizados en la tomografia por impedancia eléctrica (TIE). Esta es una técnica de bajo

costo, portable y no invasiva de imagenes médicas.

En esta investigacion TIE es utilizada en la localizacién de los nervios del
antebrazo humano. Este trabajo aborda la inyeccion de corriente y la adquisicion de
voltaje, la definicidn de la geometria del sujeto bajo prueba y el método de elementos

finitos para el mallado y la reconstruccion del mapa de impedancia.

El conjunto de herramientas de software llamado EIDORS se utilizé en la
aplicacion objetivo de TIE, se aplicé en la tomografia del antebrazo humano, analizando
diferentes caracteristicas.

La contribucion mas importante de esta tesis es el desarrollo de la metodologia
de reconstruccién de imagen para el TIE del mapa de impedancia del antebrazo humano
utilizando EIDORS.

Diferentes algoritmos para resolver el problema inverso de reconstrucciéon de
imagenes y métodos de informacion previa se evallan y analizan para resolver el
problema inverso para el antebrazo humano. Se encontr6 que, aunque la metodologia
podria ser implementada con éxito, la resolucion deseada para la identificacién precisa

de los nervios no era suficiente para las configuraciones practicas.

Palabras clave: TIE, Impedancia, Conductividad, Método de Elementos Finitos,

Corriente Constante, SNR, Problema Inverso, Problema Directo, EIDORS.
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"Life is too short to learn EIT”

Richard Porson
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Chapter 1 Introduction

1.1  Motivation and previous work

The Technische Universitat Hamburg-Harburg (TUHH) has been conducting
research in areas related to handling of patients with tractable injuries using
neuromuscular electrical stimulation. For this purpose, a method to determine the location
of some specifics nerves, tissues, and muscles is required in order to apply the
appropriate current levels at the right positions during the therapy. Within this scope, a
research initiative between the Instituto Tecnoldgico de Costa Rica (ITCR) and TUHH is
exploring the feasibility to develop an Electrical Impedance Tomography (EIT) system for
the human forearm, as a useful, non-intrusive, portable and low cost solution to assist

therapy studies.

In this regard, two methods can be employed for electrical stimulation, namely
percutaneous and transcutaneous electrical stimulations. The percutaneous method
requires surgeries to implant the electrodes around the nerves; while the transcutaneous
method provides the stimulation through the skin surface using electrodes.
Transcutaneous Electrical Stimulation (TES) systems are preferred due to the simple
removal at the completion of a rehabilitation program and the low infection risk. TES
requires the deep knowledge of the specific tissue electrical response; it was performed
in [1] a previous work dealing with the human forearm tissue behavior, where the creation
of the geometrical model of the human forearm was necessary for the analysis and
simulation. This previous work is based on the forward solution solved by numerical
methods, essentially using the finite element method (FEM), where the electrical

behaviors for the tissues are characterized in the human forearm.

In this work [1], the basis for the analysis of the electrical response was established
from calculated data for the inhomogeneous conductivities with the complex structural
geometry of a subject’s forearm when a small stimulation is applied, as well as the voltage

surface distribution in forearm.
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Based on the human forearm previous work, where EIT forward problem was
implemented, simulated and modeled, this thesis research objective is to define an
accurate methodology and the corresponding benchmark to evaluate the required
parameters to setup the EIT image reconstruction for human forearm with enough

precision to detect nerves.

Different algorithms and injection methods have been evaluated to compare their
performance regarding the image resolution in order to select the optimal image
reconstruction results. Best results are used to investigate the feasibility of implementing
EIT medical technique to identify nerves in human forearm for the target application of
TES.

1.2 Objectives

1.2.1 General objective

Develop a suitable image reconstruction methodology for the human forearm using

the electrical impedance tomography (EIT) technique.

1.2.2 Specific objectives

e Select a suitable platform for EIT image reconstruction.

e Define the corresponding methodology to execute the human forearm image

reconstruction using the medical imaging technique EIT.

e Define a benchmark to analyze the methodology, parameters and algorithms for

human forearm EIT image reconstruction.

e Evaluate different algorithms for image reconstruction and define the performance
according to its feasibility and degree of suitability based on the benchmark case
defined.
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e Determine the achievable EIT resolution in order to evaluate the feasibility of this
technique in order to determine the location of nerves, bones and muscles in

human forearm.
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1.3 Document structure

This thesis is divided in 5 chapters. A brief summary of each chapter is presented

below:

Chapter 2 presents an overview of electrical impedance tomography technique,
introducing its fundamental concepts, advantages and components. In this chapter, the
adjacent and the opposite current drive and voltage acquisition methods are explained,
as well the forward and inverse problem applied in the EIT image reconstruction, based
in FEM using the geometry definition and Fourier descriptors. Additionally, algorithms
and prior regularization methods for Gauss Newton algorithm are described and
evaluated using a simple example as reference. The under-fitting and over-fitting
concept is illustrated for hyperparameter definition in the regularization method. Human
forearm cross section with the corresponding tissues and conductivities is presented.

Chapter 3 describes the EIT image reconstruction methodology. It introduces and
explains the available software tools and platforms for EIT and the evaluation considering
its advantages and disadvantages. The chapter presents EIDORS as the selected toolkit
for the human forearm EIT image reconstruction methodology. The justification, features,
and most relevant functions will be explained, as well a detailed flow diagram for final

implementation in order to validate and analyze the EIT image reconstruction results.

Chapter 4 shows the application, validation, and analysis of EIT image reconstruction
methodology for human forearm is addressed; different parameters are evaluated,
showing its results and analysis in order to recommend the best setup for human forearm

EIT image reconstruction.

Chapter 5 summarizes the technical contribution of this thesis on EIT image
reconstruction for human forearm methodology based in EIDORs and provides some

recommendations for future work.
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1.4 Research achievements of EIT image reconstruction for human

forearm

The most important achievement of this thesis is the methodology definition for
image reconstruction in order to generate the impedance map for the human forearm

based on the electrical impedance tomography (EIT) technique using the EIDORS toolkit.

In order to perform the EIT image reconstruction, the (x, y) coordinates extracted
from the complex human forearm geometry, developed with the COMSOL platform [1],
are organized to create the EIDORS finite element model. It is important to note that the
defined geometry is complex and contains 36 objects, whereas most of EIT
implementations found in the literature are much simpler and use a much lower number

of components.

Through this research, relevant parameters for EIT image reconstruction were
evaluated after observing and analyzing its effects in the reconstructed image. Allowing
the definition of limits such as the signal to noise radio (SNR), these evaluations have
defined the appropriated values for human forearm image reconstruction setup. There,
the minimal SNR acceptable is 30dB for reconstructing a useful image using

measurements with background noise according to the simulated values.

In addition, the controlled setup enables the evaluation of the EIT human forearm
image reconstruction resolution in the output image, as well differentimage reconstruction
algorithms and regularization methods with their prior information calculated with
simulated data, instead of having a subject for testing during fine tune adjustment.

According to obtained results, it is concluded that EIT methodology can be applied
to the human forearm, however it was not possible to achieve the resolution to identify
nerves in human forearm using up to 32 electrodes and the adjacent method for injection
and acquisition based on the EIDORS tool kit. However, several other forearm elements

such as bones, fat, and muscles can be identified.
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Chapter 2 Overview of EIT

This chapter presents an overview of electrical impedance tomography technique
introducing its fundamental concepts, advantages, and components. In this chapter, the
adjacent and the opposite current drive and voltage acquisition methods are also
explained. The forward and inverse problem applied in the EIT image reconstruction are
also addressed, based in FEM using the geometry definition and Fourier descriptors.
Additionally, algorithms and prior regularization methods for Gauss Newton algorithm are
described and evaluated by means of examples. The under-fitting and over-fitting
concepts are illustrated for hyperparameter definition in the regularization method. In the
last part, human forearm cross section is presented with the corresponding tissues and

conductivities.

2.5 Electrical impedance tomography (EIT) review

Electrical impedance tomography (EIT) is a low cost, portable, non-invasive, and
non-radiating general-purpose technique for imaging reconstruction used to obtain
images for medical imaging, geological exploration, industrial application and

environmental sciences [2].

EIT image reconstruction is used in medical imaging to generate an impedance
map of a body part using the electrical conductivity distribution formed from current
injection and voltage data measured using a specific pattern over electrode measuring
points. The first EIT device used for medical imaging research purposes, named the

Sheffield Mark I, was developed by David C. Barber and Brian H. in the early 1980s.

Hereafter, several possible applications in medicine were suggested, ranging from
gastric emptying to brain function monitoring and from breast imaging to lung function

assessment [3].

The main components required for the EIT image reconstruction process are
shown in Figure 2-1 and described below:
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1. An electrode array for current injection and data acquisition.

2. Electronic instrumentation for multiplexing, current injection, and data
acquisition.

3. Computing system running image reconstruction algorithms to create the
impedance map (output image).

4. Subject under test.

%

Subject Under Test

Figure 2-1. Main components for electrical impedance tomography process.

The electrode array is placed around the area of interest for cross section imaging
of the subject or object under test. Electronic instrumentation consists in a current injector
used to inject a low frequency and magnitude current to subject under test through a pair
of electrodes. Although the data acquisition system collects the voltage measurements in
the other electrodes, a multiplexer is required to switch the electrodes pairs for injecting
the current and measuring the voltages. The image reconstruction algorithm generates
the image of internal electrical impedance using the voltages measurements acquired

from the electrode array.

The EIT image reconstruction approach that use the surface current and voltage
measurements to calculate the impedance map is known as the inverse problem, where
the measure voltage is used to predict the base model. To solve the inverse problem, it
is necessary to solve the forward problem first. The forward problem requires knowing
the conductivity base model as well current pulses of the medium to predict the electric
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field inside of it. Therefore, it is necessary to implement the finite element method using

a predefined geometry.

2.6 Current drive and voltage acquisition methods

In order to avoid the error due to the contact impedance, in EIT is required to inject
the current and measure the voltage through different pairs of electrodes. This document
describes two patterns for current drive and voltage measurements used in EIT image

reconstruction, although several other types can be found in the literature [4].

2.6.1 Adjacent neighboring method

For this method, proposed by Brown and Segar in 1987, the current is applied to
a pair of electrodes and voltage, which is measured from other noncurrent pair of
electrodes [5]. As explained in [6], for a 16 electrode array the distribution of internal

bioimpedance is determined by applying a known alternating current “I” to a first pair of
electrodes and by measuring the resulting surface potentials “Vn” at the remaining 13
electrode pairs without the pairs containing one or both the current electrodes [7]. All

these 13 measurements are independent.

Subsequently, the current through neighbored electrodes is injected and voltage
is measured at the remaining electrodes. By using a system of 16 electrodes, it is possible
to collect 208 different voltage measurements (16x13). The measurements in which the
current electrodes and voltage electrodes are interchanged must have identical

measurement results. Therefore, only 104 measurements are independent.

The current density is highest between the pair of electrodes where the current is
injected and decreases rapidly as a function of the distance. Therefore, the measured
voltage is maximum with adjacent electrode pairs. With opposite electrode pairs, the

voltage is only about 2.5% of that [4].

Figure 2-2 shows an application example of this method for a cylindrical volume
conductor with 16 equally spaced electrodes.
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Current flow lines Isopotential lines

Figure 2-2. Adjacent method for a cylindrical volume conductor and 16 equally spaced electrodes:
(a) The first four voltage measurements for the set of 13 measurements.
(b) Another set of 13 measurements is obtained by changing the current feeding electrodes [4].

Figure 2-2 (A) depicts the first four voltage measurements for the set of 13
measurements. The impedance between the equipotential lines intersecting the
measurement electrodes is indicated with shading for the voltage measurement between
electrodes 6 and 7. Figure 2-2 (B) shows the behavior when moving current injection to

electrodes 2 and 3.

2.6.2 Opposite or polar method

This measurement method was also proposed by Hua, Webster, and Tompkins in
1987 [1]. In this method, the current is injected through a pair of opposite electrodes. The
voltage differences are measured on the remaining electrodes with respect to the voltage
reference electrode that corresponds adjacent to the current-injecting electrode. This
process is repeated until current has been injected between all pairs of electrodes. For a
system with 16 electrodes there are 8 opposite pairs, and for each pair there are 13

remaining electrodes; then, 104 (8x13) different voltage measurements are produced.

This method offers a better distribution of the sensitivity, as the current travels with
greater uniformity through the imaged body being less sensitive to conductivity changes

at the boundary [7].
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Figure 2-3. Opposite or polar method representation [4].

2.7 Image reconstruction

Image reconstruction in EIT is the stage of the process where an image with the
conductivity distribution of the subject under test is generated. In this process the voltages
measured from electrodes during the current injection are used to calculate the
conductivities values, keeping the error as smaller as possible between the calculate
voltage and the measured voltage. The measured voltage is affected by the tissue
conductivity between the injection electrode and the detector electrode, a change in the

conductivity influence on every single voltage measured at the boundary [8].

Figure 2-4. shows a block diagram of the process to calculate the conductivity
distribution image. Measurements are extracted from patient, then the simulated data for
constructing the Jacobian matrix is generated using the finite element model. Using this
data, the reconstruction smoothness parameters are set up to get the best tradeoff
between output image and iterations. Finally, the output of equation (2.4), as described
in following sections, corresponds the EIT reconstructed image.

Image reconstruction in EIT is an ill-posed problem because there is not a unique
solution. Due to this behavior, it is necessary to implement the forward problem and the
inverse problem to create the impedance map These concepts will be explained in detail

in the following sections.
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Figure 2-4. Block diagram of EIT reconstruction algorithm [8].

2.7.1 Forward problem

The forward problem is defined as the mathematical prediction of the output data
or model behavior based on some physical or mathematical model with a set of data and
parameters as represented in Figure 2-5. In EIT the forward problem is used to develop

the sensitivity or Jacobian Matrix J, used in the inverse problem solution.

Model
Parameters

Predicted Data

Figure 2-5. Graphical representation of forward problem.

According to [9], the Jacobian matrix describes the change in measurements due
to a deformation in the boundary. It is calculated using perturbation techniques by
introducing small model deformations and repeatedly solving the forward problem. It is
slow and it becomes inaccurate for large finite element models. For this reason,

algorithms have been developed mainly for 2D problems.

In electrical impedance tomography (EIT), for a given conductivity distribution and
current injection values, the forward problem corresponds to the prediction of the voltages

on electrodes and the physics of the problem based on Maxwell’'s equations.
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As mentioned in [10], the EIT forward solver is normally based on the conventional
finite element method (FEM). Due the level of noise present in real data the accuracy to
detect very small anomalies is affected, usually is needed a mesh with large number of
nodes and elements to accurately simulate the forward solution with the FEM. In the case
of objects that have not standard geometries as forearm, thorax or brain, it is a common

practice to approximate them as spheres or triangles [11].
Using the voltage measurements (v € R™), subject conductivity (¢ € R™)
could be estimated by minimizing the least-squared error:
6 = arg, min|lv — f(0)||?, with: f(6):D € R™W - R" (2.1)
Function f(o) estimates boundary voltages measured at electrodes for a given
conductivity distribution (o € R") this function is known as the forward problem.

In EIT image reconstruction, the function f (o) is linearized in its current operating

point a.to simplify the forward problem.

aVi (2.2)
d0;

Moo

f(o) = f(6¢) + J(0 — 09), with];; =

Despite the simplifications (linearization, differential EIT), the problem remains
ill-conditioned and the image reconstruction is not possible. In order to reconstruct the

conductivity distribution image, it is necessary to solve the inverse problem.

2.7.2 Inverse problem

Opposite to forward problem, the inverse problem is defined as the prediction of
the model parameters based on the model and a known set of data, schematically shown
in Figure 2-6. In electrical impedance tomography the inverse problem corresponds to
the prediction of the internal conductivity distribution for given set of the voltage

measurements on the surface, injection values and the geometry of the domain;
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minimizing the difference between the measured and predicted voltages using the

forward problem solution[11].

Predicted Model
Parameters

Figure 2-6. Graphical representation of inverse problem.

According to [12] EIT image reconstruction generally consists of both, an inverse
problem and a forward problem. The inverse problem relates the measurements to the
model and as explained above, the forward problem is used to develop the sensitivity
matrix, which is used for solving the inverse problem. A generalized graphical

representation of EIT image reconstruction is illustrated in Figure 2-7.

Forward Problem

Model Jacobian Measured Data

Inverse Problem

Figure 2-7. Graphical representation of the general EIT image reconstruction.

The inverse problem in EIT is identified as an ill-conditioned problem because it
can have two or more solution or the solution procedure is unstable. It can be converted
to a well-posed problem, which have a unique and continuously data dependant solution,

if some priori information is available.

A problem is called well-posed in the sense of Hadamard, according to [13], For
all admissible data, a solution exists and the solution is unique and depends continuously
on the data. Due to the ill-conditioned problem, nature of inverse problem in EIT, the
obtained reconstructed image requires the application of regularization techniques to

eliminated undesirable results.
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The regularization is a technique used in mathematics, statistics and particularly
in the fields of machine learning and also inverse problems to convert the ill-posed
problem into a well-posed problem by the introduction of a regularization term controlled
by the hyperparameter (1). Applying the regularization, the subject conductivity equation

is reformulated as follow:

G4 = argg, min{||va — Joall* W + 2?[lo4lI*R} (2:3)

where:

e W is the weighting matrix used to attenuate voltage measurements that are classified

as unreliable (too noisy).

e A is the hyperparameter that controls the trade-off between regularization and noise.
A high hyperparameter results in a smooth image with lots of noise attenuation
whereas a small hyperparameter yields to a noisier image with better spatial resolution

as explained in [8].

e R corresponds to the regularization and can be chosen in various ways:
a) When set equals to the identity matrix (R =1I), zeroth-order Tikhonov
regularization is used. This simply penalized for too high amplitudes of o4.
b) Setting R based on edge-sensitive spatial filters (e.g. Laplacian) The

reconstructed image is penalized for sharp edges and forced to smoothness.

The equation (2.3) can be converted for final EIT reconstruction to perform only
one matrix multiplication in equation (2.4). It is also known as the one-step Gauss-Newton

(GN) reconstruction illustrated in Figure 2-4.

64 = JTWJ + 22R)"1JTW * v, (2.4)

2.8 Geometry and finite element method definition using Fourier
descriptors
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As explained in [14], the Finite Element Method (FEM) provides a numerical
solution for field problems. FEM requires dividing the structure into several elements and
then reconnects all of them at “nodes”, holding the elements together and defining a set
of simultaneous algebraic equations. The boundary of each component is associated with
the geometry under study as shown in Figure 2-8, in the left image is the solid sphere, in
the center is the sphere sub-divided and in the right image are the elements(triangles)

connected by nodes.

o) ) &

Figure 2-8. Finite element model representation.

This mathematical model is defined to predict the behavior of a determined system
under different conditions. Then, the results produced by this model are physically re-
interpreted only under modeling conditions. As described in [15], the response of each
element is expressed in terms of a finite number of degrees of freedom characterized as
the value of an unknown function, or functions, at a set of nodal points. The response of
the mathematical model is then considered to be approximated by the discrete model
obtained by connecting or assembling the collection of all elements. Finite elements do

not overlap, that is known as support or local support.

As shown in Figure 2-9, the most common errors in FEM formulation are the

following:

1. Simplification of geometry, the approximated domain loses detail from original.

2. Field quantity is assumed to be a polynomial over an element, which is not true.
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Domain
domain

(a)

True deformation Cubic element

Linear element Quadratic element
(b)

Figure 2-9.(a) Geometry approximation error (b) line element error [14].

Among the main advantages of FEM are the simplification of very complex
geometries for their analysis and evaluation and the help for solving indeterminate
structures with complex restraints. Its main disadvantages are that the obtained solutions

are just an approximation and inherent errors are present in its formulation.

2.8.1 Fourier descriptors used for geometry components definition

For generating the geometry under study for this thesis, it is required to interpolate
points in order to define the structure boundaries. Those points are defined by the Fourier

descriptors implementation.

The Fourier descriptors are used to encode the shape of a two-dimensional object
by taking the Fourier transform of the boundary and by mapping every (x,y) point on the

boundary to a complex number x + iy.

The original component shape can be recovered from the inverse Fourier
transform. The boundary can be smoothed or filtered by using just few terms of the
inverse Fourier transform. A highly simplified shape can be obtained when using few
descriptors, but the shape can converge to its original form as the quantity of descriptors

increases.

Due to Fourier descriptors contains all the information about the shape, it can be
reconstructed by setting all the terms that correspond to value above a determinate
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frequency to zero, creating a low-pass filtering effect that allows to smooth the shape
boundary. Figure 2-10 shows some reconstructed images when different numbers of

coefficients are used.

(@) (b) () (d) (e) (f)

Figure 2-10. Examples using Fourier descriptors: (a) the original edge image with1024 edge pixels, (b) 3
Fourier coefficients, (c) 21 Fourier coefficients, (d) 61 Fourier coefficients, (e) 201 Fourier coefficients,
and (f) 401 Fourier coefficients [16].

As explained in [17], if the boundary of a shape has N pixels numbered from
0toN- 1 and the k" pixel along the contour has position (x*,y*)the contour can be
described with the following two parametric equations:

x(k) = x (2.5)
y(k) =y (2.6)

The Fourier Transform of each function two frequency spectra are gotten. These
spectra are known as Fourier descriptors.

a,(v) = F(x(k)) (2.7)
a,(v) = F(y(k)) (2.8)

The Discrete Fourier Transform can be employed for finite number of discrete
pixels and it treats the signal as periodic. Then, the Cartesian coordinates(x,y) points
must be considered as a complex number x + iy in the complex plane.

s(k) = x(k) + iy(k) (2.9)

And finally, the single Fourier descriptor is the transform of the complex function
as it is shown in equation (2.10).

a(v) = F(s(k)) = F(x(k) + iy(k)) (2.10)
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Some Fourier transform properties for periodic signals as translation invariance,

scaling and rotation and starting point also apply to Fourier descriptors.

1. Translation invariance: Independently where the shape is located in the image, the
Fourier descriptors remain the same.

2. Scaling: If the shape is scaled by a factor, the Fourier descriptors are scaled by
that same factor.

3. Rotation and starting point: Rotating the shape or selecting a different starting point
only affects the phase of the descriptors. Rotation in the complex plane by angle

6 is multiplication by e®.

2.9 EIT image reconstruction algorithms

In this section Sheffield back-projection and Gauss-Newton image reconstruction
algorithms will be explained, as well the different types prior information used in the
regularization technique for GN algorithm to minimize the error between the predicted
and measured voltage.

2.9.1 Sheffield back-projection algorithm

The Sheffield back-projection algorithm was proposed in 1983 by Barber and
Brown. It is one of the most well-known image reconstruction algorithm developed for

Electrical Impedance Tomography due its efficiency and relative low power cost.

As explained in [18], the Sheffield back-projection algorithm is a two dimensional
reconstruction algorithm initially restricted to a circular domain. Then, a pre-processing
procedure denominated filtered back-projection based on first derivative of the FEM of
the object under study. It was developed to improve the spatial and the conductivity
resolution by pre-processing the electric potential data before the use of the
back-projection algorithm.

According to [18], the mathematical representation of the problem is:
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V.(cVU) =0in Q (2.11)

ou (2.12)
oc— =]Jon dQ
on

Where o corresponds to conductivity; U, the electrical potential; J, the current density in

the boundary; and Q, the domain of interest.

Then, replacing ¢ and U for their first variation of the conductivity o and the

electric potential 8U, respectively in (2.11) and (2.12), results:

V. [(6V8U) + V. (86VU)] = 0in Q (2.13)
a(8U) _ au (2.14)
a—n + 60% = ] on 4Q

Using the following hypotheses:

1. Qs the unit two dimensional ball;
2. the conductivity is unitary o = 1,
3. 60 =0 near the dipole.

the linearized problem reduces to:
V2.8U = —V(80).VUin Q (2.15)

(86U 2.16
g = 0on 0Q (2.10)
Jn

The linearized inverse problem associated with (2.15) and (2.16) becomes: given
a variation of electric potential along the boundary,8U|sq, for various choices of dipole

positions along the boundary, determine a consistent increment §o.

To solve this problem, Barber and Brown used a change of variables that mapped

the circular domain into a rectangular domain.
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Figure 2-11.(a) Coordinates (X5,X6) and (b) coordinates (X3,X4).
Using as reference frame shown in Figure 2-11.(a), where w represents the
position of current injecting dipole, which is located between two electrodes, the equation

for the equipotential lines are:

X5
U= ——
X242 (2.17)
X6
V= xZ + x2 (2.18)
5 6

And, translating the reference frame as in Figure 2-11.(b), the equations above
correspond to:
X2+ (xy + 1)2 (2.19)

(x4 + 1)

- x5+ (x4 + 1)2 (2.20)

Based on (2.19) and (2.20), the domain Q can be mapped to the upper half plane
P defined by the rectangular region where V. > 1/2.

Now, (2.15) and (2.16)can be simplified by using the new coordinates (U, V), to:

d(60)
i 2.2
U inP (2.21)

728U = —
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a(oU) 1
T =0o0ondP = {V > E} (2.22)

Barber and Brown suggest the average in (2.23) as the discrete solution for §c.

(2.23)

80 = — > W(s0)lymg(suy) (2V(20y)-1)
j=1

where m corresponds to the number of the electrodes; W, to the voltage measurement

on the boundary; w, to the position of the electrode; and V, to the current intensity function.

In order to obtain a normalized conductivity, the voltage measurements are
normalized as suggested by Barber and Brown. Therefore, the Sheffield back-projection
algorithm assumes that the region between two adjacent potential lines has the same
voltage measurement. Rotating the position of the current injection dipole, m sets of
voltage measurements are obtained. These sets of electric potential measurements,
previously normalized, adjusted by the corresponding weight which is 2V - 1, is the

desired normalized conductivity.

The Figure 2-12 is a step by step example showing the profiles of voltage
deviations in the presence of a regional increase of impedance and the successive

superposition of the 16 voltage profiles.

sece

Figure 2-12. Step by step example. A) Profiles of voltage deviations in the presence of a regional
increase of impedance. B) Successive superposition of the 16 voltage profiles [19].
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In Figure 2-12.(a), white and light blue depict deviations of the voltage distribution
in an inhomogeneous medium; the black corresponds to voltages without deviation.
Figure 2-13.corresponds to the resulting image after selective boundary filtering explained

above.

Figure 2-13.Resulting image after selective boundary filtering [19].

2.9.2 Gauss Newton algorithm

As exposed in [14], the EIT image reconstruction is a non-linear inverse problem
that is highly affected by errors in measurements, large changes in impedance imply only
small changes in surface potentials. Therefore, minimization algorithms are required to
approximate the results, reducing the differences between the voltages predicted with

forward solvers and the voltages measured.

The GN algorithm is used to found the square solution of the minimized object
function s(o). Supposing that V,,is a matrix containing measured voltages and V. is a

matrix for calculated voltages, s(o) can be expressed as:

5(0) = Vi = Vel = Sl WV = VT (U = VOl (2.24)
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Figure 2-14.Gauss-Newton algorithm flow diagram.

The flow diagram shown in Figure 2-14.describes the GN algorithm. As explained
in [20], the GN algorithm requires an initial conductivity (o,) value to be started. The
voltages are calculated and then compared with the measured potential for obtaining the
Jacobian (J) matrix, Ac is then updated and oy, is calculated using oy. The loop is
repeated until the specification error limit ¢ is reached. Symbol A is the regularization

parameter which is updated in each iteration.

The GN algorithm is useful to find images of conductivity by employing different

prior regularization methods.

37

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



2.9.3 Gauss Newton priors regularization methods

The solution of impedance distribution in electrical impedance tomography
requires the use of a regularization methods to convert the ill-posed problem into a

well-posed problem using a suitable regularization parameter as is mentioned in [21].

Besides to reduce the ill-posed characteristics of the problems, the regularization
and its hyperparameter definition helps to prevent over and under-fitting, allowing to
reconstruct images with a better quality and convergence to a model that matches the
data observed for inverse problem. Under-fitting and over-fitting concept is explained in

section 2.10.

Tikhonov prior

The simplest regularization technique is the standard Tikhonov, in which the
regularization matrix is proportional to identity. Since the physical attenuation phenomena
responsible for the ill-posed nature of the EIT problem is not taken into account, the
standard Tikhonov regularization cannot provide a satisfactory solution in image

reconstruction for EIT [3].

The Tikhonov-regularized versions of the EIT inverse problem can be written in the

form:

min,{[|V = U(p)|> + al|L,||?} (2.25)

where p is the resistivity distribution; U(p), the resistivity to potential mapping, that is, the
potentials obtained from the model with known p; V, the measured potentials; L, a so-

called regularization matrix; and a, a regularization parameter [22].
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NOSER prior

The Newton’s One-Step Error Reconstructor (NOSER), is a linearization-based
algorithm which takes one step of Newton’s Method using the best constant conductivity

approximation from the measured data as an initial guess.

The reconstruction is done with a particular mesh; the conductivity is assumed to
be constant on each mesh element. According to [23], mathematically this can be

expressed as:

N

0oB) = ) 0P 2.26)

n=1
Where X,,(p) is the characteristic function that is 1 for p contained in the nth mesh

element or zero otherwise.

Laplace prior

Laplace prior is a regularization which regression estimates the median, while
Normal distribution refers to ordinary least squares. Laplace is based off the prior belief
that most coefficients must be close to zero as it is shown in Laplace probability
distribution function [24] represented in equation (2.27):

a
p(x;a) = Ee‘“'x' (2.27)
Laplace prior reduces the number of predictors in a generalized linear model,
identifies important predictors, selects among redundant predictors and produces

shrinkage estimates with potentially lower predictive errors than ordinary least squares.

In Figure 2-15. is shown the diagram contrasting the probability density functions
of Normal and Laplace distributions, where the second one assigns a higher density to a
neighborhood of zero, also Laplace has fatter tails than the Normal distribution.
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Figure 2-15.Diagram contrasts the probability density functions of the normal distribution and the
Laplace distribution [25].

Total Variation

Total variation regularization is mainly used in digital image processing for noise
removal. It is based on the principle that signals with excessive and possibly spurious
detail have high total variation. According to this, reducing the total variation of the signal
subject to a close match of the original signal, removes unwanted detail preserving

important details such as edges.

The advantages of this technique over others techniques such as linear smoothing
or median filtering, which reduces noise but at the same time smooth away edges to a
greater or lesser degree, is the contrasting. Total variation noise removal is effective while
preserving the important changes even at low signal-to-noise ratios. According to [26],
the total variation is represented by the equation (2.28)

TV (u) =f |Vu|dx (2.28)
Q

2.10 Under-fitting and over-fitting

In EIT image reconstruction, the main idea is to define the conductivity distribution
model from measured voltage, under-fitting and over-fitting may occur when linear
regression is used with polynomial features to approximate nonlinear functions.
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The function used for the example shown in [27] is a part of the cosine function,

the plots in Figure 2-16 shows the function, the samples from the real function and the

approximations of different models. Figure 2-16.(a), corresponds to an under-fitting result,

where the linear function is not sufficient to fit the training samples. In the other case

Figure 2-16.(b) shows the result where the function is approximated to the true function

almost perfectly. Finally, the plot in Figure 2-16.(c) is an over-fitting result due to the use

of higher degrees in polynomial equations where the model over-fit the training data.

Degree 1

Degree 4 Degree 15

MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.83e+08(+/- 5.48e+08)
— Model — Model — Model
— True function — True function — True function

o8 Samples

e®e Samples e®g Samples

(b) (c)

Figure 2-16.Under-fitting vs over-fitting results [27].

Figure 2-17 shows a scheme for the error of prediction depending on the size and

guality of the calibration data set, which influence the estimation error. The best predictive

and fitted model would be where the validation error has its global minimum.

Ermor of Prediction

1 underitting Overfitting

[
y o

Complexity of Model

Figure 2-17.Scheme for the error of prediction depending on the size and quality of the
calibration data set, which influence the estimation error [28].
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Over-fitting/over-training is an employed supervised learning. If the validation error

increases (positive slope) while the training error steadily decreases (negative slope) then
a situation of over-fitting may have occurred.

2.11 Comparison of 2D algorithms in EIT

In order to select the best algorithm for image reconstruction using EIT technique,
the previous work in [20] is used as reference with a simple test bench, a tank and one
object, the results are shown in Figure 2-18 and Figure 2-19. These results are very

significant to improve knowledge and use better criteria when defining the environment
setup for the human forearm.

(0 ©
(a)

Figure 2-18.2D algorithm comparison results : (a) Clay cylinder kept near electrodes 4 and 5 and
(b) Non conducting impurity near 4, 5 using back-projection without filter.[20].

005

@ ©) (0

Figure 2-19.2D algorithm comparison results : (¢) GN algorithm with Tikhonov prior, (d) GN
algorithm with NOSER prior, (e) GN algorithm with Laplace prior and (f) Total Variation prior [20].
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Results are summarized in Table 2-1, where the performance of prior information
methods is calculated using the error between the current size of 4.5599 cm? and the
reconstructed impurity size. According to the results, the best performance is obtained

when using total variation prior information.

Table 2-1. Comparison of actual and reconstructed impurity size.

Size Error(%)
Impurity (Clay cylinder) (cm?) _ 4.5599 x —reconstructed
B 4.5599 *
Reconstructed image using Tikhonov prior 3.619 20.63
Reconstructed image using NOSER prior 5.2285 14.66
Reconstructed image using Laplace prior | 4.84946 6.35
Reconstructed |ma§rei,=ol:smg total variation 4.7047 3175

*Actual size of clay cylinder is 4.5599 cm?

2.12 Human forearm model

As described in [29], the forearm extends from the elbow joint to the hand and is
compound by the lower half of the arm. The forearm has two long bones, the ulna and
the radius, forming a rotational joint which allows the forearm to turn so that the palm of
the hand faces up or down. The forearm skin provides a sensory function and typically its

top features more follicles than the underside.

The forearm has two arteries, the radial and ulnar, which follow a course close to
the bones of similar name. These arteries are branched into lesser arteries, servicing the
forearm's musculature. It has also four nerves, the volar antebrachial interosseous, radial,

ulnar, and median; that innervate most of the forearm components.

Figure 2-20represents a cross section image of the human forearm tissues.

Different tissues, as well different conductivities, are remarked using the different colors.
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For this thesis purposes, the most important tissues to identify in the image reconstruction

are the nerves, which are marked in white.

- Blood
- Skin
- Flexor Muscle
- Pronator
I:I Abductor
l:l Nerve

I:I Bone Cortical
- Bone Marrow
I:I Fat

Figure 2-20.Forearm geometry used as reference in this thesis (geometry was reproduced from

(1))

In Table 2-2are shown the theoretical values of forearm conductivity that are being

used for this thesis purposes [1].

Table 2-2.Theoretical values of conductivity and relative permittivity for different tissues in the human
forearm [1].

Tissue | Conductivity Rel. Permittivity
(S/m)
Fat 0.03 5x10°
Muscle’ -
Transversal 0.09 2x10’
Longitudinal 0.55 3.3x10°
Skin' 0.1135 6 x10°
Bone
Cortical" 0.03 5.2x10°
Marrow” 0.002 45520
Blood’ 0.7 3 x10°
Nerve” 0.028 5.89 x10°
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Chapter 3 EIT image reconstruction methodology

This chapter explains the EIT image reconstruction methodology including a
detailed flow diagram for final implementation in order to validate and analyze the results.
Available software tools and platforms for EIT are also evaluated considering its
advantages and disadvantages. For the human forearm EIT image reconstruction
methodology, the selected toolkit is EIDORS. The reason of its selection, features and

most relevant functions will be explained.

3.13 General EIT image reconstruction methodology

Figure 3-1 summarizes the general procedure to reconstruct the EIT image. At
first, model geometry must be defined; then the current injection and voltage acquisition
patterns in the electrodes array are simulated; Finally, conductivity distribution of the

subject under test is calculated using the forward and inverse solvers.

Geometric model

Simulated current injection and voltage acquisition using an electrode
array

Forward Solver
Inverse Solver

Figure 3-1. EIT image reconstruction general methodology.

To perform the EIT image reconstruction, a finite element model based on the
object geometry is required in order to solve the forward problem. For the inverse solver,
several forward problem solver iterations are required previously to compare the data and

minimize the prediction error.
45

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



The inhomogeneous data used for image reconstruction algorithms could be
acquired from real electrodes or from simulated values. For this thesis, the image
reconstruction algorithms are applied using simulated data generated using the adjacent
injection pattern. The measured data from virtual electrodes is merged with Gaussian
noise in order to evaluate the image reconstruction within a realistic environment. Once
the set of input data is available, the forward and inverse solvers are executed with the
corresponding hyperparameters to obtain the EIT reconstructed image of the conductivity
distribution.

The selection of the appropriate software tool to implement the image
reconstruction from the voltage measurements is one of the specific objectives of this
thesis. EIT implementation requires a computer and specialized software in order to
process all the mathematical model information. At the time of this research, only two
software options were found to implement the EIT image reconstruction methodology: a
generic numeric solver or a high level mathematical programming tool, and EIDORS [30],
an open source tool kit that works linked with Matlab. In the following section, the features
of each option and their main advantages are described in order to justify the selection of

the best alternative to develop the human forearm image reconstruction methodology.

3.13.1 High level mathematical programming tool

Application structure, algorithms, and implementation shall be developed by the
researcher as well all required optimizations, increasing the development effort, cost, and

time. The development of an EIT implementation from scratch is a very complex task.

General purpose software tools or physics solvers are expensive and their use
could be justified depending of the model complexity and spatial resolution required.
However, they are also not customized for EIT; therefore, the development effort would
be high. For this research, these options are discarded because of the price, license

terms, and development time limitations.
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3.13.2 EIDORS toolkit

The name of EIDORS stands for Electrical Impedance Tomography and Diffuse
Optical Tomography Reconstruction Software [13]. EIDORS is used for EIT image
reconstruction and modeling for medical and industrial applications. According to [31], the
project is currently supported by William R.B. Lionheart and Andy Adler, from University

of Manchester (U.K.) and University of Ottawa (Canada), respectively.

The latest release of EIDORS is version 3.8 (available at www.eidors.org licensed
under the GNU GPLv2 (or GPLv3)). It has a strong basis with several built-in
reconstruction algorithms. Also, as mentioned in [28], adds and improves many important
aspects in EIT field like speed optimizations: improved Jacobian calculation, faster cache

handling, and faster forward solutions.

EIDORS performs an iterative absolute inverse solver for Gauss-Newton and
Conjugate-Gradient; as well as some speed optimizations in Jacobian calculation, faster
cache handling, and faster forward solutions. EIDORS toolkit offers four primary
objects represented by a structure with its own properties, name, and type. These four
objects are the data, image, fwd model, inv model. The name is arbitrary and it is
displayed by the graphical functions, being useful to distinguish objects in a user specified
function during the development.

EIDORS have been used and supported by strong commercial brands like Drager
and Swisstom, supporting their file formats. More details about EIDORS could be found

in [30]. The following table shows a summary of EIDORS features.

After analyze the summarized information listed in Table 3-1, obtained from
researching about EIT image reconstruction platforms, EIDORS is a software toolkit, that
offers an open source tool and an active community that is continually working supporting
and providing constant maintenance. Also it provides free software algorithms for forward

and inverse problems modeling for EIT [32].

Table 3-1. Image Reconstruction software tool features
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Platform  Description License Support Environment

EIDORS Electrical Open Source Yes, a specific group is ~ Windows, Linux.
Impedance and  GNU General Public responsible for this Works linked
Diffuse Optical | jcense. project. with MATLAB or
Reconstruction o use, modify, and A big community is Octave
Software distribute modifications. ~ Working with this platform
May be used in a
commercial product

3.13.3 Human forearm Image reconstruction methodology flow

diagram using EIDORS

For a better explanation about how the image reconstruction platform works, the
flow diagram in Figure 3-2 was created. Next, steps and details to generate a
reconstructed image of the human forearm using EIT technique in EIDORS platform will

be addressed.
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Define the geometric model for reconstruction, in this case the human forearm model is defined using
Xy coordinates

v

Create the neighboring voltage stimulus for injection and acquisition to be applied in the 16 electrodes
array

v

Define the forearm objects using the xy coordinates, interpolating the array with Fourier descriptors

v

Construct the image data structure with a uniform conductivity in order to execute the forward solver to
obtain the homogeneous voltages (vh)

v

Setup the corresponding conductivity for each object in the forearm geometry

v

Create a new image data structure in order to execute the forward solver to obtain the inhomogeneous
voltages (vi)

( Yes Reconstruction with Noise No

Use the generated vi and add noise, the result
will be a new data set with noise added
\

v

Create the inverse model structure

v

Setup the reconstruction parameters:
-Inverse Solver
-Hyperparameter
-Prior image method
v
Call the Inverse solver function using vh and vi

v

The output from the inverse solver is the EIT reconstructed image

Figure 3-2. EIDORS Image reconstruction flow diagram.

In order to use EIDORS, it is necessary to install MATLAB or Octave, Appendix A
shown the detail of EIDORS installation and the human forearm methodology
implementation for image reconstruction. Appendix B contains the implementation of the

methodology, showing the source code developed during this research.

The following information corresponds to a detailed description of each stage of

the methodology for image reconstruction using EIDORS, using the flow diagram shown
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in Figure 3-2. The detailed methodology is specifically for human forearm due to its
complexity and geometry; however, it could be used as reference for other similar parts

of the human body or industrial processes.

* Define the geometric model for reconstruction. In this case the human forearm model

is defined using (x,y) coordinates.

A human forearm geometry was built in the previous work [1], where the forward
problem was developed using the software platform COMSOL. Having that geometry as
reference, a file exported from COMSOL (in mphtxt format) provides the (X,y) coordinates

that describe the geometry components.

The exported file cannot be used directly, because it contains a lot of additional
information, so the components (X,y) points were extracted and edited into an excel
workbook. The information extracted to excel workbook is then plotted to check if the

component is defined correctly according to coordinates contained in the exported file.

The mphtxt file organize the (x,y) points for each object, typically in several
manifolds, depending of the component complexity. During this research the (x,y) points
extraction was made manually, but for future work it is recommended to implement a
conversion script. With the (x,y) points defined for each component, it is necessary to
create the MATLAB variables in the workspace with the corresponding information. The

created workspace is saved with the variables in a .m file.

* Create the neighboring voltage stimulus for injection and acquisition to be applied in the

16 electrodes array.

The current injection pattern, the current level, electrode array size and electrode
ring should be defined, as well the voltage measurement pattern. In EIDORS. these
definitions are made using the function called "mk_stim_patterns" and the function returns

the stimulation pattern structure to form part of the forward problem implementation.

For this development, the following values were defined as default values: adjacent

method for current injection and voltage acquisition, 2mA current level, electrode array
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size of 16, 1 electrode ring, using as reference the parameters defined in previous work

of [1]. In further sections more values and their effects will be evaluated.

* Define the forearm objects using the (x,y) coordinates, interpolating the array with

Fourier descriptors

Object definition for geometry construction is generated using the (Xx,y) points as
parameters for EIDORS function called "ng_mk_extruded_model". This function creates

the extruded model using NetGen.

To create the model geometry, the "ng_mk_extruded_model" function interpolates
the (x,y) points using the Fourier descriptors. Fourier descriptors need the specification
of samples in order to create the desired figure and the sample value will vary depending

on the object.

The sample value for each object should be defined after an analysis of the figure.

If the figure is complex with irregular shapes, a higher sample value should be used.

Another limitation during object definition is the point density, if the object is too
small compared with others objects, the mesh density may be out of the range for mesh
creation and NetGen could crash during the process.

During the FEM model creation, the electrodes shapes and positions must be
defined, as well as the maximum size of the mesh element. NetGen [33] is the mesh
generator used by EIDORS, The FEM task definition could turn out a quite tedious,
because if some parameters are out of the operational range, NetGen crashes or stop
working while trying to generate the model. The general recommendation is, to start
building the minimal model, and then to start adding internal shapes and the electrodes

progressively.

* Construct the image data structure with a uniform conductivity in order to execute the

forward solver to obtain the homogeneous voltages (Vh)

The platform provides structures to manage the image object definition. These

data structures should be initialized with the function "mk_image" when the EIDORS
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image object is created. During this creation, the complete model geometry is already

defined and initialized with the same conductivity for all the internal objects.

At this point, some voltage measurements can be taken. These voltages are
known as homogeneous voltages and will be used for the inverse solver function to guess

the initial values for prior information definition.

* Setup the corresponding conductivity for each object in the forearm geometry

Once the homogeneous voltages are measured, the correspondence conductivity
for each object should be defined; this definition is simple and it is done just with indexing

the object matrix to setup the conductivity value.

* Create a new image data structure in order to execute the forward solver to obtain the

inhomogeneous voltages (Vi).

Now we need to simulate the data obtained from electrodes with the defined
conductivities. The simulated data is created by using the function "fwd_solve", where the
forward solver is executed using the stimulus patterns and the conductivities previously

defined; this data is known as the inhomogeneous voltage values.

* Reconstruction with noise: Use the generated Vi and add noise to get a new data set

with noise added.

For EIT image reconstruction is a good practice to add some noise during
development to evaluate the effect of non-idealities inherent to a practical implementation.
Some other error sources, as the contact impedance and motion artifact, cannot be easily

eliminated.

To add the Gaussian noise in the inhomogeneous voltages is used a pseudo

random number generator with an identical variance.
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¢ Create the inverse model structure

It is necessary to create the inverse model data structure to setup the
corresponding parameters, this inverse model is created with the function "eidors_obj".
Once the data structure has been created, the model parameters could be configured for

the inverse solver function.

» Setup the reconstruction parameters

Image reconstruction is obtained by using the inverse solver function and some
parameters should be configured in EIDORS before the inverse solver is executed.
Among these configuration parameters, the inverse solver algorithm, the hyperparameter,
and the prior regularization method are the most relevant. During the setup evaluation for
this thesis research, these parameters have been swept to identify its contribution to EIT

image reconstruction process, in order to define the best performance setup.

* Call the Inverse solver function using Vh and Vi

Finally, the inverse solver with the corresponding configuration is executed, with
the homogeneous and the inhomogeneous voltage measurements as parameters. The
inverse solver function is called "inv_solve" and returns the reconstructed image

information in the model data structure.

* The output from the inverse solver is the EIT reconstructed image

To visualize the reconstructed image with the conductivities distribution it is
required to execute the function called "show_fem" using the inverse model data structure
as parameter. Some parameters could be set to modify the reconstructed image
visualization, like the colors filtering, if the mesh is displayed or not, or the mesh color, for

instance.

53

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



In the next chapter, the EIT reconstruction methodology for human forearm is
analyzed and validated. All the analysis is illustrated with forearm reconstructed images,
where the influence of the reconstruction parameters during the setup definition can be

particularly relevant.

The developed methodology was defined after an intensive process of testing

different configurations and parameters, due to the components, quantity and complexity.
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Chapter 4 Analysis and validation of EIT image reconstruction
methodology for human forearm

In this chapter, it is described the human forearm EIT image reconstruction
methodology introduced in chapter 3. The different stages of that methodology and the
effects of its parameters variation during the image reconstruction process are analyzed
and validated. The best performance set up for nerve identification and the operational

valid ranges for parameters used for forearm reconstruction are also evaluated.

Among the parameters validated in this chapter, the following ones can be
mentioned: the forearm geometry, FEM, the mesh size, Fourier descriptors, current
injection and voltage acquisition methods, hyperparameters, currentinjection level, noise,
electrodes quantity and GN using different prior methods. In addition, the defined

methodology feasibility to identify the forearm nerves will be confirmed or discarded.
4.14 Human forearm geometry
The forearm geometry implemented in COMSOL in the previous work explained in

[1] is shown in Figure 4-1. This geometry is used as reference in EIDORS, but only the
geometry is required as the mesh must be redefined in EIDORS.

Figure 4-1. Forearm geometry and FEM used in COMSOL.
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The (X,y) coordinates that describe the complete components of the geometry are
extracted from the file exported from COMSOL. Then, Microsoft Excel is used to plot all
the points in order to check the data obtained define properly the geometry components.
That corresponds to the geometry as plotted using Excel. In this plot, it can be detected
by visual inspection if any (x,y) point is out of the boundary. This is an important step to
discard any missed or wrong coordinate due the conversion from COMSOL file to (X,y)

coordinates that at this point needs to be performed manually.
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Figure 4-2. Geometry plotted using Microsoft excel and (X,Y) coordinates extracted from COMSOL file.

Having these (x,y) coordinates, the geometry is translated to EIDORS by means
of variables matrices. The variables values are defined and saved in a file, this type of
file is used by MATLAB to import values to its workspace. The values extracted from
COMSOL are multiplied by 10000 to preserve the values in decimals places and the new
values are divided by 100 in EIDORS for converting in a range from -5 to 5 in the (Xx,y)

axis.
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4.14.1 Fourier descriptors

EIDORS use (x,y) coordinates to generate the objects in the finite element model
(FEM). In Figure 4-3 is shown the forearm boundary and the ulna bone; those objects

have been generated interpolating the (x,y) coordinates using the Fourier descriptors.

&

Figure 4-3. Forearm boundary and the ulna bone (object one) generated in the FEM.

The representation of this object in COMSOL is composed with 310 (x,y) points.
Figure 4-4 and Figure 4-5 show a detailed view of the same object using different
parameters; from (a) to (f) are the results different (x,y) samples quantity and different

Fourier descriptors samples.

05 <<

05, |

(a) (b)
Figure 4-4. Object one model using different (x,y) samples and Fourier descriptors
samples: (a) 31 Samples FD=47 and (b) 16 Samples FD= 47.
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Figure 4-5. Object one model using different (x,y) samples and Fourier descriptors samples: (c)
11 Samples FD=47, (d) 6 Samples FD =47 (e) 31 Samples FD=10 and (f) 31 Samples FD=70.

The object that preserves the original form with balanced size of elements is (f),
using 31 samples and 70 FD samples. The final object implementation is detailed in
Figure 4-6 (a) and it is generated using 310 samples and 20 FD samples. This definition
was selected to conserve the object shape very close with respect to the original, but at
the same time avoiding high element density in FEM. This analysis was done for each
object in the model, in order to generate a complete FEM where the original object

geometry is preserved with a reasonable accuracy compared with the reference geometry
Figure 4-6 (b).

_ﬁ
O
O

0.025
—1 1
0

35 3 -25 -2 -15 _0.[:'2

S/m

(@) (b)

Figure 4-6. a) Object one model using 310 (x,y) samples and 20 Fourier descriptors samples and b)

reference object plotted in excel.
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4.14.2 Geometry with tissue conductivities

The human forearm geometry is extruded using the EIDORS function
"ng_mk_extruded_model", after exporting all the objects using the (x,y) coordinates in
Matlab and assigning the conductivities for the human forearm employing the values
defined in Table 2-2. This result is shown in Figure 4-7, the colored bar at right side

corresponds to the conductivity representation, units are S/m.

0.1

0075

-0.05

0.025

S/m
Figure 4-7. Human forearm geometry with conductivities definition.

Comparing the resultant geometry in Figure 4-7 with the one defined in Figure
2-20, it seems that the nerves, cortical bone, and some others object are missing;
however, these objects are already defined. These tissues seem to be hidden due to the

fact that their conductivities are similar for all of them, with a value of around 0.03 S/m.

The geometry imported to EIDORS from COMSOL after its processing, is
congruent and therefore it is a suitable geometrical model to apply in / to the EIT image

reconstruction process.
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4.14.3 Finite Element Method (FEM)

In EIT the forward solution is determined with the knowledge of Newman and
Dirichlet boundary conditions; since it cannot be obtained analytically for any random
geometry, a numerical method such as the FEM is needed. The FEM for the human
forearm with the maximum size of mesh elements configured in 0.11 is shown in Figure
4-8. This FEM is composed of 104466 elements and it requires a processing time of
85.197 seconds for meshing it with a computer Core i7 processor, 8GB of RAM memory.
The RAM consumption during the FEM processing has reached the 100% of 8GB, to use
EIDORS you will need at least 2GB RAM.

The FEM generator is the process that takes more time during EIT image

reconstruction, the FEM generating time is directly proportional to the elements quantity.

0.1

0.075

r—00s

0.025

s/m

Figure 4-8. Human forearm FEM with maximum mesh size of 0.11.
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Smaller elements can be defined in the FEM, as shown in for mesh size of 0.05
cm, but EIDORS platform is not capable of perform the image reconstruction and crashes

while processing. For this reason, the minimum value for maximum mesh size is 0.11 cm.

01

0.075

ro-0os

0.02%

s/m

Figure 4-9. Human forearm FEM with mesh size of 0.05 cm.

4.15 Current injection and voltage acquisition method

A reference FEM with just two objects (the ulna and radius bone marrows) is shown
in Figure 4-10. It is employed to evaluate the performance between current injection and

voltage acquisition methods.
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Figure 4-10.FEM with two objects, used as reference for evaluation of injection and acquisition methods.

Figure 4-11 corresponds to opposite and neighboring methods results for the FEM
with the two objects. According to these figures, the best performance is obtained with
the neighboring method. These results are congruent with the theory, because opposite
method is preferred when the object is located in the center and neighboring method
performance is higher in the areas located near to the boundaries. For this reason, the

selected method for current injection and voltage acquisition is the neighboring method.

() (b)
Figure 4-11. Current injection and voltage acquisition patterns: (a) Opposite method and (b) neighboring
method
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The first four injections stimulus for the neighboring injection pattern sequence in
a 16-electrodes array is observed in Figure 4-12.From left to right the first current injection

is through electrodes 1 and 2, then 2 through3, so on until 16 through1.

A & b 4 0 = v »
b & &% L4 0 o N ow

A b N &% 0 4 v ow

Figure 4-12.Current injection pattern for neighboring method.

The voltage measured in electrodes after current injection in the FEM without any
object or inner conductivity definition is called homogeneous voltage. The voltage
measured after object conductivity definition is called inhomogeneous voltage. In next
figure homogeneous voltage, inhomogeneous voltage, and their difference is plotted.

1 T T T T 25

I I I I 1 I
0 50 100 150 200 250 0 50 100 150 200 250

U AU

0 50 100 150 200 250 0 50 100 150 200 250

Figure 4-13. Homogeneous voltages (Vh) [Left-Top], Inhomogeneous voltages (Vi) [Right-Top], their
difference (Vi -Vh) [Left-Bottom] and finally all plots in the same image [Right-Bottom].
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From Figure 4-13 is observed that there is a difference of voltage between the
homogenous voltage and the inhomogeneous. This difference confirms the change in the

objects conductivity after object conductivity definition.
4.16 Current lines
The current lines during the current injection stimulus in electrode 1 and 2 are

illustrated in Figure 4-14.Inside the image, it is detailed the objects with more conduction

like the blood in veins.

Figure 4-14. Current lines generated during injection in electrode 1 and 2.

Figure 4-15 presents a detailed view of electrodes 1 and 2 for better appreciation

of current lines.
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| RN | | |
6 5 4 -3 -2 -1 0

Figure 4-15. Detailed view of current lines focus in electrode 1 and 2.

As observed in Figure 4-15, the current lines flow goes from negative to positive
as expected in direct current. The electrode with negative polarity is locate in the lower
area in the coordinate (-5,0) and the electrode with positive polarity is located in the

coordinate (-5,2) approximately.

4.17 Image reconstruction

4.17.1 Hyperparameter selection

In image reconstruction, the hyperparameter is used for the regularization to
calculate a stable and accurate solution. For this thesis the heuristic method was used
and according to the images shown in Figure 4-16 and Figure 4-17, the best
hyperparameter found was 2*10e-3 (shown in (g)) because allows to identify the position
of the nerves, bones and muscles better than the others. The hyperparameter selected
is 2*10e-3.
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Figure 4-16. Image reconstructions using different hyperparameters: (a) hyperparameter = 3, (b)

hyperparameter = 1, (c) hyperparameter = 0.1 and (d) hyperparameter = 2*10e-2. (1-2)
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Figure 4-17. Image reconstructions using different hyperparameters: (f) hyperparameter = 3*10e-3, (g)
hyperparameter = 2*10e-3, (h) hyperparameter = 1.5*10e-3, (i) hyperparameter = 1*10e-3 and (j)
hyperparameter = 5*10e-4. (2-2)
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4.17.2 Current level

For EIT, conducting electrodes are attached to the skin of the subject and a
maximum current of 5mA can be applied within the safety limits. Images shown in Figure
4-18 have been generated injecting different currents from 0.1mA to 5mA. The best image
reconstruction for nervous identification was reached using 1mA, as it is shown in image
(c). Using a current of 0.1mA a poor reconstructed image is generated with not detail in
components. With higher current level near to 5mA the reconstructed image performs a

very low spatial resolution, since only the higher intensity points are distinguishable.

(€)

Figure 4-18. Image reconstructions using different current levels in injection: (a) 0.1mA, (b) 0.5mA, (c)
1mA, (d) 2mA and (e) 5mA.
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4.18 EIT algorithm and prior information methods

For this thesis purposes Back-Projection and Gauss Newton algorithms were
evaluated. Back-Projection was discarded to be implemented, because according to the
theory the performance in Gauss Newton is better in boundaries due it uses the FEM
allowing different shapes; while Back-Projection domain is for circular shapes mainly.
Gauss Newton is mainly intended to find the lowest value between the predicted data and
measured data. The predicted data or prior information can be calculated using different
methods. Figure 4-19 and Figure 4-20 show the results of implementations using different

prior methods as Tikhonov, NOSER, Laplace and Total Variation. The reconstruction
without noise and with SNR of -25dB is also compared.
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Figure 4-19. Image reconstructions using different prior information methods: (a) Default, (b) Default with

25dB SNR, (c) Tikhonov prior and (d) Tikhonov prior with 25dB SNR.
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Figure 4-20. Image reconstructions using different prior information methods: (e) NOSER prior, (f)

NOSER prior with 25dB SNR, (g) Laplace prior, (h) Laplace prior with 25dB SNR, (i) Total Variation prior
and (j) Total Variation prior with 25dB SNR.
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Contrasting ideal conditions with noisy and real environment, adding noise in the
algorithm comparison, it gives a more realistic interpretation of results in order to select
the best algorithm performance in a controlled environment. Noise effect change the

image reconstruction results significantly.

As observed in Figure 4-19 and Figure 4-20, bones and muscle can be identified
in the human forearm image reconstruction using Tikhonov, NOSER, Laplace and Total
Variation. Tikhonov prior showed a similar image reconstruction with and without noise.
Both of them identify the zone with muscles and the zone where the bones are located
but the nerves or blood cannot be identified.

NOSER prior displays a poor image reconstruction in both with and without noise,
bones are the only objects identified clearly. Laplace prior generates the most accurate
image reconstruction, more accurate than Tikhonov, NOSER or Total Variation, in both
conditions with noise and without, presenting a smoothened image where the bones,
muscle, blood and the most important nerves are clearly identified. Total variation prior
perform a very sharp image reconstruction, bones and muscles zones are very clear and
the image reconstructed with noise is very different compared with the image without

noise.

After comparing and analyzing the performance obtained with the different priors
with and without noise, it is concluded that the best results for human forearm image
reconstruction is obtained using Laplace prior information with the Gauss Newton

algorithm to resolve the inverse problem.

4.18.1 Noise effect

In order to have a reliable human forearm image reconstruction, it is necessary to
study the effect of noise in measurements to define the minimal signal to noise value
(SNR) for a useful reconstructed image. For this research a pseudo random number
generator is used to add Gaussian noise to each measurement. The results of image

reconstruction with noise are shown in Figure 4-21, Figure 4-22 and Figure 4-23.
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According to [34], the central limit theorem means that independent identical
Gaussian noise is a good approximation to the true statistics of the data error. However,
in electrical imaging, there are many sources of error including variable contact

impedance, motion, variable surface geometry, etc.; all of which produce correlated errors
in the data. These effects are out of the scope of this thesis.
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Figure 4-21. Image reconstructions using different signal to noise values with default and Laplace priors:
(a) Default with SNR = 40dB, (b) Laplace with SNR = 40dB, (c) Default with SNR = 35dB, (d) Laplace with
SNR = 35dB. (1-3)
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Figure 4-22. Image reconstructions using different signal to noise values with default and Laplace priors:
(e) Default with SNR = 30dB, (f) Laplace with SNR = 30dB, (g) Default with SNR = 25dB, (h) Laplace with
SNR = 25dB, (i) Default with SNR = 20dB and (j) Laplace with SNR = 20dB. (2-3)

Analyzing the obtained results in Figure 4-21, Figure 4-22 and Figure 4-23 the
minimal SNR is defined as 30dB (image (e) and (f), for default and Laplace priors
respectively). With Laplace prior and SNR lower than 30dB the reconstructed image is

not useful because the spatial resolution is too low to identify forearm components using
the conductivity distribution image.
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Figure 4-23. Image reconstructions using different signal to noise values with default and Laplace priors:
(k) Default with SNR = 15dB, () Laplace with SNR = 15dB, (m) Default with SNR = 10dB, (n) Laplace with
SNR = 10dB, (o) Default with SNR = 5dB and (p) Laplace with SNR = 5dB. (3-3)
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4.19 Validation and evaluation of human forearm EIT methodology

4.19.1 Feasibility of EIT image reconstruction for nerve identification
based on EIDORS toolkit

Once the best configuration for forearm EIT image reconstruction methodology is
defined for 16 electrodes array (hyperparameter of 2.10%, 1mA of current injection and
Laplace prior information), it is necessary to evaluate the reconstructed images. In Figure
4-24 reconstructed output without noise (a) and with 30dB SNR (b) are shown. The
reference forearm is depicted in (c) and the reconstructed image with the reference image

superimposed in (d).

Figure 4-24. Human forearm EIT image reconstruction using the recommended parameters according
with previous sections; (a) Image without noise, (b) Image with 30dB SNR, (c) human forearm reference

image and (d) reconstructed image with forearm reference image superimposed.
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In the reconstructed images shown in Figure 4-24 (d), two bones in blue color are
clearly identified; the yellow, orange and red areas are associated with the muscular
tissues; but the most important elements for the application target are the four nerves
white colored in Figure 4-24 (c). Nerve location could be interpolated using the bones and
muscles information, but using the impedance map, nerve identification was not feasible

with the reconstructed image through the EIDORS toolkit.

In order to improve the reconstructed image spatial resolution, three parameter
modifications were evaluated, although it do not necessarily resemble a reasonable
practical implementation. The first is to increase the array electrode quantity; the second
is to increase the injected current more than the safety range for medical applications and
the last one is to apply some post processing by adding some filters for the reconstructed

image.

4.19.2 Effect of increasing the electrode number

In this section, the effect of increasing the electrode number is evaluated. Using
more electrodes would allow acquiring more information from subject under test, although
the practical implementation would be very challenging because of the electrode sizes
and the physical array. With 32 electrodes and more information, the spatial resolution is
more accurate than using 16 electrodes. In Figure 4-25 are shown two different
reconstructions using different electrodes quantity: (a) 16 electrodes and (b) 32

electrodes.
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Figure 4-25. Human forearm EIT Image reconstruction using different electrode quantity in electrode

array; (a) 16 electrodes and (b) 32 electrodes.
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By increasing the electrodes quantity from 16 to 32, the spatial resolution will
improve. This fact can be demonstrated and compared easily by observing the
reconstructed image in Figure 4-25 (b), where a vein is exposed near o electrode 15,
whereas in the reconstructed image in Figure 4-25 (a), the vein is not in the impedance
map. However, increasing the electrode quantity still is not enough to identify the nerves

in the reconstructed image.

A 32 electrodes array implementation is mechanically complicated for human
forearm but it is not impossible. More than 32 electrodes would impose serious limitations,

and for that reason further analysis with more electrodes was not conducted.

4.19.3 Effect of filtering the EIT output image

The main objective of this research is to define the best performance setup to
obtain an EIT human forearm reconstructed image that allows to locate the nerves
position. The previous images shown in Figure 4-25 are displayed with an impedance
map centered in 0.05 S/m using a range from 0 to 0.1 S/m in a linear scale. In these
images, different elements of the human forearm, such as muscles, bones, blood, fat can

be identified, but not the nerves.

In order to identify nerves in the impedance map, it is necessary to evaluate the
reduction of the display range. In Figure 4-26, four different images with a display filter
are shown using a range from 0.04 to 0.06 S/m, where the nerves should be placed. The
images where reconstructed using different current values and electrode quantity in order
to compare the results. Nevertheless, nerve location is not clear in the reconstructed
images. In the Figure 4-26 the blue color is for the tissues with a conductivity lower than
0.04 S/m and red color for conductivity higher than 0.06 S/m.

For images (c) and (d) in Figure 4-26, using 32 electrodes, a clear identification of
muscles is obtained. Nerve location could be interpolated using the muscles information
but the nerve itself is not identifiable in the impedance map. The two holes inside the
muscles mark the zone where the inner nerves and some veins are located but is not

possible to identify nerves and veins separately.
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Figure 4-26. Human forearm EIT Image reconstruction using an image filter centered in -10 +/- 1; (a)
Injection current of 4mA using 16 electrodes, (b) Injection current of 5mA using 16 electrodes, (c)

Injection current of 2mA using 32 electrodes, (d) Injection current of 5SmA using 32 electrodes.

An alternative color scale is recommended to be evaluated in order to increment
the contrast between different tissues conductivities in the reconstruction. For this

purpose, a logarithmic scale for visualization may be useful.

4.19.4 Effect of a current value over the safety range

For medical applications, the human body current injection range should be limited.
According to [1] the maximum current should not exceed 5mA. In this section, the setup
for image reconstruction is set out of the safety range in order to explore the behavior of
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the image reconstruction, keeping in mind that in a practical implementation the maximum
range is 5mA, also nerve stimulation should be avoided and low currents should be used

in final implementation.
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Figure 4-27. Human forearm EIT Image reconstruction using different currents; (a) Current of 3 mA, (b)
Current of 20mA and (c) Current of 50mA

In Figure 4-27, the effect of using an injection current out of the safety range for
human body is shown (greater than 5mA). When increasing the injection current in human
forearm to 3mA, 10mA and 50mA parameters (images (a), (b) and (c), respectively), a
poor impedance map is displayed. The results do not improve the reconstructed image
spatial resolution in comparison with the images obtained using currents lower than 3mA.

This may occur because the voltage level is increased and minor voltage changes are
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not significant in measurement. Only the biggest areas with the same conductivities are

shown in the reconstructed image.
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4.20 Optimal setup for human forearm EIT image reconstruction

In this section, the best setup using 32 electrodes is presented, after evaluating
different parameters for human forearm EIT image reconstruction across the
development of this thesis. Table 4-1 lists the corresponding parameters or configuration

for forearm image reconstruction.

Table 4-1. Best setup for human forearm EIT reconstruction image.

Description Parameter or configuration

Maximum element mesh size in FEM 0.11
Reconstruction algorithm Gauss-Newton
Prior information Laplace
Hyperparameter 9.10%
Current injection 2.5mA
Electrodes 32

Forearm tissues conductivities are plotted in Figure 4-28. This visual
representation provides a clear idea about the magnitude differences between tissues
conductivities. Filtering is applied to the reconstructed forearm images to differentiate the
lower conductivities from the higher ones, in order to try to locate the nerves. The filter
threshold is set in 0.05, as indicated with the green line; higher conductivities are colored

in red and lower conductivities in blue using the same scale for the filtered reconstructed

image.
Human Forearm Tissue Conductivities
0.8
0.7
I;: 0.6
v
e 0.5
£
2 0.4
f
3 0.3
5 0.2
“ o1 Filter
0 I — — — == Threshold
Blood Skin Flexor Pronator | Abductor Nerve Borje Bone Fat
Muscle Cortical Marrow
M Conductivity 0.7 0.1135 0.09 0.0869 0.082 0.028 0.03 0.002 0.03

Figure 4-28. Tissue conductivity representation and filter threshold for filtering.
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Images shown in Figure 4-29, Figure 4-30, Figure 4-31 and Figure 4-32 are the
results after defining the image reconstruction environment with the parameters listed in
Table 4-1, in order to obtain the best spatial resolution. The images identified with (a) are
the reconstruction with a SNR of 30 dB and (b) are the images without noise.

0.1 0.1
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0.075

-0.05 -0.05

005 | s\ 0025
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0 T wan il 0
S/m S/m
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Figure 4-29. Human forearm EIT Image reconstruction; (a) 30 dB SNR, (b) without noise.

In Figure 4-30 the geometry is superimposed to evaluate the conductivity
distribution in the reconstructed image and the components location. These
reconstructions present a better definition in components boundaries; fat and bones are

clearly identifiable.

(a) (b)
Figure 4-30. Human forearm EIT Image reconstruction with the geometry superimposed; (a) 30 dB SNR,

(b) without noise.
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Previous images are reconstructions with different conductivities but the main
purpose of this research is to identify nerves for target application, for this reason a scale
change is applied in order to filter high from low conductivities using as threshold a value
of 0.05 S/m as depicted in Figure 4-28 by the green line.

Figure 4-31 shows the results after applying the filtering in the reconstructed
image, two main colors are identified according to tissues conductivity, red color stands
for tissues with higher conductive than the threshold and blue color for lower
conductivities. A positive fact is that all the areas where muscles, veins and the skin with
conductivities higher than 0.05 S/m are colored in red and fat, bones and nerves areas

are colored in blue.

0055 0.055

-0.05

0045 0.045

s/m 5/m

(a) (b)
Figure 4-31. Human forearm EIT Image reconstruction with filtering; (a) 30 dB SNR, (b) without noise.

In order to evaluate the nerve position in the reconstructed image, Figure 4-32
shown a super imposed images in green color containing the four nerves location in white
color.

Nerves are in the low conductivity zone and their conductivity is noted in the
reconstructed image. However, its location is shifted respect to the reference geometry,
this could be because of the influence of muscles and blood conductivity values, these
mentioned tissues cover a big area around the nerves.

Using the super imposed image to evaluate the reconstructed image is notable
that the reconstructed image keeps the shape of the biggest areas, the small areas with
different conductivities are no reconstructed.
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Analyzing these results about the reconstruction, its conclusive that the spatial
resolution is not enough to identify the nerves location under the settings shown in Table
4-1, forearm muscles, fat and bones are very feasible to identify with EIT methodology.
In Figure 4-32 the noise effect is also evident because in figure (b) the reconstructed
shape in red is following the reference, however (a) shown more shape irregularities in

the reconstructed image.

0.055 0.055

-0.05 -0.05

0.045 0.045

S/m s/m

(a) (b)
Figure 4-32. Human forearm EIT Image reconstruction with filtering and the geometry superimposed; (a)
30 dB SNR, (b) without noise.

4.20.1 Forearm geometry and reconstructed image area comparison

In order to evaluate the reconstructed image with the reference forearm geometry,
the use of CAD tools is required as a follow due to the geometry complexity. Using the
exported model from COMSOL and importing it in AutoCAD, dimensions and areas can

be calculated with high accuracy as shown in Figure 4-33.

3.46Cm

W

10.04cm

Figure 4-33. Forearm dimension image using the AutoCAD software.
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The selected method to evaluated the forearm image reconstruction is comparing
the reference forearm area for tissues with conductivities higher and lower than 0.05 S/m
and the reconstructed image for the same range of conductivities. In Figure 4-34, (a) is
the reference geometry but due to its complexity the figure (b) is created using AutoCAD,

where the small areas between the muscles, veins and skin are not taken into

consideration in order to simplify the error calculation.

5

0055 bigsE
-005 e
0.045 ol
s/m

8 s/m

(a) (b)
Figure 4-34. Human forearm geometry with tissues colored according to their conductivity (a) complex
geometry, (b) simplified geometry.

Using the simplified forearm image as reference and comparing it with the
reconstructed images after filtering high and low conductivities. The results are shown in
Figure 4-35 (a) and (b) super-imposing the reconstructed the images colored in grey over
the reference, where the first one is the reconstruction with 30dB SNR and the second

one is without noise.

(a) (b)
Figure 4-35. Human forearm simplified geometry with reconstructed image super imposed (a) with 30 dB
SNR, (b) without noise.
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4.20.2 Error calculation in reconstructed image

In order to calculate the error in the reconstructed image, the area for tissues with
conductivities higher than 0.05 S/m is used as reference. Image shown in Figure 4-34 (a)
is the target and in Figure 4-35 (a) with noise and (b) without noise are the images under

evaluation.

Using the equation (4.1), the error in the human forearm reconstruction image
using EIT is evaluated; the results of this evaluation are demonstrated in Table 4-2. The

target image has an area with a conductivity higher than 0.05 S/m of 37.9431 cm?.

(Target — reconstructed image) * 100 (4.2)

Error(%) = Target

Table 4-2. Comparison the area of reference geometry and reconstructed image for tissues conductivities
higher than 0.05 S/m.

Image High conductivity area (cm?) Error(%)
Reconstructed image without noise 25.8976 31.74
Reconstructed image with noise 26.9674 28.92

From Table 4-2, it can be extracted that the reconstructed human forearm image
using EIT performs around a 30 % of error for tissues with a conductivity higher than 0.05
S/m from the reference forearm geometry, the difference from the image with noise

versus the image without noise is 2.82% and it is not relevant due to the irregular shapes.
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Chapter 5 Conclusions and recommendations

5.1 Conclusions

EIDORS was the only suitable open platform found available for this work,
specialized on the EIT field. Its use is recommended for image reconstruction
development since it offers a multi-platform open source tool. It also offers Licensing
terms for commercial products and hash an active community that is supporting and
maintaining the code. Regarding its performance for image reconstruction, aspects as the
reconstructed image complexity and the impedance difference between inner
components should be taken into account in order to satisfy the expectations. Better
results are obtained when the reconstructed image is made of simple shapes and the

impedance contrast between components is higher.

For the purpose of this thesis, a complete human forearm EIT image reconstruction
methodology was develop using the EIDORS with good results. To achieve this
reconstruction, a complex human forearm geometry was imported using (X,y) coordinates
and Fourier descriptors. The FEM model, tissues conductivities, hyperparameter, as well

the injection and measurement acquisition patterns were defined.

The image reconstruction of the human forearms is clear enough to recognize and
identify the bones, muscles and blood. However, for practical setup scenarios, the spatial
resolution seems to be not sufficient to identify finer structures such as nerves in the
impedance map image. Therefore, the general objective of this thesis for determining the
feasibility to develop a human forearm image reconstruction for nerve identification based
on EIT technique was completed however the required resolution was not achievable
based on the studies done using the EIDORS toolkit. EIDORS toolkit is oriented for
diffuse images reconstruction and it is very useful for dynamics studies with impedance
changes in time EIT can resolve the air changes in the distribution of lung volumes, for

instance.

The main findings during the development of the processing methodology with

EIDORS for the specific case of human forearm can be summarized as follows:
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e Neighboring injection as acquisition method has a better performance than the
opposite method.

e FEM forearm model shall use a maximum element mesh size lower than 0.11;
otherwise, the image will not be reconstructed by EIDORS ending with a software
crash.

e Using a maximum mesh size of 0.11, the FEM forearm model containing 122262
elements was generated in 108.327 seconds with a Sony Vaio computer with a
Core i7 processor.

e The best image reconstruction obtained during this research for human forearm
using the Gauss Newton reconstruction algorithm with Laplace prior information
and the regularization hyperparameter of 9*10e-4 with a current injection level of
2.5 mA in the 32 electrodes array is shown in Figure 4-32 with a 30% of error
compared with reference geometry for conductivities higher than 0.05 S/m.

e 30dB of SNR is the lowest value acceptable in the voltage measurements in order

to generate a clear and useful human forearm image reconstruction.
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5.2 Recommendations

Due to the nature of EIT, image reconstruction methodology could face some
limitations. The following recommendations could help to improve the results or increase

the criteria for future work.

The research scope regarding EIT image reconstruction algorithms is limited to
Gauss-Newton in EIDORS. Other algorithms should be evaluated and compared with the
performance obtained. For this evaluation, other software may be used or developed to

solve the inverse problem.

Additionally, trigonometric patterns for current injection and voltage acquisition
should be evaluated. According to [35], good results have been obtained with these
patterns .Also, it is recommended to evaluate the BestRes method for hyperparameter
calculation. As shown in [36], BestRes method has a better performance than heuristic

method.

In order to evaluate the estimated results during the development of the proposed
methodology, it is recommended to setup a circuit to drive current through a human
forearm and acquire the voltages to contrast it with the simulated values calculated in
EIDORS toolkit. For experimental implementation, it should be considered that the data
discretization may affect the results from the ones shown in this thesis, as well the image
reconstruction performed using real electrodes because some source of errors may be
added and their behavior must be analyzed. Most of the test cases evaluated in the
developed methodology do not include the forearm shape variations or movement. The
recommendation is to generate an image reconstruction with small changes in the

forearm electrode position to simulate movement and analyze its effect.

Previous work in [37], where the forward problem is solved using the COMSOL
Multiphysics platform, could be extended by benchmarking COMSOL results with the
results obtained in this thesis based on EIDORS. This could help to improve the image
reconstruction methodology for implementation without simulated values. This evaluation

could help in fine tune parameters definition.
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Glossary

Benchmark

Homogeneous

Hyperparameter

llI-Posed Problem

Well-Posed Problem

Inhomogeneous

Normalized

Over-fitting

Regularization

Tomography

Under-fitting

Well-Posed Problem

It is wusually associated with assessing performance

characteristics.

In EIT when outer geometry is defined without any conductivity.

Parameter of a prior distribution; the term is used to distinguish

them from parameters of the model.

A problem which may have more than one solution, or in whic

h the solutions depend discontinuously upon the initial data.

A problem with a unique solution.

Something that is not homogeneous or uniform, in EIT is when

voltages are defined with inner conductivities.

To bring some value back to a usual or expected state or

condition.

Occurs when a model is excessively complex, such as having

too many parameters relative to the number of observations.

Refers to a process of introducing additional information in

order to solve an ill-posed problem or to prevent over-fitting

Technique for displaying a representation of a cross section

through a human body.

When a model is not sufficient to fit.

A problem that has a unique solution which depends continuou

sly on the initial data.
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Appendix A EIDORS Quick Start Guide

A.1 Installing EIDORS

1) Make sure MATLAB or Octave is already installed. EIDORS is a toolkit linked to
MATLAB.
2) Install Microsoft Windows SDK 7.1, requires .NET Framework 4.0
Download the SDK from:
http://www.mathworks.com/support/compilers/R2015a/index.html
3) Once the SDK 7.1 is installed, run the following command:
mex -setup
4) Download and install EIDORS and NetGen
a) Download EIDORS 3.8 from:
http://prdownloads.sf.net/eidors3d/eidors-v3.8.zip
b) Unzip the software in a directory such as /path/to/eidors(UNIX)
or C:\path\to\eidors(Windows) (installation instructions for model_library are
included in a README file).
c) Download NetGen 5.3 from:
http://prdownloads.sf.net/eidors3d/eidors-v3.8-ng.zip
5) Start MATLAB.
6) Once EIDORS is already installed, run the following command in a MATLAB(or
Octave) session. The command should be executed each time to use EIDORS toolkit.
If EIDORS is installed correctly, the output should be like the one shown in Figure
A-1.
run C:\Eidors\eidors-v3.8\startup

>> run C:\Eidors\eidors-v3.8\startup

EIDORS: [tested function eidors_war_id: CK]

EIDORS: [Setting Default Colours]

EIDCRS: [Installed EIDORS (Ver: 3.8)]

EIDORS: [Parameter: cache size=1024 MB]

EIDORS: [Parameter: mapped colour=127]

EIDORS: [Default background colour: white]

EIDORS: [EIDORS mex folder: C:/Eidors/eidors-v3.8/arch/matlab]
EIDORS: [EIDORS cache folder: C:/Eidors/eidors-v3.8/models/cache (must be writable)]
EIDORS: [EIDORS model cache: C:/Eidors/eidors-v3.8/models/cache]
EIDORS: [New to EIDORS? Hawve a look at the Tutorials.]

fr o> |

Figure A-1. EIDORS output when startup script is executed.
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A.2 EIDORS simulation guide

In this section, a simulation guide is presented to execute the human forearm EIT
image reconstruction using EIDORS toolkit. In order to use EIDORS, it is necessary to
launch MATLAB application and run the startup script.

The source code shown in Appendix B contains the necessary setup defined in
EIDORS to perform the human forearm EIT image reconstruction. A brief explanation of
most important source code parts is detailed as follow:

A.2.1 Geometry definition

The forearm geometry is defined by a group of objects, which are defined by a set
of (x,y) coordinates. The (x,y) coordinates should be saved as variables in the workspace,
then workspace is saved as .mat file with objects definition. File with variables information
is loaded in Matlab workspace using the following function:

|1oad C:\Users\David\Forearm.mat; |

Workspace with variables loaded successfully is shown in Figure A-2, matrix size

is displayed as well the minimum and maximum values contained.

Workspace

Name Value Min  Max

£l fmdl <1x1 struct>

Elimg <1x1 struct>
object0 <525x2 double> -527... 527...
object1 <322x2 double> -517... 517...
object10 <162x2 double> -142.... 90.6...
object11 <174x2 double> -276... -207...
object12 <266x2 double> -76.6.. 340...
object13 <292x2 double> -159... 634..
object14 <249x2 double> -290... -193..
object15 <307x2 double> -155... -30.7..
object16 <358x2 doublex> 536.. 254..
object17 <302x2 double=> -305... 108...
object18 «502x2 double > -56.5.. 291...
object19 <477x2 double> -331. 134..
object1_inner <302%x2 double> -448.... 443...
object2 <169x2 double> -96.8.. 281..
object20 «848x2 double> -133.. 352..
object21 <356x2 doublex -390... T6.3..
object22 <512x2 double> -442.. 143..
object23 <540x2 double> -266... 27.1...
object24 <401x2 double> -315... -36.5..
object25 <392x2 double> -190... 319..
object26 <302x2 double> -385... 207...
object27 <172x2 double> -79.1.. 226....

Figure A-2. EIDORS workspace.
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A.2.2 Model creation

Model creation use the (x,y) coordinates saved in the workspace and Fourier
descriptors sample number for each object. Maximum element size for the mesh, number

of electrodes and size are also defined in this function to create the FEM.

% Create FEM

fmd1 = ng_mk_extruded_model1 ({0, {object0/100, objectl/100, object2/100,0bject3/100,
object4/100,0bject5/100,0bject6/100, object7/100, object8/100, object9/100, object1l0/100,0bjectl11/100,
object12/100,0bject13/100, objectl4/100, objectl5/100, objectl18/100, objectl19/100 ,objectl6/100 ,objectl7/100
, object20/100,0bject21/100 ,object22/100 ,object23/100 ,object24/100 ,object25/100 , object26/100, object27/100
,0bject28/100 ,object29/100 , object30/100,0bject31/100 ,object32/100 ,object33/100 ,object34/100} , {[4,47] ,
[4,47],[4,20],[4,20], [4,20]1,[4,20],[4,20],[4,20], [4,20],[4,20],[4,20], [4,20],[4,20],[4,20],[4,20],
[4,20],[4,30],[4,30] ,[4,30],[4,30],[4,30], [4,25],[4,30],[4,25],[4,25], [4,25],[4,25], [4,25],[4,25],[4,25],
[4,25]1,[4,25]1,[4,25],[4,25], [4,70] }, 0.11} ,[32,1,0]1,[0.5, [0.15, O, O]1);

img = mk_image(fmd1,0.1135);
show_fem(img, [1,1]);

FEM created at this point is observed in Figure A-3, where all the objects are

configured with the same conductivity.

01135

ro-01135

01135

01135

Figure A-3. FEM with homogeneous conductivities.
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A.2.3 Stimulus definition

Current injection and acquisition voltage pattern, electrodes quantity and current

amplitude is defined in the stimulus function as follow.

% Create Stimulation Patterns
[stim,msel] = mk_stim_patterns(32 , 1 ,"{ad}', '{ad}', {3 ,2.5);
% [stim, meas_sel]=mk_stim_patterns(n_elec, n_rings, inj, meas, options, amplitude(mA))

fmd1.stimulation
fmd1.meas_select

stim;
msel;

A.2.4 Forward solver used to calculate Vh and Vi

In order to simulate the homogenous voltage, it is necessary to execute the forward

solver with homogenous conductivities.

%homogeneous voltage

vh = fwd_solve(img);

Then objects conductivities should be defined, setting the conductivity value in

each object matrix.

%0bject conductivity definition

img.elem_data(fmdl.mat_idx{2} ) = 0.03;
img.elem_data(fmd1.mat_idx{3} ) = 0.7;
img.elem_data(fmdl.mat_idx{4} ) = 0.7;
img.elem_data(fmd1.mat_idx{5} ) = 0.7;
img.elem_data(fmd1.mat_idx{6} ) = 0.7;
img.elem_data(fmd1.mat_idx{7} ) = 0.7;
img.elem_data(fmd1.mat_idx{8} ) = 0.7;
img.elem_data(fmd1.mat_idx{9} ) = 0.7;
img.elem_data(fmd1.mat_idx{10} ) = 0.7;
img.elem_data(fmdl.mat_idx{11} ) = 0.7;
img.elem_data(fmd1.mat_idx{12} ) = 0.7;
img.elem_data(fmd1.mat_idx{13} ) = 0.028;
img.elem_data(fmd1.mat_idx{14} ) = 0.028;
img.elem_data(fmd1.mat_idx{15} ) = 0.028;
img.elem_data(fmd1.mat_idx{16} ) = 0.028;
img.elem_data(fmd1.mat_idx{17} ) = 0.03;
img.elem_data(fmd1.mat_idx{18} ) = 0.03;
img.elem_data(fmd1.mat_idx{19} ) = 0.002;
img.elem_data(fmdT1.mat_idx{20} ) = 0.002;
img.elem_data(fmd1.mat_idx{21} ) = 0.09;
img.elem_data(fmd1.mat_idx{22} ) = 0.09;
img.elem_data(fmd1.mat_idx{23} ) = 0.09;
img.elem_data(fmd1.mat_idx{24} ) = 0.09;
img.elem_data(fmd1.mat_idx{25} ) = 0.0869;
img.elem_data(fmd1.mat_idx{26} ) = 0.09;
img.elem_data(fmd1.mat_idx{27} ) = 0.09;
img.elem_data(fmdl.mat_idx{28} ) = 0.09;
img.elem_data(fmd1.mat_idx{29} ) = 0.09;
img.elem_data(fmd1.mat_idx{30} ) = 0.082;
img.elem_data(fmd1.mat_idx{31} ) = 0.09;
img.elem_data(fmd1.mat_idx{32} ) = 0.09;
img.elem_data(fmd1.mat_idx{33} ) = 0.09;
img.elem_data(fmd1.mat_idx{34} ) = 0.09;
img.elem_data(fmd1.mat_idx{35} ) = 0.09;

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
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FEM model with conductivity defined is in each object as shown in Figure A-4.
With the corresponding conductivities, it is necessary to execute the forward solver again,

in order to calculate the inhomogeneous voltages required in the inverse solver.

show_fem(img, [1,1]);

%inhomogeneous voltage
vi = fwd_solve(img);
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Figure A-4. FEM with inhomogeneous conductivities.
A.2.5 Noise addition

Using the inhomogeneous voltages values obtained previously, Gaussian noise is
added with a random function.

% Add 30dB SNR
vi_n= vi;
nampl = 0;

nampl= std(vi.meas - vh.meas)*10A(-30/20);
vi_n.meas = vi.meas + nampl *randn(size(vi.meas));
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A.2.6 Inverse solver configuration

Inverse solver requires the corresponding setup in order to solve the image

reconstruction, prior information and hyperparameter is defined as follow.

inv2d= eidors_obj('inv_model', 'EIT inverse'); % Create Inverse Model
inv2d.reconst_type= 'difference';
inv2d.jacobian_bkgnd.value= 1;

imb= mk_common_model('b2c',16);
imb.fwd_model =img.fwd_model;
inv2d.fwd_model= imb.fwd_model;
inv2d.fwd_model.np_fwd_solve.perm_sym= '{y}';

inv2d.solve= @inv_solve_diff_GN_one_step; % Gauss-Newton solvers
inv2d.hyperparameter.value = 9e-4; % Laplace image prior
inv2d.RtR_prior=  @prior_laplace;

inv2d = inv_solve( inv2d, vh, vi); %inverse Solver

A.2.7 Conductivity distribution map

Reconstructed image with the conductivity distribution is displayed with the
show_FEM function. Additionally, a filter could be configured in order to display the
relevant information. In Figure A-5 the reconstructed images without and with filtering are

reflected (a) and (b) respectively.

inv2d.calc_colours.ref_level = -8; % Applying the filter centered in -8
inv2d.calc_colours.clim = 1;

hh =show_fem(inv2d,[1,1]);
set(hh, "Edgecolor',[1,1,1]);
set(hh, 'Edgecolor’', "'none');

(a) (b)

Figure A-5. Forearm reconstructed image (a) without filter and (b) with filter.
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Appendix B EIDORS source code

In this section is the source code used to generate the FEM model, current injection
stimulus, components conductivity definition and inverse solver parameters definition.
The workspace variables definition are set in the file called Forearm.m which contains the

X,y coordinates for each inner forearm component.

load C:\Users\David\Forearm.mat;

object0 = flipud(object0(1l:1:end,:));

objectl = objectl(l:1:end,:);

object2 = flipud(object2(1:1:end,:));

object3 = flipud(object3(1l:1:end,:));

object4 = flipud(object4(1l:1:end,:));

object5 = object5(1l:1:end,:);

object6 = flipud(object6(l:1:end,:));

object?7 = flipud(object7(1:1:end,:));

object8 = object8(1l:1:end,:);

object9 = object9(1l:1:end,:);

objectl0 = objectl0(1l:1:end,:);

objectll = objectll(l:1:end,:);

objectl2 = objectl2(1l:1:end,:);

objectl3 = objectl3(1l:1:end,:);

objectl4 = objectl4(1l:1:end,:);

objectl5 = objectl5(1l:1:end,:);

objectl6 = flipud(objectl6(1l:2:end,:));

objectl7 = flipud(objectl7(1:2:end,:));

objectl8 = objectl8(1l:1:end,:);

objectl19 = objectl9(1l:1:end,:);

object20 = object20(1l:2:end,:);

object2l = object21(1:2:end,:);

object22 = object22(1l:2:end,:);

object23 = object23(1:2:end,:);

object24 = object24(1l:2:end,:);

object25 = object25(1:2:end,:);

object26 = object26(1:2:end,:);

object27 = object27(1:2:end,:);

object28 = object28(1l:2:end,:);

object29 = object29(1:2:end,:);

object30 = object30(1:2:end,:);

object31l = object31(1l:2:end,:);

object32 = object32(1:2:end,:);

object33 = object33(1l:2:end,:);

object34 = object34(1:2:end,:);

% Create FEM

fmd1 = ng_mk_extruded_model1 ({0, {object0/100, objectl/100, object2/100,0bject3/100,
object4/100,0bject5/100,0bject6/100, object7/100, object8/100, object9/100, objectl1l0/100,0bject11/100,
object12/100,0bject13/100, objectl4/100, objectl5/100, objectl18/100, objectl19/100 ,objectl6/100 ,objectl7/100
, object20/100,0bject21/100 ,object22/100 ,object23/100 ,object24/100 ,object25/100 , object26/100, object27/100
,object28/100 ,object29/100 , object30/100,0bject31/100 ,object32/100 ,object33/100 ,object34/100} , {[4,47] ,
[4,47],[4,20],[4,20], [4,20],[4,20],[4,20],[4,20], [4,20],[4,20],[4,20], [4,20],[4,20],[4,20],[4,20],
[4,20],[4,30],[4,30] ,[4,30],[4,30],[4,30], [4,25],[4,301,[4,25],[4,25], [4,25],[4,25], [4,25],[4,25],[4,25],
[4,25],[4,25],[4,25],[4,25], [4,70] }, 0.11} ,[32,1,0],[0.5, [0.15, O, 0]1);

% Create Stimulation Patterns

[stim,msel] = mk_stim_patterns(32 , 1 ,"{ad}', '{ad}', {} ,2.5);

% [stim, meas_sel]=mk_stim_patterns(n_elec, n_rings, inj, meas, options, amplitude(mA))

fmd1.stimulation = stim;

fmd1.meas_select = msel;

img = mk_image(fmd1,0.1135);

show_fem(img, [1,1]);

%homogeneous voltage

vh = fwd_solve(img);
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img.elem_data(fmd1.mat_idx{2} ) = 0.03;
img.elem_data(fmd1.mat_idx{3} ) = 0.7;
img.elem_data(fmd1.mat_idx{4} ) = 0.7;
img.elem_data(fmd1.mat_idx{5} ) = 0.7;
img.elem_data(fmd1.mat_idx{6} ) = 0.7;
img.elem_data(fmd1.mat_idx{7} ) = 0.7;
img.elem_data(fmd1.mat_idx{8} ) = 0.7;
img.elem_data(fmd1.mat_idx{9} ) = 0.7;
img.elem_data(fmd1.mat_idx{10} ) = 0.7;
img.elem_data(fmdl.mat_idx{11} ) = 0.7;
img.elem_data(fmd1.mat_idx{12} ) = 0.7;
img.elem_data(fmdl.mat_idx{13} ) = 0.028;
img.elem_data(fmd1.mat_idx{14} ) = 0.028;
img.elem_data(fmdl.mat_idx{15} ) = 0.028;
img.elem_data(fmd1.mat_idx{16} ) = 0.028;
img.elem_data(fmdl.mat_idx{17} ) = 0.03;
img.elem_data(fmd1.mat_idx{18} ) = 0.03;
img.elem_data(fmd1.mat_idx{19} ) = 0.002;
img.elem_data(fmd1.mat_idx{20} ) = 0.002;
img.elem_data(fmd1.mat_idx{21} ) = 0.09;
img.elem_data(fmd1.mat_idx{22} ) = 0.09;
img.elem_data(fmd1.mat_idx{23} ) = 0.09;
img.elem_data(fmdl.mat_idx{24} ) = 0.09;
img.elem_data(fmdl.mat_idx{25} ) = 0.0869;
img.elem_data(fmdl.mat_idx{26} ) = 0.09;
img.elem_data(fmd1.mat_idx{27} ) = 0.09;
img.elem_data(fmdl.mat_idx{28} ) = 0.09;
img.elem_data(fmd1.mat_idx{29} ) = 0.09;
img.elem_data(fmdl.mat_idx{30} ) = 0.082;
img.elem_data(fmd1.mat_idx{31} ) = 0.09;
img.elem_data(fmd1.mat_idx{32} ) = 0.09;
img.elem_data(fmdl.mat_idx{33} ) = 0.09;
img.elem_data(fmd1.mat_idx{34} ) = 0.09;
img.elem_data(fmdl.mat_idx{35} ) = 0.09;

show_fem(img, [1,1]);

%inhomogeneous voltage
vi = fwd_solve(img);

% Add 30dB SNR

vi_n= vi;

namp1 0;

nampl= std(vi.meas - vh.meas)*10A(-30/20);
vi_n.meas vi.meas + nampl *randn(size(vi.meas));

fmdl= img;

% Create Inverse Model

inv2d= eidors_obj('inv_model', 'EIT inverse');
inv2d.reconst_type= 'difference';
inv2d.jacobian_bkgnd.value= 1;

% This is not an inverse crime; inv_mdl != fwd_md]l
imb= mk_common_model('b2c',16);

imb.fwd_model =img.fwd_model;

inv2d. fwd_model= imb.fwd_model;

inv2d. fwd_model.np_fwd_solve.perm_sym= '{y}';

%Guass-Newton solvers
inv2d.solve= @inv_solve_diff_GN_one_step;

% Laplace image prior
inv2d.hyperparameter.value = 9e-4;
inv2d.RtR_prior=  @prior_laplace;

inv2d = inv_solve( inv2d, vh, vi);
%inv2d = inv_solve( inv2d, vh, vi_n);

inv2d.calc_colours.ref_level -8; % centered in -8

inv2d.calc_colours.clim 1;

hh =show_fem(inv2d,[1,1]);

set(hh, "Edgecolor',[1,1,1]);
set(hh, 'EdgeColor’', "'none');
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