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Resumen

Con el aumento del uso de nuevas tecnoloǵıas en actividades diarias, la demanda de

sistemas de interacción humano-máquina (HCI por sus siglas en Inglés) ha incrementado.

Sistemas de reconocimiento de pose de manos han sido ampliamente explorados para

dicha tarea debido a su operación intuitiva para usuarios inexpertos. Sin embargo, el

reconocimiento de pose de manos basados en visión es un problema extremadamente

desafiante debido a la dinámica de la mano, la cual posee un gran número de grados de

libertad que la hacen dif́ıcil de estimar y conlleva a problemas adicionales como la auto

oclusión. Con el desarrollo se sistemas de visión confiables y asequibles para el usuario

común como el Microsoft Kinect©, las imágenes de profundidad se han convertido en

una herramienta útil para el reconocimiento de partes del cuerpo y por tanto, para el

reconocimiento de manos.

En esta tésis se propone un sistema de clasificación de poses de mano estáticas basado

solamente en imágenes de profundidad y considerando una perspectiva de vista superior.

No se establecen restricciones adicionales a la posición de la mano en la escena, lo cual

permite a otros objetos estar más cerca de la cámara que la mano. Un conjunto de

datos sintéticos es generado para cuatro posturas de la mano (abierta, apuntando, puño

y pinza). El diseño propuesto es dividido en dos etapas de procesamiento: segmentación

de la mano y clasificación de la pose de la mano. La etapa de segmentación de la mano

utiliza un bosque de decisión aleatorio (RDF por sus siglas en Inglés) para una clasifi-

cación a nivel de pixel de las imágenes de profundidad, segmentando la mano en cuatro

regiones: brazo, palma y dedos. La clasificación de la pose de la mano se lleva a cabo uti-

lizando un conjunto definido de caracteŕısticas visuales de las regiones segmentadas. Siete

caracteŕısticas visuales son evaluadas en términos de su precisión de clasificación. Dos

tipos de clasificadores son entrenados para la estimación de la pose: bosques de decisión

aleatorios y máquinas de soporte vectorial (SVM por sus siglas en Inglés) para propósitos

de evaluación. La implementación propuesta provee un 91% de precisión en la casificación

de las poses de mano utilizadas con el conjunto de datos generado.

Palabras clave: RDF, SVM, imágenes de profundidad, pose de mano, momentos de Hu





Abstract

With the increasing usage of new technologies in common daily activities, the demand

of efficient human-computer interaction (HCI) systems increases. Hand pose recognition

systems have been widely explored for such task due to its intuitive operation for non

experienced users. However, vision-based hand pose recognition is a extremely challenging

problem due to the dynamics of the hand, which poses a large amount of degrees of

freedom that makes it difficult to estimate and carries out additional problems such as

self occlusion. With the development of reliable and consumer affordable vision systems

such as the Microsoft Kinect©, depth imaging has become a useful tool on body parts

recognition and thus, for hand recognition.

This thesis proposes a static hand pose classification system based on depth images only

and considering a top view perspective. No additional constrains to the hand position

on the scene are imposed, which allows background objects to be closer to the camera

than the hand itself. A synthetically generated data set of four hand postures (open,

pointing, fist and pinch) is used. The proposed design is divided in two processing stages:

hand segmentation and hand pose classification. The hand segmentation stage uses a

random decision forest (RDF) for per-pixel classification of the depth images, segmenting

the hand in arm, palm and fingers regions. Hand pose classification is then performed

using a defined set of visual features from the labeled blobs. Seven visual features are

evaluated in terms of classification accuracy. Two types of classifiers are trained for

the pose estimation: random decision forests and support vector machine (SVM) for

evaluation purposes. The system proposed provides a 91% of classification accuracy for

the defined hand poses on the generated data.

Keywords: RDF, SVM, depth images, hand pose, Hu moments
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Chapter 1

Introduction

Human-computer interaction (HCI) has taken a key role in the modern society due to

the latest technology advances that have increased the usage of computer based systems

in common daily activities. Within the whole range of applications using vision based

systems, hand controlled systems are widely extended due to their easy use and intuitive

nature. Hands provide a dexterous functionality in communication and manipulation

that makes them a perfect tool for any interactive application[11] compared with other

approaches such as face or voice control. The usage of hand recognition-based systems

covers a wide range of applications such as virtual reality and simulation [3, 29], mobile

devices [30], sign language recognition [29], musical gestures recognition [7], among others.

Despite hands are acknowledged as an effective interaction tool, they carry out a set of

challenges in regards with their detection using computer vision systems[11]:

• Dimensionality: With approximately 27 degrees of freedom, the hand pose is

highly difficult to estimate compared with simpler recognition systems such as body

pose recognition [8, 21, 11].

• Self-occlusion: Due to the amount of degrees of freedom, the hand suffers of self-

occlusion, i.e., on a variety of positions and points of view from the camera, some

sections of the hand are occluded by others avoiding its direct estimation with vision

computer systems[26, 17, 8].

• Noise: The range sensors available nowadays present a relatively high level of noise

in the depth information (e.g. Gaussian noise with standard deviation of 1cm at

1m distance for PrimeSense sensors)[26, 11, 8].

• Scene variability: Wide range of applications implies that the hand will move

among arbitrary scenes with background objects, illumination camera positions and

orientations.

• Processing speed: In order to provide a hand recognition system that meets the

natural interaction requirements, it is necessary to keep latency times low while
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processing frame rates over 20fps. However most of the available proposals for hand

recognition require a powerful system to run on such timing conditions, making

them infeasible for the market.

With the introduction of the depth sensor at an accessible cost for the common user,

most of those challenges discussed above have been resolved or treated on a simpler way

providing a new field of research for hand recognition. Despite all the improvements

provided by depth sensors for image processing application and more specific for hand

recognition, usually they are used together with color sensors for complementary image

processing[23, 10, 22]. Additionally, some common assumptions such as distance to the

camera and location constrains are usually taken when dealing with depth images, to

simplify the whole processing pipeline.

This thesis is part of a global concept to approach the estimation of hand joints of multiple

hands in a single scene from a top view, using depth images only. The general proposal is

divided in three major processing stages as depicted in figure 1.1: the first stage aims to

the detection of one or more hands on a depth image scene and provide the approximated

location. The second stage uses the input information to segment the hand region and

predict the intended hand posture. Finally, the third stage processes the depth blob and

the posture information to estimate the joints of the hand within the depth image.

Hand detector
Hand pose 

estimator

Hand pose

detector

open

hand blobs

detected pose
captured scene

Joints positions

Camera input

Figure 1.1: General diagram of global concept

This thesis focuses on the second stage of the discussed concept. The proposed solution

receives as input a set of blobs from the original scene containing a hand. Such blob is

segmented using a random decision forest (RDF) for pixel classification in order to find

the hand region and divide it into arm, palm and fingers sections. Then seven visual

features are tested in order to classify the hand pose using a second RDF, which classifies

the blob using a pre-defined hand postures: open, pointing, fist and pinch. A support

vector machine (SVM) is used for comparison for the hand pose classification stage.
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1.1 Objective and Thesis Organization

This thesis has as primary goal the design of a system for hand pose detection using

only depth images from a top view. In order to achieve such goal the system must be

capable of segment a hand blob from a depth image and divide it into arm, palm and

fingers sections. For this purpose a random decision forest is used. Furthermore, the

system must be capable of estimating the wrist position, required for the next stage on

the global three-staged concept. Additionally, the system must compute a set of visual

features and train a second RDF for the hand pose prediction. It must be capable of

distinguish between four basic hand postures: open, pointing, fist and pinch.

This document is organized as follows: Chapter 2 provides a brief discussion of the related

work regarding hand pose estimation with depth images. Chapter 3 presents the basic

theoretic foundations related with random decision forests, support vector machines and

used visual features. Chapter 4 presents the proposed solution. The suggested implemen-

tation is then evaluated and discussed in Chapter 5. Finally, Chapter 6 summarizes the

main conclusions and outlines future work.



4 1.1 Objective and Thesis Organization



Chapter 2

Related works

There is a plethora of research work aiming the analysis and recognition of hands using

computer vision, due to the range of possible applications. With the development of depth

sensors at low cost such as the Microsoft Kinect© or the Intel Creative Gesture Camera©,

the field of research involving depth images for hand analysis has gained momentum.

Several approaches have been proposed for hand gesture and pose recognition using depth

images. Keskin et al. [17] present a pose estimation algorithm for commonly used hand

postures. They use a random decision forest (RDF) for per pixel classification and the

mean shift algorithm is used to estimate the position of the joints. Their results are

demostrated with a American Sign Language (ASL) digits classifier using the joints esti-

mation.

Kuznetsova et al. [18] use a multi-layered random forest (MLRF) and ensemble of shape

(ESF) to classify 24 hand postures from ASL depth images. They extract the point cloud

from the 2D images and use the MLRF to cluster it in the first layer. The second layer

in the MLRF is used to assign the corresponding hand pose to the data set. In [9] a

different approach is taken to estimate the hand shape from depth data. In this case a

sequence of widths is extracted from the hand contour and axis of elongation in order to

be compared with a pre-defined synthetic data set using several similarity measurements.

The hand segmentation is done under the premise that the hand is the closest object to

the camera, so a simple threshold function can be applied.

Ren et al. [23] show a hand posture classification system using hand contour estimation.

The depth image is segmented using color information and under two main assumptions:

the hand must be the closest object to the camera and the person must wear a wristband.

Once the hand is extracted from the original image, the finger-earth mover’s distance

(FEMD) is calculated from the time series curve of the hand contour. This feature is

then used for template matching classification. A similar method is proposed by Dominio

et al. in [10]. A hand depth image is segmented using depth and color information in order

to extract the palm and finger regions. Then a distance sequence feature is calculated

from the fingers to the palm alongside with a curvature feature of the fingers. A support

5
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vector machine (SVM) is then used to classify the features.

Pugeault and Bowden [22] use random decision trees to classify 24 hand postures of the

ASL captured with a Microsoft Kinect. They use OpenNI[1] to localize the hand position

and establish a region of interest around it on the depth and color images. Then a Garbor

filter is used to get a feature vector from depth and intensity data that is going to be used

to train an RDF for classification.

In general several constraints are necessary in order to perform a correct hand pose de-

tection. Some of them rely in the proximity of the hand to the sensor and the point of

view of the camera, restricting the hand position to be the closest object to the sensor

from a front view. Other authors encourage, besides the depth information, the use of

complementary color information for segmentation and feature extraction purposes.



Chapter 3

Foundations

This master’s thesis focuses on the recognition of static hand poses from a top view using

depth images. Some specific topics such as random decision forests, support vector ma-

chines among others are used in the implementation. This chapter aims to the description

of those methods.

Section 3.1 provides a brief introduction to decision trees for classification, including the

training and prediction processes. In section 3.2 the concept of decision tree is extended

to random decision forest. Section 3.3 provides an insight in the theory of support vector

machines. Finally section 3.4 explains the basics of geometric moments to present the Hu

moments.

3.1 Decision Trees

As stated in [6], a decision tree can be defined as a special type of graph composed of

nodes and edges as shown in figure 3.1 for a binary tree. A tree starts from an upper root

node and splits up downwards into several internal nodes until it ends up at the terminal

nodes commonly called leaf nodes in the Nth-level (where N is the tree’s depth). The

simplest arrangement of nodes for a decision tree is called binary decision tree, where each

node splits up in at most two children: left and right.

Each internal node evaluates the incoming data based on a set of features and decision

rules. The result of the decision rule in the current node will split the data into two

groups: those samples that meet the decision criteria and those that do not.

In general a decision tree uses weak split functions to accomplish more complex or strong

splitting processes in a similar way as boosting[12] does, leading to good generalization

capabilities. This thesis focuses on decision trees for classification purposes. For a more

detailed description of decision trees see Criminisi and Shotton [6].

7
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Root node

Split node

Leaf node

Figure 3.1: Graphical description of a binary decision tree (depth = 4)

3.1.1 Training Process

As described previously, a decision tree starts its training process from the root node

splitting up the incoming data set into two groups: left and right. This splitting process

continues on each node until it reaches a terminal node. This way each leaf node li
allocates a distribution function p(c|li(x)) for each class label c and the input data x.

Different estimators can be implemented in order to interpret such distribution function,

being the most common method to select the class with the highest probability.

The training process can be summarized as an iterative process, executed for each node

in the tree as follows[28, 6]:

1. Select a set of data points. Each data point corresponds to an specific sample within

the entire data set.

2. Compute a set of features v = {x1, x2, ..., xd} on each data point with v ∈ Rd.

Ideally the dimension d for each feature space can be infinite, however in practice a

subset of the whole features space is used instead.

3. Once the features are calculated for the data points, a test function τ(θ) with θ ∈ Θ

is used to split the set in left and right samples. θ represents the parameter set of

the test function belonging to the entire parameter space Θ.

4. The main goal of each node in the tree is to split the data in the best possible

way taking the labeled samples as a reference, where best is defined in terms of an

objective function. The goal of the objective function is to provide a quantitative

measure of the splitting capability of the test function within the node and this way

select the best set of parameters for the test function in the current node.
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5. Once the best split function has been selected the resulting left and right data sets

are passed to the next layer nodes and the process is applied recursively.

6. Each leaf node stores a probability distribution p(c|v), based on the total of data

points that reach the node and the corresponding label. This way each leaf provides

a measure of the probability for a data point with a features set v to belong to an

specific class c.

7. The training finishes until a stop criterion is met.

From the algorithm described above four key concepts have direct impact in the training

process:

a) Feature function: the features used commonly for decision trees have the pecu-

liarity of being weak compared with the complexity of the classification performed

by the entire structure. They are completely dependent of the application and the

data set used. For example Shotton et al. in [25] use the difference between two

pixels in the neighborhood of the current point as the feature function for body

parts detection in depth images. Waldvogel in [28] uses the difference of two regions

in the neighborhood of the pixel as the feature function in order to create a per-pixel

classifier using depth and color images.

b) Split function: The test function τ works on the computed features based on a set

of split parameters θ and takes a decision about which branch the sample belongs

to, such that

τ(v, θt)→ {true, false} ∀θt ∈ Θ (3.1)

Commonly the test function is a simple threshold value that can be set on advance

or can be randomly selected.

c) Objective function: Also called score function, it evaluates each test function and

helps to determinate the best split criteria for the current node. One of the most

frequently used objective functions is the information gain. For a binary decision

tree the information gain is defined as[6]

I = H(S)−
∑

i∈{L,R}

Si

S
H(Si) (3.2)

where S is the data set and SL, SR are the splitted samples for each branch, H

is the entropy in the corresponding set. The information gain is a variant of the

Kullback-Leibler distance[14] providing a measurement between the data set entropy

before the split and after. Lower entropy in the branched sets mean less uncertainty

between the samples that conforms each set.
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In short, the analysis of the objective function I can be seen as a maximization

problem at each note jth for the data points in the node Sj and the specific split

parameters set θ as follows

θj = argmax
θ

I(Sk, θ) (3.3)

d) Stop criteria: Growing full trees can be possible but impractical since it leads

to over-fitted trees with low or zero generalization capability. Is for this reason

that having an adequate stop criterion is a critical aspect of the training process.

Diverse stopping criteria can be applied to a decision tree, being the most common

the depth or number of levels of the tree. Alternatively other criteria can be used

such as establishing a threshold for the objective function, determining the level of

entropy in the leaf nodes. On the other hand the number of samples per node can

be limited as a stop criterion avoiding the tree to overfit.

An interesting property of decision trees is that the chronological order of calculating

node splits does not influence the decision tree structure[28], this gives rise to variants in

the training process in regards with the order of nodes generation. Two main algorithms

are widely used: depth-first training and breadth-first training. The former grows each

child recursively until the stop criterion hold before it moves to the next adjacent node.

In the case of breadth-first method all nodes on the same level are trained before moving

to the next level. Figure 3.2 depicts both training methods, where numbers represent the

order on which the algorithm processes the nodes and the dashed nodes represent future

nodes to be processed.

0

4

2

3

1

5 4

7 8

2

65

0

1

3

(a) (b)

Figure 3.2: Decision tree training algorithms. (a) Depth-first method. (b) Breadth-first

method.

When the training process has finished, three data sets are obtained that describe the

tree entirely:

1. The best split functions for each node.

2. The tree structure.

3. The probability distribution for each leaf node.
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The major drawback of decision trees is its training time, which can be considerable when

dealing with big data sets. This disadvantage has encouraged the research of acceleration

methods for the training process such as in [28].

3.1.2 Prediction Process

The prediction process starts in the same way as the training, splitting up the data set

from the root node downwards to reach the leaf nodes.

From the training process each node was associated with an specific test function that

minimize the entropy. When predicting new unseen data, the tree computes the corre-

sponding features and splits it according to the training information. Since this process

is only executed on the nodes involved on each split calculation the algorithm does not

have to got through all the nodes within the tree. Figure 3.3 exemplifies the prediction

path (in red) for a data point within a decision tree, it only requires the calculation of

three nodes to reach a terminal node (represented with squares).

4

7 8 9

2

65

0

1

3

10 11 12 13 14

Figure 3.3: Prediction process for a decision tree. The processing path of a data point is

marked in red.

Once a data point reaches the leaf node, the class probability distribution on that node

allows to predict the most probable class for such data point. Different leaf predictors can

be implemented. A common prediction model used is the Maximum A-Posteriori (MAP)

estimate[6], described as

c∗ = argmax
c

p(c,v) (3.4)

The structure of decision trees allows to reach the leaves in just N evaluations of test

functions, which is suitable for real-time capable implementations.
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3.2 Random Decision Forests

A Random Decision Forest (RDF) is an ensemble learning method constructed by a set

of random decision trees as shown in figure 3.4 for an RDF comprised of 3 decision trees

with 4 levels each one.

p
1

p
3

Tree 1 Tree 3Tree 2

p
2

Figure 3.4: Graphical description of random decision forest (T = 3 and depth = 4). The 3

prediction paths are marked in red, blue and green producing 3 corresponding probability

distributions.

In an RDF each tree is trained independently as described in section 3.1.1. The prediction

is computed for each data point in all trees producing a set of T different probability

distributions (where T is the forest size) as depicted in figure 3.4.

Several prediction models are used to determinate the final output of the forest, being

the most common the calculation of the average probability distribution as follows[6]

p(c|v) =
1

T

T∑
t=1

pt(c|v) (3.5)

The training and testing process in an RDF is achieved independently for each tree within

the forest. This characteristic provides high parallelism leading to very efficient software

implementations.

3.2.1 Randomness Model

Randomization is done in the training phase with the goal to improve the generalization

capability of the classifier. There are two commonly used methods to inject randomness[6]:

1. Bagging

2. Randomized node optimization

Bagging is commonly used when the data set is small, thus an overfit of the tree is possible.

The main idea in bagging is, given a finite data set S, a randomly selected subset St is
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chosen from the original data set for each tree t. Having a different random training set for

each tree leads to the generation of different training parameter avoiding specialization.

Randomized node optimization (RNO) consists of training each node with a different

random subset of split parameters Θt taken from the whole parameter space Θ, varying

the set of possible tests performed on the features for each node. The more data points

in Θ are contained in Θt (such that Θt ≈ Θ), the more similar become the trees in the

ensemble and the lower randomness is achieved, decreasing the generalization of the forest.

Randomness methods are not mutual exclusive which means that they can be implemented

together in regards to the application requirements.

Summarizing, a set of six key parameters have a direct effect over the RDF training

process as well as its prediction capabilities[6]:

1. The tree depth D

2. The size of the forest T

3. The objective function I for the training process

4. The feature function

5. The test function τ

6. The randomness methods injected

3.3 Support Vector Machines

Support Vector Machines (SVM), also known as support vector networks, are super-

vised learning methods for pattern recognition commonly used for binary classification

applications[2, 16]. SVMs start from the basic concept of hyperplane separation. Con-

sider a feature set S = {x1, . . . ,xi} with xi ∈ Rd (where d is the dimension of each data

point); it may be possible to find an hyperplane w · x + b = 0 that splits the data points

in regards to their class labels.

Figure 3.5 shows an example of plane separation for two different hyperplanes h1, h2. In

both cases each hyperplane separates the feature points as expected according with the

corresponding labels and in fact, there are more possible options for hyperplanes that

splits up the feature space correctly. In order to determinate the “best” split case a

new concept is introduced: margin. The margin provides information about the minimal

distance between a feature point xi and the hyperplane’s surface as shown in figure 3.5.

SVM considers the hyperplane selection as a maximization problem looking for the hyper-

plane that provides the largest margin between the samples of each class. This problem

is reduced to maximize the distance of the two closest feature points to the hyperplane

as shown in figure 3.5 for the feature points x1 and x2. Besides h1 and h2 splits up the
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h1

h2

wx1

x2

optimal margin

margin

Figure 3.5: Features space separation using hyperplanes.

feature space correctly, h1 provides the maximal margin between feature points x1, x2.

Due to the roll of x1 and x2 in defining the optimal hyperplane for the feature separation

they are called support vectors.

The split function is based on the hyperplane parameters and defined as

f(x) = (x ·w) + b (3.6)

such that f(x) ∈ {−1, 1}, separating each class based on its sign.

At this point it has been assumed that the feature set used is linearly separable; however

this is not true in most of the cases. For example consider the features set in figure

3.6(a). There is not hyperplane capable to divide the feature set successfully. In those

cases a nonlinear mapping φ : Rd → F is applied, mapping the original features set S to

a potentially much higher dimensional feature space F . Increasing the dimensionality of

the feature space will increase the probability of a linear separation of the feature set. As

an example, let the mapping function φ be defined for the feature set in figure 3.6(a) as

φ(x) := (x2i , x
2
j , xixj) ∀ x = (xi, xj) (3.7)

Figure 3.6(b) shows the resulting feature space F . The feature space dimensionality has

increased to d = 3 but now the feature set is easily separable using an hyperplane.

Computing higher dimensional feature spaces provides a computational challenge due to

the addition of complexity to the algorithm in real applications where the feature space F
can be highly dimensional. In such cases explicitly computing scalar product operations

between elements within the feature space becomes unfeasible. In order to overcome this

limitation the use of kernel functions is widely extended.

A kernel function k is defined as
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Figure 3.6: Feature space mapping using kernels. a) Original 2D data set not directly

separable through an hyperplane. b) Mapped data set using φ(x) = z = {x2i , x2j , xixj} for

x = {xi, xj}.

k(xi,xj) = 〈φ(xi), φ(xj)〉 (3.8)

so that there is not need to compute the mapping function φ(x) to calculate the scalar

product between two feature points.

Different specific kernel functions have been defined such that (3.8) is met. Some of

the most common kernels are shown in table 3.1[20]. The correct kernel function to use

depends of the feature set and the final application.

Table 3.1: Common kernel functions used for SVM

Kernel Definition

Gaussian RBF k(xi,xj) := exp
(
−‖xi−xj‖

c

)
Polynomial k(xi,xj) := ((xi · xj) + θ)d

Sigmoidal k(xi,xj) := tanh(δ(xi · xj) + θ)

inv. multiquadric k(xi,xj) := 1√
‖xi−xj‖2+c2

For a detailed description of SVM and their extensions to multiple class problems refer

to [2, 20, 16].

3.4 Hu Moments in Image Processing

This section explains the basics of geometric moments in image processing in order to

introduce the Hu moments.
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3.4.1 Geometric Moments

The geometric moment M of order (p+q) for a two-dimensional function f(x, y) is defined

as[19]

mpq =

∫
X

∫
Y

xpyqf(x, y)dxdy (3.9)

where p, q are integers in the interval of [0,∞[ and X, Y are the value ranges for (x, y)

tuples. In the case of digital images (3.9) is replaced by[13]

mpq =
M∑
x=1

N∑
y=1

xpypf(x, y) (3.10)

where M ×N is the size of the image.

The entire moments sequence {mpq} uniquely describes an image f(x, y) and in the same

way, an image f(x, y) is uniquely determined by an specific moments sequence. However

this fact requires the computation of an infinite number of moments which is impossible

in practice. It is possible to select an specific subset of moments that describes in an

unambiguous manner an image for a specific application.

The lower order moments describe a set of fundamental geometric properties of the image

function f(x, y). Some of them are summarized in the table 3.2.

3.4.2 Moment Invariants

First introduced by Hu in [15], there are seven moment invariants or Hu moments useful

to describe a two-dimensional image as follows:

φ1 = µ20 + µ02 (3.11)

φ2 = (µ20 − µ02)
2 + 4µ2

11 (3.12)

φ3 = (µ30 − 3µ12)
2 + (3µ21 − µ03)

2 (3.13)

φ4 = (µ30 − µ12)
2 + (µ21 − µ03)

2 (3.14)

φ5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2] (3.15)

+(3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]

φ6 = (µ20 − µ02)[(µ30 + µ12)
2 − (µ21 + µ03)

2] (3.16)

+4µ11(µ30 + µ12)(µ21 + µ30)

φ7 = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2] (3.17)

−(µ30 − 3µ12)(µ21 + µ03)[3(µ30 + µ12)
2 − (µ21 + µ03)

2]
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Table 3.2: Geometric properties of a two-dimensional digital image based on its moments

Property Definition Description

Central Moments µpq =
∑M∑N(x− x̄)p(y − ȳ)qf(x, y)

With x̄ = m10

m00
and ȳ = m01

m00

being the coordinates of the

center of mass for a 2D im-

age. The central moments

of an image are invariant to

translation.

Mass and area m00 =
∑M∑N f(x, y)

Represents the total area of

the image.

Center of Mass

{
m10 =

∑M∑N xf(x, y)

m01 =
∑M∑N yf(x, y)

Represents the center of

mass of an image with co-

ordinates (x̄, ȳ).

Orientations {m02,m11,m20}

Also known as moments of

inertia, can be used to de-

terminate the orientation of

an image providing informa-

tion about the angle of the

main axes.

This set of moments are invariant to translation, scaling and rotation. Mirroring rotation

is also present with a sign change in φ7.
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Chapter 4

Recognition of Static Hand Poses

from a Top View

The main aim of this thesis is to identify a specific set of poses of a hand from a top view

using depth images. Various visual features and classifiers are tested and its performance

is compared.

This chapter presents the proposed system. Section 4.1 provides a general description

of the algorithm implemented. Section 4.2 describes the data set used in the training

process. A brief overview of the segmentation algorithm using RDF follows in Section

4.3. Section 4.4 introduces the visual features used for the pose classification stage and

Section 4.5 provides a detailed description of the classifiers for pose recognition.

4.1 System Architecture

Figure 4.1 shows the general diagram of the system. The implementation is split in two

processing phases:

1. PHASE 1: This phase is intended to the recognition of the hand and its main

components (arm, palm and fingers) from a noisy environment such as a table with

multiple objects. For this stage a modified version of Curfil [28] is used to train a

random decision forest (RDF) based on depth images only. The resulting labeled

blobs provide an estimation of the hand location and are feed to the next stage for

the hand pose recognition.

2. PHASE 2: Once the hand is segmented the labeled blobs are used for feature

extraction before sending them to the hand pose classifier. Various features are

extracted from the labeled blobs and used to train a support vector machine (SVM)

classifier and an RDF to compare their performance. The final result is the estimated

hand pose.

19
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Synthetic hand

pose generator

Synthetic data

RDF

(synthetic and real)

Test data

Classifier

RDFLabeled samples
Preprocessing
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features 
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Hand pose 

classifier

Trainer 2

Trainer 1

Features

Hand poseTrain files

PHASE 1

PHASE 2

Figure 4.1: General diagram of the system developed

Additionally the hand wrist is located as part of the process as a key point for further

stages of hand pose analysis.

4.2 The Data Set

The dataset is based on a series of images synthetically generated simulating the Kinect©

depth sensor. For this thesis four hand poses were used as shown in table 4.1. Alongside

the depth information, ground truth masks are generated that label the arm (green), palm

(blue) and the fingers (red).

The camera is set from a top view. In all training sets, several background objects are

added to the scene in order to let the RDF identify the hand correctly among noisy ele-

ments as shown in table 4.1. The objects are randomly located within the scene removing

any location constrains, i.e., objects within the scene can be closer to the front plane

than the hand and can be partially occluded behind it. The scene sets the background

plane at 1882 mm and the hand Z position varies from 900 mm to 1500 mm rotating

in its XYZ dimensions in predefined ranges ensuring the generated poses are physically

possible, leading to a total of 13728 images per class.

The images are rendered based on a model of LibHand [27] but modified to include objects

in the background as well as shadows within the image.

Each hand is rendered with and without simulated IR shadow to allow the RDF to ignore

the shadows caused by the displacement between the source of the IR pattern and the IR

camera. Figure 4.2 shows an example of the images generated.

Finally, in order to test the effect of the depth noise in the classification process two
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Table 4.1: Hand classes, depth image and ground truth masks

Class Name Depth image 4-Labels Mask

Open

Fist

Pointing

Pinch

Figure 4.2: Generated depth image without shadow (left) and with shadows (right)

variants of the training set are generated: a first data set contains the synthetic images

described above and the second has added noise in the depth images as encountered in the

real depth sensors. The noise is added using the noise model given in [4] for Z dimension

only as follows:

σ(i, j, z) = β1j
2 + β2i

2 + β3z
2 + β4ji+ β5iz + β6zj + β7j + β8i+ β9z + β10 (4.1)

where βx are constant coefficients for Z direction, i and j are the region indices as calcu-

lated in [4] and σ(i, j, k) is the standard deviation of the gaussian distribution modeling

the noise.

Table 4.2 summarizes the different data sets generated.

Due to memory limitations the images in the data set generated have a size of 160× 120

pixels.
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Table 4.2: Data sets (50% images with shadow)

Data Set # Noise (% images within the set) # Images per Class

1 100% 13728

2 0% 13728

3 50% 27456

4.3 Phase 1: Pixel Segmentation using RDF

In order to detect the hand in the data set a segmentation process is required. For this

reason an RDF is used to learn the hand components in the training data and perform a

per pixel classification process.

The training process is achieved using a modified version of Curfil[28], removing any

dependencies to RGB information and using exclusively the depth images. Each tree is

independently trained using breadth-first order. The feature implemented is based on the

difference of the average value between two regions on the image in the neighborhood of

the pixel that is being treated. Figure 4.3 shows the feature calculation for a pixel q and

offsets o1 and o2. Each region is defined by its wi and hi values corresponding to the

width and height dimensions respectively.

1o

q o2

w1

h1

Figure 4.3: Example of Curfil’s feature calculation in a depth image

The offset oi and dimension values wi and hi, are randomly selected in the training process

and normalized with respect the depth value of the query pixel q. The final image feature

function is defined as[28]
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fθ :=
1

|R1(q)|
∑
p∈R1

d(p)− 1

|R2(q)|
∑
p∈R2

d(p) (4.2)

where Ri, i ∈ {1, 2} is the region defined by the relative offset oi and the dimension

parameters wi, hi normalized by the depth of the query pixel d(q) as follows:

Ri(q) := R

(
q +

oi
d(q)

,
wi
d(q)

,
hi
d(q)

)
∀i ∈ {1, 2} (4.3)

Curfil implements the information gain as its objective function for impurity estimation.

The information gain is defined as the difference of Shannon entropy of the class distribu-

tion D in the parent node and the weighted sum of Shannon entropies in class distribution

in each child over the set of classes C[28] as follows

IC(D,DLEFT , DRIGHT ) := HC(D)− |DLEFT |HC(DLEFT ) + |DRIGHT |HC(DRIGHT )

|D|
(4.4)

where the entropy over the classes HC for the current distribution D is defined as

HC(D) := −
∑
c∈C

p(c|D) log2(p(c|D)) (4.5)

Each tree is trained using randomly selected images from the data set, preserving the

same class occurrence rate to avoid training bias.

The resulting RDFs generated from the training process are used to classify any incoming

images and localize the hand and its components, such labeled images are feed to the

next stage for the hand pose estimation.

4.4 Visual Features for Hand Pose Classification

In order to classify the labeled blob a set of visual features are extracted. Figure 4.4

shows the general preprocessing flow.

First, the labeled blobs are processed using morphological operations in order to minimize

any missclassification in the pixels and a binary mask is extracted identifying the hand

region. Second, the eigenvectors and eigenvalues of the mask are calculated to get the

principal axes of the hand, defined with twice the standard deviation of the corresponding

axis as follows:

major axis length = 2σmajor (4.6)

minor axis length = 2σminor (4.7)
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Figure 4.4: Features extraction process for hand pose classification

The hand position is then normalized by rotating its main axis at 90◦. The hand is always

rotated with the fingers at the top of the image based on the colors histogram at the ends

of the main axis.

Once the hand position is normalized, the next step computes the features for the classi-

fication. Four features are used:

1. Entire mask labels histogram: The first feature corresponds to the labels his-

togram of the entire blob based on the mask region, ignoring any information about

background pixels:

h(c) =
1

N

∑
i∈S

pc(i) , c ∈ C := {palm, arm, fingers} (4.8)

with

pc(i) =

{
1 L(i) = c

0 otherwise
(4.9)

Each bin c in the histogram h is calculated as the sum of all the pixels assigned to

such class c in the points of the blob S. Two different values for the parameter N

are used for testing: N ∈ {1,
∑

c∈C h(c)}.

2. Hand ROI histogram: For this feature additional information is extracted from

the labeled images: the location of the hand’s wrist, found by the analysis of the

main axis histogram and its boundary between the palm and the arm as shown in

the figure 4.5.

Once the wrist is found, a rectangular region is calculated with one of its sides

defined by the wrist point and the upper end of the hand’s main axis; the other side

corresponds to the mask’s minor axis. The resulting region is depicted in figure 4.6.

With the rectangular ROI defined, the calculation of the feature corresponds to the

histogram of labels considering the background labels and ignoring the arm labels.
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Wrist point

Main axis

Figure 4.5: Location of the hand’s wrist
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Hand ROI
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1 std. dev.

Figure 4.6: Hand ROI for histogram calculation

Arm labels doesn’t provide any additional information about the shape of the hand

since they belong to the arm itself which is independent of any hand’s pose. The

background pixels on the other side provide information about the hand pose in a

similar way to a convex hull calculation. This way the histogram is calculated as

follows

h(c) =
1

N

∑
i∈SR

pc(i) , c ∈ C := {fingers, palm, background} (4.10)

where SR corresponds to the points of all the pixels that belongs to the rectangular

area and N =
∑

c∈C h(c).

3. Hand ROI quadrants histogram: This feature splits the main rectangular ROI

of the hand, calculated in the previous point, into four quadrants and calculates the

histogram for the palm, fingers and background labels among the four quadrants.

Figure 4.7 shown the four quadrants calculated in the image.

Splitting the main rectangle into four regions provides information about the changes
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1

3 4

2

Figure 4.7: Hand ROI quadrants for histogram calculation

of the hand pose on each quadrant independently, being able to capture discrimi-

native patterns for each hand region.

Two variants of the feature are calculated for testing, the first one calculates a three

element histogram for each quadrant qj, j ∈ {1, 2, 3, 4} as follows:

hqj(c) =
1

N

∑
i∈SQ

pc(i) , c ∈ C := {fingers, palm, background} (4.11)

where SQ corresponds to the points of all the pixels that belongs to the quadrant

area and N =
∑

c∈C hqj(c).

The second variant of the feature unifies the background labels count into a single

entry for the entire histogram, reducing the feature’s dimension from 12 to 9. This

way the histogram calculation is expressed as

hqj(c) = 1∑
c∈C hqj (c)

∑
i∈SQ

pc(i) for c ∈ {fingers, palm}

h(c) = 1∑
c∈C h(c)

∑
i∈SR

pc(i) for c = background
(4.12)

4. Hu Moments: Hu moments are used as features in a similar way than in [5] but

considering each hand region independently. The first step is to separate the hand

palm and fingers regions from the rotated image as shown in figure 4.8. The hand

regions are extracted using a region growing algorithm and then passed to the Hu

calculator.

Table 4.3 summarizes the features described and shows their corresponding dimensions.
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Hu Moments

calculator

calculator
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Figure 4.8: Hand regions extraction and Hu moments calculation from rotated image

Table 4.3: Features for hand pose classification

# Feature # dimensions

1 Full image histogram 3

2 ROI histogram 3

3 ROI histogram (denormalized) 3

4 ROI quadrants histogram 12

5 ROI quadrants histogram (reduced) 9

6 Hu moments 14

4.5 Phase 2: Gesture Classification

The gesture classification stage is intended to provide an estimation of the hand pose

based on the features described in the previous section. Two classifiers are tested in order

to compare their accuracy in the classification process; a random decision forest (RDF)

and a support vector machine (SVM) are selected for this phase.

Each classifier is trained with the features extracted from the previous section and used

to estimate the hand pose.

The training is done with randomly selected blobs to avoid training bias.
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Chapter 5

Experimental results

In this chapter a set of experimental results on the proposed system are shown. Section 5.1

describes the different data sets used in the experiments. Section 5.2 provides a summary

of the segmentation results produced by the RDF classifier in the first stage of the system.

A brief analysis of the wrist location results is provided in section 5.3 as a key point for

further stages of the system. Finally, section 5.4 provides a detailed analysis of the results

from the second stage of the system, aimed to the classification of the hand pose. An

RDF classifier is tested and its prediction capability is compared against a classic SVM

classifier. At last, the RDF classifier for pose estimation is exposed to ideally labeled hand

blobs in order to determinate the classification performance of the second stage assuming

an ideal segmentation.

5.1 Data set

The generation process of the data set in use was provided in chapter 4.2. The experiments

along this chapter are based on a set of three different data sets presented in section 4.2

and shown in table 5.1 for convenience. Each data set differs on the amount of images

with noise within the entire set. All data sets contain images rendered with shadows and

without them, to improve shadows immunity. A total of 4 hand poses are used: open,

pointing, fist and pinch, as depicted in table 5.2 for several rendering location/rotation

variations.

Table 5.1: Data sets used for experimental results (50% images with shadow)

Data Set # Noise (% images within the set) # Images per Class

1 100% 13728

2 0% 13728

3 50% 27456

The identifiers 1, 2 and 3 are used along all the chapter to identify the corresponding data

29
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set used on each experiment.

Table 5.2: Hand pose samples at different location/rotation values

Class Name Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Open

Fist

Pointing

Pinch

A total of 10000 randomly selected images from each data set are used to train the first

stage of the system aimed to the hand segmentation. An additional batch of 10000 are

then used for testing that stage and feed to the hand pose classification stage to train the

RDF and SVM classifiers. Finally a 5000 images set is used to validate the classifiers of

such stage.

5.2 Segmentation of Hand Regions

This section presents a set of experimental results aimed to the analysis of the hand

segmentation stage of the system presented in section 4.3. Three RDF classifiers are

trained with the data sets introduced in section 5.1 in order to validate the effect of the

noise within the training images. These results correspond to the classification output

for each individual pixel, where no information of neighbor classifications is taken into

account. Furthermore, detailed analysis on the prediction capabilities of the RDF is

performed.

Each RDF is trained with the set of parameters listed in table 5.3. No parameters

optimization has been performed since such topic is out of the temporal scope of this

thesis.

The classifiers are identified as follows:

• RDF A: RDF trained with data set 1, specially focused on the classification of

blobs without noise.
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Table 5.3: RDF configuration for hand segmentation

Parameter Value

Max depth 16

Size (trees) 5

Samples per image 600

Number of thresholds 1000

Features per node 1500

Feature max box edge size (region size) 10

Feature max box offset (box radius) 30

Train set size 10000

Test set size 10000

• RDF B: RDF trained with data set 2, specially focused on the effect of noise in

the prediction capability.

• RDF C: RDF trained with data set 3. This test is aimed to test the effect of

training the classifier with samples with noise and without noise.

The accuracy of each classifier has been measured quantitatively and summarized in tables

5.4, 5.5 and 5.6, which correspond to the confusion matrices for the classifiers A, B and

C respectively. C0, C1, C2 and C3 are the background, fingers, arm and palm classes,

respectively. The prediction results between the three random forests is very similar,

with only a maximum variation of 7% around the mean. Since the background pixels

comprise the majority of the region on each blob its accuracy in each matrix is near the

100%; however the classification of the pixels belonging to the hand parts presents more

confusion, being the fingers the class with the larger confusion, classifying around 46% of

the samples as background and palm.

Table 5.4: Confusion matrix for RDF A trained with depth images without noise. (Data

set size = 10000 with 0% images without noise )

PredictionsConfussion

Matrix C0 C1 C2 C3

C0 0.997 0.001 0.002 0.000

C1 0.208 0.538 0.020 0.233

C2 0.081 0.002 0.904 0.013
Classes

C3 0.075 0.032 0.033 0.860

Since the background class may bias the measurement of accuracy for each classifier, as an

additional quantitative measurement here it is proposed to take the background class out

of the statistics. Defining the average per-class accuracy as the average of the diagonal
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Table 5.5: Confusion matrix for RDF B trained with noisy depth images. (Data set size

= 10000 with 100% images with noise)

PredictionsConfussion

Matrix C0 C1 C2 C3

C0 0.997 0.001 0.002 0.000

C1 0.191 0.473 0.037 0.300

C2 0.076 0.002 0.904 0.018
Classes

C3 0.073 0.028 0.054 0.845

Table 5.6: Confusion matrix for RDF C trained with mixed depth images. (Data set

size = 10000 with 100% images with noise)

PredictionsConfussion

Matrix C0 C1 C2 C3

C0 0.997 0.001 0.002 0.000

C1 0.197 0.513 0.030 0.261

C2 0.080 0.004 0.897 0.019
Classes

C3 0.077 0.041 0.043 0.839

of the confusion matrix[24] and omitting the background predictions leads to the results

in table 5.7 for the accuracy rates for the classes C1, C2 and C3 and the total per-class

accuracy. It is possible to notice an slight reduction in the prediction accuracy when noise

is injected, decreasing in up to 4.6% the average prediction for the classifier B and 2.8%

for the classifier C.

Table 5.7: Class accuracy omitting background class prediction statistics

Classifier C1 accuracy C2 accuracy C3 accuracy Average accuracy

A 0.680 0.984 0.930 0.865

B 0.584 0.978 0.912 0.825

C 0.638 0.975 0.910 0.841

The average classification accuracy for arm is 97.9% and 91.7% for the palm, being the

fingers the class with the lower average prediction with 63.4%, which coincides with

the results obtained from the confusion matrices. The fingers class presents its lower

prediction accuracy for the RDF B with 58.4%.

Two interesting results are obtained from the confusion matrices in tables 5.4, 5.5 and 5.6

and the accuracy statistics in table 5.7. First, the RDF capability to ignore or minimize

the effect of the noise, presenting a close average accuracy in the three tests performed.
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Second, the better accuracy of the RDF C compared with the RDF B. Training the

RDF with 50% of noisy images helped the forest to increase its accuracy in around 1.8%,

improving the RDF immunity to the noise.

Since the RDF C presents the best average accuracy with noisy images, improving con-

siderably the pixel prediction for the fingers, it is selected as the reference classifier along

the remaining sections of this thesis.

Table 5.8 shows an example of the prediction results for each classifier.

Table 5.8: Experimental hand segmentation results for RDF A, B and C (Using training

parameters from table 5.3 )

Class Name Depth image
Ideal

prediction
RDF A RDF B RDF C

Open

Fist

Pointing

Pinch

5.3 Wrist Location

One of the key processing stages within the system is the estimation of the wrist point in

the labeled blobs provided by the segmentation phase.

In order to get a quantitative measurement of the wrist estimation, the relative wrist

point distance is calculated, i.e., the Euclidean distance between the ideal wrist point and

the estimated wrist point normalized by the standard deviation of the minor axis of the

arm, as follows

Relative Distance =

√
(xideal − xexp)2 + (yideal − yexp)2

σarmminor

(5.1)

With the above definition a relative distance lower or equal than 1 would mean that the
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difference between the ideal and estimated wrist points lies within a circle with center

(xideal, yideal) and with radius σarmminor
.

Table 5.9 shows the relative wrist distance measurements for each class and for the entire

data set, providing the mean and standard deviation. Additionally, the percentage of

samples with a relative wrist distance lower than 1 is provided. The average mean relative

distance is 0.509 with standard deviation values around 0.337, this means that most of the

wrist points calculated provide a good estimation of the real wrist point location. This

result is confirmed by looking at the percentage of samples within the radius σarmminor

which in average corresponds to 93.63%.

Table 5.9: Relative wrist point distance measurements for RDF predicted images (Data

set size = 10000)

Measument Open Pointing Fist Pinch Average

Mean 0.517 0.508 0.501 0.509 0.509

Std. Dev. 0.366 0.315 0.336 0.330 0.337

Samples within radius (%) 92.84 93.56 94.48 93.64 93.63

In order to determinate whether the wrist estimation is out of the hand region, the relative

distance has been calculated for the x and y coordinates separately as listed in table 5.10.

The x coordinates have an average relative distance of 0.284 with 99.95% of the samples

within the radius. In the other hand the y coordinates present an average relative distance

of 0.426 with 94.32% of the samples within the radius.

Table 5.10: Relative wrist point distance for x and y coordinates (Data set size = 10000)

Measument Open Pointing Fist Pinch Average

Mean X 0.272 0.289 0.284 0.292 0.284

Std. Dev. X 0.198 0.216 0.199 0.202 0.204

% Samples Rel∆X < 1 100 99.86 100 99.95 99.95

Mean Y 0.449 0.425 0.421 0.411 0.426

Std. Dev. Y 0.389 0.328 0.357 0.357 0.359

% Samples Rel∆Y < 1 93.35 94.67 94.77 94.49 94.32

Since the wrist point is estimated with the blobs with normalized position, the results in

table 5.10 imply that the 99.95% of the points fall into the arm region with only major

location differences in the y coordinate. This major variation in the y coordinate can be

attributed to the misclassification of the palm class with the arm in the segmentation

stage.
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5.4 Hand Pose Classification

This section presents the analysis of the hand pose classification stage of the system. The

RDF and SVM classifiers are tested and their performance is discussed alongside with the

experimental results.

The features used for the hand pose estimation are listed in table 5.11 (for more details

about their definition see section 4.4). Feature 7 has been included for analysis purposes

and it is composed as the union of all the previous features, the main goal of this feature is

to evaluate the discriminatory capabilities of each classifier among all the range of possible

features to use.

Table 5.11: Experimental visual features used for hand pose classification

# Feature # dimensions

1 Full image histogram 3

2 ROI histogram 3

3 ROI histogram (denormalized) 3

4 ROI quadrants histogram 12

5 ROI quadrants histogram (reduced) 9

6 Hu moments 14

7 Complete feature set 45

5.4.1 Classification Using RDF

The training parameters used for the RDF are shown in table 5.12.

Table 5.12: RDF configuration used for hand pose classification

Parameter Value

Max depth [10,25]

Size (trees) [10,150]

Objective function entropy

Train data set size 10000

Test data set size 5000

The RDF depth is varied from 10 to 25 levels in 5 units increments and the forest size is

tested within a range of 10 to 150 trees with 10 units increments for each feature. Those

configurations are used in order to evaluate the best match for the data set in use. Figure

5.1 presents the classification error for each RDF (trained using the corresponding feature)

for different depth/size configurations. The classification error is mostly constant for each

feature, being the RDF trained with the complete set of features the one presenting the
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lower classification error, close to 10%. The ROI quadrants histogram and its option with

dimensions reduced present a classification error close to 20%, being it the isolated feature

that provide best classification results. On the other hand the Hu moments provide the

worst classification error for all the RDF configurations.
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Figure 5.1: Classification error vs RDF configuration for different features

Table 5.13 shows the minimum classification error (i.e. the maximum average per-class

accuracy) for each feature and the corresponding depth and size values. The best result

is emphasized with a gray shadow, provided by the entire set of features using an RDF

of depth 15 and size 150, with an average per-class accuracy of 91%.

Table 5.13: Best classification error and average per-class accuracy using all features

Feature RDF Depth RDF Size (trees)
Min. Classifica-

tion Error (%)

Average

Per-class

accuracy
All Features 15 150 8.680 0.91

General histogram 15 110 30.280 0.70

ROI Quadrants hist. (red.) 25 90 16.720 0.83

ROI Quadrants hist. 25 140 15.960 0.84

ROI hist. (denormalized) 15 100 34.060 0.66

ROI histogram 15 100 37.760 0.62

Hu Moments 20 50 39.740 0.60
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Figure 5.2 shows the classification error curves for the RDF trained with the entire features

set at a constant depth value and varying the RDF size. Depth values above 15 levels

behave in a similar way with a minimum classification error around 8.87%. This fact

is presented in more detail in table 5.14 which presents the best classification error and

average per-class accuracy values for each RDF depth. For depth values above 15 levels

the best average per-class accuracy is 91% and it only varies on the number of trees used.
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Figure 5.2: Classification error vs RDF size for different depth values using the entire

features set

Table 5.14: Best classification error and average per-class accuracy using all features

RDF Depth RDF Size (trees) Min. Classification Error (%) Average Per-class accuracy

10 90 10.040 0.90

15 150 8.680 0.91

20 120 8.940 0.91

25 130 8.980 0.91

Table 5.15 shows the confusion matrix for the RDF trained with a depth of 25 levels

and a size of 130 trees, which presented the best prediction accuracy. In this setup the

open hand label presents the higher prediction accuracy (with a 96%). This result can

be associated to the fact that this class presents the most distinguishable visual features
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among the others. Additionally, fist and pinch classes present an accuracy rate higher

than 91% leaving the pointing class at last with 84%. As it is expected the pinch and

pointing classes present a mutual confusion of around 7% due to their physical similarity.

An interesting result is the confusion presented between the pointing and fist labels,

probably caused by the misclassification of the index finger pixels, leading to a segmented

blob similar to a fist, as shown in the experimental results in figure 5.3. Despite the

segmentation of the blob in figure 5.3 a) provides a correct pixel assignment for the index

finger, in the figure 5.3 b) the index pixels were classified to the arm class which leads to

a poor set of visual descriptors for the pose estimator.

Table 5.15: Confusion matrix for hand classification using the complete set of features

(depth = 25, RDF size = 130)

PredictionsConfussion

Matrix Open Pointing Fist Pinch

Open 0.968 0.013 0.00 0.019

Pointing 0.008 0.839 0.081 0.072

Fist 0.002 0.074 0.918 0.007
Classes

Pinch 0013 0.070 0.002 0.916

(a) (b)

Figure 5.3: Misclassification of pointing class pixels. a) Index finger correctly segmented.

b) Index finger misclassified pixels

Similar to boosting, random decision forests provide useful information about the im-

portance of each feature component within the training process. This is a interesting

feature commonly used to select and reduce the size of a feature set. Table 5.16 provides

a summary of the features importance rates obtained from the RDF analysed. Features

based on the ROI quadrants analysis presents the higher importance percentage within

the range of 23-33%. Features such as the Hu moments with 14 components provides

only a 9.501% of importance, with 10 components with a 0%; being the first moment for

palm and the first and second moments for the fingers the ones with higher importance.

Additionally, in all the histogram based features the finger component provides the higher

percentage of information for the pose classification, which can be related to the fact that

this visual feature is the most dynamic between different hand postures.

The results listed in table 5.16 provide an insight of the main components within the

features set that are meaningful for the classification process. This information can be
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used to reduce the size of the feature set, removing all the components that provide 0%

of information or close and just computing the main components.

Table 5.16: Features importance percentage for an RDF trained with all the features

sets (depth = 15, size = 120)

Feature Component

Component

Importance

(%)

Feature

Importance

(%)

General Histogram

Finger 6.61

9.482
Arm 1.08

Palm 1.76

NA 0.03

ROI Quadrants

Histogram

(Reduced)

Finger 1 2.99

23.938

Palm 1 1.61

Finger 2 7.41

Palm 2 3.00

Finger 3 1.33

Palm 3 0.91

Finger 4 3.47

Palm 4 1.20

Background 2.02

ROI Quadrants

Histogram

Finger 1 2.84

32.618

Palm 1 1.83

Background 1 3.42

Finger 2 7.04

Palm 2 3.82

Background 2 4.19

Finger 3 1.82

Palm 3 0.90

Background 3 0.96

Finger 4 3.24

Palm 4 1.37

Background 4 1.19

ROI Histogram

Finger 7.91

12.501Palm 2.49

Background 2.10

ROI Histogram

(Denormalized)

Finger 7.79

11.960Palm 1.39

Background 2.78

Hu Moments

Palm: 1 1.48

9.501

Palm: 2 0.04

Palm: 3 0.00

Palm: 4 0.00

Palm: 5 0.00

Palm: 6 0.00

Palm: 7 0.00

Fingers: 1 5.76

Fingers: 2 2.22

Fingers: 3 0.00

Fingers: 4 0.00

Fingers: 5 0.00

Fingers: 6 0.00

Fingers: 7 0.00

In the next section SVM classification is analysed in order provide a comparison point of

the result presented with a classic ensemble.

5.4.2 Classification Using SVM

In this section a set of support vector machines are trained to perform the hand pose

classification from the labeled blobs provided by the segmentation stage using the same

set of features listed in table 5.11. The goal of this test is to compare the RDF performance

with a classic and widely used classification algorithm.

The SVM is used with a Gaussian RBF kernel with a Gaussian spread γ = 0.0001 and

a cost parameter C = 5.275. Such parameters were selected by using a grid analysis and

finding the best combination within the ranges shown in table 5.17.
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Table 5.17: Parameters range used for SVM grid analysis

Parameter Range

γ [0.1, 0.0002]

C [1, 2000000]

Table 5.18 summarizes the classification error and average per-class accuracy for each

feature. As expected from the result obtained from the RDF analysis, the SVM presented

the best classification accuracy when the entire set of features is used as input to the

classifier. However, classification accuracy is much lower for the SVM than the obtained

using RDF with a minimum classification error of 24.94%. It is interesting to see how the

Hu moments present the worst classification accuracy among the features set, coinciding

with the results obtained for the RDF classifier.

Table 5.18: Classification error and average per-class accuracy for SVM classifier (γ =

0.0001,C = 5.275)

Feature
Classification

Error (%)

Average

Per-class

accuracy
All Features 24.94 0.75

General histogram 35.74 0.64

ROI Quadrants hist. (red.) 50.14 0.50

ROI Quadrants hist. 50.08 0.50

ROI hist. (denormalized) 39.26 0.61

ROI histogram 56.96 0.43

Hu Moments 72.28 0.28

5.4.3 Classification of Ideal Predicted Blobs using RDF

It has been demonstrated the superiority of the random forests for the hand pose classi-

fication compared with support vector machines classifiers, for the features set proposed.

In this section it is analysed the classification capability of the proposed features using

random forests and an ideal set of predicted blob labels. Separating the hand blob segmen-

tation error from the classification process allows to measure the prediction capabilities

of the system in a controlled environment.

The RDF is trained with the same parameters shown in table 5.12 for each of the features

proposed. Figure 5.4 depicts the classification error based on different depth and size

settings for the RDF on each feature. In contrast with the results obtained in figure

5.1, all the features but the Hu moments got a classification error under 5%. Table 5.19

provides a summary of the best candidates for classification for each feature. All random
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forests presented an average per-class accuracy above 90% with the Hu moments based

RDF being the less accurate with 91%.
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Figure 5.4: Classification error vs RDF configuration for different features with ideal

segmentation of hand blobs

Table 5.19: Best classification error and average per-class accuracy using all features

Feature RDF Depth RDF Size (trees)
Min. Classifica-

tion Error (%)

Average

Per-class

accuracy
All Features 15 100 0.00 1.00

General histogram 20 110 0.090 1.00

ROI Quadrants hist. (red.) 20 100 0.000 1.00

ROI Quadrants hist. 20 100 0.000 1.00

ROI hist. (denormalized) 25 120 0.510 0.99

ROI histogram 25 130 0.400 1.00

Hu Moments 10 50 8.660 0.91

Table 5.20 summarizes the features importances. Again the ROI quadrants features pro-

vide the most discriminative feature with about 58% of importance rate. Despite the fact

that Hu moments just reach a 26% of importance in the classification process, it mainly

belongs to the first moment of the palm and the first and second moments for the fingers,

coinciding with the results obtained in section 5.4.1.
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Table 5.20: Features importance percentage for an RDF trained with all the features

sets with ideal segmentation (depth = 15, size = 100)

Feature Component

Component

Importance

(%)

Feature

Importance

(%)

General Histogram

Finger 3.72

4.234
Arm 0.12

Palm 0.39

NA 0.00

ROI Quadrants

Histogram

(Reduced)

Finger 1 4.32

24.013

Palm 1 2.06

Finger 2 3.92

Palm 2 6.70

Finger 3 1.72

Palm 3 1.25

Finger 4 2.57

Palm 4 0.78

Background 0.69

ROI Quadrants

Histogram

Fingers 1 5.19

34.650

Palm 1 3.55

Background 1 1.83

Fingers 2 4.53

Palm 2 5.94

Background 2 1.98

Fingers 3 2.92

Palm 3 2.10

Background 3 0.56

Fingers 4 4.18

Palm 4 1.20

Background 4 0.66

ROI Histogram

Finger 4.00

7.542Palm 2.92

Background 0.63

ROI Histogram

(Denormalized)

RED 2.20

3.548Palm 0.27

Background 1.08

Hu Moments

Palm: 1 7.28

26.012

Palm: 2 0.24

Palm: 3 0.00

Palm: 4 0.00

Palm: 5 0.00

Palm: 6 0.00

Palm: 7 0.00

Fingers: 1 9.44

Fingers: 2 9.06

Fingers: 3 0.00

Fingers: 4 0.00

Fingers: 5 0.00

Fingers: 6 0.00

Fingers: 7 0.00

The results presented demonstrate a high dependency of the features proposed with the

accuracy of the segmentation of the hand blob, being highly discriminative when the blob

information tends to an ideal prediction.
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Conclusions

This thesis presents a two staged architecture for the hand pose recognition of four hand

postures (open, pointing, fist and pinch), using depth images in a top view perspective

without any color information. The proposed design removes some of the classic constrains

in hand recognition with depth sensors such as the hand relative position to other objects

and verticality with respect to the camera. Additionally the proposed solution addresses

some common error sources in IR sensors such as Gaussian noise and shadows.

Along the entire project a synthetic data set was used to perform the training and verifi-

cation test. Such data set was generated based on LibHand hand model[27] and allowed

the analysis of various characteristics of depth images independently, such as the effect of

the depth noise in the training process.

The first processing stage was implemented using a modified version of Curfil[28] to train

an RDF for per-pixel classification, identifying the arm, palm and fingers in the depth

images. It was found that the addition of Gaussian noise in the depth images (based on

Kinect’s noise model[4] for Z direction) causes a decrement of just 4.6% in the classification

accuracy, exposing a high level of immunity to Gaussian noise. Also, using a combination

of depth images with 50% of the samples with noise for training increments the pixel

classification accuracy of the RDF in about 1.8%, increasing the RDF immunity to noise.

It was possible to get a classification accuracy for the segmentation stage up to 84.1%,

being the fingers the most difficult region to estimate with a 26% of confusion with the

palm.

As part of the intermediate process, the wrist point of the hand was estimated for each

blob, with a total average relative distance to the theoretical point of 0.509 ± 0.337;

fitting the 93.63% of the calculated wrist points within the σarmminor radius around the

theoretical point.

In the second stage of the system the RDF classification capability was compared with

a classic SVM implementation for the prediction of the hand posture, based in a set of

seven different visual features (see table 5.11) extracted from the segmented blobs. It

43
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was proved the higher capability of the random forests to learn from a set of features

and provide an acceptable prediction rate compared with SVM, providing up to a 91%

of average per-class accuracy against 75% of the SVM. Additionally it was demonstrated

that pixel based features calculated from the ROI quadrants around the hand provide

the higher discriminative information in the classification process. The Hu moments of

the palm and fingers provide the lowers discriminative information presenting meaningful

metrics only on their first and second moments.

In general it has been proved the capability of random decision forests for hand pose

classification from depth images where no hand location constrains or color information

is used. Additionally it has been possible to identify a set of simple visual features that

provide high discriminatory information for hand pose estimation for hand blobs.

6.1 Future Work

It is left for future work to test the proposed solution under real conditions using real

depth images for the prediction process. On the other hand, the major disadvantage of

RDF is the required training times, which considerably limit the amount of points in the

parameter space that can be explored. Tuning of such parameters is a task still to be

performed to optimize the results obtained. Additionally, other RDF ensembles variants

can be used in order to improve the classification accuracy and overall performance, such

as the usage of multi-layered random forests (MLRF)[18] that improves memory usage

and speed.

A new set of features can be explored for the hand pose classification stage, either provid-

ing more discriminative information about the hand ROI pixels arrangement or extracting

information directly from the depth information. Contour features, such as fingers cur-

vature or contour distance respect the wrist point, can easily be integrated based on the

visual features already calculated within the system.
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