
Instituto Tecnológico de Costa Rica

Escuela de Ingenieŕıa Electrónica

Programa de Maestŕıa en Ingenieŕıa Electrónica

A methodology for the synthesis to logical netlist of an ASIC

para optar por el t́ıtulo de

Magister Scientiae en Ingenieŕıa Electrónica

énfasis en Sistemas Empotrados

con el grado académico de

Maestŕıa

Mauricio Gurdián Murillo

Cartago. Abril 26, 2017

I declare that this thesis document has been made entirely by my person, using and

applying literature on the subject, and introducing my own knowledge and experimental

results.

In the cases I have used literature, I proceeded to indicate the sources by the respective

references. Accordingly, I assume full responsibility for this thesis work and the content

of this document.

Mauricio Gurdián Murillo

Cartago. April 26, 2017.

Céd.: 5 0366 0140

This work is licensed under a Creative Commons

“Attribution-NonCommercial-ShareAlike 4.0 International”

license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Abstract

The advances in technology for manufacturing ASICs allow more features to be added.

As result, and depending on the architecture of the ASIC, more functional blocks do exist

to support such additional features. This imply requiring more resources to synthesize

each functional block into a logical netlist.

As the physical design process is completed by a third party, reducing the time to deliver

the complete set of synthesis files is critical for the project, so that the engineers can start

the quality checks of each netlist earlier than the schedule, and the final product can be

both completed and released on schedule.

This work describes a methodology that automatically executes the synthesis flow of

RTL code to logical netlist on each block that forms an ASIC. It helps keeping a better

traceability of changes through the milestones in a project.

A simulator of the methodology was implemented in Perl to validate that the complete

synthesis runtime of an ASIC is improved, compared against a serial flow approach. Con-

sequently, the time to synthesize the complete set of functional blocks is speedup 8.8

times.

Keywords: ASIC, Register Transfer Level, logical netlist, synthesis

Resumen

Los avances en la tecnoloǵıa en la fabricación de ASICs permiten que más caracteŕısticas

sean agregadas. Como resultado, y dependiendo de la arquitectura del ASIC, más unidades

funcionales existen para respaldar tales caracteŕısticas. Esto implica que más recursos sean

necesarios para sintetizar cada unidad funcional en un netlist lógico.

Como el proceso de diseño f́ısico es completado por un tercero, reducir el tiempo de

entrega del conjunto completo de archivos de śıntesis es cŕıtico para el proyecto, de modo

que los ingenieros puedan iniciar las revisiones de calidad en cada netlist con anterioridad

al programa, y que el producto final pueda ser a la vez completado y entregado en la fecha

prevista.

Este trabajo describe una metodoloǵıa que ejecuta automáticamente el flujo de śıntesis

del código RTL a netlist lógico sobre cada bloque que forma un ASIC. Ayuda a mantener

una mejor trazabilidad de cambios a través de las fechas clave de un proyecto.

Un simulador de la metodoloǵıa fue implementado en Perl para validar que el tiempo

total de śıntesis de un ASIC es mejorado, comparado contra un enfoque de flujo en serie.

Consecuentemente, el tiempo para sintetizar el conjunto completo de unidades funcionales

en un chip es mejorado hasta 8.8 veces.

Palabras clave: ASIC, Transferencia a nivel de registros, netlist lógico, śıntesis.

I dedicate this work to my girlfriend Raquel
Arias, whose words of encouragement kept me in the path for
finishing this master thesis. I also dedicate this work to my
parents, who have supported me throughout the process. I also
dedicate this work to my teammates from the physical group at
HPE, their words of encouragement are also appreciated.

Acknowledgments

I am deeply grateful to my thesis mentor Jorge Castro. Without both his help and

guidance, this work would not have been finished. Furthermore, I would like to thank

the Research and Development management team at Hewlett-Packard Enterprise Costa

Rica, for encouraging to take and finish the master thesis.

Mauricio Gurdián Murillo

Cartago, April 26, 2017

Contents

List of Figures iii

List of Tables v

List of abbreviations vii

1 Introduction 1

1.1 Objectives and document structure . 4

2 Synthesis methodologies 7

2.1 Individual synthesis methodology . 8

2.2 Full ASIC synthesis methodology . 10

3 Methodology for synthesizing a chip 13

3.1 Data management under repositories . 14

3.1.1 Data structure . 15

3.2 Handling synthesis tool’s licenses . 15

3.3 Issuing criteria order for synthesis processes 17

3.4 Execution Flow . 19

4 Simulator 23

4.1 Main program . 25

4.1.1 Help menu . 26

4.2 Input files . 27

4.3 Subroutines . 27

4.3.1 gen hash . 28

4.3.2 sort mechanism . 28

4.3.3 synthesis simulator . 29

4.3.4 lsf simulator . 29

4.4 Output files . 30

4.5 Running multiple experiments . 30

5 Results and analysis 33

6 Conclusions 39

i

ii Contents

Bibliography 41

List of Figures

1.1 ASIC design and synthesis process . 2

1.2 Methodology dependency workflow . 5

2.1 An execution stage . 8

2.2 Synthesis flow . 9

2.3 Snapshot workflow . 11

3.1 CAD license assign to queue and users . 16

3.2 Jobs and synthesis time - Longest job first scenario 18

3.3 Full execution flow . 20

4.1 Tool execution flow . 24

5.1 Speedup for each sorting mechanism on different queue sizes 36

5.2 Total synthesis time per sorting mechanism on different queue sizes 37

iii

iv List of Figures

List of Tables

3.1 Example of synthesis runtime per block (in minutes) 17

4.1 Total Synthesis runtime (minutes) per module in a chip 28

5.1 Sorted by longest job first . 33

5.2 Sorted by shortest job first . 33

5.3 Random sort, first seed . 34

5.4 Random sort, second seed . 34

5.5 Random sort, third seed . 35

5.6 Total Synthesis runtime per sort mechanism on different queue sizes 36

v

vi List of Tables

List of abbreviations

Abbreviations
ASIC Application Specific Integrated Circuit

RLS RTL to Layout Synthesis

RTL Register Transfer Level

VCS Version Control System

VLSI Very Large Scale Integration

vii

viii List of abbreviations

Chapter 1

Introduction

The advance in circuits manufacturing has enhanced the density of transistors for a given

area, allowing the design of larger chips with even more features. However, time to market

does not increase in correlation with the size of the chip. As part of that market necessity,

creating an Application Specific Integrated Circuit (ASIC) begins with the system level

design and the microarchitecture planning. Within Integrated Circuits (IC) companies,

management propose requirements to fit into an industry segment.

Alternatively, in an academic organization, a research team extracts a set of requirements

for their project based on their research goals. With that in mind, Figure 1.1 shows

a high level flow that summarizes the process of creating an ASIC, which begins with

the architectural requirements. However, this high level flow only gets up to the logical

netlist part as final product, since the remaining steps to complete an ASIC are normally

developed by third parties, hence they are out of the scope.

An ASIC is normally divided in several functional blocks. Each block is designed to

achieve specific tasks. As the technology enhances the density of transistors for a given

area, more features are designed to fit in, so the size of an ASIC increases, as well as the

amount of functional blocks that form the ASIC.

As creating the set of logical netlists is the final product, having them ready to be delivered

to a third party requires the synthesis of all the main blocks. Each block passes through the

synthesizing process which requires a set of CAD licenses that translate RTL description

to a gates representation. An ideal scenario is to have a higher or equal amount of licenses

than the total amount of synthesizable blocks. However those CAD licenses are expensive,

hence the amount of licenses is limited.

In order to synthesize the total amount of functional blocks, it is necessary to have a

mechanism that automatically process the synthesis flow for each functional block. This

work proposes a methodology to overcome such goal by taking into account the CAD

license limitations.

When the agreements of a system design are set, as depicted in Figure 1.1, architectural

1

2

requirements are documented to let engineers work on generating the hardware description

code for each functional block, but the ASIC may not be fully specified because the

features, requirements, and architecture are constantly adjusted on the fly. When this

happens, RTL code also changes and the synthesis flow needs to be restarted on any

affected functional block, as Figure 1.1 shows it. The team in charge of the synthesis

flow is able to restart the synthesis jobs on these affected blocks, making it to be on the

critical path for the project when deadlines approach.

By synthesizing the RTL code into actual representations of electronic devices, the RTL

model is mapped into a gate-level netlist at a target technology. It could be also defined

as the process that takes both RTL model and hardware library components as inputs to

create a flattened model, which must be logically equivalent to the RTL model.

Figure 1.1: ASIC design and synthesis process

It is worthy to mention that this development flow of an ASIC also includes constant

feedback between designers and verification engineers, in order to converge into the com-

pletion and validation of each main feature of the ASIC. At the same time, an automation

1 Introduction 3

group of engineers develops required tools to gather all the necessary information, so that

the ASIC can be assembled physically. This data gathering is changing frequently due to

feedback received between validation and design. These tools come in handy to work as

interfaces between the project source files and the synthesis CAD tools.

These CAD tools eventually take all the hardware code for every block in order to trans-

late a logic model into a gate model, and provide quality of results, such as estimated

design area, timing, and total amount of cells. Normally, they follow a methodology to

overcome the complications that involve managing a complex system composed of several

logical blocks. These complications arise due to the dependencies among blocks and the

limitations that the working infrastructure naturally suffers, such as the amount of avail-

able CAD tool licenses and workload resources management. Usage of these CAD tools

which automate circuit synthesis have gained high importance, and are widely used in

the industry. Some of these commercial tools offer a reference flow, such as the Reference

Methodology that Synopsys provides. These scripts are a starting point for developing

product-specific flows [7].

Developing those interface tools between the RTL code and CAD tools can be classified

into two main approaches. First approach is to have a fully working flow to build an

ASIC which normally goes from having the hardware description code, down to the route

and placement of each cell, inside the designated area (or floorplan). This kind of flow

is normally known as RTL to layout flow (RLS flow) [5]. Part of this flow requires

specific quality checks such as adhering to timing constraints for each corner case, design

rules checks to avoid having short circuits on metal layers, layout to schematic checks to

validate that the logic behavior matches the physical hardware, logic equivalence checks

to determine that the RTL code matches the physical netlist, and clock domain crossing

checks to validate that multiple frequency data paths are in harmony.

Executing each one of the previous quality checks requires having a set of automated tools

as well. They are a combination between commercial tools and local scripts, developed

by using programming languages such as Perl or Tcl. These tools do both the analysis

and data reporting related to the design. Based on such reports, failing or missing items

are detected, such as timing issues or missing expected library components. Having a

completed layout requires many RLS flow iterations to fix every remaining issue.

The second approach is related to the case where a third party is hired to do the “place-

ment and route” part of the flow. Unlike the RLS process, the workflow is only composed

of the RTL designing process for the ASIC and the synthesis processes for each mod-

ule, in order to create sets of logical netlists which are then delivered to the third party

so that they finish remaining RLS stages. The quality checks mentioned above are also

performed on these logical netlists. They are called logical netlists because they don’t

have any physical boundaries. Yet they are still pseudo-physical netlist, but more logical

oriented since connection paths are ideal. These netlists models are then taken as inputs

to the remaining RLS stages (floorplanning, placement, clocking, routing), plus all the

vendor standard cells and IP databases, to create preliminary versions of ASIC’s layout.

4 1.1 Objectives and document structure

Information given as part of the deliverable to the third party, normally includes a sum-

mary of design statistics (such as gate and RAM count and timing information for each

data path group) in order to keep track of these metrics through milestones. Feedback

about the quality checks is eventually received. Any existing issue should be fixed so that

the next deliverable is healthier than the later.

1.1 Objectives and document structure

The main purpose of this work is to propose a methodology to automatically execute the

individual synthesis flow on a full set of functional blocks that form one or multiple ASICs,

in order to deliver a set of logical netlists by reducing the total time for completion.

To achieve the main goal, and in order to execute the synthesis on a functional block,

a framework is responsible of managing and serving each of the execution stages, as

described in Section 2.1. This framework implementation executes all the different stages

of the workflow, which guarantee establishing efficient pre-synthesis stages, by reducing

the introduction of human errors, and providing dynamism to the design flow [1]. Based

on the individual synthesis flow, a new flow is developed in order to execute multiple

individual synthesis in order to have every block of a chip eventually synthesized.

The challenge is to find an optimal way about how to manage the workspace environment,

as well as tool’s licenses, repositories, and handle execution order of blocks based on their

runtime. To that end, the following objectives need be accomplished:

1. Design an execution flow for multiple synthesis jobs for all modules that form an

ASIC.

2. Adapt a constraint mechanism to handle synthesis tool’s licenses.

3. Propose a repository management for handling ASIC synthesis results.

4. Propose an issue criteria order for the synthesis of each functional block.

5. Evaluate execution-time metrics with a post-process for complete synthesis and

compare it against a sequential synthesis.

Figure 1.2 shows the dependency diagram of the above objectives. At first half of this

investigation, only three most left items boxes were developed. Among these objectives

no dependencies exist, but they are mandatory in order to achieve the intended execution

flow for synthesizing all modules that form one or more ASICs. These three independent

objectives are found in Section 3. Despite they are independent, they are also mandatory

in order to obtain a mechanism for executing the synthesis flow on each of the blocks in

an ASIC, to achieve tracking, execution order and efficient runtimes. On the second half

of this research, the execution flow on an ASIC was developed and tested by a program

1 Introduction 5

Figure 1.2: Methodology dependency workflow

which simulates the creation of the workspace, the pre-synthesis stages runtime, and the

synthesis runtime, for each block that forms an ASIC.

Chapter 2 presents in detail both of the synthesis approaches: individual synthesis at

section 2.1 and a full ASIC synthesis approach in section 2.2. Chapter 3 details each of

the three independent objectives on different sections that can be found at section 3.1

for data management, section 3.2 explains how to handle jobs, and the dispatch order in

section 3.3. Finally the explanation of the complete execution flow is found at section

3.4. Chapter 4 explains how the execution flow was programmed to obtain synthesis

time metrics between different sort mechanisms in a chip. Finally, chapter 5 presents the

analysis of the obtained results.

There probably exist methodologies that also explain an ASIC synthesis flow, which are

used by different tech companies, so it is likely that due to confidential matters these

methodologies are unknown. A method to generate the synthesis of all blocks on one or

more ASICs was not found in the researching of the state of the art, since this is more an

industry workflow.

6 1.1 Objectives and document structure

Chapter 2

Synthesis methodologies

Completion of the RTL design of an ASIC will not be accomplished in one pass. Verifica-

tion will find logic and timing errors. Designers have to fix these errors by changing their

RTL code, and hence the netlist. This netlist uses the standard cells and library com-

ponents to create a first physical representation of the design. RTL code is an abstract

description of logic operations for circuits using hardware description languages, such as

Verilog or VHDL.

Logical netlists contain the gates from the standard cell library. This library is a collection

of generic logic gates and different transistor sizes in a specific process technology. Logic

synthesis uses the standard cell libraries to convert the RTL model to specific standard

cells model. Standard cells provide the generic logic functions, such as inversion, NAND,

Flip Flops, etc. The standard cells are used in both the logic design and place and routing

design. Design and characterization of standard cells determine the quality of the design.

With the increase in complexity on VLSI designs, more features are added and there is a

higher density of transistors in areas which are decreasing as the technology is enhanced.

As ASICs become larger, hierarchical flows come in handy. A hierarchical flow is the

methodology which partitions the chip into functional blocks. The advantage of using

this methodology is that each block will be smaller. It is a bottom-up procedure so that

optimization and debug on each block are easily handled. On the other side, this method-

ology requires having even more design resources and CAD tools licenses for managing

each of the design stages for multiple blocks.

Due to the fact that similar methodologies are probably confidential since they are related

to the industry, and also because they require licenses for CAD tools which might be

expensive, this work proposes a methodology to synthesize all main blocks that form

an ASIC. Section 2.1 explains the synthesis process for an individual block, based on a

previous work [1]. Section 2.2 provides the explanation of how the individual synthesis

processes are handled together in order to generate the gate level models for all the blocks

that form an ASIC.

7

8 2.1 Individual synthesis methodology

2.1 Individual synthesis methodology

Logic designers need to verify that they are achieving requirements, and converging to

buildable parts of the chip. This imply achieving specific timing requirements to verify

that the data is meeting the system clock period; size in area so that designs fit in the

estimated die area. Each person in charge will eventually synthesize their modules to

determine the size and correctness in physical terms. To achieve this, a set of automated

tools run the synthesis flow.

Basically, each essential part of the per module synthesis flow is considered a “stage”. This

works as a serialized flow: the output files from a previous stage are the input arguments

to the following stage, as shown in Figure 2.1. Results for each stage are created based

on their configuration files and their corresponding input files. This workflow allows

adding new stages as needed, and each stage can be customized according to specific

requirements.

Figure 2.1: An execution stage

Each stage has self-revision mechanisms to ensure both that all input files actually exist,

and also that obtained results are error free. Based on the framework explained with

detail on [1], and as shown in Figure 2.2 the per-module synthesis flow stages are:

• Simulation stage: All the files that belong to a module are pre-compiled and syn-

tactically revised. The output of this stage is a report which contains the list of all

the input files required.

• RTL gathering stage: Based on the reports generated by the previous stage, all

the required source files that form each module are gathered into an RTL source

directory. With this, the synthesis flow has a module-unique RTL input folder sep-

arated from the pool of code. This provides traceability of the code that eventually

generates the synthesis results.

2 Synthesis methodologies 9

Figure 2.2: Synthesis flow

• Intellectual Property (IP) generation stage: Since the third party uses specific sub-

blocks of IP, such as memories when they build and finish the modules in the follow-

ing RLS flow stages, it is required to have approximate models of these IP blocks,

so that the synthesis tools assemble each IP block with pre-built models, generated

by this stage. Usage of pre-built models helps to reduce synthesis runtime and they

improve output results such as timing. This stage is in charge of generating those

pre-built models, which are added into the RTL stage source directory. Thus, next

stage synthesizes by using pre-built IP models instead of behavioral RTL models.

• Synthesis stage: This stage finally takes all previous results from each stage to start

synthesizing each module. Commercial synthesis CAD tools available are offered by

Synopsys, Cadence, Xilinx, and Altera. Open-source frameworks for Verilog RTL

synthesis tools are also available, such as Yosys [3]. Design compiler from Synopsys

is the framework of choice when the synthesis stage is executed [1]. The final output

of this stage is the logical netlist, as well as a set of quality reports.

• Quality checks stages: After synthesis, RTL and netlist models have to be logically

verified. RTL source files produced during the RTL stage are compared against the

flattened model (netlist). There should not be any mismatches between designs.

Another quality check is the clock domain crossing check. If the module has multiple

clock domains, there should not be any synchronization issue when crossing the

boundaries between clock domains.

Stages ranging from environment preparation up to IP generation are called pre-synthesis

10 2.2 Full ASIC synthesis methodology

stages.

In order to prepare the synthesis workspace, an auxiliary framework is in charge of creating

the physical environment for the current module. This environment has the directories

with source files for each stage of the synthesis flow.

There is another framework in charge of executing the source files for each stage of the

synthesis flow, to generate output results [1]. This framework executes stage by stage

whenever the previous stage has finished successfully. Upon failure, it ends the flow

execution and reports the error. The framework has a mechanism to report the execution

duration for each stage to track metrics of how long the current module takes to execute

each of the synthesis flow stages. This framework is designed in such a way that reports

are saved in the corresponding stage directories.

2.2 Full ASIC synthesis methodology

All the modules that form the ASIC need to be synthesized. Synthesizing each of the

modules one by one would involve a great effort. It could also lead to making mistakes

in the process that can be critical for the project. Automating this process is helpful to

handle huge amounts of data for an ASIC, since it is normally composed of anywhere

between ten and one hundred modules. Furthermore, this improves the confidence in the

design team since it assures quick completion of the ASIC synthesis so that the overall

results are reviewed timely, for each build iteration.

Large projects are normally managed under version control systems to take advantage of

the multiple options that they offer to create branches, as Figure 2.3 shows for instance.

Each branch recreates a picture, or a snapshot, of the whole data in a specific timestamp

and it allows to measure both the project progress and the quality of data.

In an ASIC project, when a milestone approaches, a branch is created and linked to the

milestone. If the synthesis build results are finished satisfactorily, this branch is then

declared as the milestone branch. Every netlist model and its metrics are then delivered

to the third party that completes the following RLS flow stages.

Working with snapshots is useful since each snapshot represents all the data at a specific

time. This data includes every RTL model and every tool for that specific moment.

Based on that data, the individual synthesis methodology is executed on each module.

Eventually, all ASIC core modules are synthesized.

The moment a snapshot is declared a milestone snapshot, its data is then pushed into

the main repository. By doing this, the official snapshot data for that milestone is saved.

This is done to backup milestone data. Based on the saved milestone snapshot, a new set

of results can be recreated without further issues. Every tool and RTL model was already

saved and they exist for that milestone epoch.

Furthermore, if synthesis is not successfully completed for a certain module (due to RTL

2 Synthesis methodologies 11

Figure 2.3: Snapshot workflow

modeling issues, for instance), a patch fix (or hot fix) can then be included into the RTL

source directory to execute the individual synthesis process for the broken module. If the

hot fix actually settles the synthesis, related fix files need to be pushed into the branch

that is linked to the snapshot directory. Then, if this branch is the milestone snapshot,

the hot fix should also be pushed into the milestone branch, as Figure 2.3 summarizes.

12 2.2 Full ASIC synthesis methodology

Chapter 3

Methodology for synthesizing a chip

There are two potential options to execute the synthesis flow for each module. First, a loop

that executes the synthesis flow framework module by module, serially. This methodology

might work efficiently only if the total number of modules is a small (between 5-10 modules

for instance). And each module is relatively small, so the synthesis process does not take

much time (several minutes for each module). In this case, in less than a few hours the

synthesis for all the blocks is ready. This approach results productive in cases where

resources limitations exist, such as very limited amount of CAD licenses, or lack of high

end processing machines.

A drawback with that methodology is that it does not work effectively in cases where

larger numbers of blocks exist. Modern ASICs are bigger and more complex, and the

total time to deliver a complete milestone drop would be the sum of the time that each

individual module takes to pass throughout the synthesis flow stages. For instance, a

big block can take up to 24 hours to finish synthesizing. And other 10 blocks can take

one hour each to complete their synthesis. Total time to wait until the entire synthesis

of all blocks is complete can take at least 1 day and 10 hours, plus the overhead of the

pre-synthesis stages.

Parallelism can be the best approach to run the synthesis for the full set of modules that

form a chip, in order to save time and get partial results faster. However, there are many

restrictions that arise through the process, like the amount of available CAD tool licenses.

Full usage of licenses is avoided, to let other designers to keep working on their module

completeness.

Another potential restriction is the licenses starving problem, which can be overcome by

using workload management platforms. A commercial solution offered is Platform LSF by

IBM [4], or as an open source alternative OpenLava [6]. By using these platforms, man-

agement and queuing for synthesis jobs can be achieved. The approach is that whenever

a license is released, a new synthesis job could be started.

Based on the individual synthesis work flow defined in section 2.1, and taking advantage of

the fact that the flow is divided by stages, a full synthesis methodology can be developed

13

14 3.1 Data management under repositories

by running each of the functional blocks in parallel processes.

3.1 Data management under repositories

It is common that in any ASIC projects the related information is stored in data reposito-

ries, in order to use version control over the files. A version control system (VCS) records

changes to these files over time, so that any version can be recalled later if necessary.

The main advantage of using a VCS is that you can easily recover files in case they are

broken or lost. It also allows to revert either files or even the project, to a desired previous

stage. Furthermore, you can compare changes over time between files, or which user is

responsible for eventual modifications.

A popular VCS tool was a system called RCS, which works by keeping patch sets (dif-

ference between files), so that it can recreate any file and how it looked like at any point

by adding up all the patches. Then there is the Subversion system, also highly known

as SVN, which is a version control system designed to be better than CVS (Concurrent

Version System). CVS is also a version control system, which can record the history of

source files and documents. Perforce is another VCS but proprietary. Its database is

pre-configured and self-installed, and it uses a distributed version control model, or it can

take a centralized approach as well.

Collaborating with other developers on other systems is a problem to deal. For overcoming

that issue, Centralized Version Control Systems were developed. These systems, such as

CVS, Subversion and Peforce, have a single server that contains all the versioned files,

and a number of clients that check out files from that central place. The problem of

having a centralized approach is that if the server goes down, nobody can collaborate at

all or save versioned changes. Then, if the central database is corrupted, and there isn’t

proper backup, the entire information and history of the project is lost except the data

at people’s local machines.

On the other hand, there are Distributed Version Control Systems, such as Git, Mercurial,

Bazaar, where clients don’t just check out the latest snapshot of files. Every user is

actually fully mirroring the repository. With this approach, if any server dies, any of the

client repositories can be copied back to the server to restore it.

For the purposes of this project, the VCS used is Git. Git stores and thinks about

information very different than other systems, such as SVN or Perforce, even though they

have similar interfaces. The major difference between Git and other VCS, is the way Git

thinks about data. Other systems store information as a list of file-based changes over

time. Git thinks its data like a set of snapshots of a miniature file system. Everytime a

commit is done, Git takes a picture of all the files at that moment and stores a reference

to that snapshot. In order to be efficient, if files have not changed, Git doesn’t store the

file again, just a link to the previous identical file that it has already stored. Git would

be like a stream of snapshots.

3 Methodology for synthesizing a chip 15

The basic Git workflow goes like this: Files are modified in the working directory. Files

are staged, adding snapshots of them to the staging area. Files are committed, which

take the files as they are in the staging area and stores that snapshot permanently into

the Git repository.

3.1.1 Data structure

The individual synthesis methodology explained in Section 2.1 was developed to work

by stages. This framework is responsible of managing and issuing each of the execution

stages, as described in [1]. The complete synthesis methodology for an ASIC as proposed

in Section 2.2 should be designed in a way that it can assure a correct management on

the project Git repository data structure, and it has to be able to synthesize each of the

major block layouts, by automatically executing the individual synthesis flow on the full

set of functional blocks that form one or multiple chips, in order to deliver the final set

of logical netlists to the third party, who is in charge of concluding the RLS process.

3.2 Handling synthesis tool’s licenses

The framework that executes a synthesis job uses underneath a Load Sharing facility

(LSF), such as the platform LSF from IBM. This platform is a software which is industry-

leading and enterprise-class that distributes work across existing heterogeneous IT re-

sources to create a shared, scalable, and fault-tolerant infrastructure that delivers faster,

more reliable workload performance [2].

LSF provides a resource management framework that takes job requirements, finds the

best resources to run the job, and monitors its process. All of this according to host load

and site policies.

Some Platform LSF terms definition for an overall understanding:

Job: A job is a unit of work that is running in the LSF system. It is a command that

is submitted to the LSF for execution. LSF schedules, controls and tracks the job

according to configure policies.

Job Slot: A job slot is a bucket into which a single unit of work is assigned in the LSF

system.

Resources: Resources are the objects in the cluster that are available to run work.

cluster: A cluster is a group of computers (hosts) running LSF that work together as

a single unit, combining computing power, workload and resources. A cluster pro-

vides a single-system image for a network of computing resources. An LSF cluster

manages resources, accepts and schedules workload, and monitors all events.

16 3.2 Handling synthesis tool’s licenses

Figure 3.1: CAD license assign to queue and users

queue: A cluster-wide container for jobs is called a queue. All jobs wait in queues until

they are scheduled and dispatched to hosts.

The complete synthesis methodology for an ASIC as proposed in Section 2.2 should be

designed in a way that it can correctly use the platform LSF for synthesizing all of the

blocks that belong to an ASIC, to avoid drying up the amount of CAD tool licenses

available for any other user, since each job slot will consume one available CAD tool for

synthesizing any block, as shown in Figure 3.1. To deal with that, the usage of a queue

that is addressed directly to the methodology is helpful to handle a maximum amount of

synthesis jobs. For instance, a queue can be sized to have only 8 job slots, so that CAD

licenses are always available from the pool of total licenses when other users require to

work on its synthesis experiments.

Another approach instead of using queues is a more aggressive method: Dispatching

synthesis jobs as long as CAD licenses are free. Of course, the aggressiveness level can

be reduced if scheduling policies are implemented at LSF level (a task normally done

by the LSF administrator). Also, when dispatching synthesis jobs from the full ASIC

methodology, a buffer needs to be used to limit the number of busy licenses. The buffer

insures that a pool of slots and licenses are kept free so that user jobs in other queues can

start with no issues.

3 Methodology for synthesizing a chip 17

3.3 Issuing criteria order for synthesis processes

When doing individual synthesis for each major block, the data of how long does synthesis

take for each of them is known. Based on that data, bigger blocks (more time consuming)

are dispatched first into the LSF. By doing this the total time of a complete synthesis for

an ASIC is the sum of the highest block synthesis runtime, plus the remaining runtime

for blocks that were waiting for dispatching, for free job slots and free licenses. Overhead

from pre-synthesis stages is also taken into account for gathering the total amount of

runtime that all ASIC blocks take to fully synthesize.

Table 3.1: Example of synthesis runtime per block (in minutes)

Block name CPU time

MAC 745

SoC 102

Memory controller 1 88

Arbiter 1 85

Memory controller 2 24

Fabric controller 15

Crossbar 1 3

Crossbar 2 2

Crossbar 3 2

Total 1066

Table 3.1 is an example of actual synthesis runtime for blocks that form a Fabric chip. If

that list of blocks are dispatched serially, the total amount of time to have all synthesis

results completed will be 1066 minutes plus the overhead. In other words, total time to

wait for this ASIC to be synthesized by a serial approach is approximately 17 hours.

Instead of dispatching table 3.1 blocks serially, they can be issued in the same order as

they are in the table (longest-job first). For example, if MAC block is started first, it will

take 12 hours to be ready. At the same time, each of the other blocks are dispatched and

serviced as long as free job slots and licenses are free. So assuming a queue of 8 job slots,

blocks from SoC up to crossbar 2 are all executed at the same time. In the moment a

synthesis jobs finishes, crossbar 3 will be attended, as shown in Figure 3.2.

With this, instead of waiting 17 hours to fully synthesize this example chip, it can be

ready in 12 hours at most, saving up to 5 hours of runtime, since the addition of all

blocks except MAC (321 minutes in total), is lower than the 745 minutes that it takes to

run only MAC block. In other words, runtime is reduced about 30%.

Another approach is to run shortest jobs first. Blocks with lowest runtime are issued first.

This issuing method helps in obtaining results faster since smaller blocks finish first. The

disadvantage in this case is that the total synthesis runtime for all blocks is delayed by

the longest runtime.

18 3.3 Issuing criteria order for synthesis processes

Figure 3.2: Jobs and synthesis time - Longest job first scenario

3 Methodology for synthesizing a chip 19

Continuing with the assumption that the size of the queue is 8 slots, the total synthesis

runtime is the sum of the shortest job plus the longest job:

XB3 + MAC = 2min + 745min = 747min

For this example, issuing by shortest jobs first does not hurt the total synthesis runtime

since the smallest blocks are synthesized in a few minutes.

In next chapter a larger chip is used as example. Instead of using a total of 9 block,

that chip is formed by 23 major blocks, which their runtimes are bigger than the chip

of table 3.1. Furthermore, additionally to the longest and shortest job issuing methods,

three randomly sorted list of blocks are tested throughout the methodology to compare

them against both the longest and shortest mechanisms.

3.4 Execution Flow

Figure 3.3 summarizes the flow of the methodology. First, all local variables are defined,

such as the root directory, the repository directory, the target directory, and so on. Good

definition of variables on a program of such complexity is vital to understand it later, and

to debug potential issues with the methodology.

A set of options is configured to demonstrate all the possibilities that the methodology

program can do. These options include selection flags for which chip is being built,

which milestone the construction of the snapshot is related, custom input files to process

different blocks from the standard input file. To run only a sub-set of stages (such as

either pre-synthesis only, or avoid post-synthesis stages). Anyway, having a proper set of

options helps the final user to understand better what to do with the program.

Depending on which chip is built, the program selects the configuration files for it and

processes the environment to leave it configured to work on the selected chip.

Once the environment is configured, the next step is to update the main repository. This

is done in order to work on all recent changes from everyone involved in the project. After

updating the repository, a branch is created based on the main repository. This snapshot

is the reference data base to build the entire chip.

Of course, if a branch with the same name was previously created, the methodology should

abort since it can’t work on a previously existing snapshot. This security check avoids

overwriting an existing workspace. As suggestion, the branch name can be attached with

the current date, so that every time a snapshot is generated, a completely different name

is created.

At this point, the branch exists abstractly only at the main repository. It needs to be

cloned into a physical location in order to execute the synthesis flow. This cloning process

is executed by the methodology as well.

20 3.4 Execution Flow

Figure 3.3: Full execution flow

3 Methodology for synthesizing a chip 21

Now that a physical location to work on already exists, it is time to process the list of

modules that forms the chip. This list is defined by a configuration file which has the list

of modules, with no specific order.

Also, each module has as known data, how much time it takes to pass through the

individual synthesis process. So the list of modules is processed then by a sort mechanism

which depending on the sort type, it will sort the list of modules based on their synthesis

time.

The types of sorting that the mechanism supports are:

• Longest jobs first.

• Shortest jobs first.

• Random sort.

The methodology starts iterating over the sorted list of modules. For each module, a fork

system call is used to create a new process running the same program at the same point.

The process ID number is returned to the parent process. So that the parent waits for

the children process to finish. Eventually, the parent process waits for all the children

processes to finish.

The children processes run the Per-child program (discontinued grey line box) shown in

figure 3.3, which both the per-module and workspace are set. The methodology in this

case runs the pre-synthesis stages. If none of the pre-synthesis stages fail, it continues

with the synthesis process. When either of the stages fail, the flow will print the Error

messages and the child process is then finished. If all stages are completed successfully,

the methodology reports success state for each stage and then the child process is finished.

In a real case scenario, all of the pre-synthesis stages for each module are eventually

running in parallel. But when the first modules arrive to the synthesis stage, depending

on how many slots the LSF queue has as available, the synthesis process are then attended.

Continuing with the assumption that the queue size is eight slots, the first eight jobs to

get into the synthesis stage are served. Remaining jobs are queued, and the LSF handles

them in a First In First Out approach. Eventually, eight synthesis jobs are running in

parallel, and the remaining jobs are waiting for available slots. Parent process waits for

its children to finish. Once all children processes are done, the parent process terminates

the main program.

In this chapter, each section detailed what it is needed to bind the proposed methodology.

Section 3.1 explained several tools to handle data under repositories. This is helpful to

keep track of changes by using snapshots. Then, Section 3.2 details the platform that

handles the workload. Section 3.3 showed by an example how the issue criteria order

affects the total synthesis runtime. Finally, Section 3.4 presented the methodology to

synthesize all blocks that form an ASIC.

22 3.4 Execution Flow

In next chapter, a simulation program is used to validate the proposal. As this method-

ology involves having actual CAD tools and a Load Share Facility, the program only

simulates those synthesis times and LSF overhead times. The three sorting types are

tested. Furthermore, different constrained queue sizes to handle synthesis jobs are used.

Chapter 4

Simulator

A simulation tool is developed due to the fact that the real environment cannot be used

for academic purposes. The real environment is highly based on Figure 3.3.

This chapter explains the program or solution developed to simulate the proposed method-

ology. Based on 3.4 section, and as figure 4.1 shows, the program defines all local variables,

processes user specific options, processes the module list which is based on a bigger chip,

shown at table 4.1. The sorting mechanism takes that module list and based on the

sorting type selected by the user, it sorts the modules either on longest jobs first, shortest

jobs first, or randomly.

Then, based on that new sorted module list, the program iterates over those modules,

creating a new child process for each module that runs the Per-child program.

The constrained queue defines how many synthesis jobs can run at the same time. This

helps to avoid consuming all the CAD licenses, such as Design Compiler licenses, a tool

that synthesizes RTL to standard cells. For instance, if a company only has 20 CAD

licenses for synthesis, and all modules from a chip need to be synthesized, having this

constrained queue configured at LSF level to only 8 slots as previous examples, allows to

run only 8 synthesis jobs at the same time.

After the per module variables have been defined, each child process simulates the pre-

synthesis stages (a simple sleep function). Then, once that part is completed, the pro-

gram simulates the synthesis stage (by running again a sleep function). The execution of

the synthesis stage is done only if the constrained queue is not full. If the queue is already

full, the child process keeps polling the size of the queue until a slot is available. Once the

constrained queue has an available slot, the synthesis stage is executed (or simulated).

Finally, after the module is completed, the child process is ended.

Parent program waits for all of its children to finish. Each child process that arrives to

the synthesis stage will take an empty slot from the constrained queue. The size of the

constrained queue is defined by the user through the options. Once all available slots are

taken, remaining jobs will wait in another queue for an empty slot. To simulate this queue

23

24

Figure 4.1: Tool execution flow

4 Simulator 25

approach, a shared variable between processes is either decremented or incremented. So

if the current value of the constrained queue is lower than the maximum size of the queue,

a new synthesis job is dispatched from the waiting queue.

Several constrained queue sizes were tested. The intention of this is to probe that the

bigger the size of that queue, the better the total runtime (lower total runtime). So that

each sorting type was simulated on each queue size.

Also, since the LSF does not support such feature a queue size cannot be changed dy-

namically. The size of a queue is defined by the LSF administrator, and it is a static

value.

The program has an option to define the size of the constrained queue. When selecting

a queue size of 1 slot, the approach becomes serially. It is the same as running module

per module, with the advantage that is executed automatically. By increasing the size of

the constrained queue, the total runtime decreases. Eventually, the size of the queue is

irrelevant to reduce the total runtime, since the longest job determines the total runtime

of the chip.

At the beginning of the simulation, first jobs see empty slots, so the constrained queue is

filled with every new incoming job. Eventually, that queue becomes full.

The program simulates the Load Share Facility (LSF). It uses an array to simulate the

queue that contains all the waiting synthesis jobs. It also uses a counter that is either

incremented or decremented by each thread to know the current size of the constrained

queue. This constrained queue simulates for example, the part where the LSF allows only

8 synthesis jobs at the same time. So that every time a new job is launched, it will check

the value of that constrained variable, and if it is lower than the constrained queue size, a

job is submitted. Then when a job has finished, it decrements the constrained queue size

variable so that the waiting processes, which are polling that variable, will see eventually

an available slot.

4.1 Main program

The program is coded in Perl language since it is the preferred language due to previous

expertise. Although the simulation program was coded in Perl, it is recommended to

use another programming language with better parallel processing management, such as

Python for example.

CPAN module IPC::Shareable(’:lock’) allows Perl to tie a variable to shared memory

to easily share the contents of that variable between Perl processes [8].

By using that module, a set of variables are marked as shared so that each child process

can either access to the content or modify the value of these variables. Among these

shared variables, a counter that is either incremented or decremented by each thread

simulates the current amount of running synthesis jobs on the constrained queue. This

26 4.1 Main program

variable allows to know whether a new synthesis job can be submitted or not.

Another shared variable is the waiting queue. This variable is an array that contains all

submitted jobs, but not necessarily the synthesis running jobs, because these jobs are

already at the constrained queue. The first element on the waiting queue is the next job

that should be attended.

4.1.1 Help menu

The following code presents the help menu of the program, which is called chip_builder_2_0.pl

chip_builder_2_0.pl [OPTIONS]

[OPTIONS]

-h | help Print this screen

-l | longest Longest jobs first

-s | shortest Shortest jobs first

-r | random Random order

-q | queue <queue> Queue size. By default is 8.

-e | seed <seed> Seed to random order mechanism. By default is 4.

-i | iter Iteration number

-d | debug Displays additional execution information

Options -l, -s, and -r are mutually exclusive, and at least one of them is mandatory.

Sort mechanism is related to those options. If either -l or -s are used, option -e is

ignored, since a seed is not needed to sort by either longest or shortest jobs first.

Option -i is used to indicate the iteration number. This is useful for creating several

iterations on any sorting mechanism, so that the output file shows the iteration number

and the program does not overwrites a previous existing report.

Some usage examples:

• Constrained queue is 16 slots wide. Sorted by longest job first. Debug option

activated.

$ chip_builder_2_0.pl -l -q 16 -d

• Constrained queue is 8 slots wide. Sorted by shortest job first. Debug option

activated.

$ chip_builder_2_0.pl -s -q 8 -d

• Constrained queue is 4 slots wide. Jobs are sorted randomly, and based on the same

random order, two iterations are executed by using the same seed.

$ chip_builder_2_0.pl -r -e 3 -i 1 -q 4

$ chip_builder_2_0.pl -r -e 3 -i 2 -q 4

4 Simulator 27

Once the program processes the options and defines all local variables, as well as the

output report file, it generates a hash structure based on the list of blocks and their

synthesis runtime. This hash contains as keys every block, and each key has as value the

related individual synthesis runtime.

After this, that hash structure is then sorted depending on which option the user has

chosen. The sort mechanism creates a pair structure that a foreach loop iterates over,

creating a child process for each block. This block is then pushed into the waiting queue.

Each children process start the individual synthesis flow simulation on each block. Once

the synthesis simulation finishes, the child process is ended.

Next the foreach loop, the main program waits for all children processes to finish. Once

all children processes are completed, main program reports that it has finished, and closes

the output report file with the information of the simulation.

4.2 Input files

The sorting mechanism needs to know how much time each block takes to pass through

the synthesis flow individually. Sort mechanism takes as input the following file:

$TOOL_DIR/inputs/synthesis_runtimes.txt

This file is formatted in the following way, to match the program regular expression which

parses:

block_name;time

Table 4.1 shows the list of blocks and their synthesis runtimes.

For simulation purposes, the time is taken as seconds instead of minutes as in real life.

Example chip from table 4.1 takes if run serially, about 5 days to be fully synthesized (or

2 hours in simulation time).

Since an input file is loaded with the data into the simulator, if the data of one or several

functional block change, the new total runtime information related to the change can be

then obtained again by running the simulator with the updated input file. Changes in

the input file can also be linked to different ASICs.

4.3 Subroutines

Not all the processes are done by the main program. There are subroutines which provide

special functions separated from the main program.

28 4.3 Subroutines

Table 4.1: Total Synthesis runtime (minutes) per module in a chip

Block Synthesis runtime # Block Synthesis runtime

1 egcm 28 2 egtcam 17

3 fefep 861 4 fifep 108

5 flb 171 6 fpg 104

7 gtcam 93 8 hash 84

9 igcm 198 10 mac fabric 176

11 mac network 502 12 ms 799

13 ms mem 29 14 nefep 673

15 nifeb0 498 16 nifeb1 705

17 npg 211 18 rep 98

19 soc 628 20 tmab 524

21 tmma 116 22 tmqb 773

23 tmts 158 Total: 7554

4.3.1 gen hash

This subroutine generates the hash structure based on the input file information. As the

input file gives the pair block-runtime, the usage of a hash structure is convenient to pair

the key-value with the block-runtime structure. Furthermore, there are Perl functions to

work on hashes that easily sort the contents of a hash based on the value.

gen_hash subroutine opens and parses the input file to create the block-runtime hash,

which is a variable that the entire program has access. It finally ends by closing the input

file.

4.3.2 sort mechanism

In this subroutine, and based on the sorting type chosen by the user, the contents of the

hash generated from subroutine 4.3.1 are sorted by the runtimes, and located into an

array variable. The block-runtime information is addressed into an output file so that

the user knows what would be the information that the program will process in the main

loop. Finally, the array structure is converted into a pair array structure (like tuples) by

using the Perl function pairs.

Main loop from main program iterates over the pair array structure, so that each pair

obtained from the array is then decoupled into both the block variable and runtime

variable.

4 Simulator 29

4.3.3 synthesis simulator

At this subroutine, the program let the user know that a block starts the synthesis flow,

specifically the pre-synthesis stages. As figure 2.2 from section 2.1 shows, stages from

RTL stage up to IP generation stage are run in this part. Normally, the total overhead

on these stages is only a few minutes for even a big block. So the average overhead taken

for simulation is 2 minutes average (or 2 seconds for simulation purposes).

After a block has finished its pre-synthesis stages, it enters to the synthesis stage. For

this, another subroutine is called to simulate the LSF.

4.3.4 lsf simulator

This subroutine is the most important part of the program since it decides whether a

block can start its synthesis stage. It is in charge of simulating how the LSF enqueues

every synthesis job that needs to wait for a free slot at the constrained queue. At the

beginning it lets the user know that a job is submitted. It also takes the first element

from the queue of jobs. As at the very beginning there are plenty of free slots in the

constrained queue, the first block can start synthesizing without any problem.

In an infinite while loop, each child process starts checking whether the related block can

be synthesized or not. First, all shared variables are locked, then an auxiliary subroutine

checks whether a block can be executed by returning a 1 if the block can start the synthesis

process, or a 0 if the constrained queue is full so the current job needs to wait until a slot

is released.

The auxiliary subroutine called check_if_service() does the requirements checking

process by polling the current size of the constrained queue. If the current size of the

constrained queue is lower than the maximum size of the constrained queue, and if the

current job name is equal to the next job that should be attended, the subroutine let the

current block to be synthesized. On the contrary, current block has to wait. This is done

to let only the next job in queue to be synthesized, and no other jobs to go after the

empty slot.

If a block can be synthesized, the next job variables is updated with the next job in the

waiting queue, and the program lets the user know that the block started the synthesis

process. It also indicates at what time the block has started, and eventually it will

indicate when the block has finished the synthesis process. Then, the current size of the

constrained queue is increased, and the shared variables are unlocked so that other parallel

processes can access them. Then a sleep function simulates the synthesis execution of

current block. This sleep function waits the runtime in seconds of the related block.

Once current block has finished simulating the synthesis process, the program locks the

current size of the queue variable and decreases it. Finally, infinite while loop is broken

and the child process is ended.

30 4.4 Output files

If a block does not meet the requirements to be synthesized, all shared variables are

unlocked, and the infinite loop keeps running. Each time a block checks whether it can

be serviced, all shared variables are first locked so that the related child process can read

the current values, and no other child process have access in the meantime. In this way,

data coherency exists between the processes.

4.4 Output files

All messages from either the main program or the subroutines are addressed to output

files. These files are located at the following location:

$TOOL_DIR/results/

Each file is named as:

${type}_job_first_result_iter_${iter}_queue_size_${queue_size}_2_0.rpt

Where $type is the sorting type (either longest, shortest or random). $iter is the

iteration number. And $queue_size is the size of the constrained queue. Located at

same place, another file reports how the blocks were sorted, and it is given by:

${type}_sort_seed_${seed}_iter_${iter}_queue_${queue_size}_2_0.rpt

where $seed is the seed number, only relevant when the random option is used.

4.5 Running multiple experiments

In order to run multiple experiments, with different sorting types and multiple iterations,

the following script is in charge of running all simulations:

all_queues.sh

It is a straightforward bash script that executes multiple experiments. This script sets two

environment variables for running random experiments, so that the same random order

can be used on different queue sizes. When PERL_PERTURB_KEYS is set to 0 then traversing

keys in a hash structure will be repeatable from run to run for the same PERL_HASH_SEED.

4 Simulator 31

#!/usr/bin/env bash

cd $TOOL_DIR

export PERL_PERTURB_KEYS=0

export PERL_HASH_SEED=0x01

iter=0

for seed in 1 3 7; do

((iter++))

for queue in 16 8 4 2; do

./chip_builder_2_0.pl -e $seed -c -i $iter -q $queue -d

done

done

for queue in 16 8 4 2; do

./chip_builder_2_0.pl -l -q $queue -i 1 -d

./chip_builder_2_0.pl -l -q $queue -i 1 -d

done

By executing the all_queues.sh script, three different seeds generate random sorting

on the list of blocks. So the first for loop iterates over three different seeds. Each seed

runs the chip_builder_2_0.pl on 4 different queue sizes (2, 4, 8, 16 slots). The same

randomly sorted list is repeated on each different queue size experiment. Then, second

for loop iterates over the same queue sizes but for the longest and shortest jobs first

scenarios.

32 4.5 Running multiple experiments

Chapter 5

Results and analysis

The sort mechanism from the simulator generates the following lists shown in tables 5.1,

5.2, 5.3, 5.4, and 5.5.

Table 5.1: Sorted by longest job first

Block Synthesis runtime

fefep 861

ms 799

tmqb 773

nifeb1 705

nefep 673

soc 628

tmab 524

mac network 502

nifeb0 498

npg 211

igcm 198

mac fabric 176

flb 171

tmts 158

tmma 116

fifep 108

fpg 104

rep 98

gtcam 93

hash 84

ms mem 29

egcm 28

egtcam 17

Table 5.2: Sorted by shortest job first

Block Synthesis runtime

egtcam 17

egcm 28

ms mem 29

hash 84

gtcam 93

rep 98

fpg 104

fifep 108

tmma 116

tmts 158

flb 171

mac fabric 176

igcm 198

npg 211

nifeb0 498

mac network 502

tmab 524

soc 628

nefep 673

nifeb1 705

tmqb 773

ms 799

fefep 861

33

34

Table 5.3: Random sort, first seed

Block Synthesis runtime

ms 799

flb 171

ms mem 29

fpg 104

mac fabric 176

tmab 524

fefep 861

nifeb1 705

egcm 28

tmma 116

gtcam 93

npg 211

rep 98

nifeb0 498

igcm 198

soc 628

hash 84

tmqb 773

fifep 108

nefep 673

mac network 502

tmts 158

egtcam 17

Table 5.4: Random sort, second seed

Block Synthesis runtime

soc 628

tmts 158

fpg 104

gtcam 93

rep 98

fefep 861

ms mem 29

mac fabric 176

igcm 198

tmma 116

tmqb 773

egtcam 17

ms 799

egcm 28

mac network 502

flb 171

hash 84

tmab 524

fifep 108

nifeb0 498

nefep 673

npg 211

nifeb1 705

5 Results and analysis 35

Table 5.5: Random sort, third seed

Block Synthesis runtime

fpg 104

nifeb1 705

tmab 524

rep 98

ms mem 29

tmqb 773

mac fabric 176

hash 84

flb 171

egcm 28

mac network 502

fefep 861

fifep 108

gtcam 93

egtcam 17

igcm 198

npg 211

tmma 116

tmts 158

ms 799

nifeb0 498

soc 628

nefep 673

Each table represents an input to the main loop that simulates the synthesis flow for each

block in the list. The order of execution is given by the same order of each table. Every

report generated by the different executions of chip_builder_2_0.pl simulator presents

incrementally the time in which each block finishes its synthesis job. So that the time

when the last block has finished represents how much time the synthesis of all blocks in

the example chip from 4.1 take to complete.

Table 5.6 summarizes how much time each sort mechanism takes to complete the synthesis

of all modules from table 4.1, depending on the size of the constrained queue. When the

queue size is constrained to only 1 slot, there is no difference in the obtained results

for total synthesis runtime for each sorting mechanism. Similarly, in the opposite case,

when the size of the queue is 16 slots, the differences between the results for each sorting

mechanism is not relevant. Hence, either having only 1 slot, or a large number of slots in

the constrained queue, as 16 slots, makes the sort mechanism to lose relevance.

36

Table 5.6: Total Synthesis runtime per sort mechanism on different queue sizes

Sort Mechanism type 1 2 4 8 16

Longest 7556 3783 1980 1009 863

Shortest 7556 4059 2340 1471 973

Random 1 7556 3781 1947 1204 869

Random 2 7556 3974 2214 1392 868

Random 3 7556 3913 2097 1224 892

2 4 8 16
0

2

4

6

8

10

2

3.8

7.5

8.8

1.9

3.2

5.1

7.8

2

3.9

6.3

8.7

1.9

3.4

5.4

8.7

1.9

3.6

6.2

8.5

sp
ee

d
u
p

Longest Shortest Random 1 Random 2 Random 3

Figure 5.1: Speedup for each sorting mechanism on different queue sizes

However, the higher the size of the constrained queue, the better the total synthesis

runtime. Figure 5.1 shows the normalized values, indicating how much the total synthesis

runtimes has improved regarding the serialized process (or when the constrained queue

size is 1 slot only).

In other words, Figure 5.1 data confirms that having higher sizes of the constrained queue

speed up the total synthesis runtime in the example chip, in up to 2, 3.9, 7.5, and 8.8

times with respect to the serialized process, on each constrained queue size respectively.

Figure 5.1 plots the speedup of each sort mechanism for every constrained queue size.

The ideal scenario is to have as many CAD licenses as the total number of synthesizable

units that form the ASIC. However, by having an infinite number of licenses available

in the constrained queue, the total synthesis time is no longer reduced due to the fact

that it depends on the longest job synthesis runtime. This is seen at Figure 5.2, where

passing from 8 slots to 16 slots the total synthesis runtime is not reduced drastically, as

it occurs from 1 to 2, 2 to 4, and 4 to 8 examples. Figure 5.2 also presents how much the

runtime is reduced based on the amount of licenses taken by the constrained queue, as

5 Results and analysis 37

0 2 4 6 8 10 12 14 16 18
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Queue size

S
y
n
th

es
is

ti
m

e
[t

im
e

u
n
it

s]

Total synthesis time

Random - 1 iteration
Random - 2 iteration
Random - 3 iteration

Longest jobs first
Shortest jobs first

Figure 5.2: Total synthesis time per sorting mechanism on different queue sizes

an exponential distribution pattern.

A higher number of licenses for the constrained queue helps in completing faster the

smaller blocks. However, the biggest synthesis job defines the total synthesis runtime in

a chip. That biggest runtime can be reduced if the host machine that run the processes

is a more powerful computer. Also, synthesis runtime can be reduced by splitting the

big block into smaller functional blocks. But as drawback, splitting into more functional

blocks could affect both the routing congestion and timing of top level signals at the top

level of the ASIC.

Furthermore, the utilization of these CAD licenses is not always 100%. Not all the time

ASICs are being synthesized except when milestones approach; the utilization of these

CAD tools increases at those dates. Since RTL designers are using these CAD licenses as

well (to verify that their designs are meeting quality checks such as timing, area, power)

only a fraction of licenses should be taken from the total pool of licenses to build the

entire chip, in order to avoid CAD tools starvation from the other members of the team,

so that they can keep working on their experiments.

Therefore, based on Figure 5.1 results, taking more than 1 license to synthesize blocks

speeds up from 2 times (queue size 2) the total time to build an ASIC, up to 8.8 times

(queue size 16) if there are more licenses taken from the pool of licenses. By either taking

4 or 8 licenses from the pool of licenses, this methodology helped in reducing significantly

those total synthesis runtimes in an ASIC.

Shortest jobs first approach is the worst approach in all scenarios. Despite the fact that

faster modules are finished first, the longer jobs are serviced last, worsening the total

synthesis runtime of the example chip. This scenario can be helpful only when results

38

need to be reviewed sooner.

As Figure 5.1 shows, when the constrained queue is limited to allow only two synthesis

jobs at the same time, both the Random 1 and Longest present the best results: 2 times of

speedup regarding to having only 1 slot in the queue, respectively. There is a difference in

2 time units only (2 seconds in simulation, 2 minutes in a real synthesis case). Similarly,

when the constrained queue is limited to 4 slots, the same sort mechanism types present

the best results: 3.9 times and 3.8 times of improvement, respectively.

When limiting the constrained queue to 8 slots, Longest jobs first approach is now the best,

followed by Random 1, with 7.5 and 6.3 times the performance improvement, respectively.

Finally, when the constrained queue is limited to 16 job slots, the best approach is also

Longest, followed by Random 1, with 8.8 and 8.78 of speedup, respectively.

If the ASIC team does not possess that many CAD tool licenses, it is not worthy to grab

such many licenses from the pool of total licenses. The gain in total runtime is only

15% by doubling the amount of licenses (8 to 16). Unless there are several ASIC projects

running in parallel, each one with tens of synthesizable block units, taking higher fractions

of licenses is helpful for completing more blocks in parallel, but increasing the chances

that the other users suffer from licenses starvation.

Chapter 6

Conclusions

By using both the snapshot workflow, which helps keeping a better traceability of changes

through the milestones in a project, and parallel processing handled by a load share facility

such LSF, this research has described a dynamic, flexible and completely automated

design workflow methodology, which is able to manage the synthesis of multiple functional

modules that form an ASIC.

As the real working environment cannot be used for academic purposes, a simulator of

the methodology was implemented in Perl. Different types of sorting mechanisms can

be tested, and the user can specify different sizes of the constrained queue, allowing the

execution of several experiments. Consequently, by using the simulator it was demon-

strated that the time to synthesize the complete set of functional blocks is speedup in 8.8

times, compared against a serial execution approach. Longest job first approach possess

the fastest total synthesis runtimes, achieved in a constrained queue sized that allows 4

or more synthesis jobs running at the same time.

For future researches, this methodology can be enhanced to support cases where the

main functional blocks are hierarchical blocks. In other words, some blocks are that big

(millions of gates for instance) that they need to be sliced in smaller pieces of functional

sub-blocks, in order to synthesize them separately from the parent block. Then the results

of these smaller sub-blocks are fed as inputs into the synthesis processes of the parent

block. This approach helps both the total synthesis runtime and resources usage, as

memory consumption and CPU runtime.

The consequences of this approach is that there will be more synthesizable units, increas-

ing the amount of blocks that should wait for an empty slot at the constrained queue.

The challenge is to find an optimal way to sort the list of modules so the resources can be

assigned in an efficient manner, thus reducing the total runtime of the synthesis process

for a chip.

39

40

Bibliography

[1] Raquel Araya. Mejora en el flujo de diseño del grupo de backend. Grade graduation

project, 2014. Unpublished.

[2] IBM Corporation. Foundation - platform lsf, 2013.

[3] Tim Edwards. Yosys open synthesis suite, June 2016. URL http://www.clifford.

at/yosys/about.html.

[4] IBM-Systems. Ibm spectrum lsf, high-performance workload management for de-

manding hpc environments, June 2016. URL http://www-03.ibm.com/systems/

spectrum-computing/products/lsf/index.html.

[5] Branimir Malnar. Synthesis Flow for Designing a High Performance Microprocessor.

2012.

[6] OpenLava-project. Openlava, open source workload management, June 2016. URL

http://www.openlava.org/home.html.

[7] Solvnet. Reference methodology, June 2016. URL https://solvnet.synopsys.com/

rmgen/.

[8] Benjamin Sugars. Ipc::shareable, April 2017. URL http://search.cpan.org/

~msouth/IPC-Shareable-0.61/lib/IPC/Shareable.pm.

41

http://www.clifford.at/yosys/about.html
http://www.clifford.at/yosys/about.html
http://www-03.ibm.com/systems/spectrum-computing/products/lsf/index.html
http://www-03.ibm.com/systems/spectrum-computing/products/lsf/index.html
http://www.openlava.org/home.html
https://solvnet.synopsys.com/rmgen/
https://solvnet.synopsys.com/rmgen/
http://search.cpan.org/~msouth/IPC-Shareable-0.61/lib/IPC/Shareable.pm
http://search.cpan.org/~msouth/IPC-Shareable-0.61/lib/IPC/Shareable.pm

42 Bibliography

	Contents
	List of Figures
	List of Tables
	List of abbreviations
	1 Introduction
	1.1 Objectives and document structure

	2 Synthesis methodologies
	2.1 Individual synthesis methodology
	2.2 Full ASIC synthesis methodology

	3 Methodology for synthesizing a chip
	3.1 Data management under repositories
	3.1.1 Data structure

	3.2 Handling synthesis tool's licenses
	3.3 Issuing criteria order for synthesis processes
	3.4 Execution Flow

	4 Simulator
	4.1 Main program
	4.1.1 Help menu

	4.2 Input files
	4.3 Subroutines
	4.3.1 gen_hash
	4.3.2 sort_mechanism
	4.3.3 synthesis_simulator
	4.3.4 lsf_simulator

	4.4 Output files
	4.5 Running multiple experiments

	5 Results and analysis
	6 Conclusions
	Bibliography

