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The aim of this study was to improve the bond strength resistance of polyvinyl acetate (PVAc) and urea-
formaldehyde (UF) adhesives modified with nano-clay (montmorillonite) with a tropical species of wood
known to exhibit adhesion related problems. These adhesives were evaluated with 1.0 and 1.5 wt% nano-
clay concentrations with lap shear strength (SS), and the percentage of wood failure (PWF) in dry and
wet conditions being evaluated. An additional aim of this study was to observe the presence of nano-clay
within both adhesive types using Atomic Force Microscopy (AFM) and the Transmission Electron
Microscopy (TEM). Color, viscosity and the thermostability of these adhesives with nano-clay were also
evaluated. First, AFM and TEM studies showed adequate dispersion and impregnation of nano-clay. The
viscosity of PVAc adhesive was not affected by the incorporation of nano-clay, whereas the UF adhesive
was. With both PVAc and UF adhesives, the presence of nano-clay increased the L[* and b* color
parameters, especially when 1.5 wt% nano-clay was used. The incorporation of the nano-clay improved
thermostability, as determined by thermogravimetric analysis (TGA). Finally, it was shown that the
nano-clay incorporation improved SS and PWF. The highest values of SS were obtained when nano-clay
was added at 1.5 wt% concentration in the PVAc adhesive under dry conditions. SS was not affected by
nano-clay addition in the UF adhesive under dry conditions. However, under wet conditions, both
1.0 and 1.5 wt% loadings of nano-clay increased SS with both adhesive types. The addition of nano-clay in
both proportions increased PWF by approximately 15% and between 20-30% in dry and wet conditions,
respectively, for the PVAc adhesive. For the UF adhesive, PWF increased by approximately 10% under dry
conditions and 25-50% in wet conditions.
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1. Introduction applications, are low-cost and are designed using high technology

[3]. In this regard, the development of nanotechnology, specifically

Wood adhesives and wood products are important to the manu-
facturing of products for construction and for furniture production [1].
Adhesives are also used to produce wood composed products, such as
plywood, fiberboard and oriented strand board (OSB) and also for
wood re-use [2]. It is estimated that 70% of currently marketed pro-
ducts use adhesives [3]. Adhesives also improve the usefulness of
wood, allowing the use of low-quality wood and of small-sized pieces
so that wood waste can be more effectively used [3].

In addition, many adhesives are manufactured with synthetic
products, which are easy to use, present a wide variety of
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nano-particles, has helped to produce a new generation of high
performance adhesives [4]. Various nano-particles, layered sili-
cates, aluminum oxide and nanocellulose among them, have been
used to improve the performance of several wood adhesives [5].
Organo-clays derived from natural montmorillonite and mod-
ified with quaternary ammonium salt (dimethyl benzyl hydroge-
nated tallow ammonium) have been shown to improve the
properties of polyvinyl acetate [2,7-9] and urea-formaldehyde
adhesives [10-13]. However, the effect of nanoparticle incorpora-
tion on the performance of adhesives used with tropical wood is
still unknown. While the behavior of adhesives with nano-
particles is relatively well understood in temperate countries, in
regions of high temperature and high humidity, such as in tropical
countries, it can create many problems [14]. Furthermore, tropical
species have high specific gravity and high contraction coefficients
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which, together with the presence of naturally occurring resinous
material, could influence joint integrity characteristics [15].

The purpose of this work was to study the performance in bond
strength of the PVAc and UF adhesives modified with nano-clay
(montmorillonite) with a tropical species (Carapa guianensis)
having a high content of extractives and some adhesion problems
[16,17]. It also showed the changes that occurred in the nano-clay
due to modification with benzalkonium chloride and the change in
color of the adhesive, thermal stability, entropy factor and activa-
tion energy in the decomposition kinetics of the PVAc and UF
adhesives modified with nano-clay.

2. Materials and methods
2.1. Materials

The commercial clay Closite® Na*, which is an unmodified
montmorillonite supplied by Rocwood Clay based additives, was
used as a nanofiller. According to the description of the supplier, the
moisture content of the product ranges between 4-9%, its density is
2.86g cm~> and the distribution of the size of the particles is as
follows: 10% less than 2 pm, 50% less than 6 um and 90% of the
particles are less than 13 pm in size. Benzalkonium chloride
(CHsCH,N*(CH3),RCl™) was used to improve the miscibility of
the layered silicates with the adhesive matrices (PVAc and UF) and
the nanoclay, and it was chosen by several methods proposed by Ray
and Okamoto [16].

Two types of wood adhesive were used. The first type was a water-
based polyvinyl acetate (PVAc), ResistolM® 850% trademark, produced
by Henkel Capital S.A. (http://www.resistol.com.mx/es.html). The tech-
nical description of the product indicates that the resin is polyvinyl
acetate and water, with 54.5-55.5% solid content and a viscosity of
1600-2200 cPs. The second type of adhesive used was a water-based
urea-formaldehyde (UF), CR-560 UF Resin trademark, produced by
Central Chemistry Quibor SA (http://www.agroquibor.com). The tech-
nical description of the product indicates that the liquid resin is urea-
formaldehyde (UF), with 64-65% solids content and 650-900 cPs
viscosity.

The species used for the adhesion tests was C. guianensis, which
is a species traditionally used in Costa Rica for manufacturing
doors and other wood-based products [17]. This species has
presented problems with gluing [18] and is considered to demon-
strate a behavior similar to the species Acer Saccharum or Acer
nigrum, recommended by the ASTM D-905-08 standard for mea-
suring the strength of the glue line [19]. This wood was obtained
from three different sawn-wood marketing sites.

2.2. Preparation of adhesives with nanoclays

With both types of adhesive the nano-clay was added in three
different concentrations: 0% (or control), 1% and 1.5% (wt%). According
to studies carried out by Kaboorani and Riedl in temperate species [7],
these proportions achieved the best performance. First, the commercial
nano-clay was modified in order to improve chemical compatibility
with both adhesive types. In order to improve affinity, a treatment of
cation exchange with benzalkonium chloride was applied, based on the
proposal of Ollier et al. [20,21]. The proposal was to treat the
unmodified montmorillonite with the aqueous solution at 7% of
benzalkonium chloride. For this, the nano-clay was mixed in a solution
of ethanol-water (volume rate at 20:80%) at 60 °C for 1 h under stirring
(solution A). Simultaneously a solution of 7% benzalkonium chloride
(solution B) was prepared at room temperature, also stirring for 1 h.
After that time solution A was mixed with solution B. Both were mixed
at a temperature of 60 °C with constant stirring for 12 h. The mixture
was then filtered until the chlorides test indicated no presence of

chlorine, for which purpose a solution of saturated silver nitrate, as
proposed by Ollier et al. [20], was used. Finally, the treated nano-clay
was left to dry at 105 °C, and once dry, it was pulverized in a mortar to
achieve the finely ground nano-clay.

The various mixtures of adhesives modified with nano-clay were
prepared as follows: (i) PVAc adhesive was stirred at 1600 rpm for
15 min with the aid of four 45°-inclined d-blade impellers at room
temperature, during which time the nano-clay was slowly added into
the PVAc resin; and (ii) with UF adhesive, because it is a 3-component
adhesive (resin, wheat flour, and catalyst of sulfates), the resin and flour
were prepared and then mixed with the unmodified nano-clay. As in
the previous case, the resin was stirred at 1600 rpm for 15 min with
the aid of an inclined blade (45°), while the nano-clay and flour were
slowly added until dispersed in the resin.

2.3. Adhesive characterization

The extent to which the nano-clay was dispersed within the
adhesive was assessed using Atomic Force Microscopy (AFM) and
Transmission Electron Microscopy (TEM). With both techniques,
an appropriate volume of adhesive with either 1% concentration of
modified nano-clay (wt%) or unmodified nano-clay at the same
concentration was prepared. For TEM observations (trademark Jeol
and JEM-2100 model), small samples of modified and unmodified
clay were placed in the microscope, where a 100-kV acceleration
and 10,000 x (B and C) and 300,000 x (D) amplifications were
used. Because AFM observations were performed in adhesive, they
were carried out using a NanoScope V, an atomic force microscope
(model Asylum Research model MFP 3D) fitted with a Hybrid XYZ
scanner. Atomic force microscope measurements were done under
ambient air conditions in tapping mode. The sensitivity of the tip
deviation and the scanner resolution was 0.3 nm. The resolution
was set to 250 lines by 256 pixels for all observations.

To measure viscosity, a 0.5-liter sample of the two adhesives in
the three concentrations of nano-clay was made and placed in the
viscometer, Brokfield-11+Pro LV. 2.4.4.

In the case of color assessment, a sample 3 cm wide, 10 cm long
and approximately 2 mm thick was prepared with each adhesive. A
neoprene rectangle 4 mm thick was formed on a glass and filled with
the various adhesives prepared. When the solvent had completely
separated (approximately 72 h later) the adhesive sample was
removed and its color was measured. A Hunter Lab Scan XE Plus
mini model spectrophotometer was used to obtain the L* a* and b*
parameters. The measurement was set to within the visible range of
400-700 nm at intervals of 10 nm with a measuring aperture of
11 mm. For the reflection reading, the observer component was set at
an angle of 10° to the sample's normal surface. According to
HUNTERLAB [22], the CIE L*, a* and b*'s color system estimates the
color in three coordinates: L* for lightness that represents the position
on the black-white axis (L=0 for black, L=100 for white), a* for
chroma value that defines the position on the red-green axis (+ 100
values for red, — 100 values for green), and b* for chroma value that
defines the position of the yellow-blue axis (+ 100 values for yellow,
—100 values for blues). Three measurements were taken at each
point to obtain the average values for the L*, a* and b* coordinates.
The color difference index AE* of the adhesives, according to the
ASTM D 2244 standard [23], was used to compare adhesive color
parameters between adhesives with different concentrations of nano-
clay. This index defines the wood color difference in magnitude
between two adhesives using CIE L* a* and b*'s color coordinates,
according to Eq. 1. This index was calculated using the average color
values for all heartwood and sapwood samples from each adhesive.

AE* = /(AL + (Aa%)? +(AB*)? )

where AL*= [*M_[** Ad*=a*—a*" Ab*=b"M—b** M=Average
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value for adhesive without nano-clay and P=Average value for
adhesive with nano-clay.

The thermal stability was analyzed for the two types of
adhesives at the 3 concentrations of nano-clay. Measurements of
TGA were carried out using 30-35 mg of each adhesive in each
concentration, at a heating rate of 50 °C/min in a nitrogen atmo-
sphere reaching a temperature of 1000 °C in approximately
20 min. A thermal gravimetric analysis model TGA 5000, Instru-
ment NBr brand, was used. To analyze the information obtained,
the reactions were identified with the aid of DTG. Two reactions
were identified in the case of PVAc; only the second reaction was
analyzed in UF, corresponding to polymer decomposition. The first
corresponds to water elimination. For each reaction, the tempera-
ture and the mass remnant at the start of the reaction, at the
maximum reaction point and at the end of the reaction, were
identified. Next, the kinetics was calculated for each reaction
(Eq. 1) by means of lineation (Eq. 2), according to Vyazovkin and
Sbirrazzuoli [24], where the differential isoconversional method of
Friedman is utilized.

K = Kose(7) )
(9% = kot (ZE) s nina 3
H(E)_ n 0+<ﬁ)+” n(1-a) 3)

where: a: degraded mass, da/dt: percentage of the degraded
sample in unit time, Ko: entropy factor, E: energy of activation,
and T: temperature.

2.4. Bond strength

Assessments of bond strength for the two types of resin with
added nano-clay were evaluated by a compressive shear technique
(SS), according to ASTM D-905-98 [19]. After preparing the two
types of adhesives with nano-clay, the wood of C. guianensis
was prepared and bonded. A total of 90 shear tests were carried
out (30 samples per concentrations x 3 concentrations). The wood
was stabilized at a condition of 12% moisture for one week. The
adhesive was applied in accordance with the manufacturer's
specifications, which recommend an amount of 100 g~2 for both
adhesives. After applying adhesive to the wood surface, the
samples were pressed in a hydraulic machine at a pressure of
0.20 Nmm~? for 24 h. Before pressurizing, bonded samples were

b

6.42 nm

4.82

321

1.61

0.00

0.0.

conditioned to 20 °C and 60% relative humidity for two weeks.
Next, 30 samples were extracted and tested for each set of
formulation. The SS was measured in dry and wet states under
ambient air conditions. A Tinus Olsen hydraulic test machine with
10 KN capacity was used for load application and the data were
acquired by means of a computer. Wood failure and maximum
load were recorded for each test. The block shear tests were
carried out according to ASTM D905-98 [19]. The sizes of samples
for “wet state” tests were the same as for “dry state” tests. For “wet
state” tests, the samples were taken directly out of the water after
being immersed for 24 h. Before the tests, excess water was wiped
from the samples. During the water immersion period, the
temperature of the water was maintained at 20 °C. After each
sample was tested in the compression test, the percentage of wood
failure (PWF) was evaluated according to ASTM D-5266-13 stan-
dard [25].

2.5. Analysis of the information

Verification was made of compliance of the variables deter-
mined with the assumptions of normal distribution and variance
homogeneity, as well as the presence of extreme data. Later, a
variance analysis was performed to verify the effect of the
adhesion of the nano-clay (three levels: 0%, 1% and 1.5% nano-
clay) on viscosity, values of entropy factor, energy activation,
decomposition function, and temperature and mass remnant in
different reactions of the kinetics of decomposition. The Tukey test
at a 99% confidence level was established to determine whether
there was a statistically significant difference between the means.

3. Results
3.1. Adhesive characterization

3.1.1. AFM and TEM observations

With respect to the AFM analysis of the nano-clay modified
adhesives, the adhesive surfaces with nano-clay were found to be
irregular, with the presence of peaks. Fig. 1(a) and (b) shows
AFM spectra for formulations having nano-clay concentrations of
1.0 wt% and 1.5 wt% for the UF adhesive. According to Fig. 1a, with
the concentration of 1.5 wt%, the number of peaks is higher than of

0 nm

0.0

1.0 um

0.2

Fig. 1. Atomic force microscope-AFM spectra of nano-clay particles utilized in PVAc wood adhesive: (A) 1.5% with nano-clay and (B) 1.0 nano-clay.
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those occurring in the UF adhesive with a concentration of 1%
(Fig. 1b). The dispersion of peaks on the surface is uniform at both
concentrations.

Fig. 2 shows TEM images obtained for the systems studied.
First, it was observed that nano-clay particles appear short and
tubular in some areas of the PVAc matrix (Fig. 2a-b). They are
short and their diameter is almost 50 nm (Fig. 2a). In addition, it
was observed that typical montmorillonite particles mixed in the
PVAc matrix were of length approximately 1 um (Fig. 2c) and some
montmorillonite particles had little separation between their clay
layers (Fig. 2d).

3.1.2. Viscosity and color

Nano-clay statistically increases the viscosity of the adhesive in
comparison with the adhesive without the nano-clay. In the case
of the PVAc-type adhesive, no significant difference between the
adhesive with 1.0 wt% and 1.5 wt% nano-clay contents was found
regarding viscosity (Fig. 3a), whereas for the UF adhesive, the
3 types of nano-clay content were significantly different (Fig. 3b)
and increased as a function of nano-clay content.

In relation to color of the various adhesives prepared (Table 1),
luminosity (L* parameter) was found to increase statistically in
PVAc with the increment of the proportion of clay, while the a*
parameter (redness) shows reduction only in the proportion
1.5 wt%. Meanwhile, yellowness (the b* parameter) in the same
type of adhesive statistically increases in the two proportions in
relation to the adhesive without nano-clay. However, the greatest
increment is observed in the 1% nano-clay samples (Table 1).
Regarding the effects of the nano-clay in UF, it was found that both
proportions of nano-clay affect the 3 color parameters, except for
the L* parameter in the adhesive with 1% nano-clay (Table 2). Color
change evaluation, determined by the AE* shows that in PVAc

adhesive the value is approximately 6, while in UF the highest
values, above 8.87, are obtained when the proportion of nano-clay
is 1.5 wt% (Table 1).

3.1.3. Thermal stability of the adhesives

The TGA spectrum of samples, unmodified or modified with the
two concentrations of nano-clay (1.0 and 1.5 wt%) and benzalk-
onium chloride, are presented in Fig. 4(a) and (b). The analysis of
both PVAc and UF adhesives prepared with two concentrations of
nano-clay (1.0 and 1.5 wt%) showed two important inflexions in
the mass loss of PVAc adhesive (Fig. 4a), whereas in the case of UF
adhesive only one inflexion was observed (Fig. 4b). The first
inflexion with the PAVc-adhesive occurs at approximately 315 °C
and the second at 425 °C (Fig. 4a), while with the UF adhesive the
highest inflexion was observed at 260 °C (Fig. 4b). On the other
hand, samples modified with nano-clay demonstrated different
behavior to their un-modified counter parts (Fig. 4a-b) with
benzalkonium chloride decomposition being much greater with
adhesives containing nano-clay.

The analysis of the mass derivative as a function of the
temperature (DTG) of the data obtained from the TGA experiments
confirmed the various inflexions or reactions in the decompos-
ition of the adhesives with different proportions of the nano-clay
(Fig. 4(d) and (e)). DTG, however, first shows a stable mass loss as a
function of temperature, augmenting the decomposition (starting
point) until reaching a peak (highest point), then the decomposi-
tion drops until becoming stable once again (final point). With the
PVAc, the first reaction of the adhesive without nano-clay occurs
between 310 °C and 327 °C, whereas in both types of PVAc with
nano-clay the temperature range diminishes slightly to between
303 °C and 318 °C. The second reaction, however, occurs within a
similar range for all 3 types of nano-clay, between 325 °C and

P

Fig. 2. Transmission Electron Microscopy (TEM) images of PVA/nano-clay composites: (a-b) short-tubular of nano-clay mixed into PVAc polymers, (c) typical
montmorillonite particles inside of two PVAc chain and (d) nano-clay in layers and particles mixed into PVAc adhesive.
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. 3. Viscosity values of PVAc and UF wood adhesive, adding different concentrations (wt%) of nano-clay.

Adhesive color parameter of PVAc and UF adhesive with different nano-clay concentrations.

Adhesive Concentration (wt%) L* color parameter a* color parameter b* color parameter AE*
PVAc 0 47.67A -132A —2.05A -
49.61B —-1.5A 0.06B 5.88
1.5 53.86C —2.52B —1.50C 6.33
UF 39.89A 7.75A 14.46A -
41.33AB 9.21B 19.14B 8.87
1.5 42.35B 8.93B 19.08B 12.06

Table 2
Temperature and mass remaining after different reactions of decomposition kinetics of PVAc and UF wood adhesive, adding different concentrations (weight/weight) of
nano-clay.
Adhesive Nano-clay concentration Reaction 1 Reaction 2 Ash content
(wt%) (%)
Initial point Maximum peak  Final point Initial point Maximum peak Final point
Temp MR Temp MR Temp MR Temp MR Temp MR Temp MR
(°0) (%) (°0) (%) Q) (%) (0 (%) ("0) (%) (°0) (%)
PVAc 0 2944 93.74% 3167 67.35% 324" 38.70% 425" 27.36" 436" 22.03" 446" 15.80%  11.24*
1.0 2924 9117 312° 67.98" 324" 39.63" 425% 26.04" 433" 21.60" 448" 13.86* 10.01%
15 303" 87.78% 312# 68.67" 3198 42.00% 418" 27.54" 4347 21397 4477 14.81%  12.01*
UF 0 - - - - - - 2377 81.34" 248" 66.83" 246" 53.80" 13.30"
1.0 - - - - - - 2448 80.87" 2548 69.70% 264° 57.30°% 14.33"
1.5 - - - - - - 2438 80.93" 2548 69.87% 264° 58.23% 15.00"

Temp: temperature, MR: mass remnant.

345 °C (Fig. 4d). The adhesives prepared with UF show similarity
between the adhesives with and without nano-clay (Fig. 4e).
Similarly, the 2 proportions of nano-clay (1.0 and 1.5%) show
important mass loss under 100 °C, although the greatest loss is
observed between 200 °C and 400 °C (Fig. 4e).

Temperatures and mass remnants involved in each reaction of
the different adhesives are detailed in Table 2. No significant
difference was observed in the initial, final and maximum peak
temperatures and mass remnant in the first and second reactions
of the PVAc adhesive, between 1wt% of nano-clay and the
adhesive without nano-clay. The 1.5 wt% nano-clay adhesive,
however, shows differences in the initial temperature of the mass
remnant in the initial and final points and the final temperature of
the first reaction (Table 2). Nano-clay adhesion to the UF adhesive,
regardless of the percentage loading, produces a significant
alteration in the temperature and mass remnant of the analyzed
reaction 2, with the exception of the mass remnant at the start of
the reaction, where no difference is observed in the proportions
and the adhesive is without nano-clay. No significant differences
were found in the adhesives with 1.0 wt% and 1.5 wt% between the
various parameters evaluated (Table 2).

Another aspect evaluated regarding TGA behavior was the
amount of ash remnant. Neither of the two adhesive types showed
a difference between the adhesives without nano-clay and the
adhesives with nano-clay in either of the concentrations studied
(Table 2).

Combustion kinetics of the different types of adhesives with
the distinct nano-clay proportions was determined based on the
first order of the reactions present during the decomposition of
the adhesives (Table 3). The activation energy of the adhesive
without the nano-clay is statistically lower than the energy that
occurs in the adhesive with 1.0 wt% and 1.5 wt% nano-clay, and
increased as a function of nano-clay content (Table 3). Likewise,
differences were found between the entropy factor and the
function of composition of the combustion kinetics in the adhesive
reactions. In the PVAc, the adhesive entropy factor was statistically
superior to that of the adhesive with nano-clay in the first and
second reactions and the degree of decomposition function is
again statistically higher than for nano-clay adhesives in the two
reactions. While in the UF resin, 1 wt% nano-clay added to the
adhesive presents no significant difference from the adhesive
without nano-clay, whereas adding 1.5 wt% produces a significant



R. Moya et al. / International Journal of Adhesion & Adhesives 59 (2015) 62-70

67

Nanoclay Na+
&
~ \
g : .
~ ‘.' -------- ~ _ Nano-clay modified
©u — T -
2 o 4 " Nanoclay Na+ S
g '
e S0t \
g ': --= UF with 1.0% nano-clay
g 40 1 \ .\ — UF with 1.5% nano-clay
- 1} -
) ' N — UF without nano-clay
- 1 -~
& 30 :‘ S S
~—
20 + i \\.-“'*‘\“t\
H .. ~==
10+ ' )
% Benzalconium Chloride N
0 + + F t t u + t i
0 100 200 300 400 500 600 700 800 900
Temperature (°C)
09 + 09 +
08 + n 0.8 +
— UF without nano-clay
0.7 + 0.7 +
= = UF with 1.0% nano-clay
6 0.6 T 6 0.6 T === UF with 1.5% nano-clay
o [}
o8 B
?\: 05 + é‘?’ 05 +
g" 04 + g- 04 +
) ' O
5 o3 | =
E t E
& &
g 02 1 ‘ g 02t 4
o o [
0.1 1% 01+ !
\
. R F’%—-.\ o
0 100 200 300 400 800 850 900 950 1000

Temperature (°C) Temperature (°C)

Fig. 4. TGA (a, b) and DTG of different reaction (c, d) curves of PVAc and UF wood adhesive, adding different concentrations of nano-clay.
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Table 3

Values of entropy factor, energy activation, function of decomposition degree and correlation coefficient of decomposition kinetics of PVAc and UF wood adhesive adding

different concentrations (weight/ weight) of nano-clay.

Adhesive Reaction Nano-clay concentration Entropy factor Energy activation Function of decomposition degree Correlation coefficient
(Wt%) (Koins™1) (E in k] mol~1) (n) (R)
PVAc First 0 A3.87 x 10%° A38 A1.95 0.72
1.0 57.04 x 10? Bg.1 50.45 0.58
1.5 €2.03 x 10" €13.7 50.63 0.70
Second 0 A3.58 x 10%! A2429 A18.61 0.83
1.0 B6.88 x 10° 8259.9 B9.49 0.91
1.5 €2.38 x 10" 2812 €13.07 0.88
UF 0 A7.02 x 1028 A240.6 A8.55 0.98
1.0 A2.11 x 1077 8268.7 A8.56 0.98
1.5 £2.03 x 10% €287.6 56.83 0.98

difference from the adhesive without nano-clay and with 1.0 wt%
of nano-clay (Table 3).

3.14. Bond strength

The results showed that adding nano-clay to PVA improves the
shear strength of glue line (SS) in dry and wet conditions (Fig. 5a).
However, the best results were obtained when nano-clay is added
at 1.5 wt% and under wet conditions in both nano-clay proportions
(Fig. 5b). In the UF type resin, although the nano-clay in both
proportions increased SS, this increase was not significant in the

dry condition (Fig. 5c). Meanwhile, the best result in SS of the
nano-clays was obtained under wet conditions because the high-
est statistical SS was observed with 1.0 or 1.5 wt% nano-clay
content in the adhesive (Fig. 5d).

Although the SS was not as effective, an evaluation of PWF
found that the addition of nano-clay in the two proportions
decreased PWF (Table 4). Under dry conditions, in the PVAc
adhesive, the wood failure rate decreased by 15%, while under
wet conditions, the percentage reduction was greater, between
20-30%. In the UF adhesive, the failure rate also decreased by 10%
under dry conditions, 25% in the proportion of 1.0% and 50% under
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Fig. 5. Resistance of shear strength for dry and wet condition of C. guianensis glued with PVA and UF adhesive with and without nano-clay.

Table 4
Moisture content and failure area percentage in shear test of PVAc and UF wood
adhesives using different concentrations (weight/weight) of nano-clay.

Parameter Nano-clay

concentration (wt%)

PVAc wood
adhesive

UF wood
adhesive

Dry Wet Dry Wet

Moisture content (%) 0.0 12.20% 39.93* 11.05* 36.84"
1.0 1195 36.97% 11.74" 38.14"

1.5 11954 37.93% 11.69* 37417

Failure area (%)in 0.0 4450" 89.33* 31.33* 87.75"
shear test 1.0 31.00% 62.00°% 2117 63.428
1.5 28.67° 69.33% 23.33% 38.84¢

wet conditions (Table 4). It is important to note that the samples
with nano-clay showed lower water absorption because the
moisture content decreased statistically under wet conditions
(Table 4).

4. Discussion
4.1. Adhesive characterization

4.1.1. Viscosity and color

Nano-clay addition causes irregularity of the surface (Fig. 2
(b) and (c)). The regularity, or lack thereof, is associated with
rugosity values. The rugosity values (Ra and Rq) are given in
Table 1 and they are in agreement with values presented by
Kaboorani et al. [2], whose data indicate that low values are

attributed to wood adhesives not having nano-clay, the addition of
which causes increase of Ra and Rq and the higher the amount of
added nano-clay, the higher the values of Ra and Rq. Therefore, the
absence of peaks indicated low values of rugosity, and high values
of rugosity indicate nano-clay presence. Another relevant aspect,
shown by the AFM images, is that peak distribution is slightly
uniform, showing no agglomerations of the added nano-clay in the
adhesive but adequate dispersion instead [2,8].

4.1.2. Viscosity and color

The increase in the viscosity of the adhesive is explained by the
fact that exfoliation or even intercalation of clay leads to a strong
viscosity increase [26]. Viscosity is highly related to the degree of
exfoliation of the clay. Gopakumar et al. [27] have shown that
compounds of polypropylene with various types of clay will
increase the viscosity of the liquid relative to the increase in
exfoliation of the clay. Exfoliation allows for increased adhesion
area of the exfoliated clay [26]. It is important to note that, an
increase in viscosity was observed from 1 wt% to 1.5 wt% concen-
tration in UF adhesive (Fig. 3a), which does not occur with the
PVAc adhesive (Fig. 3b). Although the effect of the initial viscosity
of pure resin on the final viscosity of resin nano-clay adhesive was
not tested in this study, most likely the changes in the viscosity for
nano-clay adhesion in modified resin are associated with the
initial viscosity of the resin. For example, Zhul and Xanthos [28]
found that in resin with higher viscosity, the effect of nano-clay
adhesion was greater than resin with lower viscosity. Therefore,
the increased amount of nano-clay in PVAc has no effect on
viscosity, as occurs with the UF resin.

According to the results for adhesive color (Table 1), nano-clay
addition, especially in the proportion 1.5 wt%, is likely to change
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color in PVAc and increase luminosity and yellowness. With the
UF-adhesive, meanwhile, although a change of tonality occurs
(a slightly higher index of yellowness), no color change appears in
the adhesives with 1.5 wt% and 1.0 wt% nano-clay. The same
behavior regarding color change was found by Chaochanchaikul
et al. [29] and Awad et al. [30] for PVAc with the different
concentrations of nano-clay. They attributed these color changes
to high clay concentrations and excellent nano-clay dispersion.

4.1.3. Thermal stability of the adhesives

First, adhesives modified with nano-clay demonstrated a different
behavior from un-modified adhesives (Fig. 4a-b), most likely influ-
enced by benzalkonium chloride decomposition. The thermogravi-
metric analysis (TGA) of both types of adhesives prepared with two
concentrations of nano-clay (1.0 and 1.5 wt%) showed two important
inflexions in the mass loss in PVAc adhesive (Fig. 4a), whereas in the
case of UF adhesive, only one inflexion was observed (Fig. 4b). These
inflexions are related to chemical reactions that occur in each
adhesive [7]. However, in the case of the UF adhesive at less than
100 °C, although an inflexion occurred (Fig. 4b), there will be no
reaction as this temperature and inflexion correspond to water loss
in the urea-formaldehyde resin [31].

The addition of nano-clay in PVAc adhesive produced no sig-
nificant effects on the decomposition of PVAc as the two common
reactions in this polymer are maintained [32-33], which is shown by
inflexions in the curves of mass loss (Fig. 4a). Although the decom-
position of PVAc is very complex [32-33], note that in the first
reaction (at approximately 315 °C), the decomposition of acetic acid
occurs and in the second reaction (at approximately 425 °C), the
decomposition of unsaturated polymers is observed.

However, rises in the temperature and the mass remnant in the
first reaction (Table 2), together with the higher activation energy
(Table 3) observed in PVAc adhesive, indicate that nano-clay
increases the thermostability of the PVAc adhesive. These results
agree with those found by Peruzzo et al. [6] for PVAc and by Lee
and Jang [34], Ollier et al. [21] and Ahamad and Alshehri [35]
working on methyl methacrylate, styrene, epoxy precursors, poly-
styrene, who reported an increase in thermal stability as a result of
adding nano-clay to the matrix polymer. Improved thermal
stability of nanocomposites is attributed to hindered out-
diffusion of the volatile decomposition products (mainly cyclic
silicates), as a direct result of the decrease in permeability, usually
observed in exfoliated nanocomposite [36]. Valera-Zaragoza et al.
[37], working on PPeEP/EVA/organoclay nanocomposites, stated
that the retarding process was assigned to the exfoliation and
dispersion of the silicate layers that impeded heat diffusion to the
macromolecules. In addition, nano-clay maintains greater thermal
stability than adhesives (Fig. 4a-b) and therefore this nano-clay
produced more thermal stability.

Urea-formaldehyde (UF) resins are thermosetting polymers,
prepared by the reaction of two monomers, urea, formaldehyde
and water [31]. In the case of nano-clay addition to UF adhesive,
normal behavior is observed in this type of resin, a first inflexion at
a temperature less than 100 °C, which corresponds to water
elimination [31], and a second reaction within a temperature
range of 240-265 °C, which corresponds to the degradation of
the polymer. In the latter reaction, a series of components is freed,
of which the major components are methylene, methylols,
dimethylene ethers, methylene methyl ethers, methylene glycols
(formaldehyde) and components with carbonyl and triazine
groups, among others [38].

As occurred with the PVAc adhesive, adding nano-clay signifi-
cantly improved the thermal stability of UF adhesive, the initial
temperature of the reaction, the temperature of the maximum peak,
the mass remnant on the different periods of temperature studied

(Fig. 4e and Table 1) and increased the entropy factor and activation
energy in the kinetics of decomposition of the resin (Table 3). These
results are consistent with the results obtained by Samarzija-
Jovanovic et al. [31], Roumeli et al. [39], Hazarika et al. [40], Cai
et al. [41] and Dogar et al. [42], which also include studies with the
UF adhesive modification with SiO, nanoparticles or nano-clay. Once
again, the increase in thermal stability of the resin was attributed to
the dispersion of the silicate layers, which impeded heat diffusion to
the macromolecules [42]. However, no significant differences were
found in the adhesives with 1.0 wt% and 1.5 wt% between the various
parameters evaluated in the UF adhesive (Table 2) that can be
attributed to saturation or agglomeration of nano-clay [7].

The activation energy of the adhesive without the nano-clay is
statistically lower than the energy that occurs in the adhesive with
1.0wt% and 1.5 wt% nano-clay, and increased as a function of
nanoclay content (Table 3). This behavior is important because
adhesive modified with nano-clay helps to improve the perfor-
mance of the glue-line in different products fabricated with C
guianensis wood, especially in end-uses with high temperature
and humidity.

Finally, the results found that no difference in ash content
between the adhesive without nano-clay and the adhesives with
nano-clay in either of the concentrations can be attributed to lower
concentrations of nano-clay utilized, from 1.0% to 1.5% (Table 2).

4.14. Bond shear strength

The results showed that adding nano-clay to PVAc adhesives
improves SS both under dry and wet conditions, such as a tropical
climate, which tends to cause adhesion problems (Fig. 5a). This
result is in agreement with other studies on PVAc-based adhesives
[2,7,9] but disagrees in the case of UF adhesives modified with
nano-clay [10-13]. The improvement of SS can be explained based
on the study conducted by Kaboorani and Riedl [7]. They men-
tioned that nano-clay can modify the response of a polymer to a
load through several mechanisms. Nano-clay particles have an
inherently high surface area to volume ratio, leading to a large
interfacial area between fillers and matrix. This in turn leads to a
suggestion that there is an interaction zone surrounding each filler
particle that substantially alters the physical properties relative to
the neat polymer matrix, such as higher or lower polymer
mobility, entanglement density and altered modulus. In addition,
the polymer-clay nanocomposites exhibit extremely strong inter-
faces with polymers due to the confinement of polymer chains
within the galleries of clay platelets. It is possible that the
confinement of polymer-clay interactions could affect the local
chain dynamics to a certain extent.

Another important aspect regarding the results of humid condi-
tions is that the addition of nano-clay improves the behavior of the
percentage of wood failure, particularly with the UF-based resin, but
not with the PVAc one (Table 4). Lei et al. [10] presented a hypothesis
that first, all montmorillonite nano-clay itself is water repellent and
second, the observed reinforcement effect induced by the presence of
filler may also be attributed to a percolation phenomenon between
the nano-clay particles. Montmorillonite nano-clay particles may be
modeled as thin disks. When dispersed inside a continuous medium
such as a UF resin matrix, the particles are expected to touch each
other, thus forming a connected and infinite cluster even at low
concentrations. Thus, the water resistance increased in the UF resin,
but most likely the affinity of PVAc resin with water did not permit
adequate resistance.

5. Conclusion

The montmorillonite type nano-clay modified with benzalk-
onium chloride (CgHsCH,N(CH3) 2RCl) and added to polyvinyl
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acetate (PVAc) and urea-formaldehyde (UF) improved the thermo-
gravimetric properties of these adhesives, increased starting
temperature, increased maximum peak temperature, increased
mass remnant in the different temperature periods studied of
the reactions present in the adhesives and increased entropy
factor and activation energy of the kinetics of decomposition of
the resin. In addition, PVAc and UF adhesives with the modified
nano-clay affected other physical features, slightly increasing the
viscosity of the resin and the brightness and the yellowness of the
adhesives, especially in the proportion of 1.5%.

Nano-clay added in PVAc and UF adhesives improved shear
strength of the glue line (SS) and the percentage of wood failure
(PWF). The highest values of SS were obtained when nano-clay
was added in 1.5 wt% in PVAc adhesive under dry conditions. SS
was not affected by nano-clay addition in UF adhesive under dry
conditions. However, under wet conditions, both 1.0 and 1.5 wt% of
nano-clay into adhesive increased SS in the two adhesives. The
addition of nano-clay in the two proportions increased PWF at 15%
and between 20% and30% under both dry and wet conditions,
respectively for PVAc adhesive. In the UF adhesive, PWF increased
10% under dry conditions and 25-50% under wet conditions.
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