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Abstract—The predicted failure rates of future supercom-
puters loom the groundbreaking research large machines are
expected to foster. Therefore, resilient extreme-scale applications
are an absolute necessity to effectively use the new genera-
tion of supercomputers. Rollback-recovery techniques have been
traditionally used in HPC to provide resilience. Among those
techniques, message logging provides the appealing features of
saving energy, accelerating recovery, and having low performance
penalty. Its increased memory consumption is, however, an
important downside. This paper introduces memory-constrained
message logging (MCML), a general framework for decreasing the
memory footprint of message-logging protocols. In particular, we
demonstrate the effectiveness of MCML in maintaining message
logging feasible for applications with substantial communication
imbalance. This type of applications appear in many scientific
fields. We present experimental results with several parallel codes
running on up to 4,096 cores. Using those results and an analytical
model, we predict MCML can reduce execution time up to 25%
and energy consumption up to 15%, at extreme scale.

Keywords-fault tolerance; message logging; communication
imbalance

I. INTRODUCTION

Many scientific fields are addressing challenging problems

thanks to the wide availability of supercomputing power. Ma-

chines with a vast number of processors enable the exploration

of scenarios that would have been considered too complex a

decade ago. As supercomputers evolve, they incorporate more

components to satisfy the computational needs of scientists

and engineers. However, this relentless growth in the size

of the machines brings an undesirable consequence: lower

reliability. The high failure rate of future supercomputers has

been recognized as one of the major roadblocks to achieve

exascale [1], [2], [3]. It is imperative to provide extreme

scale systems with some form of fault tolerance mechanism.

Otherwise, the menacing threat of frequent failures will render

future systems unusable [4].
Rollback-recovery techniques have long been the pre-

ferred fault tolerance method in high performance computing

(HPC) [1], [3], [5]. The general idea behind rollback-recovery

is simple: save the state of the system at checkpoints, rollback

to the latest checkpoint in case of a failure, and resume

execution. The checkpoint/restart scheme has adopted several

variants [5], [6], [7]. A promising variant is called message

logging, which logs application messages as the program

executes. A failure in the system will only roll back the

failed nodes, and have the rest of the system replay the stored

messages to recover the restarted nodes. Message logging has

been demonstrated to save energy [8], [9], reduce recovery

time [10], and have a small overhead [11], [12]. The main

drawback of message logging is its potentially large memory

footprint due to the message log.

This paper presents a new framework to reason and design

new message-logging protocols that trade off a reduction of

the memory pressure for an increase in the recovery effort.

Figure 1 presents a general view of the different alternatives

to store communication in a message-logging infrastructure.

The process-based approach has dominated the literature on

the topic. In that view, a process is output-logging or input-

logging, depending whether it stores the outgoing or the

incoming communication, respectively. Or, it does not store

communication and it becomes non-logging. Most message-

logging protocols use output-logging processes [5], [11], [13].

However, some scenarios may call for new protocols where

a combination of the above types of processes provides a

more efficient solution. Another approach for message-logging

protocols is the channel-based, in which each channel either

logs outgoing, incoming, or no communication. This per-

spective provides a more general framework for developing

new message-logging strategies that radically decrease the

memory footprint and minimally impact the recovery effort.

This paper describes a channel-based protocol that targets

applications with communication imbalance. This paper makes

the following contributions:

• Section III offers a characterization of communication

imbalance in parallel applications.

• Section IV provides the design of memory-constrained

message logging (MCML), a general framework for devel-

oping protocols aimed at reducing the memory footprint

of message logging.

• Section V presents experimental results showing the

reduction in memory overhead of MCML with a collection

of representative applications.

• Section VI extends an analytical model to provide per-

formance projections of MCML at extreme scale.
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Fig. 1: Communication-Logging Alternatives.

II. BACKGROUND

A. System Model

We conceive a parallel application as a set P of processes.

Each process holds a portion of the application’s data in its

own private memory. The only mechanism to share informa-

tion is through message passing. The state of an application at

any point in time is the collection of the state of the individual

processes plus the set of in-flight messages. The state of the

application can be determined using a distributed systems

algorithm for global snapshots [14]. This description captures

popular parallel programming paradigms, in particular the

Message Passing Interface (MPI). An application runs on a

system that comprises a set of nodes. The nodes are connected

through an interconnect with channels that respect first-in-

first-out (FIFO) ordering. Therefore, two messages from same

source and same destination can not be reordered. The nodes

of the system may fail according to the fail-stop model [5].

That means, a failed node becomes immediately unresponsive

and has to be replaced. We assume the system has enough

spare nodes to replace all failed nodes. Alternatively, the

average repair time of nodes is smaller than the mean-time-

between-failures (MTBF) of the system.

B. Checkpoint/Restart

Traditionally, fault-tolerance approaches in HPC belong to

the rollback-recovery family [5]. More specifically, check-

point/restart is the de facto standard implementation of reliable

supercomputing applications. Checkpoint/restart is based on

the principle that an application will periodically save its

state to stable storage and it will restart from the previous

checkpoint if there is a failure in the system. There are many

variants of checkpoint/restart, but all follow the same general

guideline. Normally, the checkpoints are stored in the network

file system. That approach does not scale well as it may

cause congestion during checkpoint time [3]. A variant to

that approach is called double-local checkpoint [6]. In that

case, every node stores two copies of its checkpoint: one in

its own local storage (memory, SSD, local disk) and one in

the local storage of its checkpoint buddy. Should a node fail,

all nodes will rollback using its locally stored checkpoint. The

checkpoint buddy of the failed node will provide a checkpoint

to the replacement node. This approach has been shown to

be scalable and it can recover from most failures in real

HPC systems [10]. Other variants of checkpoint/restart create

a multilevel framework where checkpoints can go to local or

shared storage [7]. These frameworks usually provide a model

to determine the best combination of the different types of

checkpoints. Checkpointing can also be synchronized, i.e., use

global synchronization points to checkpoint the application.

Synchronized checkpoint/restart does not require to store the

state of the channels as part of the checkpoints, because

it is guaranteed that at checkpoint time there are no in-

flight messages. It has general applicability as most HPC

applications feature global synchronization phases. Also, the

size of synchronized checkpoints may be drastically reduced

if the programmer writes checkpoint methods that only save

the necessary data (also called application-level checkpoint).

C. Message Logging

The major downside of checkpoint/restart is that it requires

a global rollback: all processes are forced to resume execution

from the latest checkpoint. That leads to a huge waste of

time and energy [8], [9]. An enhancement to checkpoint/restart

is message logging [15], a technique that stores checkpoints

and, in principle, stores all the messages in an execution.

There are multiple implementations of message logging for

HPC systems [10], [16], [17]. The benefit of storing com-

munication is that a failure only requires the failed node to

rollback, hence only local rollback is needed. To achieve a

correct recovery, message-logging protocols usually rely on

the piece-wise deterministic (PWD) assumption, which states

that storing all non-deterministic decisions in a program is

sufficient to obtain a consistent recovery. Message logging uses

a mechanism called determinants to store non-deterministic

decisions. For example, message reception order is, in gen-

eral, non-deterministic. A determinant d generated after the

reception of message m is a tuple with four components:

d = #m = 〈sender, receiver, ssn, rsn〉. Every time a

message from sender with a sender-sequence-number (ssn)

is received at receiver, it gets a unique receiver-sequence-

number (rsn). Determinant d uniquely represents the reception

of a message and if provided to a recovering process, it will

ensure the recovery exactly replicates the events that happened

before the crash. We will assume message reception is the only

source of non-determinism for the rest of the paper.

There are many flavors of message logging, but a promis-

ing alternative is called simple-causal message logging [11]

(SCML), a particular case of family-based message log-

ging [15]. This algorithm has shown low overhead and high

scalability for a representative group of HPC applications. Fig-

ure 2 presents an execution using SCML. Messages are stored

at the sender. After a message is received, a determinant is

generated. For instance, message m1 from A to C is associated

with determinant d1. That determinant must be piggybacked

on all outgoing messages, until an acknowledgment (a1) has

been received. After a process fails, the processes storing

determinants of the failed process provide those determinants

to ensure a consistent recovery.
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Fig. 2: Simple Causal Message Logging (SCML).

D. Related Work

An important drawback of message logging is the increase

in memory pressure due to the message log. Message logging

may not be practical for an application sending large messages

with high frequency, since the total physical memory can be

quickly exhausted. Recently, hierarchical protocols have been

explored [18], [19], [12]. In these protocols, processes are

grouped into teams. Messages crossing team boundaries are

logged, but messages within teams are not logged. Therefore,

if teams manage to capture a high volume of the communica-

tion in the application, the size of the message log reduces dra-

matically. Teams act as recovery units: if one member fails, the

whole team rolls back. Therefore, team-based message logging

trades off a reduction of memory pressure for an increase in the

recovery effort. Fortunately, several applications in HPC have

a structured communication pattern with clusters of processes

enclosing a high portion of the communication volume [20].

These communication patterns often result from traditional

parallel programming patterns and can be found in multiple

programs. The team-based approach was also extended to

work in conjunction with parallel computing platforms that

allow load balancing [21]. Therefore, teams can be dynamic

and adapt as processes are migrated from one node to another.

III. APPLICATIONS WITH COMMUNICATION IMBALANCE

Although team-based message logging demonstrated to be

an effective mechanism in reducing memory overhead of

message-logging protocols, its fundamental premise is that

an application features a well-structured, balanced commu-

nication pattern. That is true for most scientific computing

applications, but there is an emerging type of parallel pro-

grams that exhibit a non-uniform, communication-imbalanced

profile. In this class of applications, there is usually a skewed

distribution of the communication load, with few processes

transmitting significantly more bytes than the rest of processes

in the system. In addition, sometimes the communication

graph is unstructured, resulting in the team-based approach

being ineffective.

There are various reasons for the emergence of communi-

cation imbalance patterns in parallel applications:

• Dynamic load imbalance: as the program executes, some

processes may accumulate more data, potentially per-

forming more computations and effectively communi-

cating more bytes to other processes. For instance,

in particle-interaction programs, hot-spots agglomerating

many particles can form on few processes [22].

• Adaptive communication algorithms: where the exact

target of a message cannot be statically determined, but

depends on which process owns a particular data item

at runtime. For example, some graph algorithms use a

distributed lookup table that associates nodes to home
processes [23].

• Variability in computation: which implies not all data

items represent the same computational complexity. A

well distributed load in the system may lead to imbal-

anced communication on some processes (those having

many but fast-to-compute data items). One case ap-

pears in computational fluid dynamics (CFD) simulations,

where each specie requires different computation time to

solve the chemical reactions [24].

A. Communication Profile

Understanding the communication characteristics of ap-

plications with communication imbalance is fundamental to

develop effective message-logging approaches. We introduce

the communication analysis of applications by showing the

exchange matrix of two benchmarks in Figure 3. The figure

displays a heatmap of the point-to-point communication vol-

ume between every pair of sender and receiver MPI ranks. Col-

lective communication operations, in the applications studied,

carry a small portion of the data, and will be ignored in the rest

of the paper. We contrast a program with balanced communica-

tion (NPB-CG, a conjugate gradient computation) in Figure 3a

versus a program with communication imbalance (MiniAMR,

an adaptive mesh refinement algorithm) in Figure 3b. Figure 3a

presents a well-structured exchange pattern, with every active

channel (pair of sender-receiver) sending exactly the same

amount of bytes. In contrast, Figure 3b displays a very non-

uniform distribution of the communication between pairs.

Besides, there is no constant pattern repeated across the main

diagonal. The communication matrix is, however, symmetric.

(a) Communication Balance (b) Communication Imbalance

Fig. 3: Balanced and Imbalanced Communication.

Figure 3a shows clusters of ranks along the main diagonal

that enclose a good fraction of the total communication

volume. To measure how much communication load clusters

retain, we use the coverage measure. The coverage of a

clustering is the ratio of all communication load intra clusters

relative to the total communication load. If we were to use

the team-based approach on Figure 3a with cluster size 8, the

coverage of that clustering would be 0.78. For comparison,

the coverage for Figure 3b with the same clustering is 0.51.
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The main characteristic of communication imbalance pat-

terns is its markedly skewed distribution of the communication

load across the set of processes. Figure 4 presents a deeper

analysis on the type of communication imbalance correspond-

ing to Figure 3b. A distribution of the communication load

per process (or rank) is presented in Figure 4a. The ranks

have been sorted according to their communication load. The

distribution is skewed, showing a few ranks concentrating a

big portion of the communication volume. We also present in

Figure 4b the Gini coefficient for the distribution in Figure 4a.

The Gini coefficient is a measure of statistical dispersion that

is usually applied to determine the degree of inequality in a

distribution. If ranks are sorted in increasing order according to

their communication volume, it is expected that the cumulative

share of communication grows steadily as more ranks are

considered. Therefore, a perfectly uniform distribution of

the communication load would imply that the accumulated

communication function F grows with the identity function I.

If there is inequality, function F will deviate from the identity

and create a gap (shown as a gray region in Figure 4b). The

relative size of the gap between F and the identity determines

the Gini index. In other words, the Gini index G is defined by

the formula:

G =
A

A+B
, A =

∫
(I(x)−F(x))dx, B =

∫
F(x)dx

(a) Communication Load Distribution (b) Gini Coefficient

Fig. 4: Skewed Communication Volume Distribution.

Figure 4b shows the Gini index of MiniAMR is 0.36, a

value that attest the highly imbalanced distribution in commu-

nication. For comparison, the Gini index of NPB-CG is 0.

IV. MESSAGE-LOGGING PROTOCOL

Message-logging protocols are a promising alternative to

provide HPC applications with fault tolerance. The perfor-

mance overhead of those strategies can be kept low [11], [12],

they feature a very efficient energy profile [8], [9], and they

make possible to parallelize recovery [10]. To leverage all

those features, it is imperative to address the major drawback

of message logging, namely its increase in memory footprint.

We introduce Memory-Constrained Message Logging
(MCML), a generalized message-logging protocol that honors

a predetermined memory threshold for the message log and

provides a framework to optimize the rollback cost after a fail-

ure. MCML aims at reaching a balance by which the message

log size growth is kept under control, without sacrificing the

advantages of message logging during recovery. The design

of MCML is based on the channel-based view of Figure 1. It

combines output-logging and non-logging channels. Message

logging of channels in MCML are either active or inactive, i.e.

messages from the channel’s source to the channel’s destina-

tion are either logged or not, respectively. Initially, message

logging is active on all channels. As computation proceeds

and the total size of the message log reaches critical levels,

MCML chooses channels where message logging is turned off.

Otherwise, a regular message-logging protocol will be forced

to checkpoint (presumably at a suboptimal frequency) to avoid

the memory footprint from reaching unsustainable levels.

The downside of MCML is that recovery may require more

rollbacks. Different strategies in MCML provide a different

tradeoff between memory overhead and recovery cost.

A. Algorithm

We extend the SCML algorithm of Section II to provide an

algorithmic specification of MCML. The details of the protocol

are presented in Algorithm 1 and Algorithm 2. The constant

THIS represents the unique identifier of a process. Constant

THRESHOLD is used to represent the maximum size of the

message log in process THIS. The necessary data structures

are displayed at the top of Algorithm 1.

Function SENDMSG and RECEIVEMSG represent the core

of the protocol. We assume these functions are located at an

intermediate layer in the software stack, below the runtime sys-

tem layer, and above the communication network layer. There-

fore, once SENDMSG finishes preparing a message, it will call

NETSENDMSG, which is a low-level function that effectively

transmits the message. Function SENDMSG first populates

the header of the message with the necessary information

to generate a determinant at reception. The message carries

the determinants accumulated up to that point. Before sending

the message, the current size of the message log is checked

and reduced if necessary. Function TURNCHANNELLOGOFF

chooses a channel from the communication graph and turns

off message logging on that channel. The default strategy

chooses the heaviest channel. In addition, all messages to

that destination are removed from the message log. Finally,

the message is stored only if the logging on that channel

is active. On the receiver side, function RECEIVEMSG first

checks whether the message is out-of-order (duplicate or old

messages). It then creates a determinant and acknowledges the

received determinants from the sender. We must emphasize

the two types of determinants. A local determinant is created

on a process after a message reception. Those determinants

are stored in detBuf and piggybacked on outgoing messages

until they are safely stored on other processes. A remote
determinant is one created on other process and received

with an incoming message. Those determinants are stored in

detLog and provided to that process during recovery.

The MCML protocol in Algorithm 1 is complemented with

functions to handle failures. Function FAILURE reacts to the

failure of process Y by providing logged determinants and

(possibly) logged messages to Y . If the channel between, say,

process Z and Y was not active, process Z must roll back
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Algorithm 1 MCML: Memory-Constrained Message Logging

Data Structures:
ssn: sender sequence number
rsn: receiver sequence number
rsnMap: associative array storing 〈sender, ssn〉 → rsn
inc: incarnation number of current process
incMap: associative array storing 〈sender〉 → inc
detBuf : temporary buffer of local determinants
detLog: storage of remote determinants
msgLog: storage of messages
commGraph: graph storing communication volume and channel status

1: procedure SENDMSG(msg, target)
2: msg.sender ← THIS � Populate message header
3: msg.recver ← target
4: msg.ssn← INCREMENT(ssn) � Update ssn
5: msg.inc← inc
6: msg.dets← detBuf � Piggyback determinants
7: if |msgLog| > THRESHOLD then
8: TURNCHANNELLOGOFF(commGraph) � Turn off log on a channel
9: end if

10: if commGraph[THIS][target].log then
11: msgLog ← msgLog ∪ {msg} � Store message
12: end if
13: NETSENDMSG(msg, target)
14: end procedure
15: procedure RECEIVEMSG(msg)
16: if OUTOFORDER(msg) then return � Check for out-of-order
17: end if � messages
18: rsnMap(msg.sender,msg.ssn)← INCREMENT(rsn)
19: detBuf ← detBuf ∪ {〈msg.sender, THIS,msg.ssn, rsn〉}
20: detLog ← detLog ∪msg.dets � Add remote determinants
21: NETSENDDETACK(msg.dets,msg.sender)
22: PROCESSMSG(msg)
23: end procedure
24: procedure RECEIVEDETACK(dets)
25: detBuf ← detBuf \ dets � Remove determinants
26: end procedure
27: procedure CHECKPOINT( )
28: EMPTY(detLog, detBuf,msgLog) � Empty logging structures
29: data← 〈ssn, rsn, rsnMap, inc, incMap, commGraph〉
30: STORECHECKPOINTANDDATA(data) � Create a restart line
31: end procedure
32: procedure FAILURE(Y )
33: INCREMENT(incMap(Y )) � Update Y ’s incarnation
34: SENDDETSFROMLOG(Y )
35: if commGraph[THIS][Y ].log then
36: SENDMSGSFROMLOG(Y ) � Replay messages
37: else
38: RESUMEFROMCHECKPOINT() � Message logging to Y was off
39: end if
40: end procedure
41: procedure RECEIVEDETS(dets)
42: for all det ∈ dets do � Receive determinants and populates
43: rsnMap(det.sender, det.ssn)← det.rsn � rsnMap
44: end for
45: end procedure
46: procedure RESUMEFROMCHECKPOINT

47: data← RETRIEVECHECKPOINTANDDATA()
48: ssn← data.ssn
49: rsn← data.rsn
50: ANNOUNCEROLLBACK()
51: end procedure
52: procedure ROLLBACK(Z)
53: if commGraph[THIS][Z].log then
54: SENDMSGSFROMLOG(Z)
55: else
56: RESUMEFROMCHECKPOINT() � Message logging to Z was off
57: end if
58: end procedure

along with Y . When process Z rolls back, it retrieves the

latest checkpoint and announces its rollback. The difference

between functions FAILURE and ROLLBACK lies in the fact

that the latter does not provide the stored determinants to rolled

back processes. A rolled back (not failed) process is assumed

to have its determinants available. The recovery process is

illustrated in Figure 5.

Algorithm 2 MCML Auxiliary Functions

1: procedure SENDDETSFROMLOG(target)
2: dets← ∅
3: for all det ∈ detLog do � Collect all determinants
4: if det.recver = target then � bound to target
5: dets← dets ∪ {det} � in detLog
6: end if
7: end for
8: NETSENDDETS(dets, target)
9: end procedure

10: procedure SENDMSGSFROMLOG(target)
11: for all msg ∈ msgLog do � Collect all messages
12: if msg.recver = target then � bound to target
13: NETSENDMSG(msg, target) � in msgLog
14: end if
15: end for
16: end procedure

W

Y

rolled-back process restarted processhealthy process

Communication not loggedCommunication logged

Z

X

Fig. 5: Rollback Chain in MCML.

V. EXPERIMENTAL EVALUATION

A. Setup

To evaluate the effectiveness of the MCML protocol pre-

sented in Section IV, we built a profiling library to explore the

communication pattern of MPI applications and understand the

benefits and tradeoffs of the algorithm. We used the MPI Pro-

filing Interface to build a communication library that intercepts

all communication calls in an MPI application. The library

outputs the communication graph of the execution, along with

additional information on collective-communication calls. We

ran the communication library on a collection of representative

applications from several HPC software projects. Table I

summarizes the main features of these applications. All these

codes use MPI operations for communication and provide the

user with a collection of runtime parameters to calibrate the

execution. We chose those scenarios in the applications that

present communication imbalance, either because of load im-

balances or the proper communication pattern of the program.

Application/Project Domain Problem

FLASH/FLASH Physics Multigrid solver
Graph500/Graph500 Graph analytics Breadth-first search

Lassen/ASC Physics Front tracking
MCCK/CESAR Neutronics Monte Carlo sim.

MiniAMR/Mantevo Physics Adaptive mesh ref.
MiniFE/Mantevo Physics Finite element
NPB-MZ/NPB Linear Algebra Block tridiagonal

TABLE I: Main Features of Applications Used in Evaluation.

The experiments were run on Stampede supercomputer at

the Texas Advanced Computer Center. Stampede is a 5.168

petaflop computer with 6400 nodes and 522,080 total cores.

Each node on Stampede has 2 Intel Sandy Bridge processors

for a combined 16 cores, plus an Intel Xeon Phi co-processor.
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(a) FLASH (b) Graph500 (c) Lassen

(d) MCCK (e) MiniFE (f) NPB-MZ

Fig. 6: Skewed Communication per Rank Distribution of Applications with Communication Imbalance.

Application Number Rank Avg. Rollback Set Size (% of |P|) Avg. Rollback Chain Size (% of |P|)
of Cores Gini Idx. θ = 30 40 50 60 70 θ = 30 40 50 60 70

FLASH 256 0.27 57.42 30.08 18.36 12.89 7.42 0.78 0.78 0.78 0.78 0.78
Graph500 256 0.44 2.34 1.17 0.78 0.39 0.39 0 0 0 0 0

Lassen 256 0.35 1.56 1.17 0.78 0.39 0.39 0 0 0 0 0
MCCK 256 0.37 1.17 0.39 0.39 0.39 0.39 0.39 0 0 0 0

MiniAMR 256 0.32 39.45 28.90 14.84 7.81 4.69 0.78 0.78 1.17 1.17 1.56
MiniFE 256 0.28 69.53 47.65 30.86 8.98 2.34 3.51 1.95 1.95 1.56 0.78

NPB-MZ 256 0.20 60.55 15.62 8.20 3.12 0.39 8.20 3.91 3.12 1.56 0

TABLE II: Effect of MCML on Rollback Effort.

The nodes are connected through an Infiniband FDR network.

B. Results

Figure 6 shows a heatmap representing the data exchange

volume in each application. Similar to Figure 3b, the commu-

nication matrices are symmetric but present a high variation

in the communication distribution. Figures 6a and 6e show

strongly defined clusters along the main diagonal, but com-

munication distribution diffuses as we move away from the

diagonal. Figures 6c and 6d present imbalanced communica-

tion patterns, but with specific zones that clearly concentrate

a huge communication volume. Figure 6b highlights a few

processes centralizing most of the data exchange. Figure 6f

offers a case of a more chaotic communication pattern that

leads to prevalent imbalances.

Table II quantifies the communication imbalance using the

Gini Index of the rank distribution. There is a good spectrum

of values, but in general the numbers in the table are high,

which attest for the skewed distribution in the communication

volume. Table II also shows the impact of using MCML proto-

col in reducing the message log. We measured two quantities:

average rollback set size and average rollback chain size.

The former refers to the total number of processes that must

rollback after a single-process failure. The latter represents

the maximum depth of the rollback chain. For instance, in

Figure 5 the rollback set size is 3, and the rollback chain size

is 2. Both quantities are expressed in relative terms to the

size of the process set P . Table II measures both rollback set

size and rollback chain size based on θ, which represents the

threshold used by MCML as a percentage of the maximum

message log size in SCML. As expected, higher values of θ
fetch better benefits.

An experiment using MiniAMR (a single 16×16×16 block

per rank) demonstrates MCML weak-scales. Table III presents
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the average rollback set size as the program scales from 512 to

4,096 cores. MCML is very effective with θ = 60. Its benefits

reduce as the Gini index decreases.

Cores Gini Avg. Rollback Set Size (% of |P|)
θ = 30 40 50 60 70

512 0.30 42.00 29.10 14.45 6.25 1.37
1,024 0.24 59.18 41.50 28.81 16.60 7.32
2,048 0.23 57.42 38.33 24.07 13.23 5.52
4,096 0.17 84.45 47.34 27.68 11.08 3.49

TABLE III: Weak-Scale Experiment.

Results from a strong-scale experiment with Graph500

(scale=16, edge factor=16) are listed in Table IV. Ranging

from 512 to 4,096 cores, the benefits improve as the commu-

nication distribution becomes more imbalanced. At the highest

scale, MCML effectively uses a smaller message log with a

negligible cost in rollback.

Cores Gini Avg. Rollback Set Size (% of |P|)
θ = 30 40 50 60 70

512 0.27 1.95 0.78 0.19 0.19 0.19
1,024 0.34 0.78 0.30 0.10 0.10 0.10
2,048 0.42 0.39 0.10 0.05 0.05 0.05
4,096 0.51 0.10 0.02 0.02 0.02 0.02

TABLE IV: Strong-Scale Experiment.

The MCML protocol allows different strategies to choose

the channels on which message logging is turned off. We

evaluated two strategies in Table V using FLASH code on

256 cores. The default strategy is called heaviest link first, as it

prefers the channel with the highest amount of communication.

The second strategy builds a hierarchical clustering of the

processes, also called a dendrogram. Channels are chosen

based on the clustering, preferring those in the near vicinity.

For instance, in a system with 8 processes [0-7], process 5

would prefer to turn off channels to the following clusters

with that priority: [4-5], [4-7], and [0-7]. The results in Table V

suggest that for an application with communication imbalance,

but with a clustered structure, a smarter strategy improves

results. From Figure 6a, it is clear that FLASH features clusters

of processes and thus a clustering strategy exploits that fact.

Strategy Average Rollback Set Size (% of |P|)
θ = 30 40 50 60 70

Heaviest Link First 57.42 30.08 18.36 12.89 7.42
Hierarchical Cluster 53.12 17.19 3.12 0.78 0.39

TABLE V: Comparison of Strategies to Reduce Message Log.

VI. EXTREME-SCALE PROJECTIONS

We use an analytical model to project the performance of

MCML at extreme-scale and to run a comparative analysis

between SCML and MCML protocols. The model uses theo-

retical formulations presented elsewhere to estimate execution

time [10] and energy consumption [8]. The basic formula

in the model decomposes the execution time into four parts:

T = TSolve+TCheckpoint+TRecover+TRestart, and finds ap-

propriate analytical expressions to approximate each part. The

model contains several parameters to represent fundamental

variables that affect the total execution time of protocols such

as SCML. The output of the model is the optimum value of τ ,

the checkpoint period, for which the total execution time T is

minimized. A formula for energy consumption can be derived

from the execution time equation by considering the power

levels at which each of the parts of the formula executes.
A straightforward extension of the base analytical model

is used to project execution time and energy consumption of

MCML. The extended formula needs the selection of values

for the parameters. We chose values based on the available

literature [8], [10], and the results of Section V. Table VI

summarizes the values of the main parameters in the model. In

particular, ω represents the fraction of the optimum checkpoint

period (τ ) that is attainable without using MCML. For instance,

a value of ω = 0.3 means the system reaches the maximum

size of the message log (in at least one process) and it

is forced to checkpoint after 0.3τ time units of the latest

checkpoint. The underlying assumption is that without MCML,

a system using SCML will perform suboptimal checkpointing.

Parameter o reflects the portion of the system that is forced to

rollback after a crash when using MCML.

Parameter Description Value

W Time to solution 24h
MS Mean-time-between-failures per socket 40y
δ Checkpoint time 5m
R Restart time 0.5m
μ Message-logging slowdown 1.05
φ Message-logging recovery speedup 1.2
ω Fraction of optimum τ [0.3-0.7]
o Fraction of recovering processes 0.1
H High power level 100W
L Low power level 50W

TABLE VI: Values of Parameters of the Model.

The model projects a clear benefit of MCML in both exe-

cution time and energy consumption when the system scales

from 8,000 to 512,000 sockets. Figure 7 shows the relative

performance of MCML compared to SCML. The various curves

represent different values for ω. In all cases, we assume MCML

checkpoints at optimum frequency, while SCML checkpoints

at a suboptimal frequency dictated by ω.
The relative execution time of MCML compared to SCML is

presented in Figure 7a. As the system scales in size, so does

the failure frequency (which linearly depends on the number

of sockets). The results show MCML can effectively reduce the

execution time by maintaining the optimum checkpoint period.

The fraction ω has a major impact on performance. At the

highest scale, MCML reduces the execution time from 2.7%
to 24.5%. Relative energy consumption is shown in Figure 7b.

Using MCML provides a reduction from 0.4% to 15.9% at the

highest scale. The reduction in energy consumption is not as

high as the reduction in time because the downside of MCML
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Fig. 7: Performance of MCML Protocol at Scale.

is to have more processes recovering after a failure. Those

processes will consume more energy during a faulty execution.

MCML manages to reduce energy consumption thanks also to

the reduction in execution time.

VII. CONCLUSION

The substantial waste in performance and energy of the

classical checkpoint/restart approach has forced the commu-

nity to look for alternative approaches. Message logging is

a promising strategy, but a limiting factor is its potentially

high memory consumption. This paper introduces memory-

constrained message logging, MCML, a protocol that realis-

tically assumes each process has a limit to the amount of

messages that can be logged. The protocol dynamically adapts

to the runtime conditions and reduces the size of the message

log by turning off logging on particular channels. The goal of

MCML is to keep the memory overhead of message logging at

bay, while avoiding a high cost in recovery. The experimental

results showed that MCML is very effective in reducing the size

of the message log for applications with communication im-

balance. In addition, MCML provides a generalized framework

to design advanced memory-aware message-logging protocols.
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