
Instituto Tecnológico de Costa Rica

Escuela de Ingenieŕıa Electrónica

Development of a multi-core and multi-accelerator

platform for approximate computing

para optar por el t́ıtulo de

Ingenierio en Electrónica

con el grado académico de

Licenciatura

Pablo Felipe Osorio Maŕın

30 de noviembre de 2017

Declaro que el presente documento de tesis ha sido realizado enteramente por mi per-

sona, utilizando y aplicando literatura referente al tema e introduciendo conocimientos y

resultados experimentales propios.

En los casos en que he utilizado bibliograf́ıa he procedido a indicar las fuentes mediante

las respectivas citas bibliográficas. En consecuencia, asumo la responsabilidad total por

el trabajo de tesis realizado y por el contenido del presente documento.

Pablo Felipe Osorio Maŕın

Cartago, 30 de noviembre de 2017

Céd.: 8 0111 0971

This work is licensed under a Creative Commons

“Attribution-NonCommercial-ShareAlike 4.0 International”

license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

to my dear family and friends

Acknowledgments

The result of this work and all the tough days of work, could not be possible without the

constant support of many people. Many thanks to my adviser, Jorge Castro God́ınez,

through all the confusion and speculations every time I found guidance, advice and work

to keep on going. Without him this opportunity could not have materialized for which

am forever grateful. To my parents, Luis and Gloria, my sister and friends to whom I

find myself deeply grateful for everything they have done to help me achieve this goal.

Who have endured all this process with me and even when it seems impossible help me

be above it. I will always be growing thanks to your support.

Imagination is more important than knowledge -Albert Einstein

Pablo Felipe Osorio Maŕın

Cartago. November 30th, 2017.

Abstract

Changing environment in the current technologies have introduce a gap between the

ever growing needs of users and the state of present designs. As high data and hard

computation applications moved forward in the near future, the current trend reaches

for a greater performance. Approximate computing enters this scheme to boost a system

overall attributes, while working with intrinsic and error tolerable characteristics both in

software and hardware. This work proposes a multicore and multi-accelerator platform

design that uses both exact and approximate versions, also providing interaction with a

software counterpart to ensure usage of both layouts. A set of five di↵erent approximate

accelerator versions and one exact, are present for three di↵erent image processing filters,

Laplace, Sobel and Gauss, along with their respective characterization in terms of Power,

Area and Delay time. This will show better results for design versions 2 and 3. Later

it will be seen three di↵erent interfaces designs for accelerators along with a softcore

processor, Altera’s NIOS II. Results gathered demonstrate a definitively improvement

while using approximate accelerators in comparison with software and exact accelerator

implementations. Memory accessing and filter operations times, for two di↵erent matrices

sizes, present a gain of 500, 2000 and 1500 cycles measure for Laplace, Gauss and Sobel

filters respectively, while contrasting software times, and a range of 28-84, 20-40 and

68-100 ticks decrease against the use of an exact accelerator.

Keywords: Multicore, Accelerator, Memory mapped, Interfaces, Approximate, plat-

form, Sobel, Laplace, Gauss, Parallelism, DMA, Processor, Power, Area, Delay, Time,

Performance.

Resumen

El constante cambio en el ámbito de las nuevas tecnolog ha tráıdo consigo una brecha entre

las necesidades de los usuarios y el estado actual de los diseños. Computación aproximada

entra en este esquema para mejorar las caracteŕısiticas de los dise tanto en software

como en hardware, al utilizar las propiedades intŕınsicas y tolerables a errores de cada

componente. Este trabajo propone el dise una plataforma multi-núcleo y multi-acelerador

que usa versiones tanto exactas como aproximadas, además de recursos por software

para asegurar ambas estructuras. Se muestra un grupo de cinco versiones diferentes de

aceleradores aproximados, aśı como una versión exacta para los filtros de procesamiento

de imágenes, Laplace, Sobel y Gauss, cada uno junto con su respectiva caracterización

en términos de Potencia, Área y Tiempo de retraso. En estas se observarán mejores

resultados para las versiones 2 y 3. Continuamente se muestran tres diseiferentes de

interfaces para la incorporaci aceleradores en conjunto con un procesador softcore, Altera

NIOS II. Los resultados recopilados demuestran una mejora considerable al utilizar las

versiones aproximadas en comparación con las versiones de software y acelerador exacto.

Los tiempos de operación de filtrado y accesos a memoria, para dos tamae matrices

diferentes, presentan una ganancia de 500, 2000 y 1500 ciclos en mediciones para los filtros

Laplace, Gauss y Sobel respectivamente contrastando contra los tiempos por software, y

un decremento en el rango de 28-84, 20-40 y 68-100 ciclos contra el uso de acelerador

exacto.

Palabras clave: Multi-núcleo, Acelerador, Interfaces, Aproximado, Plataforma, So-

bel, Laplace, Gauss, Paralelismo, DMA, Procesador, Potencia, rea, Retraso, Tiempo,

Rendimiento.

Contents

List of Figures iii

List of Tables v

Abbreviations vii

1 Introduction 1

1.1 Approximate Computing . 4

1.2 Contribution . 6

2 Background and Related Work 9

2.1 Background . 9

2.2 Related Work . 12

3 Characterization of approximate accelerators 17

3.1 Image processing filters . 18

3.1.1 Laplace . 18

3.1.2 Gauss . 19

3.1.3 Sobel . 20

3.2 Experimental Setup . 22

3.3 Characterization Results . 24

4 Interfacing accelerators and a softcore processors 29

4.1 Proposed Designs . 31

4.1.1 Avalon Slave Interface . 32

4.1.2 Custom Avalon Master-Slave interface 35

4.1.3 DMA Interface . 38

5 A Multicore and Multi-Accelerator Platform 45

5.1 Multi-Core Design . 45

5.2 Proposed Design . 47

6 Conclusions 53

6.1 Future work . 54

Bibliography 55

i

ii Contents

List of Figures

1.1 Power Consumption vs CPU Utilization (taken from [17]). 2

1.2 Power Dissipation for several microprocessors (taken from [7]). 3

1.3 Moore’s Law (taken from [35]). 3

1.4 Utilization wall (taken from [27]). 4

1.5 Memory Wall (taken from [24]). 5

1.6 Approximate Architecture with Quality Control (taken from [8]). 6

2.1 Task parallelism (taken from [26]). 10

2.2 Application Mapping (taken from [4]). 12

2.3 Multicore design (taken from [21]). 13

2.4 SNNAP System Diagram (taken from [33]). 15

2.5 Methodology Flow (taken from [22]). 16

3.1 Cameraman test image . 17

3.2 Laplace filter data flow graph. 18

3.3 Gauss 3x3 filter data flow graph. 20

3.4 Sobel filter data flow graph. 21

3.5 Methodology diagram for accelerators characterization. 22

3.6 Laplace 8 Filter Versions Outputs . 25

3.7 Gauss Filter Versions Outputs . 26

3.8 Sobel Filter Versions Outputs . 28

4.1 Avalon Memory Mapped Interface Transfers (taken from [1]). 30

4.2 NIOS Program Code Memory Map. Retrieved from [2] 32

4.3 Avalon Slave Interface for Accelerators. 33

4.4 Flow Diagram Avalon Slave Interface. 34

4.5 Read Timing Diagram for the Slave Interface 35

4.6 Write Timing Diagram for the Slave Interface 35

4.7 Avalon Master-Slave Interface for Accelerators 36

4.8 Finite State Diagrams . 37

4.9 Write Timing Diagram for the Master Interface 38

4.10 Read Timing Diagram for the Master Interface 38

4.11 DMA Interface for Accelerators . 39

4.12 Flow Diagram DMA Inerface . 40

iii

iv List of Figures

5.1 Multicore Memory Partition. (taken from [2]) 46

5.2 Proposed Multicore Design . 48

5.3 Flow Diagrama Master Application . 49

5.4 Flow Diagrama Slave Application . 51

List of Tables

3.1 Quality characteristics of Laplace approximate accelerators 24

3.2 Laplace Accelerators Characterization . 25

3.3 Quality characteristics of Gaussian approximate accelerators 26

3.4 Gaussian Accelerators Characterization . 27

3.5 Quality characteristics of Sobel approximate accelerators 27

3.6 Sobel Accelerators Characterization . 28

4.1 Performance Time Filters Software Versions 42

4.2 Performance Time Laplace 8 Accelerators 42

4.3 Performance Time Gauss 3x3 Accelerators 43

4.4 Performance Time Sobel Accelerators . 43

v

vi List of Tables

Abbreviations

BSP Binary Space Partitioning

CPU Central Processing Unit

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

EBL Embedded Logic Blocks

ER Error Rate

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPP General Purpose Processor

GPU Graphical Processing Unit

HAL Hardware Abstraction Layer

HDL Hardware Description Language

IDE Mean Error Distance

IP Intellectual Property

MED Integrated Development Environment

PSNR Peak Signal to Noise Ratio

SD Secure Digital

SoC System on Chip

SRAM Static Random Access Memory

SSIM Structural Similarity Method

vii

viii Abbreviations

Chapter 1

Introduction

With the coming forth of newer applications, such as neural network, computer vision,

machine learning, and data mining, it has become clear that characteristics of current

technology no longer meet the performance requirements. There is an increasing demand

of resources and e�ciency for more complex applications and designs. It has been esti-

mated that, on average, 4000 GB of data per day would be necessary for autonomous

driving vehicles [23]. With the ongoing integration of Artificial Intelligence (AI) to end-

user devices, and the continuous research on deep and machine learning, the need for

better, faster, and e�cient computing systems is on the rise.

Most of the problems with actual resources are not recent nor specific to a single cause.

But even so, there are several factors that had cause this gap and will potentially generate

a bigger treat. One of the problems resides in how to manage such complicated compu-

tations without disregarding execution time, power, or energy. For instance, by 2008 a

single server based on Intel x86 processor, and used for data center operation, was esti-

mated to consume 250 W on average, which turned to 23 billion W in a year for a single

server farm operation [17]. In terms of the power bill, costs to maintain these facilities,

and the fact that for the years to come data is the new oil [9], the growth is expected to

be exponentially bigger with each year. As depicted in Figure 1.1, the power consumption

of any server depends on its maximum utilization. The question now resides in how can

it be possible to reduce the power consumption without reducing the processed data or

incrementing the number of computing nodes.

Even as the power consumption problem arises, it is not the only characteristic to take

in account when looking into current computing systems. Just as this is part of one

of many constrains, other factors can come in the way for a complete integration or a

desired development. As central processing units (CPUs) are the center component of

every computation, the depth now resides in its optimization and structure.

Moore’s Law has rules the design of CPUs for more than 50 years. This empirical law

states that every two years the numbers of transistors in an integrated circuit will double.

Many complex algorithms, dense data applications, and graphics processing, begun to

1

2

rely deeply in the advancement of new and more powerful generation of processors. As

presented in 1.3, the feature size has decreased over the years, reaching the sub-micron era

(less than 100nm) around 2005. Recently, Intel has achieved 10nm technology [19], which

has pointed out that Moore’s law might not continue to fulfill the expectations for further

application. As Intel continues to be one of the biggest chip manufacturer around the

world, it only creates a bigger gap between what it is expected from manufacturers and

the actual needs of the present applications. The International Technology Roadmap for

Semiconductors (ITRS) expectations report that it will only be viable to keep shrinking

transistors until 2021-2025 [5], which also leads to the need of rethinking the present

solutions to compensate future lacks and flaws that could be met. As the number of

transistors per area for a specific processor grows, it allows to develop faster and more

complex system, it represents a cost in terms of power and energy consumption, as it

can be seen in Figure 1.2. So, newer design trends are needed to overcome these design

challenges.

But the problem with Moore’s law doesn’t end there as the need for a continuous integra-

tion of transistors persists. According to Dennard classic scaling theory, each transistor

count scales by a factor of S2, where S is the scaling factor between two technology pro-

cesses, while the switching frequency is scaled by a factor of S. The capacitance and the

threshold voltage are scaled by a factor of 1/S and 1/S2, respectively. As feature size

has decreased, this conception does not hold accordingly anymore. Reaching the bar-

rier of 90nm, the characteristics foreseen by the Post-Dennard regime, or leakage-limited,

changed drastically, as depicted in Figure 1.4. Under this scheme, the threshold voltage

can not be further reduced without expecting an increase in leakage, rising the power den-

sity per chip, and thus limiting the utilization of the available silicon. This problem is now

referred as the utilization wall. Due to this, portions of chip’s silicon stay under-clocked

at operation for full frequency or just are not used full time, making that sections of the

chip remain dark (this concept is referred as dark silicon in the literature). This leads

to an underutilization of resources, but it also opens the possibility to utilize portions of

Figure 1.1: Power Consumption vs CPU Utilization (taken from [17]).

1 Introduction 3

the chip to enhance energy e�ciency that could then free up power budget, establishing

a cycle that would allow more computations but with a small power cost.

There is still another more concerning challenge that single- and multi-core processors

had not been able to counter, which is the di↵erence of speed between microprocessors

and memory. This problem is the so called memory wall. As the improvement rate in

a single processor grow exponentially with each new design, the memory technology also

experiences an exponential grow but at a much slower pace. As stated [37], on average,

each 5th instruction on a program requires a memory access, which then leads to be

almost 40% of the whole operation. This problem it is not an easy one since, on theory,

DRAM (Dynamic Random Access Memory) speeds increases 7% per year, while processor

trend is to augment by 80%. The growing gap between CPU and DRAM over the time

is presented in Figure 1.5. Due to the cache characteristics, the associated cache misses

cause that an overall continuous increase would end up degrading the general performance

over time. Even for newer and more complex systems this challenge still remains as one

Figure 1.2: Power Dissipation for several microprocessors (taken from [7]).

Figure 1.3: Moore’s Law (taken from [35]).

4 1.1 Approximate Computing

of the most concerning factor when looking for di↵erent design opportunities to overcome

this gap, and then reduce the averages cost of cycles in full functional operation [37].

As these problems seem to envelop the computational world, there have been several

answers to each of them from di↵erent perspectives and studies. The firsts grasps at

fighting these, came from the exploration of multi-core processors. This technology allows

the users to still rely on the capabilities of a given chip or system by doing more task

in parallel and thus enhancing the overall performance. Multicore has presented more

energy e�ciency in comparison to older single-core technologies allowing its integration

in a diverse set of applications. As this technology is now in servers, laptops, mobile

devices, and so on, it was thought to be the solution to the problems regarding Moore’s

law. But it also presents a worst problem for dark silicon, since the multi-core processing

does not break the utilization wall, as the area is not scaled, the amount of chips that can

be filled with more cores running at full frequency tends to decrease. The reality is that

these cores still remain dark in most of their use [32], and in a multi-core architecture

there’s none real complete use of their whole resources. Even as these platforms are not

the perfect solution, they present themselves as the most viable option for the near future

[12] [11].

1.1 Approximate Computing

The diverse layout of problems surrounding the processors industry today has begun a

quest for other design paradigms in order to tackled every part of this spectrum. Newer

research trends help, but not overcome, every aspect of it. Current technologies are

making e↵orts to instead of disregarding misses or bad logic as useless, to look them as

a potential solution for generating a far better performance in total. In words of Tom

Figure 1.4: Utilization wall (taken from [27]).

1 Introduction 5

Simonite, a bad chip at math can help develop the technology for the future to come [30].

All of these because of Approximate Computing.

Approximate Computing is a design paradigm that aims to exploit the error-tolerance in a

wide set of applications by performing inexact computations that allow reductions in the

required computing resources, and it can be noticeable in lower power, area, and execution

time [36]. As several applications turns to the realm of estimation and probability, such as

speech recognition, neural networks, mining, image processing, data analytics, and so on,

approximate computing has a wide range of opportunities for its use and implementations

taking a leverage in the intrinsic characteristics of these processes [20]. There had been

several proposals to apply this concept to software, circuits and architectures.

The abilities in software to explore productive algorithms, while using the probabilistic

opportunities has brought a clearer way to synthesize whole systems and elaborate new

models on the run that facilitates their approximation. But this is not only one tool,

a far better one resides in the coming of approximated compilers that enables to trans-

form complete programs in order to enhance its performance and energy consumption,

while allowing tolerable errors. The software techniques vary from a range of possibilities,

beginning with error injection to specific parts in code moving forward to annotating ap-

proximable programs portions. Approximation has several usages and usable techniques

in this area, such as loop perforation, where skipping several iterations can reduce over-

head. This area has vast applications as signal and image processing, machine learning,

data research, scientific computing and much more, all of this represent the future fron-

tiers to be break by approximate computing, where not only the main possibilities reside

but the applications characteristics tend to prefer an approximate usage [20].

The advancements made by approximate computing do not end with software. Consid-

ering hardware, this design paradigm has proven to be reliable for recent architectures

Figure 1.5: Memory Wall (taken from [24]).

6 1.2 Contribution

covering two main areas regarding tolerable parts of software running on the processor

and the translation from code to accelerators. This recent development also favors the

incorporation of simpler units or processes, such as arithmetic circuits and synthesis tech-

niques during hardware design, exploiting as well the intrinsic features of already codes

that works with estimates and probabilities, as is the case of neural accelerators. These

adders, multipliers, and automated approximate implementations, tend to present up-

grades in power-e�ciency characteristics by exploiting the control accuracy integrated in

them [25]. Also in presence of intrinsic errors several hardware units can be useful for

exploiting its approximate capabilities, such is the case with memory access skipping,

voltage scaling, and refresh rate reduction, just to mention a few. In Figure 1.6 can be

observed the conception of an approximate accelerator altogether with an error predic-

tor unit and a host processor; this architecture presents the basis for an approximate

approach capable of replacing regions of code for a hardware implementation, speeding

up an application and predicting the errors that need to be corrected, when outside the

tolerable range. This is just an example of the work done in this area and how can be

integrated to real life end user process. By doing these the search for a far better and

more e↵ective technology, could have met its most palpable solution.

1.2 Contribution

This work aims to propose a multi-core and multi-accelerator platform for approximate

computing. First, the design of approximate accelerators for 3 image processing kernels

(Laplace, Gaussian, and Sobel), altogether with their characteristics in terms of error,

delay, power, and area, are presented. For each kernel, five di↵erent designs are proposed

using low-power and high-performance approximate adders, producing di↵erent acceler-

ator versions for the same application. Centering around the characterization idea, on

how this components will reflect on each accelerator, tests will focus on estimation tools

from Altera to ease and enhance the results. Ranging from the synthesis tool, to Power-

Play analysis estimator and TimeQuest Analyzer. All of this combined give an accurate

behavior and initial performance estimation.

Figure 1.6: Approximate Architecture with Quality Control (taken from [8]).

1 Introduction 7

Three di↵erent ways to integrate the accelerators with the softcore NIOS processor and

di↵erent hardware components, from custom develop to Altera intellectual property, is

presented. Each one is implemented following the bus and memory mapped protocols

for slave/master interactions. The proposed designs di↵erentiate in the protocols they

need to sustain with the full system. The first shows the incorporation of a custom logic

memory mapped slave who responds directly to the processor. The second has both

memory mapped master and slave, to respond any read/write operations in memory sent

from the processor and maintain the processing logic needed for validation. The last one

has two direct memory access units (DMA) and a first in first out memory (FIFO), one

for writing and the other reading, who also communicate with the processor to control

the data flow.

Finally this work details a proposed multi-core platform that integrates approximate

accelerators. Showing a structure capable of interact both with hardware and software,

manipulating shared resources such as the accelerators, both exact and approximate, and

perform adequately to the needs of master/slave interactions.

8 1.2 Contribution

Chapter 2

Background and Related Work

2.1 Background

This section presents a compilation of basic notions related to image filtering, the uses

of accelerators, and processor-accelerators relationship for building systems on Field Pro-

grammable Gate Array (FPGA). This reflects and establishes a practical basis in order

to show a clearer picture on how these can be applied and used with the approximate

computing design paradigm.

The hardware acceleration techniques are present in a diverse set of implementations,

for instance, custom design circuits through hardware description language (HDL), and

a variety of Graphical Processing Units (GPU) from vendors like Nvidia or ATI. The

elaboration of such components have set a paradigm basis for parallelism exploitation,

allowing to free resources from other parts of computing systems or relieving the amount

of functions set for the main processor to do. In Figure 2.1 is possible to observe the task

distribution for a single group of accelerators; this represents the basis for any design in

the subject of parallelism. The integrations into commercial systems has shown to reach

peak performance far better, allowing for faster development and managing a continuous

research around this technology [26]. It is worth to mention that C code has maintain

well establish patterns for progress around processors, but the integration of parallelism

and the requirement of fine data in large amounts, tend to failed when setting an e↵ective

application. That is why, with the understanding of the desired architecture and with

the flow chart around the C code software, is possible to develop Verilog- or VHDL-based

accelerators capable of doing the same computations faster and with far more data.

Image processing has been a viable and reliable choice to develop hardware acceleration

in recent years and it has been at the forefront of current studies in di↵erent areas in

order to achieve real time performance. One example is presented in [38], where an

image detection application to detect cells in a micro-well is moved to a FPGA-based

accelerator implementation. By doing this, it is possible to implement faster growing

systems in di↵erent researches. The current systems incorporating accelerators facilitate

9

10 2.1 Background

a way for faster tracking, less resources and detailed output, especially when dealing with

large amounts of input data.

As real time applications continue to develop faster than ever, the processing envelop

within the diverse group of sensors and data acquiring systems grow even larger. Prob-

lems now reside in the level of autonomy that newer designs require, in order to sustain a

confident task building and routines management. The mixture of general purpose pro-

cessors and hardware accelerators integrated in a FPGA, become a resilient option for

embedded systems focusing in the organizations of resources and functions. In order to

achieve a greater speedup for the case of image processing, due to the larger amounts

of data needed, a hardware implementation should be used [31]. Since software can not

sustain the intensive parallelism and information required for fulfilling this larger modes

of acquisition. By doing this kind of implementation more sensitive and high resolution

data can be obtained, facilitating far better solutions and improve the end user necessities.

Works regarding parallelization and customization has been presented several times. Most

recent ones face challenges in the area of optimization while incorporating techniques such

as scheduling, synthesis and virtualization. The structures presenting multicore solutions

by itself does not solve the area and power problems common to the technical world in

the past years. Networks of systems utilizing direct memory access (DMA) and series of

scratchpad memory (SPM) with engines of accelerator has come to show improvement in

comparison to commercial available processors. One of these designs, with a group of 24

accelerators, shows seven times more speed up and 20 percent increase in energy savings

Figure 2.1: Task parallelism (taken from [26]).

2 Background and Related Work 11

in comparison to the 12 core 1.9GHz Intel Xeon processor [15]. These results present the

e↵ective performance of a group of monolithic accelerators, which tend to o↵er greater

advantages in performance, programming and computational costs; improving lastly the

di↵erent workloads whole systems can achieve in di↵erent platforms.

Not only recent systems should involve multi-accelerators techniques and scheduling, but

also look at the need for incorporating these with multi-core and e�cient mapping method-

ologies. Optimizing power consumption and resource usage and power has reached levels

for which a single core at higher frequencies can not meet the specific requirements. The

exploiting of parallelism and e�cient low frequency multi-processor have shown a well

distribution increasing performance and advancements. In order to achieve an adequate

multi-core performance, first any given application needs to be separated into tasks to be

executed in conjunction for each di↵erent core. This way it assures that the necessary

memory hierarchy, synchronization and communication within the system are given to

all assignments. Enhancement in mapping and management distribution, has presented

the advantages of designing larger scale architectures with any number of cores needed.

If the mapping requirements aren’t met, the fully capabilities of any multi core design

wouldn’t be achieved [4]. In Figure 2.2 it is shown the mapping of a whole program using

a graph to form tasks in di↵erent cores. By managing these processes one can incor-

porate any given set of instructions into an embedded platform with far greater overall

characteristics, fulfilling this way the aim for user optimizations in the current system

demands.

The specifics for an adaptive hardware acceleration algorithms resides in the character-

istics of each algorithm in study. A propose methodology involve de PARO design flow

[14], in which the compiler receives programs descriptions such as mapping, partitioning

and localization. In this way it is possible to get the representation of the parallel archi-

tecture associated to it, which ensures the maximum data reuse for each combination of

accelerator and processor array, while maintaining the resource constrains and optimizing

the placement of logic components and the sequentially scheduling iterations. After this

results are given, the PARO flow continues with the translation into hardware description

language, enabling a road to the most e�cient possible architecture and participating

in hand tune if necessary. Such appliances are present and constantly selective in digi-

tal filtering, image analysis and neural network. For such designs it been proved, that

incorporating this designs in a FPGA presents a more reliable way to use the available

resources and present the optimal design.

As more architecture incorporate the potential of machines composing multi-core and

multi-accelerator platforms, the risk reside in maintaining an appropriate communica-

tion system between the application running on the core and specific region of o✏oad

on accelerators [6]. In order to overcome this, its necessary to rely on the ability to dy-

namically schedule task over a full set of processing units. Several proposes overcome this

barriers by introducing virtual shared memory, high level distribution or register mapping

communication. StarPu, the first type of these, demonstrates a high-level programming

that with help from automate prediction data transfers in the prefetching state, is able

12 2.2 Related Work

to minimize the cost of each communication in the multi accelerator configuration and

influence the decisions in the scheduler. By using this one is able to increase the speed

and performance in multi-core and multi-accelerator machines.

2.2 Related Work

The increasing amount of computations needed for a full program running on a specific

SoC, has brought di↵erent new types of available tools for increasing performance. There

has been work done in this area, for instance, regarding an implementation of Wiener

filter [10]. In this work the characteristic of a full integration with hardware acceleration

or custom instructions is presented. For both cases the main focus is the capabilities

of converting a C code from a image filter into hardware, following the corresponding

data path. The proposed architecture considers that a receiver/sender structure for the

image pixels to treat, a DMA controller and the image filter. The results gathered from

it show that the design with the hardware accelerators is two orders of magnitude faster

and required the least amount of logical gates. So, any design that requires a high level

of processing data should consider as a first choice the development around accelerators.

Taking in account that customs instructions gives more control around the circuit gener-

ated and variability, but at a much higher operational cost in terms of area and execution

time.

With the large quantity of resources available, the use of softcores and FPGA presents

great opportunity to develop and test di↵erent systems. By using processors such as the

NIOS core, from Altera, it provides a base of studies to construct a multi-core platform and

its viability for implementations it full embedded systems. A desired platform containing

an adjustable size of cores is able to demonstrate that implementing image processing

applications, the performance and speed tend to overcome the capabilities of a GPU.

For the cases of FIR filter and matrix multiplication by 29.5% and 23.6%, respectively

Figure 2.2: Application Mapping (taken from [4]).

2 Background and Related Work 13

[21]. In Figure 2.3 is presented the design of the multicore platform. As it can bee

seen, the reception from a software stage and the instruction router, first the desired

application is receive and decomposed to a set of instructions to be executed. Then

they will be distributed in each core so the output would then be saved in common

memory. This interaction between software/hardware, as well with the incorporation of

a NIOS processor, present a viable solution for programmable architectures that depend

on big quantity of data. This work set a base for the optimizations needed in order for

custom accelerators be implemented, and how by integrating these technologies such as

approximate computing can continue increase the e�ciency of such designs even more.

Research on approximate computing goes from simple blocks such as adders, multipliers

and so on, in order to extend to accelerators and more complex systems, such as neural

networks. These adders tend to integrate an Error Detection and Correction (EDC) unit,

that enables flexibility due to requirement of the di↵erent applications. As this compo-

nents becomes a decisive part in full systems for their adaptive capabilities, it is also clear

the cost in area and energy. Considering this is also possible to incorporate a Consolidated

Error Correction (CEC), which at a low cost enables to correct the accumulated error for

any accelerator output by treating it with a specific model for approximation error, facil-

itating in this way a far better response in terms of area, speed and accuracy in results in

comparison to modern accelerators [29]. To incorporate these type of error detection is

necessary to take in account the unique requirements of each desired benchmark, so any

architecture could apply it to improve its characteristics.

Figure 2.3: Multicore design (taken from [21]).

14 2.2 Related Work

Also, exploring the possibility to declared programs, functions, and even hardware that

can tolerate certain errors without compromising the overall results, while improving lastly

the performance of each design, have been researched. More complex architectures are

rising, involving dual voltage static random access memory (SRAM), interleave high and

low voltage operations and approximate caches with registers. With the incorporation of

approximate operations, the hardware achieves freedom to use less resources, sacrificing

the accuracy but gaining the advantage of less energy used. In this aspect, the utilization

of microarchitectures, with the capacity of managing its resources from a high voltage in

exact mode to low voltage in approximate, become a big tool representing even a reduction

,for several benchmarks, of at least 43% in energy saves up [13]. The data in this structure

would first undergo a mapping into approximate programming for then be applied into

hardware, and the di↵erent possibilities it can sustain, from operation, to registers and

loads, stores and caching in memory. This newer technology presents the usage of DMA

to communicate with the SRAM, with reduced refresh rate and the implementations of

registers that does not guaranteed and exact value, each of this features in approximate

mode. Facilitating a whole assemble that would become reliable for data processing and

acquisition in both modes.

The works in hardware acceleration approximation have come to two main threads, one

where it is possible to exploit traditional architectures and another one with discrete

accelerators [28]. In both it is possible to achieve more current research and future works.

The traditional aspects limits the e�ciency gains, such example its presented above. The

newer approach seeks a co-design between accelerator, software interface and compiler

in order to maintain quality and reach meet the performance necessities. If the old

architectures are combined with new accelerators its possible to achieve better levels of

behavior.

Not all the performance for a given application resides in its structure in hardware and

traditional operation. There have been several solutions in high level synthesis where its

possible to use a compiler framework in order to compose approximate programs from

exact ones in order to use these in neural networks, such as systolic neural network ac-

celerator in programmable logic (SNNAP). While o✏oading regions in the program its

possible to identify the best parts and strategies in order to incorporate sections of code

with approximation for a better performance. Using an specific set of accuracy require-

ments its possible to observe an increment in the operation characteristics of SNAAP,

while running di↵erent set of programs [33]. With the increasing support of imprecision

in modern systems, its possible to use such compilers for already set program domains

and show approximation in both hardware and software. Including programs in embedded

sensing and machine learning can drastically impact performance without impacting the

final output, facilitating a whole new form of programming and integration in complete

systems.

Due to its intrinsic characteristics for error tolerability, and probability background, neural

networks are case of implementation subject for tests in this area. The most versatile and

complete research up to now, resides in SNNAP. This type of neural acceleration was

2 Background and Related Work 15

designed to be implemented on SoC’s and based on a FPGA for approximate programs.

The mixture between its workflow and the neural network topology and weights maintains

an e↵ective senses that enables its use in commercial devices without the need of hard

reconfigurations. The approach of understanding and passing C code to gate level enables

a wide range of benchmarks. Utilizing this scheme in a Zynq board, it was possible to

demonstrate up to 3.8 times the speed up and 2.8 times the energy savings [34]. In Figure

2.4 the configuration of this accelerator it is shown, the dual core enables a reception an

storage of the program to be accelerated, the neural processing unit its the accelerator

part from which sections of the approximated code are run and the result its then send to

the ARM on chip memory via the accelerator coherency port. The design incorporating

such technologies demonstrates how FPGA present an advantage tool for accelerating

code regions on fixed hardware and it is able to exploit neural network for hardware

approximation.

As more approximate accelerators are develop, the classical way of invocation is linked

to specific code sections. But by working this way, there has been an associated error to

any results given. The introduction of a predictor would help to prevent large quantity

of data degradation by evaluating the di↵erent cases, in these manner is possible to run

both modes as needed just by taking in account the signal from the predictor. Such

systems are also presented in neural network to ensure realistic reference points. If the

predictor is present, such systems could achieve 2.6 times more speedup and 2.8 times

energy reduction by the specification of a 5% error [8]. In neural predictors would gain at

least 17% in energy. For optimizing approximate systems the requirements of architectural

mechanism that assist in output control are a necessity in order to achieve a viable design.

In more adaptive systems the incorporation of approximate blocks require to adaptively

change in order to reduce the area and power overhead and maintain the error analysis

of each design. The needs for logic that enables the change between modes of accurate

Figure 2.4: SNNAP System Diagram (taken from [33]).

16 2.2 Related Work

and approximation, becomes clearer as the diverse use of multi accelerators in a single

architecture begins to fail in flexibility and adaptivity [22]. In Figure 2.5, it is presented

the custom logic for a full flow between high level synthesis generating accelerators from

logic blocks, and its implementation in multi-accelerator architectures. For such, it is

needed a way to analyze the continuing masking of error propagation and the change

between modes, so that the result from the approximate computing are e�cient and are

able to propose viable solutions. The data flow that this methodology follows, is first the

generation of the approximate accelerator, for this to be a viable option it is required a

library of approximate logic blocks who by a given set of error analysis, in previous work,

and a overall characterization, can construct the component that adapts to this criteria.

After the generation, an analysis of the characterization and resilience is done, previous

to the incorporation to the final computing architecture. This final architecture presents

a n number of accelerators and its given core, both undergoing a serious of features that

would finally enable the given application to run separately in each, by doing these a more

e�cient and e�cient unit is present. The last block is the Approximation Management

Unit, which its in charged of selecting the appropriate mode for each accelerator. By

controlling this signals it is possible to keep the performance and quality necessary, but

with the advantage of reducing the overall energy consumption. Such a tool for control

needs to keep track for resilience in the data path and properties of di↵erent applications

at run times in this type of architectures.

Figure 2.5: Methodology Flow (taken from [22]).

Chapter 3

Characterization of approximate

accelerators

In this chapter, approximate accelerators for three image processing filters: Laplace, So-

bel and Gaussian, are described. For each filter, five approximate versions are presented,

varying their error metrics due to the approximate arithmetic components used. This

chapter is divided in three main sections: the accelerators designs, experimental setup,

and the results of the characterization in each case. In the first section a depiction of each

filter is provided ranging from the operations needed, circuitry implementation an kernel

specification. Later, the experimental setup is described, which contains all the informa-

tion regarding the tools used for the characterization as well as the procedure followed.

A flow diagram is presented, so the experimental structure is easily delineated and follow

all along the text. Finally, the results from the experimentation and implementation of

each filter, using test image Figure 3.1, are shown in the last section.

Figure 3.1: Cameraman test image

17

18 3.1 Image processing filters

3.1 Image processing filters

This section presents three di↵erent filters used along this work. A full depiction of the

operations can be seen in the following diagrams and explanations. For each filter, there

is a brief kernel description, in order to understand the mathematical process behind it,

and also a group of pictures are place to demonstrate the di↵erent e↵ects of filtering on

a specific image.

3.1.1 Laplace

The Laplace filters are derivative filters used to find edges in images. They are represented

by equation (3.1).

L(x, y) =
@

2
f(x, y)

@x

2
+

@

2
f(x, y)

@y

2
(3.1)

There are several ways to get the discrete representation on the e↵ect of a Laplacian

model, the most common being the convolution around a central negative peak. For the

scenarios studied in this work, the kernel of the Laplace filter is described as:

Figure 3.2: Laplace filter data flow graph.

3 Characterization of approximate accelerators 19

42
xy

=

2

4
�1 �1 �1

�1 8 �1

�1 �1 �1

3

5

As can be seen in Figure 3.2, a data flow graph representing this filter is composed of

combinational logic, taking in account 7 adding operations, 1 subtraction and 1 shift

left operation. In the first part of the operation, nine inputs of eight bits are taken,

the e entry is associated specifically with the pixel in study and the other inputs are

the surrounding matrix in order to execute the convolution. The diagram proposed is

the outcome after the convolution is execute between the kernel, presented above, and

the matrix associated with the desired pixel. Just as the e input undergoes a left shift

of two, in order to get a multiplication by four, the other eight inputs (a, b, c, d, f ,

g, h, and i), are added between each other. Then, the result of the multiplication is

subtracted from the result of all additions, to get the final output of the laplacian filter.

Finally the output is constrained, so that the obtained value stays positive and does not

surpass an integer value of 255. The operations described are the basics, both exact and

approximate accelerators would have to complete. For each of the approximate cases, the

proposed variations would concern the adders in every component, varying these with it

approximate counterparts in order to understand how they would reflect in the behavior

and results provided by each accelerator.

3.1.2 Gauss

For the Gauss smoothing filter, or Gaussian filter, the two dimension convolution are used

to blur images and remove details and noise. This filter provides a method for reducing

intensity, but it diverges from other types since the kernel used for it is bell shaped. The

equation (3.2) presents the form a Gaussian distribution has.

G(x, y) =
1

2⇡�2
· e�

x

2+y

2

2�2 (3.2)

It is worth mentioning that the implantation of this operator type is necessary to obtain

a kernel that allows to perform convolution operations, just as for Laplace filter. The

kernel in study is for Gauss filtering, usign a 3x3 dimension filter, is giving by:

G =
1

16
·

2

4
1 2 1

2 4 2

1 2 1

3

5

In Figure 3.3, the data flow graph for the 3x3 Gaussian filter is depicted. In this design,

the component is constructed with combinational logic, receiving at the start nine inputs,

representing the matrix in study. The logic describes the result after performing the

convolution, beginning by a one bit left shift, in order to apply a multiplication by 2, on

20 3.1 Image processing filters

the inputs b, d, f , and h; for the e input is perform a two bit left shift, so its performed a

multiplication by four. After this is complete, the logic proceeds to add the entree a with

the result of the shift in input b, the same with c and the shift in d, g and the shift in

h, and finally the adding of both shifts in e and f . The results are then added between

each other, and with the input i. This final operation undergoes a right shift of four, so

that the division by 16 is completed, obtaining the output of the accelerator. This output

will then be constrained in order to maintain the values in a range between 0 and 255, by

doing this is possible to limit the result and check its reliability. The same logic presented

in 3.3 would be used for the di↵erent Gauss filter approximate models done, since the

main change is the replacement of its adders by an inexact counterparts.

3.1.3 Sobel

The Sobel filter of two dimensions performs a spatial gradient measurement on images, and

is able to remark areas of high spatial repetition. The kernel is able to respond directly to

vertical and horizontal operation respectively to the pixel under verification. The way it

works is by taken two di↵erent kernels for each dimension, so it give di↵erent computations

in every orientation. After the result is obtained, both magnitude and direction can be

calculated. The procedure is basically a first order derivate and calculates the di↵erence of

pixel magnitude in a edge region. The kernels that describe the operations are as follows:

Figure 3.3: Gauss 3x3 filter data flow graph.

3 Characterization of approximate accelerators 21

G

x

=

2

4
1 0 �1

2 0 �2

1 0 �1

3

5
G

y

=

2

4
1 2 1

0 0 0

�1 �2 �1

3

5

Taking in account the above 3x3 kernels is possible to realize the convolution between

these and matrices in study, with this kernel the appropriate characterization is realized.

Looking at Figure 3.4, it can noticed the operations all data undergoes for both the

vertical and horizontal position. This diagram describes as well the circuitry involving

the Sobel accelerator, which is composed of eight inputs (a, b, c, d, f , g, h, and i). In

this case the center pixel is not taken in account, as one can extrapolate from the kernels

described. The first step in the accelerator, as mark out by the road in green, is the

process of the horizontal kernel. The inputs d and f are multiplied by two, while the a-g

and c-i pixels are added respectively. The results from the a-g operation is added with the

d multiplication, and then it is subtracted with the result of the g-i and f multiplication

addition. The following step, marked by road blue, is the vertical kernel. The inputs b

and h are multiplied by two, while a-c and g-i are added. The result of a-c operation

will be added with the output of the b multiplication, and then subtracted with the g-i

operation and h multiplication adding. The output of both subtractions will then be

added giving the final output of the filter. This is denoted as out in Figure 3.4. Same as

Figure 3.4: Sobel filter data flow graph.

22 3.2 Experimental Setup

the other cases, the output value will then be constrained between 0 and 255.

3.2 Experimental Setup

Once every filter is implemented using HDL, for both exact and approximate cases, the

characterization is performed. Intel FPGA (Altera) provides a programmable logic device

design software called Quartus II. This suite enables analysis and synthesis of HDL de-

signs, perform timing analysis, and power consumption estimation. The tools necessary

are Power Play, TimQuest and the synthesis report. For the results section, a DE2-115

Altera board is considered as target platform. Inside the board, a Cyclone IV EP4CE115

chip is available, containing 114480 logic elements (LEs), 3 888 Embedded memory (Kbits)

and three 50 MHz oscillator clock inputs.

The characterization procedure utilizing these tools is depicted in Figure 3.5. The first

instances needed are the design files of each accelerator. The HDL file, describing the

flow and interactions between the inputs and outputs, is the main part of this procedure.

Figure 3.5: Methodology diagram for accelerators characterization.

3 Characterization of approximate accelerators 23

The design files comprise a three set basis, between the VHDL (.v) file, the test bench

(.tb) and the image data (.dat). Each one of these would compromise the dynamic and

structural basis for the accelerators. The hardware description file describes the logic

correspondent between its inputs an outputs, making it the main component of the study

flow. Next is the test bench file, which it assures the behavioral model while performing a

simulation study in Modelsim or any other verification tool. Finally the last component,

of the design files, would be the image data file (.dat). A matrix that composes the

entirety of the image in study can be seen in Figure 3.1. Since each value in the matrix

accounts for a di↵erent input value for the accelerator, it would be read continuously in

the test bench while performing the verification.

In order to rely on the design files, it is first needed to set the schematic file (.bdf). Fixing

a main block of study for continuous test, also facilitating the exchange of top files for

di↵erent study cases in the project. Since the work envelops close to 20 di↵erent versions

of accelerators, such tool favors every repetition without increasing the amount of work.

Likewise allows to maintain every design under study, in a single main file and save the

reports without exception.

After the necessary aspects are met, the next step begins by compiling each top module.

The main reasons to undergo this stage are verification, Fit and Place route for the DE2-

115 board, and evaluation of Timing Analysis. So far in the second stage, as shown in

Figure 3.5, the main use of the compiler is verification and fitting. Using the specified

board, one can study the area report by analyzing the consumed percentage of logical

elements and embedded memory. This record would help summarize the average size

each accelerator could take and the required resources (associated with the area used),

and enable comparison between approximate versions. Also sharing second stage, as seen

in Figure 3.5, is the Modelsim simulation. Each accelerator has to undergo a stimulus

study and functional verification, to guarantee correct behavior, taking the test bench and

data files as inputs. The stimulus study output, value change dump file (.vcd), is required

for Power Play analysis. In it is contained all the functional data from the accelerator

simulation, inputs/outputs from the accelerator and clock cycles taken.

For stage three, there are two main operations. The first one is the Power Play analysis,

which receive the .vcd file in order to accurately estimate the power consumption the

design would have. By doing this, it is possible to have an evaluation of what is to be ex-

pected in full operation for a specific accelerator, understanding the optimal performance

requirements for a complete system. The second analysis is the timing estimation, using

the TimeQuest Analyzer. This tool is capable of perform timing analysis by validating

the design logic, using industry standard constrains (sdc) and report methodology. Now,

for a full characterization it presents a data-sheet report, where is possible to observe all

the possible delay paths and determine the critical circuit path. Through this data is

possible to set the implications and quality metrics needed to implement such circuitry

in a complete system.

After the above analysis is done, the metrics for both exact and approximate design are

24 3.3 Characterization Results

determined. For each version of accelerator it will be presented a two low, two highs and a

mixture of both, as can be seen in Table 3.1. In every version the error estimate predictor

is varied. Such information would be vital in order to grasp performance metrics needed

to influence development on any design. Also in Tables 3.1, 3.3 and 3.5, are presented

the characteristics of a quality study done by the execution of each accelerator

3.3 Characterization Results

Laplace

In the table 3.1, it can be seen the five di↵erent versions and there given quality output.

This metrics can be observe by the parameters mean error distance (MED), error rate

(ER), peak signal to noise ratio (PSNR) and the structural similarity index method

(SSIM). The first two metrics are commonly used in the context of approximate computing

[18] [16], while the remaining in image processing to compare quality among images. In

Figure 3.6 can be seen the software outputs of each accelerator version for Laplace, listed

from A to F one can appreciate the di↵erences between each other. The e↵ect of this

filter can be seen, noting a darker image with edges accented, in both background and

foreground. Image F is the exact version, while the other are approximate, comparing

these with the data in Table 3.3 one can see the e↵ect the quality characteristics has on

an output image.

Table 3.1: Quality characteristics of Laplace approximate accelerators

MED ER PSNR (dB) SSIM

Laplace 1 32.47 0.237 21.41 0.79

Laplace 2 64.90 0.231 15.38 0.61

Laplace 3 6.84 0.472 32.89 0.84

Laplace 4 6.05 0.521 33.52 0.89

Laplace 5 39.18 0.584 14.18 0.48

The results obtained from the characterization of all Laplace accelerators is present in

table 3.2. In this table, the three main characteristics are shown: area, delay (between

inputs and outputs), and power consumption estimation. From this data one can see in

terms of area measurement the exact version, noted as Laplace, have a similar area in

comparison to version 1 and 5. The accelerator with less consumed blocks is version 4,

while version 2 is the one taking more. In terms of time delay there are three aspects

varying from minimum, average and maximum time. Each of these represent the full

functioning of the accelerator. In the minimum case four of the approximate ones have

higher times in comparison with the exact version. The highest and smallest versions

been 5 and 4, with 10.47 and 7.88 nanoseconds (ns) respectively. The average presents

more variability between each version, laying version 3 with 17.73 ns as the fastest. For

3 Characterization of approximate accelerators 25

Figure 3.6: Laplace 8 Filter Versions Outputs

the maximum cases version 1, 2 and 5 are similar between one another, but faster than

the exact. The least and highest times are 24.5385 and 31.331 ns, for versions 3 and 4

respectively. Finally for the power estimation only version 2 decrease, while version 1

sustains. For the other approximate versions the Power increase by a factor of ten in

version 5, being the highest, and a factor of five in version 4. Both of these representing

the cases with the most variability. This can lead to the expectation that version 2 can be

better replacement both for power, but considering delay version 3 its an optimal option.

Considering area is more di�cult to choose a better option, since one must consider every

characteristic and the final gain in a full system to opt for one choice.

Table 3.2: Laplace Accelerators Characterization

Accelerator Area(ELB) Delay (ns) Power Estimation (mW)

Minimum Average Maximum

Laplace 136 7.99 21.94 29.36 156.74

Laplace 1 136 8.37 20.41 28.06 156.78

Laplace 2 151 9.49 21.51 28.07 154.37

Laplace 3 122 8.37 17.72 24.54 162.38

Laplace 4 121 7.88 19.75 31.33 161.02

Laplace 5 136 10.47 20.59 28.99 165.23

Gauss

In the Table 3.3, it is shown the quality metrics study for the Gauss filter, as is the

case with the Laplace filter the MED, ER, PSNR and SSIM set the base for this study.

26 3.3 Characterization Results

Figure 3.7: Gauss Filter Versions Outputs

In the table can be appreciated the five di↵erent version for the inexact accelerators.

Along with this data, in Figure 3.7 can be seen the software outputs of each accelerator

version for Gauss filtering, listed from A to F one can appreciate the di↵erences between

each other. The e↵ect of this filter are seen, noting the removal noises and small quality

stains around the main image parts. Image A is the exact version, while the other are

approximate, comparing these with the data in Table 3.3 one can see the e↵ect the quality

characteristics has on an output image.

Table 3.3: Quality characteristics of Gaussian approximate accelerators

MED ER PSNR (dB) SSIM

Gaussian 1 8.53 0.210 33.92 0.93

Gaussian 2 7.82 0.272 32.15 0.89

Gaussian 3 2.31 0.799 40.49 0.97

Gaussian 4 3.26 0.934 37.18 0.96

Gaussian 5 5.79 0.725 28.54 0.83

The characterization for this accelerator can be seen in Table 3.4. From which Gauss rep-

resents the exact version, all the observations from this data would be done in comparison

regarding it. In terms of area, only versions 1, 2, and 6 increase, while versions 3 and 4

decrease between 30-40 units. For the delay in the minimum case the most notable variant

is given by version 3 with a change of almost 1 ns. In the average subject are present

more changes between the obtained data, almost all tend to increase with the exception

of version 4 which decrease. The most notable case been version 5 with an increment near

to 5 ns. The last column present the data gathered from the Power Estimations Analysis,

3 Characterization of approximate accelerators 27

in which can notably see increment in versions 1 and 2, however in comparison among

one another the di↵erence is almost ine↵ective. One can extract also a decrement for

versions 3 and 5. Taking in account power results version 5 give the higher benefits. But

in terms of delay, version 4 surpass all other characteristics, same as with the consumed

logic blocks.

Table 3.4: Gaussian Accelerators Characterization

Accelerator Area(ELB) Delay (ns) Power Estimation (mW)

Minimum Average Maximum

Gaussian 120 7.92 16.42 32.08 157.06

Gaussian 1 127 7.71 17.29 23.87 161.11

Gaussian 2 134 7.91 16.27 22.15 161.15

Gaussian 3 98 8.59 19.71 25.99 153.62

Gaussian 4 82 7.89 15.07 21.42 158.15

Gaussian 5 126 7.49 21.61 31.62 153.03

Sobel

Table 3.5, shows the quality metrics study for the Sobel filter, as is the case with the

Gauss and Laplace filters the MED, ER, PSNR and SSIM are used. Along with this data,

in Figure 3.8 can be seen the software outputs of each accelerator version, listed from A

to F one can appreciate the di↵erences between each other. Noticing the e↵ect of Sobel

filter where image boundaries are highlighted. Image A is the exact version, while the

other are approximate, comparing these with the data in Table 3.3 one can see the e↵ect

the quality characteristics has on an output image.

Table 3.5: Quality characteristics of Sobel approximate accelerators

MED ER PSNR (dB) SSIM

Sobel 1 61.86 0.052 24.36 0.90

Sobel 2 11.77 0.737 21.59 0.77

Sobel 3 41.13 0.336 17.42 0.68

Sobel 4 6.00 0.718 31.80 0.91

Sobel 5 6.44 0.811 30.88 0.88

Further more during the study of Sobel filter accelerator and each of the di↵erent versions,

is possible to procure several characteristics from them, each of these are show in Table 3.6.

From this table, one can see that in terms of area versions 1 and 3 present an increment,

while the others decrease, versions 5 been the lowest. For minimum delay about every

versions maintains the same time, with the exception of version 1 which shows a small

decrease. In average delay versions 1 and 4 stays near to the exact one, while version 5

increases and version 2 gives a slight trim. Maximum delay gives the more variability,

28 3.3 Characterization Results

Figure 3.8: Sobel Filter Versions Outputs

showing higher and smaller times for version 1 and 5 respectively. Version 2 and 3 o↵er

a narrow change between one another. Slight di↵erence is demonstrated in versions 2, 3

and 4, in comparison with the exact one. From the power estimation, version 5 indicates

the least consume. Versions 1 and 3 stays near the same value as the exact version. As

for version 2 and 4 show a slim variant. Overall version 2 of the proposed accelerator

return the highest benefits in terms of power and time, also is the case with version 5.

The di↵erence been in the average delay time, since in the last version a considerable

increment can be seen and since it is a prevail occurrence a↵ecting most of the process,

the highest benefits comes from the second version.

Table 3.6: Sobel Accelerators Characterization

Accelerator Area(ELB) Delay (ns) Power Estimation (mW)

Minimum Average Maximum

Sobel 197 10.30 22.54 26.12 162.62

Sobel 1 207 9.97 22.80 29.25 161.60

Sobel 2 192 10.78 20.41 25.90 158.18

Sobel 3 219 10.12 21.86 25.64 161.27

Sobel 4 191 10.52 22.59 26.04 159.72

Sobel 5 183 10.0295 24.19 20.49 154.74

All the data gathered from the above study would help understand the characteristics

behind all the approximate accelerators, but the behavior in a full system would be study

in the next chapter and how can it surpass its exact counterpart and software usage.

Chapter 4

Interfacing accelerators and a softcore

processors

With the the design of approximate accelerators, the next step towards a complete mul-

ticore system leads to the construction of a model that implements a singl core and an

accelerator. By doing this, it become clearer the requirements and appropriate setting in

order to proceed into a larger, multi-core design. The architectures presented are based on

the NIOS II softcore processor, which consists on a high performance 32 bits design elab-

orated from a Hardvar architecture, and it is been optimized for applications on FPGAs,

enabling configuration of several capabilities, at real time, accordingly to performance

needs.

The NIOS II softcore, as a standalone processor, has several advantages in its use in

designing complex systems that incorporate a mixture of custom logic and Altera own

IPs (Intellectual Property). It allows the use of two di↵erent versions of processors, NIOS

II/f is adapted for faster performance and has the most configurable options, such as

a unique memory management and protection units, removal of master ports, external

interrupt controller, advance arithmetic logic units and more. On the other hand, the

NIOS II/e is an economy core, it is design in order to have the smallest core possible

size, resulting in a limiting option and functions; but such is reliable option in slave

architectures when not many resources are needed for CPU operation.

The interface and implementation design was done in the Altera Quartus II software,

which contains the Qsys Pro tool. This integration system allows to save time and e↵ort

by applying automatic interconnect logic to use along with IPs functions and subsystems.

Qsys allows to include custom HDL designs, but in order to do so, it is necessary that

these are enclosed by one or several interfaces depending on the architecture specific

requirements. For any custom component to be used in Qsys, one has to declared the new

component creation enabling the import of the design files. After these are imported, they

need to be synthesized in order to Qsys check the logic, and mapped the inputs/outputs

signals to a corresponding interface. In the case being it will be analyzed three di↵erent

interface include methods for the involvement of the accelerators: the first using one slave,

29

30

the next includes two masters and one slave, and a last one utilizing DMA transactions

and slave logic.

The library present at Qsys, shows a gallery of components already develop that sustains

the interactions protocols between subsystems. Varying from streaming interfaces to

memory operations, most of the components use the Avalon Memory Mapped maser/slave

interface, in order to make specific transfers for both data and commands. In Figure 4.1,

it can be seen the signals needed for such implementation, as well as the timing diagram

revolving around the specifics of both read and write operations. In the read case, the

address command is set so the interface can access an specific action or memory space,

the read bit becomes high until waitrequest is deasserted and one cycle after the readdata

value is transfer. The write action works very similar, the main di↵erence relies on the

fact that the writedata is kept for the duration of the write and waitrequest signal as the

waitrequest is deasserted the writedata keeps its value until the write signal turns to low.

By introducing this interfaces to the system, is possible to interact between the NIOS II

processor, since this is configured as a master, and a custom slave that involves any of

the previous accelerator designs.

Once the complete design is finished and generated in Qsys tool, the next step goes into

importing the “.qip” file into the Quartus software. This is necessary in order to add

all the design files into the project, both customs and from the Altera suite. By naming

the Qsys file the same as the top module is possible to generate the component that

encapsulates the whole system into the schematic file “.bdf”. Finally is possible to start

compiling the project to get the “.sopcinfo” and “.sof” files. The first one relates to the

hardware information extracted from the Qsys design, this file is loaded as an input in the

beginning of the programming in the NIOS II Eclipse integrated development environment

(IDE), this way the tool knows the specific component libraries it needs to add in the

project, and also possible processor targets for the software. The second file correspond

Figure 4.1: Avalon Memory Mapped Interface Transfers (taken from [1]).

4 Interfacing accelerators and a softcore processors 31

to the downloadable direct volatile configuration, this would set the structure needed in

the target FPGA as it is programmed directly into the SRAM cells.

For programming the NIOS II processor Eclipse IDE brings a specific C-code variant,

that permits an easier construct and incorporates every element of the hardware design.

Facilitating access to any given component by set of commands or Avalon specific ad-

dress. The NIOS II processor in conjunction with the IDE, also has the advantage of

a specific Hardware Abstraction Layer (HAL) which brings a series of specific functions

and libraries. This grants the user a more versatile option for configuring specific targets

in hardware and managing the desired flow easily. The Binary Space Partitioning (BSP)

file, available with each application develop in the IDE, incorporates every library and

header files for the execution of the program. The BSP “system.h” header file displays

every component characteristics and its address, making possible to reference any part of

the design in the application just by naming the specific component or port in it, doing

a more precise map in complete designs. For its use in software design, each library is

treated as any other in C programming, declaring it, and the needed headers, at top of

the file before the coding starts.

The approach in this work is implemented by using the On Chip RAM Memory revolving

around the 300 Kb of memory available, for both the program in the processor and the

image matrix under test. The typical program partition, in NIOS II, is reflected in Figure

4.2. It contains five parts stack, heap, rwdata, rodata and text. The stack is used for

temporary data storage and function call parameters, the heap is the dynamically allocate

memory, rwdata are the read-write variables and pointers are store, rodata is read only

data used for the execution of the code, and finally the text is the complete executable

code the processor would perform at running time. Every processor starts its boatload

operation after the software is download to the memory and finds it in the specified

address vector in memory. For the download operation the software is send to the board

via de USB-BLASTER cable, the code would then be stored beginning at the NIOS II

reset and o↵set vector addresses set in Qsys, each of these separated between one another

by 32 bytes space. After the code its allocated in memory the target processor leaves the

IDLE-Pause state and enters the Running state, as long as the reset bit is not active.

As point of reference and as stated by Altera’s User Manuals, the reset input on every

component would be associated globally, the same with the debug reset in each NIOS

target. This way gathers an optimal interaction between each component preserving its

logic and behavior when the downloading stage is in course.

4.1 Proposed Designs

This work explores three di↵erent designs, in order to successfully achieve the goal of

maintaining a direct use between both accelerator and the processor. Each design has

its own advantages and disadvantages which will be explored within every case. By

doing this, one is capable of discerning the most optimal interface, moving forward to the

32 4.1 Proposed Designs

incorporation in a full multicore platform. The di↵erent scenarios exposed show a slave

interface, a design integrating a salve and two masters, and lastly the integration of two

DMA’s components.

4.1.1 Avalon Slave Interface

The first design explored is a complete slave interface. From Figure 4.3, it can see the main

components of this. Taking the On Chip memory, JTAG-UART, NIOS II/f processor and

the custom built Accelerator Interface. The NIOS II processor is set this way in order to

obtain the fastest possible interaction between it and the custom interface, since the design

is completely dependent and does not have any logic to interact directly with memory.

On the memory side all 300 Kb were allocated, the application will take around 150 Kb

since the matrices to be studied are completely set in the same software and required a lot

of data space. The rest of the memory is leave free in order for the processor to interact

directly with it, performing both reading and writing instructions at execution time. The

JTAG-UART component is selected in order to favor communication between the host

computer and the board where the software is running, by doing this is possible to not

only download the software but also interact directly with the system console, reviewing

steps and setting break points to verified the behavior of the software.

The flow diagram in Figure 4.4 shows the NIOS II application, the process it follow is:

1. Packing: At the beginning of the operation the system starts by making a packing

process in the pixel values. The data packing consists of a four stage process, it

starts by reading the values from the static matrix, defined in the software, each

member has a specific weight of 8 bits, grouping at least four of them in order to

comply with the 32-bit bus present with the Altera devices. After the values are

Figure 4.2: NIOS Program Code Memory Map. Retrieved from [2]

4 Interfacing accelerators and a softcore processors 33

read, the packing starts by joining each new member in a 32-bit variable ,full pack,

applying in this way a bitwise operation moving to the left side by eight with the

entering of every new value. This is done twice in order to incorporate the required

eight pixels values. Once the full pack1 and full pack2 are finished, the pixel would

then be stored in the same way to another 32-bit variable. In the scenario where

Sobel filters were applied, the packing procedure changed in order to comply with

the needed inputs, since the pixel value is not needed for the complete the operation.

2. For Loop Matrix: The next step in the software, is a cycle representing all the

values that want to be study are pack or are not yet done. The cycle is composed

of two nested for loops in order to read the matrix in terms of rows and columns.

So it is possible to get every position that composes the total image.

3. Slave interface operations: The interactions with the slave interface commences,

the first operation is a write utilizing the IOWR command from NIOS HAL1, this

instruction allows to perform a write action to the specific address that contains a

component. This operation would send the full pack variable and also and an o↵set.

This would translate to the address input from the timing diagrams in Figures 4.5

and 4.6. The next step is performing another write with the second data, so the

accelerator now contains all the information it needs and the start command is given

by placing an interrupt into the processor. This signal read continuously by and

IORD command, it is the counterpart to the last command allowing to read and

store in an integer the result, until the process in the accelerator is finished. Once

it stops the interruption is clear and the output value is read from the interface

storing in both memory and in a 32 bit variable in software.

1For more information consult the Nios II Gen2 Software Developer’s Handbook [3]

Figure 4.3: Avalon Slave Interface for Accelerators.

34 4.1 Proposed Designs

4. Procedure cycle and application-end: The NIOS continues the execution of

this application until every pixel is read and applied to the accelerator, or until a

specified amount of matrices is studied.

The interface design in Verilog HDL, its composed from a decoding logic set around the

address signal. The IOWR and IORD command from NIOS, allows to send an o↵set to

the base address, this translated to the input represented as “control” in Figure 4.3. The

name control is given, because is representing the specific set of instructions to perform

the decoding logic as needed. As the NIOS core select to perform a write actions, the

chip select and write inputs are set and the control is set to “0”. The first set of data is

allowed to pass to the accelerator, corresponding to input a, b, c and d from Figure 3.2.

The next set of values containing the f , g, h and i will be given when the control input

is specified to do so, by a value of “1”, this occurs one more time in order to receive and

save the main pixel. After gathering all necessary data the control would then receive

the signal to start the accelerator and the interrupt output is set as long as this process

continues. As stated above in operation “3” the NIOS will continue to read until the

Figure 4.4: Flow Diagram Avalon Slave Interface.

4 Interfacing accelerators and a softcore processors 35

operation is done, once completed the interface deasserts the interrupt after receiving the

control signal. Finally the data present in the output of the interface can be read at any

point by using the control value “4”, if the operation process its not finished the output

will be set to low.

In Figures 4.5 and 4.6, timing diagrams are shown both from the execution process of a

read and write operations. Similar to the interface diagram in 4.1, the inputs and outputs

maintain its use with the exception of the wait request signal, which for this design is not

needed. From the timing diagrams also it can be extracted that for each read operation

one clock cycle is required and for a write is at least three, in order to ensure the complete

and valid data is transferred.

The main disadvantages with this interface are the amount of dependence from the NIOS

processor, since it requires a continuous interactions of command signals from the core,

leaving a great gap for multicore employment. But the main concern resides on the fact

that is not capable of accessing memory by itself, it strictly relies upon the read and write

operations perform in NIOS, leaving it to not be the most reliable of the proposed designs.

4.1.2 Custom Avalon Master-Slave interface

The second design involves the creation of an interface that involves both master and read

procedures. By using custom master logic to read the di↵erent values from the On Chip

Memory memory and writing the output of any accelerator back to it, creates an almost

complete independent process, which only takes from the processor some control signals

Figure 4.5: Read Timing Diagram for the Slave Interface

Figure 4.6: Write Timing Diagram for the Slave Interface

36 4.1 Proposed Designs

stating when to start, finish or interrupt the processor if needed. The proposed unit is

composed from two finite state machines (FSM) both involving the appropriate master

protocol needed. One in charged of the read process and the second one of the writing,

both would be controlled from an slave interface that keeps communication from the NIOS

and also contains the accelerator. The complete data flow can be seen in Figure 4.7, the

Master Read takes the data from the On Chip RAM memory, passes it first to a 32 bit

register, after the second read is perform the new data is stored again in a second register

of 32 bits, repeating this one last time with an 8 bit register. After the three registers are

set the accelerator interface then gathers this data and passes it to the accelerator, so it

can then execute its operations and the output is saved in a 16 bit register. Finally this

data is taken by the Master Write performing the write operation back to Memory.

For this interface, the flow diagram 4.4 show the application design to run in the processor.

The procedures that undergo are:

1. Packing: At the beginning of the operation the system starts by making a packing

process with the pixel values from the matrix, same as was the case in the slave

interface.

2. For Loop Matrix: The next step in the software is a cycle representing if all the

values that want to be study are pack or are not yet done. The cycle is composed of

two nested for loops in order to read the matrix in terms of rows and columns. So

it is possible to read every position that composes the total image, and send it to

Memory already pack so it can be then easier to pass the data to the accelerators.

3. Slave interface operations: The interactions with the slave interface commences

by a writing. Utilizing the IOWR command in which the control signal is given,

and the specific address where data is store, this will be the read address. After

performing this a waiting cycle begins until the read operation is finished. When the

Figure 4.7: Avalon Master-Slave Interface for Accelerators

4 Interfacing accelerators and a softcore processors 37

cycle is done, another write operation is given to the interface, in which the o↵set will

set the writing operation to memory, and also receive the specific memory address

where it can start storing the data, this will be the write address.

4. Procedure cycle and application-end: The NIOS continues the execution of

this application until every pixel is read or until a specified amount of matrices is

studied.

As for the master write and read, the state diagrams are presented in Figure 4.8. Graphic

A shows the read state machine, while Graphic B the write counterpart. The logic for

both masters is very similar. Beginning with the Idle state, both operations start and

the address is set from which the data would be read or stored. For the read operation

a counter is also set to “0”, due to the need for each accelerator to gathered at least two

data blocks, performing this way a continuous state favoring a continuous reading. This

counter also controls the enable logic for the registers before passing to the accelerator.

During the running state both masters check a logic low value for the wait request signal

to perform any write or read procedure. By doing this is possible to validate the data

and check if any operation is correct, for both cases this signal will be taker from the

On Chip Memory. The di↵erence between these two during the running state, is that

the master read will check for the input read signal to be asserted and the wait request

is not, then the process can continues to retrieve the data and also increment the count.

Figure 4.8: Finite State Diagrams

38 4.1 Proposed Designs

This state will continue in the read master until the count is equal to the number of data

blocks needed by the accelerator, in each pass the read address will also increment by

four to read the next 32 bit memory position on the On Chip RAM. For master write,

the running state is in charge of setting the write signal for the memory unit, and assign

the output of the accelerator, stored in the input register, to the writedata signal from

the timing diagram 4.9, this will finally be the data stored in memory. By performing

this last step the master write returns to Idle, di↵ering from master read. For this last

one a Pause state is given where the receive data is asserted and a wait cycle is perform,

in order to comply with the Avalon Memory Mapped Interfaces logic and make sure all

the data block are read accurately.

In Figures 4.9 and 4.10 the timing diagrams for both write and read master processes are

shown. In both cases the main di↵erences with the slave interface resides with utilization

of the wait request signal. The main information that extracted from both Figures is the

requirement of two clock cycles for a write process and three, in case of performing any

type of read.

The main concerns surrounding this design are the approach to the reading and process

of data, as well the optimization any custom design has in comparison to the use of IP’s

elaborated by Altera. While this design provides su�cient computation, it still can be

improved, incorporating a more continuous reading without the need of stoping every few

positions. A use of a DMA, FIFO and register could improve the logic drastically, and

also using optimized structure such as Altera’s blocks.

4.1.3 DMA Interface

The third and final design explored is the incorporation of three IP’s from Altera and a

slave interface for the accelerator. Two of these are direct memory access units (DMA)

Figure 4.9: Write Timing Diagram for the Master Interface

Figure 4.10: Read Timing Diagram for the Master Interface

4 Interfacing accelerators and a softcore processors 39

and a first in first out memory (FIFO). In the layout shown in Figure 4.11, the CPU

controls the sending and receiving process by utilizing the control commands for both

DMA’s. The processing begins by the CPU issue the control for DMA Read in order

to perform continuous data transmit from memory to the accelerator, the accelerator

interface then gathers at least three data blocks and saves each one in a register. The

interface would then passes the information to the accelerator, as soon as the count logic

reaches the specified amount of data blocks needed. The interface would then send the

output of the accelerator to the FIFO where it will be stored until the DMA Write

receives the control signal from the CPU, to start writing to memory from FIFO. Once

this process is complete both the initial and output matrices would be present in memory,

separated accordingly to specific memory addresses, both also would be accessible by the

CPU. The JTAG-UART block in the structure allows to maintain communication with

the platform and also acquire data from the input/result matrices to assure behavior.

The accelerator interface for this case is a Memory Mapped Slave since it only performs

actions for reception and sending of data, the DMA IP already has two masters, so it can

execute separately a read and write operation. The already incorporated master logic in

this unit facilitates the data flow, allowing read/write actions directly in memory and a

completely independent unit from the CPU.

For this structure, the flow diagram in Figure 4.12 shows the application design to run in

the processor. The procedures that undergo are:

1. Packing: At the beginning of the operation the system starts by making a packing

process with the pixel values from the matrix, same as was the case in the slave

interface.

2. For Loop Matrix: The next step in the software is a cycle representing if all the

values that want to be study are pack or not yet done. The cycle is composed of

two nested for loops in order to read the matrix in terms of rows and columns. So

Figure 4.11: DMA Interface for Accelerators

40 4.1 Proposed Designs

it is possible to read every position that composes the total image, and send it to

Memory already pack.

3. Transmit operation: In order to pass the information to the accelerator a custom

function is design utilizing the NIOS HAL library, specifically the DMA configu-

ration. The function will receive the start and destination address, along with the

count, mode and the DMA name. The address gives reference to the specific point

in memory where the first pack pixels are stored and the base address where the ac-

celerator is located, accordingly to the Avalon bus. For this last instance is utilized

the reference definition in the ”system.h” library, for example in a Gauss test this

definitions is DMA 0 WRITE MASTER GAUSS3 FIFO 0 BASE. The count takes

the number of bytes to be read from memory in each operation, this data will not

stop until all bytes are transmitted. Each memory block pass is composed of four

Figure 4.12: Flow Diagram DMA Inerface

4 Interfacing accelerators and a softcore processors 41

bytes, since every group is made of 32 bits, the amount of spaces are given by the

For Loop Matrix process, and by multiplying this result times four one can get the

value of count. The mode makes reference to a configuration specific operation of

each DMA, since it can be set to perform transmits ranging from 8 to 64 bits. In

every proposed case of study the DMA is configure to 32 bit mode by using the

”sys/alt dma.h” library specifics command ALT DMA SET MODE 32, this com-

mand sets the length register to 32 bit. By doing this, the transfer will finish when

this amount of bits are passed and then the initial address will increment by four.

Initially the DMA is selected, then the function establish the DMA control registers

for continuous transmit from memory to a specific hardware component, and to pass

blocks of four bytes. Lastly the DMA begins sending data to the accelerator from

the specific memory address until the count number is reached.

4. Receiving operation: The receiving end of the process begins by getting the same

inputs as the transmit operation. Both are similar, just present a couple of variants

between one another. At the beginning of this procedure is required the start and

destination address, count, mode and DMA name. The count is also given in bytes,

but the number is half of the transmit block since for a transmit operation at least

two memory positions are needed for retrieving the pixels required. The mode stays

the same for both cases, this is due to the fact that in both actions the block are 32

bits. The main di↵erence reside in the DMA name, since in the architecture seen in

4.11, each DMA is specific to a function. The transmit operation makes reference

to DMA Read while the receiving is performed by DMA Write. In the receiving end

of the memory block the writing starts in the destination address, adding four to

each space, accordingly to the specified mode. The start address makes reference to

the DMA 1 READ MASTER FIFO 0 BASE, which is a static variable also set in

the library ”system.h”, the DMA Write control registers are set to allow streaming

from FIFO to memory in order to send data constantly until the count amount is

reached finishing this step.

5. Procedure cycle and application-end: The NIOS continues the execution of

this application until every pixel is read or until a specified amount of matrices is

studied.

Finally, this design presents the optimal interaction and characteristics required to work

properly in conjunction with the accelerators and the processors. Due to this, the following

tests of speed were taken by using this structure. The speed is measure in ticks by adding

a Performance Counter, which as the name states is a series of counters specifically used

for tracking clock cycles and timing multiple sections of software. This are also found

as IP’s in the Qsys library and are connected directly to a source clock and the NIOS

core, making the rest of the design completely independent. The performance counters

are started and ends with the PERF BEGIN and PERF END functions respectively. The

other two instructions used for setting the counters are PERF START MEASURING and

42 4.1 Proposed Designs

PER STOP MEASURING, the first one, resets the counter to initial state values and the

second one, completely blocks the counter and deselect its logic.

The results obtained in the measurements using this interface with six di↵erent versions of

accelerators for the three di↵erent filter types and their corresponding software versions,

are shown in the following tables. Each table is set with a minimum and maximum cases

corresponding two di↵erent matrices lengths, resulting in a varying amount for memory

addresses needed in DMA read/write operations. The minimum will be of 253 and the

maximum of 1012. In Table 4.1, is only shown one single case for maximum values, this

is due to the requirement of a larger amount of data in order to compute and compare

the results with the hardware implementation.

Table 4.1: Performance Time Filters Software Versions

Filter Time (ticks)

Laplace8 4615

Gauss 6187

Sobel 5619

Table 4.2 shows the results for Laplace 8 filter, in clock cycles, in this can be seen the

di↵erence between the exact versions and the approximate ones. Overall can be seen that

for the maximum matrix gain, it range from 37-87 cycles setting version 3 as the slowest

and version 2 the fastest. In the minimum case a gain range can be seen from 28 to 84

ticks. This allows to infer version 2 will presents the better performance in a specific

end user design. For both matrices cases studied, it can be seen a better performance

noting that all approximate versions tend to decrement time in comparison with the

exact version. The software version in contrast to any accelerator will present a slower

performance by an average near to 500 ticks.

Table 4.2: Performance Time Laplace 8 Accelerators

Accelerator Time (ticks)

Minimum Maximum

Laplace 3445 4196

Laplace 1 3354 4135

Laplace 2 3361 4109

Laplace 3 3417 4159

Laplace 4 3358 4116

Laplace 5 3353 4112

Moving forward with Gauss filter, the results are presented in Table 4.3. For Gaussian

acceleration an overall improvement in the maximum matrix can be seen by an average of

40 cycles, excluding versions 5 which presents a gain of 20 cycles, while comparing exact

and inexact versions. It is worth noting that for versions 1 through 4 the di↵erence bear

4 Interfacing accelerators and a softcore processors 43

to be similar, presenting a di↵erence of just a few ticks among one another. Although this

does not contradicts performance, since every approximate version improve among the

exact one, let a gap for advancement, or new version developing for furthering benefit and

appliance. Even considering all of this, the acceleration shows a far better performance

in contrast to software, since the gain is an average more than 2000 ticks, this is due to

the amount of computations needed for a complete Gauss filter application.

Table 4.3: Performance Time Gauss 3x3 Accelerators

Accelerator Time (ticks)

Minimum Maximum

Gauss 3399 4206

Gauss 1 3394 4168

Gauss 2 3395 4162

Gauss 3 3396 4160

Gauss 4 3406 4164

Gauss 5 3397 4186

Finally, Sobel filtering acceleration is shown in Table 4.4. It can be gathered from it that

an approximate acceleration will considerably advance this tool, since an average gain of

100 ticks and 68 ticks, maximum and minimum case respectively, is present in almost

all versions with the exception of number 5, in which the gain is of 52 cycles. Version 3

poses the better results from an advancement of 131 ticks, setting this as a better design

option. As with software the benefit from utilizing acceleration and approximations, is in

average 1500 showing a complete growth in this usage.

Table 4.4: Performance Time Sobel Accelerators

Accelerator Time (ticks)

Minimum Maximum

Sobel 3417 4238

Sobel 1 3349 4134

Sobel 2 3349 4118

Sobel 3 3349 4109

Sobel 4 3357 4114

Sobel 5 3420 4186

44 4.1 Proposed Designs

Chapter 5

A Multicore and Multi-Accelerator

Platform

5.1 Multi-Core Design

Once the interface design between a computing core and an accelerator is completed and

results are gathered, one can proceed with the final integration, involving the fulfillment

of the multi-core implementation. This multi-core architecture aims to facilitate a way,

in which the accelerator functions independent of each core, and also present a form of

interaction that allows a master processor to send messages to each slave, which can use

any of the available accelerators. To achieve this goal, first it is analyzed the memory

partitioning requirements for every processor, to run on a single block, and the specific

components selection that, at the end, would help the accessing of accelerator interface

and processor addressing.

For multi-core memory partition is necessary to look back at the program’s memory map

from Figure 4.2. The space occupied by each program will be the length needed for every

core access. In order store all programs, it is required to stack one another, as shown in

Figure 5.1. Every partition will begin with the .text part and ends with the .stack. NIOS

II needs to have a special configuration on its reset vector memory and exception vector

memory for multi-core development. Between this two vectors it should be presented a

memory space of 0x20, in hexadecimal values, and also every core should be set specifically

following the memory map proposed. In this design case every program will have a weight

of 50 KB in average, making it an address space of 0xC800. Every processor have accessed

to this memory both for data and instructions, since the main operating memory and logic

flow is stored within this block. Finally, for every boot load operation at the beginning,

every core will try accessing this memory simultaneously given permission only by the

arbitration logic done by Qsys and the CPU ID configuration. This last one, is present

again in the configuration tab in Qsys, allowing to select the ID and priority of each CPU,

enabling custom hierarchy. For this case the master is set as the top hierarchy and the

45

46 5.1 Multi-Core Design

slaves one after the other since its behavior does not a↵ect the end point at the beginning

of the running time.

After the partition is set, the message transfer between master slave is develop. Several

options are available to be integrated into the platform ranging from I2C protocol to Altera

Specific IP’s. After considering the actual needs of each CPU, the desired transferred

weight should be one data block in which it can be easily obtained by the accelerator.

The use of a complete protocol seems to not meet the practical advantages, considering

that it lacks the quantity dynamic to be properly introduce as a whole communication

protocol. In other instance, the Altera IP presents a Mailbox Core, specifically suited for

sending messages between processors, favoring logic and introducing a operation dynamic

in which two messages, one know as “command” and the second one as “message”, is

easily communicated. In this way, the requirement of decoding and integration resides in

the software of each core. As useful as this last tool implies to be, it does not favor a more

independent interaction between hardware/software, delaying the whole core process by

sustaining a wait phase to get messages, in which not only the processor is blocked but

the information is not writable or readable, until the register arbitration logic allows it to

be. To overcome both options, it is implemented a separated memory block addressable

by the master and which the slave core can read from. In this memory, the master will

write to a specific address, seated aside for each core, and it will be read at the operating

beginning of all slaves. Gathering this way the required identifier for the accelerator to

Figure 5.1: Multicore Memory Partition. (taken from [2])

5 A Multicore and Multi-Accelerator Platform 47

utilize.

Lastly, examining the behavior of a complete structure that allows the access of a single

peripheral from multiple masters, it can be noticed a logic checking shortfall over the

block use. This could lead to data corruption and multiple selections without answer, be-

ing the reason to incorporate a Mutex Core into the system. The mutex core facilitates in

each master or processor a policy to utilize the specific hardware target, by incorporating

a flag that is set only when the mutex is in used and deselect it when the specific target

is finished. Such technique favors the interaction of shared resources in the desired archi-

tecture. Since all slave processors will have access to each accelerator this method of flag

checking, becomes the most viable option to reduce data corruption and false assertion.

Once the mutex core is checked, the running phase for every core can be utilized for both

hardware or software operation, stopping undesired delayed and improving results. The

point of flag checking is accessing the hardware block but if this is in use, the processor

logic will then favor to run the filter code directly from software in the core. Sustaining

its operating stages all along the run cycle.

5.2 Proposed Design

The design elaborated is shown in Figure 5.2, in this can be seen the basic structure

composed of one CPU Master, and four CPU’s slave. Each slaves is label by a number

from one to four, this is done for guidance when debugging and downloading the specific

software. The scheme continues with the presence of three memory blocks. The signal

memory is composed of four memory addresses where the CPU Master will write the

correspondent accelerator to be used, ranging from zero to four. Through this the CPU

salve will know which mutex to check and by default what accelerator interface to initiate.

This signal memory present a bidirectional communication for CPU Master, but just as an

input in the case of the slave cores. The program memory will contain every application

from the Master and the four Slaves, stacking each other as describe in Figure 5.1. This

applications will be the main software for each processor. In all cases both data and

instructions paths are allocated to this memory. Continuing with the Data Memory, it

will contain the matrices values and specific pixels to be used by the accelerators, also

every accelerator interface will perform read and write operation to it. The JTAG-UART

component is used as a verification and communication unit, due to the needs for a sustain

transmission with the host computer. Usable as well, for downloading and debugging the

program in every processor. Moving forward, the diagram also presents the mutex cores

which are used for flag checking on each slave, this way assuring the accelerator interface,

denoted as Acc.Int. in the diagram, will be selected by the processor requesting it. Every

accelerator name goes from one to five, its selection resides completely on the mutex. For

example if the CPU 1 is to access the Accelerator Interface 2 it should check first the

Mutex 1, and in the message sent from the CPU Master, an integer with the value of

”1” would represent the mutex and accelerator to be selected in this case. Finally the

48 5.2 Proposed Design

Accelerator Interface will represent the DMA Interface described in the last chapter, each

one of this will have access to memory and be controlled by the core posting its request.

Any kind of filter can be used in this interface varying just in the requirements of the

platform at any given point.

The flow diagram for the CPU Master can be seen in Figure 5.3, it contains the following

operations:

1. Packing: At the beginning of the operation the system starts by making a packing

process with the pixel values from the matrix, same as was the case in the slave

interface.

2. For Loop Matrix: The next step in the software is a cycle representing if all the

values that want to be study are pack or are not yet done. The cycle is composed of

two nested for loops in order to read the matrix in terms of rows and columns. So

it is possible to read every position that composes the total image, and send it to

Memory already pack so it can be then easier to pass the data to the accelerators.

3. Signal Writing: Once the packing process is done, the application then set the

accelerator for each slave by sending a specific code to the signal memory. This code

will be an int value ranging from zero to four. This selection will be given by the

Figure 5.2: Proposed Multicore Design

5 A Multicore and Multi-Accelerator Platform 49

user, utilizing for this the JTAG-UART NIOS II Terminal window. The terminal

interface asks the user to type the accelerator for every CPU, starting from the slave

one until four. The application in each core will write to a specific address, where

the slave will then read the input. The memory addresses for all slaves are:

• CPU 1: 0x00060000

• CPU 2: 0x00060010

• CPU 3: 0x00060020

• CPU 4: 0x00060030

4. Procedure cycle and application-end: The NIOS II Master continues the exe-

cution of this application until the terminal session is ended by the user.

Next, the flow diagram for the slave CPU is shown in Figure 5.4. Every slave core follows

the same procedure. The main di↵erences resides in the address to be access, describe in

the signal writing procedure above, but the rest continues the same way. Because of this,

the application will operate as follows:

Figure 5.3: Flow Diagrama Master Application

50 5.2 Proposed Design

1. Signal Gathering: The first step in any slave application is the selection of the

appropriate mutex in order use the right accelerator. This is execute by performing

an IORD operation into the specific address in Signal Memory, an then applying

the result into a integer variable. Once this variable is set, the rest is done in a case

statement that enables the core to know which mutex to access and, by default, the

accelerator it will use.

2. Mutex Flag Check: After the signal is gathered, and the processor now knows

which mutex to check, it proceed to verify the selection of this component. If the

flag is deasserted then it will select the mutex by locking it, and setting the flag

as high for any other core. As this is done, the selection of the accelerator can

proceed. But if the core encounters the accelerator in use, it will then has the

option to run the software version by software filtering. This way maintaining the

resource distribution and running cycles optimization for every core.

3. Accelerator selection: Succeeding the mutex flag check, the accelerator selection

is performed. In this stage the application will undergo a Case function opera-

tion. The message sent by the master is required as an input, then the appropriate

accelerator will be chosen and the operation of the DMA Interface can begin.

4. DMA Accelerator Interface: Once the mutex is selected, checked and the accel-

erator is selected, the core will proceed to initiate the DMA interface. This will be

divided between two functions one for reading and another for writing in memory,

just as described in the last chapter for DMA Interface. This cycle is maintained

until every matrix is read and the results are pass back on memory.

5. Mutex deasserted: Lastly after the Accelerator Interface is finished, the slave

core will then free the mutex flag by an unlock process. Making the accelerator

available again for any other core in the system, sustaining the shared resources

cycle and running operation.

6. Procedure cycle and application-end: The NIOS Master continues the execu-

tion of this application until the terminal session is ended by the user.

After all the applications starts its cycle, the core is capable of working completely in-

dependent from one another and from the master. Since every accelerator interface is

connected to all slaves, each processor will have the possibility of using this component

just by checking the mutex core. Once the specific filter its taken, any other core that

request control over it will be denied any permission. Leaving, in this case, the software

version option as the only viable one. This multi core approach facilitate the user a plat-

form capable of realizing studies both in software and hardware architectures. Measure

performance time and preserve the processing logic for both approximate and exact set

ups.

It is important to note, that for the behavioral testing of the platform a small number

of matrices was used, utilizing a portion of the Figure 3.1. This is due to the presence

5 A Multicore and Multi-Accelerator Platform 51

of just 150 KB available in the On Chip Memory. In future work this memory could be

replaced with a SDRAM o↵ chip making available up to 128 MB, for implementing such

component is necessary to design and SDRAM controller or custom interface for directing

access from both read and write operation. Another most valuable solution should be

incorporating a SD Card interface, from which the CPU Master could perform read and

write operations directly on it. Making available only information that cores will require,

and overwriting it with the accelerators outputs for each run cycle, reducing access to

memory blocks and its usage altogether.

Figure 5.4: Flow Diagrama Slave Application

52 5.2 Proposed Design

Chapter 6

Conclusions

In order tackle the incoming gap designs in newer technologies, it is necessary to study the

incorporation of di↵erent tolerable characteristics, and how to use them to develop more

e�cient architectures, improving overall performance. This work presents how di↵erent

components can be integrated into a specific end user design platforms and the final

benefits this provides.

From the exploration done during the development of approximate components and their

interfaces incorporation, one can definitely see an improvement in performance and a re-

duce amount of tasks performed by a processor, specifically the NIOS II softcore. During

approximation of the three image processing filters, Laplace, Gauss and Sobel, various

benefits can be seen in contrast from both software and exact HDL design. Looking at

Laplace layout, version 2 is a better replacement for power reduction, but version 3 has

improved delay times. Gauss filtering on other hand, o↵er an enhanced power estima-

tion utilizing version 5, while version 4 benefits in delay times. Lastly, Sobel acceleration

version 2, return higher advancement in terms of power and average times. It is worth

noting that area characterization will not represent by itself a superior choice in accelera-

tion constructs, the delay time and power estimation are necessary, as well, to understand

full performance integration.

Proposed designs for interfacing contemplate a range of opportunities, using both Al-

tera’s master and slave memory mapped interfaces as a start point show advantages for

simplicity and communication. But in order to applied these, an extensive custom logic

exploration beforehand is needed to accordingly meet the desired constrictions. Moving

to the DMA architecture provides a far better optimized structured than custom mas-

ter logic, assuring behavior and sustaining appropriate interaction all along the running

stage, favoring cycles counts and processing for lager data bulks. Using this last interface,

a number of test were done showing that design versions 2 and 3 on every accelerator,

provides a considerable decrement for each computation in clock cycles. As for compari-

son between the three approximate hardware filters versions, Laplace 8 and Sobel shows a

far better implementation than for Gauss, leaving a gap for restructuring and remodeling

for this kernel.

53

54 6.1 Future work

Moving from single core processes, to multi-core and multi-accelerator platforms leads the

way to reduce in large amounts computation costs, while maintaining shared resources

logic and access. The shared resource access problem is resolved by the mutex core

usage, since it enables interactions and blocks any unauthorized entry to pass. Leaving

software logic intact and keeping the processor free to operate once the permission is

denied. By adopting a platform design capable of using both software and hardware

from any processor, that also includes exact and approximate accelerators, demonstrates

enhancement in resource usage and data manipulation.

6.1 Future work

This work opens up a door for further, incorporating a larger amount of approximate

accelerators varying from model to interfacing. The next step to consider for a deeper

research using multi-core platform requires the adding of a SDRAM controller and a SD

card reader complement. This is necessary in order to increment available memory within

the system, so larger matrices and complete images can be tested. Memory rising gives a

lot more variability for higher program loads in each processor, suggesting the advanta-

geous use of custom and laborious libraries. Favoring as well, with the incorporation of

the SD card interface, a viable option for output data studying and comparison analysis

between platform approximations. Also in acceleration design, the incorporation of a pre-

dictor based logic block could help reveal e�ciency and error anticipation for approximate

components outputs.

Further more than increasing physical capabilities, harder tests are needed with far ef-

ficient utilities. Estimation for Power and Delay are optimized in Quartus II, but this

does not mean it is perfect. In order to counter it another board or real time measuring

system is required to obtained more accurate results.

Bibliography

[1] Altera. Avalon Interface Specifications. Altera, 101 Innovation Drive, San Jose, CA,

13 edition, August 2010.

[2] Altera. Creating Multiprocessor Nios II Systems. Intel, 101 Innovation Drive, San

Jose, CA, 11 edition, June 2011.

[3] Altera. Nios II Gen2 Software Developer’s Handbook. Intel, 17 edition, May 2017.

[4] Akash Kumar Jörg Henkel Amit Kumar Singh, Muhammad Shafique. Mapping on

multi/many-core systems: Survey of current and emerging trends. Design Automa-

tion Conference (DAC),50th ACM/EDAC/IEEE, 2013.

[5] Sebastian Anthony. Transistors will stop shrinking in 2021, but moore’s law will live

on [online]. July 2016 [visitado el November 02, 2017]. URL https://arstechnica.

co.uk/gadgets/2016/07/itrs-roadmap-2021-moores-law/.

[6] Samuel Thibault Raymond Namyst Cédric Augonnet, Jerome Clet-Ortega. Data-

aware task scheduling on multi-accelerator based platforms. In Parallel and Dis-

tributed Systems (ICPADS), IEEE 16th International Conference on, IEEE, Shang-

hai, China, 2010.

[7] Wu chun Feng. The importance of being low power in high performance computing.

CTWatch Quarterly, 1(3), August 2005.

[8] J Park B Thwaites H Esmaeilzadeh D Mahajan, A Yazdanbakhsh. Prediction-based

quality control for approximate accelerators. In Second Workshop on Approximate

Computing Across the System Stack (WACAS), 2015.

[9] The Economist. The world’s most valuable resource is no

longer oil, but data [online]. May 2017 [visitado el Novem-

ber 02, 2017]. URL https://www.economist.com/news/leaders/

21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource.

[10] Robert Grou Mame Maria Mbaye Yvon Savaria Eric Granger, Serge Catudal. On

current strategies for hardware acceleration ofdigital image restoration filters. 2004.

[11] David Geer. Industry trends: Chip makers turn to multicore processors. IEEE

Computer Society Press, 38(5):11–13, 2005.

55

https://arstechnica.co.uk/gadgets/2016/07/itrs-roadmap-2021-moores-law/
https://arstechnica.co.uk/gadgets/2016/07/itrs-roadmap-2021-moores-law/
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource

56 Bibliography

[12] Pam Frost Gorder. Multicore processors for science and engineering. Computing in

Science and Engineering, 9(2):3–7, 2007.

[13] Luis Ceze Doug Burger Hadi Esmaeilzadeh, Adrian Sampson. Architecture sup-

port for disciplined approximate programming. In ASPLOS XVII Proceedings of the

seventeenth international conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 301–312, New York, USA, March 2012. ACM,

ACM.

[14] Jürgen Teich Benno Heigl Heinz Hornegger Hritam Dutta, Frank Hannig. A de-

sign methodology for hardware acceleration of adaptive filter algorithms in image

processing. Application-specific Systems, Architectures and Processors (ASAP’06)

IEEE, 2006.

[15] Michael Gill Beayna Grigorian Glenn Reinman Jason Cong, Mohammad Ali Ghodrat.

Architecture support for accelerator-rich cmps. DAC ’12 Proceedings of the 49th

Annual Design Automation Conference, pages 843–849, 2012.

[16] Honglan Jiang, Jie Han, and Fabrizio Lombardi. A comparative review and eval-

uation of approximate adders. In Proceedings of the 25th Edition on Great Lakes

Symposium on VLSI, GLSVLSI ’15, pages 343–348, New York, NY, USA, 2015.

ACM. URL http://doi.acm.org/10.1145/2742060.2743760.

[17] Brad Ellison Lauri Minas. The problem of power consumption in servers. 2009.

[18] Jinghang Liang, Jie Han, and F. Lombardi. New metrics for the reliability of approx-

imate and probabilistic adders. IEEE Transactions on Computers, 62(9):1760–1771,

2013.

[19] Kaizad Mistry. 10 nm technology leadership [online]. 2017 [visitado el November

02, 2017]. URL https://newsroom.intel.com/newsroom/wp-content/uploads/

sites/11/2017/03/Kaizad-Mistry-2017-Manufacturing.pdf.

[20] Sparsh Mittal. A survey of techniques for approximate computing. ACM Computing

Surveys (CSUR), 48(4), 2016.

[21] Mohamed Abid Mouna Baklouti. Multi-softcore architecture on fpga. International

Journal of Reconfigurable Computing, 2014.

[22] Semeen Rehman Walaa El-Harouni Jörg Henkel Muhammad Shafique, Rehan Hafiz.

Cross-layer approximate computing: From logic to architectures. In Design Automa-

tion Conference (DAC), 53nd ACM/EDAC/IEEE, Austin, TX, USA, 2016. IEEE,

IEEE.

[23] Patrick Nelson. Just one autonomous car will use 4,000 gb of

data/day [online]. December 2016 [visitado el November 02, 2017].

URL https://www.networkworld.com/article/3147892/internet/

one-autonomous-car-will-use-4000-gb-of-dataday.html.

http://doi.acm.org/10.1145/2742060.2743760
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Kaizad-Mistry-2017-Manufacturing.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Kaizad-Mistry-2017-Manufacturing.pdf
https://www.networkworld.com/article/3147892/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
https://www.networkworld.com/article/3147892/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html

Bibliography 57

[24] Okan Erdogan Paul M. Belemjian Jin-Woo Kim Michael Chu Russell P. Kraft John F.

McDonald Kerry Bernstein Philip Jacob, Aamir Zia. Mitigating memory wall e↵ects

in high-clock-rate and multicore cmos 3-d processor memory stacks. In Proceedings

of the IEEE, volume 97. IEEE, 2009.

[25] Nam Sung Kim Qiang Xu, Todd Mytkowicz. Approximate computing: A survey.

IEEE Design Test, 33(1):8–22, 2015.

[26] Robert J. Hinde Gregory D. Peterson RickWeber, Akila Gothandaraman. Comparing

hardware accelerators in scientific applications: A case study. IEEE Transactions on

Parallel and Distributed Systems, 22(1):58–68, 2011.

[27] David Blaauw Dennis Sylvester Trevor Mudge Ronald G. Dreslinski, Michael Wieck-

owski. Near-threshold computing: Reclaiming moore’s law through energy e�cient

integrated circuits. In IEEE, volume 98, February 2010.

[28] Adrian Sampson, James Bornholt, and Luis Ceze. Hardware–software co-design: Not

just a cliché. In Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S.

Lerner, and Greg Morrisett, editors, 1st Summit on Advances in Programming Lan-

guages (SNAPL 2015), volume 32, pages 262–273, Dagstuhl, Germany, 2015. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[29] Rehan Hafiz Muhammad Shafique Jörg Henkel Sana Mazahir, Osman Hasan. An

area-e�cient consolidated configurable error correction for approximate hardware

accelerators. Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE,

2016.

[30] Tom Simonite. Why a chip that’s bad at math can help computers tackle harder

problems. MIT Technology Review, 2016.

[31] Wolfram Hardt Stephan Blokzyl, Matthias Vodel. A hardware-accelerated real-time

image processing concept for high-resolution eo sensors. Deutscher Luft- und Raum-

fahrtkongress, 2012.

[32] Michael Taylor. A landscape of the new dark silicon design regime. IEEE Micro,

33(5):8–19, 2013.

[33] Andre Baixo Mark Wyse Ben Ransford Jacob Nelson Luis Ceze Mark Oskin

Thierry Moreau, Adrian Sampson. Compilation and hardware support for approxi-

mate acceleration. In TECHCON, 2015.

[34] Jacob Nelson Adrian Sampson Hadi Esmaeilzadeh Luis Ceze Mark Oskin

Thierry Moreau, Mark Wyse. Snnap: Approximate computing on programmable

socs via neural acceleration. In IEEE 21st International Symposium on High Per-

formance Computer Architecture (HPCA),, Burlingame, CA, USA, February 2015.

IEEE.

58 Bibliography

[35] Scott E. Thompson and Srivatsan Parthasarathy. Moore’s law: the future of si

microelectronics. materialstoday, 9(6):20–25, June 2006.

[36] Kaushik Roy Anand Raghunathan Vinay K. Chippa, Srimat T. Chakradhar. Analysis

and characterization of inherent application resilience for approximate computing.

Proceedings of the 50th Annual Design Automation Conference on - DAC, 2013.

[37] Sally A. Mckee Wm. A. Wulf. Hitting the memory wall: Implications of the obvious.

Technical report, University of Virginia Charlottesville, 1994.

[38] Faycal Bensaali Arti Mishra Xiaojun Zhai, Fadi Jaber. Hardware acceleration of

an image processing system for dielectrophoretic loading of single neurons inside

micro-wells of microelectrode arrays. 17th UKSim-AMSS International Conference

on Modelling and Simulation (UKSim), 2015.

	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Approximate Computing
	1.2 Contribution

	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Characterization of approximate accelerators
	3.1 Image processing filters
	3.1.1 Laplace
	3.1.2 Gauss
	3.1.3 Sobel

	3.2 Experimental Setup
	3.3 Characterization Results

	4 Interfacing accelerators and a softcore processors
	4.1 Proposed Designs
	4.1.1 Avalon Slave Interface
	4.1.2 Custom Avalon Master-Slave interface
	4.1.3 DMA Interface

	5 A Multicore and Multi-Accelerator Platform
	5.1 Multi-Core Design
	5.2 Proposed Design

	6 Conclusions
	6.1 Future work

	Bibliography

