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Maestŕıa Académica en Electrónica

Trabajo Final de Graduación

Tribunal Evaluador
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Abstract

Today neuroscience is vastly specialized such that computational neuroscience tries to

bridge the gaps of knowledge between the theory and the experiments. In-silico experi-

ments are computer simulations with complete control over the scenario; this techniques

try to decode the functionality of the biological neural networks and the biophysical dy-

namics which this cells inherent. This work explores a way to improve biological-precise

spiking neural networks simulations with FPGA acceleration. Our approach focuses with

creating a hardware acceleration for one cell compartment using a system-on-chip, this

serves a proof-of-concept to value how flexible is the platform to accelerate similar sim-

ulations using the hybrid hardware-software methods. The work described in this thesis

is a implementation of the inferior olivary nuclei model implemented with a extended

Hodgkin-Huxley neural model. The development platform was the Xilinx’s Zynq-7000

and the Vivado Hardware Design suite.

Results obtained in this work shows that the hybrid computing is more performance

efficient in using the FPGA resources. Also proves a more flexible platform unlike other

authors similar work. Finally, the use of a shared DRAM between the CPU and FPGA

fabric showed a bottleneck for the design, its noted that it would be preferable to separate

if possible the main DRAM between both systems.

Keywords: SNN, FPGA, SoC, Neural network, Hodgkin-Huxley, cluster, HPC
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Chapter 1

Introduction

Decoding the brain is one of the most outstanding goals in humankind because of the

implying benefits in advances in medicine and artificial intelligence; sadly, still, we know

little information. Motivation in neuroscience is endless; hence, the field has snowballed

over the years. Research such as how to unravel effective treatments for prevalent psy-

chiatric severe disorders such as Alzheimer’s disease and Schizophrenia [1] is expected to

bring new life standards. Therefore, people from many interdisciplinary fields unite forces

to tackle these hard problems, and new consortium groups are established and funded by

the government’s investments, such as the European Human Brain Project (HBP) [2] and

the USA’s BRAIN initiative [3]. This transition led room to create innovative specializa-

tions in the field, and conceive novel theoretical and experimental analysis for studying

the brain [4]. The theoretical analysis targets the intrinsic features of the brain cells, such

as its electrophysiological properties, its anatomical structure, its region classifications,

and many more.

Computational neuroscience becomes essential during recent years because of the ad-

vances in the semiconductor industry, computers become faster every year and can do

computing analysis more accessible, hence increasing the productivity in research (i.e.,

with computer-assisted statistical analysis). The research area promises to bridge the

gaps of knowledge between the laboratory and the theoretical models [5]. Some popular

topics from the field are neuroinformatics, medical informatics, neurorobotics, and brain

simulation [2].

This thesis focuses on brain simulation performance and its close relationship with hard-

ware specialization.

1



1 Introduction 2

1.1 Computational neuroscience

1.1.1 In-silico experiments

Unlike other fields, neuroscience studies one of the main organs of living beings; thus,

invasive experiments are desired but expensive to maintain and rarely available for ethical

reasons. Therefore, in-silico experiments come with many advantages over the in-vivo or

in-vitro counterparts, such as not requiring surgical procedures and complete control over

the running experiment. A cubic millimeter of the brain cortex contains several tens of

thousands of individual brain-cells; therefore, computer technology is a known limitation

that prohibits the scale of the experiments. Nevertheless, a modern supercomputer has

been catching up recently, thus making feasible simulations of neural networks comprised

of millions of neurons [1].

Mechanistic modeling on the neuron, in the quantitative sense, gain attention since the

established work of Hodgkin and Huxley [6]. They developed a model for the action-

potential generation and propagation in giant squid axons [1]. Today, numerous detailed

neural models are ready to use accessible online in public databases (see [7]), and it is

encouraged to researches re-utilize them. Consider that the most basic neural model are

the building blocks for creating more refined models, i.e., the Hodgkin-Huxley model,

thus modeling each neuron of every region of the brain is a marvelous task [1].

1.1.2 Neural models

To grasp the function of neuron cells, we model them in quantitative representations;

these are a set of equations that tailor to a specific neuron such as cells in the mammalian

sensory cortex, the hippocampus, or the thalamus [1]. The brain, in its more basic form,

is a complex network, interconnected in such a way where pattern recognition, thinking

analysis and motor work is possible. Likewise, a neural network is a circuitry of individual

instances of neurons (based on a model). Two main groups divide the studies of multiple

topologies: first, the people who want to learn how the neurons learn, and the scientists

which interest is to comprehend how the internal mechanics of the neuron interact in its

processing capabilities. The first topic, usually, manages models where the resemblance

is morphological to a neuron; because the computational cost by including sophisticated

will make more difficult the task at large-scale. The second is more interested in models

where its variables and parameters are associated to biological mechanism from brain

neurons; these experiments follow the range from one single neuron towards the order if

the thousands of cells. A perfect model won’t exist ([1], [8]); thus, the artificial cell we

simulate remains constrained.

The field of neural networks is a broad topic, but the set of neural networks of interest

for this thesis are the spiking neural networks (SNN), not the artificial neural networks

(ANN). The SNNs are the closest neural network that reassembles the biological ones [9].
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Our research focuses on improving the computational performance in these biophysical

inspired SNN-related simulations.

1.1.3 Spiking neural networks

Two important terms to achieve a biologically accurate representation of an SNN is the

connectome and the synapse model. The connectome is the fixed arrangement in how

regions of the brain grow routed. According to the dimensional scale, there are two

classes: macro-connectomics (localization of brain activity under emotions or specific

thoughts), or micro-connectomics (hierarchical structure of sub-networks on regions) [4].

Every physical connection is a channel to share information between cells (synapse). The

synapses can occur by different mechanic means; in general, there are electric and chemical

synapses.

The electrical synapses are the simplest synapse type and consist of intercellular channels

that allow ions and small molecules to pass from one cell to the next. These synapses

are also known as gap-junctions. Gap-junction does not distinguish between pre- and

postsynaptic neurons [10]. Chemical Synapses sequence starts when the pre-synaptic

signals travel via a release of neurotransmitters from the pre-synaptic neuron, which binds

to receptors at the postsynaptic neurons [10]. The most crucial feature from the synapses

is that they are a complex mechanism in which they can regulate networks and filter

information. The learning process of the neural networks is believed to come from the

plasticity of the connections given by the synapses (such as spiking-dependent dependent

plasticity or STDP) [10].

Herz et al. [8], categorized single-cell models for SNN in five levels, each level repre-

sents a layer of abstraction where the model is simplified. For the level I models, they

have great detailed compartmental models obtained from anatomical reconstructions and

based on the spatial structure. i.e., a complex dendritic tree quickly needs more than

1000 compartments to capture the cell’s specific electrotonic structure [8]. Level II mod-

els reduced the order of complexity by decreasing the number of compartments between

two to four. These reduced models are often sufficient to understand soma-to-dendritic

interactions that govern spiking or bursting [8]. Likewise, Level III reduces the compart-

ments to a single one per neuron. These models have led to a quantitative understanding

of many dynamical events, including phase-sync spiking, bursting, and spike-frequency

adaptation [8]. Then, Level IV models are cascade models. They are a concatenation

of mathematical primitives, such as linear filters, nonlinear transformations, and random

processes. Limitations start when emulation of far downstream from the sensory periph-

ery cannot synthesis precisely its behavior. Lastly, level V models only center around

the signal-processing capabilities of a single neuron without considering its bio-physical

machinery.

Fig. 1.1 shows the typical workflow in simulation-centric methodologies in neuroscience

(according to [4]). The first stage is the data gathering from experiments; then, the
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Figure 1.1: Simulation experiments typical workflow [4].

obtained data-set is processed and fitted to a particular SNN model, which is common in

in-silico experiments. The validation stage analyses the output of the simulation; this is

compared to the source data via visualization or statistical methods. Further refinements

of the model go to in the final stage, which gives new hints for research.

Sometimes it is desired to use a neural model that is hardware-friendly to optimize and

feasible to run a large-scale experiment. The SpiNNaker project [11] is a neuromorphic

computing platform that is optimized to perform these types of models such as leaky inte-

grate and fire (LIF) and Izhikevich model. Other projects like Bluehive ([12]) and Zedwulf

([13]) work on these models too. But, on this thesis, the goal focuses on simulations of

Level II models that inherit the Hodgkin-Huxley model.

1.2 FPGA in High-Performance Computing

High-performance computing (HPC) is a discipline in computer science which searches

for the most effective methods to tackle big problems to execute. In the area of research,

the most common HPC technology stacks are of many-core CPU systems and GPUs

accelerators [14]. Recently, Field Programmable Gate Arrays (FPGA) gains attention on

the community by excelling in performance on specific applications such as bioinformatics

and digital signal processing [14]. The FPGAs are flexible devices that can be designed

as a custom ASIC chip but reconfigured internally at any moment. Their power relies
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upon their innate design, where via an array of reconfigurable device primitives, it can

fit almost every digital architecture. According to [15], the FPGAs’ market was niche;

but, with the rapid advances in the semiconductor industry, the FPGA market grew, by

consequence, its applications increased. In [14], the FPGAs suits better for applications

that can take advantage of custom data widths operands, combinational logic problems,

finite state machines, and parallel MapReduce problems; but, GPUs and many-core CPUs

are still preferable in intensive floating-point calculations.

Electronic design automation (EDA) tools had improved alongside the FPGA generations;

thus, the FPGA design experience can be the most productive it has been; bringing down

the barrier of entry (see [16] for more details on the FPGA’s history). One feature that

boosts productivity in FPGA projects is the high-level synthesis (HLS) tools. The HLS

methodologies bypass the need to meticulously design every component of the system on

a hardware description language (HDL), which takes a great effort to write down and

test [17]. The HLS tools make the description of the desired system in a higher-level

programming language (i.e., C/C++) into an HDL design [17].

The HLS tools is a subject on research because the quality of results produced in HLS

are worse than manual register-transfer level (RTL) coding flows [17]. Nevertheless, HLS

is currently a viable option for fast prototyping, according to [17]. Some of the HLS tools

available on the market are LegUp, Catapult, Chisel, Vivado-HLS, and many more (check

[17] for more HLS tools and their usage). Under the subject on HLS in HPC, it made

the transition more comfortable for a software developer to use FPGA effectively, i.e., via

OpenCL API [18].

1.2.1 Programmable System-on-Chip: opportunities for high-

performance computing

Modern system-on-chip (SoC) development platforms often offer heterogeneous computing

opportunities where an FPGA is integrated with a CPU through a fabric. As stated

in [19], single-chip heterogeneous computing are a great deal in their energy efficiency.

Energy is critical in embedded applications which are battery-powered but is not apparent

the importance in HPC computing; technically, power requirements gives insight about

the scalability of the system because the heat dissipation makes the implementation not

practical to implement[19]. Heterogeneous SoC is a novel solution that could combine

the forces of serial processing capabilities of many-core CPUs with massively parallel

computing with reconfigurable fabric.

In [12] proved a low-cost FPGAs cluster could manage large-scale SNN simulations, an

implementation that was more cost-effective than a high-end FPGA implementation. Al-

though the neural model achieved was the Izhikevich model thus the biological meaning

of the machine is lower. Taking similar steps from [12], how can we extend this design

to a more challenging SNN model such as a multi-compartment cell. This kind of model

usually is computed on single-precision floating-point, even on double precision in some
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scenarios[1]. FPGA implementations could be not ideal by high-end GPU FP capabilities

on this scenarios[14]. However, heterogeneous computing in FPGA programmable SoC

can cover the FPGA’s weakness because a many-core CPU system can handle most FP

processing and the FPGA computes the most substantial workload of the SNN. With this

approach, we see benefits in FPGA’s resource savings, which imply a smaller footprint,

and therefore it can fit in low-cost FPGAs. This thesis works further on this premise.

1.3 Scope of this thesis

The objective of this thesis is to develop a heterogeneous computing system for an SNN

model derived from the HH model. The proposed method implements FPGA hardware

acceleration to speedup its simulation runtime. Unlike other authors (same mentioned

previously), the scheme follows an approach in programmable SoC (PSoC) computing,

where the optimization of the SNN benefits from the architecture of the hardware. Due to

the hard-work required to optimize one SNN in hardware, there is no guarantee that the

model will be relevant in the long run but similar techniques can extend to other similar

models.

1.3.1 Structure of this document

Three main chapters organize this document. The following chapters gather information

and analysis from published work in [20] and [21] by the author of this thesis. Chapter 2

includes the profiling of the performance of the algorithm. Chapter 3 describes the HLS

implementation on an FPGA to generate the HDL synthesizable hardware. And finally,

chapter 4 details the software side of the implementation and it describes how vectorized

code for the inferior-olivary model using NEON SIMD was implemented.



Chapter 2

The Inferior Olivary Nucleus eHH

Model: Computational Load

Analysis

2.1 The inferior olivary nucleus model

The inferior olivary nucleus (ION) forms an intricate part of the olivocerebellar system

which is believed to be related to the timing of motor commands and learning [22].

The main feature of this cell is that it forms part of the densest brain region where its

activity only gets triggered when multiple neurons are synchronized (and subsequently

transmitting a short burst of spikes [22]). To effectively emulate this behaviour, De

Gruijl et al. [22] developed a model based on a three-compartmental cell (dendrite, soma

and axon) with GJ interactions between the dendrite-compartments of each neuron (see

Fig. 2.1). The model is also called the extended Hodgkin-Huxley model (eHH). The

operations are performed with single-precision floating-point (SPFP) representation; a

summary of the required SPFP operations and data transfer needed for the different

sections of the model are given in Table 2.1.

As discussed in [20], [23], [24], the eHH ION model has a computational complexity that

is mainly determined by the GJ interactions, particularly when the network is densely in-

terconnected, being the worst case an all-to-all connection, when the complexity becomes

Ogj(n
2), with n the number of dendritic connections for each cell. As an aside, since a

required property of a biologically accurate cell model is that the neural network must

be synchronized in order to guarantee the correct calculation of the dendritic phenom-

ena, event-driven simulations are discarded [25], and the differential equations are usually

solved via the Euler method [22].

7
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Figure 2.1: Schematic representation of the three-compartmental cell model proposed in [22].

Each arrow indicates an ion channel or electrical current direction.

Table 2.1: Single-Precision Floating-Point (SPFP) operations and transfers per simula-

tion step, per neuron [23], [26]. Here, N means the total neuron population.

Operational compartment No. of SPFP operations

Gap junction unit 12×N
Cell compartment (Axon, soma, dendrite) 859

I/O and storage No. of SPFP transfers

Neuron state (R/W) 19

Evoked input (R) 1

Connectivity vector (R) 1×N
Neuron conductances (R) 20

Axon output (W) 1 (axon voltage)

2.2 FPGA approaches at simulating biologically ac-

curate SNN models

Plenty of work has been carried out in porting SNN models to FPGAs, as the already

mentioned cases of [9], [27]. But there are also other SNN implementations (single com-

partment unlike ION), as that of [12], [28], and some have also already used heterogeneous

platforms as the one used in this work (see [13]), proposing a cluster of 32 boards in or-

der evaluate the communication performance of a sparse graph-oriented application using

MPI (in this case a sparsely distributed Iz based SNN). These sparse SNN models are,

nonetheless, not able to support the ION model, which is one of the main objectives that

motivated this work. As already discussed, a key aspect of the ION system is the dense

interconnection among the cell population. Researchers in [9] and [27] center their strat-

egy around multiple instances of execution units of neural cells called physical cells (PC).

Each cell-state is associated with one PC, then each PC executes a set of cell-states each
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simulation step. In both cases, their approaches are fast enough to achieve locked-step

simulation at a 50 µs time step (necessary for the model’s convergence, in order to have

simulation timings equivalent to the brain’s own real time response), but circumscribed to

a small cell population in a all-to-all dendritic connection. This sizing restriction is mainly

due to the inner gap-junction interactions within the dendrite compartment. These oper-

ations are modelled as a pair of nested for loops (see 2.1), that scale in a O(n2) fashion

as the number of dendritic connections, n, increases. One could easily try to port to

hardware via an HLS loop-unrolling directive that distributes into parallel hardware the

arithmetic operations. But this direct approach, unfortunately, does not scale effectively

because of hardware resources sharing among the rest of the PC’s compartments, which in

the case of [9], limit the total number of real-time simulated cells to 96. The work of [27],

claims bringing up the total number of real-time running cells up to 768 for a single Zed-

board (in what seems to an 8-way connection scheme among neurons, with no specific

experimental timing results given for their proposed Multi-FPGA platform), at the cost

of a customized structure, not readily ported to a different SNN model. Both [9], [27]

claim the capacity of accommodating larger SNNs if this real-time constraint is removed,

nonetheless.

2.3 An heterogeneous approach to SNN simulation

accelerators

This thesis work aims at providing an efficient accelerated implementation of the eHH

ION model, that is also flexible enough in case of requiring extensive modifications of

the model used, without losing efficiency. The overall high level architecture used is

shown in Fig 2.2, using Avnet’s Zynq-7020 SoC ZedBoard with 512MB DDR3 RAM.

The processing region of the Zynq (called PS) includes a dual-core ARM A9 CPU, with

NEON SIMD capabilities, plus several I/O controllers such as an Ethernet interface.

The integrated Artyx-7 FPGA fabric (called the PL region) is interconnected via several

AXI4 bus channels to the PS. The simulation task is partitioned between the PS and

PL regions: the soma, the axon, and the dendrite compartments described by the eHH

equations are executed on the ARM cores. The gap-junction interactions are processed in

the PL region. Note that the latter has limited local on-chip memory (technically called

BRAM by Xilinx), making difficult for the whole conductance matrix to reside locally

next to the gap-junction processing unit (here called GJU), if the said so matrix is over

a few thousands elements. This entails a continues transfer of such matrix between the

DDR3 RAM and the GJU, in each computation step (a handicap that may easily be

overcome on FPGAs with bigger BRAMs).

To complement on the decision on what to port to the hardware, a profiling of the C

code of the eHH was carried on, running on a single thread in the ZedBoard’s ARM A9,

at SPFP. Result s are shown in Fig. 2.3. Notice the gap-junctions computational load

impact on the performance, as the network interconnection density grows. Without such
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load, the dendrite’s computation time falls under that of the other two compartments.

For realistic networks sizes (over hundreds of cells), the GJ is the costliest function), with

O(N2) complexity, while other compartment functions are O(N). Results agree with

reports in the literature (see [9]).

Figure 2.2: Overall system architecture. The GJU-IP is managed by one thread of the ARM

A9, via AXI4, while the other thread handles the axon, soma and dendritic com-

partmental models, and takes care of the system’s I/O.

Listing 2.1: Gap-junction pseudocode

f l o a t Vdend [N ] ;

f l o a t Iout [N ] ;

f l o a t Conn [N ] [ C ] ;

f o r ( indxNeu=0; indxNeu<N; indxNeu++){
f l o a t f a c c =0; f l o a t vacc =0;

f o r ( indxCon=0; indxCon<C; indxCon++){
v=Vdend [ indxNeu]−Vdend [ indxCon ] ;

f=v∗ expf(−v∗v ∗ 0 . 0 1 ) ;

f a c c+=Conn [ indxNeu ] [ indxCon ]∗ f ;

vacc+=Conn [ indxNeu ] [ indxCon ]∗ v ;

} Iout [ indxNeu ]=0.8∗ f a c c +0.2∗ vacc ;

}
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single-threaded implementation. The DnGJ+S+A curve plots the sum of the

three compartments, excluding the GJ. The soma compartment dominates, once

the GJU is excluded from the dendrite compartment.



Chapter 3

Gap Junction Unit Implementation

Using Data Flow HLS Optimizations

3.1 Defining GJU computation algorithm

As seen in Listing 2.1, the computation of the dendritic currents for each cell (Iout[N],

requires the traversing for each neuron of the network of a N × N conductance matrix

Conn[N][C]). This matrix defines which cells in the N ×N sized network share synaptic

connections and thus computation also requires as inputs the dendrite voltages of each

neighboring cell, Vdend[N].

Now, instead of loading the complete conductance matrix along with the dendrites’ output

voltages into the GJU, some data restructuring is carried on. This subdivision of the data

allows for more efficient DMA block transfers, and also makes hardware optimization of

the GJ operations easier (as more logic, DSPs blocks, FFs and BRAM become available for

data processing, instead of being occupied with data tables). Let the interaction among

neurons be defined by a conductance matrix C ∈ RN×N where C = [c1,c2, . . . , cN ], and

with each dendrite’s output voltage stored in a vector as v ∈ RN.

Let us define now a vector storing the potential difference between a particular dendrite

and all of its neighbors,

v
(i)
diff := v[i]~1− v (3.1)

where ~1 = [1, . . . ,1]. For each i neuron, one can create a vector f (i) ∈ RN where each

element f (i)[j] is paired with an element v
(i)
diff[j] as

f (i)[j] = v
(i)
diff[j] exp

[
−(v

(i)
diff[j])2/100

]
(3.2)

One can now find the vector storing all the currents generated in each dendrite by the

synaptic influence of its neighbors as defined by the eHH model, such that

iGJ = [I(1), I(2), . . . ,I(N)] ∈ RN (3.3)

12
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where

I(i) = 0.8f
(i)
acc + 0.2v

(i)
acc (3.4)

f (i)
acc = f (i) · c′i (3.5)

v(i)
acc = v

(i)
diff · c′i (3.6)

Note that the dot product in (3.5) and (3.6) can be divided in subsets of products of

some arbitrary number of M samples. If one defines the amount of sub-products as

K := ceil(N/M), then its recursive sequence for k ∈ {0, . . . ,K − 1} is

f (i)(−1) = v(i)(−1) = 0

f (i)(k) = f (i)[kM : (k + 1)M ] · c′i[kM : (k + 1)M ] + f (i)(k − 1)

v(i)(k) = v
(i)
diff[kM : (k + 1)M ] · c′i[kM : (k + 1)M ] + v(i)(k − 1)

⇒ f (i)(K − 1) = f
(i)
acc, v(i)(K − 1) = v

(i)
acc

Finally, note that the computing of M sub-products f (i)(k) and v(i)(k) share the same

input v[kM : (k+1)M ], then if v[iM : (i+1)M ] is available, V
(iM :(i+1)M)
diff can be computed

on the fly with each step k. Thus, each element in the sub-products can be executed in

parallel and accumulated as

I(iM :(i+1)M)(k) = 0.8f (iM :(i+1)M)(k) +

0.2v(iM :(i+1)M)(k) + I(iM :(i+1)M)(k − 1) (3.7)

where I(iM :(i+1)M)(k) can be understood as the processing of sub-blocks c′(iM :(i+1)M)[kM :

(k + 1)M ] of size M ×M and subsets v[kM : (k + 1)M ] of length M . Thus, after K

sub-blocks and sub-vectors from v are processed, the final result are M values I(iM :(i+1)M).

Some processing overhead is required in order to create the sub-vectors of the conductance

matrix (c′i) and the dendrite’s voltages, and sorting the final results. Besides, the DMA

block size ought not be so small such that DMA transfers become impractical: an optimum

block size need be determined in the design space. Also, the described algorithm is also

known in other literature as a strip-mined optimization as a coding pattern (see [29]). A

pseudo-algorithm code example for the GJ is shown in 3.1.

Listing 3.1: Gap-junction strip-mined optimization pseudocode (one strip)

VRow[ STRIP SIZE ] ;

VCol [ STRIP SIZE ] ;

popFirstV ( input ,VRow, VCol ) ;

Facc [ STRIP SIZE ] ; Vacc [ STRIP SIZE ] ;

whi l e ( count<ColBlockProc ){
f o r ( row=0;row<STRIP SIZE ; row++){
cond [ STRIP SIZE ] ;

popCond( input , cond ) ;
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popV( input , VCol ) ;

f o r ( c o l =0; co l<STRIP SIZE ; c o l++){
#pragma HLS UNROLL

V = VRow[ row ] − VCol [ c o l ] ;

F = V ∗ expf (V ∗ V ∗ hundred ) ;

Facc [ row ] += F ∗ cond [ c o l ] ;

Vacc [ row ] += V ∗ cond [ c o l ] ;

}
} count+=STRIP SIZE

}
I [ STRIP SIZE ] ;

f o r ( row=0;row<STRIP SIZE ; row++){
I [ row ]=0.8∗Facc [ row ]+0.2∗Vacc [ row ] ;

}pushI ( output , I ) ;

3.2 Applying Hardware Architecture Design Patterns

for Improving the GJ Accelerator in HLS

An GJU was designed using C++ and compiled to RTL using Vivado HLS with the

strip-mined loop transformation [29] previously detailed. Following the block diagram

shown in 2.2: note that in listing 3.1, the input and outputinterfaces match the AXI-

Stream interfaces, these ports and a configuration AXI4-Lite port will define the main

interfaces for the GJU. The Xilinx’s AXI-DMA IP feeds the voltage from the dendrite

and the interconnect conductance values to the interface, then writes back to the RAM

the generated current values.

Two specific considerations were carried out: the GJU input bus-width is set to 64 bit,

and allocating the dendrite’s voltage vector on BRAM while executing the GJ interac-

tions (eliminating the cost of DRAM fetching). The design philosophy tried to follow a

structured methodology to produce efficient C++ code that translate to optimal RTL in

HLS. These guidelines were taken from [29]. This methodology tries to reproduce RTL

stream blocks by representing explicit data-paths and its latency constraints.

3.2.1 Architectural design and coding methodology

As [29] indicates, two different but equivalent C++ portions of code producing the same

results, will not necessarily be ported to the same hardware processing structure, let alone

the most efficient. The inherent dataflow/paralellism nature of hardware must somehow

be made explicit to the HLS, which means that a detailed block diagram of the intended

architecture must be constructed in order to facilitate the best resulting code in terms

of the final generated hardware. This is a mandatory practice in Register Transfer Level
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Figure 3.1: Overall GJU-IP architecture. The GJU-IP is composed of 5 block processes:

blockControl, V read, calc, acc and Icalc. Each process runs in parallel fashion

and configured by control registers accessible via memory map AXI4-Lite interface.
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hardware design, which requires at least high level architectural knowledge on behalf of

the designer. Even though modern HLS tools ease the translation between the description

of functional data processing algorithms and their hardware implementation, the timed,

concurrent nature of hardware is still difficult to circumscribe using general programming

constructs, which means that synthesis tools are still not capable of generating optimal

solutions without guidance.

Therefore, an iterative study of the required GJU operations was first carried out, in order

to discover all data dependencies and thus create an efficient datapath. The final block

design, shown in Fig. 3.1, is the result of such iterative process. It is composed of five

software-programmable and independent modules. Each module shares configurable pa-

rameters which allow for partial or full execution of the GJ interactions, given a maximum

defined number of rows in the conductance matrix and a maximum fixed cell population

(which in this case was limited to 10000 cells in an all-to-all connection, due to system

requirements constraint at this value, nonetheless on the board could fit more cells). Each

module is synchronized by FIFO interfaces. The blockControl module receives the data

from the AXI-DMA stream. Meanwhile, data is packaged in 128-bit words and written

through the V read and acc FIFO interfaces. The V read module manages the storage

of the updated dendrite’s voltages in the local BRAM and fetches the voltages according

to the access pattern required (based on the conductance matrix row-column indexes).

The calc module computes the values of v and f (the same name variables as those from

listing 2.1) in data words of four Vj; therefore, the acc module accumulates each word

and sends each block component to I calc module.

The data parsing model is shown in Fig. 3.2; here, the conductance matrix is swept row-

wise, each row being divided into sub-matrices (this particular matrix accommodation

allows for later partitioning of the network among several boards). Pipelining is used

in order to traverse local rows from each sub-matrix (each row is composed of 128-bit

words). The I calc module writes to the output-stream in a burst of four Iout vectors,

when the main row is completed. The design’s performance is bound by the input-stream

throughput (the time it takes to read each dendrite’s voltage and associated conductances

matrix from DRAM).

In order to translate into hardware the design in Fig. 3.1, the C++ code must be now

be written using the guidelines given in [29], by identification the appropriate constructs

that would described the intended hardware structure. The architecture is functionally

translated by dividing each module as a task in which each communicator matches to a

FIFO interface during the synthesis process.

Dividing the project in multiple independent modules allows for individual module op-

timization tuning and testing, and makes therefore for a more maintainable base code.

Later performance inspection provides important feedback in order to balance the each

module’s optimization tweaking, such that there is no module faster in latency than the

others (which could complicate general synchronization). A wrapper function is used to

contain each modules: code listings 3.2 and 3.3 show the integration of each module in
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Figure 3.2: Representation of the execution procedure in the GJU-IP. The conductance matrix

is divided in sub-matrices with 16 conductances each. Each row in the blocks is

traversed in a pipelined fashion by the calc and acc modules. The results after

processing each row are accumulated by the I calc module which, after processing

all data blocks in the sub-matrix, produces the results of four GJ currents.

order to form the GJU-IP main interfaces. Note that the specific DATAFLOW directive in

listing 3.3 indicates to the HLS that processes are expected to execute concurrently.

Listing 3.2: Gap-junction unit wrapper pseudocode

void GapJunctionIP (

in64B i t s &input , Stream &output ,

i n t s i z e , i n t FirstRow , i n t LastRow ){
#pragma HLS INTERFACE a x i s port=input

#pragma HLS INTERFACE a x i s port=output

Config simConfig ;

s imulat ionConf ig<Config>

( simConfig , FirstRow , LastRow , s i z e ) ;

execute ( input , output , simConfig , s i z e ) ;

}

Listing 3.3: Gap-junction unit execution processes pseudocode

void execute (

in64B i t s &input , Stream &output ,

Conf ig &simConfig , i n t s i z e ){
s t a t i c 128 bitStream Vdata (” Vdata ” ) ;

s t a t i c 128 bitStream Cdata (” Cdata ” ) ;

s t a t i c 128 bitStream pData (” pData ” ) ;

s t a t i c Stream fData (” fData ” ) ;

s t a t i c 128 bitStream F(”F” ) ;

s t a t i c 128 bitStream V(”V” ) ;

s t a t i c 128 bitStream Facc (” Facc ” ) ;

s t a t i c 128 bitStream Vacc (” Vacc ” ) ;

#pragma HLS DATAFLOW

blockContro l (

input , Vdata , Cdata , simConfig , s i z e ) ;
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V read (

Vdata , pData , fData , simConfig , s i z e ) ;

c a l c (

pData , fData , F ,V, simConfig ) ;

acc (

F ,V, Cdata , Facc , Vacc , s imConfig ) ;

I c a l c (

output , Facc , Vacc , simConfig , s i z e ) ;

}

3.3 Results

Xilinx Vivado HLS is used for the implementation on a Zynq XZ7020 of the synthesized

design. The GJU-IP, with all the required AXI4 interfaces runs at 120 MHz on the FPGA.

The complete system performance is measured at this clock speed. The resources utiliza-

tion is given in Table 3.1 an a comparison in Table 3.2, between the initial implementation

[20] and the current’s. Note that the current design needs about 41% less arithmetic prim-

itives (multiply and accumulate units, DSPs in Xilinx lingo) and 43% less look-up tables

(LUTs). Nonetheless, due the temporal storage of the dendritic voltages and the FIFO

interfaces among the modules, about 14% more programmable LUTRAM and 600% more

BRAM are needed. This is not so serious, any way, as total LUTRAM required is un-

der 5% and BRAM at 30% of the XZ7020-1 resources count for each. Table 3.3 shows

a comparison between the effective utilization of the FPGA resources required to solve

SPFP operations for same ION model (although not the same connectivity scheme). The

current work exhibits better FLOPS throughput per DSPs and LUTs.

Table 3.1: FPGA resource utilization summary based on the ZedBoard development

platform. Note that room is still available if one were to fit another instance

of the GJU-IP in order to parallelize simulations further, taking advantage

of the four 64-bit AXI4-HP Bus channels available in the XZ7020-1.

Resources This work XZ7020-1 Total (%)

LUT 15 266 53 200 28.70

LUTRAM 846 17 400 4.86

FF 21 616 106 400 20.32

BRAM 42 140 30.00

DSP 91 220 41.36
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Table 3.2: Comparison between initial version [20] and current’s, in terms of FPGA

resources utilization for the GJU. The use of LUTRAM and BRAM primitives

increase because of the local storage of the dendritic voltages for the GJ

execution. Still, major savings are noticeable.

Resources Prior work This work Diff. (%)

LUT 26 877 15 266 ↓43.20

LUTRAM 739 846 ↑14.48

FF 27 468 21 616 ↓21.30

BRAM 6 42 ↑600.00

DSP 156 91 ↓41.67

Table 3.3: Utilization of FPGA resources and performance capacity of SPFP operations

executed on the FPGA fabric, compared against a all-to-all ION network [9]

implementation, and a 8-way connectivity reported in [27]. The tstep column

represent the execution time during one simulation step and the SimC column

means the total of neuron population simulated. This work displays a more

efficient performance density (ratio of FLOPS and FPGA resources) for the

given DSPs and LUTs units.

Source FPGA fclk DSP LUT SimC
tstep
(ms)

MFP

opts
MFLOPS

MFLOPS

/DSP

MFLOPS

/LUT

FLOPS

/(DSP ·fclk)

This work
Zynq-

7000
120MHz 91 15k

1056 4.8 13.38 2788 30.64 0.183 0.2532

1188 6.03 16.94 2809 30.86 0.184 0.2551

Smaragdos [9] Virtex7 100MHz 1600 251k 1056 1.1 14.29 12990 8.119 0.052 0.0812

Zjajo [27] Virtex7 100MHz 1008 190k 1188 0.05 1.135 22690 22.51 0.012 0.2251

3.4 Conclusions

This chapter has reported the application of a hardware-oriented methodology based on

HLS dataflow transformations, in order to improve FPGA-based HLS designs both in

time performance and resources saved. As a study case, results on the acceleration of

the simulation of a biologically accurate neural network on a heterogeneous SoC-FPGA

platform have been presented. The final design consumes fewer resources and runs 10 to

4 times faster than a previous implementation



Chapter 4

Software Integration and SIMD

Optimizations

4.1 Introduction

In this chapter, it is explained how it was integrated the software with the GJU to realize

SNN-extended simulations. The block diagram for the complete system SoC architecture

is shown in 2.2. Based of the system defined, its inferred that the software must be capable

to handle the DMA transactions and maintain memory coherence between both devices.

Also, it should configure the GJU registers according the simulation settings: Network

Size and Start, via the AXI-Lite interface.

The execution of the eHH model should be distributed on two threads. One thread

executes the soma and axon compartmental models, while the second manages the GJU-

IP in order to carry out the dendrite compartment computations. There are multiple

ways to cover this requirements with a software stack running in the ARM-A7 CPUs.

The chosen option is to use an operating system (OS) image to facilitate the software

development with high-level languages to integrate the usability of the GJU.

4.2 Software Stack

The operating system image created for this project is a composition of the following

software technologies:

• Operating System: linux-xlnx, Linux forked project maintained by Xilinx to

provide support for SoC-FPGA platforms such as Xilinx Zynq-7000 and Ultra-scale

series.

• Toolchain: GCC Linaro ARM32-hf toolchain, GNU C/C++ compiler. Used to

compile an image of the operating system and software developed for the platform.

20
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• Bootloader: Uboot, bootloader image that fetches the location of the OS image

into the RAM, and its parameters: disk location and device-tree.

• File system image: Linaro Ubuntu image, image that contains a file system

release of Ubuntu which is compiled and distributed by Linaro. The file system

image is paired with the toolchain used to compile them. For more details in how

to flash a SD memory with the image see [20].

• Linux Drivers: there are two main drivers used to cover the functionality of the

system:

– Linux Userspace IO: driver framework to handle memory-mapped devices ac-

cessible to userspace. Drivers developed using this framework move the core

logic to manage the device registers outside to the userspace instead of the

kernelspace. This driver is used to handle the DMA transactions and the GJU

configurations from the userspace software.

– udmabuf: userspace mappable DMA buffer. It is used to handle the coherency

between a DMA buffer mapped in RAM memory. This drivers takes a chunk

of reserved memory from system DRAM (up to 128MB) and provide support

to give a handle to the userspace application to use it and select when to

rollback the cache data into the DRAM and vice-versa, therefore the DMA can

read/write from the shared memory with the correct data. Original repository

in [30].

4.2.1 SNN Simulator Application - ZedBrain

This application is developed in C++ languange. It creates simulations according the

specification from a JSON configuration file. From the configuration file it loads the

parameters required to unveil the execution of the simulation. It has three phases:

1. Phase 1: Load from configuration file the parameters, allocate the required memory

according the need of the simulation, in function of the network size. Create the

handles to the GJU and AXI-DMA devices.

2. Phase 2: Create a DMA buffer and load the constant conductances of the network.

3. Phase 3 — Execution loop: execute Soma and Axon calculations while Dedrites’

GJ calculations finishes. From the DMA buffer is only required to update the

dendrite voltages for each simulation step. When GJU is ready, it can be finalized

the complete Dendrite computations. Finally, store the values of each Axon voltages

for each cell.
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4.3 Neon SIMD Engine

The Zynq-7000 processors are SIMD capable thanks to the Neon Engines. Each CPU

core has one Neon compute unit. This engines are capable to compute with 64/128 bits

words of data for both integer and floating point precision. The Neon engines are intended

to improve performance for applications that do data processing, data conversions and

memory accesses [31].

There is different ways to use this instructions, from a high-level, the compiler can makes

efforts to auto-vectorize code sections according to a predetermined coding pattern [31]

(support for this feature will vary between compilers and target hardware architecture).

Another common practice is to forward code declarations in the code, also known as prag-

mas, to help the compiler to locate the auto-vectorization opportunities. Normally, this

two methods are favored in standard code bases due to its portability and low investment

in time-to-optimize.

If the constraints of the project requires to obtain the best performance possible, the

programmer can accommodate in a assembly-like style the program by using intrinsics in

the code [31]. These intrinsic are functions and data-types that serves as a wrapper to the

programmer to manually select and use individual SIMD instruction. By using intrinsics,

the programmer is the responsible to properly vectorize the code but without enter in

such detail as writing assembly code. Its major drawback is to lose code portability.

4.4 Vectorization of eHH Inferior Olivary functions

The eHH computational model is divided in functions to calculate each ion current for

each cell compartment (see Fig. 2.1). These functions are presented in the Table 4.1. The

intrinsic functions and datatype selected to use are shown in Table 4.2, note that these

intrinsics work with vector words of four FP values [31]. Rewriting the inferior olivary

code to use NEON SIMDs is not a clear-cut task therefore, as it should be, the first step is

to review how in the original code deal with the cell state variables in memory. In the code

listing shown in 4.4, is shown an example of how is written the cell state in the original

code; note that the internal variables of the cell are packed in memory consecutively and

this causes issues by creating the NEON datatype float32x4 t because similar state

variables should be gathered manually and probably it will cause several cache misses.

The main change to facilitate the vectorization of the functions is to modify the declaration

of the cell state, by grouping the variables of each cell on a memory allocated space

according its field. In this way, the load and store is more cache friendly and by having

many local vector variables of the same state field, the vectorization is straight forward

due to having to port directly each scalar operation inside the functions in Table 4.1 to a

vector version from Table 4.2. An example of this kind of structure is shown in the code

listing 4.4.
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The final step to complete the vectorization, is to implement a NEON version of the

exponential function (ex). This was solved by using an open source implementation of

the vector exponential function written by [32]. This vector function receives and returns

the same datatype of float32x4 t as the other ones.

Table 4.1: The functions targeted to optimize with code vectorization. Each variable in

Inputs and Outputs columns uses single precision FP data. For a neural

network, during a simulation step each function is called once for each neural

cell.

Functions to optimize Inputs Outputs

DendHCurr prevHcurrent q, prevVdend Hcurrent q

DendCaCurr prevCalcium r, prevVdend Calcium r

DendKCurr prevPotassium s, prevCa2Plus Potassium s

DendCal prevCa2Plus, prevI CaH Ca2Plus

DendCurrVolt Ic, Iapp, Hcurrent q, Cal-

cium r, Potassium s, prevVdend,

prevVsoma

Vdend, I CaH

SomaCalcium prevCalcium k, prevCalcium l,

prevVsoma

Calcium k, Cal-

cium l

SomaSodium prevSodium h, prevVsoma Sodium m,

Sodium h

SomaPotassium prevPotassium n, prevPotas-

sium p, prevVsoma

Potassium n,

Potassium p

SomaPotassiumX prevPotassium x s, prevVsoma Potassium x s

SomaCurrVolt prevVdend, prevVsoma,

prevVaxon, Calcium k, Cal-

cium l, Sodium h, Potassium n,

Potassium p, Potassium x s

Vsoma

AxonSodium prevSodium h a, prevVaxon Sodium h a,

Sodium m a

AxonPotassium prevPotassium x a, prevVaxon Potassium x a

AxonCurrVolt prevVsoma, prevVaxon,

Sodium h a, Sodium m a, Potas-

sium x a

Vaxon

4.5 Results

To proof the improvements in the code, it was written a set of benchmarks using the

Google Benchmark library [34]. The measurements consisted in a simple time execution

comparison between the scalar function runtime four times versus the vectorized function
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Table 4.2: Basic intrinsic functions and datatypes supported by ARM

Scalar DataType NEON Datatype Description

float float32x4 t Packed struct that holds

four FP values. Datatype

used in NEON Intrinsics.

Scalar Operation NEON Intrinsics Description

Addition vaddq f32(float32x4 t a,

float32x4 t b)

FP vector addition.

Multiplication vmulq f32(float32x4 t a,

float32x4 t b)

FP vector multiplication.

Negative vnegq f32(float32x4 t a) FP vector negate sign.

Reciprocal

vrecpeq f32(

float32x4 t a)

vrecpsq f32(

float32x4 t a,

float32x4 t b)

The reciprocal operation is

divided in two steps: recip-

rocal estimate and recipro-

cal step. The use of these

intrinsics imply a Newthon-

Rhapson method to calcu-

late the reciprocal. See [33]

for more information.

Load vld1q f32(float *ptr) Read and load from mem-

ory a structure of four FP

values.

Store vst1q f32(float *ptr,

float32x4 t a)

Store from struct of four FP

values to memory.

Listing 4.1: Pseudocode example of a scalar struct that holds the state variables of a cell

typede f s t r u c t Ce l l {
f l o a t Var1 ;

f l o a t Var2 ;

. . .

f l o a t VarX ;

}Ce l l ;

Ce l l NeuralNetworkState [N ] ;
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Listing 4.2: Pseudocode example of a vector friendly struct that holds the state variables of a

cell

typede f s t r u c t NeuralNetworkState{
f l o a t ∗Var1 ;

f l o a t ∗Var2 ;

. . .

f l o a t ∗VarX ;

}NeuralNetworkState ;

with the NEON improvements; the benchmarks were run in hardware using the Zed-

Board development board. The results are shown in Fig. 4.1, note that the functions

CompDend, CompSoma and CompAxon are wrappers that internally make calls for the other

optimized functions, therefore they are seen as an accumulative improvement with the

other functions. CompDend improves by a factor of ≈ 4, CompSoma with a factor of ≈ 4.5

and CompAxon by ≈ 4.2.

To guarantee that the integrity of the precision is kept the same, the code was tested

using multiple written tests using the Google test library [35]. The method consisted of

comparing the outputs of the each of the functions versus its scalar implementations by

bounding a tolerance of 0.0001%.

Figure 4.1: Performance comparison between the original scalar code versus the NEON ver-

sion. The scalar execution time is measured by running the same function call

four times.
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4.5.1 System integration results

Figure 4.2a compares the execution-time of the proposed system (sw hw accel), for net-

works of different sizes, against C code running on the single-threaded 32-bit Zynq’s ARM

A9 @666MHz (sw), a single-threaded NEON SIMD optimized version on the same core

(sw simd), a Quad Core Intel 64-bit i7-7820HQ @3.9GHz running the AVX2 SIMD opti-

mized code on a single thread (i7 sw simd), and data from an eHH HLS version (virtex

hw) completely ported to a Virtex XC7VX485T @100Mhz, taken from [9]. The improve-

ment is of at least one magnitude order, when comparing the sw hw accel solution against

the sw simd option, and it is equivalent to the i7 sw simd option. The implementation,

nonetheless, underperforms by one magnitude order against what’s reported in [9], but

the latter running on a 10 times more expensive Virtex-7 board, and without scalability

outside the board.
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Figure 4.2: Results from evaluating the ION eHH model, with the GJU-IP running on a Zed-

Board’s Zynq XZ7020-1. The soma, axon and dendrite compartments are exe-

cuted on the Zynq PS, under Linux. The PL runs at a 120 MHz clock frequency.

Average computation performance is given in sub-figure 4.2a for a single step.

Sub-figure 4.2b shows that error ε is under 0.00001.

4.6 Conclusions

In this chapter it was determined how the overall system integration works, how the code

modifications in the data structures and the use of NEON intrinsic functions reduced

four times the execution time of the inferior olivary eHH model implemented; and the
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performance obtained in the complete system.



Chapter 5

Conclusions

A heterogeneous implementation of the eHH model on an Avnet Zynq-7020 ZedBoard

has been presented. A comparison of performance against previous work of this thesis

author and a baseline model performance extrapolated from results from [9] is shown in

Fig. 4.2a (logarithmic scale on both axes). Average resolution time for a computational

step is improved here 4× against results in [20] for ION cell populations of 1000 cells and

more, while reaching to 10× and more for ION cell populations under 1000 cells (in an

all-to-all connection scheme). The system is now only an order of magnitude slower that

the results given by [9] for a 100 cells ION simulation, on a much bigger FPGA. The

simulation timing step, nonetheless, is still an order of magnitude over the required 50µs

for converging to real brain timing. For reference, a comparison of a simulation output

is shown in Fig. 4.2b. Note here how the error extracted from this simulation case is

bounded at 0.00001 for the worst case.

The time required to generate three seconds of brain activity in this implementation takes

about 9 minutes (PS@666MHz, PL@120MHz), while a multi-threaded PC implementation

completes in 2:40 minutes (i7-7820HQ@3.9GHz). That’s only a third of the speed for a

much slower, cheaper alternative, both in cost and in power needs, the latter implied

in the total power consumption reported by Vivado for this design: two Watts, against

the 45 Watts reported for a i7-7820HQ@3.9GHz at full resources utilization (as reported

in [36]).

In this project, the main bottleneck seen is the AXI4 buses that reads from the DRAM.

Future work could treat the conductances as constant and work with them as binary

values; also separate the conductances storage to another DRAM only accessible to the

FPGA.
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[20] K. Alfaro-Badilla, A. Chacón-Rodŕıguez, G. Smaragdos, C. Strydis, A. Arroyo-
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