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Resumen

El procesamiento de señales sociales se ha desarrollado ampliamente en los últimos años,

permitiendo el surgimiento de nuevas áreas de investigación, entre ellas, la predicción de

atracción humana, donde se busca desarrollar sistemas computacionales que permitan un

mejor entendimiento de la dinámica de la atracción. En esta tesis de investigación se

plantea una metodoloǵıa de aprendizaje de máquina multimodal que utiliza la sincrońıa

de movimiento interpersonal para extraer patrones de comportamiento, que permitan pre-

decir automáticamente la atracción humana en eventos de citas rápidas, ayudando a una

mejor comprensión de esta. Se propone implementar un descriptor de movimiento para

una de las modalidades (Video), una etapa de extracción de caracteŕısticas de sincrońıa, un

modelo de representación multimodal y un clasificador para la predicción. La evaluación

de la metodoloǵıa se hará comparando, mediante una prueba de hipótesis (Wilcoxon),

el rendimiento del clasificador contra los resultado de estudios unimodales del estado del

arte.

Palabras clave: Atracción humana, comportamiento humano, aprendizaje de máquina

multimodal, auto-codificador multimodal, video, aceleración, representación multimodal,

sincrońıa, movimiento interpersonal, predicción, Wilcoxon.





Abstract

The Social Signal Processing (SSP) has expanded widely in recent years, allowing the

emergence of new areas of research, including the prediction of human attraction. The

goal is to develop computational systems that give a better understanding of the dynam-

ics of human attraction. In this research, a multimodal machine learning methodology

is proposed, using interpersonal movement synchronization to extract behavior patterns,

which automatically predict human attraction in speed dating events, helping to better

understand it. We propose to implement a motion descriptor for one of the modalities

(Video), a motion synchrony feature extraction stage, a multimodal representation model

and a classifier for prediction. The evaluation of the methodology will be done by compar-

ing, through a hypothesis test (Wilcoxon), the classifier performance against the results

of unimodal research in the state-of-the-art.

Keywords: Human attraction, human behavior, multimodal machine learning, multi-

modal autoencoder, video, acceleration, multimodal representation, synchrony, interper-

sonal movement, prediction, Wilcoxon.
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Chapter 1

Introduction

1.1 Context

The development of computers, robotics and mobile devices enabled significant progress in

the development of interfaces that allow human-computer interaction (HCI). The recog-

nition of voice, gestures, emotions and body movements through these types of interfaces

has been highly exploited by today’s society. This has allowed human-computer interac-

tion to go beyond just text, and opened up a new field of research called Social Signal

Processing. This field is defined by Vinciarelli [38] as “the computing domain aimed at

modeling, analysis, and synthesis of social signals in human–human and human–machine

interactions”.

As Vinciarelli et al. [39] states, the social signals are manifested through voice inflections

and multiple nonverbal behaviors such as facial expressions, gestures and postures. It also

explores how social behaviors, such as empathy, friendliness, and attraction, are expressed

as temporal patterns of specific social behavioral cues during a social interaction. In

addition, Vinciarelli et al. [39] states that these behaviors are not aleatory and could

determine the behavior of other people in a social interaction or in the context of it.

According to Vijayalakshmi et al. [37], one of the fields where social behaviors have

been studied through social signals is the emotional field, using facial expressions, voice

inflections and gestures, in order to analyze certain behaviors where emotions play an

important role.

Among other areas of research in this line, we have the detection and prediction of human

attraction. According to Veenstra et al. [36], finding a partner may not be complicated

for many people, however, a large number of them face various problems in finding a

person suitable to their preferences. This is why Internet dating sites, online pages that

help find a partner or search for people who are in some way compatible, are on the rise.

According to an article published by teletica.com [31], some experts believe that around

the world by 2030 Internet dating sites will be much more common than they are today,

making it a growing industry and a developing area of research.

1



2 1.2 Problem

Motivated by the above, this thesis aims to automatically predict human attraction using

video signals and motion acceleration, to understand whether certain non-verbal behav-

iors demonstrate romantic interest or not during social interactions. The importance of

automatic prediction lies in the need to understand the dynamics of human attraction

to somehow model this behavior, making machines capable to process and understand

human attraction effectively. It is also important to develop attraction detection sys-

tems capable of using human social cues to support people in finding a partner. In other

words, to make people have a better experience and comfort when faced with the problem

of finding a couple.

Existing research about automatic detection of human attraction implements a unimodal

approach, i.e. using a single type of data such as acceleration, video or audio. The main

limitation of these methods is that they can not identify specific characteristics that could

be achieved with another modality. In other words, do not have a complete picture of

the event, only a single perspective that may be insufficient to determine the presence of

attraction. For example, with acceleration sensors, general movements of the body as a

whole could be detected, as well as fine movements and axial movements; but exclusive

movements of the head or limbs might not be captured. With video, movements of limbs

and specific parts of the body could be more easily captured. Other relevant cues such as

position, distances and angles with respect to a reference could be determined, but axial

movement data could not be obtained as with accelerometers.

Therefore, this research thesis attempts to take advantage of the multimodal nature of

social interactions by capturing data from two different modalities that have two differ-

ent perspectives of the same event. Specifically tri-axial acceleration captured with ac-

celerometers and the video of people during the social interaction. With the information

from these two modalities we propose to make a multimodal representation by training a

Machine Learning model, which uses the motion information from both modalities (per-

spectives), to improve performance in predicting human attraction in social interactions.

Such social interaction will be taken from speed-dates, which are events where people

meet potential romantic partners for the first time during short intervals of time in the

range of minutes and then indicate whether they want to meet the partner again.

1.2 Problem

In order to gather information to understand the key components of human attraction,

much of the related research has been conducted through surveys, interviews, and form-

filling. However, these methods take a long time to analyze, the data processing is tedious,

do not provide a prompt response, are clearly invasive, and directly interfere with people’s

interactions. But, in reality the process of human attraction occurs in interactions where

there is usually no interference from third parties, people want to feel at ease in a safe

and undisturbed environment, where they can interact freely in total comfort and know

as soon as possible whether they were successful or not in the speed date. Consequently,
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there is a need to understand the dynamics of human attraction in social interactions

without interfering with them, promptly and in a real environment. Therefore, there is a

need to assess dyadic interactions in a non intrusive manner to automatically determine

if there is attraction between two people or not without the intervention of third parties

1.3 Proposed solution

In the field of psychology, research has been done to determine whether a behavior reflects

attraction or not. As in the work done by Guéguen [14], Karremans et al. [22] and Farley

[11], who found that mimicry and synchrony in movement have a positive correlation with

romantic interest. Also, the work of Nanninga et al. [26] and Ramseyer et al. [28] suggests

that synchrony, head movement and coordination are factors that can predict attraction.

This premise of using motion synchrony has already been used in other research, such as

in the work of Kapcak et al. [21] and Veenstra et al. [36]. Here they used, among others,

synchrony features to detect human attraction in a social interaction. However, they

employed data from only one modality at the time, acceleration and video respectively.

Taking these works and those from social psychology as motivation for this thesis, we

have that nonverbal behavior reflected in body movement is a key indicator of romantic

interest. This is why we intend to use video and acceleration modalities to capture

nonverbal behaviors associated with movement to analyze them in a multimodal approach,

by extracting features of motion synchrony through the acceleration in the three axial

axes and the movement present in the video. We then use these to assess inter and

intra-personal synchrony movement. With this, we aim to take advantage of the different

perspectives that each modality can give of the same event and the possible correlation

between data from different sources.

This data needs to be processed to find patterns that determine whether there is attraction

or not. However, discovering these patterns is a complex task for the average person and

requires a lot of analysis time. This is why using a Multimodal Machine Learning model

is so important for this development. As shown by [36, 29] and [21], Machine Learning

models can even improve attractiveness prediction over human perception by up to 15.3%

in men and by 6.8% in women. This is because these models could find patterns in

large amounts of data that could not be detected by an ordinary person. Also, Machine

Learning could automate all the process to requires less analysis time.

Our proposed solution is illustrated in Figure 1.1. From two modalities, motion synchrony

features are obtained, which we call, low-level features. In the specific case of acceleration,

these features can be obtained directly from accelerometer data in the three axial axes,

while for video, a stage where the motion can be quantified is necessary. For this purpose,

it is proposed to develop a method to extract the motion present in video from which the

motion synchrony features are obtained.

The synchrony features from both modalities are concatenated and used as input to a
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Figure 1.1: Proposed solution.

autoencoder (a neural network that learns a reduced data representation ignoring insignif-

icant data to reconstruct the input), in order to obtain a multimodal representation of

the synchrony, which is also reduced in dimension. This representation space, we will call

it Multimodal Representation.

Afterwards, the representation space obtained is then used as input to a classifier, to

evaluate two cases of attraction. The first one, individual interest case, i. e. whether

one of the participants was attracted to the other. Second one, the mutual interest

case, i. e. whether both participants were attracted to each other. For each case,

we have four binary classification problems that represent a different type of attraction

interest, each of them could have a specific nonverbal behavior so we will study the

four problems to understand their implications. The four classification problems are:

SeeAgain, Friendly, Sexual and Romantic, when it concerns to individual interest, and

these four Match SeeAgain, Match Friendly, Match Sexual and Match Romantic when

it concerns to mutual interest. Although we will study all four problems, we will use

SeeAgain as the main case of study.

1.3.1 Proposed hypothesis

A statistically significant improvement in detection performance over unimodal baselines

in the prediction of human attraction will be obtained if motion synchrony is leveraged

from two different modalities.
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1.4 Objectives

This section presents the general objective and the specific objectives to be covered in the

development of the thesis, in order to provide a clearer picture of the scope and limits of

the thesis.

1.4.1 General Objective

Develop a multimodal method for automatic prediction of human attraction using video

and wearable acceleration sensors.

1.4.2 Specific Objectives

1. Adapt a multimodal dataset to specific requirements of this research.

2. Propose and implement feasible unimodal baselines for video and acceleration modal-

ities.

3. Implement the multimodal representation model with an autoencoder of the pro-

posed solution.

4. Evaluate whether the proposed solution provides a statistically significant improve-

ment over the state of the art.

1.5 Document structure

The following is the structure of the document containing the information and the steps

to be followed to achieve the objectives of this research. The concepts that provide

the theoretical basis for the proposed solution are presented in Chapter 2, the proposed

solution is developed in Chapter 3, the results and analysis are described in Chapter 4,

and finally in the Chapter 5 we present our conclusions and future work.
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Chapter 2

Related work

In this section we describe the theoretical concepts that support the methodology to

be developed. We present the bibliographical study of previous work, dataset, features

for each modality according to the state of the art and concepts of multimodal machine

learning.

2.1 Previous Work

One of the first research in the field of Automatically detecting human attraction was

conducted by Madan et al. [24], who studied romantic, friendly, and commercial interest

between people through audio analysis, extracting four main elements: activity, engage-

ment, emphasis, and reflection. Using linear classifiers, they achieved a 71% of accuracy.

Another audio-based research was realized by Michalsky et al. [25] who identified that

attraction behaviors can be detected through the tone of voice. Ranganath et al. [29] also

studied the difference between intention and perception through speech in speed-dates,

where both the speaker and the listener rated the speaker as someone who was “flirting”.

Their “flirting” detection system uses prosodic, dialogue and logic functions to detect

whether a speaker is trying to flirt, with an accuracy of up to 71.5%.

In previous research, the audio used was recorded at speed-dating events using portable

recorders and microphones, which participants wore close to their faces. These research

have shown interesting results, however, from the point of view of privacy, audio is not

the best modality, since it requires recording people’s own words, invading their intimacy.

Some people reported to not feel completely free [21] to express themselves and may

also experience some discomfort knowing that their words are being recorded, generating

inaccurate data as it is unclear whether a certain voice intonation is due to attraction or

discomfort.

More recent research uses less intrusive modalities such as overhead video recordings and

wearable acceleration sensors in speed-dates. In the case of video, trajectory and position

tracking methods are used to detect whether certain movements or nonverbal behaviors

7
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are evidence of physical and sexual attraction. Veenstra et al. [36] used videos of eight

women and eight men in 64 speed-dates events, with an average age of 23.4 years, and

cameras placed on top of the participants. They used location and relative position of

the participants as features of attraction, that were extracted through a combination of

background subtraction and clustering. The cluster centroids represent the location of

the participants which are tracked to obtain the trajectories and position. Using SVM

and KNN classifiers they predicted attraction as a binary problem with an accuracy of

70% for females and 72% for males for certain motion characteristics, whereas using only

synchrony-base features they achieved an prediction accuracy of 48% in males and 55%

in females. This research is the state of the art for automatic attraction detection using

the video modality.

Using wearable devices attached to people’s chest like a badge, Kapcak et al. [21], devel-

oped a method that consists in modeling the nonverbal behavior extracted from a tri-axial

accelerometer. The mean, variance, and power spectral density of each of the axes are

extracted. From these, they obtain features such as correlation, mutual information,

metrics, and convergence between the signals of both persons achieving an AUC of 80%.

They performed the evaluation using 10-fold cross-validation. However, this approach

could overfit the model because there could be information from the same participant in

the training and test dataset. It is important to mention that there is an extended version

of this research published by Vargas Quiros et al. [35]. This research is the state of the

art for the acceleration modality.

It should be noted that both Veenstra et al. [36] and Kapcak et al. [21] used synchrony-

based features but in a unimodal approach.

To the best of our knowledge, there is no development that implements a multimodal

approach with speed-dates data to detect human attraction using video and acceleration.

Therefore, compare to previous work in this thesis we further explore how multimodal

analysis impacts the detection of nonverbal behaviors of human attraction, and whether

somehow combining multiple modalities improves the detection performance.

2.2 Dataset

The dataset used in this work is MatchNMingle proposed by Cabrera-Quiros et al. [6].

It is a multimodal dataset created specifically to contribute to the automatic analysis

of social signals and interactions. It consists of 4 hours of uninterrupted recording of

conversations of 92 people. The data were taken in a real-life setting, during three speed

dating events on three different days.

The data collected include acceleration and video, using wearable accelerometers in a

badge-like device hung around the neck and overhead cameras. The participants were

single, heterosexual, college students between the ages of 18 and 30 years old. There were

30 people per event with 15 males and 15 females. The available data are as follows:
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2.2.1 Questionnaires

1. Speed-dates responses: After each speed-dates session, participants indicated whether

they were interested in the person with which they just interacted by answering the

following questions using a 7-point Liker scale, with 1 being the lowest and 7 being

the highest:

• How much would you like to see this person again?

• How would you rate this person as a potential friend?

• How would you rate this person as a short term sexual partner?

• How would you rate this person as a long term romantic partner?

Each of these questions is used as ground truth for four different classification prob-

lems; SeeAgain, Friendly, Sexual and Romantic, when it comes to individual inter-

est. And these four; Match SeeAgain, Match Friendly, Match Sexual, Match Romantic

when it comes to mutual interest.

2. Frontal photography: In each event, frontal photographs were taken of each par-

ticipant with different facial expressions: neutral, smile, and full body. These

photographs are necessary in the preparation of the data to identify the videos

corresponding to each person.

2.2.2 Sensors

Two modalities were used to collect nonverbal behavioral data from the participants:

1. Accelerometers: Each participant was given a sensor in the form of a badge. These

sensors were designed especially for social events. The sensors collect tri-axial data

at 20 Hz.

2. Video cameras: These data were collected using cameras with a resolution of 1920x1080

(16:9), at a sampling rate of 30 FPS in a wide vision. They are located at the top

of the room to avoid obstructions from the participants themselves.

2.2.3 Speed-dates statistics

In accordance with Cabrera-Quiros et al. [6], a date refers to the information of one

participant during a 3-minute date, whereas a date-interaction refers to the interaction

of two people during a 3-minute date.

Which means that each participant had a date-interaction with each participant of the

opposite sex. Thus, for day 1 each participant had about 14 dates and for days 2 and 3
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about 15 dates. In total 674 date-interactions were collected. However, due to some sen-

sors did not work properly, we did not have data from some participants, so we managed

to obtain only 65% of the interactions, in other words 435 out of 674 (Day 1 = 224, Day

2 = 225, Day 3 = 225).

It should be noted there are date interactions that have data from one participant only,

due to problems in some sensors and as a result of data processing.

2.2.4 Balance of classes

In order to make a better result of the analysis it is important to know the percentage of

positive classes by classification problem we have, after a binarization process described

in 3.4. In Figure 2.1 we can see how the positive classes are distributed by classification

problem. We can observe that for individual interests there is a good balance between

positive and negative classes, but for mutual interests there is a clear unbalance by having

much less positive classes than negative. This unbalance could affect the performance of

the classifier.
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Figure 2.1: Percentage of positive class of each problem by gender.

2.3 Synchrony of interpersonal movement

As described in Section 1.3, we will use motion synchrony features in order to capture

non-verbal behavior patterns. These features are based on works about Synchrony of

interpersonal movement that we describe as follow.

Chetouani et al. [7] define synchrony of interpersonal movement or motion synchrony, as

the dynamic and reciprocal adaptation of the temporal structure of behaviors between

interacting people. Unlike reflection or mimicry, synchrony is dynamic in the sense that
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the important element is synchronization rather than the nature of the behaviors. How-

ever, the distinction between synchrony and reflection can be blurred. These phenomena

are not mutually exclusive and can usually be observed simultaneously.

Also, Chetouani et al. [7] and Delaherche et al. [9] propose to use automatic techniques

to capture social cues and evaluate motion synchrony in human-human interactions.

The first step in calculating synchrony is to extract the relevant motion features of the

dyads with motion tracking devices, image processing techniques or physiological sensors.

After extracting the motion features, a similarity measure is applied. Correlation is

the most used method to assess interpersonal synchrony. Also, a time-delayed cross-

correlation is applied between the movement time series of the dyads by means of short

interaction windows.

Another method for evaluating the similarity of movement of two people is recurrence

analysis. This evaluates the points in time at which two systems show similar patterns of

change or movement, called “recurrence points”.

There are also spectral methods, which are an alternative to temporal methods for rhythmic

tasks. Spectral methods measure the relative phase evolution between the two persons.

They also measure the superposition between the movement frequencies of the two, called

cross-spectral coherence or power spectrum superposition.

2.3.1 Motion synchrony features

The Motion synchrony features must be extracted from statistical data such as mean,

variance and power spectral density obtained from signals divided into temporal windows.

From these data we can extract the features describes as follow:

1. Correlation: It is used to measure the similarity of body movement and body parts

such as hands and heads of two people, as indicated by Ramseyer et al. [28] and

Tschacher et al. [33], through the Pearson Correlation of Equation 2.1,

ρxy =

∑N
i=1(xi − µx)(yi − µy)

σ(X)σ(Y )
(2.1)

where x and y are two distributions of N values that represent the movement in-

formation of two persons. µx and µy are the mean values of x and y distribution

respectively, and σ(X) and σ(Y ) are the variance of x and y distribution respec-

tively. A value equal to 1 is expected when two people show interest in each other.

2. Mutual information: It is used to calculate the dependence between who interacts.

This is shown by Cabrera-Quiros et al. [5] and Gedik et al. [12]. In this case,

dependence between two people is captured, and it is calculated as:

I(X;Y ) = H(X) +H(Y )−H(X, Y ) (2.2)
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where, H(X) and H(Y ) represent the entropy of the random variables X and Y and

H(X, Y ) the joint entropy. In addition, the information is normalized and values

between 0 and 1 are obtained.

3. Mimicry: The objective here is to determine when one person mimics the other.

In this case, each sample of person A is compared with the consecutive sample

of person B, obtaining the distance between the low-level features, and using the

minimum, maximum, mean and variance as features.

4. Time-lagged correlation: This is used to measure the correlation between the move-

ment of the person following the conversation and the movement of the person

speaking. The correlation formula:

ρxy =

∑N−τ
i=1 (xi − µx)(yi+τ − µy)

σ(X)σ(Y )
(2.3)

is used for this purpose, where x and y are two distributions of N values that

represent the movement information of two persons. µx and µy are the mean values

of x and y distribution respectively, σ(X) and σ(Y ) are the variance of x and y

distribution respectively and τ represent a shift in time. A value equal to 1 is

expected when two people show interest in each other.

This process of extracting the synchrony features is illustrated in Figure 2.2, where the

motion of each person is extracted and then the individual and dyad features are extracted.

Movement
Extraction

Movement
Extraction

Generation of 
Synchrony Features

Figure 2.2: Synchrony features extraction process [9].

These types of features can be found in a single modality as shown in [21, 36], or in

different modalities as summarized by Chetouani et al. [7].

2.4 Multimodal Machine Learning

According to Baltrusaitis et al. [3], multimodal machine learning seeks to create mod-

els that can process and relate data coming from different modalities, i.e., coming from

different sources or measured using different types of signals, giving the possibility to

obtain correspondences between them and give a better understanding of the problem.

Baltrusaitis et al. [3] identify five main technical challenges for the implementation of
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multimodal machine learning, which are: representation, translation, alignment, fusion,

and co-learning. Of these fice challenges, the one that concerns this research is represen-

tation, which consists in how to represent multimodal data in a way that takes advantage

of the redundancy and complementarity of multiple modalities. Therefore, the solution

proposed in this thesis aims to represent the motion synchrony characteristics in a multi-

modal space, where correlation between video and acceleration modalities are leveraged.

(See Section 1.3)

2.5 Multimodal Fusion

Atrey et al. [1] state that within Multimodal Machine Learning, the integration of multiple

modalities, their features or intermediate decisions to perform an analysis task is called

multimodal fusion. The fusion of different modalities is generally performed at two levels:

early fusion and late fusion.

2.5.1 Early fusion

In this strategy there are classifiers or analysis units AU that provide the Dn decisions

based on the Fn features of each individual modality. The decisions are merged into a

decision vector that is further analyzed to obtain the final decision, as shown in Figure

2.3.

Figure 2.3: Early fusion [1].

Early fusion has the advantage of using correlation between different modalities at an

early stage which helps to improve the analysis. In addition, it requires only one learning

phase.

2.5.2 Late fusion

In this case the features are extracted from the data, combined and used as input to a

single classifier or analysis unit AU . For example, in a face detection model, multimodal

features such as skin color and motion signals are combined into a single larger feature
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vector that is taken as the input to the detection model. Figure 2.4 describes this process,

where Fn represents the features, FF the feature fusion unit and AU the analysis unit.

An example of this late fusion, is the Majority Voting method, where the final decision is

the one in which the majority of classifiers reach a similar decision.

Figure 2.4: Late fusion [1].

2.6 Multimodal Representation

As Baltrusaitis et al. [3] explain, an entity can be represented by vectors or tensors that

contain the data of this entity, for example, entities such as images, audio, words, or

sentences. A multimodal representation includes data that contains information from

multiple entities. This presents several challenges, such as combining data from hetero-

geneous sources, handling different types and levels of noise, and loss of data from some

of the modalities.

Bengio et al. [4] identify properties that make a good representation: smoothness, tem-

poral and spatial coherence, sparsity, and natural grouping, among others, but mainly it

is required that the representation has to be easy to obtain even in the absence of some

modalities, and it must be possible to complete the missing modalities given the observed

ones.

For a better understanding of multimodal representation, in [3] it is proposed to divide it

into two categories: coordinated representation and joint representation.

2.6.1 Coordinated representation

In the coordinate representation, each unimodal signal is processed separately but requires

similarity constraints on each one to bring them into what is called a coordinate space,

as shown in Figure 2.5. Mathematically it is described as:

f(x1) ∼ g(x2) (2.4)

where x1 and x2 are the input vectors by modality, and (f, g) are the functions that project

each modality into the coordinate space. Examples of these functions are minimizing the

cosine distance or maximizing the correlation.
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~

f(x1) f(x2)

x1 x2

Coordinated
Representation

Optional
Processing

Unimodal

Figure 2.5: Coordinated representation [3].

2.6.2 Joint representation

The joint representations combine the unimodal signals in the same representation space,

as shown in Figure 2.6. Mathematically it is described as:

xm = f(x1, . . . ,x2) (2.5)

where the multimodal representation xm is obtained by means of the function f , which

can be a Neural Network, CNN, RNN, Boltzmann Machine, Autoencoders, etc.

Unimodal

Processing

Joint
Representation

xm = f(x1,x2)

x1 x2

Optional

Figure 2.6: Joint representation [3].

2.6.3 Autoencoders

For the purpose of this research, we will use a joint representation method called au-

toencoders [3]. They could be defined as early or late fusion depending on requirements.

According to Lopez Pinaya et al. [23], autoencoders are neural networks trained to recon-

struct an input in an unsupervised way, removing unnecessary information from the input
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and taking advantage of any possible relations between the data required to reconstruct

the entry.

The main function of the autoencoders is to learn a useful representation of the data,

usually in a compressed format, that is performed by a neural network called an encoder.

Then this representation is reconstructed by another neural network called decoder [18].

Thus, the problem consists of learning the functions A : Rn → Rm (encoder) and B :

Rm → Rn (decoder), where m < n, satisfying [2]

arg minA,BE [∆(x, B ◦ A(x))] (2.6)

where E represents the expectation over the distribution x, and ∆ the reconstruction

loss function, which is usually obtained by measuring the distance between the decoder

output and the encoder input, using ℓ2−norm and, A and B being neural networks [23].

The autoencoders generate a latent space, also called latent representation, or reduced

dimensional representation space z similar to what is achieved with Principal Component

Analysis (PCA), where a low-dimensional hyperplane is obtained in which the data is

located, so it can be said that an autoencoder is a generalization of Principal Component

Analysis [27]. This dimensionality reduction is obtained by imposing a “bottleneck” by

reducing the size of the hidden layers of the encoder neural network. This representation

can be used for purposes such as data compression, noise reduction and feature extraction.

Figure 2.7 shows an illustration of the model, where x represents the input data, z the

latent representation and x̃ the output of the decoder, i.e. the reconstructed input.

z

x ~x
encoder decoder

Latent
representation

Figure 2.7: Autoencoder model [23].

2.6.4 Autoencoders for classification

While autoencoders are trained in an unsupervised manner, they can also be used in a

semi-supervised methodology, where part of the data is labeled, to improve the results of

a classification. In this case, the encoder is used as a feature generator in the latent space

which is then taken as input to a classifier, as shown in Figure 2.8. The expectation is

that samples with certain labels correspond to some specific latent representation.
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First, the autoencoders are trained in an unsupervised way to obtain the latent represen-

tation. Then, the decoder is set aside and the encoder is used as input to a classification

model, for example an SVM or some neuronal model.

encoder decoder

z

x x~

Latent
representation

Classification

Figure 2.8: Autoencoders for classification [23].

2.6.5 Multimodal Autoencoder

According to Ghosh et al. [13] and Hu et al. [15], the autoencoder model is one of the

most popular multimodal data fusion model, called Multimodal Autoencoder. In this

model the input data consists of multimodal data, where each sample is denoted as

x = {x1,x2, . . . ,xM}, having M modalities and the training set consists of N multi-

modal samples. The features of all modalities are concatenated in a single input vector

and passed through the encoder stage, which mixes the information obtaining a latent

multimodal representation; z(x1,x2, . . . ,xM), where it is expected to preserve the cross-

modal semantic relations [8].

The main advantages of this multimodal representation model are the following:

1. The model can take advantage of correlation, redundancy, and interactions between

the features of each modality. That is, it can extract relationships between modali-

ties and learn how data from one modality to another complement each other.

2. The correlations between modalities can be used to recognize patterns that exist

only between modalities.

3. Only one stage of unsupervised training is required, which facilitates the entire

training process.

4. It is robust to noise and the absence of any of the modality.
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2.7 Evaluation metrics

2.7.1 Receiver operating characteristic (ROC)

According to Huang et al. [16], the receiver operating characteristic (ROC) curve has been

used in signal detection theory to represent the trade-off between hit rates and false hit

rates. In recent years, it has been used to evaluate the performance of machine learning

algorithms, using the relationship between false positive and true positive rates. That

is, having the true positive (TP ) and false positive (FN) rates predicted by a classifier,

defined as:

TP =
positives correctly classified

total positives
(2.7)

FP =
negatives incorrectly classified

total negatives
(2.8)

We can create a graph with FP in x axis and TP in y axis, resulting in a curve called

ROC curve. Figure 2.9 represents the ROC curves of 4 classifiers. Each curve represents

one classifier. It is said that one classifier dominates another one, when its curve is

above and to the left of the other curve. For example, in Figure 2.9 classifier A has a

better performance than B and D. However, there are some cases where this is not so

straightforward, for example, if we compare curves B and C we cannot determine which

curve is above or to the left of the other. In these situations, the area under the ROC

curve (AUC) is a convenient way to summarize and compare the ROC curves.
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Figure 2.9: An example of four ROC curves. [16]

In accordance with Janssens et al. [17], the ROC is a probability curve and AUC represents

a measure of separability. It indicates the capability of the model to discriminate between

classes. An AUC close to 1 means that the model has a good class separability, when the

AUC is 0.5 or less, it means that the model has no class separability at all.



2 Related work 19

2.7.2 Precision-Recall Curve (PR curve)

In classification problems, performance is usually defined by the confusion matrix gen-

erated by the classifier, from which it is possible to calculate precision and recall [19],

defined as follows:

Precision =
TP

TP + FP
(2.9)

Recall =
TP

TP + FN
(2.10)

where TP are the number of True Positives, FP the False Positivse and FN are the

False Negatives. Using these values we can plot a curve like Figure 2.10. To create the

PR curve we need to vary the decision threshold. This figure shows an example of this

curve for three different models, each with a different predictive capacity. Model A, which

approaches the upper right corner, represents a high performing classifier as it has a good

balance between precision and recall; the area under the curve is close to 1. The curves

further away from that corner would represent lower performing models, such as model B.

In the case of model C, this means that it is predicting the negative class in most cases.
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Figure 2.10: An example of four PR curve

We chose these metrics because we have an unbalanced dataset as shown in section 2.2.4.

Both AUC and PR curves are robust to these unbalances. Metrics such as accuracy are

affected by unbalanced datasets.
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Chapter 3

Proposed solution

This chapter details the implementation of the proposed solution, as shown in Figure

1.3. Firstly we need to properly extract the low-level motion synchrony features for both

modalities. These features contain the nonverbal motion information that we want to

represent in the multimodal space to be used for classification problems.

In the case of the video modality, it is necessary to propose and implement a motion

descriptor from which the low-level features are extracted. This is because the features

used in the baseline are based on distances and position, they are not about motion

synchrony. Also, in our dataset people are always sitting, they never walk or change their

position with respect to the other person, so that we need to extract the motion from the

video to obtain the synchrony features to use them as input of the autoencoder of the

solution, to have the multimodal representation and then make the classification.

3.1 Dataset preprocessing

The MatchNMingle video data needs some preprocessing to be used in the proposed

solution. The cameras recorded scenes with multiple people, as shown in Figure 3.1a.

However, it is necessary to have an individual video for each person, so a system that

extracts the videos of each person in a delimited area is needed. In addition, the relative

locations of the people are needed, in order to extract the features.

The goal is to obtain the relative position of each person and delimit the area in which

he/she is moving in order to create an individual video for each participant. So we pro-

ceeded to implement a system based on OpenCV Motion Trackers, specifically Kernelized

Correlation Filter (KCF). With this, the position of the object is extracted and the lo-

cation of the center of the participants in the (x,y) plane is obtained, thus generating

the displacement data for each person. The position is updated every 15 frames and the

intermediate points are interpolated. Also, once the position is obtained, the area where

it is located is delimited and the videos corresponding to each participant and their re-

spective partner are generated, as shown in Figure 3.1b. In average, an 80% of the 1380

21



22 3.2 Extraction of motion synchrony features

possible videos were obtained in the three events.

(a) (b)

Figure 3.1: (a) MatchNMingle video frame and (b) data extraction with trackers.

In the case of the acceleration modality, we have tri-axial data and the elapsed time

for each person during the entire event. Using the elapsed time we extract the data

corresponding to each speed date.

Due to the problems described in Section 2.2.3, and due to specific problems of videos, it is

not possible to obtain 100% of the data, both from the videos and from the accelerometers.

The problems are as follows: people going out of frame in the original videos, errors in the

time corresponding to each date during the event, and occlusions by people. Also, some

wearable devices stopped working. Due to these problems, it is not possible to obtain

all possible data from the three events. Table 3.1 shows the percentages of videos and

acceleration data for both individuals and pairs. In other words, the number of dates

containing information from at least one participant (dates) and the number of dates for

which there is information from both participants (interactions). While there is a decrease

in the amount of data, we still have enough data for training and testing.

Tabla 3.1: Percentage obtained from videos and acceleration data.

Modality Day 1 (%) Day 2 (%) Day 3 (%)

Dates

Video 92.92 87.78 60.89

Acceleration 87.50 61.33 76.67

Video ∩ Acceleration 86.46 61.33 48.44

Interactions

Video 96.88 76.89 60.89

Acceleration 82.14 50.22 53.78

Video ∩ Acceleration 79.02 38.22 32.00

3.2 Extraction of motion synchrony features

In order to have the motion synchrony features from video and acceleration modalities

which describe the non verbal behavior present in speed dates, the features introduced
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in Section 2.3 will be used. They are related to correlations, recurrence and spectral

characteristics in a temporal signal. Having similar features in both modalities could

help to improve the multimodal representation by taking advantage of the correlation

and other possible relations of both types of data.

3.2.1 Acceleration modality

First, from the accelerometer tri-axial data we take the raw data of each axis, the absolute

values of each axis and the acceleration magnitude to obtain 7 different signals. Then

these 7 signals are divided into 10-second time windows, from which statistical data

such as mean, variance and power spectral density (PSD) are obtained, called low-level

features. Subsequently, from the low-level features, the synchrony features are extracted

as according the equations shown in Section 2.3. Following the same methodology used

by Kapcak et al. [21], all features are correlated to the same axis, i.e, there is no cross-

correlation between axes for any feature. The process to get all of synchrony features is

shown in Figure 3.2, where in the last stage we can see the all types of features. So, for the

7 signals by axis we have 8 values for Correlation, Mutual information and time-lagged

correlation and 4 values for Mimicry, that means that we have 196 feature values in total.

x

y

z

Accelerometer

Mean
Variance

PSD

Low level 
Features by axis

Synchrony
Features by axis

Correlation
Mutual information
Mimicry
Time-lagged correlation

Row data
Absolute values
Magnitudes

Figure 3.2: Process to extract synchrony features from acceleration modality.

3.2.2 Video modality

As a first attempt we will to reproduce the state of the art for the video modality. The ap-

proach uses features based on the position and location of the participants, these features

are classified as follow.

1. The angle of location: which gives information on how one person is positioned with

respect to the other.

2. The distance: which is calculated as the difference of the average Euclidean distance

between the first n frames and the last n frames. This data is important because it

is required to know how far or close a person who shows interest in the other person

can be, both at the beginning of the appointment and at the end.

3. Movement distribution: this represents how often a person moves in all directions

relative to the other person.
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From these 3 classifications we derive the features that need to be measured and used as

input to the classifier, the Table 3.2 summarizes these features.

Tabla 3.2: Video modality position-base features [36].

Features Description

AVG-DIFANGLE Average angle between the participant and the table

VARDIS Distance variance

VAR-DIFANGLE Variance of angle between the participant and the table

VARPOS Position variance

VARPOS-OTHER Variance in the position of the other person

DECRDIS Decreasing in the distance

MOVDISTR Movement distribution

MOVDISTR-OTHER Distribution of movement of the other person

AVGDIS Average distance

The above features proposed in the state of the art for this modality could not give

us relevant information from our dataset. This was mainly due to the fact that these

features are based on the distance variation and the relative position of the participants,

which worked well for Veenstra et al. [36] standing scenario. However, in our dataset

the participants were seated the whole time. Therefore, these features do not contain

important information for our research. For this reason, we needed to also propose a new

video baseline.

We propose to use the Optical Flow method to extract the video motion and then the

motion synchrony features. The Optical Flow method is used in order to extract the

motion contained between each frame on every speed date video, and then obtain the

motion changes over time by concatenating the motion between the frames.

Two different types of signals are achieved from the optical flow, the magnitude and

the angle of the pixel displacement vectors. The first gives us information about the

movement intensity and the second movement direction. The average of the magnitudes

is calculated and a histogram of the angles from which one direction of motion is chosen,

giving a single intensity signal and a single direction signal. However, by averaging the

magnitudes of all the pixels in the image and making a histogram of all the angles, we

are losing local information in specific areas of the image.

In order not to lose local information, we will make a grid in the image to extract the

optical flow from each cell, as shown in Figures 3.3a and 3.3b, where each cell roughly

corresponds to a person’s body part. For example, the hands will be contained mostly in

the cells 2, 5 and 8, the head in 3 and 4, and the torso in cell number 4.

The optical flow average of each cell is calculated to obtain a single magnitude signal and

a histogram to chose a single angle signal by cell. With this we will have the average data

of intensity and direction of movement in each cell, which could give us an approximation

of movement for specific body parts. This is shown in Figure 3.3c, the magnitude signal in
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Figure 3.3: Image grid for local optical flow processing: (a) Grid on real frame, (b) Grid

on magnitude of the optical flow, (c) Plots of magnitude by grid cell, and (d) Plots of

direction by grid cell.

cells 0, 1 and 2 have more variation comparing with cells 6, 7 y 8, which indicates that the

left hand, arm and shoulder move more than the right hand, arm and shoulder. Similarly,

the angle signal represents the direction of movement, having a range of 360◦ possible

directions. So we proceed to discretize these values in four directions with semantic

meaning, i.e. Front (F), Back (B), Right (R) and Left (L) as shown in Figure 3.4. This

is done for each frame of the video.

For this, a four bins histogram is created as follows:

1. bin 1, Front: angles between [0, 45[ and [315, 360]

2. bin 2, Right: angles between [45, 135[

3. bin 3, Behind: angles between [135, 225[

4. bin 4, Left: angles between [225, 315[

From this histogram, we choose the bin that contains the highest number of values by

each grid cell and by 10 frames, so we will have a normalized single signal with four

possible values. Figure 3.3d show us how the direction movement varies by each cell, that

gives information on where each part of the body is moving towards. For example, in cell

number 4 the direction varies from 0 to 1 with few intermediate values, which means that

the head and torso are constantly moving back to front and with few movements to the

right or left.
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Figure 3.4: Discretizing angles in four directions with semantic meaning Front (F), Back

(B), Right (R) and Left (L).

For this modality we also obtain the same synchrony features in Section 3.2. But in this

case, we are correlating all optical flow signals from each grid cell against the other grid

cells in the same participant video generating Individual features. We are not correlating

against video data from the partner, i.e. we are no generating Mutual features. We

hypothesize that the multimodal representation model can learn those Mutual features.

So we have 4537 video synchrony features in total.

The whole process to extract the motion from optical flow video, is represented in the

flow chart of Figure 3.5.

Video

Make the grid

Get optical flow
by grid cell

Synchrony
Features

Autoencoder

Average the optical flow
magnitud by grid cell

Get directions from 
optical flow histogram

Figure 3.5: Motion extraction from video process.

3.3 Multimodal representation

The multimodal representation is done by implementing an autoencoder model. The idea

is to take all the features from both modalities, concatenate them and use them as input

to the decoding stage to compress them sufficiently to reconstruct the input data, and

then take the latent space as Multimodal Representation for classification.

The Figure 3.6 shows the autoencoder architecture, which is is described as follows: We

have two stages of layers: encoder and decoder, with exactly the same type of layers,

same weights and same parameters. Both stages have one hidden layer and the encoder

input layers is equal to the decoder output layer, and there is a layer that holds the latent
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Figure 3.6: Autoencoder for proposed solution.

space. The hyperbolic tangent (tanh) was used as the activation function and MSE as loss

function. Layer’s dimension, droppout rate and learning rate were chosen by performing

a Grid-Search parameter-tuning technique. For the latent space size we first used PCA

keeping a 95% of the variance to have an approximation of the latent space size. Then,

the parameter-tuner was given a range around this value. For the training, we take only

the dates of day 1 and for validation the dates of day 2, and we will test it using day 3.

The training dataset will contain both genders together.

The target in this case is for the autoencoder to learn a representation in latent space

enough to reconstruct the input data. We will measure this reconstruction by evaluating

the convergence of the mean square error (MSE).

3.4 Classification

The classification is implemented over the four types of individual interests and over the

four types of mutual interest. What we want to observe is whether there is a difference

between the types of interests that suggests that the nonverbal behavior in the multimodal

representation is indicative of one of these types of attraction. We also want to see if the

individual cases show differences with the mutual cases, i.e., to find evidence that mutual

and individual interests are manifested by different nonverbal behaviors reflected in the

classifier’s performance. And finally, we want to understand whether separating the data

between males and females has any implications for classification performance, i.e., to see

how the difference between genders may suggest, in some way, that males and females

express different nonverbal behaviors in relation to human attraction.

All questionnaire responses have been labeled using a 7-point Likert scale [20], that need

to be binarized first to be used in classification. For this, we take each participant’s scores

for all participants dates to normalize them with the z-score normalization. Then, dates

that have a positive value are labeled as positive class and those with negative values are
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labeled as negative class. Following this, mutual interactions are labeled as positive class

when both individual dates have been labeled as positive class.

To reproduce the state of the art (unimodal baselines), first we will use all the features

in the baselines to train the classifier for an individual modality. We will follow the same

training methodology in the state of the art: using a 10-Fold cross-validation to have the

AUC metric. We also want to understand if our video baseline performs better than the

state-of-the-art baseline. For this, we will make a comparison between both baselines to

know if our proposal is significantly better than the state of the art.

For the classification task in our proposal, we will take the latent space of the autoencoder

trained with motion synchrony features to do the classification in order to compare with

unimodal baselines. We propose to use 3-fold cross-validation instead of 10-fold cross-

validation, because in the 10-fold approach there is data from the same person in the

training and test set, and could cause an unrealistic prediction and may overfit the model.

In 3-fold approach we will take two days for training and one day for validation, that means

leave one day out. The classifier to be used in all classification experiments will be an

SVM, the hyper-paramenters are tuned using a Grid-Seacrh method for each classification

problem.

The cross-validation experiments will be done using data from both genders, from males

only and from females only, as previous work showed that this separation affects the

classification. Then, we collect the AUC metric for individual and mutual interests. We

also implement a tuning parameter method in order to find the optimal model parameter

values base on each classification problem and gender.

To evaluate whether the proposed solution provides a statistically significant improve-

ment over the state of the art, we will perform this by collecting 30 values of AUC from

different folds as Demšar [10] and Trawinski et al. [32] proposed, by gender and by prob-

lem classification. To do so, we will apply a 10x3-Fold cross-validation, i.e., to repeat the

3-Fold cross-validation 10 times. This is for baselines and our solution.

Having these AUC distributions for baselines and our solution, we will use a non-parametric

hypothesis test called Wilcoxon to compare the mean of two distribution as was done by

Rey et al. [30]. The null-hypothesis will be that the mean of AUC of the multimodal

approach is less or equal than the mean of the state of the art. Therefore, the hypothesis

we want to validate is that the mean of the multimodal approach is higher than the mean

of the state of the art by rejecting the null-hypothesis.
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Results and analysis

4.1 Reproducing the state-of-the-art

4.1.1 Using baseline features

The results of the experiments performed, which are based on the state-of-the-art, are

presented below. The MatchNMingle (MnM) dataset described in Section 2.2 was used

in all cases.

First, we proceeded to replicate the experiments that gave the best results to Veenstra

et al. [36] with the video modality. It is shown empirically that the variance in dis-

tance (VARDIS) has higher AUC values when the participants only want to exchange

information.

In Table 4.1 the results for each classification problem are shown, using the same 10-fold

cross-validation as presented by Veenstra et al. [36] but with MnM dataset. It can be

observed that the highest AUC values are those related to problem Friendly in individual

case and in Match SeeAgain/Match Friendly for mutual case, however, the highest value

is 0.56 ± 0.12 which shows a low performance for these problems.

Another experiment with better performance for the same classification problem, which

is stated in [36], is to use the position variance. It was suggested that the classifier can

discriminate better between classes when using data only from males being themselves

who vary their position (VARPOS). When using data only from women, it is their partners

who vary their position (VARPOS-OTHER). That is, using only male data with VARPOS

features, and using only female data with VARPOS-OTHER features, the classifier should

show the best performance. The results of these experiments are shown in Table 4.2 and

Table 4.3.

As shown in Tables 4.2 and 4.3, the performance of the classifiers does not vary much for

each classification problem, and neither if they use data from males and females separately.

In each case the performances are around random.

29
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Tabla 4.1: Mean AUC±STD results with variance in distance with video modality using

MnM dataset.

Problem Males ∪ Females Males Females

SeeAgain 0.48 ± 0.07 0.54 ± 0.06 0.51 ± 0.06

Friendly 0.55 ± 0.08 0.49 ± 0.10 0.49 ± 0.13

Sexual 0.54 ± 0.10 0.46 ± 0.06 0.53 ± 0.10

Romantic 0.50 ± 0.06 0.51 ± 0.10 0.45 ± 0.11

Match SeeAgain 0.47 ± 0.05 0.52 ± 0.08 0.56 ± 0.06

Match Friendly 0.52 ± 0.05 0.56 ± 0.12 0.49 ± 0.08

Match Sexual 0.53 ± 0.11 0.50 ± 0.11 0.52 ± 0.18

Match Romantic 0.54 ± 0.06 0.49 ± 0.16 0.42 ± 0.12

Tabla 4.2: Mean AUC±STD results with position variance with video modality using

MnM dataset.

Problem Males ∪ Females Males Females

SeeAgain 0.49 ± 0.07 0.54 ± 0.09 0.58 ± 0.09

Friendly 0.49 ± 0.07 0.55 ± 0.09 0.58 ± 0.07

Sexual 0.56 ± 0.07 0.46 ± 0.11 0.44 ± 0.12

Romantic 0.53 ± 0.05 0.45 ± 0.09 0.49 ± 0.12

Match SeeAgain 0.50 ± 0.09 0.51 ± 0.12 0.45 ± 0.13

Match Friendly 0.48 ± 0.08 0.44 ± 0.12 0.47 ± 0.16

Match Sexual 0.49 ± 0.08 0.48 ± 0.13 0.46 ± 0.15

Match Romantic 0.46 ± 0.08 0.51 ± 0.16 0.50 ± 0.19

Tabla 4.3: Mean AUC±STD results with variance in the other person’s position with

the video modality using MnM dataset.

Problem Males ∪ Females Males Females

SeeAgain 0.48 ± 0.06 0.45 ± 0.13 0.53 ± 0.10

Friendly 0.48 ± 0.07 0.47 ± 0.09 0.48 ± 0.11

Sexual 0.52 ± 0.07 0.53 ± 0.10 0.55 ± 0.11

Romantic 0.45 ± 0.05 0.50 ± 0.09 0.54 ± 0.11

Match SeeAgain 0.48 ± 0.06 0.50 ± 0.15 0.58 ± 0.10

Match Friendly 0.51 ± 0.08 0.54 ± 0.10 0.49 ± 0.08

Match Sexual 0.44 ± 0.07 0.48 ± 0.13 0.42 ± 0.07

Match Romantic 0.47 ± 0.12 0.43 ± 0.16 0.50 ± 0.13

The reason for under-performance in the above experiments is probably due to the nature

of the data, and as explained before, in our dataset the participants were seated at all

times, while for the scenario in [36] they were standing and can move at will around a
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high-table. Therefore, in the distance and position variation there is no relevant infor-

mation that can be used to discriminate between classes, at least with this dataset. As

a consequence, additionally to the original objectives of this these, we needed to propose

an alternative approach for the video modality (see Section 3.2.2).

With the acceleration modality, we performed the same experiment by done Kapcak et al.

[21], which consists of using all the features to train the classifier on each of the classifi-

cation problems with 10-fold cross-validation, mixing males and females and separating

them. Table 4.4 shows these results. It can be seen that the performance of the classifier

is low in most cases, having AUC values around 0.5.

Tabla 4.4: Mean AUC±STD results with the acceleration mode for individual interest

using MnM dataset.

Problem Males ∪ Females Males Females

SeeAgain 0.53 ± 0.07 0.53 ± 0.11 0.50 ± 0.12

Friendly 0.51 ± 0.05 0.49 ± 0.07 0.50 ± 0.12

Sexual 0.52 ± 0.05 0.51 ± 0.09 0.59 ± 0.13

Romantic 0.47 ± 0.08 0.50 ± 0.09 0.45 ± 0.11

Also, the results were obtained for mutual interest, where the authors use only the data

from both participants and do not make the separation between men and women. Table

4.5 shows these results. The classifier behavior in this case shows better performance than

in the previous experiment.

Tabla 4.5: Mean AUC±STD results with the acceleration modality for mutual interest

using MnM dataset.

Problem Males ∪ Females

Match SeeAgain 0.58 ± 0.06

Match Friendly 0.59 ± 0.05

Match Sexual 0.66 ± 0.07

Match Romantic 0.60 ± 0.10

The results shown in the Tables 4.4 and 4.5 are similar to shown in the extended version

of the baseline [35]. In our proposal we apply cross-validation based on 3-folding, taking

one day out, so the AUC results are expected to decrease.

4.1.2 Using motion synchrony features only

Experiments were then performed using only the synchrony features in each modality. As

in previous experiments, male and female data were used together and separately.
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Table 4.6 shows the AUC results of the classifiers for each classification problem and using

both genders. It can be seen that for video modality the performance behavior is similar to

the previous case, the AUC values are over 0.5 but remain close to be random. The AUC

values in the acceleration modality show that the classifier is, somehow, discriminating

better in mutual problems, where AUC values are around 0.6.

Tabla 4.6: Mean AUC±STD results for both modalities with synchrony features with

male and female data using MnM dataset.

Problem Video Acceleration

SeeAgain 0.56 ± 0.05 0.52 ± 0.05

Friendly 0.53 ± 0.06 0.52 ± 0.03

Sexual 0.54 ± 0.06 0.51 ± 0.06

Romantic 0.56 ± 0.06 0.50 ± 0.04

Match SeeAgain 0.52 ± 0.03 0.59 ± 0.06

Match Friendly 0.52 ± 0.10 0.60 ± 0.09

Match Sexual 0.53 ± 0.09 0.64 ± 0.10

Match Romantic 0.50 ± 0.09 0.64 ± 0.03

Tables 4.7 and 4.8 show a similar performance with the video modality, where only one

gender is used, AUC values are close to be random in most of cases. Only Romantic

interest is around 0.6 in both scenarios. For acceleration modality in both Tables 4.7 and

4.8, the highest AUC values are in Romantic and Sexual interests respectively.

Tabla 4.7: Mean AUC±STD results for both modalities with synchrony features and

only male data using MnM dataset.

Problem Video Acceleration

SeeAgain 0.51 ± 0.11 0.53 ± 0.07

Friendly 0.47 ± 0.08 0.47 ± 0.08

Sexual 0.52 ± 0.08 0.51 ± 0.08

Romantic 0.59 ± 0.13 0.54 ± 0.09

Match SeeAgain 0.50 ± 0.08 0.50 ± 0.08

Match Friendly 0.48 ± 0.09 0.41 ± 0.12

Match Sexual 0.51 ± 0.11 0.49 ± 0.13

Match Romantic 0.44 ± 0.15 0.40 ± 0.13

4.1.3 Our proposed video baseline

To validate if our proposed video baseline outperforms the state-of-the-art, we classify

using our new features. First we applied principal component analysis (PCA) on the

features preserving 95% of the variance. Then, we classify using the same 10-fold cross
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Tabla 4.8: Mean AUC±STD results for both modalities with synchrony features and

only female data using MnM dataset.

Problem Video Acceleration

SeeAgain 0.58 ± 0.08 0.51 ± 0.09

Friendly 0.52 ± 0.16 0.54 ± 0.12

Sexual 0.53 ± 0.07 0.55 ± 0.11

Romantic 0.60 ± 0.10 0.49 ± 0.10

Match SeeAgain 0.43 ± 0.12 0.50 ± 0.09

Match Friendly 0.46 ± 0.09 0.53 ± 0.12

Match Sexual 0.48 ± 0.12 0.49 ± 0.15

Match Romantic 0.51 ± 0.16 0.43 ± 0.14

validation approach used in the state-of-the-art. For this test we are using data from

both genders. Doing this, the Table 4.9 shows the comparison between state-of-the-art

baseline and our proposed baseline.

Tabla 4.9: Mean AUC±STD results for comparison of state-of-the-art baseline (STD B)

and our proposal (OUR B). ∗ indicates that the result significantly outper-

forms the video baseline with p < 0.05.

Males U Females Males Females

Target STA B OUR B STA B OUR B STA B OUR B

SeeAgain 0.46±0.065 0.50±0.075 ∗ 0.54±0.057 0.43±0.094 0.44±0.040 0.58±0.077 ∗
Friendly 0.51±0.032 0.44±0.063 0.51±0.035 0.43±0.108 0.48±0.051 0.52±0.090

Sexual 0.44±0.041 0.52±0.084 0.57±0.060 0.46±0.057 0.56±0.040 0.51±0.115

Romantic 0.52±0.041 0.49±0.092 0.56±0.053 0.43±0.091 0.56±0.053 0.43±0.135

Match SeeAgain 0.52±0.078 0.49±0.071 0.44±0.053 0.50±0.120 0.58±0.046 0.63±0.091

Match Friendly 0.53±0.071 0.41±0.051 0.52±0.086 0.45±0.085 0.52±0.044 0.39±0.106

Match Sexual 0.48±0.077 0.55±0.128 0.47±0.064 0.59±0.138 ∗ 0.53±0.072 0.58±0.139

Match Romantic 0.55±0.099 0.66±0.045 ∗ 0.48±0.053 0.53±0.104 0.50±0.096 0.46±0.147

In Table 4.9 we can see that mean AUC values comparing both baselines video approaches,

where only four cases are outperformed statistically. There are cases where there is no

significant improvement, but the mean AUC is higher by 18% in the case of the Sexual

interest using both genders, also for the case of Match SeeAgain using female data, the

mean AUC is higher by 8%. This percentage increase in the mean AUC corresponds to

a high standard deviation, therefore no statistically significant improvement is evident.

Although we have a significant improvement for only four cases, we keep using this method

as baseline, to understand whether merging this baseline with the acceleration modality

will result in a significant improvement.
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4.2 Multimodal representation

A first attempt to use a multimodal approach, we used a Majority Voting classifier to

understand the implications of joining multi-modalities in a simple manner. So, the Table

4.10 shows the results of this approach, were we can see that for some types of interest and

genders, the classifier can perform over random, having the high AUC value in SeeAgain

using both genders, Match Romantic using males and See Again using females. It should

be noted that this classifier depends on the previous classifiers, so if the previous classifier

behave randomly Majority Voting will behaves randomly as well. For this reason, in our

solution we propose an early fusion method that can take advantage of features.

Tabla 4.10: Mean AUC±STD results Majority Voting classifier with synchrony features

using MnM dataset.

Problem Males U Females Males Females

SeeAgain 0.56 ± 0.06 0.50 ± 0.11 0.59 ± 0.07

Friendly 0.50 ± 0.05 0.53 ± 0.06 0.51 ± 0.16

Sexual 0.47 ± 0.07 0.51 ± 0.09 0.47 ± 0.07

Romantic 0.44 ± 0.07 0.42 ± 0.14 0.41 ± 0.10

Match SeeAgain 0.46 ± 0.05 0.48 ± 0.10 0.56 ± 0.12

Match Friendly 0.46 ± 0.11 0.54 ± 0.08 0.52 ± 0.11

Match Sexual 0.44 ± 0.10 0.48 ± 0.11 0.52 ± 0.12

Match Romantic 0.47 ± 0.07 0.60 ± 0.13 0.49 ± 0.17

As described in Section 1.3, our proposal is to use an autoencoder as early fusion method

to generate an multimodal representation, trained with motion synchrony features from

MnM dataset. Figure 4.1 depicts the trending of error function for training and for

validation. We see that the loss function tends to converge in both cases, however the

validation loss diverges after 1862 epochs, so we decided to make an early stop and take

the model trained up to this epoch. With this we are also reducing the overfitting in the

model because the training loss tend to converge even more.
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Figure 4.1: Autoencoder Training and validation Loss functions.
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From Figure 4.1 it can be observed that the reconstruction error (validation losses) does

tend to converge, however, the error could be expected to decrease even more, it seems

that the autoencoder is not being able to completely reconstruct the input, the value of

MSE can get even closer to zero.

According to Figure 4.2, using the testing dataset, we have the minimal MSE value when

we use both genders, indicating that the model is actually learning a representation having

the better performance using both genders. This suggests that the pattern of behavior the

model is learning exists when both genders are together. The MSE decreases using only

one gender. This indicates that behavioral patterns for each gender could be different and

the multimodal representation could change separating by genders. So, the autoencoder

is achieving some representation that is able to reconstruct the input, but is not enough

to achieve a clear division between classes.

The autoencoder was trained to reconstruct an input without any label information, so

the learning of the model has been based only on the motion synchrony features. The

reason for doing so is to have a pure representation of the data without the influence of

the labels, which could force a representation that does not fit the problem as such.
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Figure 4.2: Mean MSE and Standard Deviation for Autoencoder using testing dataset.

To analyze the separability in the latent space, we use the t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) over the latent space for the main problem (SeeAgain). This is a

technique for dimensionality reduction that is particularly well suited for the visualization

of high-dimensional datasets [34].

Figure 4.3 shows that there is no clear separation of classes in the latent space when it

is projected onto 2D dimensional space. However, we cannot conclude that there is no

any separability at all, because we are reducing high dimensional space (500 dimensions)

to only 2 dimension, so we could are missing important information in other dimensions.

What Figure 4.3 may be telling us is that labels are not accurately representing the attrac-

tion problem as it is, possibly more modalities are needed or more non-verbal behavioral

features may need to be added. If this is correct, this missing separability will be shown

in classification experiments.
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Figure 4.3: t-SNE visualizing classes in Autoencoder latent space. (a) SeeAgain problem

and (b) Match SeeAgain problem.

4.3 Results of classification

The results of the classification obtained for the two baselines and for our proposed mul-

timodal approach are shown below. These were done using a 10x3-fold cross-validation.

As we described in Section 3.4 we apply the Wilcoxon test to verify whether our proposed

solution significantly outperforms the baselines. The Table 4.11 shows the mean AUC by

classification problem for each modality approach using data from both genders.

Tabla 4.11: Mean AUC±STD for unimodal and multimodal approaches using both gen-

ders, synchrony features and MnM dataset. ∗ indicates that the result

significantly outperforms the video baseline with p < 0.05, ⊛ indicates that

the result significantly outperforms the acceleration baseline with p < 0.05

and † indicates that the result significantly outperforms both baselines with

p < 0.05.

Problem Video Acceleration Multimodal

SeeAgain 0.50±0.021 0.48±0.052 0.52±0.032 ⊛
Friendly 0.47±0.020 0.50±0.004 0.48±0.019 ∗
Sexual 0.42±0.006 0.50±0.000 0.49±0.037 ∗

Romantic 0.49±0.044 0.50±0.000 0.52±0.040 †
Match SeeAgain 0.49±0.049 0.48±0.033 0.49±0.020

Match Friendly 0.47±0.050 0.52±0.029 0.54±0.051 †
Match Sexual 0.56±0.056 0.58±0.032 0.47±0.060

Match Romantic 0.52±0.114 0.49±0.068 0.54±0.072 ⊛

For individual interests the multimodal approach shows that it’s able to outperform the

four cases, in particular, the case of Romantic is outperforming both baselines. For mutual

interests, the multimodal approach is outperforming Match Friendly interest only.

Using both genders our hypothesis is statistically validated over both baselines only for
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Romantic individual interest and for Match Friendly mutual interest, with a performance

over random. Also, for SeeAgain and Match Romantic interest, our hypothesis is only

validated over the acceleration baseline. Also, for Romantic and Match Friendly, both

modalities are correlated and the behavior captured in both can mutually complement

each other. This suggests that for that particular type of interest both men and women

could have similarities in non-verbal behavior, i.e., their behavior looks similar when they

want to see someone again and when they have a friendly or romantic interest. The cases

where the multimodal approach outperforms the video baseline have the problem that the

mean AUC is around random. Therefore, even when our hypothesis can be demonstrated,

all classifiers, including those of the baselines do not have enough or relevant information

to learn the difference within attraction patterns.

We also did the same experiment above using data from males only, this in order to

understand if there any differences from the male’s perspective only, as stated in the

state-of-the-art. Table 4.12 shows the mean AUC results for this case. We see that

the multimodal approach only outperforms the video modality in one individual case

(Romantic) and two cases of mutual interests. The acceleration modality is outperformed

only in Match Romantic interest.

Tabla 4.12: Mean AUC±STD for unimodal and multimodal approaches using males

only, synchrony features and MnM dataset. ∗ indicates that the result

significantly outperforms the video baseline with p < 0.05, ⊛ indicates that

the result significantly outperforms the acceleration baseline with p < 0.05

and † indicates that the result significantly outperforms both baselines with

p < 0.05.

Problem Video Acceleration Multimodal

SeeAgain 0.50±0.000 0.53±0.062 0.50±0.043

Friendly 0.45±0.019 0.49±0.047 0.44±0.023

Sexual 0.46±0.072 0.51±0.040 0.50±0.035

Romantic 0.48±0.008 0.50±0.064 0.53±0.064 ∗
Match SeeAgain 0.41±0.041 0.53±0.082 0.48±0.054 ∗
Match Friendly 0.44±0.039 0.49±0.025 0.51±0.070 ∗
Match Sexual 0.51±0.073 0.50±0.000 0.51±0.108

Match Romantic 0.56±0.098 0.49±0.014 0.51±0.009 ⊛

What we can see here is that for males the video baseline has random performance

in most of cases. Only for Math Romantic it’s showing a performance over random,

while the acceleration baseline has an over-random performance for SeeAgain, Sexual and

Match SeeAgain interest. What this suggests is that, for males, the motion capture by

accelerometers is more important than motion capture by video. This may mean that

whole body or trunk movements are more relevant in males.

There is no case where our hypothesis is demonstrated over both baselines. There are only



38 4.4 Further analysis

two cases where the hypothesis is validated, those are Romantic and for Match Friendly

over video baseline and Match Romantic over acceleration baseline.

Using females data only the results are also difference. Figure 4.13 shows the mean AUC

for all classification problems. Where we can see that for individual cases the multimodal

approach outperforms both baselines for Sexual interest only. In mutual interest prob-

lems the multimodal approach outperforms both baselines in two cases, Match SeeAgain

and Match Friendly. For other two mutual interests only the acceleration baseline is

outperformed.

Tabla 4.13: Mean AUC±STD for unimodal and multimodal approaches using females

only, synchrony features and MnM dataset. ∗ indicates that the result

significantly outperforms the video baseline with p < 0.05, ⊛ indicates that

the result significantly outperforms the acceleration baseline with p < 0.05

and † indicates that the result significantly outperforms both baselines with

p < 0.05.

Problem Video Acceleration Multimodal

SeeAgain 0.50±0.021 0.48±0.079 0.49±0.054

Friendly 0.46±0.057 0.56±0.069 0.46±0.036

Sexual 0.48±0.049 0.47±0.073 0.52±0.066 †
Romantic 0.51±0.011 0.50±0.034 0.47±0.065

Match SeeAgain 0.39±0.044 0.46±0.050 0.52±0.028 †
Match Friendly 0.44±0.087 0.48±0.031 0.54±0.076 †
Match Sexual 0.55±0.068 0.45±0.058 0.53±0.071 ⊛

Match Romantic 0.45±0.035 0.45±0.039 0.50±0.107 ⊛

These results suggest that for females both modalities are important for Sexual, Match SeeAgain

and Match Friendly interests. The multimodal approach is showing that both modalities

are correlated. For this reason the hypothesis is demonstrated with a performance over

random. Also, for Match Sexual and Match Romantic interest the hypothesis is only

demonstrated over acceleration, which suggests, unlike males, that for females motion

captured by video it’s more important than acceleration. Movement captured by video

as hands movements could be decisive for females attraction.

4.4 Further analysis

Analyzing the main problem (SeeAgain) for the individual case, we can see that the mul-

timodal approach outperforms the video baselines when we use data from both genders.

Even though there is an improvement in performance, the mean AUC is around 0.52 which

means that the classifier is almost random. If we take at look at the confusion matrix

and the PR curve in Figure 4.4, we see that the TP in confusion matrix are higher than
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FP and FN, which means that the classifier is trying to separate positive class. However,

when we look at the PR curve, the precision remains nearly constant even when recall

is low or high, this means that there is no threshold where both precision and recall are

close to one. The behavior of the PR curve shows that although there is some learning

by the classifier, it is not able to find the optimal threshold for class separability.

For Match SeeAgain, the multimodal approach only outperforms both baselines using

females only and the acceleration baseline using males only. It is important to highlight

that mutual cases have this out-performance using the data from only one participant.

Using females the mean AUC of multimodal approach is around 0.52, while AUC values

of baselines are less than 0.5.

Furthermore, we also evaluate SeeAgain for the mutual interest, instead of the independent

one. The PR curve of Figure 4.5b shows a low precision and recall, because the classifier

predicts mostly positive classes. This is shown in confusion matrix in Figure 4.5a where

TP + FP has the highest number. For this case and the other mutual cases, we need to

consider the unbalance between classes with a difference of about 36:64 (%), where the

positive class has the least number and the classifier weights were adjusted according to

this unbalance. This unbalance is causing false positive predictions to occur more often

than true ones.
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Figure 4.4: (a) Average confusion matrix and (b) Precision-recall curve for SeeAgain

individual interest using both genders. Positive to Negative class balance percentage is

58:42 (%). Positive class is 1.

Another problem to analyze is the Romantic interest, because in all cases one or both

baselines are outperformed with a mean AUC greater than random. The highest AUC

occurs when both genders are present in the mutual case, AUC values is around 0.54. In

Figure 4.6a we can see in the confusion matrix a similar behavior than Match SeeAgain,

where the high FP are causing a low precision even when the recall is low or high, this

can be seen in the PR curve in Figure 4.6b.
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Figure 4.5: (a) Average confusion matrix and (b) Precision-recall curve for SeeAgain

mutual interest using both genders. Positive to Negative class balance percentage is

36:64 (%). Positive class is 1.
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Figure 4.6: (a) Average confusion matrix and (b) Precision-recall curve for Romantic

mutual interest using both genders. Positive to Negative class balance percentage is

15:85 (%). Positive class is 1.

If we take a look at individual romantic interests using only males, the performance

improves with respect to the video baseline. Here we can see that precision tends to

increase when recall also increases acording to Figure 4.7. This result is important because

it means that both FP and FN tend to go down. So, in this case the classifier is trying

to separate both classes even when the dataset is unbalanced.



4 Results and analysis 41

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Positive label: 1)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 (P
os

iti
ve

 la
be

l: 
1)

PR curves for Romantic target.
PR fold 0 (AP = 0.37)
PR fold 1 (AP = 0.41)
PR fold 2 (AP = 0.59)
Mean PR (AP = 0.46 ± 0.09)
± 1 std. dev.

Figure 4.7: Precision-recall curve for Romantic individual interest using using males only.

Positive to Negative class balance percentage is 43:57 (%). Positive class is 1.

The multimodal approach also outperforms both baselines for Mutual Friendly interests,

using both genders and females only with an AUC around 0.54. However, although the

performance is statistically better, for the case of females only, the improvement is over

random classifiers. Whereas if both genders are used, there is a significant improvement

over the baseline video whose AUC is greater than 0.5. For this particular case,the

confusion matrix of Figure 4.8a exhibits a similar behavior than the previous cases, where

the classifier is trying to find a threshold for class separability. This is shown in the PR

curve of Figure 4.8b where at a recall value around 0.2 the precision trends to increase,

but then decreases having a low AP value as indicator of low performance for the positive

class.
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Figure 4.8: (a) Average confusion matrix and (b) Precision-recall curve for Friendly mu-

tual interest using using males only. Positive to Negative class balance percentage is 27:73

(%). Positive class is 1.
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Chapter 5

Conclusions and future work

5.1 Conclusions

1. The state of the art video baseline proposes to use features based on the position and

relative location of the participants, however the results presented in the replication

of this baseline show that the classifiers behave in a random way, because these

features cannot be obtained from our dataset.

2. A new video baseline based on synchrony features has been proposed and imple-

mented, which had a better performance than the previous baseline for some partic-

ular cases, bringing the performance of the classifier closer to an AUC around 0.6,

which shows that the behavior of the classifier is no longer random.

3. By performing experiments with the unimodal baselines using only motion syn-

chrony features, the classifiers showed an increase in the average performance and

did not behave randomly.

4. The results presented show that there is a statistically significant improvement of

the multimodal approach against the baselines. In some cases it improves both

baselines while in others it improves only one of them.

5. It was shown that the autoencoder does learn a representation capable of recon-

structing the input containing the motion synchrony features. The latent space

where the multimodal features are represented shows that the separability between

the classes defined in the dataset labels is not observable in two dimensions.

6. The individual classification problems showed better performance in the presence of

both genders, both SeaAgain and Romantic had higher average performances than

random and showed a significant improvement over baselines. This indicates that

when a man or a woman wants to see a person again or has a romantic interest, the

nonverbal behavior shows similarities between both genders.

43
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7. Using males information only the classifiers were not able, in most cases, to outper-

form the acceleration baseline. This could be an indicative that movement taken

by wearable sensors, such as entire body movements, are most important in males

than in females.

8. The results with data from women only show that the classifiers can outperform

both the video and acceleration baselines. That means that both modalities contain

important non-verbal information about attraction. This could indicate that both

modalities are needed for females, the movements captured on video, such as hands

movements, could be correlated to the motion capture by the wearable sensors. But

this depends on what type of interest is under study.

9. According to the results both males and females show different classifier perfor-

mances, which put in evidence that both genders have different non-verbal behav-

iors. New research should pursuit this premise.

10. Every type of attraction interest shows different performance results in all cases.

This suggest that non-verbal behaviors are different depending on the interest type.

11. The classifiers show that in some way there is class separability with performance

over but closely to be random.

5.2 Future work

1. Do a deeper analysis of the attraction problem to understand if the label present

in our dataset can be more accurate based on other approaches and psychological

research.

2. Training the autoenconder in a guided way. That means the model learns a repre-

sentation based on the label.

3. Include more modalities that can capture other types of behaviors that may result

in more reliable information about human attraction.

4. A method can be proposed to capture a particular body movement to understand

whether it is a cue of human attraction.

5. Methodology to improve the classification based on another Machine Learning ap-

proaches should be proposed.

6. A new method that learns human attraction features based from raw signals based

on attention methods as Transformers should be proposed.
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