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1. Abstract

Titanium and titanium-based alloys are widely used as implants for bone replace-
ment. However, the higher Young’s modulus of monolithic implants compared to
the human bone’s causes a weakening of the surrounding bones, ultimately caus-
ing considerably high percentages of implant rejection. Porous materials reduce
the Young’s modulus making it more comparable to the bones’. Finite Element
simulations in COMSOL Multiphysics were used to perform simulations on Triply
Periodic Minimal Surface (TPMS) gyroid, and stochastical Voronoi models gen-
erated in nTopology design software and compared with the compression results
of Selective Laser Melting (SLM) manufactured compression samples. The simu-
lations of unit cells accurately predicted the yield strength of the periodic gyroid
materials for relative densities between 0.1 and 0.5, primarily when the porous plas-
ticity Gurson model with void volume fraction between 0.05 and 0.1 was used. The
prediction of the Young’s modulus showed an increasing divergence from the ex-
periments with increasing relative densities. However, an empirical rule which also
worked for the Voronoi family was developed to correct this divergence. Increasing
the models’ size for the non-periodic Voronoi architectures proved to improve the
accuracy of the yield strength prediction. The 0.5 relative density cube of 1.8 mm
was large enough to be considered a Representative Volume Element (RVE) for
this structure.



2. Introduction

2.1. Motivation
Stress-shielding is a bone density reduction caused by a difference between the
elastic modulus of bone and bone implants in segmental bone defect repair. This
process induces a stress redistribution near the implant, which can cause implant
loosening [57][23].

Additive Manufacturing (AM) techniques such as Selective Laser Melting (SLM)
enable the production of porous architectures by using metallic materials such as
titanium alloys. These porous structures have exemplary configurations for load-
bearing, bone growth, reduced weight, and minimization of stress-shielding by
reducing the implant’s Young’s modulus, making it more similar to the bone’s
[27].

Finite Element Analysis (FEA) contributes to the cost-effective evaluation of
new porous architectures for bone replacement materials. Its main limitation is
the computational expense. Microstructured materials in which the discontinuities
are in the micro-scale imply a considerable computational effort to model objects
of macroscopical size. Microscopic finite elements must be used to mesh the micro
or meso-discontinuities. Therefore, an object of macroscopical dimensions requires
many finite elements, which causes significant computation times and, in several
cases, convergence issues. Different techniques have been developed to overcome
this issue.

One such technique is homogenization, which was initially developed for com-
posite materials but is also employed with porous materials [7]. Homogenization
aims to treat the macrostructure as a continuous material without consideration
of its microstructure, therefore reducing computing time [15].

In the case of direct computational homogenization, it is necessary to define
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an RVE, the smallest material volume of a composite or porous material that can
still represent the macroscopical behavior of the material. Therefore, the average
mechanical properties of the RVE and the porous material’s average properties are
deemed equal.

Periodic Boundary Conditions (PBC) must be created for the RVE so that
the porous material deformation is the same as the deformation of the RVE and
separation or overlap between neighboring RVEs is avoided.

For meso and macro-structured materials, using an RVE homogenization might
not be required, i.e., one can perform the FEA simulation directly on the porous
material part, as long as the average size of the pores of the structure is not
too small relative to the size of the part. Many authors take advantage of this
by simulating small pieces of the porous material to obtain the material’s stress-
strain behavior. For more significant sizes, using a homogenized material model
is generally less computationally expensive because only the external geometry of
the part has to be modeled. The part is modeled as continuous internally, and the
homogenized material model accounts for its mechanical behavior.

Periodic materials are those where a microscopical unit cell is repeated several
times until the macroscopical material is generated. For periodic materials, the
RVE size can be selected to have the exact size of the repeating unit cell [56],[50],
[3]. However, in some cases, especially when homogenization is not performed,
several unit cells of periodic materials must be assembled and simulated together
for their mechanical properties to match the ones of the macroscopical material
[40], [38], [68].

Stochastic architectures, as opposed to periodic ones, also exist. In stochasti-
cally architected materials, no unit cell repeats to form the macroscopic material.
Instead, a randomly generated set of points is used to create the material’s struc-
ture for the entire macroscopic part. Voronoi-tessellation-generated materials are
one example of this type of architecture. For stochastic architectures, the size
of the RVE, which still represents the macroscopical material behavior, must be
determined. As the porosity of the material increases, larger RVEs are needed to
obtain representative macroscopic responses [43].

On the other side, the elastic modulus is one of the most critical parameters
of interest when modeling the behavior of bone replacement materials. Therefore,
one could think that only the elastic regime of the dense material’s stress-strain
relation is of interest. However, since the porous material has thin-walled struc-
tures, internal yield occurs before the macroscopical material shows a deviation
from linear elasticity. That is why an elastoplasticity model is commonly used
as the constitutive model for dense material [35]. Bilinear Isotropic Hardening
Models are the most commonly used, but plenty of hardening models can be tried
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to determine which one resembles better the non-linear behavior of the porous
material stress-strain relation.

In addition to the computational expense, simulation accuracy is another im-
portant aspect. For the simulation, the material is considered perfectly homo-
geneous. Instead, the parts manufactured by SLM could have a different surface
roughness and topography than the idealized CAD model, as well as internal pores
of unmelted powdered material [60], which cause the simulations to have higher
Young’s modulus and yield strength than the experimental results.

As the relative density increases, the effects introduced by the manufacturing
process become more prominent as more material is sintered, which causes an
additional shift between the simulation and experimental results [76], [73]. The
comparison between the mechanical tests and the initial simulations allows for
updating the modulus of the dense material for it to match the experimental
results. This corrected modulus can be used for subsequent simulations.

The selection of the best plasticity models and parameters, the correction of
the elastic modulus, and the investigation of the optimal RVE size to fit the exper-
imental results of mechanical tests is crucial for further simulations, computational
homogenization, topology optimization of these architectures and the evaluation of
new ones and, finally for the implementation of user-defined material models that
can be used to simulate the behavior of macroscopical bone replacement implants.

2.2. State of the Art

2.2.1. AM of Titanium bone replacement materials

Titanium alloys and pure titanium monolithic parts are widely used for orthopedic
implants for bone replacement due to their excellent biocompatibility, corrosion
and fatigue resistance, high strength-to-weight ratio, good ductility, excellent wear
resistance, low cytotoxicity, and little tendency to provoke allergic reactions [47].
However, the high difference between the modulus of the titanium implant and
the surrounding bone causes a bone density reduction known as stress shielding.
This bone density reduction may cause implant failure [54]. According to [51],
the stiffness of titanium, when fabricated as a porous material, decreases with
the square of relative density, becoming more similar to the bone and thus de-
creasing stress shielding [31],[36]. The open porosity also allows complete bone
ingrowth, which improves implant success and long-term survival. These advan-
tages of porous titanium make them ideal for bone replacement implants and the
subject of a substantial research effort.

Until the development of additive manufacturing methods, the manufacturing
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of open porous titanium alloys was limited to pores induced by pressurized gas
bubbles, superplastic expansion, space-holder technique, or partial sintering of
starting powders [71]. New ways to produce porous titanium materials have been
recently developed, for example, friction stir welding of titanium and zinc plates,
followed by dezincification by immersion of the jointed samples in a hydrochloric
acid solution, used by [66] to create an open and interconnected porous material.
They all provide limited control over the pore geometry and the architecture of
the material.

Additive manufacturing, on the other side, allows for greater control over the
architecture. This control over the exact geometry of the material’s structure al-
lows for the design and optimization of novel architectures. Many studies have
been performed evaluating different geometries. Starting from the most straight-
forward structures and very low porosities of around 20% [9], but quickly moving
towards more complex structures and higher porosities. Different AM techniques
have been used to produce titanium additively manufactured bone replacement
materials: electron beam melting, SLM, and even direct ink writing [22].

[68] analyzed tetrahedron-based cell, tetrahedron cell, body-centered cubic
(BCC), and octet truss cell structures and found that the strut diversities in Scan-
ning Electron Microscope micrograph measurements indicated that the selective
laser melting printing of Ti-6Al-4V scaffolds could reach high printing accuracy.

Biomaterials based on minimal surfaces showed a favorable but rare combina-
tion of relatively low elastic modulus (in the range of those observed for trabecu-
lar bone) and high yield strengths exceeding those reported for cortical bone [10].
The ratio of elastic modulus anisotropy in orthogonal directions was comparable
to those of trabecular bone [4]. This architecture avoids stress shielding while pro-
viding ample mechanical support for bone tissue regeneration and osseointegration
[36].

BCC and face-centered-cubic-structured plate lattice scaffolds with superior
mechanical performance are proposed [69]. Their Young’s modulus and yield
strength are comparable with human bones and other scaffolds. In addition, rel-
atively high permeabilities are also achieved in such scaffolds. Similar structures
were fabricated [19] to examine their mechanical properties under compression,
torsional loads, and different load directions. When the load acted vertically, cu-
bic structures showed strength and stiffness values higher than the BCC and cross
structures.

2.2.2. Gyroid and Voronoi architectures modeling
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A minimal surface is a surface that locally minimizes its area, i.e., the total
surface area is minimized subject to some constraint [7]. Triply periodic con-
tinuous minimal surfaces (TPMS) are surfaces represented by functions of form
F (x; y; z) = const.

The gyroid triply periodic minimal surfaces is the surface generated by the
following equation:

F (x; y; z) = sin y cos z + sin z cos x + sin x cos y = 0 (2.1)

Figure 2.1 shows a material generated from the volumetric repetition of a unit
cell of a gyroid TPMS. The theoretical gyroid surface is given a wall thickness
for fabrication purposes, which in this study will be changed to achieve different
relative densities.

Figure 2.1.: a) Gyroid TPMS material generated from the b) gyroid unit cell.

TPMS scaffolds have attracted significant attention in bone regenerative medicine
thanks to their excellent biomimetic and mechanical properties [20]. The elastic
modulus and permeability of gyroid TPMS bone scaffolds of 316 L stainless steel
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were found to be in the range of human bones [38]. They also showed that man-
ufacturing accuracy increased with greater designed porosity, while the in vitro
experiments revealed that permeability played the leading role in cell prolifera-
tion.

Visual and quantifiable comparisons by superimposing 3D µ-CT reconstructed
models of the Ti-6Al-4V TPMS lattices on their 3D-CAD models showed excellent
reproduction of the designs [72]. With existing powder bed fusion technologies,
the strut and wall thicknesses range from 200 to 1669 µm [39].

On the other hand, a Voronoi tesselation is a domain subdivision into a num-
ber of distinct regions based on the same number of corresponding points, called
seeds. Each region generated by this method is referred to as a Voronoi cell.
Voronoi comes from the last name of the developer of this technique [67], in which
polygonal shapes are formed by creating equidistant lines between any neighboring
points from the randomly generated seed. Structures generated by this method
are widely used to create models of many materials. [48] uses Voronoi tesselation
to describe the heterogeneous morphology of biopolymer aerogels, finding that the
fiber diameter, the pore-size distribution, and the density of the cells within the
aerogel network show a significant influence on their mechanical response. Fig-
ure 2.1 shows an example of a Voronoi architecture RVE of 0.1 relative density
and one compression sample of this same relative density.

Using Laguerre-Voronoi Tesselation (LVT) [13] shows the macroscopic stress-
strain curve of bulk porous κ-carrageenan aerogels material is predicted from the
pore-size distributions, solid fractions, and Young’s modulus of the pore-wall fibers.
LVT is a weighted version of the Voronoi tessellation where each point is assigned
a weight. The position of the cell boundaries is determined by the relative value
of the weights of two neighboring seeds. In LVT each Voronoi cell is generated
based on a sphere. The cell boundaries can be generated as a tangent to the
sphere surface at the point of contact between two adjacent spheres of different
sizes rather than equidistance positioning.

Voronoi structures have also been employed to design bone implants and scaf-
folds for AM [28], finding an excellent potential for Voronoi tessellation to design
patient-specific bone scaffolds with macro pore sizes that mimic trabecular bone
geometry. However, matching feature thickness to trabecular bone thickness is not
recommended for matching the mechanical properties of titanium lattice structures
to those of human trabecular bone. Control of pore size, porosity, and lattice type
may yield better results when replacing the trabecular bone with additively man-
ufactured titanium lattices [39].

2.2.3. FEA of 3D-printed gyroid and Voronoi porous ar-
chitectures
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Simulations of porous 3D-printed titanium bone replacement materials are typ-
ically performed in parallel with experimental mechanical tests. Some authors
(e.g., [73], [56], and [3] perform FEA simulations without RVEs, i.e., they simulate
the actual mechanical test sample size. On the other side, [76], [65], [43], and [40]
use RVEs, and even though they do not utilize PBCs nor perform computational
homogenization, they can obtain relevant information from the RVEs simulations.
Finally,[57] uses RVEs and PBC to obtain a homogenized material model.

[40] considers the influence of the RVE size on the ability of the simulations to
predict Young’s modulus and yield strength for cubic, diamond, and body-centered
architectures.

FEA simulations predicted the mechanical properties of 316 L stainless steel
gyroid scaffolds fabricated by Selective Laser Melting [38]. The material proper-
ties were used as reported by the powder manufacturer. Regarding the simulation,
they used a model consisting of 2x2x2 gyroid units. The general trend of mechan-
ical properties decreasing with increasing porosity was predicted by FEA, but
manufacturing defects, as low relative density, caused differences ranging from 30
to 56 % between simulation and experiments. The difference between simulation
and experiments increased with increasing relative density. No reference is made,
however, to the selection of the 2x2x2 gyroid units model and its possible influence
on the simulation results.

A procedure to build and validate a finite-element model for additively man-
ufactured metal lattice structures has been described by [49]. They applied the
method for face-centered-cubic and modified octet-truss lattices and showed av-
erage errors for the modulus and yield strength of 9-11% and 18%, respectively.
Their study is comprehensive regarding the FEA because they analyze the influ-
ence of element type (beam elements versus solid elements) and finite element
size. They also conducted a sensitivity analysis regarding the number of unit cells
stacked together for the simulation and the effect of boundary conditions and ma-
terial models. Finally, they also depict the increasing deviation between simulation
and experimental results with increasing relative density.

Many authors perform FEA analysis on different porous structures and mate-
rials without investigating the RVE size. [24] analyses tantalum scaffolds using a
5 mm diameter by 5mm height model for the simulation. [41] uses a model about
half the size of the compression sample.

A different approach for the simulation of gyroid TPMS implants is to assemble
the implants in a material with the properties of the trabecular bone. For example,
[36] divided the scaffolds into two halves; one was embedded into the cylinder base.
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The bottom of the cylinder base was immobilized, and a vertical force was applied
on top. Finding the stress shielding effect was notably reduced in the TPMS-based
porous structures.

To overcome the manufacturing limitations of the Electron Beam Melting tech-
nology, which are similar to those of the SLM, [59] proposed using a reduced strut
diameter for the simulations compared to the strut diameter used for the AM
process. Using this reduced diameter allowed them to increase the accuracy of
the simulations to predict the mechanic behavior. Initially, when the actual strut
diameter was used for the simulations, the stiffness of the simulations was con-
siderably higher than the one from the experiments. This same discrepancy has
been described in the SLM method as unit cell size decreases and relative density
increases [74].

2.2.4. Homogenization

Continuum mechanics is based on the concept of a homogeneous continuum ma-
terial. However, all materials are heterogeneous if a sufficiently small scale is
used. Generally, the homogeneous continuum assumption is no longer valid in
composite and porous materials. Therefore, some artificial homogenization must
be performed to use the continuum mechanics approach on composite or porous
materials [7].

The main idea behind homogenization is that the mechanical behavior of the
discontinuous material is somehow extracted from a small piece of porous material
that FEA can easily simulate. This mechanical behavior is usually extracted as
a stress-strain graph for uniaxial behavior or as a tensorial constitutive relation
called material law for more general load cases. The stress-strain relation can
be used to perform the FEA in macroscopical pieces of porous material without
considering the microscopical porosity, just modeling as a continuous solid and
using the constitutive behavior obtained from the porous model to account for its
stress-strain behavior without considering its porosity at all, considerably lowering
its computational expense.

Various analytical or computational homogenization techniques exist, from mi-
cro to macro. Homogenization models, also known as micromechanics models, can
be classified into empirical, semiempirical, analytical, and numerical [6]. The last
two would be considered further since they do not require experimental adjusting
factors.

Analytical methods are also referred to as mean-field methods. Initial repre-
sentatives of this class of methods were proposed before the advent of computers.
Some analytical homogenization techniques are the Reuss Model, the Voigt Model,
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and the Periodic Microstructure Model, which uses the Fourier series to estimate
all the components of the stiffness tensor of a composite. These analytical methods
are used to solve the inclusion and inhomogeneity problems, as reported by Es-
helby in 1957 [75]. With the advantage of not being restricted to periodic material
structures, constant stress or strain, periodic boundary conditions, or linear con-
stitutive laws [14]. The Mori-Tanaka mean-field scheme considers the interaction
between the embedded inclusions [7]. The main disadvantage of these methods
is that they only allow relatively simple microstructural features to be modeled.
However, they remain a current research topic [62], especially in tandem with the
FE method [8]. The microstructure characterization through Micro-Computed
Tomography (µCT) scans is used by [63] as an input for a two-step mean-field
method to compute the effective elastic behavior.

On the other hand, computational homogenization methods comprise FE, fast
Fourier transform methods, finite volumes, and finite differences, among others [7].

According to [46], in order to perform a direct computational homogenization,
it is required to:

1. Define the RVE geometry and materials (the constitutive behavior of the
individual constituents must be known).

2. Formulate the microscopic boundary conditions.

3. Calculate the microscopic output variables from the analysis of the deformed
microstructural RVE (usually performed by the FE method).

4. Obtain the relation between the macroscopic input and output variables.

The formulation of the boundary conditions will be explained in section 2.2.5.
First, the FE method is used to calculate the stress-strain relations for the RVE
(step 3), then it is necessary to relate them to the properties of the macroscopic
material (step 4). To that effect, it is assumed that the average mechanical prop-
erties of the RVE and the average properties of the composite are equal.

As derived in [70], parting from the average stresses and strains for the RVE,
using Gauss’s theorem and considering that the average strain in the RVE can
be expressed as an integration around the boundary surfaces. They start from a
parallelepipedal RVE under multiaxial loading and consider the assumption that
stress distributions at the boundaries must also satisfy the periodicity condition.
This periodicity condition means two corresponding points on two opposite planes
with the exact in-plane coordinates must have the same normal and shear stresses).
From that, it is possible to conclude that the average stresses in the RVE can be
obtained from the resultant reaction forces on the boundary surfaces divided by
the areas of the corresponding boundary surfaces.
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Calculating the average stress as the division between reaction forces by bound-
ary surface area can only be done if the adequate PBCs are applied to each
pair of opposing nodes and the deformed boundary surfaces can distort and no
longer remain plane, which is implemented by [45] in an open-access plug-in called
EasyPBC. This plug-in can be installed into Abaqus CAE and automatically ap-
plies the required constraint equations, displacement boundary conditions, and es-
timates the homogenized elastic properties using the unified periodic RVE homog-
enization method described above. A cell periodicity node is included in COMSOL
Multiphysics to perform the same homogenization for six load cases.

Computational homogenization is used by [16] to consider hexagonal-shaped
composites as Cosserat continuum to perform their homogenization. Computa-
tional homogenization is also used to analyze fully coupled multiphase flow in
deformable heterogeneous porous mediums [33] and to analyze the constitutive
behavior of 3D printed parts enabling tailoring of the mesostructure to obtain the
desired properties of the printed parts eliminating the expensive and tedious ex-
perimental work required to estimate the elastic moduli of printed parts [55]. The
strain energy-based homogenization method is used by [42] to achieve a general
multiscale topology optimization method for lightweight lattice structures obtained
through additive manufacturing technology. [36] proposes an approximate homog-
enization method to achieve a constitutive description of small volume fraction
particle-reinforced hyperelastic composites.

Artificial neural networks have also been used to replace the material model,
and it has been found that they can achieve lower computation while being more
general than analytical models to model constitutive behavior [58]. The results
from computational homogenization of RVEs of composite materials have been
used to train ANNs to produce their constitutive behavior [37] and could be used
in the same way for porous materials like titanium bone replacement implants.

2.2.5. Representative Volume Elements (RVEs)

According to [45], the term RVE was first employed by [29] and can be defined
as the smallest material volume of a composite material which can still represent
the macroscopical behavior of the material. In other words, an RVE is a material
volume whose effective behavior represents that of the material as a whole [1].
Figure 2.2 shows a typical example of a RVE, the unit that repeats itself is the
small prism with the cylindrical fibers, the quarters of a cylinder on the corners
become a full cylinder once the repetition is performed.

Figure 2.2 also shows an example of the selection of RVEs for this compos-
ite material. All three are equivalent, which means that they should all lead to
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identical homogenized properties after homogenization.

Figure 2.2.: Equivalent RVE selections to represent the same material.

Since the RVE homogenization method can analyze general geometries and
nonlinear materials is suitable for investigating hyperelastic materials [25].

In RVEs, the microstructure is approximated as periodic. Moreover, even
though most microstructures in engineering materials are non-periodic, the RVE
concept has been vastly employed to model micro-structured materials, for ex-
ample, non-porous solids (polycrystals and matrix inclusion composites), crys-
tallographic microstructures [61, 17], and biological materials [11, 12]. An RVE
composed of neurons (fibers) embedded in an extracellular matrix was used by [32].
In that study, isotropic visco-hyperelastic material properties were considered to
study the loads, load rates, and neuron volume fraction impacts on the mechanical
response of RVEs. In the porous solids field (fabrics, agglomerates, aggregates),
RVEs are commonly used to study metal foams [34].

2.2.6. Periodic Boundary Conditions (PBCs)

PBCs must be created for the RVE so that the composite deformation is the same
as the deformation of the RVE, and separation or overlap between neighboring
RVEs is avoided.

Once two nodes have been identified as being associated (located at the ex-
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act coordinates on opposing sides), the appropriate boundary conditions must be
applied according to the type of constant strain being considered. For the aver-
age stress of the RVE to be equal to the reaction forces of a boundary surface
divided by its area, the surface must be able to distort no longer remaining plane
[70], which can be achieved if adequate PBCs are applied to each pair of oppos-
ing nodes of the FE analysis mesh, which implicates the geometry and the mesh
intersecting the RVE boundaries in any opposing faces must be the same.

As previously mentioned, in RVE homogenization, the strain is uniformly ap-
plied in different independent sets of displacements, each set calculating a specific
elastic material property, for example, if a uniform strain is applied to the x1-
direction, then the component of the Young’s modulus obtained from that would
be E11, the Poisson’s ratios ν12 and ν13. [45] formulates for different uniform
strains, and [70] shows the general tensor notation. For the constant strain in x1-
direction, applied to obtain E11, the following BCs hold:

XF ront − XBack = ε (2.2)

XT op,Left − XBottom,Right = 0 (2.3)

YT op,Left,F ront − YBottom,Right,Back = 0 (2.4)

ZT op,Left,F ront − ZBottom,Right,Back = 0 (2.5)

Where X, Y, and Z are the displacement components (in x, y, and z-direction,
respectively) of arbitrary nodal points, the subindex indicates the boundary surface
which comprises them. The assigned strain value (ε) in Equation (2.2) is the only
displacement degree of freedom that is constrained.

All the rotational degrees of freedom for the front and back surfaces are not
constrained. Figure 2.3 helps explain those boundary conditions. For example,
for points c and d located at opposed positions in the top and bottom surfaces,
respectively, their displacements in x (blue), y (red), and z (green) directions must
cancel each other according to Equation (2.3), Equation (2.4) and Equation (2.5).
The same thing applies for points f and e located on the right and left surfaces,
respectively. Finally, for points a and b located on the front and back surfaces,
their displacements in y and z cancel out. However, their x displacements do not
cancel out; instead, they correspond to the assigned strain value as indicated in
equation Equation (2.2).
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Figure 2.3.: PBCs for uniaxial strain in the x-direction.

2.3. Aim of this thesis:

Despite the abundant literature about the FEA simulation of gyroid Ti-6Al-4V
additive-manufactured materials, the procedures to select the boundary conditions,
plasticity models, and strain hardening models are not reported. Also, using the
parameters and models from periodic structures for determining the adequate size
of the RVE of Voronoi (stochastic non-periodic) Ti-6Al-4V additive-manufactured
materials for simulations is not reported.

This thesis aims to perform simulations on RVEs of a triple periodic gyroid
architecture of Ti-6Al-4V additive-manufactured material with different relative
densities and to determine which plasticity models and parameters best represent
the non-linear constitutive behavior and elastic modulus of the compression test
specimens and provide the best computational performance. Afterward, this infor-
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mation will help determine the optimal RVE size of the non-periodic Voronoi archi-
tecture with five different relative densities by comparing them with the uniaxial
compression test results. These results will later be used to create homogenized
material models for selected architectures and relative densities and implement
them as user-defined material models in COMSOL Multiphysics.



3. Methods

3.1. Geometry Generation
The triple-periodic gyroid geometries and the Voronoi geometries are generated in
the software nTopology (nTopology, Inc., New York, USA, [44])This software is
an implicit modeling engine. Implicit modeling is a unique and lightweight way
of representing three-dimensional objects using a single mathematical function to
describe a solid body. In implicit modeling, every solid body is described by a single
mathematical equation. This approach to solid modeling delivers considerable and
sustainable advantages in reliability, speed, and scalability.

Taking advantage of this fast scalability, the focus of the geometry generation
was on a specific strut thickness. Increments of 25 µm were considered until a final
0.3 mm strut thickness was obtained. The thinnest thickness manufacturable with
the SLM was deemed to be 0.2 mm, so this was selected as the starting point.

The study began with a triply periodic minimal surface (TPMS) gyroid block.
The unit cell size was changed progressively for each strut thickness until the
desired relative density was obtained. Table 3.1 shows the unit cell sizes obtained
by this process with their respective relative density and strut thicknesses. Each of
the relative densities represents a distinctive material characterized by simulation.
Compression tests were performed for samples of each relative density.

The gyroid architecture is constructed over the basis of a unit cell repetition.
Figure 3.1 shows the graphical representation of the unit cells of gyroid structures
once the volumetric mesh has been generated in nTopology and imported into
COMSOL Multiphysics. It can be seen how the wall thickness increases with
increasing relative density. On the contrary, the unit cell size (the repeating unit)
is reduced as the material’s density increases. The unit cell model was used for
the simulations, but the actual RVE size corresponds to 2x2x2 unit cell sizes due
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Table 3.1.: Relative density, unit cell, strut thickness, and porous size of gyroid
porous architectures

Relative Porous Size Unit Cell Size Strut thickness
density [µm] [mm] [mm]

0.1 1230 3.860 0.200
0.2 610 2.170 0.225
0.3 470 1.616 0.250
0.4 290 1.339 0.275
0.5 209 1.173 0.300

to the employed boundary conditions.

Figure 3.1.: Unit cells for the triply periodic gyroid structure a) 0.1, c) 0.3, and
d) 0.5 relative densities with the same scale after volumetric mesh
generation in nTopology; b) shows a detailed view from a) at a larger
scale.

Figure 3.1 a) and b) show how the meshing algorithm from nTopology, used
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microscopic elements to incorporate tiny geometry details; these more minor ele-
ments in nTopology also appeared after the import and mesh generation process
in COMSOL Multiphysics.

The size ratio between mesh elements is an essential measurement of mesh
quality. Tiny elements combined with significant elements caused convergence
problems when performing the FEA analysis. The small mesh elements shown
in Figure 3.1a) did not cause problems with the 0.1 relative density since the
wall thickness was small. Therefore, the meshing algorithm was not obligated to
use extensive elements to mesh the strut, causing the mesh elements to have a
relatively similar size (the size ratio between elements was not excessively low).

As the relative density increased (Figure 3.1 c) and d)), the unit cell size
decreased, but the wall thickness increased, and the meshing algorithms used more
significant elements to mesh the thicker walls, and their coexistence with the tiny
elements created convergence problems. Using constant values of 0.07 mm for the
element size and 0.01 mm for the minimum element size during the meshing in
nTopolgy proved adequate for all of the densities of the gyroid family.

The geometries in nTopology are not conventional 3D solids with edges, sur-
faces, and volumes. Instead, the implicit modeling approach creates a graphical
rendition of a mathematical function. The implicit modeling allows instant mod-
ifications of the architecture or geometry of interest by changing the inputs to
the geometry-defining function or the function itself. This capability of instant
changes in the architecture and size of the microstructure of the materials would
be virtually impossible to replicate in a conventional CAD approach for modeling
this type of micro and mesostructured materials.

As soon as the desired architecture was finally chosen, it was time to export
the resulting material samples for fabrication or simulation. Creating conventional
solids from the implicit models in nTopology for direct simulation in COMSOL
Multiphysics was impossible. Instead, a volumetric mesh was created from the
implicit model in nTopology and was successfully imported and used in COMSOL
Multiphysics to perform simulations.

The repetition of the cubic unitary cell of 3.860 mm of the gyroid of 0.1 relative
density in 3D space creates the architected porous material. The desired volume
and shape are specified. The intersection between the infinite material and the
specified volume obtains the desired part. For example, the compression sample
of 12 mm in diameter is shown in Figure 3.2.

The geometry generation is slightly different for the stochastic Voronoi archi-
tectures. No unit cell can be repeated volumetrically to create the macroscopic
material. Instead, a random set of points is generated for the complete geometry
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Figure 3.2.: a) Gyroid unit cell of 0.1 relative density and b) compression sample
built with the same parameteres

of interest, e.g., a simulation cube, a compression test specimen, or an actual bone
replacement part. For this type of stochastic structure, the size of the RVE, which
represents the material’s properties as a whole, has to be determined experimen-
tally by simulation.

Figure 3.3 shows an RVE of stochastic Voronoi architecture of 0.1 relative
density and a compression sample. Both were built with the same average point
spacing and strut thickness; therefore, both have the same relative density. How-
ever, the compression sample model is in no way a periodic repetition of a unit
cell. The concept of the unit cell is invalid in this type of architecture.

nTopology uses the Voronoi cell boundaries as the axis for the solid struts,
while the Voronoi cells remain void. Struts of a specific size are used; however, at
points where several cells intersect, the thickness can be increased depending on
the random seed used; therefore, a large enough RVE must be used to represent
this kind of random variation adequately.

The average point spacing was modified progressively for a given strut size
until the desired relative density was achieved. As the relative density increases,
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Figure 3.3.: a) RVE of stochastic Voronoi architecture of 0.1 relative density and
b) compression sample model built with the same parameters.

the average point spacing decreases. Table 3.2 shows the average point spaces,
which result in the relative densities of interest for the given strut thicknesses.

Figure 3.4 shows RVEs of the Voronoi architectures for different relative den-
sities. For compression tests, the samples of all the relative densities had the
same size, but for simulation purposes the RVE size startet with the smallest size
possible. The RVE size was progressively increased until the simulation results
mimicked the strain-stress behavior of the compression tests.

The relative densities and strut thicknesses of the gyroid and the Voronoi
families are comparable, which allows for a direct comparison of the effectivity of
both architectures to mimic the human bone’s Young’s modulus with the maximum
yielding strength possible.

After the complete sample models were created in nTopology .3mf 3D man-
ufacturing format files were generated and used for additive manufacturing by
SLM. After the fabrication, the samples were heat-treated to reduce manufactur-
ing stress, and finally, the uniaxial compression tests were performed. Figure 3.5
shows one batch of test specimens recently extracted from the SLM build cham-
ber, and Figure 3.6 shows an example of a Voronoi architecture RVE of 0.1 relative
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Table 3.2.: Relative densities of Voronoi architectures

Relative Av. Point Strut thickness
density spacing [mm] [mm]

0.1 1.511 0.200
0.2 1.133 0.225
0.3 0.977 0.250
0.4 0.889 0.275
0.5 0.829 0.300

Figure 3.4.: Simulation RVEs for Voronoi architectures of a) 0.1, b) 0.3, c) 0.5
relative densities

density and one compression sample of this same relative density.

The location of the samples of different architectures and densities in the SLM
bed was randomized to counteract any possible influence of it over the quality
of the manufacturing process. Three compression test samples of each relative
density were manufactured and tested.

The material used was powdered Ti-6Al-4V ELI (Grade 23) Titanium from
SLM Solutions (Lübeck, Germany) [53]. With a spherical particle size of 30 µ and
a density of 4.43 g/cm3. The material properties for the sintered material from
the material data sheer are offset yield strength of 887 MPa and Young’s modulus
126 ± 1 GPa considering a test direction parallel to the additive manufacturing
direction. The manufacturer does not report the Poisson’s ratio; a value of 0.33
was used for the simulations.

The SLM machine was an SLM-280. The compression tests were performed
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Figure 3.5.: DLMS fabricated compression and fatigue test specimens [2]

Figure 3.6.: Stochastic Voronoi architected material of 0.1 relative density a)
cubic model of 5x5x5 mm and b) as built cylindrical 12 mm diameter
compression sample [2].
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in a Universal System Machine Zwick 100 kN. The strain rate used was 0.10-2
s−1 under the standard ISO 13314 mechanical testing of metal’s ductility testing
compression test for porous and cellular metals. The manufacturing of the SLM
samples and the mechanical tests were performed as part of the doctoral project of
M.Sc. Miguel Araya-Calvo and the collaboration between the Costa Rica Institute
of Technology and the Future Manufacturing Technologies (FMT) research group
of the University of Oulu, Finland.

3.2. FEA mesh generation.
A procedure was developed to set up the FEA mesh in COMSOL Multiphysics.
First, the .3mf file containing the mesh generated in nTopology was imported.
Then, a solid was generated from this imported mesh. Afterward, the generation
of a native COMSOL Multiphysics was attempted. When no errors appeared, and
the mesh metrics were acceptable, the setup for the simulation was continued. On
the contrary, when errors appeared during the native mesh generation, which did
not clear with mesh refinement, it was necessary to perform mesh operations in
the mesh tab, mainly joining operations, but sometimes boolean and partitions.
These mesh operations are performed directly on the imported mesh part, so after
them, the solid must be rebuilt, and the native COMSOL mesh is again created,
most often clearing the previous cases.

COMSOL Multiphysics has various importing capabilities for different mesh
file types. In the same way, nTopology can export volumetric meshes in various
formats. After some testing, .3mf and .stl file formats were successfully imported
to COMSOL Multiphysics. For standardization reasons, the .3mf was selected as
the export file type from nTopology for the rest of the present study.

Imported mesh data can be used in two ways: directly as a mesh for anal-
ysis or indirectly as a geometry object. Creating a geometry object is generally
more convenient because planar faces can be recognized and used to create suit-
able boundary conditions. Figure 3.7 a) shows the result of importing the mesh
generated in nTopology into COMSOL Multiphysics. The imported mesh is too
refined, causing significant computation times. Therefore, it is more convenient to
create a solid from it and then mesh it directly in COMSOL Multiphysics using the
recommendations for structural mechanics simulations corresponding to tetrahe-
dral quadratic serendipity finite elements. Figure 3.7 b) and c) show the solid and
the new mesh with more prominent elements more suitable for lower computation
times.

Importing the .3mf file was done in the Geometry toolbar, browsing for the
corresponding file. The Simplify mesh and the Form solids from surface object



24 Methods

options are selected by default. The Relative simplification tolerance includes
two options: Relative simplification tolerance and a Defect removal factor set by
default to be 0.01 and 1, respectively. Less simplification of the mesh is performed
when those two values are decreased. On the other hand, raising the Relative
simplification tolerance and Defect removal factor fixes more issues in the mesh,
although it may result in a less accurate representation of the imported surface
mesh.

Figure 3.7.: Imported nTopology geometry in COMSOL Multiphysics, a) as im-
ported mesh object, b) derivated solid, and c) new mesh created in
COMSOL Multiphysics and evaluated concerning mesh quality.

While importing the geometries into COMSOL Multiphysics, it was common
to encounter problems, especially during the new mesh generation. The more
frequent errors were self-intersections and insufficient minimum element size to
incorporate small details from the imported mesh. Changing the Relative simpli-
fication tolerance and the Defect removal factor did not solve the mesh problems.
Decreasing the element size for the meshing from normal to fine was sufficient
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for the gyroid geometries but not for the stochastic geometries, which required a
joining operation.

Figure 3.8 shows a sample Voronoi geometry after it has been built using the
default importing settings. The black lines visible when struts intersect become
a problem when creating the new simulation mesh in COMSOL. Due to their
small size, when the meshing algorithm tries to incorporate them, it must refine
the grain size significantly, which causes mesh quality problems. When the mesh
quality is poor, the computational time increases, and sometimes convergence is
not achieved in the solution. On other occasions, the mesh algorithm is unable
to mesh the part. Therefore, performing a procedure to remove these intersection
lines was vital. It can be achieved by creating a Join operation in the Mesh Parts
section of the Model Builder.

Figure 3.8.: Voronoi architecture of 0.1 density a) before and b) after the joining
operation.

The result of performing the Join operations is shown in Figure 3.8. After-
ward, the new mesh is generated in COMSOL Multiphysics. This procedure can
substantially improve the quality of the mesh. Table 3.3 shows the effect of the
joining operation on the mesh quality. Even though there is an increment in the
number of finite elements due to the joining operation, and the average element
quality did not improve considerably, the minimum element quality was improved
by 556%. The FEA simulation did not converge before the joining operation but
did afterward, highlighting the importance of this step.
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Table 3.3.: Effect of joining operation in mesh quality

Before joining After joining
operation operation

Number of elements 41925 43780
Minimum element quality 0.0215 0.1198
Average element quality 0.6542 0.6632

COMSOL Multiphysics allows the user to select the quality measure between
Skewness, maximum angle, volume versus circumradius, volume versus length,
condition number, and growth rate. The skewness measure is suitable for most
meshes; hence, it is the default measure. This quality measure is based on the
equiangular skew that penalizes elements with large or small angles compared to
the angles in an ideal element. This quality measure is also used when reporting
bad element quality during mesh generation.

The effect of the joining operation on the mesh skewness measurement can be
seen in Figure 3.9. The finite elements from Figure 3.9 a) possess a lower qual-
ity, evidenced by the higher number of orange and red elements. Also, the size
and shape of the triangular elements appear to be less uniform before the joining
operation is performed. It is also evident in Figure 3.9 b) how the joining opera-
tion causes features from the original mesh to be approximately represented, but
the gains in computing time are considerably more critical. Besides, the limita-
tions of the manufacturing process also prevent the manufactured material from
incorporating those tiny features from the original n-Topology mesh.

As mentioned before, when importing a mesh or 3D printing file, it is op-
tional to simplify the mesh before creating the geometry. The simplification can
remove minor defects typically present in mesh data from measurements, such as
tomography, and it can speed up geometry processing by removing unnecessary
elements from all meshes. The Simplify mesh option has two parameters that can
be modified. The Relative simplification tolerance is relative to the dimensions of
the entire geometry and specifies a global limit for how much the mesh can be
modified. The Defect removal factor is relative to the local feature size, as esti-
mated by the algorithm, and is combined with the global limit to produce a limit
for how much the mesh can be modified at a particular location. If the mesh con-
tains many defects that must be removed, the value of the Defect removal factor
can be increased. If the mesh describes the desired geometry with high accuracy,
it might be possible to decrease this factor instead. Changing both parameters
was investigated while trying to correct mesh problems. However, the results were
hard to standardize and required much trial and error. It was found more efficient
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Figure 3.9.: COMSOL Multiphysics mesh quality measured by skewness a) be-
fore and b) after performing the joining operation. A skewness of
one is the optimal value.

to modify the meshing parameters in nTopology and import the mesh with the
default parameters afterward, performing the joining operation when necessary.

3.3. Boundary Conditions.
Different possibilities for boundary conditions can be used to simulate a compres-
sion test. First, deciding between applying a prescribed force or a displacement
is necessary. When a prescribed force is used, it is necessary to determine the
magnitude of the force sufficient to cause yielding on the sample, which can be
more cumbersome because the area of the sample must be considered.

In this study, it was decided to prescribe displacement instead of force. Once
a specific strain is selected for the simulation of a sample, it is straightforward
to replicate the same strain on a different size sample because the relationship
between the size of the sample and a specific strain is always linear.

Usually, real-life compression tests are performed, as shown in Figure 3.11, by
placing the sample between the compression test machine plates without any addi-
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tional constraints. Similarly, the compression test simulation can also be performed
by placing the sample between plates considered rigid bodies. That approach be-
comes helpful when considering models without plane faces that can be selected
to apply a prescribed displacement. However, using rigid plates for the simulation
requires the activation of a contact formulation between the plates and the sample;
this adds more complexity to the model and can increase the computation time.

On the other side, it is common to employ the flat surfaces of solid models
to apply boundary conditions such as prescribed displacements, symmetries, and
forces or pressures. As shown in Figure 3.10, it was possible to create 3D solids
with planar boundaries, which facilitates the introduction of boundary conditions
directly on the model without using rigid plates to compress the sample.

Figure 3.10.: Unit cell of gyroid architecture with 0.1 relative density, a) bottom
face view, the dots correspond to automatically generated points
which can be used for boundary conditions, b) isometric view

The friction force between the plates of the compression testing machine and
the sample is usually enough to keep the sample in place. Sometimes, additional
clamping is used to keep the sample in place, but it was not the case in the current
study. Theoretically, when no additional fastening devices are used, the sample
has only two restrictions to its degrees of freedom, e.i. z = 0 at the bottom and z =
strain in the top face. However, because of friction against the plates, the sample
has no apparent displacement in the radial direction, as seen in Figure 3.11 b).

When creating a simulation of the compression test, an option is to select the
whole bottom of the sample to be fixed to the ground, which removes all degrees of
freedom from it, an approach that is very common in the literature . Conversely, in



Methods 29

other authors, only one degree of freedom, the axial, is removed from the bottom
and top faces, respectively. However, to perform the simulation with this approach,
it is necessary to have at least one fixed point in the bottom face to prevent the
sample’s rigid body motion. This fixed point should be in the center of the sample
because, in the case of a symmetric uniaxial compression load, this point has no
displacement. The location of a point right at the center of the bottom face is
not always possible (the RVE might be void in the center of the bottom face).
Even when possible, additional effort is required to create a center point because,
as seen in Figure 3.10 a), the automatically generated points do not necessarily
coincide with the center of the face.

Figure 3.11.: Voronoi sample of 0.1 relative density a) before, and b) after com-
pression test [2]

The easiest way to create a point right at the center of the bottom face is by
using symmetry boundary conditions. The bottom corner between the left and
right symmetries becomes the center of the bottom face of the sample. Therefore,
all its displacements and rotations can be prescribed and equal to zero to avoid the
rigid body motion problem. Figure 3.12 shows this approach for a gyroid sample
of 0.1 relative density with the addition of two symmetry boundaries (green and
purple).

The use of symmetry implies that simulation is performed in a sample four
times larger than the model. When a homogenization of the RVE is not performed,
as in the first part of this study, the use of a larger sample size is beneficial because
its constitutive behavior is generally more representative of the material’s behavior,
as compared with using one unit cell only.

The main advantage of using the symmetry boundary conditions is that a
larger material sample can be analyzed, but the computation effort is considerably
lower than that of an equivalent volume sample without the symmetry boundary
conditions.

In order to determine which approach to utilize, a comparison was performed
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Figure 3.12.: Symmetry boundary conditions for compression test simulation of
gyroid material with 0.1 relative density. In purple, the left symme-
try surface, in green, the right symmetry surface; and in yellow, the
top face with a negative displacement in the z-direction. The bot-
tom corner between the green and the purple faces is completely
fixed. The bottom face only has a fixed displacement in the z-
direction.

between a completely fixed bottom face and the already explained only-z prescribed
displacement for the face and a unique fixed point. The latter was selected as the
more advantageous, which will be presented in the results section.

RVEs of Voronoi stochastic materials are modeled differently. Figure 3.13 a)
shows an RVE of Voronoi 0.1 relative density material. In this case, the top and
bottom boundaries are selected so that struts intersect them roughly perpendicu-
larly. Another approach was evaluated in which all struts, even the ones parallel
to the top and bottom surfaces, were cut, generating plane faces that could be
used for the boundary conditions, as seen in Figure 3.13 b). Symmetry boundary
conditions are not possible for these two cases. Instead, a fixed boundary condition
(restricting all degrees of freedom) had to be used for the bottom face.

Finally, the introduction of artificial plates at the top and bottom of the RVE
was tried Figure 3.12 c). This final approach proved to render the most accurate
simulations because it allows using symmetry boundary conditions similar to the
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ones explained for the gyroid family.

The Voronoi materials are in no way a repetition of unit cells, and the use
of symmetry boundary conditions implies the repetition of the RVE four times.
A more exact material representation should be an RVE four times as large with
no symmetric BCs. However, this implies a significantly greater computing effort.
The accuracy of the simulations with these boundary conditions was sufficient.
Therefore, it was decided that their advantages in simulation time were more
significant than the accuracy loss due to mirroring the RVE two times with the
symmetry boundary conditions.

Figure 3.13.: Different implementation of boundaries for Voronoi structure of
0.1 relative density a) only struts, b) plane faces, and c) artificial
plates.
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It was found that an offset of the top and bottom plates from the Voronoi
struts is beneficial. It is impossible to incorporate the strut shown in Figure 3.14
a) into the joining operation. The small distance between the strut and the plate’s
vertical face causes them to be created as a single entity during the import process.
Further intersection operations could separate them, but they involve an additional
effort and do not always work. Instead, a slight separation between the struts and
the vertical face, as shown in Figure 3.14 b), avoids the consideration of struts
and vertical faces as a single unit, saving considerable effort and time during the
simulation setup. The use of this offset did not have a significant effect on the
stress-strain results.

Figure 3.14.: Offset of top and bottom plates from Voronoi RVE a) no offset b)
offset

3.4. Elasto Plasticity Model and Simu-
lation setup
The heat treatment used by the powder manufacturer was the following: specimens
were heated up in a vacuum atmosphere at a rate of 450 °C per hour up to 910 °C,
then with 300 °C per hour up to 940 °C. Subsequently, they were held at 940 ±
10 °C for four hours. Cooling down in vacuum at a rate of 40 °C per hour to 760
°C, then in argon with 560 °C per hour to 480 °C, followed by gas fan quenching
at any rate to 50 °C (SLM Solutions, 2022). Table 3.4 shows the datasheet of the
powder material in the as-built and heat-treated conditions.

Table 3.4 also shows the anisotropy of the material’s properties when tested
vertically (parallel to the manufacturing direction) or horizontally (perpendicular
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to the manufacturing direction). The values for heat-treated vertically tested
properties will initially be used for the simulations of the porous materials.

Table 3.4.: Titanium Ti-6Al-4V alloy data sheet as reported by the manufacturer
for DSLM. M : Mean; SD: Standard Deviation; H: Horizontally tested
V: Vertically tested

As-built Heat-treated

M SD M SD

Offset yield strength [MPa]
H 1076 30 851 12
V 1170 26 887 12

Young’s modulus [GPa]
H 113 1 120 5
V 117 2 126 1

A compression test of a strut filament was not performed. Therefore Young’s
modulus of 126 GPa and yield strength of 887 Mpa were used to overwrite the
COMSOL Multiphysics built-in Titanium beta-21 S properties for the initial sim-
ulations. Subsequent comparison with the experimental results allowed them to
be updated to values closer to the actual additively manufactured porous archi-
tectures. The typical uniaxial stress-strain behavior of a ductile metal can be seen
in Figure 3.15 a) the elasticity limit corresponds to the yield strength. Beyond
this point, any subsequent deformation does not return to the reference configu-
ration. Instead, it leaves a residual strain. Since the elastic limit is challenging to
evaluate, the Offset yield is defined. The linear elastic portion is displaced to the
right by 0.002 units of strain and plotted parallel to the original. The point where
this line intersects the experimental curve is defined as the Offset yield strength
(Figure 3.15 b).

COMSOL Multiphysics is a finite element analysis, solver, and simulation soft-
ware package for various physics and engineering applications, especially coupled
phenomena and multiphysics. For the current study, single physic Solid Mechanics
simulations were created.

Linear elastic behavior is automatically added to the Solid Mechanics simula-
tion with the selection of the built-in titanium material. An additional subnode
is added to the Linear Elastic node to account for the plastic behavior. For the
plastic behavior Plasticity, Porous Plasticity and no plasticity were evaluated.

After the plasticity behavior has been selected, it is necessary to use Large or
Small Plastic Strain Theories. The Large Plastic Strain Theory uses a multiplica-
tive decomposition of elastic-plastic strains and maintains the incompressibility
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Figure 3.15.: Typical uniaxial stress-strain diagram for ductile material and off-
set yield strength graphical calculation.

of the plastic deformation. The Small Plastic Strain Theory, also called Finite
Plasticity Theory, performs an additive decomposition [30], which is less accurate
but generally has fewer convergence problems. In the current study, the maximum
strain used in the simulations was 8% which can still be considered negligible,
allowing the use of the Finite Plasticity simplification.

The definition of the Yield Function is required for the plasticity and porous
plasticity nodes. A yield criterion defines the stress condition under which plastic
deformation occurs. Stress paths inside the yield surface result in purely recov-
erable deformations (elastic behavior), while paths intersecting the yield surface
produce both recoverable and permanent deformations (plastic strains). When an
associated flow rule is applied, the yield function must be smooth and continuously
differentiable with respect to the stress. In COMSOL Multiphysics, the following
form is used:

Fy = σe − σys (3.1)

Where σys is is the yield stress, the scalar function σe (σ) is the equivalent
stress; σys can be a constant (for perfectly plastic materials) or a variable for
strain-hardening materials. The default form of the equivalent stress is the von
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Mises stress, which is often used in metal plasticity:

σe = σMises =
√

3 J2 (σ) (3.2)

The von Mises criterion suggests that the yielding of the material begins when
the second deviatoric stress invariant J2 reaches a critical value. This criterion can
be written in terms of the elements of Cauchy’s stress tensor

J2 =
1
6

(

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2
)

+σ12
2 + σ23

2 + σ13
2 = κ2

(3.3)

or equivalently
√

J2 = κ The von Mises criterion is implemented in COMSOL
Multiphysics as

Fy Mises =
√

3 J2 − σys = 0 (3.4)

where σys is the yield stress level (yield stress in uniaxial tension).

Tresca stress, Hill orthotropic plasticity, or a user-defined expression can be
specified as the equivalent stress [18]. The von Mises and Tresca criteria are
independent of the first stress invariant I1 and are mainly used to analyze plastic
deformation in metals and ductile materials. The von Mises and Tresca criteria
belong to the volume preserving or J2-plasticity, as the plastic flow is independent
of the mean or hydrostatic pressure. The von Mises criterion was used for this
study due to the Titanium alloy’s ductile behavior.

3.4.1. Isotropic Plasticity.

At most, the plastic potential Qp is written as a function of three invariants of
Cauchy’s stress tensor for isotropic plasticity.

QP (σ) = QP (I1 (σ) , J2 (σ) , J3 (σ)) (3.5)

Where the invariants of the stress tensor are

I1 (σ) = trace (σ) (3.6)

J2 (σ) =
1
2

[

(trace σ)2 − trace (σ)2
]

(3.7)

J3 (σ) = det ( dev (σ)) (3.8)

so that the increment of the plastic strain tensor ε̇p can be decomposed into
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ε̇p = λ
∂QP

∂σ
= λ

(

∂QP

∂I1

∂I1

∂σ
+

∂QP

∂J2

∂J2

∂σ
+

∂QP

∂J3

∂J3

∂σ

)

(3.9)

The increment in the plastic strain tensor ε̇p includes in a general case both
deviatoric and volumetric parts.

The trace of the incremental plastic strain tensor, which is called the volu-
metric plastic strain rate ε̇pvol, is only a result of the dependence of the plastic
potential on the first invariant I1 (σ), since ∂J2

∂σ
and ∂J3

∂σ
are deviatoric tensors.

ε̇pvol = trace (ε̇p) = λ trace

(

∂QP

∂σ

)

= 3 λ
∂QP

∂I1

(3.10)

A standard measure of inelastic deformation is the effective plastic strain rate,
defined by the plastic shear components. For metal plasticity under the von Mises
or Tresca criteria, the volumetric plastic strain rate ε̇pvol is always zero because
the plastic potential is independent of the invariant I1 (σ). This is known as J2

plasticity. Incompressible plastic deformation is experimentally observed in metals.

3.4.2. Porous Plasticity.

The Porous Plastic subnode was also tried. This subnode for porous plastic materi-
als was developed because modeling of plastic deformation in soils, porous metals,
and aggregates has the main difference concerning traditional metal plasticity; the
yield function and plastic potential are not only defined in terms of the deviatoric
stress tensor (or the deviatoric stress invariant J2), but also include dependencies
on the hydrostatic pressure.

A key concept for porous plasticity models is the evolution of the relative
density, which is the solid volume fraction in a porous mixture. The relative
density is related to the porosity (or void volume fraction) Φ by

ρrel = (1 − Φ) (3.11)

When compacting a mixture of metal particles or a porous material, the poros-
ity tends to be zero, and the relative density tends to be one. There are different
porous plasticity models available in COMSOL Multiphysics to account for the
mechanism of compaction and void growth, among them: the ShimaâOyane Cri-
terion [52] developed for modeling the compaction of porous metallic structures
fabricated by sintering; the Gurson Criterion, the Gurson-Tvergaard-Needleman
Criterion.
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The Gurson criterion consists of a pressure-dependent yield function to de-
scribe the constitutive response of porous metals [26]. This yield function is de-
rived from the analytical expression of an isolated void immersed in a continuum
medium. The void volume fraction, or porosity φ, is the primary variable. The
yield function is not an ellipse in the stress space, as in the Shima-Oyane Criterion,
but it is defined in terms of the hyperbolic cosine function. The plastic potential
for the Gurson criterion reads

Qp (σ) =

(

σe

σys0

)2

+ 2 Φ cosh

(

3 pm

2 σys0

)

− (1 − Φ2) (3.12)

Where σe is the equivalent stress (von Mises, for this study), σys0 is the initial
yield stress, pm is the pressure, and Φ is the porosity.

Tvergaard and Needleman modified The Gurson Criterion for porous plasticity
to include parameters better to fit experimental data [64]. Only the unmodified
Gurson Criterion was used in the current study to avoid the empirical parameters.
For all the porous plasticity criteria, the change in relative density is, by default,
computed from the change in plastic volumetric strain

ρrel = ˙ρrel ε̇pvol (3.13)

Since the relative density is related to the porosity Φ by ρrel = 1 − Φ, the
change in porosity is also controlled by the change in plastic volumetric strain

Φ = ˙(1 − Φ) ε̇pvol (3.14)

and the change in volumetric plastic strain ε̇pvol is given by the porous plas-
ticity model.

3.4.3. Post-yield behavior.

Post-yield behavior is typically characterized as being perfectly plastic (exhibits
neither hardening nor softening) or showing some strain hardening, a material
response in which the yield stress increases with increasing strain beyond the
initial yield point Figure 3.16.

Kinematic and Isotropic Hardening models have been developed. In Kine-
matic Hardening, the yield surface remains constant in size and translates in the
direction of yielding. Subsequent yield in compression is decreased by the amount
that the yield stress in tension increased so that a difference of twice the yield
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strength between the yields is constantly maintained (Bauschinger effect). Kine-
matic hardening is generally used for minor strain and cyclic loading applications.
Therefore, it was not used in the current study. Materials can be modeled as hav-
ing both Kinematic and Isotropic Hardening, called Mixed Hardening, and can be
implemented in COMSOL Multiphysics by enabling both models. However, it was
not used in the current study.
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Figure 3.16.: Post yield behavior, perfectly plastic and bilinear strain hardening

In Isotropic Hardening, the yield surface expands uniformly (isotropic) in all
directions with the plastic flow, and the subsequent yield in compression is equal
to the highest stress attained during the tensile phase. Isotropic hardening is often
used for considerable strain or proportional loading simulations. It is usually not
applicable for cyclic loading.

The Isotropic Hardening model can be implemented by linear (bilinear), Lud-
wik (power law), Jonhson-Cook, or hardening function, among other models. The
bilinear isotropic and the hardening function models were evaluated alongside no
strain hardening (perfectly plastic material) because they only required one or no
parameter. All other models required multiple empirical parameters, and since
there was no empirical stress-strain test for the dense material, those models were
not considered.

The Linear Isotropic hardening model implemented in COMSOL Multiphysics
is a bilinear strain hardening model. The isotropic tangent modulus Et corresponds
to the slope of the stress-strain line after the yield point. It uses values from the
material or user-defined. The yield level σys is modified as hardening occurs, and
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it is related to the effective plastic strain εpe as

σys = σys0 + Eisoεpe (3.15)

with
1

Eiso

=
1
Et

−
1
E

(3.16)

Different values of Et were used to mimic the experimental stress-strain be-
havior.

For the linear isotropic hardening model, the yield stress increases proportion-
ally to the effective plastic strain εpe. The Young’s modulus E is taken from the
elastic material properties, and the hardening function σh(εpe) uses values from
the material. The yield level σys is modified as

σys = σys0 + σh (εpe) (3.17)

The hardening function can depend on more variables than the effective plastic
strain, for example, the temperature, but that was not considered. The powder
manufacturer does not provide the post-yield stress-stress behavior, and no test
was performed on monolithic samples to obtain such behavior for the non-porous
material.

Then the σh was implemented as a function of εpe (solid.epe in COMSOL),
the following formulations were used:

σh = H εpe + (σysr − σys0 )
[

1 − e−ζεpe

]

(3.18)

σh = H εpe + A
[

1 − e−ζεpe

]

(3.19)

σh = Constant (3.20)

Where H : Hardening coefficient, σysr : Residual yield stress, σyso : Initial
yield stress, ζ : Saturation exponent and A = (σysr − σys0 )

Different combinations of these values did not improve the accuracy of the
simulations. Leaving the constant σh as the best tool to approximate the non-linear
behavior of the compressive tests. Several other post-yield behaviors are available
in COMSOL Multiphysics, but they require using many empirical parameters;
therefore, they were not considered.
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3.4.4. Simulation setup.

Static mechanical compression tests were performed on the studied materials. For
this reason, a stationary study was used for the simulations because it is recom-
mended to compute deformations, stresses, and strains at static equilibrium suiting
well to simulate the static compression tests.

Only one load step e.i. a configuration at which a solution is obtained, was
used. However, a study extension called auxiliary sweep was used. The auxil-
iary sweep includes the specified combinations option, which solves several given
combinations of values for each parameter in a list.

A parameter called disp was created and given the maximum value corre-
sponding to a strain of 8% of the RVE size. This value was used for the boundary
condition on the top of the RVE. The disp parameter was loaded into the auxil-
iary sweep, and range(a,b,c) was written under parameter value list, where a is
the starting value, b is the step, and c is the end value.

Substeps are used to gradually apply a load and "record" points for the stress-
strain diagram. The auxiliary sweep controls the number of substeps within a load
step in which a solution is calculated. A substep size of 0.005 mm was successfully
used to capture the stress-strain behavior with enough detail while showing no
convergence issues.

The engineering strain ε was used for the uniaxial compression simulations:

ε =
∆L

L
=

l − L

L
(3.21)

Where L is the original length, and l is the final length of the sample.

After the simulation results were available, the bottom face reaction force in
the z-direction was calculated. A surface integration is performed over the bottom
face using the COMSOL Multiphysics variable solid.RFz to obtain the reaction
force. The transversal area of the samples could have been measured in nTopology
to calculate the true stress. Instead, the face area of a cube of dense material was
used. The engineering stress is calculated by:

σEng =
Fz

A0

=
∫∫

solid.RFz dA)
A0

(3.22)

Where Fz is the reaction force in the z-direction, A0 is the original area of
a solid cube and solid.RFz is the mentioned COMSOL Multiphysics z-direction
reaction force variable.
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An Intel Core vPro i7 11th generation processor with eight cores and 8 GB
RAM computer was used to run the simulations.



4. Results

4.1. General results
The compression tests were performed on three samples of each of the selected
relative densities. The curves were very similar. Therefore, just one of the curves
was selected to represent the particular relative density and architecture. The
yield strength and Young’s modulus of the three samples were averaged and are
reported using the standard deviation as the uncertainty of the average value.
Figure 4.1 shows how the gyroid architectures have higher Young’s modulus and
yield strengths since their curves are above the curves of the Voronoi family. The
numeric values of the modulus and yield strength are presented in Tables 4.5 and
4.7.

4.2. Gyroid Architectures
Initially, different boundary conditions were evaluated. Fixing all the degrees of
freedom versus just one node (to avoid rigid body motion) and displacement in the
direction perpendicular to the face (z-direction) were compared. Fixing just one
node in the bottom was implemented by applying symmetry boundary conditions
to the left and right faces, as explained in detail in the Methods section.

Figure 4.2 shows the stress-strain relationship for both boundary conditions
compared to the experimental results. It can be seen how the use of symmetry
and, therefore, a four times larger sample was more effective in predicting the
material’s actual behavior for a gyroid 0.1 relative density architecture. Table 4.1
shows that the fixed bottom boundary conditions, which are easily implemented,
can only predict Young’s modulus; instead, the more complicated-to-implement
symmetry boundary conditions can predict Young’s modulus and the offset yield
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Figure 4.1.: Experimental stress-strain curves (truncated) of gyroid and Voronoi
architectures. The solid red lines correspond to the gyroid architec-
tures and the blue lines to the Voronoi [2].

strength for this architecture and relative density. Even though the experimental
curve is shifted to the right, once the offset yield strength and Young’s moduli
are calculated, the ability of the simulation to predict both parameters becomes
evident.

Table 4.1.: Effect of boundary conditions on yield strength and Young’s Modulus

Boundary Offset Yield Young’s Correlation
Conditions Strength Modulus Coefficient

[MPa] [GPa]

Experimental Results 49.7 ± 0.16 2.02 ± 0.067 –
Symmetry Boundary Conditions 52 2.09 0.9997

Fixed Bottom 42 2.13 0.9996
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Figure 4.2.: Effect of different boundary conditions in the bottom face of a unit
cell of gyroid 0.1 architecture

The yield function and post-yield behavior used for the simulations from Ta-
ble 4.1 and Figure 4.2 were performed using J2-plasticity and Isotropic Hardening
with a constant user-defined hardening function of 1.75 GPa. The following sec-
tion will describe these models’ implementation in more detail. The gyroid family
simulations started with the thinnest strut with a nominal thickness value of 0.2
mm and a relative density of 0.1. As seen in Figure 4.3, when the Young’s Mod-
ulus of the sintered material was specified to be 126 GPa (the value reported by
the powder manufacturer), the modulus of the porous material from FEA was in
concordance with the experimental results.

First, no plasticity model was used; instead, a linear elastic behavior was given
for the dense material, and the porous material also exhibited it. Next, the perfect
plasticity model was employed. Perfectly plastic means the material can undergo
plastic deformation without any increase in yield stress for subsequent load cycles.
However, the yield strength was considerably lower than the experimental result.
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Figure 4.3.: Effect of elastic and perfectly plastic material models on stress-strain
of gyroid RVE of 0.1 relative density

The Perfectly Plastic model does not account for the strain hardening in the
porous material when its thin walls begin to experience localized yielding, which
could explain the lower yield strength observed with that model.

The next step was to implement strain-hardening models. First, the bilinear
model was tried, and Young’s modulus value of E = 216 GPa was maintained while
different isotropic hardening models were evaluated. Figure 24 shows that the lin-
ear isotropic hardening with an isotropic tangent modulus Et = 1 GPa showed
similar results to the perfectly plastic models. It takes high values of the tan-
gent modulus, e.g.,Et= 50 GPa, for the behavior to resemble experimental values.
However, the shape of the curve is not replied correctly. Moreover, the offset yield
strength is about half of the experimental for all cases. Young’s modulus is not
affected by the post-yield behavior and continues to coincide with the slope of the
experimental results.

The Hardening Function plasticity model was then tried. The best perfor-
mance occurs when the isotropic hardening model’s hardening function has a con-
stant value of σh = 1.75 GPa, the modulus, offset yield strength, and non-linear
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Figure 4.4.: Stress-strain for bilinear plasticity model with different Tangent
moduli Et evaluated with E = 126 GPa for Gyroid structure of
0.1 relative density

post behavior are close to the experimental results. Figure 4.5 shows the effect of
considering an exponential function, a linear term, or a constant.

Figure 4.6 shows the equivalent von Mises stress plot for simulating the gyroid
architecture of 0.1 relative density. Plastic behavior is expected since the stress
values are above 887 MPa, which was used as the yield value for the solid titanium
alloy. The stresses are considerably higher once the strain hardening model is
activated, compared with the perfect plastic where no strain hardening occurs.

The von Misses stresses in the volume plot are considerably higher than the
stresses in the stress-strain diagrams due to the use of the complete area of the
cube as if it were solid to calculate the stress-strain plots of the porous materials.
The stress distribution in both cases is not uniform.

The Porous Plasticity node was introduced, substituting the Plasticity node.
It requires the definition of a void volume fraction or porosity, which is not to
be confused with the porosity of the architected material. The void volume frac-
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Figure 4.5.: Stress-strain for Hardening Function plasticity model evaluated with
E = 126 GPa for gyroid structure of 0.1 relative density and different
parameters

tion represents voids in the additively manufactured walls of the gyroid structure.
Therefore, values around 10% void volume fractions were used. In Porous Plastic-
ity, the yield criterion is no longer von Mises. Instead, the Gurson yield function,
which incorporates the void volume fraction, is used.

Concerning the post-yield behavior, the same models from the Plasticity node
are available in Porous Plasticity (Isotropic Hardening, Kinematic Hardening,
Mixed Hardening). The Isotropic Hardening with a constant hardening function
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Figure 4.6.: Von Misses Stress plot for gyroid architecture a) perfectly plastic b)
strain hardening with constant hardening function.

was also employed. Figure 4.7shows how the yield strength decreases with increas-
ing void volume fractionâsuggesting that an internal porosity between 0.05 and
0.1 might be found in the struts of this gyroid architecture.

The 0.002 offset yield strength, obtained graphically from Figure 4.7, is pre-
sented in Table 6. The yield strength of the porous plasticity model with a volume
of 0.05 coincides with the experimental result.

Table 4.2.: Offset yield strength and Young’s modulus for different plasticity
models and void volumes of 0.1 relative density gyroid architecture

Offset Yield Young’s Correlation
Plasticity Model Strength Modulus Coefficient

[MPa] [GPa]

Experimental 49.7 ± 0.16 2.02 ± 0.067
Plasticity 52 2.09 0.9996

Porous Plasticity, f0 = 0.05 50 2.09 0.9996
Porous Plasticity, f0 = 0.1 48 2.09 0.9996

The stress-strain curves for different plasticity models and parameters of the
gyroid architecture of 0.2 relative density are shown in Figure 4.8. The Plasticity
curve corresponds to the isotropic strain hardening with the 1.75 GPa constant
strain hardening function and E = 126 MPa. Then porous plasticity is introduced
with the same parameters and void volume fractions of 0.05 and 0.1. The Young’s
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Figure 4.7.: Stress-strain with porous plasticity for different values of void vol-
umes, compared to experimental and regular plasticity for gyroid
material of 0.1 relative density.

modulus of the gyroid material obtained from the simulations does not match
the experimental’s. Only when the dense material’s E is lowered to 80 MPa, the
simulation matches the experimental Young’s modulus for the porous material.

The gyroid architecture of 0.3 relative density was first simulated with the
plasticity node, and the constant hardening function developed for the 0.1 density.
Figure 4.9 shows the general mechanical behavior from the experiment and the
simulations, and Table 4.3 the offset yield strengths and Young’s Moduli obtained
from the stress-strain plot.

The simulation with the plasticity node predicts the offset yield strength with
an error of 14%, which improves with the porous plasticity node. The best result
for the yield strength is found with a void volume fraction of 0.1, where the yield
strength is only 3%. The von Misses stress distribution from Figure 4.9 shows
how the stress is more or less evenly distributed among the walls of the gyroid
structure.
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Figure 4.8.: Stress-strain behavior of gyroid 0.2 relative density with different
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The effectivity of the simulation to predict Young’s modulus is diminished
compared to the 0.1 density. It is necessary to lower the dense material’s modulus
to 62 GPa to match the experimental modulus. Nevertheless, with this lower mod-
ulus, the simulation offset yield strength remains only 1% off the experimental’s.

Figure 28.

The strain-stress results for the gyroid architecture of 0.4 relative density are
shown in Figure 4.10. Similar to the previous cases, the simulation with plasticity
and isotropic strain hardening can predict the yield strength of the material (see
Table 4.5). This prediction improves with the use of porous plasticity. However,
regarding the Young’s modulus, it is necessary to assign a value of E = 45 MPa
for the dense material in order for the simulation to match the Young’s modulus
of the compression test.

As seen in Table ??, the ability of the porous plasticity node to predict the
offset yield strength diminishes for the 0.5 relative density gyroid architecture. The
regular plasticity with the constant hardening function provides the best results for
this architecture. Figure 4.11 shows the behavior of the stress-strain relationship
and Table ??.

The difference between the simulated and experimental modulus increased
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Figure 4.9.: Stress-strain behavior of gyroid 0.3 relative density with different
void volume fractions and Young’s modulus. On the right side, the
von Misses stresses for a sample of the same relative density.

Table 4.3.: Offset yield strength for different plasticity models and void volumes
of 0.3 relative density gyroid architecture

Plasticity Model Offset Yield Simulation Young’s Correlation Simulation
Strength error Modulus Coefficient error

[MPa] [%] [GPa] [%]

Experimental 222 ± 3.4 – 5.3 ± 0.07 0.9998 –
Plasticity 248 12 11.18 0.9997 111

PP, f0 = 0.05 237 7 11.18 0.9997 111
PP, f0 = 0.1 224 1 11.18 0.9997 111
PP, f0 = 0.1

217 -2 5.05 0.9999 -5
E=55 GPa

*PP: Porous plasticity

vastly for this relative density. As shown in It is necessary to lower the modulus of
the dense Titanium alloy to 30 GPa in order for the simulation to have the same
slope (modulus) as the compression test results.

Table 4.5 summarizes the results of the offset yield strength and Young’s modu-
lus for the gyroid family. The simulations were performed using the same plasticity
node, strain hardening model (isotropic hardening, constant hardening function),
and Young’s modulus for the laser-sintered powder (126 GPa). The simulations
can predict the yield strength, but only the 0.1 relative density simulations have
an acceptable accuracy concerning the experimental Young’s Modulus.
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Figure 4.10.: Stress-strain behavior of gyroid 0.4 relative density with different
void volume fractions and Young’s modulus.
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Table 4.4.: Offset yield strength and Young’s modulus for different plasticity
models and void volumes of 0.5 relative density gyroid architecture

Plasticity Model Offset Yield Simulation Young’s Correlation Simulation
Strength error Modulus Coefficient error

[MPa] [%] [GPa] [%]

Experimental 494 ± 2.9 – 6.47 ± 0.003 – –
Plasticity 520 5 26.19 0.9997 305

PP, f0 = 0.1 460 -7 26.19 0.9997 305
PP, f0 = 0.05 486 -2 26.19 0.9997 305

P, E = 30 GPa 460 -7 6.32 0.9999 -2

*PP: Porous plasticity
*P: Plasticity

Table 4.5.: Offset yield strength and Young’s modulus for different relative den-
sities of gyroid architecture

Relative Offset Yield Simulation Young’s Simulation
Density Strength error Modulus error

[MPa] [%] [GPa] [%]

experiment simulation experiment simulation
0.1 49.7 ± 0.16 52 5% 2.02 ± 0.067 2.09 4%
0.2 118 ± 4 160 36% 4.1 ± 0.02 6.467 58%
0.3 222 ± 3.4 248 12% 5.3 ± 0.07 11.18 111%
0.4 336 ± 7 370 10% 6.1 ± 0.01 17.54 188%
0.5 494 ± 2.9 520 5% 6.47 ± 0.003 26.19 305%

Figure 4.12shows the offset yield strength for different relative densities. The
experimental results are compared with the plasticity (isotropic hardening, con-
stant hardening function) and the porous plasticity with the same hardening func-
tion but different void volume fractions.

The 0.05 void volume fraction is most accurate for the 0.5 and 0.4 relative
densities. The 0.1 void volume produces the most accurate yield strength results
for all other densities. In all cases, porous plasticity has more accuracy than just
plasticity.

Figure 4.13shows Young’s modulus for each relative density predicted by the
simulations and the experimental results. The inability of the simulations to pre-
dict Young’s moduli becomes evident as soon as the relative density is higher than
0.1.

An interesting result can be obtained if the Young’s modulus of the dense ma-
terial required to match the slope of the linear elastic section of the stress-strain
curve experimental result is plotted for each relative density ( Figure 4.14). An



54 Results

0

100

200

300

400

500

NOO

O OQR OQS OQT OQU OQV OQN

W
X

se
t 

y
ie

ld
 s

tr
e

n
g

tY
Z[
\
]
^

_ela`ve density

Experiment

Plasbdfgh

Porous plasbdfgh,

ij k jlm

Porous plasbdfgh,

ij k jljn

Figure 4.12.: Comparison between simulations with different plasticity models
and void volumes and experimental results for offset yield strength
for all the gyroid densities

aproximated linear relation is found, starting with the 126 GPa reported by the
manufacturer for a unitary relative density (solid material without porosity) and
skipping the 0.1 relative density, whose E was effectively matched by the simula-
tions. This could be used as an empirical rule for future simulations until more
accurate models are developed. The following equation represents that approxi-
mated linear relationship:

EDense modified = (EDense − 166, 7 ∗ ρrel ) [GP a] (4.1)

Where EDense modified is the new Young’s modulus that must be used for the
simulation so that the results match the experimental results. EDense is the original
Young’s modulus as reported by the powder manufacturer and ρrel is the relative
density of interest.

4.3. Voronoi Architectures
The different boundary conditions were evaluated for a cube of 2 mm. Table 4.5
shows how using artificial plates combined with symmetry boundary conditions
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Figure 4.13.: Young’s modulus comparison between simulation and experimental
results for different relative densities of gyroid architecture.

produces the most accurate results. This result is similar to what was verified
for the gyroid geometries. The Young’s modulus and yield strength used for the
simulation were 126 GPa and 887 MPa, respectively.

The isotropic hardening plasticity model with a constant hardening function
of 1.75 GPa investigated with the gyroid family was also employed.

Unlike what occurred with the gyroid geometries, to evaluate different bound-
ary conditions, it was necessary to modify the geometry of the RVE. Figure 34
shows how this geometry modification affected the stress-strain results of the simu-
lations. The use of the plane faces as a boundary condition, as shown in Figure 4.15
b), implied that some struts were sliced and became very thin, which might explain
the very low modulus and strength for that case. The Voronoi material simula-
tion with the appropriate boundary conditions, likewise the gyroid of 0.1 relative
density, can predict the experimental Young’s modulus. However, the prediction
of the yield strength is not as accurate as it was for the gyroid of the same relative
density.

Once the best boundary conditions were found, the influence of the RVE size
was investigated. The 0.1 relative density of the Voronoi showed unusual behavior.
As seen in Figure 4.16, the closest to the observed behavior was obtained with the
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Figure 4.14.: Modified Young’s modulus of dense material to match the sim-
ulation and experimental Young’s modulus of the porous gyroid
architectures.

Table 4.6.: Offset yield strength and Young’s modulus for different boundary
conditions of 0.1 relative density Voronoi architecture

Boundary Offset Yield Young’s Correlation
Conditions Strength Modulus Coefficient

[MPa] [GPa]

Experimental Results 46 ± 0.5 1.5 ± 0.12 –
Artificial plates (symmetry) 31.6 1.3 0.9998

Struts Only 21.6 0.78 0.9996
Plane faces 9.2 0.31 0.9997

smallest RVE of 2 mm.

Figure 4.17 b) and c) show some lateral unstressed struts. These lateral struts
in the 3 and 4 mm RVE sizes are not vertically connected to the top and bottom
structures. Therefore, they do not carry any vertical load, which other struts in
the center of the RVE must support. On the contrary, Figure 4.17 a) shows how
all the struts are vertically connected to the top and bottom plates and bear the
stress, which might explain its more accurate results.
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Figure 4.15.: The stress-strain plot of different boundary conditions implemented
for Voronoi architecture of 0.1 relative density and von Mises stress
plots for a) only struts, b) plane faces, and c) artificial plates with
symmetry

The Voronoi architectures are stochastically generated. Therefore, different
structures can be produced with the same RVE size, strut diameter, and relative
density, which behave differently in the simulations. It is believed that these
stochastic effects might be averaged for large enough samples. Unfortunately, it
was not possible to simulate larger samples because the meshing algorithms in
COMSOL encountered problems with effectively meshing larger than 4 mm RVEs
of these architectures, especially for higher relative densities.

A study was performed with the 0.5 relative density to analyze the effect of
different stochastic configurations of the same relative density. Figure 4.18 shows
the stress-strain plot for different configurations of the same relative density, strut,
and RVE size. It also shows the von Mises stress plot for the 1.2 mm RVE. The
1.2 mm RVE is unsuitable because its reduced size oversimplifies the architecture.
The Young’s modulus of the oversimplified 1.2 mm size RVE is similar to the
experimental result. However, the yield strength is deficient.

The presence of semi-horizontally oriented struts not connected to the top and
bottom plates can be verified in versions v1 and v3 (see Figure 4.19). These struts
are mostly unstressed, causing the other to bear most of the load, producing a
lower yield strength of the whole structure.



58 Results

0

10

20

30

40

50

Þß

ß ßàßá ßàßâ ßàßã ßàßä ßàßå ßàßÞ ßàßæ ßàßç

S
tr

è
éé
êë
ì
í
î

Strïðñ òóóôóóõ

Experimental

2 mm

4 mm

3 mm

Figure 4.16.: Stress-strain plot for cubes of 2, 3, and 4 mm of Voronoi architec-
ture of 0.1 relative density.

On the contrary, in versions v2 and v4 (especially in v2), most struts bear
axial loading. Consequently, their stress-strain curves show a stiffer behavior and
a higher yield strength. Version v2 has a yield strength of 432 MPa, comparable
to the 389 ± 6.2 from the mechanical tests; its Young’s modulus is 19.3 GPa, while
the experimental value is 5.4 ± 0.05 GPa for a difference of 257%, not far from
the 305% difference between the modulus of the simulations and the experimental
results for the gyroid family.

For version v2 of the 1.8 mm RVE, the porous plasticity node was applied
with a void volume fraction of 0.1, bringing the yield strength results to only 1%
below the experimental result.

The empirical rule developed for the gyroid architectures, which consisted in
decreasing E of the dense material according to a linear progression, was employed
for the optimal version of the 1.8 mm cube. According to that empirical rule,
a Young’s modulus of 30 GPa was selected for the dense material. The stress-
strain curve obtained from the simulation for the porous Voronoi architecture of
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Figure 4.17.: Von Mises stress plots for a) 2, b) 3, and c) 4 mm cubes of archi-
tecture of 0.1 relative density.
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Figure 4.18.: The stress-strain plot of Voronoi architecture of 0.5 relative density.
Different stochastic configurations for the 1.8 mm RVE size and one
configuration for the 1.2 mm RVE size. On the right side, von Mises
stress of the 1.2 mm RVE.

0.5 relative density has a slope of the linear section corresponding to 5.03 GPa,
only a 6.8% percent off from the 5.4 GPa experimental result.
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Figure 4.19.: Von Misses stresses for different configurations of Voronoi architec-
ture for an RVE size of 1.8 mm. a) v1, b) v2, c) v3, and d) v4

Figure 4.20 shows how for the 0.2 relative density, the sizes of 1.5 and 2mm
RVEs seem too small to capture the material’s constitutive behavior. The 3 mm
size with 84 MPa yield strength comes closer to the 121 ± 1.4 MPa of the experi-
ments. The optimal RVE size is more extensive but close to 3 mm for this relative
density. The Young’s modulus is the same as the experimental for the 3mm RVE
size. However, the information obtained from the gyroid family and the Voronoi
cube of 1.8 mm shows that this match is just a coincidence.

Figure 4.20 also shows the effect of removing all degrees of freedom from the
bottom face (fixed bottom). It can be compared with the same 3 mm RVE but
different boundary conditions: only removing the degree of freedom of displace-
ment parallel to the compression test direction. Using the fixed bottom boundary
conditions, as consistently occurred during this study, causes the yield strength
to be lower and farther from the experimental results. Fixed boundary conditions
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have an advantage, though they are computationally more efficient. For example,
the 3 mm RVE took 34 minutes and 26 seconds to complete with the symme-
try boundary conditions versus 23 minutes and 32 seconds with the fixed bottom
making them 32% more computationally effective.
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Figure 4.20.: Stress-strain plot for Voronoi architecture of 0.2 relative density.
On the right side, von Mises stress plot for a) 1.5, b) 2, and c) 3
mm RVE size.

Figure 4.21 shows a very similar situation occurs for the Voronoi architecture
of 0.3 relative density. The 1.2 mm cube is too small to correctly represent the
material’s behavior because its yield strength is too low. The 2 mm RVE modulus
is close to the experimental, but it is considered coincidental given the behavior of
the gyroid models. The optimal RVE size must be larger than 2 mm because the
yield strength of the 2 mm cube is still low.

Figure 4.22 shows the stress-strain plot of the 0.4 relative density for cube sizes
1.1 and 2 mm, which are very similar. The yield strength is below the experimental
by 33%, and the modulus is 53% above the experimental result. The von Mises
stress plots show the stress distribution in the structures. Both have most struts
bearing the axial compressive load, which explains their similar results.

Table 11 shows the yield strength and modulus obtained using the best RVE
for each relative density. In most cases, that was the largest RVE possible to
simulate with the current method. The exception corresponds to the 0.1 relative
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Figure 4.21.: Stress-strain plot for Voronoi architecture of 0.3 relative density.
On the right side, von Mises stress plot for a) 1.2 and b) 2 mm
RVE size.

density where 4 mm RVES were simulated; however, the 2 mm RVE results are
considered better after analyzing the stress distribution in the struts.

Table 11, Figure 4.23, and Figure 4.24 show that the ability of the simulations
to predict the yield strength of the Voronoi materials for the RVE sizes considered
is not as good as it was for the gyroid materials. The error percentage is still low
enough to provide a general idea of the material’s behavior from the simulations.
Figure 42 only includes one point for the porous plasticity. It was only evaluated
for the 1.8 mm cube size of the 0.5 relative density.
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On the right side, von Mises stress plot for a) 1.1, b) 2, and c) 3
mm RVE size.

Table 4.7.: Offset yield strength and Young’s modulus for different relative den-
sities of Voronoi architecture.

Plasticity Model Offset Yield Simulation Young’s Correlation Simulation
Strength error Modulus Coefficient error

[MPa] [%] [GPa] [%]

Experimental 494 ± 2.9 – 6.47 ± 0.003 – –
Plasticity 520 5 26.19 0.9997 305

PP, f0 = 0.1 460 -7 26.19 0.9997 305
PP, f0 = 0.05 486 -2 26.19 0.9997 305

P, E = 30 GPa 460 -7 6.32 0.9999 -2

*PP: Porous plasticity
*P: Plasticity
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Figure 4.23.: Comparison between simulations with different plasticity models
and void volumes and experimental results for offset yield strength.
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Figure 4.24.: Young’s modulus comparison between simulation and experimental
results for different relative densities of Voronoi architecture.



5. Discussion

5.1. Reference to the aim of the study
The FEA simulations of the periodic gyroid architectures were performed following
a comprehensive path starting from selecting the most suitable boundary condi-
tions. It was found that the use of symmetry boundary conditions and only one
fixed point located at the center of the model (to avoid rigid body motion), only
restricting the bottom face’s degree of freedom parallel to the compression test
direction, was the most effective to replicate the experimental stress-strain curves
with the simulations.

The use of an elastoplasticity material model and an isotropic strain hardening
model with a constant strain hardening function of 1.75 GPa was found essential
for the simulated mechanical behavior in compression to resemble the experimen-
tal’s. The simulations effectively predicted the materials’ yield strength for all
the ranges of relative densities from 0.1 to 0.5 of the gyroid architectures. Using
the Gurson criterion (a plastic porosity model) with a void volume between 0.05
and 0.1 increased the accuracy of the yield strength prediction. The use of this
porosity model to account for the internal porosity of the walls and struts of the
porous architectures improving the accuracy of the yield strength prediction was
not previously reported in the literature.

The ability of the simulations of the gyroid architectures using the unitary
cell as RVE to predict the Young’s modulus was only practical for low relative
densities (below 0.2). Changes in the plasticity model or the strain-hardening
model did not affect the simulations’ Young’s modulus. Only by changing the
material’s parameters from the 126 GPa reported by the powder manufacturer
was it possible to match the experimental Young’s modulus with the results of the
FEA simulations.
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The parameters and models that offered the best results for the gyroid materi-
als were used to study the optimal RVE size for the Voronoi family. Increasing the
RVE size was generally found to improve the ability of the simulations to predict
the yield strength. The Young’s moduli of the Voronoi family predicted by the
simulations were more accurate than for the gyroid family. However, prudence is
recommended with these results until larger Voronoi RVEs of these materials are
simulated.

The Voronoi tesselation has a stochastical nature. Random points in space
create each Voronoi cell. Different location for the initial points means different
material structures, even though the same relative densities and strut diameters
are used. The effect of those differences in the microstructure likely fades away for
large enough material samples, but for the sizes considered in the simulations of
the present study, the effect was significant. Therefore, not only the RVE size was
to be considered for the Voronoi simulations but an adequate stress distribution
over all the struts. Some of the RVEs generated had struts that were not directly
connected vertically with the rest of the structure. Von Mises stress plots of those
RVEs show those struts were under very low stress. The other struts from the
RVE were bearing most of the stress. Therefore, the effective area was reduced,
causing lower yield strength values for the simulations to be much lower than the
experimental results.

The only case in which the present study can affirm the size of an RVE for
the Voronoi architecture in the whole meaning of the name, e.i., represents the
material’s macroscopic behavior concerning the yield strength, was the cube of 1.8
mm side length for the 0.5 relative density. Native mesh generation errors made it
impossible to simulate larger RVEs than those reported for the densities between
0.1 and 0.4. However, it is believed that the adequate RVE size for those relative
densities of Voronoi architectures is not far from the largest cubes simulated in the
present study.

5.2. Review of important findings
The employment of a plasticity model was fundamental for the simulations to
accurately predict the yield strength of both gyroid and Voronoi architectures.
Figure 4.3 shows how using a perfectly plastic model for the models, where the
material experiences no hardening or softening, produces a nonlinear stress-strain
behavior, which is convenient but insufficient to obtain accurate yield strength val-
ues. Bilinear isotropic hardening models were implemented, and while increasing
values of the tangent modulus were more effective in mimicking the stress-strain
curve shape, their yield strength values were too low compared with the experi-
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mental (Figure 4.4 ). After some experimentation with strain hardening functions,
it was found that a constant strain hardening function of 1.75 GPa effectively pre-
dicted the stress-strain curve shape and the experimental yield strength (Figure 4.5
).

Pores are a common defect of SLM, and they were found in the experimen-
tal compression samples. A Gurson porous plasticity model was implemented in
COMSOL Multiphysics, and porosities ranging from 0.05 and 0.1 of void volume
fraction improved the accuracy of the prediction of the yield strength of the gy-
roid architectures for all of the relative densities of the gyroid family evaluated
(Figure 4.12 ) and also for the only Voronoi element whose RVE size is considered
to have been found. The fact that the porous plasticity can considerably improve
the accuracy of the yield strength predictions suggests that the SLM additively
manufactured materials considered in this study might have an internal porosity
of around 10%.

All experimental stress-strain plots present a section of nonlinear fast deforma-
tion under a low load. Subsequently, the stress-strain curve presents the character-
istic linear elastic behavior until the yield point is reached. This initial nonlinear
section might be related to some initial yielding of struts or parts of the architec-
ture with manufacturing errors diminishing their stress-bearing capabilities. Once
these weak structures collapse, the architecture’s linear elastic behavior occurs.
The plot’s linear section slope corresponds to the experimental Young’s modulus.

The Young’s modulus was predicted accurately only for low relative densities
(0.1 and 0.2). Afterward, it diverges from the experimental results, a trend re-
ported in the literature. Changing the plasticity models and parameters did not
affect the simulated Young’s modulus. Only modifications on the Young modulus
of the dense material effectively lower the porous architectures’ modulus to match
the experimental’s.

The increasing divergence between the modulus from simulations and experi-
ments with increasing relative density might be related to the manufacturing pro-
cess. It was found that the surface roughness and porosity increase with growing
relative density. This might imply that the manufacturing process might weaken
the material of the thicker struts and walls. As more material must be sintered,
more heat has to be introduced, and the heat dissipation might also be impaired,
possibly causing slower cooling rates which are known to lower the stiffness of this
type of material.

Nevertheless, the empirical rule developed to predict the Young’s modulus
of new architectures was satisfactorily employed to predict the modulus of the
Voronoi material of 0.5 relative density.

5.3. Limitations and justifications
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The main limitation corresponds to the COMSOL Multiphysics native mesh gen-
eration for the FEA. The geometries generated in nTopology must be transformed
into volumetric meshes to be importable in COMSOL. Joining operations must
be carried out in the imported mesh part to remove artificial edges where struts
intersect. In some cases, this operation was sufficient to create a functional solid
adequately processed by COMSOL’s meshing algorithm. The meshing operation
failed on other occasions, especially for larger RVE volumes and densities. Mod-
ifying the importing parameters, refining the mesh size, performing Fill Holes
operation on the mesh, and adding and removing elements proved insufficient to
obtain a working FEA mesh.

It was necessary to generate an entirely new model in nTopology, with the
same relative density and strut diameter, until the stochastic parameters created
a geometry that could be successfully imported into COMSOL Multiphysics. The
more intricate the geometry, which occurs with increasing relative density, the
more likely problems occur. The possibility of randomly generated small holes in
the structure increased with increasing RVE size. Therefore, obtaining a working
model for sizes larger than 3 mm was difficult.

Figure 5.1 shows an example of a small hole caused by the Voronoi tessela-
tion’s stochastic nature. COMSOL Multiphysics meshing algorithm had problems
incorporating these tiny holes, causing Self-intersection errors. Many attempts
were made to remove them from the imported nTopology, and refine the mesh.
However, the most effective way found was to generate a whole new model in
nTopology. An iterative and time-consuming trial-and-error process had to be
implemented to obtain fully functional models.

It is possible to use imported meshes in COMSOL Multiphysics without cre-
ating a solid and a new native mesh from that solid. However, it could not be
implemented because the nTopology mesh is a void crust, just the external surface
representation, which is not feasible for 3D structural simulations.

Young’s Moduli are calculated from the linear sections of the curves. The
correlation coefficients are used to determine if the data used for the Young’s
moduli correspond with a linear relation. The values from Table 5 are very close
to one, which means the assumption of linear behavior for the data considered to
calculate Young’s Moduli is valid.

Mesh convergence studies were performed across the study. However, the mesh
refinement only duplicated the computing times without significantly impacting
the mechanical properties.
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Figure 5.1.: Imported Voronoi of 0.5 relative density mesh after a) joining pro-
cess and b) after meshing in COMSOL, c) shows a section view of
imported mesh.

The powder manufacturer reported the properties for solid materials, not
porous ones like those manufactured. Manufacturing deviations related to the
manufacturing parameters or the fact that a porous instead of a solid structure
was manufactured can cause the walls and struts of the porous material to have
internal micro-pores or superficial adherences of unmelted material.

Additionally, the input heat from the laser and the differences in cooling rates
can affect the microstructure and create manufacturing stresses. The heat treat-
ment after the fabrication was performed following the manufacturer’s indications,
but it could have been a source of deviation from the properties reported by the
manufacturer for a solid MDLS sintered material.

Computational homogenization is available in COMSOL Multiphysics. How-
ever, it was not viable to utilize the cell periodicity node on the RVEs of this
study. The Voronoi architecture could not be included due to its lack of symme-
try between the opposing faces of the RVE. The gyroid unit cells are symmetric;
however, it was impossible to create a symmetric mesh for opposing sides due to
the curved nature of the geometry. The homogenized material model, which can
be incorporated into a user-defined material model, was not achieved.

5.4. Comparisons between different el-
ements of the present study
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In addition to the comparisons already performed, it is essential to discuss the
computation times. The processing time increased with the relative density. Gy-
roid RVEs of 0.1 relative density took around one minute, while the relative density
of 0.5 took 2 minutes. The 4 mm cubes of Voronoi relative density 0.1 took 30
minutes to solve, while the 1.8 mm RVE of 0.5 relative density took 5 minutes
to solve. Implementing the porous plasticity model increased the computational
effort while bringing increased accuracy to predict the yield strength.

The von Mises stress plots across this study show how the stress is more
evenly distributed over the entire volume of the triply periodic minimal gyroid
surfaces. At the same time, in the case of the Voronoi architectures, there are
several stress concentrators at the intersection between struts, and in general,
the stress distribution is far less uniform. These stress concentration areas might
explain the experimental’s lower yield strengths of the Voronoi materials.

5.5. Comparisons with previous works
The use of boundary conditions where all degrees of freedom are eliminated for the
bottom face of the samples or RVEs is used by [76], [21], [40], [56], [65] and [73].
The influence of this selection on the final results is not mentioned at all. The
current study found that the fixed bottom boundary conditions consistently pro-
duced simulation results with lower yield strength than removing only the degree
of freedom parallel to the compression test direction. Although widespread in the
literature and easy to implement, the fixed bottom boundary conditions produced
less accurate yield strength results. The fixed bottom boundary conditions did
not affect Young’s modulus results (see Figure 4.2 and Figure 4.20 ). Therefore
future studies focusing on elasticity instead of yield strength might take advantage
of these easily implemented fixed bottom boundary conditions. The fixed bottom
boundary conditions were around 32% more computationally efficient.

The use of rigid plates with frictionless contact is implemented [3]. However,
they do not explain which alternative boundary conditions were examined or sup-
port their selection. Even though the current study did not use rigid plates to
compress the materials sample, the employed boundary conditions, which allow
displacement of the sample in radial directions perpendicular to the axial com-
pression direction, end up being very similar to the frictionless contact between
rigid plates. The contact formulation implementation is generally more computa-
tionally expensive than the solution implemented in the current study.
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[43] uses very similar boundary conditions to those implemented in the current
study, only for a 2D model. A comparison against different boundary conditions
is not performed. However, they note how using a displacement condition allows
easy control of the calculation steps and is very useful for gaining stress-strain
information. The same displacement condition for the top face (instead of applying
a force or pressure) was employed in the current study with satisfactory results.

The use of bilinear isotropic hardening models is widespread in the literature
[3], [27], [43]; some researchers use even the perfectly plastic model to predict
the yield strength of reticular additively manufactured materials effectively. How-
ever, when implemented in this study, both produced too low values for the yield
strength (Figure 3.16 ). Another approach found in the literature often is the use
of post-yield experimental data [21], [73], [57]. Unfortunately, such data was not
available for this study. It is recommended to have such data for future research,
especially from tests directly performed on samples the size of the struts, attempt-
ing to incorporate the manufacturing influence for the different strut diameters or
wall thicknesses.

Regarding the yield strength and Young’s modulus [76]performed a similar
study comparing RVE simulations with compression test results for diamond lat-
tice DSLM additively manufactured Ti6Al4V structures. They also accurately
predicted the yield strength but presented the same increasing divergence between
FEA obtained and experimental Young’s modulus for relative densities between
0.2 and 0.4 relative densities while using unit cells to perform the simulations. Sig-
nificant discrepancies between simulation and experiments were found [21], [73].
The discrepancies may be related to the deviations between the modeled and fab-
ricated structures [5]. Some authors can accurately predict yield strength and
Young’s modulus [3], but instead of a unit cell, they simulated the full-size com-
pression sample and used relative densities between 0.1 and 0.3. Their study shows
the advantage of modeling the scaffolds directly as CAD solids, which facilitates
the meshing. Unfortunately, this approach is unsuitable for the gyroid and Voronoi
structures considered in the present study. Besides, it is possible that the addi-
tive manufacturing of their models with flat faces involves fewer problems than
manufacturing the geometries of this study.

Stacking several unit cells for simulation has been found to lower the FEA-
obtained Young’s modulus by 4.5 GPa when four unit cells were stacked together
[40]. However, this is impractical for the current study, first because of the difficul-
ties importing and meshing larger samples from nTopology, and, secondly, because
the discrepancies found in this study are considerably higher than 4.5 GPa.

5.6. Implications and generalizations
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A general procedure to create simulations of gyroid and Voronoi or similar archi-
tected materials can be reconstructed from the current study. It is recommended
to start from the lowest relative densities and with periodic materials. Experimen-
tation should be performed to determine the best boundary conditions, plasticity
models, strain hardening models, and their parameters best suiting for the lowest
relative densities and periodic materials. Then the information obtained can be
used to model the more complex stochastic non-periodic structures and higher
relative densities. The effectivity of the developed empirical rule to predict the
Young’s modulus of porous materials can be tried for different material architec-
tures.

5.7. Recommendations for future research
Exploring new methods in COMSOL Multiphysics to import and mesh larger
sample sizes from nTopology remains challenging for future research. Also, cuasi-
meshless simulation methods look promising to simulate this kind of architecture,
avoiding the described problems with native FEA mesh generation.

Even though compression is the primary load mode considered for bone re-
placement materials, the simulation of other load modes like torsion and fatigue
possess high research potential to design and optimize additively manufacturable
materials, which could improve the acceptability and durability of bone implants
and scaffolds.

Comprehensive studies where SLM is used to manufacture compression sam-
ples with the same size as the struts evaluated in the study might allow the use of
experimentally obtained stress-strain curves for each strut diameterâincorporating
that information into the post-yield behavior model of the simulations. Metallo-
graphic and microscopic analysis of the struts’ internal microstructure, porosity,
and presence of unmelted inclusions or adherences might help further understand
the divergence of Young’s modulus between simulations and experiments.



6. Conclusions

FEA simulated triple periodic minimal gyroid architecture unit cells accurately
predicted the yield strength of compression samples of relative densities between
0.1 and 0.5. Using an isotropic strain hardening constant function with a value of
1.75 GPa proved better than bilinear isotropic to mimic the stress-strain behav-
ior. Implementing a porous plasticity Gurson model with void volume fractions
between 0.05 and 0.1 to account for the internal porosities in the additively man-
ufactured walls of the gyroid material improved the accuracy of the yield strength
predictions. The prediction of the Young’s modulus diverged from the experimen-
tal results, a common finding in the literature. However, an empirical rule was
found to predict the Young’s modulus of the porous material by linearly decreasing
the Young’s modulus of the dense constituent material.

Increasing the size of the simulation samples of the non-periodic stochastic
Voronoi materials was found to positively impact the simulations’ ability to predict
the compression samples’ yield strength. However, guaranteeing a uniform stress
distribution among the entire geometry was also essential to obtain meaningful
results. A sufficiently large cube size to be considered an RVE in the whole meaning
of the name was only achieved for the 0.5 relative density, with a size of 1.8
mm. The empirical rule developed for the gyroid architectures was instrumental
in predicting the Young’s modulus of this RVE of Voronoi architecture. Meshing
errors avoided the simulation of larger cube sizes for the other relative densities of
this family, as well as performing a computational homogenization for the gyroid
materials.
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