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Resumen

El bajo consumo de potencia, recursos computacionales escasos y los pocos grados de

libertad para la optimización limitan la implementación de soluciones para la inferencia

de aprendizaje profundo en el edge. La computación aproximada y la śıntesis de modelos

de alto nivel en C++ resultan prometedoras para el diseño de aceleradores genéricos es-

pecializables. Este trabajo propone un marco de trabajo de código abierto con libreŕıas

incluidas para la generación y evaluación automática de elementos de procesamiento (PE,

Processing Element) vectorizados y aceleradores personalizables para la multiplicación-

adición de matrices y para la convolución con tamaño de operandos, longitud y tipo de

dato, y operandos aritméticos adaptables, usando śıntesis de alto nivel desde descrip-

ciones en C++ genérico. A través de una exploración del espacio de diseño (DSE, Design

Space Exploration) que vaŕıa la longitud del dato de 4 a 16 bits, los tamaños de operando

de 2 a 8 elementos y los filtros desde 3 × 3 hasta 7 × 7, se evalúa el escalamiento del

consumo de recursos, ciclos de reloj, eficiencia de diseño y la distribución del error, pre-

sentando una vista comprensible de cómo los parámetros afectan las implementaciones

genéricas. La multiplicación-adición de matrices presenta un compromiso entre granular-

idad vs eficiencia, donde PEs grandes con longitudes de datos cortas son favorecidas por

la eficiencia de diseño. La configuración más idónea es un acelerador con un único PE

de 2× 2, requiriendo anchos de dato de 16 bits con 4 bits de parte entera para mantener

el error de 20%, logrando 9 GOP/s con 3.2% de eficiencia en una ZYNQ XC7Z020. En

la convolución, se presenta la implementación de dos algoritmos: la convolución espacial

y Winograd. La convolución espacial es mejor en términos de desempeño, mientras que

Winograd en términos de consumo de recursos y tolerancia a los errores, requiriendo no

menos de 4 bits para obtener 28 dB de PSNR con 10% de error medio. Finalmente, esta

contribución puede ser adoptada en otros proyectos diferentes de redes neuronales dada la

versatilidad de la programación genérica realizada en C++ y parametrización del diseño.

Palabras clave: computación aproximada, aprendizaje automático, redes neuronales,

aceleración por hardware, inferencia, matriz de puertas programables.



Abstract

Low-power consumption, scarce computational resources, and reduced degrees of free-

dom for optimisation limit the implementation of deep learning inference solutions at

the edge. Approximate computing and the synthesis from high-level C++ models report

promising techniques for designing specialisable generic accelerators. This research pro-

poses an open-source framework with built-in libraries for the automatic generation and

evaluation of vector processing elements (PEs) and customisable accelerators for matrix

multiplication-addition and convolution, with adaptable operand size, data bit-width,

datatype, and arithmetic operands, using generic C++ high-level synthesis. Through

the design space exploration (DSE) that varies the data bit-width from 4 to 16 bits, the

operand sizes from 2 to 8, and the kernels from 3 × 3 to 7 × 7, this work evaluates the

resource consumption scaling, clocks-to-solution, design efficiency, and error distribution,

presenting a comprehensive view of how the parameters affect the properties of the generic

implementations. The matrix multiplication-addition presents a trade-off between granu-

larity vs efficiency, where the design efficiency favours large PEs with short data widths.

The most suitable configuration was a single-PE accelerator with 2× 2 operands, requir-

ing 16-bit data width with a 4-bit integer part to keep the error below 20%, achieving 9

GOP/s with 3.2% efficiency in a ZYNQ XC7Z020. Regarding the convolution PEs, this

document shows the implementation of two algorithms: a window-based spatial convolu-

tion and Winograd. The spatial convolution is better in terms of performance, whereas,

the Winograd in terms of resource consumption and error tolerance, requires no less than

4 bits to get 28 dB PNSR values and 10% of mean error. Finally, this contribution can

be adopted in other projects different from neural networks because of the versatility of

the generic programming performed in C++ and design parameterisation.

Keywords: approximate computing, machine learning, neural networks, hardware accel-

eration, inference, field programmable gate arrays.
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Chapter 1

Introduction

Neural networks have become one of the last decade’s most important machine learning

methods. They outstand against classical statistical methods regarding solutions and

computational performance in complex problems [1]. Nowadays, deep learning inference

(DLI) is present in many trending applications across the computational spectrum: from

smartphones and the Internet of Things (IoT), to computers, servers, and virtual assis-

tants. Most current applications are cloud-based, where each device samples data from

its inputs and uploads them to the cloud to perform the inference task, downloading only

the final results [2]. However, there are applications such as self-driving cars, autonomous

robots, satellites, and safety systems for which cloud-based inference is unsuitable due to

connectivity issues, availability, privacy, reliability, and latency. This makes the cloud in-

admissible to these critical applications and leads to the need for researching on intelligent

edge-based solutions that are independent of network connections and self-contained.

Systems at the edge commonly have limited computational resources and constrained

energy consumption, making them restrictive for most of the current DLI models [2]–[4].

Moreover, the evolution of deep learning (DL) at the edge tends to be steady regarding

the computation power vs energy consumption ratio [2].

There are opportunities to address the edge-based inference on several fronts from these

issues. Some alternatives rely on Graphics Processing Units (GPUs) (suffering a supply

crisis since 2021), edge networks, or sophisticated microprocessors. Nevertheless, Field

Programmable Gate Arrays (FPGAs) show a promising potential for balanced power

consumption and algorithm computation power for inference tasks due to the capability

of tailoring the hardware to a specific DLI model without wasting resources.

Taking into consideration the challenges presented above, this thesis focuses on:

• leveraging Artificial Intelligence (AI) to low-end FPGAs for a better exploitation of

their low-consumption capabilities;

• development of generic and easy to customise IP Cores for DL with flexibility for

optimisations and modularity for tuning the resource consumption;

1
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• automation of design exploration tasks; and

• quantitative analysis amongst implementations for sets of selected parameters.

Based on the above, this work explores the automatic generation of vector processing el-

ements (PEs) for matrix multiplication-addition, image convolution, and activation func-

tions with adaptable operand size, data bit-width, datatype, and arithmetic operands. It

focuses on using generic programming in standard C++ and High-Level Synthesis

to implement PEs for modular accelerators in combination with approximate computing

(AxC) for reducing the resource consumption footprint in exchange for results accuracy.

AxC plus generic programming make it easier to exploit the error resilience of the appli-

cations, exchanging numerical errors to get less energy consumption and small designs,

increasing the suitability of low-end FPGAs for DLI acceleration.

The main contribution of this research is an open-source library of DL PEs for DLI,

where each PE is characterised by its parameters for rough error and resource evaluations

without the need for running simulations that can take long runtimes.

1.1 Alternatives for DLI

The research community and the industry have addressed edge inference from several

perspectives, from CPU optimisations and special SIMD instructions to hardware accel-

erators. Most of the hardware accelerators target small models, using non-floating-point

numerical representations, concentrating the efforts on model optimisation to run grace-

fully on the vast diversity of edge devices.

One of the most popular vendors is NVIDIA, with the Jetson family within the market.

Their embedded platforms combine a multi-core ARM microprocessor, integrated GPU

with shared memory, and some accelerators like the NVIDIA Deep Learning Accelerator

(NVDLA) and the Video Image Compositor (VIC). One of the solutions is the Jetson

Nano, the most basic system offered by NVIDIA, consuming between 5W and 10W [5],

equipped with a Maxwell GPU. The Jetson Xavier is the most powerful solution, equipped

with a Volta GPU and a couple of NVDLA units, consuming up to 30W [6]. Although

not mentioned, there are more alternatives from NVIDIA in between.

There are Application-specific Accelerators (ASA) for performing DLI. Google has pre-

sented two different architectures of Tensor Processing Units (TPU); one for Cloud ap-

plications and another for Edge. In terms of performance, the Cloud TPU [7] shows a

peak performance of 92 TOP/s, having an energy efficiency of 1.23 TOP/s/W, while the

Edge TPU presents a 2 Watts chip running at 2 TOP/s/W [8]. In contrast to CPUs

and GPUs, both solutions are more energy efficient. An Intel Xeon Platinum 8260 CPU

roughly reaches 0.18 TOP/s with an efficiency of 0.011 TOP/s/W [9]. In contrast, GPUs

are more competitive in terms of performance. The NVIDIA Ampere can reach up to
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1248 TOP/s with an efficiency of 3.12 TOP/s/W. The main difference relies on the con-

sumption, where the Ampere GPU consumes up to 400 W [10], which is unsuitable for

most edge applications.

1.2 FPGA-based DLI Accelerator

FPGAs are becoming an option due to their efficiency in computation per unit of energy.

The essential advantage of these platforms over embedded systems is their high perfor-

mance and flexibility, offering a better trade-off between computation power and energy

consumption [11] than GPU-based System-on-Chips (SoCs). In the case of the ZYNQ

7000 family, they have a maximum power consumption of 5W and the Xilinx K60, up to

7.6W , with better performance than the Jetson Nano [12], [13].

However, most solutions target high-end1 FPGAs such as the Xilinx UltraScale+, Alveo,

Kintex, and Virtex and their equivalents in other vendors. It leaves aside proper support

for low-end FPGAs like the Artix-7, which consumes up to 1.6W 2 [14]. In AI, Xilinx

offers the Vitis AI software development kit (SDK), and Intel provides OpenVINO and

OneAPI [15]. Most of them employ closed-source generic IP Cores such as the Deep

Learning Processor (DPU) from Xilinx [16], closing the opportunity for tuning according

to the error resiliency of the application.

The research community is interested in offloading inference on FPGA because of its low

power consumption. There are attempts to synthesise models such as LeNet-5, VGG16,

and You Only Look Once (YOLO) using both tool-assisted HDL and HLS. Some alter-

natives synthesise entire models on Vivado HLS, performing the entire inference within

the FPGA, resulting in a 4.7x speedup on a Zybo 100Mhz with respect to an Intel Core

i5 4590 3.3GHz in single-precision floating-point (FP32) without applying any quanti-

sation [17]. Besides, there are case studies of CNN optimisation on FPGA. Some of

these implementations manipulate the numerical representation using fixed-point numer-

ical representation [18] increasing the performance compared to using FP32. An object

detector based on the YOLO model managed to run at 1.88 TOP/s at 200MHz, favouring

performance at a low clock speed. In this case, the FPGA acceleration offers 17.6 to 29.4

times less energy consumption than CPU/GPU processing for equivalent workloads. It

shows the potential of FPGAs in this field in terms of speed and computation efficiency.

A recent survey highlights the importance of FPGA research for Internet-of-Things (IoT)

since GPUs and CPUs are unsuitable due to energy consumption constraints [19]. Most

contributions target model compression and approximation, taking advantage of the in-

accurate nature of neural networks. Some proposals include non-linear quantisations [20],

accelerator-aware and filter pruning [21], [22], sparse algebra acceleration, and knowledge

distillation [23].

1FPGAs with more than 100K logic cells.
2According to Xilinx Vivado 2018.2 and Xilinx Power Estimator.
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Successful frameworks within the scientific community have significantly impacted the DLI

on FPGAs. At CERN, the hls4ml framework [24] implements a workflow that receives

the model in either TensorFlow or PyTorch. Then, it performs an HLS conversion and

creates a project that allows the user to tune the design: establishing optimisation goals

and adjusting the numerical precision and the reuse factor. hls4ml provides compile-

time design tuning, allowing design synthesis thanks to using C++ in HLS. The designs

generated by hls4ml are singletons tailored to the model, synthesising the units to execute

the entire model into the FPGA, requiring extensive resources in the target FPGAs.

FINN is another framework that synthesises high-performance accelerators [25], taking

into account the dataflow style (similar to hls4ml) and running the inference aid by the

PYNQ framework [26]. Unlike hls4ml, FINN proposes operation-cost functions to get

near-optimal implementations, performing an automated design exploration. Besides, it

splits the design into several IP cores instead of using a singleton. FINN also reduces

resource consumption by modifying the folding factor (how much the hardware units

are recycled). It gives a certain degree of tuning for low-end FPGAs. However, both

frameworks still need to be more flexible to explore approximation opportunities since

their main goal is to ease the DLI on FPGAs through Python and not in the DLI design

optimisation.

1.3 Contributions

The work in this thesis presents the following novel contributions:

• an open-source accelerators library for DL inference computation: the accelerators

are implemented on templated C++11 and parameterised on the datatypes, numer-

ical precision, arithmetic operators, operand sizes, and the number of processing

elements;

• a design space exploration (DSE) framework for evaluating each configuration while

tuning the accelerator’s parameters, characterising the numerical error and resource

consumption for each solution obtained from each set of parameters;

• a novel figure of merit to quantify the efficiency of the designs in terms of compu-

tational performance and resources consumption;

• a behavioural evaluation for each accelerator from the library, analysing the resource

consumption and numerical error impact when changing the parameters. Thus, a

complete library analysis is also given together with the source code;

• a comparison of peak performance of one of the most promising design solutions

amongst the Artix-7 XC7A50T, the ZYNQ-7000 7Z020, and the Xilinx Kria K60;
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This work focuses on developing accelerators for general matrix multiplication-addition

and convolutions. Nevertheless, there are contributions in approximate PEs for activation

functions and approximate computing.

This document is structured as follows: Chapter 2 starts with the current solutions given

by the industry and academia to address the DLI and the background knowledge required

for this work. Chapter 3 starts with the first level of abstraction, illustrating the process of

developing and evaluating PEs. Chapter 4 continues with the second level of abstraction,

illustrating the process for template accelerators. Chapter 5 explains the framework to

generate both PEs and DLI accelerators. Chapter 6 shows the Design Space Exploration

(DSE) results and an inter-FPGA evaluation. Finally, Chapter 7 concludes this work.



Chapter 2

Background and Related Work

2.1 Deep Neural Networks (DNNs)

Neural networks have become one of the last decade’s most important machine learning

methods. They are competent against classic statistical methods in solutions and com-

putational performance [1]. McCulloc and Pitts started with the initial foundation of an

artificial neuron (also known as perceptron) based on the human brain [27]. An artifi-

cial neuron can be seen as a linear combination of multiple stimuli feeding an activation

function, which is often non-linear:

y = σ(w � x + b) (2.1)

where x is the input vector, w is the parameters’ vector (also known as weights), b is

the bias of the neuron, σ : R → R is the activation function, and y is the output. �
is the dot-product between two vectors. Figure 2.1 (a) illustrates how a perceptron is

graphically represented.

Rosenblatt trained a perceptron to solve linear regression problems in 1958 [28]. Later,

Minsky and Papert (1969) will spot that a single perceptron cannot deal with the XOR

function [29]. It motivated the exploration of multi-perceptron layers, also introduced by

Rosenblatt.

A multi-perceptron layer can be mathematically defined as

y = σ(xW + b) (2.2)

where now y and b are column vectors of the same size as the number of perceptrons,

and W is a matrix whose columns are the weights of the perceptrons. σ is now a function

that receives a vector σ : RM → RM . It can be graphically represented as in Figure 2.1

(b). Then, the multilayer perceptrons arrived by cascading multiperceptron layers as in

Figure 2.1 (c). In this former case, a network with multiple layers is also named as deep

6
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Figure 2.1: Graphical representation of a neural network. (a) single perceptron, (b) multi-

perceptron layer, and (c) multi-layer perceptron

neural network.

2.1.1 Common Operations in DNNs

Deep Neural Networks perform various operations that lead to their capacity to learn.

Some layers contain parameters that adjust the network to learn a model given the data,

such as the Fully Connected Layers (FCL) and the Convolutional Layers. The first can be

seen as a linear combination of the inputs weighted by the parameters. In contrast, the

Convolutional networks can be seen as filters trained to activate according to a feature.

This section briefly describes the operations taken into consideration within this work.
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2.1.2 Fully Connected Layers

FCLs, often called Dense Layers, are the most common layers in DNNs [30]. Each per-

ceptron is single-ended, producing a single output. An FCL is defined in (2.2). For

concurrence, it is possible to define a matrix of inputs that leads to a matrix of outputs,

as Equation (2.3) shows, where more than one sample (x vector) is processed at a time per

FCL, leading to an operation over a batch of inputs. Then, the vectors become matrices

containing n inputs, m neurons, and t samples [31].
y

(0)
0 y

(0)
1 · · · y

(0)
m−1

y
(1)
0 y

(1)
1 · · · y

(1)
m−1

...
...

. . .
...

y
(t−1)
0 y

(t−1)
1 · · · y

(t−1)
m−1

 =


x

(0)
0 x

(0)
1 · · · x

(0)
n−1

x
(1)
0 x

(1)
1 · · · x

(1)
n−1

...
...

. . .
...

x
(t−1)
0 x

(t−1)
1 · · · x

(t−1)
n−1



W0,0 W0,1 · · · W0,m−1

W1,0 W1,1 · · · W1,m−1

...
...

. . .
...

Wn−1,0 Wn−1,1 · · · Wn−1,m−1

 +


b0 b1 · · · bm−1

b0 b1 · · · bm−1

...
...

. . .
...

b0 b1 · · · bm−1

 (2.3)

However, compacting multiple time samples within a single matrix-matrix operation leads

to an exchange between latency and computational speed. Latency, in this context, is

the time required for the first sample t0 to appear in the output. Increasing the number

of samples to t will lead to a latency of t until a valid result. To exemplify the effect

of the latency in a practical system, consider a camera feed at 30 frames-per-second, so

each frame arrives in a 33 ms period. If the network requires t = 16 samples, the first

frame inference will appear after 528ms in the output. In low-latency systems, the latency

makes this simplification unsuitable [32].

Typical hardware accelerators such as the TPU and the GPU require the samples to

be submitted in batches for efficiency reasons. The Google TPUv2 requires N = 40000

samples to reach an adequate inference time per image. In contrast, an NVIDIA K80 GPU

typically requires N = 8192 samples for a convolutional network applied to an MNIST

dataset in a classification task [33].

There are systems based on FPGAs that prioritise the latency, such as FINN from Xilinx,

that performs the inference using a dataflow approach [25].

2.1.3 Convolutional Networks

Convolutional neural networks (CNNs) are a type of neural network widely adopted for

pattern recognition in computer vision. CNNs deal with the computational complexity

of computing dense neural networks for images due to their number of inputs (pixels).

Their inspiration comes from the research on the visual cortex of a cat [34]. It describes

how the neurons activate according to a stimulus coming from a screen. Then, the re-

search was applied to pattern recognition of shift and deformation variant objects [35]

and ML by using LeNet for classifying hand-written digits [36], introducing the concept

of convolutional layers to artificial neural networks.

The relevance in neural networks relies on the compression of the trainable parameters,

allowing NNs to learn features and compress them in feature maps (also known as con-

volution kernels) activated by a determined pattern when screening an entire image. The
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convolution operation between an image and a kernel is described by a Hadamard product

and a sum reduction as an inner product in 2D per output pixel

Yi,j =
κ∑

n=−κ

κ∑
m=−κ

Xi+n,j+mKm,n (2.4)

where Yij is the pixel at the i-th row and j-th column of the output Y, Xi,j is the pixel

at the i-th row and j-th column of the input X, and Ki,j is the pixel at i-th row and

j-th of the feature map K of size (2κ+ 1)× (2κ+ 1). The former equation describes the

convolution in the spatial domain.

There are other ways to compute the convolution by using domain transformations. The

most known is the Discrete Fourier Transformation (DFT), which transforms the operands

to the frequency domain and the convolution operation becomes a Hadamard product [37].

However, the FT is computationally expensive and involves complex numbers. Another

method is the Winograd convolution [38], proposed by Shmuel Winograd in 1980. It

pursues the same idea of domain transformations but involves real numbers only. The

whole Winograd transformation, convolution and inverse transformation can be described

as

Y′ = AT ((BTX′B)� (GKGT ))A (2.5)

where A, B, G are the Winograd transformation matrices for transforming the output,

the input window, and the kernel, respectively. X′ is a window within the input matrix

X, and Y′ is a window within the output matrix Y. Winograd is an attractive method

since it reduces the number of multiplications of the computation of convolutions. The

matrices for the transformation of a 3x3 kernel and 2x2 output are

BT =


1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1

G =


1 0 0
1
2

1
2

1
2

1
2
−1

2
1
2

0 0 1

AT =

[
1 1 1 0

0 1 −1 −1

]

(2.6)

In this document, the PEs will be based on this Winograd configuration, given that 3× 3

is one of the most common configurations in convolutional neural networks [39], [40].

Kernels larger than 11× 11 are often rare and spatial methods are not as efficient as the

FFT, according to the OpenCV library [41].
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2.1.4 Activation Functions

Activation functions play an essential role within neural networks. They break the lin-

earity within the neural networks, allowing them to avoid weight collapse. Without the

activation functions, an FCL with weight matrices W0,W1, . . . ,Wn collapse into a sin-

gle matrix W = W0W1 . . .Wn. They also introduce the ability to classify points with

non-linear mappings of the data, making the embedded points linearly separable [30].

The activation functions must be first-order differentiable for training when doing the

backpropagation. The most common activation functions are softmax, Rectified Linear

Unit, tanh, logistic, and arctan.

Softmax and Logistic

The softmax function is a version of the logistic function used when having non-binary

classifiers. It is often placed at the end of the classifiers as an activation function to

extract the probabilities of each output class in a neural network, particularly after a

fully-connected layer (FCL) [42]. A typical example is a LeNet5 model on the MNIST

dataset [36].

The softmax function is defined as

Φ(v)i =
evi∑k
j=1 e

vj
(2.7)

where vi is the i-th element of the input vector v and k is the number of elements of the

vector [30]. It involves the computation of the exponential function in a specific domain

S ⊂ R. The domain S can be determined according to the input and output domains of

the FCL preceding the softmax function.

While softmax is used for multi-class classifiers and involves a vector as an input, the

logistic activation function is equivalent for scalar inputs under the assumption that the

labels are binary (two classes).

Rectified Linear Unit (ReLU)

ReLU is one of the most common activation functions used in the hidden layers of NNs.

Its principle is to suppress negatives from the output vectors, leveraging the negatives to

the weights of each layer and avoiding gradient vanishing [30]. The definition of a ReLU

is

Φ(x) =

{
0 if x ≤ 0

x if x > 0
(2.8)

where x is a scalar (single input).



2 Background and Related Work 11

There are variants of ReLU to include the negatives but with a penalty. For instance, the

leaky ReLU penalises the negatives by a factor of 10,

Φ(x) =

{
0.1x if x ≤ 0

x if x > 0
(2.9)

whereas the Exponential Linear Unit (eLU) adds an exponential function for x ≤ 0

Φ(x) =

{
α(ex − 1) if x ≤ 0

x if x > 0
(2.10)

where α is a parametric constant.

Hyperbolic Tangent (tanh)

The tanh is another popular activation function. It allows the saturation of the outputs

to be in a range between −1 and 1, where the derivative becomes smaller when reaching

higher values and suppressing the growth of the weights. In the case of small values, the

derivative is higher and robust on quick changes. Moreover, its use is commonly seen in

binary classifiers [30].

Arctangent (tan−1)

The arctangent (tan−1(x)) can be seen as a logistic activation with a broader range

([−π/2, π/2]) [43]. However, it provides faster backpropagation than the logistic regression

due to the operations: the exponentials are slower than the second-order polynomials.

The graphical representation of each activation function can be seen in Fig 2.2.

The advance in the work of optimising activation functions is presented in Appendix C.

2.1.5 Criteria for Choosing Activation Functions

The criteria for selecting activation functions rely on the kind of layer, the number of

classes and empirical measurements. Some of these criteria are listed below [43]:

• ReLU functions are intended for hidden layers.

• Training speed (backpropagation speed) due to the activation derivatives.

• Gradient vanishing: the gradient sinks to zero.

• Number of classes: multi-class (softmax), binary (symmetric in Y axis).
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Figure 2.2: Graphical representation of the activation functions.

• Number of layers.

• Model target: regression or classification.

For quantisation purposes, the most interesting functions are those which are bounded in

co-domain. For instance, the tanh(x) goes from −1 to 1, making it suitable for normalised

numerical representations.

2.1.6 Common Optimisations in DNNs

Model size and computation are always a concern for running DLI. The model size impacts

the memory footprint and the area of the execution units utilised for the model operations,

like matrix multiplications and convolutions. It also impacts the bandwidth required for

moving the model parameters between a host and an accelerator back and forth [19]. To

overcome these issues, the most common optimisation is quantisation, which changes the

data type from floating-point to fixed-point or integers. Modern GPUs support 4-bit data

representations [10], leading to reductions from 32-bit to 4-bit, reducing the model size



2 Background and Related Work 13

Table 2.1: Popular data representations within the classical DLI processors

Data type Number of Bits Resolution Maximum

Float32 32 1× 1038 3× 1038

Float16 16 5.96× 10−8 65504

BFloat16 16 1× 10−38 3× 1038

Int16 16 3× 10−5 0.9999695

Int8 8 7.8× 10−3 0.9921875

Int4 4 1.25× 10−1 0.875

Int1 1 0 1

by eight times. Some examples of data quantisations and representations to compress the

models are summarised in Table 2.1 [19], [44], [45]

According to Table 2.1, most of the datatypes are a power of 2. As the number of bits

decreases and how the bits are distributed within the representation, the resolution and

maximum values allowed also decrease. Whereas the IEEE standard defines FloatXX,

the BFloat16 is a non-standard representation that tries to get the same resolution as

the IEEE single-precision floating-point (Float32) [45]. This is beneficial in terms of

model accuracy because the representation error is minimal. However, changing the data

representation to the others may lead to accuracy degradation, which can be improved

using quantisation-aware training techniques [46].

On the other hand, some neurons and weights do not contribute significantly to the model

accuracy, so another technique is pruning weights and neurons [46]. Since pruning removes

weights from the model, it forces the model to be sparse and represented by a key-value

pair. Thus, some accelerators may be unsuitable for this technique or suffer performance

degradation.

2.1.7 Open Challenges in DNNs

The Deep Learning field constantly evolves, introducing new tools for increasing its

power and applications. Beginning from predicting non-linear functions up to Natural

Language Processing, Generative Adversarial Networks and Computer Vision applica-

tions [30]. These applications rely on the capability of DNNs to automatically adjust

their parameters and fit the model to a dataset in almost a black box fashion.

Training the networks is challenging: dealing with convergence speed and quality, over-

fitting, brain damage, vanishing gradients, and others. Moreover, the challenges also go

to the hardware: how to increase the training speed. Apart from the training challenges,

DLI is also challenging, and some are inherited from training. Enumerating some of these
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challenges, it is possible to find:

• Network accuracy degradation caused by quantisation: sometimes cured by quantisation-

aware training.

• Energy efficiency: reduce the energy footprint of the model computations.

• Performance: speed up the inference process and increase the inference rate.

• Device capabilities: how to run the model in a well-performing fashion while trading

with energy efficiency.

From the model’s perspective, the model size is often a source of optimisation. The

previous section explained that the most common optimisations are quantisation, which

tends to change the data type and reduce the bit-width, leading to reductions from 32-bit

to 4-bit, reducing the model size by a factor of 8. Besides, some neurons and weights

contribute little to the model accuracy, so another technique is pruning weights and

neurons.

Integrating hardware capable of executing quantised and sparse models is another field of

study at the hardware level. NVIDIA Ampere architecture integrates Tensor Core units

capable of running models in INT4 (integer of 4-bits) and sparse models [10]. In this case,

the hardware design has to take into consideration computation units tailored to low bit-

width models, alternative ways of computing operations (i.e. Winograd for convolutions),

frequency optimisation methods, data communication and access patterns, and multi-PE

architectures with loop tiling (or array partitioning) [46].

Despite the optimisations described above promising a good speed-up, the models continue

growing in space and complexity, adding more parameters and computation within the

layers. At the hardware level, there are significant challenges to continue pushing the

hardware beyond its current capabilities [19]:

• Von Neumann Bottleneck: massive parallelism can reduce the computation time;

however, the data access becomes the bottleneck when extracting it from memory. In

this case, computation units are faster than the memory, and it limits the inference

rate.

• Sparse AI toolchains for hardware accelerators: despite the efforts from Google and

Facebook on their frameworks (TensorFlow and PyTorch, respectively), there is no

unified framework to program the AI accelerators.

• AI at the edge: running DLI at the edge has some limitations because of hardware

restrictions. Some challenges derived from running inference at the edge are:

– Co-optimisation between the model optimisation and the hardware intended

to run the model.
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– Hardware with a lower energy footprint, going beyond the classical techniques,

i.e. using analog computation.

– Training-on-device: most edge devices are only capable of running inference;

however, learning at the edge can open better opportunities in application

evolution.

This work will address the inference from low-power AI inference at the edge.

2.2 Classical Architectures for Running DLI

This section presents an overview of the current architectures used for processing and

accelerating DLI, including typical systems such as microprocessors, GPUs, and ASICs.

At the end of the section, the analysed architectures will be concentrated in a table

summarising common characteristics and novelties.

2.2.1 Central Processing Unit (CPU)

In most systems, the CPU will be the chosen unit to perform the inference tasks without

accelerators. However, CPUs are usually equipped with vector units that speed up the

processing of many operations that a DLI task involves.

Intel equips their processors by adding SIMD instructions that trigger vector execution

units under the hood. They are often the Streaming SIMD Extensions (SSE), Ad-

vanced Vector Extensions SIMD instructions (AVX), and Advanced Matrix Extension

(AMX) [47]–[49]. ARM, another microprocessor architecture designer, proposes NEON

and Scalable Vector Extensions (SVE) under the same idea of vector units but supporting

unaligned memory and variable vector size [50], [51].

From the vector mentioned above, AVX-512 and AMX are intended for DL acceleration.

AVX-512 presents VNNI [48], which performs a dot product between two vectors and

adds a third vector as a bias:

y = a · b + c (2.11)

where a,b, c and y can be represented in (un)signed integers (8, 16, and 32 bits), and

32-bit IEEE-compliant floating-point. The number of entries of the vectors a and b will

vary depending on the datatype, considering that each vector register has 256 bits. Thus,

for 8-bit operads, it can process up to 32 vector entries and for 32-bit operands up to 8

entries. Moreover, VNNI handles the overflow by doubling the result register. If a and b

are represented in 8-bit integers, the results y will be a 16-bit integer.

In terms of performance, CPU processing is known to be the less-performing unit of

operations per energy consumed. Thermal design power (TDP) is often used to determine
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how much the CPU can consume and dissipate. For an Intel Xeon Platinum 8260L @

2.40GHz, the TDP is 165 Watts [9]. To estimate the performance of a processor, it is

possible to use:

Pcpu,peak = fbase × ncores × nops/core,entry,clock × nventries (2.12)

where the peak performance Ppeak is given by the product of the base frequency fbase, the

number of physical cores ncores, and the number of operations per clock cycle, entry and

core nops/core,entry,clock, and the number of entries that fit in a 256-bit vector nventries. In

the case of the frequency, previous research has demonstrated that the clock is incapable

of running at the base frequency when enabling the AVX-512 units [52], leading to un-

derperformance. However, neglecting the clock slowdown, the performance of the Xeon

8260L for 8-bit operands is roughly

Pcpu,peak = fbase × ncores × nops/core,entry,clock × nventries
= 2.40GHz× 109 × 24× (2ops/2cycles)× 32

= 1843GOP/s

where AVX performs two operations (addition + product) in two clock cycles. It leads to

an energy-aware performance (Ppeak/TDP) of

PE,cpu,peak =
1843GOP/s

165W
= 11

GOP/s

W
(2.13)

AMX presents a more interesting approach to computate, allowing operating over matrices

and using internal fused multiply-add operations:

Ci = AB + Ci−1 (2.14)

where A, B, and C are matrices and each matrix unit performs a matrix multiplication-

accumulation.

It is still unclear how many clocks AMX will take to complete the operations and the

processors equipped with this vector extension, making (2.12) unsuitable to be applied.

In terms of the operand size, the registers are based on 64-byte tiles with 16 rows each.

Having 8-bit integers as entries, it would be possible to operate 16× 8 matrices at maxi-

mum.

On the other hand, NEON and SVE have variable-size registers (from 128 to 2048 bits),

allowing unaligned memory transfers and giving more flexibility. They are intended to

address various HPC workloads, including operations required for DL. It has been reported

that SVE achieves a 3x speedup compared to a non-accelerated approach [53]. However,

there need to be details about their implementation for a good estimation in terms of

performance.
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2.2.2 Graphics Processing Unit (GPU)

The GPUs are one of the most popular DL training and inference accelerators, managing

to achieve significant speedups compared to CPUs [54].

In the case of NVIDIA, the most popular GPU vendor proposes a type of execution unit

for computing matrix operations, called Tensor Cores, introduced in its Volta architec-

ture [55]. A tensor core combines the matrix multiplication and the addition, leading to

a fused multiply-add unit:

D = AB + C (2.15)

where the operands are likely to be 16-bit or 32-bit floating-point operands. In newer

architectures, like Ampere, it also supports integers of 4 and 8 bits [56]. Moreover, each

matrix has a size of 4× 4.

Moreover, tensor cores group the matrix operations in batches for concurrent execution,

increasing the parallelism. In the Volta architecture, the final tensor (batch of matrices)

has a size of 4 × 4 × 4. However, it can operate over greater matrices thanks to the

Warp-level Matrix Multiply and Accumulate (WMMA) [57].

Tensor cores are available in a stream multiprocessor (SM). The Tesla V100 has 640 tensor

core units, leading to a theoretical performance of 125 TOP/s. It can be estimated by

using

Pgpu,peak = fbase × ntcores × nops ×
32

bdata

(2.16)

where the peak performance of the GPU is given by the product of the base clock fre-

quency, the number of tensor cores, the number of operations per tensor core, and the

proportion of the 32-bits that the numerical representation requires. For the Tesla V100,

it leads to

Pgpu,peak = 1.530GHz× 640× (4× 4× 4)× 32

16
(2.17)

= 125337.6GOP/s

where the data used is a 16-bit floating-point representation (bdata).

In terms of power consumption and energy-aware performance, the TDP for the Tesla

V100 is 300 Watts [55]. It leads to a performance of

125337.6GOP/s

300W
= 417.8

GOP/s

W
(2.18)

which is 37x more efficient than the Xeon CPU presented before.
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2.2.3 Application-Specific Accelerators (ASA)

GPUs are often unsuitable because of their power consumption, and edge solutions require

a more compact device for energy-constraint environments. Google has developed the

Tensor Processing Unit (TPU), whose first version arrived in 2015, oriented to servers.

Google Coral, instead, targets edge solutions [58], [59].

Server TPUs are mainly composed of a matrix multiply-addition unit of 256 × 256 op-

erators, allowing them to operate over 8-bit integer numbers and achieve up to 128K

operations (multiply + add) per clock cycle [58]. The novelty of TPUs relies on the

systolic array of elements, broadcasting the operands of the matrix similar to a data

stream.

To estimate the performance of a TPU, it is possible to determine it as the product of

the clock frequency and the number of operations:

Ptpu,peak = fbase × nrows × ncols × 2 (2.19)

where the number of operations is the product of the number of columns, rows, and the

two operations: multiply and add. Thus, for a TPU running at 700 MHz, it results in

Ptpu,peak = fbase × nrows × ncols × 2

= 700MHz× 256× 256× 2

= 92000000MOP/s = 92TOP/s (2.20)

In terms of energy-aware performance, the TPU has a TDP of 75W [7], leading to

92TOP/s

75W
= 1.23

TOP/s

W
(2.21)

which is almost 3x more efficient than a GPU.

Nevertheless, the Google Coral achieves 2 TOP/s per Watt, achieving even better perfor-

mance than the server version [59].

Other accelerators such as the Ethos-78 from ARM, the NVIDIA DLA, and the Xilinx

DPU are examples of ASAs that are promising in terms of energy-aware performance [16],

[60], [61].

2.2.4 Taxonomy

Table 2.2 condensates the information presented in the previous architectures. It is pos-

sible to compare to notice that the GPUs tend to stay at 1 TOP/s/W of energy-aware
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performance, while the CPU is the worst-performing device for executing DL operations.

The TPU presents the best benefit in terms of energy and performance.

The state-of-the-art research does not specify the matrix size for the Tensor Cores in the

case of the Turing and Ampere architectures. However, it is possible to assume that it is

a multiple of 4 since the Tensor Core in the Volta Architecture works on 4× 4 matrices.

The energy-aware performance PE is computed assuming 8-bit operands (16-bits if not

supported). The data is taken from [7], [9], [48], [49], [51], [53], [55], [56], [61].
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Table 2.2: Taxonomy of the researched architectures

Device
Architecture or

Extension
Operative Frequency Datatype OPS

Matrix or

Vector

Size

Matrix/Vector
TDP (W) [PE(OP/s/W )]

Especialización

de la arquitectura

TPU Version 1 700 MHz int8 92 TOPS/s Dense matrix 256× 256 75 [1.23T]

Matrix

Multiplier

Convolution

Intel Xeon

Platinum 8260L

Processor

VNNI 2.40 GHz

int8

int16

int32

fp32

Equation 2.12 Vector 256 / bdata 165 [11 G] Dot product

N/A AMX N/A
int8

bf16
N/A N/A N/A N/A

Multipurpose

FMA units

Dot product

N/A SVE N/A N/A N/A Vector N/A N/A
Variable

Vector Size

Tesla V100
Volta

Tensor Core
1530 MHz

fp16

fp32
125 Tensor TFLOPS Dense Matrix 4× 4 300 [417.8 G]

Matrix multiply

by

Tensor Cores

Quadro RTX

6000

Turing

Tensor Core
1455 MHz

fp16

int8

int4

130.5 Tensor TFLOPS

with fp

261 Tensor TOPS

with int8

522 Tensor TOPS

with int4

Dense

and sparse

matrix

Flexible 260 [1.00 T]

Matrix multiply

by

Tensor Cores

NVIDIA RTX

A6000

Ampere

Tensor Core
1800 MHz

fp16

fp32

bf16

tf32

int8

int4

154.8 Tensor TFLOPS

with fp

77.4 Tensor TFLOPS

with tf32

309.7 Tensor TOPS

with int8

619.3 Tensor TOPS

with int4

Dense

and sparse

matrix

Flexible 300 [1 T]

Matrix multiply

by

Tensor Cores

Ethos-78 NPU 1 GHz
int8

int16
1-10 TOPS/s

Dense

and sparse

matrix

8× 8 N/A Winograd
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2.3 Approximate Computing

Most AI applications involve complex algorithms and high computational power, requir-

ing power-hungry platforms due to the clock speed and the number of computing units

[62]. However, some applications, such as IoT and mobile devices, cannot afford tradi-

tional computing units i.e. GPUs because of the power/energy budget and the available

computing resources.

Some applications can be approximated due to their error resilience [63], sacrificing results

precision to reduce the need of complex arithmetic units, such as FPUs (Floating Point

Units). This paradigm is called Approximate Computing (AC) [64].

The primary constraint to implementing an application using the AC paradigm is the

resilience to the error in its results. Given their inherent inaccuracy, probabilistic appli-

cations are often good candidates for approximation, such as Machine Learning based on

DNNs [62]. However, having error resilience is not sufficient. Some applications can be

more suitable to be approximated than others, depending on the relevance of their results

in the following steps and how critical they are.

Generally, AC applications include parameters to adjust the degree of approximation,

i.e. the numeric precision of a given stage in a baseline application. The adjustment

iterates in adjusting and evaluating the impact, verifying if the results are still suitable

for the given application [62]. Shafique et al in [62] present this procedure in their paper,

applying approximate computing to Machine Learning applications. As they explain, the

quality knobs (named like that due to the quality change in the precision results) give

control over the accuracy-power trade-off.

Before continuing the analysis of approximate computing and their impact in the applica-

tion development field, it is required to study their possible ways of implementation and

some cases of study which have put into practice this paradigm.

2.3.1 Methods of Implementation

Approximate computing approaches modifications on the hardware or the software [63].

The suitability is determined by the flexibility of the application and the hardware re-

strictions [65].

Software-like Approximations

These approximations involve changes in the algorithm and data types to introduce ad-

justable knobs, allowing reductions in the computational/memory requirements of a given

application software application in exchange for accuracy. Some ways to implement are

listed below:
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• Loop perforation

• Numerical representation

• Approximate formulas or functions

Loop perforation is a technique applied to code loops to reduce the computation workload

and time to have the results available to read. Besides, it can reduce energy consumption

and enhance performance [66].

The main idea of loop perforation is to skip one or more iterations depending on the

impact on the results, letting the possibility of dynamically determining whether an iter-

ation can be skipped or not. To demonstrate that, consider the following exact form of a

for loop in C++:

for ( int i = 0 ; i < b ; i++) {
// Some i n s t r u c t i o n s

// . . .

}

The proposal presented in [66] suggest that a näıve loop perforation may be

for ( int i = 0 ; i < b ; i+=n) {
// Some i n s t r u c t i o n s

// . . .

}

where n− 1, n > 0 is the number of cycles skipped consecutively.

Furthermore, it is possible to dynamically determine the number of cycles that can be

skipped in a row, depending on the program status. It proposes a change at the compiler

level with LLVM that makes the naive loop perforation automatic.

Numerical representation is another way to introduce approximations in an application.

It involves changing the data type to represent a number, e.g., truncating a floating-point

number and making it an integer. Changing the numeric representation from floating-

point to fixed-point in a DNN can reduce weight storage by up to 36% and the multiplier

power required by up to 50%, sacrificing precision in their results by changing the numeric

representation [67]. There are also face recognition applications that have reported about

62.49% of energy saving. In practice, this change is often known as quantisation in Data

Science and is widely used in production applications.

To exemplify this change, consider the following snippet:
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// Number r e p r e s e n t e d in f l o a t i n g p o i n t

f loat f l o a t ingN = 0.95863445262 ;

// To f i x e d p o i n t g i ven by 16 b i t s i gned i n t e g e r

i n t16 f ixedN = 0.95863445262 ∗ 32768 ;

// Resu l t : 31412. Now, the number change to : 0 ,958618164

// Error :

f loat e r r o r = 0.95863445262 − f ixedN / 32768 ;

e r r o r /= 0.95863445262 ;

// R e s u l t i n g error : 0.002%

According to the example, the 16-bit fixed-point representation leads to numeric errors

below of 0.01%, considering that the maximum result deviation is given by σr = 1/215.

Approximate formulas or functions are a way to simplify a function computation using

a less computationally exhausting expression to avoid using complex operators that can

delay results delivery, e.g. using FPUs. Besides, some numerical and logic techniques

simplify and speed up the computation of complex functions.

In the field of DLI, exponential-based activation functions are often slower in prediction

and backpropagation due to how the exponential is computed. A typical implementation

in the standard C library uses an iterative algorithm to have a general function that works

in the entire domain. However, in DLI, by controlling the range of the inputs and outputs

of each layer, the domain can be restricted in a range such that the exponential function

can be defined only in a range with Look-up Tables (LUTs) and linear interpolation or

the Taylor Series [68] (See Appendix C).

Other alternatives are code analysis engines, which make machine code generation smarter

and data-responsive, e.g. approximate-aware programming languages [69]. A simple ex-

ample of optimisation at code level can be:

/∗
Deal ing wi th m u l t i p l i c a t i o n s

∗/
// M u l t i p l y i n g by a 2ˆn f a c t o r

int number1 = 5 ;

// Operation

int r e s u l t 1 = 5 ∗ 16 ;

int r e s u l t 2 = 5 << 4 ;

// Both r e s u l t s w i l l be 80
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Despite being an exact example, it can be extrapolated to approximate cases. Consider

this other case:

/∗
Deal ing wi th m u l t i p l i c a t i o n s

∗/
// Define a cons t g i ven by a formula

const f loat f a c t o r = 4 . 0 5 ;

const int e q u i v a l e n t s h i f t = 2 ;

// The v a r i a b l e i s s t o r e d in i n t 3 2 format

uint8 number1 = 5 ;

// Operation

uint16 r e s u l t = ( uint16 ) number1 ;

r e s u l t = number1 << e q u i v a l e n t s h i f t ;

// Error : 1.23% in the r e s u l t

In the example presented above, the factor can be approximated to a binary shift, ne-

glecting the fractional part of the constant factor. The error is kept near 1.24% from the

range from 0 to 255 allowed by the int8 data type.

In applications where this error is acceptable, there is room for the compiler to perform

this change. This approximation method can avoid the multiple clock cycles required by

the FPU to perform the multiplication [70] and only need one cycle to perform the multi-

plication using binary shifts, saving time and speeding up the execution of an application.

Hardware Approximation

Hardware can also be the subject of approximation. DLI requires matrix multipliers,

convolutions and activation functions to run. The PEs in charge of performing these

operations can integrate software-like approximations like the ones described before.

A model can be compressed to save space through quantisation and pruning (numerical

approximations). Approximate computing can offer more than space savings, including

saving energy when combining these DL optimisations with hardware approximations.

Therefore, the PEs can integrate these optimisations to get an extra benefit in energy

and latency.

Likewise, function approximation is another approximation that can be useful for com-

putation. Domain-specific functions can work in DLI because of its resilience to errors.

The hardware can implement functions like exp(x) according to the numerical range. For

instance, if the numerical representation is a normalised fixed-point number ([−1, 1[), the

function can be defined in a limited domain. Thus, first-order Taylor Series [71] and a
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0 0 0 1 0 1 1 0

0 1 0 1 1 0 0 0

B = 22

A10 = 75

C = A + B = 88 (e = 9.2%)

Operable Ignored

Figure 2.3: Adder with LSB drop. The last three bits are ignored and set to zero. There are

other possibilities such as bypassing one of the operands or set a constant number

piece-wise linear interpolation [72] are good candidates with lower logic complexity.

From another perspective, approximate logic is another topic to inspect within DLI. One

of the possibilities is to drop the less significant bits from the operation, operating only in

the upper part of the operands [73], [74] (see Figure 2.3). Within the same idea, dropping

the LSBs does not only apply to arithmetic units but to memory and other hardware.

0 1 0 0 1 0 1 1

07

0 0 0 1 0 1 1 0

0 1 0 1 1 1 1 1

B = 22

A10 = 75

C = A + B = 95 (e = 2.1%)

Exact Approx

OR

Figure 2.4: Approximate adder with OR in LSB. The last three bits are operated by a bitwise

OR. There are other possibilities such as using a XOR or a half-adder.

Other approximations consist of computing parts of the operands with approximate hard-

ware and others with exact hardware. From the last approximation, instead of dropping

the LSBs, they can be operated using OR or XOR gates [75], [76], as it is illustrated in
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Figure 2.4.

There are other hardware approximations at a deeper level; however, they are not part of

the scope of this work. Parallel work has derived the results in Appendix D.

2.4 FPGA Implementation Workflow

The classical way of working with FPGAs is using Hardware Description Languages (HDL)

such as Verilog and VHDL. It involves describing the hardware in Register Transfer Logic

(RTL). Then, this description in HDL is simulated to verify the behaviour of the hardware

implementation. After, the implementation is synthesised (or adapted) to the platform

and its capabilities. There is another simulation for verifying the synthesised design, which

is still in RTL. Once the post-synthesis simulation is finished, the design implementation in

the FPGA happens, placing the logic, configuring the logic cells and routing. After having

the design implementation ready, the process concludes in the FPGA programming [77].

However, describing the hardware using HDL is complex and can be a source of errors

due to the number of lines to write to implement the design logic. High-level Synthesis

(HLS) has come as an alternative to reduce the work of implementing complex designs

in FPGAs. The most popular HLS tools are the Xilinx Vivado HLS/Vitis [78], and

Intel Quartus HLS [79], which use untimed C++ code that focuses on the functionality

and the implementation details are passed through directives within the code or in a

configuration file [80]. Other alternatives, such as Chisel, an extension of Scala to describe

hardware with the Object Oriented Programming paradigm, make it easier to recycle and

parameterise the design [81].

2.4.1 Architecture Topologies

This section aims to explore the capabilities of HLS in the hardware description. This

work will limit its scope to explore the capabilities of Vivado HLS using C++ code as the

input.

One of the exciting capabilities of HLS is that a single piece of C++ code can lead to

various design implementations controlled by compiler directives (a.k.a. as pragmas). In

other words, it is possible to explore several designs using the same code and perform

a design space exploration with directives. This document will refer to each of these

possible designs as design solutions.

Table 2.3 shows the directives supported by Vivado HLS 2018.2. In this context, cores are

FPGA resources or RTL library components that implement operations such as division,

multiplication, modulus, and others. Functions, on the other hand, refer to C++ functions

that behave as hardware blocks, designs or modules. Data containers are often structs

in C++ and loops as for-loops (while-loops are not fully supported in HLS).
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Table 2.3: Vivado HLS 2018.2 design directives [82]

Directive Description Scope

ALLOCATION
Specifies the limit of a resource or func-

tion (force HW sharing)
Functions, cores

ARRAY MAP
Combines small arrays into a single array

for memory recycling
Arrays

ARRAY PARTITION
Partitions large arrays into several small

arrays.
Arrays

ARRAY RESHAPE
Combines the elements of an array in

larger words to improve memory access.
Arrays

DATA PACK
Combines the elements of a struct into a

single word to improve access.
Data containers

DATAFLOW
Enables task-level concurrency. It makes

functions and loops work concurrently
Loops, functions

DEPENDENCE

Provides a hint about dependencies. It

improves loop pipelining and lower inter-

vals

Loops

INLINE

Inlines logic, avoiding inter-function

communication. It reduces latency and

logic.

Functions

INTERFACE
Dictates how ports must be implemented

in the RTL

Function ar-

guments and

return

LATENCY
Specify the constraints in terms of la-

tency
Function, loops

LOOP FLATTEN
Allows collapsing nested-loops into a sin-

gle loop with enhanced latency
Loops

LOOP MERGE
Combines consecutive loops for en-

hanced latency and resource sharing
Loops

OCCURRENCE
Specify the occurrence of a code frag-

ment within a loop
Loops, functions

PIPELINE

Reduces initialisation interval by allow-

ing the inner functions to execute con-

currently

Loops, functions

STREAM
Specifies that an array must be imple-

mented as a FIFO
Arrays

TOP Declares a function as the top module Functions

UNROLL
Unroll loops to create independent exe-

cution units or paths
Loops
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Iteration 1

Iteration 2

Iteration 3

Time

Serial execution

Figure 2.5: Serial architecture illustration. The new iteration executes until the previous one

has finished

Considering the directives in Table 2.3, HLS can create design solutions by combining

two or more directives, allowing users to explore several architectures in less time. It is

essential to mention that these directives are disabled by default if not specified.

Some of the architecture topologies are specified below.

Serial Design

It is the case when most directives are disabled or absent, particularly PIPELINE and

DATAFLOW. The modules in this architecture are serialised, i.e. a module can be executed

until the preceding one has completed its work. Figure 2.5 illustrates through a timing

diagram how this architecture behaves. To achieve that, please, consider the following

code:

void MyFunction ( int a , int b , int c inc &d) {
int temp1 ;

int temp2 ;

module1 (a , b , temp1 ) ;

module2 (a , c , temp2 ) ;

module3 ( temp1 , temp2 , d ) ;

}

Without any directive, this code behaves asFigure 2.5 illustrates, where module2 starts

to execute until module1 finishes. The same is for module3, which requires module2

completed before starting.

In this document, this type of design is referred to as baseline.



2 Background and Related Work 29

Pipelined executionIteration 1

Iteration 2

Iteration 3

Time

Figure 2.6: Pipeline architecture illustration. The new iteration does not require the preceding

one to start. It just needs that the first unit finishes the current iteration to begin.

Pipeline Design

The pipeline design is one of the most promising design architectures. They are popular

in multi-processors [83] since they enable better hardware utilisation. Each module is

constantly executing in this architecture and does not have execution bubbles (or inac-

tivity).

For a pipeline execution can be achieved by modifying the code presented in the Serial

design and adding the PIPELINE directive:

void MyFunction ( int a , int b , int c , inc &d) {
#pragma HLS p i p e l i n e

int temp1 ;

int temp2 ;

module1 (a , b , temp1 ) ;

module2 (a , c , temp2 ) ;

module3 ( temp1 , temp2 , d ) ;

}

The code presented above will behave as illustrated in Figure 2.6. The modules do not

need to wait until their predecessors finish to execute. Instead, the modules wait until

finishing an iteration of themselves.

Furthermore, pipeline designs may imply adding additional optimisations to achieve better

performance. For instance, a for-loop pipeline often implies unrolling inner loops to

reduce latency (done automatically). For unrolling, the memory access must be concurrent

to avoid bottlenecks and high latencies. Consequently, the ARRAY PARTITION directive

should be used.

On the other hand, false dependencies could prevent the synthesiser from pipelining a

code block. These are often removed by explicitly telling it that the dependency does not

exist, adding the DEPENDENCE directive [82].
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Dataflow executionIteration 1

Iteration 2

Iteration 3

Time

Figure 2.7: Dataflow architecture illustration. In this case, module 1 (orange) and module

2 (purple) can execute concurrently. However, module 3 (green) requires both

modules to have their result ready to start.

Module 1 Module 2 Module 3FIFO FIFOFIFO FIFO

Figure 2.8: The dataflow design implies adding FIFO interfaces to communicate each module

with its successor. It ensures efficient data transmission with low latency.

Dataflow Design

The dataflow design is a data-driven architecture that focuses on how the data flows

within the design. The idea of dataflow is the following: if one datum is ready in module

1, module 2 can take it to start the processing. The dataflow design is also called task-level

parallelism since it focuses on the task at the data level.

Differently from the pipeline design, the time division amongst the modules is more dif-

fused. Modules do not require their predecessors to finish an iteration, as presented in

Figure 2.7. At the implementation level, the synthesiser places FIFO interfaces amongst

the subsequent modules to pass data once they have finished processing, as illustrated in

Figure 2.8 [82].

The change is similar to the pipeline design at the code level. Instead of placing PIPELINE,

the code requires the DATAFLOW directive, as illustrated in Figure 2.7.

void MyFunction ( int a , int b , int c , inc &d) {
#pragma HLS dataf low

int temp1 ;

int temp2 ;

module1 (a , b , temp1 ) ;

module2 (a , c , temp2 ) ;

module3 ( temp1 , temp2 , d ) ;

}
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However, some factors prevent the synthesiser from implementing a dataflow design:

• The variables, arrays or streams cannot be static.

• The data must flow in a forward fashion without feedback.

• There should not be data dependencies: read by one iteration and written by an-

other.

Dataflow designs are often known to be low latency due to data-centrism and do not need

data batches to be efficient [82].

Array Partitioning

Despite array partitioning is not a design architecture, it is relevant to understand how

massive parallelism is possible in FPGAs. Please, consider the following example:

void MyVectorProcessor ( int a [N] , int b [N] , int c [N] ) {
for ( int i = 0 ; i < N; ++i ) {

#pragma HLS u n r o l l

c [ i ] = a [ i ] ∗ b [ i ] ;

}
}

In this case, a, b, and c are arrays with N elements. By default, the synthesis tool

implements arrays as single-port memories, which are limited to delivering one datum

per cycle and will restrict the synthesiser to parallelise the for-loop. Depending on the

implementation, the for-loop cannot be unrolled because of the memory access.

Array partitioning is a tool to fragment arrays into smaller arrays (even arrays of a single

element). In the example presented above, full unrolling is possible when fragmenting the

arrays into single-register elements (arrays of one element), as follows:

void MyVectorProcessor ( int a [N] , int b [N] , int c [N] ) {
#pragma HLS a r r a y p a r t i t i o n v a r i a b l e=a dim=0 complete

#pragma HLS a r r a y p a r t i t i o n v a r i a b l e=b dim=0 complete

#pragma HLS a r r a y p a r t i t i o n v a r i a b l e=c dim=0 complete

for ( int i = 0 ; i < N; ++i ) {
#pragma HLS u n r o l l

c [ i ] = a [ i ] ∗ b [ i ] ;

}
}

The ARRAY PARTITION directive specifies the variable, the dimension to partition and the

type of partition [82]:



2 Background and Related Work 32

• Block: divides a large array into small contiguous arrays.

• Cyclic: divides a large array into small interleaved arrays.

• Complete: divides a large array into registers.

In the example, partitioning completely leads to a solution with N multipliers, operating

the entire loop in a single cycle.

2.5 FPGA-specific Work

DLI has not been limited to CPUs, GPUs or ASAs. There is research on executing DLI

on FPGAs and ways to improve the hardware implementation on these devices.

2.5.1 General Optimisations

DNNs are generally resilient to numerical errors, depending on the stage and their appli-

cations’ criticality. There is an emphasis on the approximation opportunities to optimise

and compress neural networks accepting some errors and inaccuracies, assuming that

those errors are noise [22]. This fact opens a variety of opportunities for approximate

computing in non-critical applications.

Some classical optimisation techniques are widely applied independently from the acceler-

ator architecture but take into account the numerical capabilities. Models are classically

trained in FP32 representation, which consumes 32 bits. Nevertheless, these models are

numerically over-dimensioned and can be represented using 8-bit integer numbers, which

consume less area, are faster, and consume four times less memory. This technique is

called quantisation [23] and implies two consequences: (1) memory and (2) power con-

sumption.

There are proposals on non-conventional quantisation based on base-2 logarithm, which

compressed even better the weights [20]. The authors used 3-bit fixed-point numbers

to represent the weights and defined the product (2.22) and additions (2.23) as binary

operations. For validation, they compare their work using AlexNet and VGG16, leading

to a 1.4% accuracy loss concerning FP32.

wTx '
n∑
i=1

BitShift(1, w̃i + x̃i) (2.22)

s̃2 ' max(p̃1, p̃2) + BitShift(1,−|p̃1 − p̃2|) (2.23)

During the training, models also tend to have weights that contribute little to the final

output. These weights can be removed from the model by using pruning, which consists



2 Background and Related Work 33

Figure 2.9: Execution time comparison between dense and sparse accelerators while running

several configurations of pruned networks. Balancing the load between the PEs

can achieve better utilisation of the resources. Taken from [21].

of identifying those weights which are usually zero-ed or are below a threshold. Chang,

Pan, et al. propose extending this technique to prune filters from a CNN and remove

negligible weights from the filter [22]. However, pruning without control can lead to re-

source under-utilisation in some accelerators. Li & Louri analyse this issue and propose

an accelerator-aware pruning technique in [21]. They explain that having unstructured

pruning makes the accelerator take more clock cycles than needed. Hence, finding a bal-

ance can lower the time needed for computation, making the pruning aware of the model’s

accelerator. Likewise, they study their solution with SCNN, which models pruned CNNs

using sparse matrices, which are more efficient in representing highly pruned models. Fig-

ure 2.9 compares several cases while running dense and sparse accelerators on unstructured

pruning and an accelerator-aware one.

2.5.2 Arbitrary Precision

Most of the methods apply to models which are mapped to FPGA. However, there are

more exploitable optimisation opportunities thanks to the hardware representation’s flex-

ibility. If the workflow uses HLS, it can perform optimisations at the operations level,

such as pipelining and memory rearrangement. Moreover, there are more opportunities

to enhance the already presented techniques.

HLS also offers arbitrary precision number representation. Thus, the quantisation is

no longer limited to FP32 or 8-bit integer representation. It leads to a broader range

of representations that can be tested to achieve better results regarding accuracy loss

and power consumption. The quantisation is also not limited to being only linear. For

example, the 3-bit logarithmic representation [20] can be represented better on FPGAs

than on CPUs, where there is a waste of resources since the minimum register length is 8

bits. Thus, leveraging this optimisation to FPGA can achieve less area occupation and,

therefore, less power consumption, leading to more parallelism opportunities.

Taking advantage of this capability, Froehlich et al. in [84] introduce arbitrary precision
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to LeFlow [85], a tool that joins: Google XLA, to compile the model from Python to

LLVM intermediate representation, and LegUp [86], to synthesise C code to RTL.

2.5.3 Tools for Converting Models into HLS

Following the work by Froehlich, there is research on reducing the complexity of the DLI

implementation from the user’s perspective. This type of contribution often receives a

deep learning model, analyses it, and starts a compilation process to determine the layers,

the quantisation layer adaptors, and others until getting an FPGA design. Apart from

work by Froehlich, two popular frameworks work in this fashion for scientific research:

hls4ml [24] and FINN [26]. These contributions are explained in the following sessions.

One of the key advantages of using FPGAs as hardware accelerators is hardware re-

configurability. The developers can easily modify the accelerator’s microarchitecture by

importing IP cores, which can perform common operations such as multiplications and

additions to more complex tasks such as convolutions and dot products. Froehlich et al.

have also explored this area in their research. Figure 2.10 shows the workflow followed

by ASNet. After the model compilation from Python to LLVM IR using XLA, ASNet

proposes a layer to introduce approximations using numerical precision changes and in-

ject hardware units, such as custom adders and multipliers. After that, the approximated

LLVM IR artefact is synthesised into Verilog using a modified version of LegUp, which

supports custom IP Cores’ introduction. Froehlich obtained a reduction of 24.66% in

logic units while increasing the maximum frequency by 35.6% with a negligible accuracy

loss (< 2%).

2.5.4 Computation Rearrangement

Colleman, Verhelst & Member worked on rearranging the computation of the CNN map-

ping on FPGAs by exploiting the spatial parallelisation [87]. An intuitive approach for a

multi-layer neural network is to compute the outputs layer-per-layer and execute the next

layer computation until completing the previous outputs. However, this approach can

lead to high I/O consumption and communication. Colleman et al. propose a deep-first

alternative, which computes the outputs as their inputs are ready, without waiting for the

whole layer to be ready. They explain that there are multiple strategies for computing the

CNN using this alternative, such as line-based or pixel-based (see Figure 2.11). The most

effective strategy is the line-based, where a line of pixels is transmitted for computation.

The results regarding the I/O reduction between the host and the accelerator, parallelisa-

tion opportunities, and area footprint are promising. Likewise, the authors obtained 695

GOP/s with 78-93% accuracy on a ZYNQ Ultrascale+.
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Figure 2.10: ASNet workflow for compiling and synthesising models from TensorFlow to HDL

described in Verilog. ASNet takes the artifacts generated by XLA and starts the

approximations injection by varying numerical precisions and replacing execution

units. Taken from [84].

Figure 2.11: (a) Pixel-, (b) line-based deep-first strategies. Each big trapezoid represents a

feature layer. Each small trapezoid represents all the channels from one line of

activation data of one layer. The colours represent the state: red - out from mem-

ory, green - in memory, orange - removed from memory, blue - being computed,

purple - exported. The arrow means that the line is padded. Taken from [87].
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Figure 2.12: Example of an AHLS toolchain for ML. Differently from a conventional HLS,

an AHLS introduces approximation points and requirements to the optimisation

setup. Additionally, it has an approximation-aware optimiser. Taken from [88].

2.5.5 Approximate High-Level Synthesis roadmap

Zervakis et al. present the challenges and vision for approximate computing for machine

learning [88]. They indicate that MAC operations spend 99% of the energy in Deep Neural

Networks. It means that approximating and optimising hardware can significantly impact

the energy consumption of DNNs, making them both lighter and less power*consuming.

They have highlighted that Approximate High-Level Synthesis (HLS) can help achieve

promising results in tailoring models to FPGAs for more outstanding performances per

Watt. Some tasks which an AHLS toolchain can perform:

• Neural network pruning

• Approximation-aware loop optimisations

• Approximate units and techniques selection while evaluating their impact on the

error

• Approximation libraries utilisation, with pre-characterised components in terms of

delay, error, and energy models

• Quantisation by novel techniques like log-based discretisation

• Reconfigurable optimisations

Figure 2.12 offers an overview of an AHLS toolchain, which does not differ significantly

from a typical HLS-based workflow. The key differences are in the optimisation setup,

where the approximation constraints are passed to the toolchain and the incorporation of

error evaluation during the design optimisation.
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Figure 2.13: hls4ml workflow. The process begins with a model which is later compressed.

Once it is optimal, the model is converted to hardware through HLS and imple-

mented in the target FPGA. Taken from [89].

2.6 FPGA popular frameworks for DLI

This section presents hls4ml and FINN, the most popular machine learning frameworks to

perform inference in FPGA devices. CERN supports the first, and the second is supported

by academia and AMD/Xilinx (one of the big FPGA vendors).

2.6.1 hls4ml

hls4ml framework [89] implements a workflow that receives the model in either TensorFlow

or PyTorch. Then, it performs an HLS conversion and creates a project that allows the

user to tune the design: establishing optimisation goals and adjusting the numerical

precision and the reuse factor. hls4ml provides compile-time design tuning, allowing the

design synthesis thanks to the use of C++ in HLS, as presented in Figure 2.13. Optimal

performance in hls4ml is determined by:

• Size and compression of the model: allowing reducing resources.

• Precision: the numerical precision will determine the model’s error and how accurate

the DLI will be.

• Dataflow and resource reuse: the user can tune the trade-off between resource reuse

and performance. Reusing resources imply lower area consumption but more infer-

ence time. Instead, investing in more area leads to lower inference time.

• Quantisation-aware training: although it is not part of the library, quantisation-

aware training helps to fit the model to the quantisation backend. In this case,

hls4ml uses QKeras for this step.

Concerning hardware consumption, hls4ml employs the reuse factor to indicate the repli-

cation of the hardware. Figure 2.14 illustrates how the hardware synthesis behaves when

tuning the reuse factor.
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Figure 2.14: hls4ml reuse factor effect on the resource usage and execution of the model. Taken

from [89].

hls4ml, in its version v0.6.0, supports TensorFlow/Keras in at multi-layer perceptron

and convolutional layers [90]. PyTorch and ONNX only have support for multi-layer

perceptron layers.

At the HLS level, the implementation is often a dataflow, where each layer is connected

to the following. hls4ml provides the following example [90]:

l a y e r 2 t l a y e r 2 o u t [ N LAYER 2 ] ;

#pragma HLS ARRAY PARTITION v a r i a b l e=l a y e r 2 o u t complete dim=0

nnet : : dense la tency<c o n f i g s . . . > ( input 1 , l aye r2 out , w2 , b2 ) ;

l a y e r 3 t l a y e r 3 o u t [ N LAYER 2 ] ;

#pragma HLS ARRAY PARTITION v a r i a b l e=l a y e r 3 o u t complete dim=0

nnet : : r e lu<c o n f i g s . . . > ( l aye r2 out , l a y e r 3 o u t ) ;

l a y e r 4 t l a y e r 4 o u t [ N LAYER 4 ] ;

#pragma HLS ARRAY PARTITION v a r i a b l e=l a y e r 4 o u t complete dim=0

nnet : : dense la tency<c o n f i g s . . . > ( l aye r3 out , l aye r4 out , w4 , b4 ) ;

nnet : : s igmoid<c o n f i g s . . . > ( l aye r4 out , l a y e r 5 o u t ) ;

The example shows two dense layers (multi-perceptron layer) optimised for latency, an

activation function (ReLU) and a sigmoid. This example illustrates how the entire model

is implemented into a single accelerator within the FPGA.

In terms of support, hls4ml supports the production of synthesisable designs in Intel and

Xilinx-based FPGAs through Quartus and Vivado HLS backends.
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Figure 2.15: FINN design flow. The model is exported in a custom ONNX that includes

additional layers to support arbitrary quantisation. Then, FINN starts to build

an HLS IP per layer with maximum folding for later tuning by the user. After

having a tuned design, the IPs are stitched to make a datapath with all the layers.

The hardware execution can be based on PYNQ or standalone. Taken from [25].

2.6.2 FINN

FINN is a machine learning framework for DLI of quantised models on FPGAs supported

by AMD/Xilinx. Like hls4ml, it takes a model from Python and produces an HLS design

capable of running on Xilinx FPGAs. However, FINN, different from hls4ml, is focused

on PyTorch as the main machine learning framework. Moreover, instead of generating a

single accelerator, FINN adopts a more granular approach, generating a single accelerator

per layer. Each layer can be more optimised than others since the reuse factor (a.k.a.

folding factor) applies per layer [25].

This difference between the two frameworks is crucial for leveraging DLI to FPGAs with

limited resources. The granular approach adopted by FINN allows tuning the expensive

layers and trying higher folding factors for resource recycling.

Figure 2.15 shows the FINN data flow. At the model level, the description and the

quantisation are performed thanks to Brevitas, a framework compatible with PyTorch.

Then, a series of HLS IPs are generated per layer, favouring a granular optimisation by

tuning the folding factor to get a beneficial resource-performance trade. To adjust the

folding, the values for PE and SIMD can be increased to increase the performance.

The resulting IPs are connected in a daisy chain fashion to get a dataflow path and
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exported to either a hardware bit file or a PYNQ project [26], making the whole process

user-friendly through Python.

FINN also supports software simulation of the whole datapath thanks to the HLS sim-

ulation. It is helpful for design verification and when calculating the folding factor of

each IP and seeing how the final results behave in terms of performance and resource

consumption. Besides, the simulation can happen at the Python level, HLS code and

Verilog, offering a complete verification of the design in its several stages.

2.6.3 Challenges and Opportunities

Both solutions were conceived for high-end FPGAs and cloud facilities, making them lack

granularity in the design and limiting the possibility of implementing designs in low-end

FPGAs. However, the optimisations are still closed for research in optimisation tasks and

approximate computing. FINN addresses this issue by splitting the accelerator into IPs

per layer.

Another challenge is the integration of approximate units. FINN and hls4ml support

fixed-point arithmetic, but their execution elements are still exact and do not integrate

any approximation beyond quantisations.

Hence, both frameworks are powerful and popular in DLI on FPGAs. They still have

some open challenges and opportunities to improve. For instance:

• Granularity: both approaches implement the units of the whole model into the

FPGA. There is no chance to distribute the computation between the FPGA and a

host CPU for a hybrid execution.

• Approximate computing: both frameworks are exact in their computations. It opens

the chance to experiment with approximate computing techniques.

• Model size: the designs produced by both frameworks can still be unsuitable for

low-end FPGAs like the Artix-7 in its most minor configurations. The combination

of the first two challenges can lead to an improvement in this issue.

• Opening to other applications: both frameworks are highly tailored to DLI and

restrict their usage in other applications such as Linear Algebra. A more generic

approach could satisfy the DLI and other fields as well.



Chapter 3

Design of Customisable Processing

Elements

This chapter explains the PE design process for matrix operations (including matrix

multiplication and addition) and convolution. The design includes the analysis of the

mathematical operation to resolve, possible architectures, and the differences with other

alternatives.

3.1 Design Goals

From the challenges exposed in Section 2.6.3, the PE is crucial to addressing the accel-

erator’s granularity, approximation support and implementation size. The PE, in this

work, is a small computing unit in charge of calculating operations for a small matrix,

i.e., matrix multiply-add, convolution, and activation functions. Thus, the size of the PE

will determine how many PEs can fit into an accelerator given an FPGA fabric. Moreover,

the PE provides the approximation capability of the accelerator.

The design goals set for the design of the PEs are:

• Easy data type swapping: the PEs shall allow the support of multiple data

types, i.e., floating-point, fixed-point, or integer. This support can be done through

a C++ template parameter.

• Configurable operand size: varying the input/output size makes it possible to

adjust the PE size and define how many PEs can fit into an accelerator.

• Stackable blocks: the accelerator shall support placing one or more PEs seam-

lessly. It means that adding more PEs shall not be problematic or require additional

developer logic.

41
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Table 3.1: Comparison between the most popular FPGA ML libraries and this work -

PE level

Criterion hls4ml FINN FAL (this work)

Easy data type swapping X X X

Configurable operand size Accel Accel X

Stackable blocks Accel X X

Open for approximations 7 7 X

Replaceable Accel Accel X

• Open for approximations at the operator level: approximate adders, multi-

pliers and non-linear functions can be supported by the PE. Thus, by modifying a

parameter will be possible to replace an exact adder with an approximate one.

• Replaceable: different implementations of the PE shall have a standard interface

allowing changing the PE at the accelerator’s level.

From the goals listed above, the design is focused on offering degrees of freedom for

modifying the PE size in exchange for numerical errors (approximations) and exploring

PE implementations. Moreover, this research is interested in the ease of use for creating

a vector accelerator and replacing the unit for design space exploration.

This work’s approach is more comprehensive than most popular alternatives, such as

hls4ml and FINN, regarding granularity, design control of the resource consumption, and

approximation capability. Table 3.1 illustrates the design goals accomplishment amongst

the most popular FPGA ML frameworks and this work. Accel accomplishment refers that

the support is only available at the accelerator level. This level of abstraction implies the

computation of a whole layer, being less granular for dealing with the model size unless

altering the reuse (or folding) factor.

Another interesting feature of accomplishing the design goals stated in this section is the

possibility of reusing the PEs for purposes other than DLI.

3.2 Generic Matrix Multiply-Addition (GEMMA)

GEMMA is one of the most common operations in DLI, and it is widely used in dense

layers (or multi-perceptron layers) [42]. For instance, in the case of the LeNet-5 [36], it is

composed of three dense layers that compute GEMMAs of

• A : R256×b, B : R120×256, C : R120×b

• A : R120×b, B : R84×120, C : R84×b
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• A : R84×b, B : R10×84, C : R10×b

where A, B, and C are the matrix operands such that D = A × B + C composes the

GEMMA operation. In total, the LeNet-5 model has 44426 parameters where 41854

participate in multiply-adds computed in matrix multiply-add.

In this work, the goal is to define a generic matrix multiply-add whose arithmetic operators

(i.e., multipliers and adders) can be replaced by approximated versions that use fixed-

point numbers with changeable bit-lengths, with a parameterised number of rows and

columns. A generic matrix multiply-add can be represented as

Yij = f(SNk=1{S{M{Xik,Wkj}, Bk}}) (3.1)

where S{·} is a single adder operator, M{·} is a single multiplier, f(·) is the activation

function, and N is the number of columns of the input matrix and the rows of the weights

matrix. A näıve C++ implementation of the matrix multiply-add can be:

Algorithm 1 Baseline Matrix Multiply-Add, + and * are functors

rows :

for ( int n = 0 ; n < N; n++) {
c o l s :

for ( int m = 0 ; m < N; m++) {
accumulation :

d [ n ] [m] = c [ n ] [m] ;

for ( int k = 0 ; k < N; k++) {
d [ n ] [m] += a [ k ] [m] ∗ b [ n ] [ k ] ;

}
}

}

where there are three for-loops for addressing the rows, columns and accumulation. The

input matrices are stored in the 2-D arrays a, b, c and the output is the d array. From

this näıve approach, it is possible to derive multiple architectures:

• baseline, a serial implementation that may require at least N3 clock cycles;

• pipeline, which pipelines the rows and unrolls the inner loops, requiring partition-

ing a and b completely, and c and d in its columns (utilising N memory blocks),

consuming N + 2 cycles; and

• single-cycle, which performs the operations in a single-cycle by unrolling all loops.
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There are other possible designs but this work only takes the mentioned above for sim-

plicity.

On the other hand, typical multiplier implementations save the result in a register bigger

than the operands to avoid overflow issues [83]. The output register is twice the width of

the two input operands, while the accumulation is at least one bit bigger. This work’s mul-

tipliers and adders keep the output operands’ width consistent with the data throughput

and reduce area consumption. It is similar to the method used in lossy applications [91],

which saves area by dropping the bits. The proposal to manage the overflow is based on

scaling two of the multiply-add operands as

d′ =
ab

2N
+

c

2N
(3.2)

where a, b, c are the multiply-add operands, d = 2Nd′ is the output, and N is the number

of rows considering a N × N squared matrix. One caveat of scaling with respect to

the number of rows (or columns) is that the numerical error of the operation becomes

dependent on the matrix size. The following sections demonstrate how the matrix size

impacts the overall error.

Considering the characteristics of the matrix multiply-add described during this section,

the construction is similar to the one presented in Algorithm 2. The PE requires a

datatype definition and the approximate operators (even though, it falls back to the exact

version if not defined). The data type is defined as a fixed-point of W = 16 bits with

I = 1 bit of integer. The operand size is R×C = 2× 2. The arithmetic operators are an

approximated version, dropping the D = 4 LSBs of the operands. Once all these elements

have been defined, the PE is specialised and can be utilised after its construction.

3.3 Window-based Convolution

Convolutions are popular in image processing with neural networks [30]. In the case of

LeNet-5, it has two convolutions with kernels of 5×5, responsible for 2572 parameters out

of 44426 total. Moreover, following the matrix multiply-addition, the convolution engine

is parameterised in the input and output dimensions, the datatype, and the arithmetic

operators, making it possible to use approximate computing techniques to better use the

resources compared to using standard datatypes and exact arithmetic.

The computation of a single pixel using spatial convolution is represented as:

Yij = Sκn=−κ{Sκm=−κ{M{Xi+n,j+m, Kmn}}} (3.3)

where Kmn is the m-th row and n-th column of the kernel K, and κ = bNK/2c is defined

as the half of the kernel size NK = 1, 3, . . . , 2k−1. For instance, for a kernel size NK = 3,

the indices based on κ would be from −1 to 1.
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Algorithm 2 Matrix multiply-add C++ description

/∗ Matrix dimensions ∗/
stat ic constexpr int R = 2 ;

stat ic constexpr int C = 2 ;

/∗ Define data t y p e s ∗/
stat ic constexpr int I = 1 ;

stat ic constexpr int W = 16;

stat ic constexpr int D = 4 ;

using DataType = ap f ixed<W, I>;

/∗ Define approximate o p e r a t o r s ∗/
using M u l t i p l i e r =

axc : : a r i thmet i c : : l sbdrop : : Multiply<DataType , W, I , D>;

using Adder =

axc : : a r i thmet i c : : l sbdrop : : Add<DataType , W, I , D>;

/∗ S p e c i a l i s e the GEMMA PE ∗/
auto eng ine =

ama : : hw : : ope ra to r s : : MatrixMultiplyAdd<DataType , R, C,

Adder , Mu l t i p l i e r >{};

/∗ Use the PE over matr ices MA, MB, MC, MD ∗/
eng ine . Execute (MA, MB, MC, MD) ;

Nx x Nx

Input Image

NX = NK + NY - 1

Convolution PE

NK x NK

NY x NY

Output Image

Nx x Nx
NY x NY

Nx x Nx
NY x NY

Figure 3.1: Window convolution principle. The convolution PE computes windows of the

image, leading to greater parallelism at the PE level.

For adding more computing power to the PEs, each unit computes a window of pix-

els instead of a single pixel, as Figure 3.1 illustrates. The output window size is also

configurable, increasing the parallelism at the PE level and allowing the computation of



3 Design of Customisable Processing Elements 46

multiple pixels while multiple inputs arrive at the PE. From now on, the window-based

convolution based on Equation (3.3) will be called Window-Based Spatial Convolution.

A näıve implementation of the window-based convolution in the space domain can be

represented as:

Algorithm 3 Baseline Spatial Convolution

output rows :

for ( int oy = 0 ; oy < NY; oy++) {
o u t p u t c o l s :

for ( int ox = 0 ; ox < NY; ox++) {
y [ oy ] [ ox ] = 0 ;

ke rne l r ows :

for ( int n = 0 ; n < NK; n++) {
k e r n e l c o l s :

for ( int m = 0 ; m < NK; m++) {
y [ oy ] [ ox ] += x [ oy + n − NK / 2 ] [ ox + m − NK / 2 ] ∗ k [ n ] [m] ;

}
}

}
}

where the output matrix is y of size NY × NY , the kernel matrix is k of size NK × NK ,

and the input matrix is x of size NX ×NX , with NX = NK +NY − 1. Both NK and NY

are parameters of a PE.

The algorithm for the convolution consists of an element-wise product followed by the

sum of the products, leading to the pixel computation loops and the output window

computation. Based on these two parts of the spatial convolution algorithm, the following

implementations are possible:

• baseline, a serial implementation that may require at least N2
K + N2

Y clock cycles,

N2
K for the products, and N2

Y for exploring the output matrix;

• serial output + unrolled kernel loops, an attractive architecture can be composed by

the merge of the output loops serially and the unrolling of the kernel loops, leading

to a single execution unit for the pixel computation and requiring partitioning k

(the kernel) and x (the input) completely. It consumes, at least, N2
Y clock cycles;

and

• single-cycle, which performs the operations in a single-cycle by unrolling all loops,

requiring all arrays to be partitioned completely.

This work also involves the Winograd convolution implementation, illustrated in Fig-

ure 3.2. In this case, the Winograd PE targets a NK = 3 × 3 kernel and a 2 × 2 output
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Figure 3.2: Winograd convolution algorithm. Similar to other domain transformations, it

requires the inputs to be transformed and the output to be transformed back to

space.

window (NY × NY for simplicity), making it more specific than the former convolution

technique. The Winograd operations are implemented discretely without loops (loop

unrolling + algebraic simplifications). For bigger kernels, it would imply using a for-

loop-based matrix multiplication function for computing the transformation, given that

discretising the operations becomes unreadable and impractical. Moreover, the intermedi-

ate results are stored in matrices whose entries occupy twice the bits of the input/output

matrix entries.

Given that the algorithm has multiple stages, it is a good candidate for pipelining and

dataflow. Thus, the possible implementations are:

• baseline, a serial implementation that may require at least 4 clock cycles when

having all the inputs and outputs partitioned completely. Otherwise, it may require

more than N2
X + 4 clock cycles to access the inputs and perform the processing;

• pipeline, where each algorithm step is performed in about one clock cycle. It may re-

quire partitioning all the inputs and outputs for one-clock cycle access and streaming

for continuous processing; and,

• single-cycle, which performs the operations in a single cycle by inlining all the

functions and partitioning the inputs and outputs completely in single registers.
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Like the GEMMA PE, the convolution can process arbitrary fixed-point datatypes, ad-

justing the operand size and utilising approximate arithmetic operators. For example,

Algorithm 4 describes a Winograd convolution that operates a matrix of O = 2 and a

kernel of K = 3. The data type is a W = 16 fixed-point with I = 1 integer bits. The

operands drop the D = 4 LSBs. Once defined all these requirements, the PE is specialised,

constructed and used.

Algorithm 4 Convolution C++ description

/∗ Matrix dimensions ∗/
stat ic constexpr int O = 2 ;

stat ic constexpr int K = 3 ;

/∗ Define data t y p e s ∗/
stat ic constexpr int I = 1 ;

stat ic constexpr int W = 16;

stat ic constexpr int D = 4 ;

using DataType = ap f ixed<W, I>;

/∗ Define approximate o p e r a t o r s ∗/
using M u l t i p l i e r =

axc : : a r i thmet i c : : l sbdrop : : Multiply<DataType , W, I , D>;

using Adder =

axc : : a r i thmet i c : : l sbdrop : : Add<DataType , W, I , D>;

/∗ S p e c i a l i s e the GEMMA PE ∗/
auto eng ine = ama : : hw : : convo lve r s : : Winograd<DataType , K, O,

Adder , Mu l t i p l i e r >{};

/∗ Use the PE over image IX with k e r n e l IK with output OY ∗/
eng ine . Execute ( IX , IK , OY) ;

3.4 Vectorisation Capability

Addressing the challenge of granularity implies answering the question of how to scale the

PEs to large accelerators. Vectorisation is one of the alternatives to concatenate several

PEs to increase the processing power while keeping the execution time constant. It also

implies spending resources in the same proportion as the processing power. It achieves

the goal of Stackable Blocks set at the beginning of this chapter.

This work presents a vectorisation wrapper class that allows replicating PEs within an

accelerator. It allows concurrent execution that requires more resources but preserves the
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PE’s execution time, i.e., having a single PE can lead to an execution time of 10 clocks.

In contrast, five PEs also lead to 10 clocks, preserving the execution time and providing

five times more performance at the computation level. It is similar to the functionality

of the vector units in a central processing unit, giving a similar to Single-Instruction

Multiple-Data (SIMD) functionality [83]. From the related work, FINN has a similar

capability [25].

The implementation is through template recursion, as presented in Algorithm 10 (Ap-

pendix A). In this case, the algorithm presents the example for the convolution wrapper,

where the template parameters are N (the current iteration of the recursion), NT (total

number of instances), and ENGINE (PE specialisation ready to construct). The wrapper

receives an array of rows multiplicated by the number of instances (lines 6 and 11). Then,

the rows are grouped and distributed amongst the PE instances (lines 19 and 20) for ex-

ecution in an iteration-constructed PE instance (line 17). Later, the recursion continues

by reconstructing the wrapper until getting N = 0.

Algorithm 5 Vectorisation template use case: Matrix Multiply-Add

GEMMA(const A,const B,const C,D)

# select a PE core for R× C float matrices

pe = operators::MatrixMultiplyAdd<Float16, R, C>;

# vectorise pe with N PEs

Vectorise<N, N, pe>::Execute(A, B, C, D);

The vector accelerator presented in Algorithm 5 shows the case for a multiply-add PE

specialised in 16-bit floating-point R×C matrices, which is replicated N times. Figure 3.3

shows how the design looks after the synthesis. The data is assumed as vectorised, and the

matrices are distributed to the multiple PEs. In this case, the matrices are represented

in planar row-major and copied to a register bank within the vector unit.

Algorithm 6 Vectorisation template use case: convolution

CONV(const IN,const KERNEL,OUT)

# select a Winograd PE core for a N2
K kernel and N2

Y output matrix

pe = convolvers::Winograd<FxP<16,1>, N K, N Y>{};
# vectorise pe with N PEs

Vectorise<N, N, pe>::Execute(IN, KERNEL, OUT);

For the convolution case, Algorithm 6 shows the vectorisation of a Winograd PE spe-

cialised in 16-bit fixed-point with 1-bit integer number representation for NK ×NK ker-

nels and NO×NO output matrices. Figure 3.4 illustrates how the accelerator looks when

containing a vector convolution. The system feeds the vector using windows (NX ×NX ,

where NX = NK + NO − 1) which do not share rows. This is conveniently designed

given that the memory layout in the C language is row-major, and the addressing of
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Figure 3.3: Vectorisation block diagram for the matrix multiply-add. The wrapper replicates

the PE N times and distributes the vector of data to multiple instances. For this

purpose, it is assumed that the matrices are stored in row-major, the interface

to the host is through a FIFO-like protocol, and the data are stored in a register

bank for concurrent access (complete array partitioning).
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Figure 3.4: Vectorisation block diagram for a convolution. The wrapper replicates the PE and

distributes the vector of data to multiple instances. In the convolution case, all

the PE instances share the kernel and convolve distinct parts of the image. For

this purpose, it is assumed that the images are stored in row-major, the interface

to the host is through a FIFO-like protocol, and the data are stored in a register

bank for concurrent access (complete array partitioning).
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two-dimensional arrays takes the rows as the outer dimension. So, the data distribution

within the accelerator can be distributed as

X(p) = X[NX × p][NX ] (3.4)

where X(p) is the submatrix sent to the p-th PE, and NX is the number of rows and

columns of the submatrix. This way, the columns are contiguous in memory, and the

copies can be vectorised.

3.5 Summary

A complete algorithm for an accelerator can highlight the achievement of the design goals

stated in the beginning of this chapter. Recalling Algorithm 4, it is possible to configure a

convolution PE by specifying the data type, the arithmetic operators, and the operands’

size. It proved the achievement of the three first design goals from the list presented

above.

Algorithm 11 (Appendix B) shows an example of a complete execution unit with replace-

ment and vectorisation. Lines 1-9, and 15-18 are the same as Algorithm 4, where the data

type, the operands’ size and the arithmetic operators are defined. These lines prove the

achievement of easy data type swapping, configurable operand size, and open for

approximations at the operator level. Lines 21-27 shows how to replace PE imple-

mentations. Through a compilation-time flag, it is possible to choose between a Winograd

or a Spatial convolution. If the flag USE WINOGRAD is defined, the Winograd PE will be

synthesised, otherwise the Spatial will. This is heavily exploded by the framework for de-

sign space exploration. It makes this work achieve the replaceable goal. Line 12 specifies

the number of cores wanted in the vector unit. In this case, the final unit will have 4 PEs.

Lines 31-32 use this constant to replicate the engine (or PE specialisation) from Lines

21-27 4 times using Algorithm 10 and execute the convolution. The operands, differently

from Algorithm 4, have an input size of 4N×4 (recalling that NX = NY +NK−1), kernel

size of 3× 3 and output size of 2N × 2, which are distributed as illustrated in Figure 3.4.

With this, the stackcable blocks goal is achieved, completing the design goals proposed

in the beginning of this chapter.

The summary of techniques utilised for accomplishing these goals is presented below:

• Easy data type swapping: addressed by setting the datatype through C++

templates (as a parameter).

• Configurable operand size: also addressed by setting the operands’ size through

C++ templates (as a parameter).

• Open for approximations at the operator level: passing the operands as

functors, including the exponentials, allows approximation opening within the PEs.
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• Stackable blocks: the vectorisation wrapper allows stacking multiple PE instances

through template recursion. It is implemented as a template class that wraps a PE

specialisation.

• Replaceable: keeping the interface in terms of size, memory requirements and

protocol helps to achieve replacement of each PE when possible.



Chapter 4

Design of Template Accelerators

This chapter explains the accelerator design process, the next level of abstraction after

the PE design process. This process involves the integration of the PEs, communication

protocols and interfaces to the host (the ARM microprocessor in the case of an FPGA-

based SoC), the explored architectures and their analysis, and the differences with other

approaches.

4.1 Design Goals

Similarly to Chapter 3, the development of the accelerators looks forward to addressing

the challenges exposed in Section 2.6.3. So far, the PE design considers the Approximate

Computing opening and the Granularity principle, being modular, stackable and re-

placeable. However, the model characteristics and the opening for other applications still

need to be addressed.

In this chapter, the design goals of the accelerators are:

• Template structure: the design shall behave like a template. It integrates both

a static part and a replaceable one. The static part is in charge of communication,

control and caches. In contrast, the replaceable part integrates the execution units

based on PEs, making it easy to swap between implementations.

• Standard interface: the accelerators must work with a generic driver. The data

transmission interface and the control interface shall be similar for all the templates,

including possible intersections in control registers.

• Configurable: the framework shall adjust the static part of the template according

to the operands (data type and size). Moreover, the framework shall configure

the dynamic part in terms of the target PE implementation and the number of

units required, i.e., choosing between Winograd or Spatial PEs in a convolution

accelerator.

53
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Table 4.1: Comparison between the most popular FPGA ML libraries and this work -

accelerator level

Criterion hls4ml FINN FAL (this work)

Template structure X X X

Standard interface X X X

Configurable Partial Partial X

Simulable X X X

Acceleration granularity 7 7 X

• Simulable: the accelerator shall be entirely simulated at software level, allowing

simulations of applications and DLI.

• Acceleration granularity: placing multiple small accelerators rather than a sin-

gleton shall be possible, allowing communication-execution overlapping.

Unlike the PE design, the accelerator design is a template with some degrees of freedom:

the PE implementation and the number of PEs. Moreover, it focuses on the capacity

of simulating the design for a software evaluation, avoiding going through the FPGA

workflow from the HLS synthesis up to the bitstream generation, accelerating the DSE

process and offering a fast tool to evaluate the designs.

Thanks to High-Level Synthesis and C++, this work can use templates to create generic

implementations, parameterised and adapted according to the design requirements. hls4ml

and FINN already leverage these advantages on Xilinx-based platforms. Another inter-

esting feature of these frameworks is the simulation capability. FINN, in particular, can

simulate each stage of the development flow, acquiring results regarding error (or model

accuracy) and resource consumption (in implementation stages).

Moreover, this work’s approach is versatile in terms of the application’s domain. An accel-

erator is sufficiently generic to run applications other than DLI. For instance, a GEMMA

accelerator would benefit Approximate Linear Algebra applications. In addition, it is

possible to have multiple accelerators with the same specialisation (or parameters) within

the FPGA, permitting overlapping between communication and execution through work

balancing. In other words, having two or more accelerators allows one to run either

accelerator at different times and balance the loads, dealing with the communication

bottlenecks, i.e., if one accelerator is executing, another one can use the communication

channel. This leads to another level of granularity at the accelerator level not found in

frameworks such as FINN and hls4ml.

Another difference with existing frameworks is the optimisation capability. As proposed

by this work, the user can optimise the accelerator and PEs through directives, adding a

new degree of freedom to the DSE for creating different design architectures and imple-
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mentations. In FINN and hls4ml, this is not possible, given that they have ”flashed” the

optimisations within the code.

Table 4.1 summarises the design goals in the most relevant frameworks for DLI on FPGA

and this work. Common goals include the template structure, standard interface,

and simulability. However, acceleration granularity is not fully addressed and the

configurability, where FINN and hls4ml present a partial configurability. Both frameworks

offer two or more alternatives to the user, mainly focused on resource-saving or latency

in the case of hls4ml and the folding factor in the case of FINN. However, since there is

no solid concept of PE, the number of execution units is unavailable.

By accomplishing all the goals stated above, the acceleration units can be tailored, DSE-

friendly, and general-purpose. Moreover, the analysis will be limited to the matrix accel-

erator (focused on GEMMA) and the convolution accelerator. Activation functions are

assumed as integrated into these units.

4.2 Accelerator Template

Two of the design goals are that the accelerator shall behave template structure and

shall have a standard interface. This work proposes a series of macros to describe the

accelerators without going into implementation details. The macros declare capabilities,

check parameters, and define the accelerator regions. Also, it implements the FIFO-like

structures for the AXI4-Stream port and the register implementation for the AXI4-Lite

control port.

Algorithm 7 reflects the macros utilised to describe a matrix accelerator. There are, in

particular, three kinds of macros:

• DEF SET * CAPABILITIES() declares the capabilities of the accelerator.

• DEF SET * PARAMS CHECK() performs the logic to check the runtime parame-

ters with respect to the capabilities of the accelerator.

• BEGIN DEF TOP * FUNCTION() and END DEF TOP * FUNCTION() defines

the implementation of the accelerator. It includes array declarations and connects

the static and dynamic modules.

* means that it can be either MATRIX or CONV for a matrix or a convolution accelerator,

respectively.

The first two kinds expand to functions that provide the accelerator’s capabilities and

check the parameters set by the user at the execution time, providing runtime config-

urability. The third kind expands to the top module, which defines the accelerator as a

whole. The top module receives all the accelerator’s variables and parameters since the

implementation can use them. Moreover, it also invokes the capabilities and parameters
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check functions, redirecting some of the variables to these functions. For example, in

Algorithm 7, the variables en accumulation, rows, and columns are redirected to the

parameters check. The template implements these variables at the implementation level

as registers accessible through the AXI4-Lite control. Likewise, the top function also

accesses the streaming ports for data I/O. In Algorithm 7, they are stream input and

stream output.

Algorithm 7 Accelerator file structure. This file will describe the accelerator capabilities,

check the parameters at runtime and implement the static and dynamic logic. This

structure is called canonical.

DEF SET MATRIX CAPABILITIES( caps ) {
// Def ines the c a p a b i l i t i e s o f the a c c e l e r a t o r

// I t matches a c o n t r o l r e g i s t e r .

WRITE RANGE CAP( rows , 2 , 8 ) ;

WRITE RANGE CAP( columns , 2 , 2 ) ;

}

DEF SET MATRIX PARAMS CHECK( check ) {
// Checks the runtime parameters a g a i n s t the c a p a b i l i t i e s .

CHECK RANGE AND FALLBACK( rows , 2 , 8 , 2 ) ;

CHECK RANGE AND FALLBACK( columns , 2 , 2 , 2 ) ;

}

BEGIN DEF TOP MATRIX FUNCTION( acce l , caps , check )

a c c e l t o p : {
// Implementation d e t a i l s

/∗ Temporal b u f f e r s ∗/
stat ic DataType A [ 8 ] [ 2 ] = {0 . f } ;

stat ic DataType B [ 8 ] [ 2 ] = {0 . f } ;

stat ic DataType C [ 8 ] [ 2 ] = {0 . f } ;

/∗ Get parameters ∗/
PropertyPort accumulate = READ EXE PARAM( en accumulat ion ) ;

/∗ I n s t a n t i a t i o n o f the s t a t i c and dynamic modules ∗/
l oad data ( stream input , A, B, C) ;

execute (A, B, C) ;

r e t r i e v e d a t a ( stream output , C, accumulate ) ;

}
END DEF TOP MATRIX FUNCTION( )
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The acceleration granularity goal is addressed by the implementation details of the

dynamic module. In Algorithm 7, it is referred to execute. Its implementation is similar

to the ones presented in Algorithms 5, 6.

4.3 Matrix Accelerator

The matrix accelerator is the design template for accelerators that operates over matrices.

The template presents an architecture that supports the GEMMA and activation functions

in a SIMD form. This work will focus on the GEMMA implementation only.

In the last chapter, 3.1 was introduced as the generalised matrix multiply-add operation,

taking S and M as the summation and product operators based on approximate arith-

metic. The PE implementation based on 3.1 assumed a limited matrix size because of

the granularity principle. In this work, some matrix sizes can be 2× 2, 4× 4, and 8× 8.

However, FCL layers are much larger than the sizes mentioned before. For example, in

case the of LeNet-5, it is possible to find matrices of 10, 84, 120, and 256 elements in their

columns or rows.

The matrix accelerator comes to solve large matrix operations.

Dij = SJk=0{AikBkj} (4.1)

where Dij is the output submatrix formed by the top-left corner identified by the i-th

row and j-th column of the output matrix D. Similar to the output, Aik and Bkj are

the submatrices of the input matrices A and B. Figure 4.1 illustrates a bigger matrix

multiplication graphically. In this case, the figure depicts the operation performed by a

single PE of R×C. Since the matrix operation can be divided into three multiplications:

A0,0 ×B0,0, A0,C ×BR,0, and A0,2C ×B2R,0. it requires three runs until accumulating

all the results before writing the output submatrix D0,0.

This exploits the capability of solving multiply-additions, A × B + C, where A and B

are the current operands and C is the accumulation of the previous operations.

4.3.1 Template Overview

This work proposes the implementation of the accelerators as reconfigurable templates,

where the execution stage can hold different PE implementations in a vector fashion to

achieve SIMD. Moreover, the accelerator shall have a standard interface to keep compat-

ibility with the driver, regardless of the parameters or the PE implementation. Hence,

this work proposes an accelerator design with two types of modules: static and dynamic.

The static modules do not vary their implementation, but they can adapt according to

the accelerator parameters to keep the interface standard. For instance, the data ex-
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Figure 4.1: Illustration of the calculation of an output submatrix from the inputs.

change modules do not vary their implementation in terms of the streaming interface

protocol, register implementation, and data retrieval/write patterns. However, the num-

ber of registers, register size and the number of packets received and transmitted through

the streaming interface adapt to face the data required by the execution module of the

accelerator.

On the other hand, dynamic modules can vary their implementation. This is the case

of the execution stages, whose internal cores or PEs are replaceable and granular. Be-

sides, the number of PEs in the execution vector is adjustable, incrementing the internal

parallelism of the execution stage.

Figure 4.2 shows an overview of the matrix accelerator implementation. The static blocks

are mostly the data exchange modules: data load and data write. The dynamic block is

execute.

The data load module receives the packages from the stream. Then, it fills the cache reg-

isters in a row-major fashion, receiving the matrices MA, MB, and MC and distributing

the data as in Figure 3.3. Through the accelerator configuration, an application can spec-

ify which matrices will be provided via the stream. A similar case happens with the data

write module, which transmits the data from the cache register MC through the stream

once the accumulation has finished. It is crucial to notice that MC is an input/output

register, which works as an accumulator and is reset on accelerator read (once the output

is finished, the accumulator is cleared).

Moreover, the execution module is the composition of several PEs in a vector. The number

of PEs, their implementation, and configurations, such as the PE size and data type, are

determined at synthesis time through some of the accelerator parameters.
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Figure 4.2: Matrix accelerator template. It has three main modules: (1) data load, (2) execute,

and (3) data write

.

4.3.2 Capabilities and Parameters

Table 4.2 presents the synthesis-time parameters of the accelerator and its affection on

every module. The data type-related and matrix size parameters affect all modules. The

increase of any of these parameters affects the data streaming, where the input/output

streams might require to transmit more packages as the number of data width bits in-

creases. It also affects the number of flip flops, making the design consume more resources

to deal with the increased bits. The number of PEs also affects static modules since the

vector will require more data to be efficient. Nonetheless, the core and arithmetic opera-

tors do not affect the static modules but the dynamic ones, given that they specify how

the PEs are implemented.

The accelerator has registers that describe the capabilities (read-only) and runtime param-

eters. These registers are described and checked by the implementation of the template

accelerator macros. Table 4.3 describes some of these parameters.
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Table 4.2: Matrix accelerator template parameters

Parameter Data load Execute Data write

Data type-related Input register size
None (only at the

PE level)

Number of packets,

Output register size

Matrix size Input register size
None (only at the

PE level)

Output register size,

number of packets

Core None PE implementation None

Number of PEs
Input register rows,

number of packets
Number of PEs

Output register

rows, number of

packets

Arithmetic opera-

tors
None PE implementation None

Table 4.3: Matrix accelerator template capabilities and parameters (at runtime)

Parameter Description Capability Description

Rows Matrices rows Rows

Minimum and maxi-

mum rows of the ma-

trices

Columns Matrices columns Columns

Minimum and maxi-

mum columns of the

matrices

Load matrix mask
Selection of matrices

passed through stream
Masking

Accelerator supports

masking

Enable accumula-

tion

Enable the accumula-

tion of the results
Accumulation

Accelerator supports

accumulation

Enable activation
Enable the activation

function
Activation

Accelerator supports

activation

Scaling factor
Modifies the scale fac-

tor
Scaling

Accelerator supports

scaling

Operation
Select the matrix oper-

ation
Operations

List of supported oper-

ations

Default scaling
Default scaling applied

to the results

Number of cores
Number of PE units of

the accelerator

Datatype
Datatype supported by

the accelerator

Number of integer

bits

Number of integer bits

in Fixed-Point data

types

Number of frac-

tional bits

Number of fractional

bits in Fixed-Point

data types
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Each parameter or capability listed above is assigned to an address. The final RTL

implementation has a description of these registers with their offsets to be included within

an application.

4.3.3 Optimisation Points

The optimisation points in this implementation are the following:

• Register bank partitioning: the registers can be implemented by using either

BRAM or registers (based on flip flops). Provided that this PE holds four matrices,

partitioning can lead to a high FF utilisation.

• Data load loops: the data load modules are implemented using loops. They can

be unrolled or pipelined.

• Internal module registers: they can be partitioned entirely or partially. It is

relevant to mention that it might require reshaping to distribute the operands prop-

erly.

• Internal PE implementation details: the PE unit can be optimised for all the

units present in the accelerator.

• Vector unit: the units can be serialised or parallelised.

These optimisation points are considered for the DSE in the following sections.

4.3.4 Possible Implementations

Table 4.4 shows the set of possible optimisations for the template matrix accelerator. It

supports from the serial execution up to the pipeline architecture. In the case of the serial

architecture, it does not have any directives set by default. The pipeline architecture can

be in two possible configurations: a pipeline per module, or pipeline modules (all the

modules become a pipeline stage). The dataflow is not supported given that there is a

feedback between the output and one of the inputs in the accumulation matrix.

Figure 4.3 summarises the possible implementations. The serial implementation is com-

puted as the sum of all stage times:

• Data load: 3×N × R × C × It, hence: 3× 4× 2× 2× 2 = 96. The 3 comes from

the number of matrices.

• Execute: N ×R× C2, hence: 4× 2× 22 = 32

• Data write: N ×R× C × It, hence: 4× 2× 2× 2 = 32
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Table 4.4: Matrix accelerator template optimisations

Implementation Optimisations

Serial architecture None

Hybrid: pipelined

modules but serial

daisy chain

(1) Pipeline in execution (PE), (2) Loop unrolling in ex-

ecution (PE) (3) Array partition in cache buffers. (4)

Vectorisation

Pipeline all above + pipelined modules (top module)

Iteration 1

Iteration 2

Iteration 3

Time

Serial architecture
Clocks (Approx): 160

EX DW

Data Load Execution Data Write

Pipelined execution
Gain expected: ~3.3x

Time

DL EX DW

DL EX DW

DL EX DWIteration 3

Iteration 2

Iteration 1

Hybrid execution
Gain expected: ~2.5x

Time

DL EX DWDL

EX DWDL

DL

DL EX DW

DL EX DW

Figure 4.3: Possible implementations of the matrix GEMMA in terms of execution per stage.

The serial architecture implies computing a single element at a time per stage,

leading to high latencies, whereas hybrid pipelining and pipelining simplify each

stage to get a lower latency. This assumes that data is not compressed into transfer

packages and that the accelerator is composed of 2× 2 operands. Each operation

is assumed to take one clock cycle.

where N is the number of PEs, R,C are the matrix dimensions (assumed to be squared),

It is the number of runs (matrix reshapening). For a serial implementation, the sum leads

to 160 clock cycles.

In pipeline-based architectures, the clock cycles are reduced as follows:

• Data load: 3×N ×R×C, hence: 3× 4× 2× 2 = 48. The reshapening is removed

since it is fully unrolled. The latency can be less if the data is compressed in packets.

• Execute: since it is fully unrolled: 1

• Data write: N ×R× C, hence: 4× 2× 2 = 16

Hence, the hybrid will be the sum of the optimised stages, it leads to 65 clock cycles,

whereas the full pipelined implementation to the slowest stage (data load), leading to 48

clock cycles. There are other possible optimisations, such as packeting, which need to be

taken into account. However, it minimises the number of clock cycles in data movements,
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INPUT IMAGE OUTPUT IMAGE

Run 1 Run 3Run 2

Figure 4.4: Image mapping when running a convolution accelerator. In this case, it includes an

implementation with two PEs, where the accelerator is capable of running more

rows than columns (twice columns). At the output image, it does not overlap

whereas the input image has some overlappings, meaning that some pixels are

transmitted twice.

reducing the performance until gains of 10× when using 8-bit operands. This will be

discussed in the following sections.

4.4 Convolution accelerator

Unlike the matrix accelerator, the convolution accelerator only supports the convolution

accelerator. 3.3 presented two PE implementations: Spatial and Winograd convolution.

However, similar to matrix-based PEs, the convolution PEs only operate over small image

regions. The convolution defined for a single pixel is

Yij = X(ij) �K (4.2)

where X(ij) is a 3× 3 windows centred at i, j. For a window, it is defined as

Y′ =

(NY ,NY )⊙
(i=0,j=0)

(
X(ij),K

)
(4.3)

where
⊙(NY ,NY )

(i=0,j=0) is the convolution operator over the pixel i,j when iterating i = 0, 1, 2, . . . , NY−
1, j = 0, 1, 2, . . . , NY −1 in all their permutations (NY ×NY ). To generalise the operation

over the entire image using a PE of output size NY ×NY , it is required to extract all the

possible regions in the output image, as illustrated in Figure 4.4.
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4.4.1 Template Overview

The convolution accelerator is based on the same ideas as the matrix accelerator template.

It has a template module that integrates the PEs and other peripheral modules in charge

of data transmission, caching and control. Figure 4.5 shows a block diagram of the

convolution accelerator template, composed by

Convolution Accelerator
Template

IB0

KB

IB1

...

IBN

OB0

OB1

...

OBN

Kernel
Load

Data Load

Execute

Data
Write

CPE1

...

CPEN

CPE0

AXI4-S

AXI4-S

Control
Registers

Stream
In

Stream
Out

A
X
I
4
-
L
i
t
e

Control
port

Static block

Registers block

Template block

Customisable Processing Element

Nomenclature: 

IBx: Input register block
KB: Kernel register block
OBx: Output register block 
CPEx: Convolution PE 

CONV. PE

*

F
Kernel

Output
Image

IB0

KB

OB0

Figure 4.5: Convolution accelerator template. It has four main modules: (1) data load, (2),

kernel load, (3) execute, and (4) data write

.

• data load: receives the input stream and stores the image windows into a register

back,

• kernel load: receives the kernel from the control port and stores it in a register bank,

• execute: whose implementation is customised and based on PEs, and

• data write: which reads the output register bank with the output windows and

transmits them to the output stream in row-major format.

In the execution block, the number of PEs and the implementation of them is selected

by the user. In this work, the developer is able to choose either Winograd or the Spa-

tial convolution. Moreover, the communication protocols are based on AXI-4. The data
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Table 4.5: Convolution accelerator template parameters

Parameter Data load Kernel load Execute Data write

Data type-

related

Number of pack-

ets, Kernel regis-

ter size

Input register size
None (only at the

PE level)

Number of pack-

ets, Output regis-

ter size

Kernel size
Input register size,

number of packets

Kernel register

size

None (only at the

PE level)
None

Output window

size

Input register size,

number of packets
Input register size

None (only at the

PE level)

Output register

size, number of

packets

Core None None
PE implementa-

tion
None

Number of PEs

Input register

rows and number

of packets

None Number of PEs

Output register

rows, number of

packets

Arithmetic op-

erators
None None

PE implementa-

tion
None

transmission is transferred using AXI Stream and the control using AXI Lite. The imple-

mentation of the registers block and in-module optimisations are still customisable by the

users, allowing them to find directives that maximises throughput or balance performance

and resource consumption.

4.4.2 Parameters

The synthesis-time parameters of the accelerator and its affection on every module is the

presented in Table 4.5. The affectation results are in the same manner as in the Matrix

Accelerator.

The accelerator has registers that describe the capabilities (read-only) and runtime param-

eters. These registers are described and checked by the implementation of the template

accelerator macros. Table 4.6 details these registers.

Each parameter or capability listed above is assigned to an address. The final RTL

implementation has a description of these registers with their offsets to be included within

an application.

4.4.3 Optimisation Points

The optimisation points in this implementation are the following:

• Register bank partitioning: the registers can be implemented by using either

BRAM or registers (based on flip flops). Provided that this PE holds four matrices,
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Table 4.6: Convolution accelerator template capabilities and parameters (at runtime)

Parameter Description Capability Description

Input width Input matrix width Input width

Minimum and maxi-

mum width of the in-

put matrix

Input height Input matrix height Input height

Minimum and maxi-

mum height of the in-

put matrix

Output width Output matrix width Output width

Minimum and maxi-

mum width of the out-

put matrix

Output height Output matrix height Output height

Minimum and maxi-

mum height of the out-

put matrix

Kernel size
Current size of the ker-

nel

Maximum kernel

size

Maximum kernel size

supported

Number of kernels
Number of kernels to

load

Maximum number

of kernels

Maximum number of

kernels supported

Scaling factor
Modifies the scale fac-

tor
Scaling

Accelerator supports

scaling

Padding type Padding type to apply Padding
Accelerator supports

padding

Dilatation
Dilatation in X and Y

(individually)
Dilatation

Accelerator supports

dilatation

Stride
Stride in X and Y (in-

dividually)
Stride

Accelerator supports

striding

Number of cores
Number of PE units of

the accelerator

Datatype
Datatype supported by

the accelerator

Number of integer

bits

Number of integer bits

in Fixed-Point data

types

Number of frac-

tional bits

Number of fractional

bits in Fixed-Point

data types

partitioning can lead to a high FF utilisation.

• Data load loops: the data load modules are implemented using loops. They can

be unrolled or pipelined.

• Internal module registers: they can be partitioned entirely or partially.

• Internal PE implementation details: the PE unit can be optimised for all the

units present in the accelerator.

• Vector unit: the units can be serialised or parallelised.
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Table 4.7: Convolution accelerator template optimisations

Implementation Optimisations

Serial architecture None

Hybrid: pipelined

modules but serial

daisy chain

(1) Pipeline in execution (PE), (2) Loop unrolling in ex-

ecution (PE) (3) Array partition in cache buffers. (4)

Vectorisation

Pipeline all above + pipelined modules (top module)

Dataflow implement a dataflow at the core level.

These optimisation points are considered for the DSE in the following sections.

4.4.4 Possible Implementations

Table 4.7 shows the set of possible optimisations for the template convolution accelerator.

It supports from the serial execution up to the dataflow architecture. In the case of the

serial architecture, it does not have any directives set by default. The pipeline architecture

can be in two possible configurations: a pipeline per module, or pipeline modules (all the

modules become a pipeline stage). The data flow is at the top level, where the synthesis

tool decides how the data flow implementation is performed.

Iteration 1

Iteration 2

Iteration 3

Time

Serial architecture
Clocks (Approx): 322

DL KL EX DW

DL KL EX DW

DL

Data Load Kernel Load Execution Data Write

Pipelined execution
Gain expected: ~5x

Time

DL KL EX DW

DL KL EX DW

DL KL EX DWIteration 3

Iteration 2

Iteration 1

Hybrid execution
Gain expected: ~4x

Time

DL KL EX DW

DL KL EX DW

DL

Dataflow execution
Gain expected: +5x

Time

Figure 4.6: Possible implementations of the convolution in terms of execution per stage. The

serial architecture implies computing a single element at a time per stage, leading

to high latencies, whereas hybrid pipelining and pipelining simplify each stage to

get a lower latency. Due to the synthesis tool decisions, the dataflow architecture is

more complex to estimate. This assumes that data is not compressed into transfer

packages and that the accelerator is composed of 4 PEs of 2 × 2 operands. Each

operation is assumed to take one clock cycle.

Figure 4.6 summarises the possible implementations. The serial implementation is com-
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puted as the sum of all stage times:

• Data load: N ×NX ×NX × It, hence: 4× 4× 4× 2 = 128

• Kernel load: NK ×NK × It, hence: 3× 3× 2 = 18

• Execute: N ×N2
K ×N2

Y , hence: 4× 32 × 22 = 144

• Data write: N ×NY ×NY × It, hence: 4× 2× 2× 2 = 32

where N is the number of PEs, NX , NK , NY are the convolution operand sizes (input,

kernel, and output matrices, respectively), It is the number of runs (matrix reshaping).

For a serial implementation, the sum leads to 322 clock cycles.

In pipeline-based architectures, the clock cycles are reduced as follows:

• Data load: N ×NX ×NX , hence: 4× 4× 4 = 64. The reshaping is removed since

it is fully unrolled. The latency can be less if the data is compressed in packets.

• Kernel load: since it is fully unrolled: 2 (one additional for resharpening)

• Execute: since it is fully unrolled: 1

• Data write: N ×NY ×NY , hence: 4× 2× 2 = 16

The hybrid execution time will be the sum of the optimised stages, which leads to 83 clock

cycles. In contrast, the full pipelined implementation has an execution time to the slowest

stage (data load), leading to 64 clock cycles. The data flow is assumed to have slightly

better performance than the pipeline and is hard to estimate because of the synthesis

tool decisions. Moreover, the data is not in packets, and the gains can be even higher,

reaching gains of 10× when using 8-bit operands.

The following sections will expand on these results when performing the DSE.

4.5 Summary

Similar to 3.5, this chapter have addressed the accelerator design goals and implementa-

tion of accelerators taking into consideration design goals to differentiate similar research.

The details about the approach followed to meet the design goals are:

• Template structure: the accelerators have static and dynamic structures, as pre-

sented in Algorithm 7. The dynamic structure can adjust the PE implementation

and the number of units through template parameters. Moreover, the static parts

also adapt according to other accelerator parameters such as the data type, PE

operands’ size, and data width.
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• Standard interface: the accelerator parameters are incapable of modifying the

interface, but the packets that flow through the stream ports. Moreover, the ac-

celerator provides a series of registers for runtime configuration, assisting in driver

compatibility and application control. The macros used in Algorithm 7 prove this

goal accomplishment.

• Configurable: the accelerator is configurable at synthesis time by configuring pa-

rameters such as the data type, data width, core, operands’ size, and others. More-

over, it can be also configured at runtime. Moreover, it can also be configured at

runtime. Algorithms 5 and 6 prove the capability of configuring the accelerator at

synthesis time, and the parameters check in Algorithm 7 proves the configurability

at runtime.

• Simulable: since the accelerator is implemented using C++ and HLS, the frame-

work can simulate the design. At the implementation detail, a testbench is imple-

mented within the framework.

• Acceleration granularity: given the configurability, it is possible to choose be-

tween a big accelerator singleton or various small accelerators that can behave like

processing units. Algorithms 5, 6 report this goal accomplishment.

By accomplishing these goals, this work offers a template to construct granular and con-

figurable accelerators that can fit several use cases. DSE is crucial for determining the

values of the parameters to configure the accelerator and adjust the granularity to a

configuration that can satisfy the design requirements.



Chapter 5

Flexible Accelerators Library (FAL)

Framework

Apart from the processing elements and the accelerators, this work proposes a framework

to ease the implementation of new hardware units. Moreover, evaluating each implemen-

tation’s consumption, performance, and error is critical to select the most appropriate

designs.

The inspiration for creating FAL is fundamentally developing a set of PEs and accelerators

for general computing applications highly inspired in DLI but not limited to this field

exclusively. Hence, the framework seeks to be easy for developers and users.

5.1 Design Goals

The design goals set for the framework are:

• Easy accelerator configuration: an accelerator shall be configurable in several

degrees of freedom (DoF). The idea is to get these configurations easily from the

user.

• Abstraction for development: the user shall be capable of implementing their

accelerators without worrying about communication interfaces or address spaces for

the most common accelerators. FAL shall be enough for the user to focus on the

actual algorithm.

• Simulation: FAL shall offer a way to run simulations at the C and RTL levels

through C/RTL co-simulation.

• Design Space Exploration: FAL shall run DSE by specifying possible values

for each DoF and greedily run all the permutations. Moreover, it shall make the

most of all the development host capability (multi-process DSE). most of all the

development host capability (multi-process DSE).

70
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• Extensibility: FAL shall be extensible to other applications different from DLI.

As described in the design goals, FAL searches for usability. The easy accelerator

configuration helps users to get several accelerator configurations and generate the RTL

for further testing. Nevertheless, the simulation goal allows the user to shortcut the C++

to the bitstream path without incurring long waiting times, verifying the accelerator’s

performance, consumption and errors before proceeding with the synthesis on the FPGA.

Also, it enables the possibility of determining by trial and error parameters, which is

unsuitable when waiting until the bitstream is produced. The design space exploration

capability allows users to explore numerous combinations of DoFs to determine the most

suitable candidates in terms of performance, consumption and error. In the following

chapter, this work presents an analysis of the PEs and accelerators that is possible with

FAL.

This work aims to be different from other approaches being extensible to other appli-

cations. DLI is an application, but there are other fields in computing at the edge. An

example is image processing applications that can be computed in low-end FPGAs. With

extensibility, abstraction for development also comes to the table, easing the devel-

opment of multi-purpose accelerators and offering tools to avoid users focusing on tasks

unrelated to the actual algorithm or accelerator logic implementation.

5.2 General Structure

FAL is composed of a series of scripts based on Makefiles and Python that invokes a

Vivado/Vitis HLS TCL script. FAL utilises Makefiles for single jobs, i.e. simulation

and testing accelerator configurations. In contrast, the Python scripts run the Design

Space Exploration and collect the data for data visualisation. After the TCL script,

FAL adopts a standard implementation for the FPGA HLS workflow, receiving source

code, testbench files and directives for optimisation. Figure 5.1 describes the structure

and the goals before entering into the implementation.

About the source code, there is a hierarchy coming from the fact of using a granular

design. FAL integrates source code from several Git repositories required for acquiring

the PEs for acceleration implementation. The building system, based on Makefiles, sets

the development environment to import these PE libraries to the user seamlessly, similar

to a typical C++ project. This characteristic makes FAL extensible. Moreover, FAL

also includes wrappers for creating accelerators, abstracting the accelerator imple-

mentation process and easing the development without losing generality. The following

sections will detail these facts.
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Figure 5.1: FAL components flow. The user triggers a makefile for a single-design synthesis

or the Python DSE for a massive DSE exploration. It also accepts directives for

optimising the design and the test bench for testing. The FAL components and

implementations come as the source code consumed by the synthesis tool.

5.3 Implementation

5.3.1 Framework Composition

The proposed framework is based on GNU Makefiles, Python Vivado/Vitis HLS. It allows

the PE and accelerator parameterisation through compilation-time parameters, special-

ising a generic design according to different requirements and constraints. One of the

novelties proposed by this work is the addition of arithmetic operators as parameters,

giving more flexibility to define custom and approximate operators, such as approximate

multipliers [88] (not explored in this work), which contribute to reducing the required

resources for the implementation. Apart from the operators, the designs are parametrised

regarding the PE (or core) implementation, matrix size, kernel size, activation functions,

data width and type to explore different designs, customising the precision according to

the accuracy constraints. This document later explores the impact of several configura-

tions on the numerical error and the performance of PEs and accelerators.
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Table 5.1: Accelerator-specific macros: used for declaring the structure of the accelera-

tor.

Macro Scope Description

DEF SET * CAPABILITIES() Accelerator’s core
Defines the capabilities of

the accelerator.

DEF SET * PARAMS CHECK() Accelerator’s core
Defines the parameters

check of the accelerator.

BEGIN DEF TOP * FUNCTION(),

END DEF TOP * FUNCTION()
Accelerator’s core

Defines the top function of

the accelerator. It con-

nects the static and dy-

namic modules.

Beyond the generation system, the framework proposes templates for constructing matrix

and convolution accelerators, as addressed in 4. These templates act as wrappers to en-

capsulate implementation and characterisation. Some of these templates are composed of

pre-processor macros. Table 5.1 sshows the structural macros, which define the canonical

structure of an accelerator, and its capabilities, check runtime parameters and define the

top function1. The * can be replaced by MATRIX or CONV for the matrix or convolution

accelerator, respectively.

Table 5.2 shows the generic macros that can be used in any accelerator. They declare,

write, and access parameters and capabilities. Some macros apply only to test benches.

For instance, the DECL EXE PARAM ia used for declaring the function arguments when defin-

ing a structural macro from Table 5.1. Instead, DECL EXE PARAM TB is used for declaring

a variable in the body of a function in a testbench, that will be later accessed to call the

accelerator.

Vivado/Vitis HLS

Matrix Cores Convolution Cores Arithmetic Cores

Accelerator Implementation

Testbench Directives

TCL Script

Makefiles Python DSE

Figure 5.2: FAL stack: it runs on top of Vivado/Vitis HLS. The accelerator library is based

on the PE library, which is imported as Git submodules. Then, there is a series

of files that completes the implementation (directives) and the simulation (test

benches). On top of the hierarchy, the framework runner files are presented.

1The top function is assumed to be the container of all the modules or the main module to implement
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Table 5.2: Generic macros in FAL: they can be used in any accelerator

Macro Scope Description

DECL EXE PARAM,

DECL EXE PARAM TB
Function arguments and testbench

Declares a execution pa-

rameter. It declares two

variables: one for reading

and the other for writing.

DECL CAP, DECL CAP TB Function arguments and testbench
Declares a read-only vari-

able to hold a capability.

DECL RANGE CAP,

DECL RANGE CAP TB
Function arguments and testbench

Declares two read-only vari-

ables to hold a minimum

and maximum value.

WRITE CAP, ACCESS CAP
DEF SET * CAPABILITIES(), top

function

Writes a capability and ac-

cess to its value.

DISABLE CAP, ENABLE CAP DEF SET * CAPABILITIES()
Disables or enables a capa-

bility

ENABLE OPERATION DEF SET * CAPABILITIES() Enables an operation

WRITE RANGE CAP DEF SET * CAPABILITIES() Writes a range capability

ACCESS CAP MIN,

ACCESS CAP MAX
Top function

Access to the minimum and

maximum value of the ca-

pability

READ EXE PARAM,

WRITE EXE PARAM

DEF SET * PARAMS CHECK() and

top function

Reads and writes a param-

eter.

READ EXE PARAM TB,

WRITE EXE PARAM TB
Testbench body

Reads and writes a param-

eter.

CHECK EQUALITY AND

FALLBACK
DEF SET * PARAMS CHECK()

Checks if the parameter is

equal to a value. If not,

it fallbacks into a default

value.

CHECK RANGE AND

FALLBACK
DEF SET * PARAMS CHECK()

Checks if the parameter

falls into a range. If not,

it fallbacks into a default

value.

Other accelerators might require defining macros for this purpose. However, it still follows

the canonical structure of parameters checking, capabilities and top function. An exam-

ple of a resolved pre-processor structure is presented in Algorithm 8, which is based on

Algorithm 7. In this case, the structural macros solve the verbosity of declaring too many

variables, particularly when the accelerator is highly parameterised, where managing too

many arguments becomes problematic.

Apart from offering the macros, the source code for the PEs is also available in the FAL

framework. It is integrated as Git submodules for handling the source code versioning.

The whole project is open source under Apache 2. The implementations for the matrix

multiply-add, the convolutions, and their respective generation frameworks are available

in [92], [93]. The full stack of the components presented above is illustrated by Figure 5.2,

presenting the runner files, the accelerator and PE libraries and the synthesiser.
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Algorithm 8 Generic accelerator file structure. This explicitly defines the functions

required for the canonical accelerator

void caps (DECL RANGE CAP( DimensionPort , rows ) ,

DECL RANGE CAP( DimensionPort , columns ) ) {
// Def ines the c a p a b i l i t i e s o f the a c c e l e r a t o r

WRITE RANGE CAP( rows , 2 , 8 ) ;

WRITE RANGE CAP( columns , 2 , 2 ) ;

}

void check (DECL EXE PARAM( DimensionPort , rows ) ,

DECL EXE PARAM( DimensionPort , columns ) ,

DECL EXE PARAM( PropertyPort , en accumulat ion ) ) {
// Checks the runtime parameters aga in s t the c a p a b i l i t i e s .

CHECK RANGE AND FALLBACK( rows , 2 , 8 , 2 ) ;

CHECK RANGE AND FALLBACK( columns , 2 , 2 , 2 ) ;

}

void a c c e l ( StreamPort& stream input ,

StreamPort& stream output ,

DECL RANGE CAP( DimensionPort , rows ) ,

DECL RANGE CAP( DimensionPort , columns ) ,

DECL EXE PARAM( DimensionPort , rows ) ,

DECL EXE PARAM( DimensionPort , columns ) ,

DECL EXE PARAM( PropertyPort , en accumulat ion ) ) {
// Invoke check ing

caps (ACCESS CAP RANGE( rows ) , ACCESS CAP RANGE( columns ) ) ;

check (ACCESS EXE PARAM( rows ) , ACCESS EXE PARAM( columns ) ,

ACCESS EXE PARAM( en accumulat ion ) ) ;

// Implementation d e t a i l s

stat ic DataType A [ 8 ] [ 2 ] = {0 . f } ;

stat ic DataType B [ 8 ] [ 2 ] = {0 . f } ;

stat ic DataType C [ 8 ] [ 2 ] = {0 . f } ;

// Proper t i e s

PropertyPort accumulate = READ EXE PARAM( en accumulat ion ) ;

// Modules

l oad data ( stream input , A, B, C) ;

execute (A, B, C) ;

r e t r i e v e d a t a ( stream output , C, accumulate ) ;

}

5.3.2 FAL Runner Suite

FAL provides a building system for the synthesis and simulation entirely based on Python,

Makefiles, Open Message Passing Interface (MPI), and Vivado/Vitis HLS. It aims to offer

an automated interface for design exploration, allowing users to get information from

several design solutions and add their top functions, directives, and test benches straight-
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forward without invoking the Vivado/Vitis HLS graphical user interface. For synthesis,

it is possible to vary the parameters for the design.

For generating the synthesis and the simulation, the Makefile framework offers the fol-

lowing targets:

• synthesis (Accelerator): synthesises the selected design. It just runs Vivado HLS

configuring the project and generating the solution.

• test (PE): synthesises and simulates the selected design. It just runs Vivado HLS

configuring the project and generating the solution.

• measure (PE): same as test and extracts the synthesis report and simulation results

for further analysis. It runs the selected design given its parameters only.

• measure-all (PE): same as measure but for all possible solutions described in the

configuration scripts The solutions are synthesised and simulated in parallel using

MPI. It extracts all data required for this research.

• extract-data (PE): post-processes the information collected by measure-all, cu-

rates data, and generates the plots used for reports.

The accelerator and PE define the applicability of the makefile target.

For selecting the design and its parameters, it is possible to modify the environment

variables:

• ACCELERATOR: chooses the accelerators. By default, the examples are synthesisable.

Examples: gemma, convolution, minimum

• Q KS (convolution): kernel size in QKS ×QKS

• Q BW/Q WL: bit-length in fixed-point. It defines the total width per number.

• Q INT: bit-length of the integer part in fixed-point. It defines the total width of the

integer part per number.

• Q O: output size in QO ×QO

• Q INPUTS TB (gemma): number of inputs elements.

• Q OUTPUTS TB (gemma): number of output elements.

• Q CORE: PE core. It is possible to select the spatial convolution or Winograd in case

of convolution.

• TB ARGS: arguments for the testbench. It is used to change the image sample in

convolution.



5 Flexible Accelerators Library (FAL) Framework 77

• Q PES: chooses the number of PEs of the accelerador.

• Q SEED: chooses the Seed for random numbers.

• CLOCK PERIOD: chooses the clock period in [ns].

Moreover, it is possible to define ranges of the values for the measurement targets to

produce multiple solutions per run through JSON files. Hence, it is possible to take

several design samples from the design space for design exploration tasks.

5.3.3 Design Exploration Support

The proposed framework allows changing the implementation directives for trying several

optimisations at the HLS level. The implementation directives help map the C++ code

into an RTL architecture, allowing pipeline constructions, defining protocols, and data

flows. This capability allows users to have multiple options during the design exploration,

where the options are likely to have different design performances in terms of latency and

resource consumption. The next chapter introduces a novel figure of merit to compare

the solutions and evaluate the efficiency of each design produced by the framework.

Apart from changing the directives, FAL also allows changing the DoF values of the de-

sign. A Python script reads the values to explore from a JSON file and computes the

permutations, allowing a greedy DSE process. An example is presented in Algorithm 9,

which performs a DSE of a Winograd-based convolution accelerator of 54 different con-

figurations regarding data width, the number of PEs and input images.
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Algorithm 9 Example configuration file to perform a DSE on a convolution, selecting a

Winograd core.

{
”ACCELERATOR” : [ ” convo lut ion ” ] ,

”Q KS” : [ 3 ] ,

”Q BW” : [ 4 , 6 , 8 , 10 , 12 , 1 6 ] ,

”Q INT ” : [ 1 ] ,

”Q O” : [ 2 ] ,

”Q CORE” : [ ” Winograd ” ] ,

”Q PES” : [ 1 , 2 , 4 ] ,

”CLOCK PERIOD” : [ 7 . 5 ] ,

”TB ARGV” :

[ ” examples / convo lut ion / misc / lenna . png ” ,

” examples / convo lut ion / misc /baboon . png ” ,

” examples / convo lut ion / misc / boat . png ” ] ,

”Q FIXED RATIO” : 0 . 5 ,

”Q INPUTS TB” : [ 0 ] ,

”Q OUTPUTS TB” : [ 0 ] ,

”Q SEED” : [ 0 ]

}

Invoking the DSE script not only synthesises the designs for every permutation. The DSE

only captures the synthesis data and the simulation results, post-processing the results

for data visualisation using matplotlib. It makes accessible the report generation.

Finally, the DSE can be executed with MPI. It requires a multi-core processor to execute

in parallel, accelerating the DSE process using task-farming techniques.



Chapter 6

Results

After defining all the design goals and the implementation, it is time to evaluate the

solutions. In this case, there are three significant fronts to cover from the measurement

point of view: (1) resource consumption, (2) performance, and (3) quality of the results.

Moreover, the evaluation shall consider both PEs and accelerators since the accelerators

integrate other peripherals apart from the PEs.

This chapter introduces the metrics and figures of merits to evaluate both kinds of im-

plementations. The following goals will guide the chapter:

• Quantify the resources utilised by several configurations: quantifying the

scaling of the resources when modifying the values of the DoF will provide an idea

of the affectation on the system.

• Quantify the error introduced by several configurations: similarly, quanti-

fying the impact is crucial to discard numerical-ill solutions, although they could be

good in terms of resources.

• Quantify the performance of the solutions: performance metrics work as a

point of comparison in terms of time to solution, helping to contrast against other

types of devices, such as GPUs and CPUs.

• Determine the efficiency of the design: this is one of the novelties of this

work. Determining the efficiency will allow considering resource utilisation and

performance in a single value that can be compared to determine how suboptimal

a design is.

Following these goals, the chapter will cover the analysis of the solutions proposed during

this work, in particular, the PEs and accelerators for performing GEMMA and convolu-

tions. Activation functions are left aside, given that they are less computationally relevant

in DLI [42].

79
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6.1 Measurement Instruments

The synthesis tool already provides measurements of resource consumption and latency.

However, its conversion to performance and design efficiency requires manual computa-

tion provided that they consider the number of operations, latency, and clock speed. On

the other hand, the error depends on the simulation process and requires generalisation,

requiring instrumentation at the test bench level. This section will establish the perfor-

mance, design efficiency and error metrics used for the solution’s evaluation. Most of the

plots and tables concerning the resource consumption analysis, performance evaluation,

and error quantification are provided automatically by the FAL framework.

6.1.1 Performance and Design Efficiency

Given that this research produces several design solutions, it requires a comparison in-

strument to determine the quality of these solutions when performing design space ex-

ploration. The quality considers the trade-offs associated with approximate computing

and general design implementation. Hence, performance, resource utilisation, and error

are interesting in selecting the most balanced design solutions, which also depend on the

user requirements. To the best of our knowledge, no metric or figure of merit allows

comparing designs by evaluating computing performance and resource utilisation. The

closest attempt is presented in [46], proposing the introduction of effective performance

by considering a non-complete utilisation of an accelerator and adding the frequency:

IPS =
fP × η
W

(6.1)

where f is the working frequency, P is the number of computation units, η is the inference

utilisation ratio, and W is the workload in GOP/s.

Given the absence of the comparison tool, this work proposes a novel figure of merit to

quantify the design performance, considering the resource consumption, the number of

operations per clock, and the maximum throughput achieved by the DSPs of an FPGA.

First, Amdahl’s law [94] was adapted to integrate frequency and clock cycles. In the

resulting adaptation, the speedup for the p-th solution is

Sp =
T0fp
Tpf0

(6.2)

where T0 and f0 are the baseline number of clock cycles and maximum frequency. Tp and

fp correspond to the p-th design. The key difference from the traditional Amdahl’s law

is that the scaling depends on the frequency, provided that different solutions may have

different maximum clock frequencies.

Then, for evaluating the efficiency, the maximum theoretical efficiency of the generated

PE, Pmax, is compared against the maximum performance achievable by the FPGA’s DSP
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units, Ppeak (this is the theoretical maximum performance of the platform, reported in

each FPGA’s datasheet), given that frameworks like HLS4ML focus on these units for

computing Pp,max is computed as

Pp,max =
Ofp
Tp
×
⌊

1

rp

⌋
(6.3)

where p is the solution index in the design space, Tp is the number of clocks, fp is the

frequency of the design, rp is the maximum occupation of a single PE in the current

platform, O is the number of MAC operations performed by the PE, and b·c is the floor

integer operator.

Everything is ready to introduce the design efficiency, which measures how well the design

computationally performs as it consumes the FPGA resources. It is measured by

ηp =
Pp,max

Ppeak

(6.4)

In this case, the research targets an Avnet Zedboard based on a ZYNQ 7z020 FPGA-

based System-on-Chip (SoC), with Ppeak = 276 GMAC/s [95] of theoretical throughput.

Hence, the design efficiency can be interpreted as the ratio of the performance obtained

after filling the FPGA with the design p replicated b 1
rp
c times compared to the maximum

performance obtained using all the FPGA DSPs. Nevertheless, this work also considers

other FPGAs in the following sections.

6.1.2 Error Evaluation

This work proposes measuring the error through the generation of random matrices and

computing a pair of data: (1) golden data, computing the results in single-precision

floating-point (float32) numbers, and (2) the solution results. The choice of using

float32 is because most DLI applications are initially trained using this numerical repre-

sentation and can be taken as the reference. Regarding the solution results, the generated

matrices are quantised to the custom datatype and transferred to the PE. The resulting

elements are compared against the gold data as

ε
(p)
ij =

||x̂(p)
ij − x′ij||

max (S)−min (S)
(6.5)

where the error is computed as the L1-distance (or error distance) between the result X̂

from the p-th solution and the golden data scaled X′, normalised against the sum of the

boundaries of the vector space S. (6.5) will be used to compute the mean error E[ε(p)],

the standard deviation σ(p), and the histograms for the error distribution illustrations.

Apart from the L1 distance, other metrics are also taken into account. This is the case

of Mean Squared Error (MSE), which corresponds to the deviation of the model (6.6),
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Table 6.1: Error metrics usage in the research field

Metric Equation Application

Error distance (L1-distance) (6.5) Multiplier design [99], [100]

Mean Squared Error (6.6) Activation functions [101]

Peak Signal-to-noise Ratio

(PSNR)
(6.7) Convolution, Multipliers [102]

Frobenius Norm (6.9) Convolution, Multipliers [103]

Structural Similarity Index (SSIM) (6.8) Convolution [104]

Error histograms based on error

distance
(6.5) Operator design [105]

Peak Signal-to-Noise Ratio (PSNR), providing a measurement of the quality of recon-

struction [96] (6.7), and the Frobenius Norm, which is a similarity matrix [97].

MSE =

∑N
i=1 (x̂i − x′i)

N
(6.6)

PSNR = 10 log

(
max(X̂2)

MSE

)
(6.7)

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
xσ

2
y + c2)

(6.8)

||A||F =
√

Tr(EEH) (6.9)

For the case of the convolvers, such as the Structural Similarity (SSIM) Index [98] (6.8),

and Root Mean Square Error (RMSE). They are going to be used for appropriate image

analysis. Moreover, the error quantification will consider the dimensions of the outputs,

kernels, and width of the numerical representation.

Table 6.1 presents a summary of the utilisation of the metrics mentioned above.

6.2 Processing Elements

6.2.1 Generic Matrix Multiply-Addition

The matrix multiply-add is implemented with a complete unrolling of its inputs, using

one register per element and pipelining on the loop of the rows, unrolling the inner for-

loops (columns and dot-product). This research evaluates the PE through a design space
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exploration of the PE modifying the matrix size and datum’s width based on a fixed-point

representation with one integer bit and the rest being fractional bits, with 500 runs of the

PEs to generate the data exposed in this section.

Resource Consumption and Performance

The first step is determining how the matrix size and datum’s width impact the resource

consumption and the average latency (clocks to solution). Figure 6.1 shows how the

matrix size and the width of the data affect resource consumption. These tests were

co-simulated for an Avnet Zedboard equipped with a ZYNQ XC7Z020.
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Figure 6.1: Resource utilisation of the generic matrix multiply-add PE on an Avnet Zedboard

with a Xilinx XC7Z020 FPGA-based System-on-Chip: (a) Impact of the matrix

size on consumption. The datum width is fixed to 8-bits, (b) Impact of the datum’s

bit-width on consumption. The matrix size is fixed to 4 × 4. Average Latency is

measured with the right Y-axis.

Figure 6.1 (a) shows how the average latency and the resource consumption scale linearly

as the matrix size increases while keeping a fixed datum’s width in 8 bits. In this case,

none of the solutions consumes Block Random Access Memory (BRAM) or Digital Signal

Processor (DSP) cells. The consumption of 2× 2 s below 2.5% of the FPGA. In the case

of a 16× 16 PE, it consumes up to 45% of the FPGA’s available resources. Having small

PEs is beneficial in terms of resource utilisation, offering more granular execution and

having a small footprint on the resources. With the vectorisation capability explained in

3.4, accelerators can process matrices with one of the dimensions larger than the other, i.e.

more rows than columns. It makes better use of the resources using a divide-and-conquer

approach.

Moreover, Figure 6.1 (b) shows how the resource consumption and latency scale while

modifying the width of the data in bits. Flip-Flops (FFs) scaling tends to scale linearly for

all widths. However, when the PE uses more than 8-bits, the overall resource consumption

jumps from 3% to 7%, keeping the total consumption fixed to 7% from 10 bits to 16 bits.
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Figure 6.2: General matrix multiply-add performance and design efficiency with respect to the

data width in bits and the output size O×O. The data type is a fixed point with

B bits (1-bit integer and B−1 fractional bits). The performance and efficiency are

computed using Equations (6.3) and (6.4). The design efficiency is proportional

to the performance and a point in the plot matches both Y-axis.

There is also a jump of one clock cycle in the average latency. It means that, for a 4× 4

matrix, it makes sense to have less than 9 bits. Then, there is no benefit in varying

data widths from 10 up to 16 bits since the overall consumption keeps constant in the

Zedboard. However, this jump does not apply to all FPGAs. Later sections will look

deeply into this aspect.

Figure 6.2 shows the performance and the design efficiency of the PE when using several

configurations of data widths and output matrix size. It highlights that short data widths

and big output matrices are better in efficiency, reaching up to 75 out of 276 GFLOPs

(27% of efficiency).

After joining the results obtained in Figure 6.1 with the ones presented in Figure 6.2, this

research suggests that using small matrices leads to low resource consumption. Nonethe-

less, having small PEs leads to suboptimal design efficiency, according to Figure 6.2,

demonstrating a trade-off between granularity vs efficiency.

Regarding data widths, short data widths lead to better design efficiency and better

performance. It is due to the capability of allocating more PEs in the FPGA, increasing

the potential parallelism. Figure 6.1 (b) shows that after 8 bits, the overall resource

consumption is constant for any datatype from 10 to 16 bits for a fixed matrix size.

According to Figure 6.2, using big matrices is impacted by this jump in consumption when

exceeding more than 8 bits, showing a drop from 15% to less than 1% (15x degradation).

Interestingly, small matrices are penalised in efficiency for short data widths, but it is

compensated in large data widths, showing degradation of roughly 3x. It demonstrates
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Figure 6.3: Error histogram of the matrix multiply-add PE when varying data width from 4

up to 16 bits. Each histogram group (subfigure) takes into account different matrix

sizes. The histograms have been normalised, taking into account the maximum

value of the distribution for better visualisation. The error (x-axis) is measured

by using (6.5). The error has been truncated to 30% and data has been smoothed

using bezier, chopping some of the maximum values that reach 1. Matrix sizes: (a)

2x2, (b) 4x4, (c) 6x6, (d) 8x8

that it is more convenient to use big matrices for short data widths (≤ 8 bits). For large

data widths, having a matrix size of 8 × 8 is the best choice. Hence, for PEs with ≤ 8

bits of numerical precision, the granularity vs efficiency must be taken into account. For

data widths ≥ 8, Pareto’s optimal solution is 8× 8, and the trade-off from before seems

not to be longer applicable in the implementation.

Error Quantification

Since the PE uses custom-precision fixed-point representation, the goal is to have an

error characterisation that allows knowing how the error distributes given a set of random

matrices. For the experiment setup, this error analysis presents the result differences of

500 sets of operands randomly for each data width for a single-precision floating-point

implementation.

Figure 6.3 depicts the error distributions when varying the data width from 4 to 16 bits
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and the output matrix size from 2 to 8. The normalised errors (X-axis) are computed

using (6.5), and the number of occurrences is divided by its maximum to lead to getting all

the distributions within the same scale for visualisation purposes. The error distribution

tends to be Gaussian distributed with zero mean (recalling to the law of large numbers).

In all the matrix size cases, the behaviour of varying data width is similar; increasing the

number of bits of the data representation reduces the variance of the error distribution,

shrinking the distribution around 0. For instance, a 4-bit PE reaches a maximum error of

23%. Instead, 6-bit reduces the error up to 6% (73% improvement). In the case of 8× 8,

the error exceeds 30% for a 4-bit PE, and it is close to 30% for a 6-bit PE.

It also suggests that the matrix size impacts the error because of the scaling of the

operands: as the number of rows increases, the operands become smaller, as presented

in (3.2), leading to operands vanishing. For an 8-bit PE, the maximum error is about

2%, 3%, 6%, and 8% for 2 × 2, 4 × 4, 6 × 6 and 8 × 8, respectively. Hence, there is a

compromise between the matrix size and data width vs the error in the matrix multiply-

add implementation. It is possible to mitigate the effects of the matrix size on the error by

increasing the data width to compensate for the variance of the normalised error. Thus,

the trade-off at the error level is described as

Var
[
ε

(p)
ij

]
∝ φ(NO,

1

NW

) (6.10)

where NW is the data width in bits, NO is the number of rows/columns of the output

matrix, and φ(·) is a function that describes how the values scale positively up as its

arguments increase. For instance, for a single argument φ(x), φ(x/2) ≤ φ(x) ≤ φ(2x).

The analytical form of this function will be addressed in future work.

In summary, the resource consumption scales linearly as the matrix size NO increases and

directly depends on the data widthNW . There is an inflexion point where the consumption

becomes fixed after a data width of 8 bits, leading to an equal overall resource consumption

from 10 up to 16 bits. In terms of efficiency, there is a trade-off between granularity and

efficiency, where the design efficiency favours small output matrices. It is shown that,

after 8 bits, the design efficiency converges to the same value, given that the overall

consumption gets constant and the number of operations does not increase.

Remarks on acceleration. The limitation of using Equation (3.2) to prune the bits of

the results is manageable at large-scale levels. The PEs are intended to be integrated

into vector units through a vector wrapper explained in Algorithm 5. For computing the

GEMMA of two matrices, the accumulation capability is heavily exploded and requires

an expansion in the numerical range of the operation. Further sections evaluate the

affectation of bit pruning in large matrices. Still, the effects on actual neural networks

should be studied in future work. As a first hint, the error mitigation might require fine-

tuning training to fit the model into the hardware to absorb the error characterisation of

the accelerator [46].
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6.2.2 Window-based Convolution

This section analyses the effect of varying the DoF values on the window-based spatial

convolution and the Winograd convolution design performance. The analysis integrates

an optimised version of the spatial convolution for every configuration and the Winograd

convolution for Nk = 3. The effect of the arithmetic operators will be out of the scope of

this document and will lead to future work. Other configurations of Winograd presented

in this work are suboptimal and will be addressed in future work.

Resource Consumption and Performance

Similar to 6.2.1, this work evaluates the resource consumption, the average latency and

the efficiency of the implementations while varying data widths from 4 to 16 bits in steps

of two, the output sizes, and kernel sizes with NK ∈ {3, 5, 7}.
Figure 6.4 illustrates the behaviour of the window-based spatial convolution and the

Winograd convolution. In spatial convolution, the average latency tends to be constant

with a jump of a clock cycle when reaching more than 10 bits in the data width, combined

with a jump in the DSP cell consumption. This behaviour is also observed in the generic

matrix multiply-add PE when reaching more than 8-bits. The scaling is linear when the

data width is less or equal to 10 bits. After that, the overall consumption is fixed to a

value; 3 × 3 kernels is about 16%, 5 × 5 45%, and 7 × 7 90% of the FPGA resources.

The overall consumption for all cases after the jump is approximately three times the

maximum consumption when using 10 bits. From these observations, it is possible to

confirm that: 1) the data width does not have a significant impact on the average latency,

and 2) after 10 bits, the overall consumption makes a transition from linear scaling to a

fixed constant value that is 3× larger than the 10-bit PE consumption.

Figure 6.5 shows the consumption of the window-based spatial convolution PE while

varying the matrix size from 2 to 8 and keeping the data width to 8 bits. It has been

chosen 8-bits since it is one of the lowest data representations in host systems (1 byte).

Likewise, it is under the 10-bit threshold before the resource jump presented in Figure 6.4.

The average latency keeps constant at 1 for a 3 × 3 kernel, 2 for 5 × 5, and 3 for 7 × 7.

Hence, the average latency presents a dependency on the kernel size. On the other hand,

the output window size does not influence the average latency for a fixed data width and

kernel size. In terms of resources, increasing the output window size leads to a quadratic

scaling in look-up tables, exceeding the FPGA resources in NK ∈ {5, 7} when using 8× 8

output windows. Hence, 3) keeping the output window small will help to keep the resource

consumption low, and it will not impact the average latency of the PE. The kernel size,

instead, also has a non-linear scaling according to the observations in Figure 6.5.

Regarding the design’s performance and efficiency, Figure 6.6 illustrates the results for

the window-based spatial and Winograd convolution for several data widths, kernel sizes

and output sizes. For a 3× 3 kernel, Winograd shows the best performance, achieving a
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Figure 6.4: Resource utilisation of the convolution PEs referred to an Avnet Zedboard with

a Xilinx XC7Z020 FPGA-based System-on-Chip. This includes an analysis of the

data width impact on the resources and average latency for the Spatial convolution

with kernels 3 × 3, 5 × 5, 7 × 7, and Winograd with a 3 × 3 kernel. Other kernel

sizes are not included in Winograd because of suboptimality. Average Latency is

measured with the right Y-axis. The output window is 2 × 2. (a), (b), (c) are

the results for the Spatial Convolution with 3× 3, 5× 5, 7× 7, and (d) contains

the results for Winograd and a kernel size of 3× 3

design efficiency of up to 47%, followed by its equivalent for the spatial convolution for

a 2 × 2 output window with 40%. TThe efficiency and performance decay as the data

width increases since more resources are required, and the number of operations is still

the same. Besides, the performance and efficiency get constant from 8 bits and 12 bits for

the case of Winograd and the spatial convolution, respectively. The constant behaviour is

due to the overall consumption observed in the resource utilisation after the jump in DSP

cells consumption, observed in Figure 6.4. For the output window size, the efficiency

of Winograd at 4-bits drops from 47% to approximately 10%. It shows that resource

consumption has a more significant effect than the scaling of the number of operations
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Figure 6.5: Resource utilisation of the window-based spatial convolution PE. Each plot repre-

sents the relative consumption vs the output window size (NK ×NK) for different

kernels and data width of 8 bits. Winograd is skipped because it does not support

variable window sizes for now. The consumptions are with respect to an Avnet

Zedboard with a Xilinx XC7Z020 FPGA-based System-on-Chip. Average Latency

is measured with the right Y-axis. Kernel sizes: (a) 3×3, (b) 5×5, and (c) 7×7.
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Figure 6.6: Windows-based spatial (Space) and Winograd (Winog) convolution performance

and design efficiency with respect to the data width in bits (X-axis), the output

size (O, series), and the kernel size (subfigures). The datatype is a fixed-point with

B bits (1-bit integer and B−1 fractional bits). The performance and efficiency are

computed using Equations (6.3) and (6.4). The design efficiency is proportional

to the performance and a point in the plot matches both Y-axis. Kernel sizes: (a)

3× 3, (b) 5× 5, and (c) 7× 7.

performed by the PE.

Moreover, when varying the kernel size, the Winograd convolution underperforms due to

the lack of optimisation at the logic level. It will be the subject of future work. Never-

theless, the kernel’s behaviour also demonstrates a degradation in the design efficiency in

spatial convolution. For NK = 3, NY = 2, the efficiency reached approximately 40%, for

NK = 5 8%, and 4.4% for NK = 7. It also suggests that kernel size scaling involves a

greater growth in resource consumption compared to the number of operations performed

by the PE.
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Figure 6.7: Error histogram of the convolutional PEs when varying data width from 4 to 16

bits. Each histogram group (subfigures) takes into account different matrix sizes.

The histograms have been normalised using the maximum value of the distribution

for better visualisation. The error (x-axis) is measured by using (11). The error

has been truncated to 30% and data has been smoothed using bezier, chopping

some of the maximum values that reach 1. (a, b, c) correspond to the spatial

convolution with kernels 3× 3, 5× 5, and 7× 7, and (d, e, f) correspond to the

Winograd convolution with kernels 3× 3, 5× 5, and 7× 7.

The effects mentioned above affirm that keeping the output window as small as possible

contributes to better performances and low resource consumption. Large data widths do

not cause degradation in efficiency or performance. This is proven by choosing a data

width between 12 to 16 bits for the case of the spatial convolution and from 8 up to 16

bits for the case of Winograd in NK = 3. Another remark is that 4) it is better to fit the

required PE size in terms of kernel size, preferring the smallest ones.

Error Quantification

The convolution PEs extensively use custom-precision fixed-point representation. Unlike

the matrix multiply-add, the Winograd implementation has internal buffers twice the data

length. It resulted in being more sensitive to quantisation when implementing the generic

design. The aim is also to see how the error of the results behaves after the quantisation

and processing.

The experimental setup evaluates four well-known test grayscale images of 512 × 512:

Baboon, Lenna, Barbara, and Peppers, evaluating the numerical error per pixel (262144 in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.8: Qualitative evaluation of the baboon test image after a convolution with a 3 × 3

Gaussian kernel for data widths NW ∈ {4, 6, 8, 16}. The Peak Signal-to-Noise

Ratio (PSNR), Structural Similarity Index (SSIM), and Root Mean Squared Error

(RMSE) are specified per image in Table 6.2.

Table 6.2: Quality descriptors for the samples presented in Figure 6.8

Figure Algorithm Data width PSNR SSIM RMSE

(a) Space NW = 4 PSNR: 5.89dB SSIM: −0.617 RMSE: 0.444

(b) Space NW = 6 PSNR: 15.85dB SSIM: 0.922 RMSE: 0.141

(c) Space NW = 8 PSNR: 28.01dB SSIM: 0.996 RMSE: 0.035

(d) Space NW = 16 PSNR: 52.22dB SSIM: 0.999 RMSE: 0.002

(e) Winograd NW = 4 PSNR: 16.28dB SSIM: 0.731 RMSE: 0.134

(f) Winograd NW = 6 PSNR: 23.53dB SSIM: 0.974 RMSE: 0.058

(g) Winograd NW = 8 PSNR: 38.91dB SSIM: 0.999 RMSE: 0.010

(h) Winograd NW = 16 PSNR: 52.22dB SSIM: 0.999 RMSE: 0.002

total per image) using (6.5) and filtering the errors above of 30% for practical reasons. This

study aims to determine the error distribution according to PE DoF values to examine

how the parameters affect the numerical results of PE.

Figure 6.7 illustrates the error distributions. The errors in convolution are invariant

to the output size. The figure shows the error distribution for the window-based spatial

convolution. In this case, the mean error and the variance increase are inversely dependent

on the data width. For NW = 4, the maximum mean error is around 38.2%, with a

significant standard deviation of 22%. Increasing the data width by 2 bits leads to an

improvement in the error, resulting in a mean error of 13.3% and a standard deviation of



6 Results 92

4.6%. There is an influence of the kernel size on the error, in particular, from NK = 3 to

NK = 5. The influence from NK = 5 to NK = 7 does not significantly affect the mean

and the variance of the distributions, even for the shortest data width. For NW = 4, the

mean evolved from 12.768% to 12.782%, leading to 0.014%, and the standard deviation

differs by 0.012%.

Winograd, instead, presents a better error distribution than spatial convolution. The

error is more compressed to the left, making it closer to zero and suggesting no bias to

a particular error value as in spatial convolution. For NK = 3, NW = 4, the mean is

11.01%, leading to a reduction of the error of 27.2% for the former implementation. The

kernel has a more apparent influence on the distribution variance, increasing as the kernel

size grows. For NW = 8, the standard deviations for NK = 3, NK = 5, and NK = 7

are 0.301%, 8.940%, and 11.204%, affirming the dependence of the variance on the kernel

size.

Figure 6.8 and Table 6.2 show the Baboon test image convolved against a 3× 3 Gaussian

kernel using the spatial and Winograd convolution PEs configured to work with data

widths of NW ∈ {4, 6, 8, 16}. The artefacts found when using short data widths are

different between PEs. In the spatial convolution, there is a saturation of the values,

where the darker zones become lighter zones, suggesting possible under-flowing. In the

Winograd case, the image looks more legible but with different tones of grey with respect

to the actual convolution result.

The PSNR and SSIM metrics help to illustrate the signal degradation in both PEs. In

spatial convolution, the SSIM becomes negative. Given that the data are always positive,

the means and standard deviations µx, µy, σx, σy are also positive. However, the covariance

σxy can be negative if the data become inverted. It means that the low values become high

and vice-versa, as in Figure 6.8(a). It can be caused by under-flowing effect and highlights

the dissimilarity between the experimental result and the reference. The PSNR also

highlights the poor signal quality obtained after applying the PE with 4-bit data width.

Winograd, instead, presents an SSIM of 0.731 and a PSNR of 16.28 dB. It shows that the

quality of the signal increases. This can be linked to Figure 6.7, where the distribution for

4 bits in Winograd is better than the spatial PE. In NW = {6, 8}, Winograd outperforms

the spatial convolution, showing higher signal qualities and better SSIMs. For NW = 6,

the SSIM reaches 92.2% of similarity in spatial and 97.4% in Winograd. For NW = 8, the

differences are less than 1%, where both algorithms start to converge in quality. In both

cases, it demonstrates the robustness of Winograd in numerical errors and how the error

distributions presented in Figure 6.7 behave qualitatively.

In summary, Winograd outperforms in terms of efficiency and error to the spatial convo-

lution for NK = 3 with mean error differences of up to 27.2% compared to the spatial

convolution in 4-bit data width. In terms of scaling in resource consumption and its

trade-offs, the data width does not significantly impact the average latency for both im-

plementations. Moreover, after 8-bits in Winograd and 10-bits in spatial, the overall

consumption makes a transition of linear scaling with respect to the data width to a con-
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stant value given by DSP cells, fixing the design efficiency to a constant value, allowing

greater data widths without a direct influence on the scaling up to 16 bits. Regarding

the output window size, the conclusion is that the design efficiency degrades as the size

increases, preferring smaller window sizes to save resources. In terms of kernel size, it

is recommended to fit it according to the model requirements, avoiding clearance due to

resource consumption scaling. It is possible to conclude that the resource consumption is

given by

rp ∝ NWN
2
Y ρ(NK) (6.11)

where ρ(·) is the function describing the kernel size scaling, which will be analysed in

future work and the error

E[ε
(p)
ij ] ∝ ψ(NK ,

1

NW

),Var[ε
(p)
ij ] ∝ φ(NK ,

1

NW

)

The mean value has an incremental dependence on the inverse of the data width (NW )

and the kernel size (NK). Winograd has less influence than spatial, and the variance has

incremental dependence on the kernel size, and inverse dependence on the data width.

Winograd presents the most significant dependence on theNW andNK than spatial, where

this last one has less influence on NK . ψ(·) and φ(·) are functions that scale positively

up the values as their arguments increase, and they are not necessarily the same for all

the architectures (i.e. matrix multiply-add, Winograd, and Spatial convolution). These

functions will be addressed in future work.

6.3 Accelerator

6.3.1 Generic Matrix Multiply-Addition

The analysis of the Generic Matrix Multiply-Addition implies the exploration of the data

width, the width of the integer part in the case of fixed-point numbers, the PE matrix

size, and the input matrix size. This analysis will address the input matrix size under

two possible FCL configurations: 120× 10 and 400× 120.

This work only considers accelerators based on the GEMMA PE and exact fixed-point

arithmetic. The approximate operators are out of the scope of this analysis and will lead

to future work.

The metrics utilised for the analysis include:

• Resource consumption

– Relative consumption of BRAM, FFs, LUT, and DSPs in a ZYNQ XC7Z020

with respect to the data width, integer width, and PE matrix size.
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– Maximum consumption of these components.

– Resource consumption of the template without taking into account the execu-

tion module.

Solution Selection

Subsection 4.3.4 presented three possible implementations of the GEMMA accelerator: (1)

serial, (2) hybrid, and (3) pipeline. This part presents the optimisations performed during

the accelerator implementation, considering a balance between resource consumption and

latency. Dataflow architecture was unsuitable because of data feedback (or dependency).

For this case, the following DoF values are fixed:

• Q INT (integer part): 2-bits

• Q O (output matrix size): 2× 2

• Q PES (number of PEs): 4

• CLOCK PERIOD: 7.5 ns target.

In terms of the data width, two values are used for comparison: 8 and 16 bits. The

solution optimisations are the following:

• Solution 0: Serial

– None (defaults).

• Solution 1: Hybrid - Only execute module optimisation

– Pipeline the execute module only.

– Unroll inner loops at the PE level (recalling the baseline GEMMA algorithm).

• Solution 2: Hybrid - Partition arrays

– Include solution 1.

– Partition interfaces: all interfaces are partitioned completely into registers.

– Partition cache buffers: all the matrix buffers (or caches) are implemented as

registers.

• Solution 3: Hybrid - Partition arrays

– Include solution 2.

– Pipeline data retrieval functions.

– Inlining to matrix receptors (in case of the inputs).
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Table 6.3: GEMMA solution optimisation results. The consumptions are with respect

to the ZYNQ XC7Z020. There are multiple configurations for the hybrid

architecture, and each solution is incremental. ”L” stands for Look-up Tables,

”F” for Flip-Flops, ”B” for BRAM, ”D” for DSPs, and ”DW” for Data Width

Solution DW Architecture Consumptions Latency

0 8 Serial B: 0(0%) F: 1561(1%) L:4091 (7%) D: 0(0%) 598 cycles

0 16 Serial B: 0(0%) F: 1727(1%) L:4071 (7%) D: 1(0%) 646 cycles

1 8 Hybrid B: 3(1%) F: 1811(1%) L:5028 (9%) D: 0(0%) 407 cycles

1 16 Hybrid B: 1(0%) F: 2397(1%) L:4797 (9%) D: 8(3%) 427 cycles

2 8 Hybrid B: 0(0%) F: 5758(5%) L:10903 (20%) D: 0(0%) 395 cycles

2 16 Hybrid B: 0(0%) F: 9114(8%) L:11017 (20%) D: 8(3%) 411 cycles

3 8 Hybrid B: 0(0%) F: 5456(5%) L:8218 (15%) D: 0(0%) 29 cycles

3 16 Hybrid B: 0(0%) F: 9341(8%) L:8960 (16%) D: 8(3%) 37 cycles

4 8 Hybrid B: 0(0%) F: 3799(3%) L:5067 (9%) D: 0(0%) 12 cycles

4 16 Hybrid B: 0(0%) F: 7604(7%) L:4839 (9%) D: 3 (14%) 20 cycles

5 8 Pipeline B: 0(0%) F: 3405(3%) L:5105 (9%) D: 0(0%) 10 cycles

5 16 Pipeline B: 0(0%) F: 6826(6%) L:4877 (9%) D: 3 (14%) 18 cycles

• Solution 4: Hybrid - Vectorisation

– Include solution 3.

– Vectorise PE units.

• Solution 5: Pipeline

– Include solution 4.

– Pipeline at the core level (top module).

Table 6.3 shows the results for the optimisations intended for GEMM. The serial imple-

mentation has the worst latency but the best area usage, expected for a serial architecture

with high hardware reuse. Optimising only the execute stage is not enough to bring the

latency down (solution 1 and 2); however, adding optimisations to the other static mod-

ules brought the latency down by 11×, suggesting that the most critical modules are the

static ones. Solution 4 vectorises the PEs, optimising the execution module to execute

the PEs concurrently, speeding up by 1.85 times compared to solution 3. Finally, moving

to a full pipeline architecture only improved the solutions by two clock cycles with a

slight increment in LUTs and decrement in the FFs. Solutions 4 and 5, hence, achieve

the best trade-off between resources and latency. It also suggests that the static modules

are compulsory targets during the optimisation and can lead to future work in optimi-

sation. Moreover, they are sensitive to data transfers, leading to increased latency when

modifying the operands and the data type DoF.
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Figure 6.9: Dynamic part (PE) vs the total accelerator usage. After 12-bits, the utilisation

becomes constant in terms of overall consumption. The configuration belongs to

a single-core accelerator with a 2× 2 PE.

Resource Consumption

According to 4.3, the GEMMA accelerator is composed of static and dynamic parts.

The dynamic part changes according to the PE implementation. However, the static

part should only adapt according to the data representation details, such as data width,

number of PEs and PE matrix size. Figure 6.9 summarises the proportion of accelerator

usage in terms of the static and dynamic parts. For accelerators with a data width of

fewer than 12 bits, the consumption keeps less than 25%.If the width exceeds 12 bits,

the DSP becomes the highest utilisation, reaching more than 90% of the accelerator.

Nevertheless, in terms of LUTs and FFs, the utilisation is less than 15%. It suggests that

the template takes most of the LUTs and FFs of the accelerator due to the FF-based

registers used for implemented arrays partitioned completely and the implementation of

the communication interface.

After knowing the composition of the accelerator, it is time to evaluate the affectation

of the DoF on the overall resource consumption. Figure 6.10 shows the affectation of

the data width (Figure 6.10(a)), integer width (Figure 6.10(b)), and the PE matrix size

(Figure 6.10(c)) on the consumption of resources. Using a fixed-point unit with a 4-bit

integer, varying the total data width leads to 5% of LUT utilisation, whereas the FF is

about 2%. A data width with less than 12 bits leads to a linear scaling at the PE level,

as demonstrated in Figure 6.1(b). The accelerator template keeps similar in size due to

the number of packages. For storing 8-bit matrices in a single core accelerator, it requires

3 × NR × NC × NW = 3 × 2 × 2 × 8 = 96 registers, where 3 is the number of matrices

and NR × NC . For 10 bits, it requires 120 registers, which is negligible compared to the

total number of FFs in the ZYNQ XC7Z020 (106400). However, after 12-bits, the LUT
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utilisation decreased because the tool started to implement the arithmetic using DSP. The

FF consumption still scales at the same rate, similar to the PE resource consumption.

Thus, it is possible to notice that the behaviour is the same as presented by the PE in

Figure 6.1(b).

Figure 6.10(b) shows the affectation of varying the integer part while keeping the data

width at 16 bits. The behaviour remains the same for any data width from 2 to 6 bits

without significantly affecting resource usage due to the nature of fixed-point, where the

values are subject to interpretation and arithmetically operated seamlessly.

The affectation while varying the PE matrix size is more severe than the former DoF

variations. Figure 6.10(c) summarises this behaviour, showing that the consumption

scales at the same rate as the number of elements scales. This is still similar to the

observations from Figure 6.1 at the PE level.

8 10 12 14 16
Datatype Width

0

1

2

3

4

5
DSP
LUT
BRAM
FF

(a)

1 2 4 6
Datatype Integer

0

1

2

3

4
DSP
LUT
BRAM
FF

(b)

2 4 8
PE Columns

0

50

100

150

200

DSP
LUT
BRAM
FF

(c)

Figure 6.10: Consumption report of the GEMMA accelerator while varying data type width,

integer width and the matrix size of the PE in a single-PE accelerator. The

X-axis refers to the values of the DoF and the Y-axis to the FPGA resource

consumption (%). The number of PEs is one core. (a) varies the data width

while keeping the PE matrix size to 2×2 and the integer part to 4. (b) varies the

integer part while keeping the data width to 16 bits and the PE matrix size to

2 × 2, and (c) varies the PE matrix size (square matrix) while keeping the data

width at 16 bits and the integer part at 4 bits.

Hence, the resource consumption analysis determines that the behaviour is close to the

observed in the PE resource consumption analysis, presenting the same behaviour even

though the template adds resource overhead due to caching and protocol implementation.

The performance analysis will be done after the error evaluation in order to discard

candidates in the DSE.

Error Quantification

The error evaluation will take into consideration matrices with a similar size as the LeNet-

5: 400×120 and 120×10 with elements between −0.5 and 0.5. This will provide a similar

scenario as in small Neural Networks. Moreover, it will consider the DoF that can cause
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Figure 6.11: Error histogram of the matrix multiply-add accelerator when varying data width

from 4 up to 16 bits. Each histogram group (subfigure) takes into account dif-

ferent matrix sizes (first row corresponds to a matrix of 120 × 10 elements and

the second to a matrix of 400× 120 elements). Each column, instead, varies the

integer part (1, 2, and 4) The Y-axis is not normalised and allows showing the

shape of the error distribution. The normalised error (X-axis) is measured by

using (6.5); exceeding 1, the errors reach more than 100%.

error degradation, such as the data type width and integer bits. The PE matrix size will

be fixed to 2 × 2 given that it offers the best trade-off from DSE performed on the PE

analysis presented in 6.2.1.

Figure 6.11 shows the error histograms in the accelerator in configurations with 1, 2,

and 4 integer bits and for the two matrices considered during this analysis. In this case,

since the matrices are bigger than the ones presented the PE analysis, low data widths

are not suitable in this context because of the bit pruning. Moreover, the integer part

has increased to reduce the error because of overflows in the accumulation. For the 1-bit

integer part (Figure 6.11(a) and Figure 6.11(d)), none of the data widths were suitable

for getting errors below 100%, suggesting substantial changes with respect to the golden

data. The best cases started to appear when increasing the bits of the integer part to

more than 2 bits. In this case, assuming that an accelerator is usable for mean errors less

than 30%, the best options have more than 14 bits in data width with more than 2 bits

in the integer part.

Continuing with other metrics, Figure 6.12 shows the PSNR in the same fashion as in
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Figure 6.12: PSNR-based quality plots of the matrix multiply-add accelerator when varying

data width from 4 to 16 bits. Each subfigure considers different matrix sizes (first

row corresponds to a matrix of 120× 10 elements, and the second to a matrix of

400× 120 elements). Each column, instead, varies the integer part (1, 2, and 4)

The X-axis shows the data width, Y-axis the PSNR value in [dB], and the series

are PE configurations (matrix size and number of PEs).

the histograms presented in Figure 6.11. Figure 6.12 presents the variations in the data

width (presented as series), integer bits (column plots) and matrix sizes (row plots) and

their effect on the PSNR values. The best PSNR reaches about 30dB, leading to 1000×
the signal-to-noise ratio, suggesting a good quality in the results (more PSNR, better

quality). The configurations with few integer bits (Figure 6.12(a, b, d, e)) present PSNR

less than 15 dB, which are not as good as the ones presented with 4 bits in the integer

part (Figure 6.12(c, f)), with PSNR greater than 30 dB for configurations with 2× 2 PE

matrix size and 16 bits of data width.

Until this point, the best configuration has more than 14 bits, more than 2 bits in the

integer part and PEs with a matrix size of 2 × 2. Figure 6.13 proposes a configuration

vs error diagram to summarise the findings from the histograms and the quality plots.

Figure 6.13(a) shows the case of 120 × 10 matrix operations, and Figure 6.13(b) for

400 × 120. The more robust accelerator configuration is 16-bit data width (4-bit integer
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Table 6.4: Best solutions from Figure 6.14(a). In this context, area is assumed to be the

same as resource utilisation. Matrix size: 120× 10

Solution PEs PE Matrix Data Type Latency Area Error

1.1 1 2× 2 W = 12,I = 2 7 clocks 4.1% 35%

1.2 1 2× 2 W = 14,I = 2 7 clocks 4.1% 20.6%

1.3 1 2× 2 W = 14,I = 4 7 clocks 4.1% 23.3%

1.4 1 2× 2 W = 16,I = 2 7 clocks 4.1% 15.4%

1.5 1 2× 2 W = 16,I = 4 7 clocks 4.1% 5.9%

1.6 1 2× 2 W = 16,I = 6 7 clocks 4.1% 23.3%

part) with a 2 × 2 PE matrix size. From the PSNR analysis, this configuration achieves

the highest PSNR value (> 30 dB).
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Figure 6.13: Error affectation of several configurations. The configurations in the X-axis follow

the syntax: Datatype width, integer width, core, PE matrix size. In this case,

the core is defined as None given that there are no other GEMMA configurations.

The Y-axis refers to the normalised error. Few configurations are shown due to

the error magnitude (less than 100% of error). (a) shows the errors for 120× 10

matrices, and (b) shows the errors for 400× 120 matrices.

Performance analysis and best candidates

For the matrix sizes analysed by this work, the best candidate is the accelerator with 16-

bit data width (4-bit integer part) and 2× 2 PE matrix size, presenting the best quality

metric, lowest mean error and most narrow distribution. However, recalling that some

error tolerance can be accepted to get better candidates regarding resource consumption

and performance, this work presents a distilled DSE plot for filtering the most promising

solutions.

Figure 6.14 shows two bubble plots illustrating the DSE results for the solutions pre-

sented in this section. Taking into account the possibility of having two accelerators
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Figure 6.14: Scatter plot of solutions. Closest to the origin, the best solution. The solutions

are represented as bubbles, whose position is given by the relative consumption

and latency. The size of the bubbles represents the error.

(one per matrix size), Figure 6.14(a) shows the case of 120 × 10 matrix evaluation, and

Figure 6.14(b) shows the 400 × 10 case. The solutions closest to the origin present the

lowest resource consumption and the lowest latency (more computational performance

and design efficiency). Moreover, most miniature bubble diameter solutions are the best

in terms of error. In the case of 120 × 10, the legend of the bubble plot suggests six

configurations with the best trade-off between performance, area, and error. Table 6.4

shows the details of these configurations. One of the interesting facts is that having 6 bits

in the integer part in a 16-bit data width configuration is worse than having 4 bits in the

integer part for the same width. From the table, the user can safely choose the 16-bit data



6 Results 102

Table 6.5: Best solutions from Figure 6.14(b). In this context, area is the same as

resource utilisation. Matrix size: 400× 120

Solution PEs PE Matrix Data Type Latency Area Error

2.1 1 2× 2 W = 16,I = 4 7 clocks 4.1% 19.5%

2.2 1 4× 4 W = 16,I = 4 12 clocks 29.5% 39%

2.3 2 2× 2 W = 16,I = 4 8 clocks 7.7% 19.5%

2.4 4 2× 2 W = 16,I = 4 12 clocks 15.0% 19.5%

Table 6.6: Performance of the distilled DSE solutions for the GEMMA accelerator

Solution PEs PE Matrix Data Type Performance Efficiency

1.1 1 2× 2 W = 12,I = 2 9.0 GOP/s 3.2%

1.2 1 2× 2 W = 14,I = 2 9.0 GOP/s 3.2%

1.3 1 2× 2 W = 14,I = 4 9.0 GOP/s 3.2%

1.4 1 2× 2 W = 16,I = 2 9.0 GOP/s 3.2%

1.5 1 2× 2 W = 16,I = 4 9.0 GOP/s 3.2%

1.6 1 2× 2 W = 16,I = 6 9.0 GOP/s 3.2%

2.1 1 2× 2 W = 16,I = 4 9.0 GOP/s 3.2%

2.2 1 4× 4 W = 16,I = 4 6.7 GOP/s 2.4%

2.3 2 2× 2 W = 16,I = 4 8.1 GOP/s 3.0%

2.4 4 2× 2 W = 16,I = 4 5.9 GOP/s 2.1%

width 4-bit integer configuration without penalties at the latency and the resource level,

ensuring a good mean error value. Moreover, the number of PEs can be scaled freely in

a proportional fashion, increasing efficiency and parallelism.

Table 6.5 summarises the distilled DSE results for a matrix size of 400x120, presenting

configurations with the most optimal data type configuration (width: 16 bits, integer

part: 4 bits) with similar errors. In this case, it is safe to discard the second solution

and keep the error under control, changing the focus from the error to the latency and

resource perspective. A critical remark is that the number of PEs affects the latency of

the accelerator. Thus, it is possible to choose a configuration with 4 PEs (solution 2.4) to

take advantage of the parallelism or the configuration of 2 PEs (solution 2.3), keeping the

latency low. Solution 2.3 implies having more clock cycles in latency by consuming 3.6%

more resources. Solution 2.4 consumes 3.7× more resources and takes 1.7× more clock

cycles. Therefore, the most reasonable is Solution 2.3 if having the resources available for

investment.

Looking at the performance and design efficiency, Table 6.6 summarises the peak perfor-

mance and the design efficiency of the solutions mentioned in Tables 6.4 and 6.5. From

the table, there are configurations with the same design efficiency. Hence, the config-

uration with 16-bit width (4-bit integer part) and a single PE is the most efficient. It

might suggest that the overhead added by the accelerator places room for optimisation
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and future work.

6.3.2 Window-based Convolution

Similarly to the GEMM, the analysis of the Window-based Convolution implies the explo-

ration of the data width, the width of the integer part in the case of fixed-point numbers,

the PE matrix size, and the kernel size. The difference is that the convolution no longer

depends on the input matrix.

This work only considers accelerators based on exact fixed-point arithmetic and 3 × 3

kernel for simplicity. The metrics utilised for the analysis include:

• Resource consumption

– Relative consumption of BRAM, FFs, LUT, and DSPs in a ZYNQ XC7Z020

with respect to the data width, integer width, and PE matrix size.

– Maximum consumption of these components.

– Resource consumption of the template without taking into account the execu-

tion module.

Solution Selection

Similar to the GEMM, the convolution accelerator presented several implementations

(see subsection 4.4.4), including (1) serial, (2) hybrid, (3) pipeline, and (4) dataflow

architectures. For this case, the following DoF values are fixed:

• Q INT (integer part): 1-bit

• Q K (kernel size): 3× 3

• Q PES (number of PEs): 4

• CLOCK PERIOD: 7.5 ns target.

In terms of the data width, two values are used for comparison: 8 and 16 bits. The

solution optimisations are the following:

• Solution 0: Serial

– None (defaults).

• Solution 1: Hybrid - Only execute module optimisation

– Pipeline the modules.
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Table 6.7: Spatial solution optimisation results. The results are similar for the Winograd

except for the additional latency as illustrated in the PE analysis (see 6.2.2).

The consumptions are referred to the ZYNQ XC7Z020. There are multiple

configurations for the hybrid architecture and each solution is incremental.

”L” stands for Look-up Tables, ”F” for Flip-Flops, ”B” for BRAM, ”D” for

DSPs, and ”DW” for Data Width

Solution DW Architecture Consumptions Latency

0 8 Serial B: 0(0%) F: 4610(4%) L: 6143(11%) D: 0(0%) 764 cycles

0 16 Serial B: 0(0%) F: 7587(7%) L: 6613(12%) D: 1(0%) 922 cycles

1 8 Hybrid B: 0(0%) F: 10619(9%) L: 17267(32%) D: 1(0%) 34 cycles

1 16 Hybrid B: 0(0%) F: 14344(13%) L: 16273(30%) D: 36(16%) 41 cycles

2 8 Pipeline B: 0(0%) F: 6073(5%) L: 10343(19%) D: 0(0%) 16 cycles

2 16 Pipeline B: 0(0%) F: 10510(9%) L: 4589(8%) D: 144(65%) 23 cycles

3 8 Dataflow B: 0(0%) F: 6196(6%) L: 11554(22%) D: 0(0%) 18 cycles

3 16 Dataflow B: 0(0%) F: 9689(9%) L: 5591(10%) D: 144(65%) 24 cycles

4 8 Dataflow B: 0(0%) F: 7363(6%) L: 15297(28%) D: 0(0%) 38 cycles

4 16 Dataflow B: 0(0%) F: 10891(10%) L: 14373(27%) D: 36(16%) 45 cycles

– Pipeline data reads.

– Inline modules.

– Partition interfaces: all interfaces are partitioned completely into registers.

– Partition cache buffers: all the matrix buffers (or caches) are implemented as

registers.

• Solution 2: Pipeline

– Include solution 1.

– Remove inlining.

– Vectorisation to the execution module.

– Optimise execution unit by unrolling.

• Solution 3: Dataflow

– Include solution 2.

– Apply dataflow to the top module over the processing flow.

– Make outer arrays static to avoid unwanted initialisation.

• Solution 4: Dataflow unvectorised

– Include solution 3.

– Removes vectorisation (as an experiment).

Table 6.7 shows the results for the optimisations intended for spatial convolution. The se-

rial implementation has the worst latency but the best area usage, similar to the GEMM.
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Solution 1 includes a series of optimisations to all the modules to implement a hybrid

architecture. It considers that static modules have a greater impact than the execution

alone, leading to 22× gains in latency, using twice the resources (overall). The pipeline

architecture proposed in Solution 2 implements a pipeline architecture, leading to 2 times

less latency than Solution 1 but spending twice the resources overall but freeing logic

resources. Solution 3 proposes a data flow architecture with a similar consumption and

more latency, which is inconvenient. Removing the vectorisation (Solution 4) demon-

strates the effect of the vectorisation on resource consumption, freeing 75% DSPs and

leading to almost twice the latency. Depending on the available resources, vectorisation

can be removed in exchange for resources.

Therefore, the best implementation is the pipeline (Solution 2) regarding latency; however,

the resource consumption is critically high for high data widths. Moreover, Solution 4

can be suitable for constrained resources in exchange for latency.

From now on, the best solutions highlighted in GEMMA (Solution 5) and convolution

(Solution 2) are considered for the rest of the analysis.

Resource consumption
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Figure 6.15: Dynamic part (PE) vs the total accelerator usage. After 14-bits, the utilisation

becomes constant in terms of maximum utilisation. The configuration belongs

to a single-core accelerator with a 2× 2 PE.

According to 4.4, the convolution accelerator integrates a static and dynamic part, which

behaves similarly to the GEMMA accelerator. Figure 6.15 summarises the proportion of

accelerator usage in terms of the static and dynamic part.

For accelerators with a data width of fewer than 14 bits, the consumption keeps less than

57.9%. If the width exceeds 14 bits, the DSP becomes the highest utilisation, reaching
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more than 97.3% of the accelerator. Nevertheless, in terms of LUTs and FFs, the PE

utilisation is less than 43% of FFs and 21% of LUTs. It suggests that the template

takes most of the LUTs and FFs of the accelerator due to the FF-based registers used for

implemented arrays partitioned completely and the implementation of the communication

interface, similar to the GEMMA accelerator.

With the composition of the accelerator already analysed, it is time to perform the general

DoF analysis on the accelerator. Figures 6.16 illustrate the behaviour of the accelerator

when varying the data width and the matrix size of the PE for Spatial and Winograd

convolution PEs. The behaviour when scaling the data width is the same as observed

in the PE analysis in Figure 6.4. In the Spatial accelerator (Figure 6.16(a)), the LUT

consumption is predominant when having 4-10 bits in data width with a linear scaling

as the data width scales. The behaviour is followed by the FFs as well. It suggests that

the scaling is because of the array partitioning to implement registers. After 12-bits, the

DSP consumption becomes predominant, and the LUTs and FFs preserve the scaling

behaviour. The pattern repeats in the Winograd accelerator (Figure 6.16(b)), but the

predominance change happens when having 8-bit data width. Comparing the Spatial and

Winograd accelerators, the consumption at the DSP level is lower in Winograd. After

8-bits, Winograd consumes less area (or resources) than the Spatial.

Varying the PE matrix is only analysed on the Spatial convolution provided that this

work does not cover the optimised variants of Winograd for windows greater than 2× 2.

The affectation of this DoF is more severe than the other DoF variation. Figures 6.16(c,

d) summarises the behaviour of using 4-bit and 8-bit data widths, respectively. The

consumption scales proportionally with respect to the data width in this case. Regarding

the PE matrix, a 2×2 PE-based accelerator consumes 5× less than the 8×8 configuration.

The PE analysis presented in Figure 6.6 shows that the best configuration has the smallest

window size with 4-bit data width. The results, in this case, preserve this fact.

Hence, the resource consumption analysis determines that the behaviour is close to the

observed in the PE resource consumption analysis, presenting the same behaviour despite

the fact that the template adds resource overhead due to caching and protocol implemen-

tation. The conclusion is the same as in the matrix accelerator. Moreover, in terms of the

best candidate, Winograd offers less resource consumption than the Spatial convolution

for every data width.

Error quantification

The error evaluation considers the 3× 3 convolution applied to images, given that image

processing-based convolution is the same operation as the one used in DLI. Moreover, it

proves the extensibility of the FAL project for other applications. Although LeNet-5 uses

5× 5 kernels, this analysis will limit the kernel to 3× 3, given the Winograd limitations.

This evaluation varies the data width to see the error affectation, given that it is the only

variable that affects the precision. The integer part is fixed to 1 bit since the convolution
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Figure 6.16: Consumption report of the convolution accelerator while varying data type width

and the PE matrix size. The X-axis refers to the values of the DoF and the Y-axis

to the FPGA resource consumption (%). The number of PEs is one core and the

integer part has only one bit. (a) varies the data width while keeping the PE

matrix size to 2 × 2 and the integer part to 1 by using the Spatial PE. (b) has

the same conditions as (a) but uses the Winograd PE, (c) varies the PE matrix

size (square matrix) while keeping the data width in 4 bits (1-bit integer) and

using the Spatial PE, and (d) has the same conditions as (c) but uses 8 bits data

width.

is numerically stable (fixed number of multiplications and additions) within the range of

−0.5 to 0.5.

Figure 6.17 shows the error histograms for the Spatial and Winograd-based convolution

accelerators. The results are similar to those presented in Figure 6.7, highlighting that

Winograd’s error resilience is stronger than the Spatial convolution’s. The error intro-

duced in the Spatial convolution is more severe than the one introduced by Winograd.

For instance, for a 6-bit configuration, the error in Spatial is around 10-15%, whereas

Winograd’s error is more concentrated in < 10%. Winograd continues to be the best in

terms of error.
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Figure 6.17: Error histogram of the convolution accelerator when varying data width from

4 up to 16 bits. Each histogram takes into account different implementations

(Spatial on the left, Winograd on the right). The Y-axis is not normalised and

allows showing the shape of the error distribution. The normalised error (X-axis)

is measured by using (6.5).
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Figure 6.18: PSNR behaviour as the data width increases. On the left, the Spatial-based

convolution results are presented (a). On the right, the Winograd-based ones

(b). Series include configurations with 1, 2, and 4 PEs, and 2 × 2, 4 × 4, and

8× 8 (for Spatial) matrix sizes. These parameters do not make any difference in

convolution.

Besides the error distribution, the convolution accelerator can be evaluated by quality

metrics. Figures 6.18 and 6.19 show the quality evaluation by using PSNR and SSIM. In

the case of SSIM, the 95% of similarity index is achieved with 6 bits or more, suggesting

that the reconstruction of images is quite robust for low bit widths. Under the premise
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Figure 6.19: SSIM behaviour as the data width increases. On the left, the Spatial-based

convolution results are presented (a). On the right, the Winograd-based ones

(b). Series include configurations with 1, 2, and 4 PEs, and 2 × 2, 4 × 4, and

8× 8 (for Spatial) matrix sizes. These parameters do not make any difference in

convolution.

that 95% is acceptable, looking at the PSNR values, the Spatial-based convolution has a

PSNR of approximately 18 dB, whereas the Winograd-based convolution exceeds the 25

dB (Figure 6.12). The Winograd-based convolution has a similar performance when using

4-bits compared to the Spatial-based convolution with 6-bit data width. Exceeding 30 dB

requires, in both cases, using more than 8 bits. Compared to the GEMMA accelerator, the

convolutions are more friendly in terms of approximation due to the number of operations

to compute a single pixel (or value) and are more resilient to errors. Given this fact,

convolutional-predominant networks might benefit from using approximate convolution

accelerators.

This analysis also applies the Frobenius norm on the differences between matrices to mea-

sure the similarity between the resulting matrices. In the case of the Spatial convolution,

the Frobenius norm is more than two times higher than the results in Winograd, suggest-

ing that the dissimilarity increased by that factor for a given data width. Figure 6.20

provides two plots illustrating the behaviour of the Frobenius norm in the Spatial and

Winograd convolutions.

To conclude the error analysis, Figure 6.21 shows the solution candidates and the error

affectation of every solution. In this case, Winograd is the best candidate even for 4-bit

data width configurations, achieving a mean error of less than 10%. Compared to the

GEMMA accelerator, the convolution accelerators have more control over the errors since,

in the plots, there are configurations with the minimum data width that can still be useful

for the user, not reaching more than 100% of error.

Until this point, if the developer requires more error tolerance, the best candidates are the

Winograd convolution accelerators because of their approximation tolerance.
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Figure 6.20: Frobenius norm behaviour as the data width increases. On the left, the Spatial-

based convolution results are presented (a). On the right, the Winograd-based

ones (b). Series include configurations with 1, 2, and 4 PEs, and 2× 2, 4× 4, and

8× 8 (for Spatial) matrix sizes. These parameters do not make any difference in

convolution.
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Figure 6.21: Error affectation of several configurations. The configurations in the X-axis follow

the syntax: Datatype width, integer width, core, PE matrix size. The Y-axis

refers to the normalised error. (a) shows the Spatial convolution candidates, and

(b) the Winograd cantidates.

Performance analysis and best candidates

Until this moment, in terms of resource consumption and error, Winograd results are the

best implementation, even for low data widths. Similar to the affirmation in the GEMMA

accelerator, the designer can face different scenarios in which the resources are limited

to give room to other IP cores and require high throughput. Usually, the error is the

price-to-pay to achieve high performance in systems with restrictive resources.
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Figure 6.22: Scatter plot of solutions. Closest to the origin, the best solution. The solutions

are represented as bubbles, whose position is given by the relative consumption

and latency. The size of the bubbles represents the error. The syntax of each

series is: P4,PC2,DW10,DI1,KC3, which leads to an accelerator with 4 PEs (P4),

2×2 matrix size (PC2), 10-bit data width (DW10), 1-bit integer (DI1), and 3×3

kernel size (KC3). E specifies the error in %, L the latency in clocks, and C the

resource consumption.

Figure 6.22 presents the bubble plots for the Winograd and Spatial convolution, illus-

trating the most suitable solutions discovered during the DSE. The plot illustrates more

solutions than GEMMA, given that the error is much less than in that accelerator. The

solutions closest to the origin are the Pareto optimal. Although Winograd is the best in
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Table 6.8: Top 3 for different data width values. This ranking highlights the best ar-

chitecture in terms of its balance between resource consumption and per-

formance. The first group of solutions is based on the Spatial, whereas the

second is on the Winograd PE.

Solution PEs PE Matrix Data Type Performance Efficiency

1.1 2 8× 8 W = 4,I = 1 90.3 GOP/s 32.7%

1.2 1 8× 8 W = 6,I = 1 45.1 GOP/s 16.4%

1.3 2 4× 4 W = 8,I = 1 36.1 GOP/s 13.1%

2.1 1 2× 2 W = 4,I = 1 14.7 GOP/s 5.3%

2.2 1 2× 2 W = 6,I = 1 13.3 GOP/s 4.8%

2.3 1 2× 2 W = 8,I = 1 13.3 GOP/s 4.8%

resource consumption and error, Spatial is the best in latency.

Assuming that an application requires 30 dB, the accelerator requires at least 8 bits when

using Winograd or Spatial. Fixing this case, a solution with 8-bit data width, 1 PE Core

and 2 × 2 window implies having an error of 3.4%, 7.9% of resource consumption in the

Spatial and a latency of 9 clocks in the Spatial convolution, according to Figure 6.22(a).

For Winograd, a similar solution has a 1% error, but it takes 11 clocks to solve the

operation, consuming 7.7% of the resources. For this example, the Spatial becomes the

best option if the priority is performance. However, Winograd works well if the priority is

either minimising the error or consuming fewer resources. Therefore, there is an inflexion

point from the earlier analysis. Spatial became one of the best options depending on the

design requirements.

A better overview of the performance analysis is presented in Table 6.8, showing a top 1

ranking of the solutions for several data widths from 4 to 8. To provide a fair comparison,

the Winograd convolution was assigned the same number of operations as the Spatial

convolution, determined by: O = N2
K + N2

O. In principle, Winograd performs more op-

erations, benefiting the number of operations and the peak performance, as Figure 6.6

illustrates. However, this assumption makes both solutions comparable by assuming that

both perform the same work. Hence, in all the cases, the Spatial convolution was the most

efficient according to the design efficiency figure of merit. Recalling the meaning of design

efficiency, it is the balance between resource consumption invested in exchange for perfor-

mance (or latency). Thus, the best trade-off in terms of performance-resources is given by

the Spatial convolution, whereas in terms of error, the best implementation is Winograd.

This highlights the relevance of performing DSE and the framework’s capability for this

type of exploration.
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Table 6.9: Top 10 of the GEMMA Accelerator solutions in terms of performance and

efficiency. Zed refers to Zedboard, Pico to the PicoEVB, and Kria to the

Xilinx Kria. Mat. refers to the PE matrix size.

Configuration Performance GOP/s Efficiency

Sol. Datatype Mat. PEs Zed Pico Kria Zed Pico Kria

1 W=12, I=2 2 1 8.96 5.02 20.42 0.032 0.033 0.013

2 W=12, I=4 2 1 8.96 5.02 20.42 0.032 0.033 0.013

3 W=12, I=6 2 1 8.96 5.02 20.42 0.032 0.033 0.013

4 W=14, I=2 2 1 8.96 5.02 20.06 0.032 0.033 0.013

5 W=14, I=4 2 1 8.96 5.02 20.06 0.032 0.033 0.013

6 W=14, I=6 2 1 8.96 5.02 20.06 0.032 0.033 0.013

7 W=16, I=2 2 1 8.96 5.02 19.70 0.032 0.033 0.013

8 W=16, I=4 2 1 8.96 5.02 19.70 0.032 0.033 0.013

9 W=16, I=6 2 1 8.96 5.02 19.70 0.032 0.033 0.013

10 W=12, I=1 2 1 8.96 5.02 19.34 0.032 0.033 0.012

6.4 Inter-FPGA comparison

So far, the analyses have used the Zedboard (ZYNQ XC7Z020) as the reference board for

relative consumption, peak performance, and efficiency. This section compares the top

10 solutions of the matrix multiplication-addition (GEMMA), spatial convolution, and

Winograd convolution accelerators using three platforms:

• Xilinx Kria KV26 (Kria): a mid-end FPGA-based SoC.

• Xilinx XC7Z020 (Zedboard): a low-end FPGA-based SoC.

• Xilinx XC7A50T (PicoEVB): a low-end / low-power FPGA.

These platforms represent three possible applications. The XC7A50T is the smallest

FPGA on the list, and it can implement standalone applications or work as an accelerator.

The SoC are self-contained systems that can act as edge computing devices. In the case

of the Xilinx Kria KV26, it targets computer vision applications.

Tables 6.9, 6.10 and 6.11 show the top 10 accelerators analysed in previous sections.

Table 6.9 summarises configurations with more than 12-bit widths. The top 10 is mainly

composed of 2×2 PE matrices and single-PE accelerators. In terms of efficiency, changing

the data width does not affect efficiency or performance. Depending on the FPGA, the

solutions have different efficiency values due to different relative consumptions and peak

performances. The PicoEVB is the smallest FPGA within the sample, and the Kria is

the largest. According to the results, the GEMMA accelerator has more efficiency in the

PicoEVB and less performance on the Kria, favouring small FPGAs. Moreover, the top

3 are the most efficient solutions for the three boards simultaneously.
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Table 6.10: Top 10 of the Spatial Convolution Accelerator solutions in terms of perfor-

mance and efficiency. Zed refers to Zedboard, Pico to the PicoEVB, and

Kria to the Xilinx Kria

Configuration Performance GOP/s Efficiency

Sol. Datatype NO PEs Zed Pico Kria Zed PicoEVB Kria

1 6 4 4 45.14 30.09 90.28 0.16 0.20 0.06

2 6 8 1 45.14 30.09 90.28 0.16 0.20 0.06

3 6 4 2 45.14 27.08 90.28 0.16 0.18 0.06

4 6 8 2 45.14 22.57 67.71 0.16 0.15 0.04

5 6 4 1 40.12 25.07 85.26 0.15 0.17 0.05

6 8 4 2 36.11 18.05 72.22 0.13 0.12 0.05

7 6 2 4 35.10 25.07 75.23 0.13 0.17 0.05

8 6 8 4 30.09 30.09 60.18 0.11 0.20 0.04

9 8 4 1 30.09 20.06 65.20 0.11 0.13 0.04

10 8 2 4 30.09 20.06 60.18 0.11 0.13 0.04

Table 6.11: Top 5 of the Winograd Convolution Accelerator solutions in terms of per-

formance and efficiency. Zed refers to Zedboard, Pico to the PicoEVB, and

Kria to the Xilinx Kria

Configuration Performance GOP/s Efficiency

Sol. Datatype PEs Zed Pico Kria Zed Pico Kria

1 4 1 14.67 9.02 32.72 0.05 0.06 0.02

2 8 1 13.33 8.20 33.85 0.05 0.05 0.02

3 10 1 13.33 8.20 32.82 0.05 0.05 0.02

4 12 1 13.33 8.20 29.75 0.05 0.05 0.02

5 6 1 13.33 8.20 27.70 0.05 0.05 0.02

According to Tables 6.10 and 6.11, the convolution accelerators present the same phe-

nomenon where the efficiency is the best for small FPGAs. The spatial convolution shows

20% efficiency in the PicoEVB, 16% in the Zedboard and 6% in the Kria. In Wino-

grad, the efficiency degrades by three times. However, the divergence with respect to the

GEMMA is found in the most efficient solutions. In the spatial convolution, the two first

solutions are the most efficient for all the boards, whereas, in the Winograd convolution,

there is no common solution.

Recalling the design performance (6.3) and the design efficiency (6.4), keeping the RTL

implementation, the number of operations, and the latency, the main variations are the

resource proportion rp and the peak performance Ppeak. Both quantities are FPGA-

dependent. According to the definition of Ppeak, it is the DSP performance, whereas rp
depends on the maximum resource consumption.

Focusing on the resource proportions (Table 6.11), Winograd’s accelerator has an effi-
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Figure 6.23: Winograd FPGA resource consumption in (a) the PicoEVB and (b) the Kria.

Both represent extreme cases of low-end and mid-end FPGAs.

ciency of 6% in the PicoEVB and 2% in the Kria. The reason is because of the total

available resources available in each FPGA. The PicoEVB integrates fewer DSPs than

the Kria, altering the relative consumptions. Figure 6.23 shows the consumption as a

function of the data width, and Winograd has been chosen for convenience since it cannot

vary the matrix size and has the best error behaviour. It illustrates how the resource

switch from LUTs to DSPs is less severe in the Kria compared to the PicoEVB, given

that the proportion of DSPs is different concerning the other resources. In the Kria, the

constant resource consumption does not happen because of the DSP consumption as in

the Zedboard (Figure 6.16(a)), suggesting a different proportion of resources. Another

interesting observation is that the PicoEVB FPGA keeps constant until 14 bits of data

width. After 16 bits, the LUTs once more determine the resource consumption.

The number of DSPs also determines the peak performance. A platform with a low

proportion of DSPs will show a better performance, suggesting an unbalance in efficiency.

In frameworks such as FINN and HLS4ML, the absence of DSPs is an implementation

killer, given that the designs tend to depend on the number of DSPs available. However, it

might depend on the number of bits of the solution to implement. Implementing a whole

neural network on a low-end FPGA can be challenging for these frameworks. Because of

its granularity, FAL can implement accelerators to run the operations required for neural

network computations on this FPGA.

In summary, the FPGA resource proportions can modify the conditions for the optimality

of a solution. Thus, the DSE shall take into account the platform in order to determine

the best-fit design solution.
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6.5 Key Findings

This chapter has compiled all the results concerning evaluating the proposed PE and

accelerator architectures for GEMMA and convolution. The analysis used the results

provided by a greedy DSE that varied the data width, integer width, output/window

size, inputs, number of units, and PE implementation (in the case of the accelerators).

Moreover, this work has found that the FPGA and its available resources influence the

DSE results, varying the best solutions in terms of performance.

The matrix multiply-add PE has been demonstrated to be sensitive to the matrix size,

scaling linearly in terms of resources but even more sensitive in terms of errors because

of the overflow control mechanisms. The effect of (3.2) is critical for scaling in matrix

size, provoking operand vanishing as the matrix size increases, and losing information

of small operands. After implementing an accelerator based on this PE, the resource

consumption has a similar scaling behaviour. However, the error metrics worsened as

the matrix size increased. To mitigate the adverse effect imposed on large matrices,

the data width has been increased along with the integer width to keep the overflow

under control. In this case, the overflow is caused by the inherent nature of matrix-

multiplication additions, where adding causes numerical instability and goes out of bounds

in the numerical representation. In the end, the best error results were 15% error and 30dB

of PSNR by using a 16-bit data width with a 4-bit integer part, operating on 400 × 120

FCL layer.

On the other hand, the convolution PEs are more stable in terms of error, showing promis-

ing results when having low data widths. Winograd achieved 16.28 dB PNSR and 0.731

SSIM, whereas the Spatial required at least 6 bits to achieve similar results. Implementing

an accelerator did not affect the error due to the dependency of the pixels, which required

only the values of their neighbour pixels. In terms of scaling, the resource consumption

is even more promising due to the tolerance of low data widths, requiring much less area

than the GEMMA PE and accelerator. From the performance perspective, Winograd

outstands in terms of solution error, whereas Spatial reaches the best performances.



Chapter 7

Conclusions

This thesis proposes a library with three different PE architectures for generic matrix

multiplication-addition and convolution using generic programming and a High-Level Syn-

thesis tool for the RTL generation. The addressed PE designs include a generic matrix

multiply-add, a window-based spatial convolution, and a Winograd convolution. Each PE

is customisable in the datatype, the data width, the arithmetic operators, and operand

sizes (i.e. matrix sizes), allowing multiple solutions for an extensive design exploration

analysis. The proposed framework explored the design space generated for each PE when

changing the data width in bits for a fixed-point representation, the output sizes, and the

kernel sizes. The design exploration analyses the numerical error for each PE as a density

distribution and the resource consumption as the product of the permutations within the

customisable parameters. The design efficiency has been analysed using the proposed

figure-of-merit from a previous work, which measures how well the design consumes the

resources in exchange for the computational operations.

After the solution analysis obtained by the DSE, it was possible to find Pareto’s optimal

solutions for accelerators based on these PE architectures, performing a brief analysis

of the most suitable design architectures. For the matrix multiplication addition, the

most suitable configuration required 16-bit data width with a 4-bit integer part to keep

the error below 20%. When discarding solutions with more than 20% of error, the most

promising solution was a single-PE accelerator with 2 × 2 operands, achieving up to 9

GOP/s with 3.2% efficiency in a ZYNQ XC7Z020. These results target an operation of a

400× 120 FCL.

On the other hand, this research proposed two architectures to perform convolutions: a

window-based spatial convolution and the Winograd convolution. The DSE analysis de-

termined that these architectures were more error-resilient than the matrix multiplication-

addition, admitting architectures with 4-bit data widths. Winograd outstands in terms

of error, achieving 16.28 dB PNSR, 0.731 SSIM, and 10% of mean error when using 4-

bit data width. The Spatial convolution required a 6-bit data width to achieve similar

results. Nevertheless, the Spatial convolution achieved the best performance, presenting

less latency at the cost of using more resources.

117
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This work also highlights the relevance of performing a DSE analysis also considering the

target platform due to the resource proportions. The Pareto’s optimal can vary depending

on the availability of the DSP units and logic cells.

Apart from the implementations, this work contributes by open-sourcing the results of this

work for different FPGAs. The implementations can be adopted in other projects different

to neural networks because of the versatility of the generic programming performed in

C++ and design parameterisation. Moreover, the users can determine their best solutions

regarding error, resource consumption and performance by running the DSE framwork

suite included in the project, avoiding running a whole project and simulating under

their use case conditions. The DSE suite also integrates a novel figure-of-merit called

design efficiency that helps to rank the architectures in terms of performance vs resource

consumption.

7.1 Future Work

The next step is analysing the resource consumption and the error distribution according

to the customisable parameters. The idea is to have a model to estimate the effect of

the parameters on the final results without running the synthesis, speeding up the design

exploration given a deep learning model. Also, extend the research on an actual deep

learning model for a complete design exploration and analysis of the implementations,

including finalising the activation functions research and other activation functions.
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Appendix A

Vectorisation Wrapper through

Template Recursion

Algorithm 10 Vectorisation wrapper for convolution

1 template <int N, int NT, class ENGINE>

2 struct Vec to r i s e {
3 stat ic void Execute (

4 typename ENGINE : : datatype

5 input [NT∗ENGINE : : ou tput s i z e + ENGINE : : k e r n e l s i z e − 1 ]

6 [ENGINE : : windowsize ] ,

7 typename ENGINE : : datatype

8 ke rne l [ENGINE : : k e r n e l s i z e ] [ ENGINE : : k e r n e l s i z e ] ,

9 typename ENGINE : : datatype

10 output [NT ∗ ENGINE : : ou tput s i z e ] [ ENGINE : : ou tput s i z e ] ) {
11

12 /∗ Important ! I n l i n i n g the execu t ion a l l ows p a r a l l e l i sm ∗/
13 #pragma HLS INLINE

14 ENGINE op {} ;

15 op . Execute(&input [ENGINE : : ou tput s i z e ∗ (N − 1 ) ] , kerne l ,

16 &output [ENGINE : : ou tput s i z e ∗ (N − 1 ) ] ) ;

17 /∗ Continue Loop − The next i = i − 1 ∗/
18 Vector i s e <(N − 1) , NT, ENGINE> : : Execute (

19 input , kerne l , output ) ;

20 }
21 } ;

22

23 template <int NT, class ENGINE>

24 struct Vector i s e <0, NT, ENGINE> {
25 stat ic void Execute (

26 typename ENGINE : : datatype

27 input [NT∗ENGINE : : ou tput s i z e + ENGINE : : k e r n e l s i z e − 1 ]

28 [ENGINE : : windowsize ] ,

29 typename ENGINE : : datatype

30 ke rne l [ENGINE : : k e r n e l s i z e ] [ ENGINE : : k e r n e l s i z e ] ,

31 typename ENGINE : : datatype

32 output [NT ∗ ENGINE : : ou tput s i z e ] [ ENGINE : : ou tput s i z e ] ) {
33 /∗ Important ! I n l i n i n g the execu t ion a l l ows p a r a l l e l i sm ∗/
34 #pragma HLS INLINE

35 /∗ Do Nothing ( terminate loop ) ∗/
36 }
37 } ;
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Appendix B

Convolution PE Description with

Vectorisation

Algorithm 11 Final PE description with vectorisation and replacement

1 /∗ Matrix dimensions ∗/
2 stat ic constexpr int O = 2 ;

3 stat ic constexpr int K = 3 ;

4

5 /∗ Define data types ∗/
6 stat ic constexpr int I = 1 ;

7 stat ic constexpr int W = 16;

8 stat ic constexpr int D = 4 ;

9 using DataType = ap f ixed<W, I>;

10

11 /∗ Define the number o f PEs or execu t ion un i t s ∗/
12 stat ic constexpr int N = 4 ;

13

14 /∗ Define approximate opera tors ∗/
15 using M u l t i p l i e r =

16 axc : : a r i thmet i c : : l sbdrop : : Multiply<DataType , W, I , D>;

17 using Adder =

18 axc : : a r i thmet i c : : l sbdrop : : Add<DataType , W, I , D>;

19

20 /∗ Sp e c i a l i s e the GEMMA PE without cons t ruc t ing i t ∗/
21 #i f d e f USE WINOGRAD

22 using Engine = ama : : hw : : convo lve r s : : Winograd<DataType , K, O,

23 Adder , Mu l t i p l i e r >;

24 #else

25 using Engine = ama : : hw : : convo lve r s : : Spat ia l<DataType , K, O,

26 Adder , Mu l t i p l i e r >;

27 #e n d i f

28

29 /∗ Vector i se r e p l i c a t i n g the engine by N times ∗/
30 /∗ Use the PE over image IX with ke rne l IK with output OY ∗/
31 ama : : hw : : Para l l e lConvo lve r<N, N, Engine > : : Execute (

32 IX , IK , OY) ;
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Appendix C

Function Approximation

This work has also made progress in function approximation, particularly, in exponential-

based functions. This will be relevant for future work.

Softmax is an activation function optimisable by tweaking the exponential function f(x) =

ex, which is a bijective function whose domain is R (see Figure C.1). One of the possible

optimisations is to define the function for a custom domain, which is a subset of R,

removing those elements not required for the DL operations, in particular, by the FCL,

which is commonly preceding a softmax.

Remembering that the FCL can be expressed as (2.2) and assuming a numerical represen-

tation that supports a uniformly distributed discrete set within the domain S =] − 1,1[,

an element of the output vector can be expressed as

yi = wi · x + bi (C.1)

where wi is the i-th row vector from the matrix W and · is the dot-product between

vectors, expressed as wi · x =
∑k

j=1wijxj. It means that each output element involves k

products and k additions including the bias.

The computation is numerically vulnerable to the additions, risking overflows. The prob-

lem was previously addressed in 3.2, which keeps the output of every element of the FCL

within S ∈]− 1, 1[. Knowing that the domain of yi is constrained and given by S, S can

also give the exponential function domain. Since S is a uniformly distributed discrete set,

quantised in β−1 bits, an immediate consequence is that the function can also be defined

by a Look-up Table (LUT) with a number of points equal to the number of elements of the

set without incurring an under or over discretisation. However, it will imply a resource

utilisation greater than an application needs.

Considering that the input of the exponential function is restricted to S and suitable for

LUTs, it is possible to explore more approximations to lower the resource consumption and

speed up the processing. This research considers the Taylor series, Padé approximants,

and piece-wise interpolation within the approximations.
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C.0.1 Taylor series

A Taylor series consists of a function approximation given by the infinite sum of elements

that are expressed in terms of the target function’s derivatives at a single point. For the

exponential function, the Taylor series centred in a = 0 is

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ . . . ,∀x ∈ R (C.2)

where a is the point where the function’s derivative is centred [71], and it converges

everywhere.

C.0.2 Padé approximant

The Padé approximant is a function that approximates through the reason of two poly-

nomials [106]. For a function f(x), there is an unique approximant of order m,n

Rm,n(x) =
Pm(x)

Qn(x)
=
a0 + a1x+ a2x

2 + · · ·+ amz
m

b0 + b1x+ b2x2 + · · ·+ bnxn
, x ∈ C (C.3)

where P and Q are polynomials of degrees no more than m and n. When n = 0, the Padé

approximant becomes the same as the m-order Taylor series. Wynn’s algorithm is one of

the methods to compute the Padé’s approximant [107].

C.0.3 LUT-based Piece-wise Interpolation

This method consists in sampling the function in uniformly-distributed points and com-

puting the best-fit polynomial between the points. For instance, a linear polynomial re-

quires two points to compute, whereas a quadratic requires three [72]. Figure C.1 shows

how a linear interpolation fits the ex function by taking eight samples and performing

linear interpolation.

The computation of the segments can be either computed at runtime or at compute time.

At runtime, the slope and intercept are computed as

mp =
yp1 − yp0
xp1 − xp0

, bp = yp1 −mpxp1 (C.4)

such that fp(x) = mpx + bp, xp0 ≤ x ≤ xp1 , where (xp0 , yp0), (xp1 , yp1) are the points

before and after the point of interest xp, respectively. In this case, the computation of the

point requires: 1) storing the points in a LUT, 2) computing the linear equations, and

3) computing the value of interest. At compute time, instead, it computes 2) offline and

stores the slopes and intercepts in the LUT, shortening the path from 1) to 3).



C Function Approximation 133

−1 −0.5 0.5 1

0.5

1

1.5

2

2.5

3

x

ex
êx
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Figure C.1: Piecewise representation by doing eight samples within the domain S and applying

a linear interpolation

Moreover, for the sake of avoiding unwanted divisions while computing the indices of the

slope-intercept pairs required for the computation, the number of points can be a power

of two, such that the division becomes a bit-shift in such a way that

p = x′ � P =⇒ mp = M [p], bp = B[p] (C.5)

where P is the number of points (power of two), x′ is the quantised value of x in fixed-

point, M and B are the LUTs for the slope and intercept, respectively.



Appendix D

Operator Approximation

This appendix shows the results after benchmarking the approximate operators.

D.1 Resource consumption

This section shows the resource consumption estimated by Vivado HLS. As the approx-

imation increases, resource consumption decreases concerning the exact version of the

operation, suggesting a gain in area.

The data types utilised are half, a 16-bit floating-point provided by Vivado. Moreover,

q16 and q8 are data types using fixed-point numbers with a data width of 16 and 8 bits,

respectively. These data types were selected to evaluate the approximations after bit

pruning and logic change in the less significant bits (LSB).

The results are obtained after sampling 100 to 1 million samples for error quantification.

The following figures show how the half data type presents a greater consumption in

contrast than the approximate values, even by using fixed-point arithmetic.

D.1.1 Approximate Addition

Figure D.1 shows the resource consumption for the addition by modifying the data

type. Fixed-point arithmetic consumes less resources than the half-precision floating-

point (half).
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Figure D.1: Addition resource consumption without introducing approximations

Figures D.2 and D.3 show how the approximations reduce the resource consumption as

the number of approximate bits increases.
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Figure D.2: LUT consumption in an 8-bit adder
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Figure D.3: LUT consumption in a 16-bit adder

D.1.2 Approximate Multiplication

Figures D.4 and D.5 show the same tendency to reduce resource consumption as the

approximation increases. In the 16-bit case, there is an exception, utilising not only

LUTs but FFs. Figure D.6 shows the FF usage by multiplication. In the exact 8-bit

configuration, there is no FF usage. Nevertheless, when using 16-bit data width and 8-bit

approximation, the consumption becomes the same as in the 8-bit configuration for the

LSB drop, suggesting a correct behaviour.
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Figure D.4: LUT consumption in an 8-bit multiplier
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Figure D.5: LUT consumption in a 16-bit multiplier
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Figure D.6: FF consumption in a 16-bit multiplier

D.2 Latency

D.2.1 Approximate Addition
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Figure D.7: Latency of an 8-bit Adder
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Figure D.8: Latency of a 16-bit Adder

D.2.2 Approximate Multiplication
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Figure D.9: Latency of an 8-bit Multiplier
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Figure D.10: Latency of a 16-bit Multiplier

D.3 Approximation Error

This section shows the error introduced by the approximations. Apart from the ap-

proximations, the fixed-point representation is an approximation itself, introducing errors

(quantisation errors). These errors have been quantified and represented through the blue

curves in the error plots. They work as a reference for further approximation errors.

It is critical to consider that the floating-point also introduces errors but they will be

considered as the baseline or exact version in this analysis.

Using 500 samples, the bin length is 0.2%, and the error introduced every 5 bins is 1%.

Figures D.11, D.12 and D.13 show that increasing the data size, the error decreases close

to the quantisation error. In the 16-bit case, the error is as small as the quantisation

error, fitting within the first 0.2% bin.



D Operator Approximation 141

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

2.5 · 10−2

5 · 10−2

7.5 · 10−2

0.1

0.13

0.15

Distribución de error por bins.

%
d
e
m
u
es
tr
as

cuantización
LSB Drop
LSB OR

Figure D.11: Error distribution with 8-bit data width
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Figure D.12: Error distribution with 10-bit data width
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Figure D.13: Error distribution with 12-bit data width
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