Instituto Tecnológico de Costa Rica

Escuela de Ingeniería en Seguridad Laboral e Higiene Ambienta

Proyecto de Graduación para optar por el grado de Bachillerato universitario en Ingeniería en Seguridad Laboral e Higiene Ambiental

Incorporación de las condiciones de Seguridad Humana y Protección contra incendios en la fase de diseño del nuevo edificio de Residencias estudiantiles del Instituto Tecnológico de Costa Rica.

Realizado por:

Zeidy Marín Murillo 200655538

Profesora Asesora: Ing. Tannia Araya Solano

Asesor Industrial: Ing. Saúl Fernández

AGRADECIMIENTOS

Es difícil agradecer específicamente a cada una de las personas que me han ayudado de alguna forma en cuatro años de vida universitaria. Sin embargo, durante el desarrollo de esta última etapa es necesario dejar constancia de mi gratitud a las personas que contribuyeron con la realización del actual proyecto.

Gracias a Dios, por permitirme vivir esta experiencia y por darme fortaleza en los momentos difíciles.

Gracias al personal de la Oficina de Ingeniería del ITCR, por su colaboración constante y acertada.

Gracias al Ing. Saúl Fernández, por darme la oportunidad, por su ayuda y aporte de conocimientos para desarrollo del proyecto.

Gracias a la Ing. Tannia Araya, por asesoramiento y apoyo durante todas las fases del proyecto.

Zeidy Marín Murillo

DEDICATORIA

A mi familia, por darme su apoyo incondicional que atraviesa todas las barreras geográficas.

A mis amigos, que son mi soporte cuando se desvanecen las fuerzas.

RESUMEN

El presente estudio tiene como finalidad proponer desde la fase de diseño del nuevo edificio de Residencias Estudiantiles, la incorporación de la seguridad humana y protección contra incendios. Para alcanzar este objetivo se tuvo que seguir una metodología específica que estuvo compuesta de la realización de entrevistas a distintos profesionales involucrados tanto en el programa de residencias estudiantiles del ITCR como en la fase de diseño del edificio, además de una revisión de la normativa existente, una evaluación del terreno donde va a ser construido el edificio y el establecimiento de escenarios específicos de incendio.

Dentro de los principales resultados del estudio se encontró que la población que albergará el edificio de residencias se caracteriza por la rotación constante lo que dificulta la formación continua en materia de seguridad humana y protección contra incendios, además la ubicación del proyecto en una zona de actividad sísmica representa un factor exógeno que contribuye a la vulnerabilidad del sitio, mientras que a nivel endógeno las prácticas y comportamientos inseguros pueden ser causa principal del inicio de un incendio. Estas características hacen necesario que se establezca una estrategia planificada y estructurada de formación e información para que se logren optimizar y hacer efectivas tanto las especificaciones técnicas que se diseñen como las medidas administrativas que se propongan.

Debido a las condiciones que rodean el establecimiento del edificio, se realizan dos propuestas de diseño, eligiendo la instalación de un sistema de rociadores automáticos y detectores de humo; cuya probabilidad de fallo es de 0, 0000249. Sin embargo, para asegurar la eficacia del mismo se propone la implementación de un programa gestión de la Seguridad humana y protección contra incendios dirigido a la administración de las especificaciones técnicas diseñadas y hacia la formación de la población residente; con el fin de asegurar la integridad física de los ocupantes y el patrimonio del ITCR.

Índice General

ndice General	5
ndice de Figuras	9
I. INTRODUCCION	10
A. Identificación de la empresa	10
1. Antecedentes históricos	10
2. Principios Estratégicos	10
3. Ubicación Geográfica, Población	11
4. Estructura organizativa	11
5. Productos y Mercado:	12
B. Descripción del problema	13
C. Objetivos	17
1. Objetivo General	17
2. Objetivos Específicos	17
D. Alcances y Limitaciones	18
1. Alcances	18
2. Limitaciones	18
II. MARCO TEÓRICO	19
III. METODOLOGÍA	22
A. Diseño metodológico	22
B. Tipo de Investigación	23
C. Fuentes de investigación	23
3. Fuentes Primarias	23
4. Fuentes secundarias	23
D. Operacionalización de las variables	24
E Unidad de estudio:	28

F. Descripción de herramientas de diagnóstico o recolección de información	28
G. Plan análisis	35
IV.ANÁLISIS DE LA SITUACIÓN ACTUAL	39
A. Adaptabilidad técnica	39
Contexto del nuevo edifico de Residencias Estudiantiles	39
2. Adaptabilidad técnica e interacción social del edificio	44
B. Establecimiento de Posibles escenarios de incendio	46
V.CONCLUSIONES	53
VI.RECOMENDACIONES	55
VII.ALTERNATIVA DE SOLUCIÓN	57
A. Especificaciones técnicas de seguridad humana.	58
B. Evaluación de las especificaciones técnicas y sistemas de detección y supr	
C. Sistema de supresión de incendios	62
1. Elementos de apoyo del sistema de supresión contra incendios	64
1. Presupuesto	65
D. Programa de Administración de la Seguridad Humana y Protección contra incendios para el nuevo edificio de residencias estudiantiles	
VIII.BIBLIOGRAFÍA	88
1. Libros	89
2. Internet	89
IX.APÉNDICES	93
X ANEXOS	21

Índice Cuadros

	pperacionalizacion 17	ae	variables	aei	objetivo	especifico
Cuadro 2.	Operacionalización	de	variables	del	objetivo	específico
Cuadro 3.	Operacionalización	de	variables	del	objetivo	específico
	Operacionalización)				-	-
	5. Guía			•		
	Propuesta de		-	-		
protección con	estra de corrida de M tra incendios para e	l diseño	del edificio	de Re	sidencias	Estudiantiles
	Perfil característico					
	Perfil característico					
incendios	riz comparativa de los aplicable	al	edificio	c	le	Residencias
Cuadro 11. Res de ITCR	umen establecimiento Residencias	de los po		narios de udiantiles	•	ara el edificio del 44

Cuadro	12.	Criterios	de	especificaci	ones t	écnicas	de	seguridad	que
									56
Cuadro		13	3.	•	Caracterí	sticas		espe	ciales
señalizad	ción								57
Cuadro 1	4. Crit	erios de con	fiabilida	ad según FO	SM				68
		-			_			e supresiór	
incendios	S								60
								e supresiór	
incendios	S								61
Cuadro '	17. Ca	ıracterísticas	de los	extintores	propuesto	os para e	el edific	cio de reside	ncias
estudiant	iles								62
Cuadro	18. E	stimación d	e pres	upuesto po	compra	a de ele	mentos	del sistem	a de
rocidado	res aut	tomáticos							63

Índice de Figuras

Figura	1.	Estructura	Organiz	ativa	del	Instituto) Te	cnológico) de	Costa
Rica										6
			_							
Figura		2.	Proc	esos		de		Análisi	S	de
Riesgo.										13
Figura 3	3. Diag	grama de secu	iencia de	plan de	e anális	sis por va	riables	s pertened	cientes a	a la fase
del	proye	ecto sobre	e seg	uridad	h	umana	у	protec	ción	contra
incendio	os									27
Figura ∠	1. Grát	ico de cantida	ad de acor	npaña	ntes qu	ue ingres	an a la	s residen	cias	
estudiar	ntiles	oor estudiante	;							
resident	te .									34
roolaoin										
Figura	5.	Valoración	n de	la	evalu	ación	de	sitio	según	cada
compon	ente								· ·	36
oopo										
Figura 7	7. Pro	ceso de reali	zación de	una II	amada	de eme	rgenci	a desde l	as Resi	dencias
- Estudia	ntiles						-			44

I. INTRODUCCION

A. Identificación de la empresa

1. Antecedentes históricos

El Instituto Tecnológico de Costa Rica fue creado mediante Ley No. 4777 del 10 de junio de 1971, como una institución nacional autónoma de educación superior universitaria, dedicada a la docencia, la investigación y la extensión de la tecnología y ciencias conexas para el desarrollo de Costa Rica. (ITCR 2009).

Es una de las 4 universidades estatales de Costa Rica, cuyo funcionamiento se mantiene a través de presupuestos públicos.

2. Principios Estratégicos

Misión

"Contribuir al desarrollo integral del país, mediante la formación de recursos humanos, la investigación y la extensión; manteniendo el liderazgo científico, tecnológico y técnico, la excelencia académica y el estricto apego a las normas éticas, humanístas y ambientales, desde una perspectiva universitaria estatal de calidad y competitividad a nivel nacional e internacional."(ITCR 2009)

Visión

"El Instituto Tecnológico de Costa Rica será una Institución de reconocido prestigio nacional e internacional, que contribuirá decididamente a la edificación de una sociedad más solidaria, incluyente, respetuosa de los derechos humanos y del ambiente, mediante la sólida formación de recurso humano, la promoción de la investigación e innovación tecnológica, la iniciativa emprendedora y la estrecha vinculación con los sectores sociales y productivos." (ITCR 2009)

3. Ubicación Geográfica, Población

El Instituto Tecnológico de Costa Rica se encuentra ubicado en el Barrio San Agustín, del edificio de la MUCAP en Cartago 100 metros sur 50 metros este, cantón Central de Cartago distrito Oriental.

4. Estructura organizativa

La estructura organizativa de la institución, tiene importancia, debido a que la Oficina de Ingeniería es un departamento dependiente de los organismos superiores del ITCR, a saber Asamblea Institucional, Consejo Institucional y la Rectoría. Lo que quiere decir que este departamento tiene la responsabilidad absoluta de la planificación del proceso de desarrollo de los proyectos de infraestructura en el ITCR y por tanto, la necesidad de una

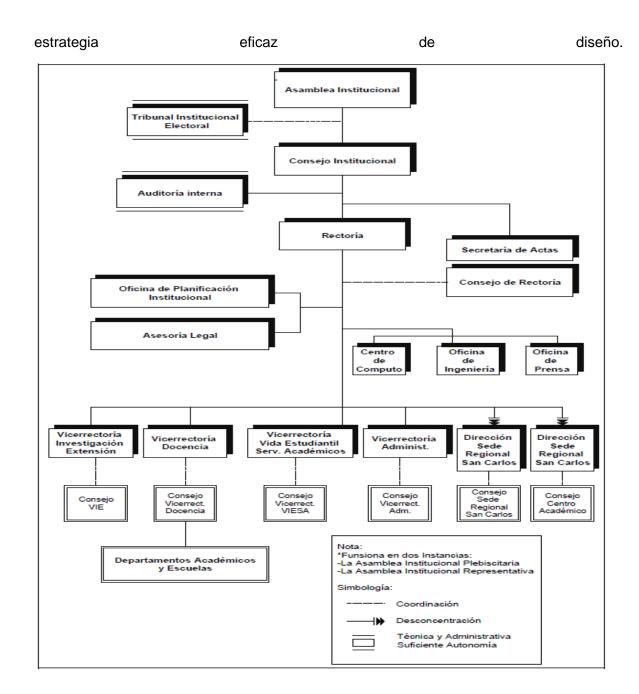


Figura 1. Estructura Organizativa del Instituto Tecnológico de Costa Rica

Fuente: ITCR, 2009

5. Productos y Mercado:

Actualmente la Institución cuenta con 19 programas activos de estudio formal, además de programas de postgrado y formación de técnicos (ITCR 2009). Como entidad pública de

educación superior recibe estudiantes de todas las zonas del país, incluso zonas alejadas del Área Metropolitana. Es por ello que debido al creciente ingreso de estudiantes procedentes de zonas rurales del país y la preocupación por facilitar la permanencia de estos estudiantes en la institución se abrió el programa de residencias estudiantiles como parte de los programas de apoyo estudiantil, que actualmente alberga alrededor de 200 estudiantes (Murillo Entrevista telefónica 22 de mayo de 2009)

B. Descripción del problema

Con la adopción de la Norma NFPA 101 como Reglamento de Seguridad Humana y la nueva legislación vigente en Costa Rica, se requiere que la infraestructura actual y futura en el país sea evaluada y diseñada respecto a las mismas. Actualmente, el Plan táctico de infraestructura 2009-2014 del Instituto Tecnológico de Costa Rica no ha contemplado en la fase de diseño de los proyectos, las especificaciones de seguridad humana y protección contra incendios de esta reglamentación. Uno de los proyectos de este plan es el nuevo edificio de residencias estudiantiles, el cual se encuentra en la primera fase de diseño, y para el mismo no se han generado hasta ahora; estrategias para que se incorporen las especificaciones técnicas de seguridad humana y protección contra incendios necesarias para este tipo de edificio.

Entonces es cuando surge la interrogante que rodea el proceso de diseño del proyecto específico de Residencias Estudiantiles ¿Cómo incorporar las especificaciones técnicas de seguridad humana y protección contra incendios y las medidas administrativas de esas especificaciones desde la fase de diseño del edificio?

A. Justificación

La tendencia de crecimiento del Instituto Tecnológico de Costa Rica actualmente, refiere necesidades infraestructurales importantes, por lo que ha influido predominantemente en el desarrollo de gran cantidad de proyectos para suplir estas necesidades; una de ellas la del crecimiento de la población. Es por esto que desde una perspectiva de planificación nace el Plan Táctico de Infraestructura 2009-2014; el cual contempla la construcción de

varios edificios, dentro de los cuales se encuentra el Edificio de Residencias Estudiantiles. Especialmente por la demanda estudiantil del programa de alojamiento estudiantil, ya que cada semestre 150 personas en promedio solicitan el beneficio (Murillo M, Entrevista telefónica 22 de mayo de 2009).

Debido a que este proyecto pertenece al plan especificado, cuya planificación inició después de la aprobación del Reglamento de Seguridad Humana en Costa Rica, y considerando que los usuarios del edificio representarán una responsabilidad directa del Instituto Tecnológico de Costa Rica, se hace necesaria la incorporación de la seguridad humana y protección contra incendios en el mismo, especialmente porque los sistemas de protección contra incendios contemplados en el diseño de un edificio obedecen a tres objetivos principales que son: proteger la vida y la salud de las personas en los incendios, proteger la integridad del edificio y de la infraestructura que la rodea y limitar al máximo los impactos económicos, sociales y ambientales de un evento de esta índole (Hadjisophocleous 1998); la importancia de este proyecto se basa en dos plataformas de diseño: La incorporación de especificaciones técnicas de seguridad humana y protección contra incendios y los lineamientos generales para la administración de la seguridad humana y protección contra incendios una vez ocupado el edificio.

La incorporación de especificaciones técnicas de seguridad humana y protección contra incendios en la fase de diseño

El diseño de los proyectos de infraestructura se ve influenciado por la aprobación del Reglamento Técnico de Seguridad Humana y Protección contra Incendios que en su artículo 2 establece que las normas contenidas en ese manual y las complementarias al mismo son de aplicación obligatoria en el diseño y construcción de todo proyecto de obra civil destinado a la ocupación de personas de forma temporal o permanente. (INS 2007)

La importancia de la incorporación de la seguridad humana y protección contra incendios desde la fase de diseño de un edificio en el ITCR radica principalmente en la búsqueda de una estrategia eficaz, para prevenir pérdidas de vidas humanas y económicas por causa de un evento o emergencia que se pueda dar, entre ellas un incendio. Los incendios en edificios de las universidades no son eventos del todo esporádicos y que aunque parece que tienen una probabilidad muy baja, la vulnerabilidad que presentan los edificios y el impacto de los incendios, adquieren una alta significancia; según la Administración del fuego de Estados Unidos (USFA) (2006a) en Estados Unidos los incendios en

universidades causan 5 muertos y 51 heridos por año, además de 4.1 millones de dólares por pérdidas directas de infraestructura y equipos. En 1996 ocurrió un incendio accidental en una residencia estudiantil de la Universidad de Carolina del norte dejando 5 personas muertas, tres heridos y daños a la infraestructura de todo el edificio de aproximadamente 475 000 dólares (NFPA 2001a)

El número de emergencias que se producen en residencias universitarias aumentó en un 3% desde 1985 a 2005, tendencia que contradice la de estos eventos en otro tipo de infraestructura. En el período de 2002-2005 se presentó un promedio de 3300 incendios en residencias estudiantiles, esos incendios causaron la muerte de 7 personas, 46 personas heridas y 25 millones de dólares por daño directo a la propiedad. (Flynn 2007)(Cabral 2003). Es necesario indicar que la severidad en las consecuencias radicadas por incendio puede ser alterada por las deficiencias en protección de incendios que se tengan desde la etapa del diseño y construcción de un edificio. Por ejemplo, en el Año 2000 murieron tres estudiantes en la Universidad de Seton Hall, tras un incendio en un edificio que no contaba con rociadores (Reese 2003).

Las residencias estudiantiles no son el único sitio de posibles incendios en una Universidad estatal, en lo que va del año académico 2008- 2009 ya han muerto 4 personas por incendios en la Universidad Estatal de Plattsburgh en Nueva York (USFA 2009). En el período académico 2007-2008 fueron 18 personas muertas en incendios de la misma índole, entre ellas se encontraban tanto estudiantes como profesores (USFA 2008). Por lo que la exposición de personas que no tienen relación directa con el edificio es evidente.

Edificios universitarios de varios pisos son los principales afectados por los incendios tal es el caso del incendio en las residencias estudiantiles de la Universidad de Bekerly dejando saldos de personas muertas y daños en todos los pisos del edificio, aún cuando se habían diseñado para tal fin, hubo situaciones particulares que agravaron el incendio como la falta de compartimentación de las habitaciones, acabados interiores combustibles a lo largo del edificio, falta de entrenamiento para utilizar equipo contra incendios y así como la inexistencia de simulacros para escapar de un incendio (NFPA 2001).

Lineamientos generales para la administración de la seguridad humana y protección contra incendios una vez ocupado el edificio

Dentro de las causas más influyentes en el desencadenamiento de un incendio en Universidades y la muerte de personas en el mismo se encuentran el consumo de alcohol, mala disposición de materiales inflamables, estudiantes o personal sin capacitación en la manipulación de las alarmas y equipo contra incendios, disposición no accesible de los mismos, no se llevaban a cabo simulacros de incendio u otro tipo de emergencia, no se tenían sistemas de detección de incendios, problemas eléctricos, productos en cocinas (residencias), condiciones de la estructura, comportamientos humanos, entre otros (Cabral 2003)(Campagnola s.f.).

Lo anterior evidencia como es necesario que en todo edificio destinado a la ocupación masiva de personas se establezcan protocolos y programas de seguimiento para asegurar la eficacia de las disposiciones que se diseñen, para reducir o eliminar las pérdidas humanas y económicas que puedan generarse en caso de la materialización de un evento.

Los dispositivos de detección y supresión de incendios no son totalmente confiables si no hay un compromiso de las autoridades de una universidad para asegurar la eficacia del sistema; ya que en distintas universidades de Estados Unidos los programas de seguimiento forman la base del éxito de los sistemas contra incendios; porque las autoridades y Departamentos de vida estudiantil y residencias administran programas y procedimientos, con el fin de garantizar que todos los estudiantes usuarios de residencias estudiantiles tengan un lugar seguro para vivir y aprender. (Appalachian State University 2008).

Este estudio pretende generar una propuesta de diseño para la incorporación de las especificaciones de seguridad humana y protección contra incendios en los proyectos de infraestructura del ITCR; específicamente para el diseño del edificio de residencias estudiantiles, además de los lineamientos generales de la administración de la seguridad humana y protección contra incendios después de ocupado el edificio, esto con el fin de proporcionar una estrategia más completa para lograr la efectividad en el proceso de establecimiento del edificio.

C. Objetivos

1. Objetivo General:

Generar una propuesta para la incorporación de la seguridad humana y protección contra incendios desde la fase de diseño del edificio de Residencias Estudiantiles del ITCR.

2. Objetivos Específicos:

Determinar la adaptabilidad técnica de las especificaciones de seguridad humana y protección contra incendios bajo el contexto en el que se establecerá el nuevo edificio de Residencias Estudiantiles.

Definir las posibles situaciones de riesgo de incendio generadas por escenarios construidos a través de las condiciones especificadas.

Plantear una alternativa de diseño para la incorporación de especificaciones técnicas de seguridad humana y protección contra incendios y las medidas administrativas de seguimiento cuando el edificio esté ocupado

D. Alcances y Limitaciones

1. Alcances

El proyecto pretende establecer una guía para la incorporación de las especificaciones técnicas de seguridad humana y protección contra incendios, para un edificio en proceso de diseño del ITCR, con el fin de contribuir con el establecimiento seguro del mismo según el objetivo y características para las cuales va a ser construido

La generación de un programa de administración de la seguridad humana y protección contra incendios, que contemple, mantenimiento de equipo de supresión y extinción de incendios, capacitación y formación en protocolos de evacuación, protocolos de simulacros.

2. Limitaciones

Las especificaciones resultantes del estudio aplican únicamente para las condiciones particulares del edificio de residencias estudiantiles, la posible aplicación de la metodología del presente estudio en otro proyecto de infraestructura, requerirá un análisis de viabilidad y compatibilidad.

Debido a que fue un proyecto generado en la fase de diseño, no se pudo realizar la evaluación directa de las medidas administrativas propuestas, para la fase de ocupación del edificio.

La propuesta que se generó, estuvo enfocada únicamente en los escenarios de incendio propuestos en el actual proyecto, las medidas pueden no aplicar o ser menos eficaces para otro tipo de escenario.

II. MARCO TEÓRICO

Especificaciones técnicas de seguridad humana y protección contra incendios

El proceso completo del proyecto de un nuevo edificio refiere a la integración de un equipo de planeamiento, diseño y construcción; cuya unión permite que, desde diferentes perspectivas se analicen los objetivos del mismo, y así determinar de la forma más completa posible, las condiciones últimas bajo las cuales se establecerá el edificio, estos objetivos deben analizarse desde las perspectivas de accesibilidad, estética, costo-efectividad, funcionalidad, preservación histórica, productividad, seguridad y sostenibilidad (Prowler 2008). Dentro del ámbito de la seguridad, se encuentran la seguridad humana y seguridad contra incendios que en estudios de infraestructura realizados anteriormente han incorporado el concepto de "seguridad extendida" que contempla la evaluación de las condiciones de protección contra incendios en un edificio determinado, respaldando lo que estableció la NFPA en el 2001 sobre la necesidad de diseñar sistemas de protección contra incendios y de seguridad humana que se adecuaran a las necesidades de las personas que ocuparan un edificio, especialmente considerando el tema de discapacidad (Lundin 2006).

Generalmente, la evaluación de condiciones de seguridad humana y protección contra incendios se ha establecido prácticamente en estudios hechos sobre infraestructuras ya existentes, sin embargo, existe una nueva corriente para la incorporación de estos dos aspectos desde la fase de diseño de un edificio aplicando los principios de ingeniería de protección contra incendios en el marco de aplicación de los reglamentos correspondientes, en la fase de elaboración del anteproyecto de un edificio (Hadjisophocleous 1998).

La prevención de incendios refiere a un conjunto de actividades y programas que incluyen ingeniería, educación, ejecución y evaluación (ODF 2004), por lo tanto es necesario que para desarrollar estas actividades se tenga claro el concepto de riesgo que se puede definir como la probabilidad de ocurrencia de un evento, que puede además conceptualizarse como la función del peligro, la probabilidad y las consecuencias (Frantzich s.f.) y el análisis del mismo que puede estar relacionado con otros eventos distintos al incendio, el proceso de análisis de riesgo se muestra en la siguiente figura:

Definición del sistema

Identificación de peligros

Análisis de Consecuencias

Cálculo del riesgo

Documentación

Figura 2. Procesos de Análisis de Riesgo.

Fuente: Frantzich 1998

Por ejemplo el riesgo de incendio está asociado a las condiciones del edificio, la posibilidad de que ocurra y las consecuencias que tenga, estas últimas se pueden ver desde dos puntos de vista: pérdidas económicas y daños a las personas. Por lo tanto la ingeniería de seguridad contra incendios puede definirse como la aplicación de principios científicos y de ingeniería al efecto de un incendio en pro de reducir la pérdida de vidas humanas y daños a la propiedad, a través del cálculo del riesgo y soluciones óptimas de diseño (Purkiss 2007).

Es necesario aclarar que el riesgo de un evento, siempre va a estar relacionado con la incertidumbre de su ocurrencia y con factores aleatorios que determinarán las características del mismo, por lo que establecimiento del diseño de seguridad debe estar enfocado a la determinación de factores parciales de seguridad que contemplen esas

incertidumbres, cuya confiabilidad puede ser determinada a través de métodos estadísticos tal es el caso del FOSM (First Order-Second Moment) (Bilal et al 1987), el cual es un técnica que permite obtener diseños de ingeniería con niveles de confiabilidad y sensibilidad según cada escenario (Magnusson et al 1996)(Soares y Texeira 2000), es un proceso que se basa en la confiabilidad e incertidumbre y es muy utilizado utilizado en la ingeniería estructural (Frantzich 1999). Sin embargo, también se ha incrementado su aplicación en las evaluaciones de salud pública y evaluaciones de seguridad contra incendios (Hammet 1997) (Magnnusson et al 1997). La importancia de este método es que analíticamente permite obtener la significancia estadística para la solución de problemas en el diseño.

Respecto a los diseños de seguridad en las estructuras siempre deben establecerse mediante cinco áreas específicas a saber: control de ignición, control de medios de escape, detección, control de expansión del fuego y prevención del colapso de la estructura (Purkiss 2007). Que refieren específicamente a medidas que se deben tomar en distintas etapas de un escenario Especialmente

En cuanto al proceso de administración de las seguridad humana y protección contra incendios se han encontrado que en edificios destinados para la ocupación temporal de personas como lo son los hoteles se ha encontrado que aún cuando el 12% de los incendios se han generado en las habitaciones, estas están relacionadas con el 74% de las muertes de las personas, esto considerando que aunque se contaba con medios para la extinción de incendios las personas no estaban adiestradas en el manejo del mismo (Ahrens 2008). Así que las medidas administrativas que se proponen en la protección contra incendios y la seguridad humana van dirigidas a las actividades que se realicen para asegurar que a la hora de un evento se tengan mínimamente pérdidas humanas y económicas.

Los programas de administración de la seguridad y seguridad humana que anteriormente se contemplaban para las plantas industriales (Petroleras, industria en general), se han expandido a otras áreas como: hotelería, seguridad civil, seguridad de pasajeros, así como campus y residencias universitarias. (PRAXIOM 2009). Así la información que se genera en un programa de administración de la seguridad debe tomar en cuenta el establecimiento de políticas y objetivos administrativos, recursos humanos y actividades que se definen mediante un proceso claro: análisis de seguridad humana, desarrollo del programa de seguridad humana, documentación del mismo, implementación, evaluación y mejoramiento del programa. (ISO 27001, 2009).

III. METODOLOGÍA

A. Diseño metodológico

El presente estudio es de tipo inductivo ya que el mismo se va a referir únicamente a un edificio del Plan Táctico de Infraestructura 2009-2014, tratando de establecer la metodología para la incorporación de especificaciones técnicas de seguridad humana y protección contra incendios desde la fase de diseño de un edificio.

B. Tipo de Investigación

Es un estudio descriptivo, ya que busca establecer o especificar propiedades o características importantes de la seguridad en la construcción, seguridad humana y protección contra incendios, que permitan el diseño de la propuesta para el diseño seguro de edificios. Esto debido a que no existen estudios o antecedentes que definan el grado de profundidad del mismo.

C. Fuentes de investigación

3. Fuentes Primarias

- ✓ Libro Probabilidad y Estadística aplicada a la ingeniería.
- ✓ Libro Probabilidad y Estadística para ingenieros.
- ✓ National Fire Protection Association: NFPA 101 "Code for Human Protection
- ✓ Información brindada por colaboradores de la empresa: Oficina de Ingeniería, Arquitectas diseñadoras del proyecto.

4. Fuentes secundarias

Se considerarán como fuentes de consulta secundarias las páginas web de entidades y organizaciones tales como:

- ✓ Occupational Safety and Health Administration (OSHA)
- ✓ National Fire Protection Association
- ✓ Base de datos: Webometrics repositories: Top 300
- ✓ Springer Link

D. Operacionalización de las variables

Los alcances del proyecto, van a estar determinados por la consecución de los objetivos propuestos, que se llevará a cabo a través de una serie de actividades. En los siguientes cuadros se muestran cada objetivo específico con su correspondiente operacionalización.

Cuadro1. Operacionalización de variables del objetivo 1.

		Conceptualización	Indicadores	Herramientas de Recolección de información
de seguridad humana y de l protección contra incendios bajo de s el contexto en el que se prot	e las especificaciones e seguridad humana y	La capacidad que se tenga de incorporar técnicamente las especificaciones de seguridad humana y protección contra incendios establecidos en la reglamentación vigente, según las directrices y requerimientos de la misma para el caso específico del edificio de Residencias Estudiantiles.	-Cantidad y tipo de poblaciónCantidad de niveles -Tipos de sistemas de supresión de incendiosTipos de Escenarios de incendio -Disponibilidad de reglamentos -Disponibilidad de requerimientos específicos de seguridad humana y protección contra incendios en la reglamentación contra incendios.	Entrevistas estructuradas y semi-estructuradas dirigidas a: Encargado de residencias - Ingeniería de Bomberos. Reunión con el equipo de diseño del proyecto. Ingeniero en Seguridad Laboral e Higiene Ambiental -Cuestionario aplicado a estudiantes residentes. WCS y MLH (Determinación del peor escenario y el escenario más posible que pueda ocurrir) Matriz de especificaciones: -NFPA 101, -NFPA 101, -NFPA 10, -

Cuadro 2. Operacionalización de variables del objetivo 2.

Objetivo	Variable	Conceptualización	Indicadores	Herramientas de Recolección de información
Definir las posibles situaciones de riesgo de incendio generadas por escenarios construidos a través de las condiciones especificadas.	Posibles Situaciones generadores de incendio.	Escenarios específicos que a través de una condición particular generen un incendio en el edificio provocando consecuencias según los eventos en específico.	Carga de fuego. Cantidad de población afectada. Momento de ocurrencia del escenario. Áreas directamente afectadas.	Establecimiento de WCS y MLH Cuadro descriptivo: Cantidad de Población, sistemas de supresión contra incendios.

Cuadro 3. Operacionalización de variables del objetivo 3.

Objetivo	Variable	Conceptualización	Indicadores	Herramientas de Recolección de información
Plantear una alternativa de diseño para la incorporación de especificaciones técnicas de seguridad humana y protección contra incendios y las medidas administrativas de seguimiento cuando el edificio esté ocupado	Alternativa de diseño especificaciones técnicas de seguridad humana y protección contra incendios	Propuesta de la incorporación del conjunto de especificaciones técnicas de seguridad humana y protección contra incendios aplicables en el diseño del nuevo edificio de Residencias	-Índice de Riesgo IndividualCarga de fuego y cantidad de población afectadaDisponibilidad de especificaciones de seguridad humana y protección contra incendiosMomentos de ocurrencia de peor de los escenariosNivel de los componentes.	Método First Order Second Moment: -Matriz de especificaciones de seguridad humana y protección contra incendios. -WCS y MLH - Nivel de componentes (Evaluación de sitio)

Cuadro 4. Operacionalización Objetivo específico 3 (Continuación)

Objetivo	Variable	Conceptualización	Indicadores	Herramientas de Recolección de información
Plantear una alternativa de diseño para la incorporación de especificaciones técnicas de seguridad humana y protección contra incendios y las medidas administrativas de seguimiento cuando el edificio esté ocupado	Medidas administrativas de seguimiento	Disposiciones de carácter administrativo y organizacional planteadas para darle continuidad a la seguridad humana y protección contra incendios	-Tipos de escenarios. -Tipo de población. -Cantidad de reglamentos disciplinarios existentes. -Nivel de componentes. Partes de un programa de Protección contra incendios: -Políticas -Estructura -Funciones -Recursos -Actividades	Matriz de verificación de criterios de especificaciones técnicas. -Cuadro descriptivo: Entrevistas -Nivel de componentes (Evaluación de sitio) WCS y MLH Estándar de la Seguridad ya administración de la seguridad de la organización
			-Métodos de evaluación del programa	PRAXIOM de Canadá e ISO 27001

E. Unidad de estudio:

La presente investigación está dirigida al estudio del proyecto de Residencias Estudiantiles perteneciente al Plan Táctico de Infraestructura 2009-2014, cuya selección fue determinada por conveniencia.

F. Descripción de herramientas de diagnóstico o recolección de información.

Cuestionario de aplicación a estudiantes residentes: debido a que generalmente dentro de la convivencia en residencias estudiantiles, suceden gran cantidad de incidentes que no son registrados por los encargados, es necesario obtener información directa de los beneficiarios del programa de residencias, para eso se plantea la realización de un pequeño cuestionario con preguntas cerradas aplicado a una muestra definida por conveniencia, fue aplicada a los residentes del edificio D (48 estudiantes), este cuestionario se expone en el Apéndice I.

Entrevistas estructuradas y semiestructuradas: para la recolección de información respecto a la adaptabilidad técnica que puedan tener las especificaciones de seguridad humana en el contexto bajo el cual se establecerá el proyecto que se evaluará en el presente estudio, es necesaria la recopilación de datos de profesionales allegados al proyecto y expertos en las áreas de seguridad humana y protección contra incendios, para esto se propone la entrevista individual y personalizada basada en una serie de preguntas centrales para generar así la información completa (entrevistas semiestructuradas), necesaria para determinar las condiciones bajo las cuales se construirá el proyecto. La base de estas entrevistas para cada profesional se centrará en criterios de seguridad humana particulares referidos específicamente al contexto bajo el cual se establecerá el edificio de Residencias Estudiantiles. Tal como se muestra en el siguiente cuadro:

Cuadro 5. Guía temática para las entrevistas propuestas.

Profesional			
Entrevistado	Temas que se abordarán		
Equipo de diseño:	-Cantidad de niveles,		
-Ing. Saúl Fernández	-Materiales de		
director del proyecto,	construcción y acabados,		
-Arq. Disnery Mena	-Cantidad de personas,		
Orozco,	Sistemas de supresión de		
-Arq. Mónica Gómez	incendios		
Zúñiga			
	Tipo y cantidad de		
	población,		
Encargada de	Tipo de ocupación,		
Residencias:	Condiciones especiales,		
Lic. María Félix Murillo	Reglamentación de		
	residencias,		
	Personal administrativo.		
	Soluciones de Seguridad		
Ingeniera en	Humana y Protección		
Seguridad Laboral e	contra incendios,		
Higiene Ambiental:	adoptadas para diferentes		
Ing. Andrea Chacón	edificios en el ITCR,		
mg. / marea emaeem	Sistemas de supresión de		
	incendios.		
	Factibilidad de los tipos de		
	sistemas de supresión de		
Departamento de	incendios para el tipo de		
Ingeniería de	ocupación,		
Bomberos	Requerimientos de		
	Seguridad Humana y		
	Protección contra		
	incendios.		

Los resultados de estas entrevistas se pretenden plasmar en un cuadro descriptivo que caracterice el perfil del edificio estudiado en el presente proyecto y contribuya al establecimiento del contexto bajo el cual va a ser construido el edificio en estudio; a continuación se presenta un ejemplo de la posible conformación de este cuadro.

Cuadro 6. Propuesta de formato para presentación del cuadro descriptivo

Criterio de descripción	Observaciones	
	Estudiantes	
Cantidad Población	Funcionarios	
Cartidad i Obiacion	Profesores	
	Otros (Especificar)	
	Educativa	
Tipo de ocupación	Especial	
Tipo de ocupación	Oficinas	
	Residencial/Hospedaje	
Materiales		
Waterialos	Construcción	
Sistemas de	Extintores	
supresión de	Sist. Rociadores	
incendios	Detectores de humo	
	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

Fuente: Marín Z, 2009

Matriz de especificaciones: La matriz de especificaciones es una herramienta que permite relacionar los criterios de diseño del proyecto con los respectivos estándares que establecen las normativas para cada uno de estos, este cruce permitirá observar de manera conjunta los factores determinantes, con el fin de obtener medidas compatibles entre sí.

Cuadro 7. Muestra de corrida de Matriz de especificaciones de seguridad humana y protección contra incendios para el diseño de los Edificios de Residencias Estudiantiles.

Criterio diseño	de	Estándar o Normativa de Seguridad Humana y Protección contra incendios aplicable		
		NFPA 101	Reglamento de Seguridad Humana	Ley 7600
Escaleras emergencia	de			
Rampas acceso	de			
Sistemas supresión contra incendios	de			

Secuencia de Eventos: La secuencia de eventos se refiere a la descripción que permite establecer los eventos más frecuentes, el cual es una vía para estructurar la secuencia de los mismos (Frantzich s.f., mediante la cual, tras entrevistas con los estudiantes residentes y encargados de este programa, se definen diferentes escenarios de incendio con una secuencia de eventos que ya se han presentado en este tipo de edificaciones. Evaluación de Sitio: esta es una herramienta propuesta por las Naciones Unidas que pretende evaluar semicuantitativamente el terreno donde se va a llevar a cabo la construcción de los edificios en estudio, esta herramienta permite valorar una serie de componentes a saber:

Componente Bioclimático

Componente ecosistema

Componente de interacción (Contaminación)

Componente Geología

Componente medio construido

Componente Institucional social

Estos componentes son evaluados a través de variables que pertenecen a cada componente de acuerdo a niveles establecidos de 1 a 3 según indicaciones de observación que se debe seguir a partir de ahí se obtiene una ponderación del grado de vulnerabilidad que tiene el terreno, estos estimados se seleccionarán según las condiciones que expresa la tabla de selección de la misma herramienta, de forma general la escala tiene los siguientes significados:

- Los valores de 1 en la escala representan las situaciones más riesgosas, peligrosas o ambientalmente no compatibles con el tipo de proyecto que se evalúa
- Los valores de 2 en la escala representan situaciones intermedias de riesgos, peligros o ambientalmente aceptables con limitaciones con el tipo de proyecto que se evalúa
- Los valores de 3 en la escala representan situaciones libres de todo tipo de riesgos y compatibles ambientalmente.

Una vez que ha establecido los valores de E (Exposición) para cada componente, se deben obtener P y F, en los cuales P representa el peso o importancia del problema. La variable F refiere a la frecuencia con que las variables del componente fuesen evaluadas con la misma condición. Para estimar cada componente se utilizará la siguiente fórmula:

VALOR TOTAL = $E \times P \times F / P \times F$

Una vez que se obtiene este valor total para cada componente se calculará un promedio total el cual estará entre 1 y 3, que según las Naciones Unidas estos resultados tienen el siguiente significado:

- Valores entre 1 y 1.5 significa que el sitio donde se propone emplazar el proyecto es muy vulnerable, con alto componente de riesgo a desastres y/o con un severo deterioro de la calidad ambiental pudiendo dar lugar a la pérdida de la inversión o lesionar la salud de las personas.
- Valores entre 1.6 y 2.0 significa que el sitio donde se propone emplazar el proyecto es vulnerable ya que tiene algunos riesgos a desastres y/o existen limitaciones ambientales que pueden eventualmente lesionar la salud de las personas que habitan el sitio.

- Valores entre 2.1 y 2.5 significa que el sitio es poco vulnerable, con muy bajo componente de riesgo a desastres y/o bajo deterioro de la calidad ambiental a pesar de limitaciones aisladas.
- Valores superiores a 2.6 significa que el sitio no es vulnerable, exento de riesgo y/o buena calidad ambiental para el emplazamiento del proyecto. El histograma referido para la evaluación de sitio correspondiente se muestran en el Anexo 2.

Descripción de Herramientas del plan de análisis: Seguridad humana y protección contra incendios.

WCS y MLH: permite definir cuál va a ser el peor escenario que se puede dar según las condiciones encontradas (WCS) y aquellos escenarios que se puedan presentar con mayor frecuencia (MLH), esta herramienta reunirá la información del cuadro descriptivo y el árbol de eventos para obtener una caracterización cualitativa y cuantitativa respectivamente de las posibles circunstancias que puedan rodear los posibles eventos.

Matriz de priorización de componentes: esta matriz permitirá el desarrollo de una priorización de los componentes encontrados en cada terreno a través de la Evaluación de Sitio, donde se pretende construir el edificio analizado en el presente estudio, esta tomará importancia al modificar según la priorización de componentes: los escenarios y el conjunto de medidas administrativas

CFAST Software: la aplicación de este software, permite el desarrollo de una metodología para establecer algunas de las consecuencias resultantes de un escenario de incendio predefinido, es un modelo de dos zonas que permite calcular la evolución de la distribución del fuego, los gases y humos de combustión así como de la temperatura en los compartimentos a lo largo de un edificio (Peacok 2008). Para la utilización de esta aplicación informática se hace necesario establecer cuáles van a ser las condiciones del incendio a desarrollarse.

El modelo de ecuaciones de CFAST toma la base matemática de un problema de ecuaciones diferenciales ordinarias considerando para estas, la ley de la conservación de la energía, la ley de la conservación de la masa, la ley de gases ideales y la relación que hay entre densidad y energía interna (Peacok 2008)

Método First Order Second Moment (FOSM): este modelo permite proveer de información acerca de la confiabilidad de un sistema descrito a través de la función

límite de estado, para variables aleatorias no correlacionales, esta confiabilidad expresada a través del índice β, que es una medida de seguridad. Para obtener este índice se debe determinar el valor promedio y la desviación estándar del margen de seguridad (G); considerando que de manera general:

$$G(x) = R - S$$

La ecuación completa de esta función, tomando en cuenta las variables aleatorias no correlacionales se describe a continuación:

$$G = S$$
, $U_S - D - T_{inv} - R_{fire} - R_{Neigh} - E - T_{button}$

Donde,

S=Tiempo hasta que las condiciones de transporte de humos se vuelve insostenible (CFAST).

U_s= modelo de incertidumbre del modelo de transporte de humos (CFAST).

D= Tiempo de detección (calculado o t_{det}).

T_{inv}=Tiempo de investigación para los encargados.

R_{fire}=Tiempo de respuesta para la búsqueda del compartimento donde se encontró el fuego.

R_{neigb}= Tiempo de búsqueda en una habitación cercana.

E= Tiempo de movimiento.

T_{button}= Tiempo para llegar a un botón o o dispositivo de alarma.

Esta ecuación de estado va a determinar el tiempo de escape que tenga una persona respecto a los diferentes escenarios de incendio que se establecerán y mediante los distintos diseños de seguridad que se propondrán, esta ecuación se logra evaluar mediante el Algoritmo de rackwitz:

El procedimiento para utilizar el algoritmo de rackwitz es el siguiente:

1. Asumir valores iniciales para X_i, con i=1 a hasta n

2. Calcular
$$x_i = \frac{x_{i-\mu_{xi}}}{\sigma_{xi}}$$

- 3. Evaluar $\left(\frac{\partial g}{\partial xi}\right)$ y a_i^* en X_i
- 4. Calcular $X_i = \mu_{Xi} a_i \sigma_i \beta$
- 5. Sustituir X_i en g(X) = 0 y resolver el sistema de ecuaciones para β
- 6. Usar β para probar los valores de $X_i = -a_i\beta$
- 7. Se repiten los pasos de 3 a 6 hasta que logre converger en β

Éste β sería el índice de confiabilidad que se obtendría para cada escenario. Para calcular el riesgo individual se calcula la probabilidad de fallo de de cada solución de seguridad, mediante la siguiente ecuación:

$$P_{u,i} = 1 - \varphi(\beta)$$

G. Plan análisis

El plan de análisis correspondiente al presente estudio se propone en dos plataformas: Seguridad Humana y Protección contra incendios, una vez terminados ambos procesos de análisis se establecerán las propuestas de diseño correspondientes. A continuación se presenta el diagrama de la lógica de análisis para la plataforma de Seguridad Humana y Protección contra incendios:

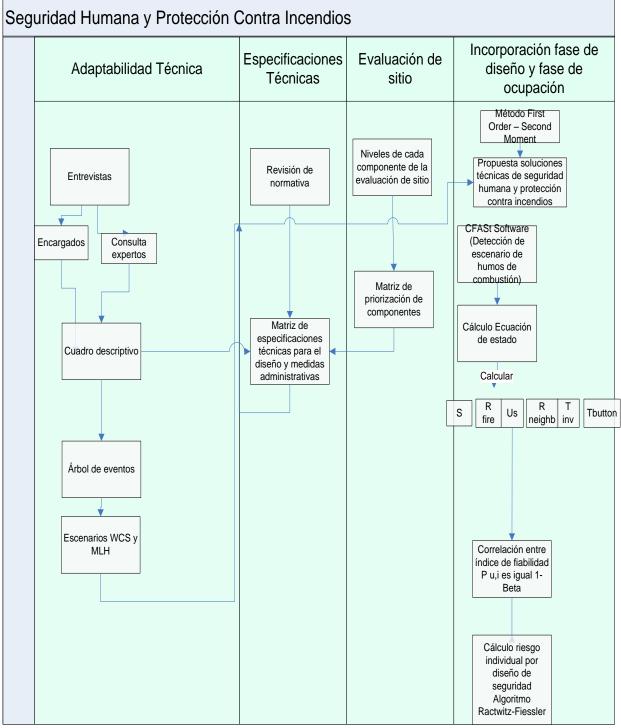


Figura 3. Diagrama de secuencia de plan de análisis por variables pertenecientes a la fase del proyecto sobre seguridad humana y protección contra incendios.

Básicamente la realización del presente estudio, se desarrollará a través de las cuatro fases expuestas en la figura 3. En las tres primeras se busca relacionar los resultados

de sus herramientas, describiendo escenarios a través de la combinación de información obtenida por las entrevistas y reglamentos estudiados; con el fin de complementar la información que exponga cada una así, la revisión de la normativa es necesaria porque permite contemplar los aspectos técnicos de seguridad humana y protección contra incendios que exige la reglamentación para los proyectos de infraestructura; sin embargo se debe tomar en cuenta que este tipo de reglamentación es de carácter genérico, por lo que se proponen las entrevistas, cuadros descriptivos y los respectivos WCS y MLH, con el fin de establecer el contexto que rodea el proyecto de Residencias Estudiantiles y así, hacer más precisa y eficaz la incorporación de las especificaciones técnicas respectivas.

La Evaluación de Sitio permitirá conocer aspectos fundamentales del terreno donde va a ser construido el edificio, así como condiciones existentes en los alrededores del mismo a través de diferentes componentes a evaluar; estos componentes contribuirán a definir el contexto o situación existente para el establecimiento del edificio y por tanto, contribuyen a la determinación de las especificaciones de seguridad humana y protección contra incendios necesarias para el mismo. Esta herramienta influye directamente sobre la fase de diseño de las medidas técnicas, ya que por ejemplo; permitirá a través de la evaluación del terreno, la disposición de las zonas de reunión para las rutas de evacuación, además según el componente de interacción social, ayudará a delimitar las estrategias de acción en caso de emergencia.

La eficacia de la incorporación de las especificaciones técnicas de seguridad humana y protección contra incendios y el programa de administración de las mismas cuando el edificio esté ocupado dependerá directamente de la efectividad que tenga la propuesta de diseño para la solución del problema planteado. En este caso al tratarse de un edificio que no ha sido construido, la medición de la factibilidad de la misma estará determinada por el índice de fiabilidad o riesgo individual que se determine para las diferentes propuestas de solución. Así el escenario cuyas medidas de diseño presenten menor riesgo individual serán aquellas que se escojan para desarrollarlas en el proyecto; el proceso de diseño de las mismas incluirá:

- Guía de especificaciones técnicas de seguridad.
- Incorporación de las especificaciones técnicas en los planos constructivos del proyecto.
- Presupuestar las medidas necesarias (Especificaciones técnicas).

- Establecer el programa de administración que incluya: los objetivos del mismo, jerarquización y roles de responsabilidad, planificación de estrategias de acción, proyección del presupuesto, generación de herramientas de evaluación del programa.
- Establecer las medidas administrativas necesarias: tales como capacitación, formación de brigadas de atención de emergencias, planificación de simulacros, protocolos de evacuación, entre otros.

IV. ANÁLISIS DE LA SITUACIÓN ACTUAL

A. Adaptabilidad técnica.

1. Contexto del nuevo edifico de Residencias Estudiantiles

El nuevo edificio de Residencias Estudiantiles representa un proyecto que desde la perspectiva de la Seguridad humana y protección contra incendios muestra una serie de particularidades determinantes que caracterizarán la ocupación del edificio y por tanto marcarán la dirección que deba llevar la estrategia efectiva para la protección del mismo. El hecho que sea un edificio de 4 niveles y que no se haya construido en el ITCR un edificio de tal magnitud hace que se deban considerar una serie de factores que en proyectos infraestructurales anteriores no se tomaron en cuenta.

A continuación se presenta un cuadro resumen de características particulares del edificio en estudio:

Cuadro 8. Perfil característico del edificio de Residencias Estudiantiles

Criterio de descripcio	Observaciones	
	Estudiantes	138-144
	Funcionarios	2
	Profesores	-
		Trabajador social o
Cantidad de		encargado
Población		(Encargado de la
		propuesta)
		Acompañantes de
		estudiantes
	Otros (Especificar)	residentes.
		Paredes
		de Concreto
Materiales		colado, ricalit,
		madera, piso
	Construcción	lujado.
Tipo de ocupación	Residencial/Hospedaje	$\sqrt{}$

Criterio de descripci	ón	Observaciones	
Niveles	Dos o más niveles	4 niveles	
Sistemas de supresión de incendios	Extintores Sist. Rociadores Detectores de humo	Aún no se tienen considerados	
Condiciones especiales	Préstamo de instalaciones a grupos di bienestar social, colegios científicos.		
Dinámica de la población	Período máxima ocupación	Desde la semana 8 hasta la finalización de cada semestre.	
\r, \tau_1	Capacidad del edificio	136-144 personas. Recorrido cada 15	
Vigilancia	Frecuencia	min.	
Reglamentos	Existentes	Reglamento de Convivencia,	
regiamentos	LAIGIGITICS	Reglamento de Residencias.	

Fuente: Datos obtenidos de entrevistas realizadas por Marín Z, 2009

El tipo de población que pueda albergar el edificio representa un factor determinante, los principales son los estudiantes residentes quienes al final serán los usuarios primordiales de dicho edificio, abarcan una población muy diversa proveniente de las zonas alejadas del país y que está rotando continuamente, ya que el periodo de estadía de los estudiantes fluctúa de 2 semanas a 6 años¹, esto quiere decir que así como varía la población, también se pueden presentar diferentes comportamientos dentro del ambiente de convivencia del edificio que pueden desencadenar un escenario de incendio o simplemente dificulte la formación continua e implantación de culturas específicas de convivencia u otros temas dentro de los que se deben incluir el de la prevención de incendios, especialmente porque al entrevistar a estudiantes actuales

-

¹ Comunicación personal con Licda. María Felix Murillo, Encargada de Residencias. Tema: Residencias. Fecha:

del programa de residencias estudiantiles estos manifestaron no haber recibido nunca formación sobre prevención de incendios ni atención de emergencias.

Otro de los aspectos importantes, es la finalidad de la ocupación del edificio que al ser de hospedaje implica que aumenta el periodo de exposición de las personas, ya que se tiene una ocupación continua del edificio estando habitado durante los periodos lectivos, las 24 horas del día. Esto se puede relacionar con el hecho de que, después de la mitad del semestre los estudiantes residentes tienden a traer acompañantes frecuentemente por razones de estudio, tal y como se muestra en el siguiente gráfico:

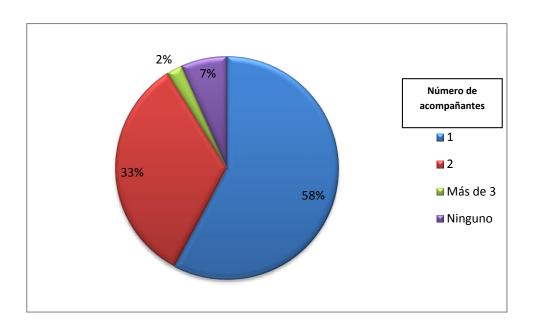


Figura 4. Gráfico de cantidad de acompañantes que ingresan a las residencias estudiantiles por estudiante residente.

Fuente: Marín Z 2009.

La población albergada en el edificio en un determinado periodo puede duplicarse por la presencia de acompañantes, lo que quiere decir que, según lo que expresan los estudiantes llega a 288 personas de forma simultánea; en esta misma encuesta se evidenció además que estos acompañantes permanecen en las residencias después de los horarios de clases y los fines de semana, esto implica que son horarios en los que generalmente las labores en el ITCR ya han finalizado y donde sólo permanecen los guardias de seguridad como funcionarios de la institución. Según la NFPA los incendios

en Residencias universitarias se generan principalmente durante las noches y fines de semana.

Otros de los aspectos que se exponen en el cuadro 8 son los cuatro niveles con los que contará el edificio, el tipo de ocupación, una visión preliminar de los materiales de construcción de la obra, los elementos de seguridad humana y protección contra incendios que se deben contemplar; estos aspectos representan un factor importante debido a que en el país toda edificación debe contemplar o estar construida bajo una normativa general de prevención de incendios y seguridad humana, sin embargo esta presenta estándares de orden genérico que deben adaptarse según las características propias del edificio, además de que a nivel nacional como internacional pueden existir variaciones entre unas y otras (Ver apéndice II). A continuación se presenta una matriz de criterios o especificaciones técnicas de los diferentes reglamentos y su grado de cumplimiento en el actual diseño de residencias estudiantiles para la incorporación de la temática del presente estudio:

Cuadro 10. Matriz de cumplimiento de algunos de los estándares de Seguridad humana y protección contra incendios aplicables al edificio de Residencias Estudiantiles.

Criterio	Característica	Cumple actualmente		Observaciones	
		Sí	No		
Medios de egreso	Longitud máxima hasta las salidas	Х			
Pasillos	Principales 1.20 m	Х			
	Interiores 0.90 m	Χ			
Puertas	Ancho 0.90 m	X			
	Resistencia, al menos 1 hora		X	No se han diseñado materiales de acabados interiores	
Iluminación medios de egreso	Iluminación mínima de 300 lúmenes o 10 Lux		X		

Paredes	Resistencia contra el fuego	Х		Paredes serán
divisiones	no menor a 2 horas.			de concreto
horizontales				colado
				cortafuego
Pared Salida de	Pared corta fuego	X		proporciona una
emergencia				barrera de 120 s
Señalización	Señalización visual, audible		Х	
	y táctil ubicados en las rutas			
	de evacuación, dispositivos			
	de protección contra			
	incendios.			
Escaleras de	Huella: 0,30 m,	X		
emergencia	Contrahuella: 0,14m,			
	Pasamanos a 0,90m, Pared			
	corta fuego sin descansos			
	debido a las salidas a cada			
	piso.			
Puertas de	Barra antipánico,		Х	
emergencia	Resistencia al fuego de al			
	menos 1 h.			
Factor de	Carga según cantidad de	X		
	población y áreas libres	^		
ocupación	j '			
	23.15 m ²			

Cuadro 12. Establecimiento criterios de especificaciones técnicas

Fuente: Marín Z 2009

Al realizar la comparación entre las diferentes normativas vigentes, se identificó como la NFPA 101 representa la principal normativa de acuerdo con los requerimientos de seguridad humana y protección contra incendios, los aspectos que se expusieron en la matriz anterior representan aquellos aspectos que podían presentar algún tipo de disyuntiva al compararlos entre las distintas normativas nacionales e internacionales aplicables al caso específico de las residencias estudiantiles. Uno de los criterios es el que el edificio por el tipo de ocupación que representa, se ha considerado con un riesgo de tipo ordinario. (Ver Apéndice II) de acuerdo a lo que se indica en la NFPA 101.Sin

embargo, es necesario considerar que, tras la ocupación generalmente los estudiantes residentes introducen dentro de este tipo de edificios gran cantidad de materiales que sumándose a los materiales de construcción del edificio como paredes coladas corta fuego, concreto lujado, medio block y arcilla, cielos suspendidos: mineral, ricalit, losa concreto lujado (cortafuego)² madera (divisiones habitaciones closets); contribuyen al aumento de la carga de fuego de los edificios, en este caso los estudiantes introducen materiales como papel, cartón y grandes cantidades de material textil³, esto adicional a la cantidad de mobiliario que se introduce de forma general como: camarotes, camas, clósets, colchones, mesas y sillas; que representan materiales combustibles que representan un aporte calorífico importante en caso de un incendio.

Otro de los criterios importantes es el factor de ocupación, ya que determina si el edificio tiene la capacidad para albergar la cantidad de personas que se propuso en el diseño inicial; el cual toma vital importancia después de conocer la dinámica poblacional, al comparar el factor de ocupación real del edificio es de 23,15 m² libres por persona lo que indica que de acuerdo a la normativa NFPA 101 el edificio sí está en capacidad de albergar hasta 144 personas.

Es necesario analizar que en ciertos momentos de los diferentes períodos lectivos, esta población puede aumentar considerablemente, superando la capacidad de carga ya que si se llega a tener 288 personas simultáneamente se tienen 11,57 m² de área libre por persona por lo que es inminente la sobrecarga de ocupación (factor de ocupación) de los medios de egreso, esto implica por lo tanto, la necesidad de optimizar las rutas de egreso en caso de emergencia.

2. Adaptabilidad técnica e interacción social del edificio.

A la hora de determinar la adaptabilidad técnica de las especificaciones de seguridad humana y protección contra incendios según el contexto en el que se va a desarrollar un edificio es necesario analizar el sitio donde va a estar ubicado el proyecto con el fin de conocer las posibles variables externas a la infraestructura que puedan influir como amenazas u oportunidades para el establecimiento de estrategias de acción en

³ Comunicación personal con Licda María Félix Murillo. Tema: Estudiantes Residentes. Fecha:6/08/2009

44

² Arq. Disnery Mena Orozco y Arq. Mónica Gómez Zúñiga. Planos de Anteproyecto arquitectónico. Agosto 2009.

seguridad humana, ya que se pueden presentar interacciones diferentes con el medio que lo rodea, y por tanto la eficacia de esas estrategias dependerá de cómo se hayan definido las condiciones que influyen sobre el establecimiento del edificio, para esta valoración se llevó a cabo la aplicación de la evaluación de sitio en el terreno cuyo resultado final respecto al nivel de riesgo del terreno fue un índice de 2,49 (Ver Apéndice III) lo que indica que el sitio en el cual va estar ubicado el terreno es poco vulnerable y presenta un riesgo bajo de desastre, sin embargo al llevar a cabo la aplicación del instrumento se pudieron evidenciar ciertas condiciones de cada componente que deben tomarse en cuenta por su influencia directa sobre posibles escenarios y las medidas específicas de protección contra incendios que se establezcan para el proyecto de infraestructura estudiado a continuación se muestra un gráfico con los resultados de la evaluación de cada componente

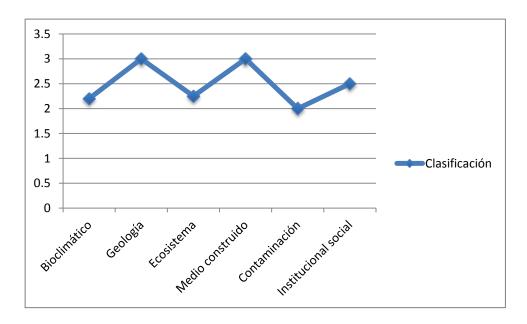


Figura 5. Valoración de la evaluación de sitio según cada componente.

Fuente: Marín Z 2009

Al analizar los diferentes componentes se encontraron ciertas condiciones que pueden influir en gran medida en el establecimiento seguro del edificio de residencias estudiantiles. Quiere decir que existen variaciones en el medio donde se va a desarrollar el proyecto que puede influir directamente en el diseño que se deba efectuar tomando en cuenta la seguridad humana en general.

Los dos componentes que mostraron una valoración más alta son el geológico y el de medio construido, para este último se encontraron dos hechos particulares; uno es que se construya el edificio de seguido ¿ qué quiere decir con de seguido? Es contiguo? a las residencias actuales lo cual crea un riesgo adjunto que es el movimiento y

permanencia de una mayor población, lo que implica la consideración y movilización de estas personas para mantenerlas a salvo, además de la protección a la infraestructura vecina. Otra de las variables consideradas es que frente al terreno destinado para la edificación se encuentra un establecimiento nocturno, lo que puede provocar que se dé una situación de disturbios u otro tipo de evento como se ha dado anteriormente⁴, Esto combinado con la posibilidad de que al establecer las estrategias de evacuación para los casos de emergencia, la cercanía con la carretera, este centro nocturno y la falta de espacio de zonas verdes compliquen el establecimiento de las zonas de reunión.

El factor geológico presentó variables considerables ya que, el relieve del terreno y su condición de cambios frecuentes especialmente por materiales encontrados como tobas y coluvio-aluviales⁵ que pueden afectar la estabilidad del mismo, además los vestigios de canales y la morfología de la quebrada que se encuentra dentro del terreno de residencias puede ser reflejo de una falla tectónica cercana⁶, esto sumado a la evidencia histórica que tiene la ciudad de Cartago la cual es considerada como una de las provincias con mayor actividad sísmica en el país y con fallas tectónicas circundantes como lo muestra el mapa de fallas de Costa Rica (Ver Anexo III), esto quiere decir que la ocurrencia de un posible movimiento sísmico que afecte el área debe ser uno de los aspectos importantes para el establecimiento de escenarios de evacuación y estrategias de emergencia.

Una variable a considerar dentro del componente de interacción social es la de la existencia de líneas de alta tensión debido a que, en la carretera que pasa a lo largo del terreno existen este tipo de líneas lo que se debe tomar en cuenta para no afectar la seguridad de las personas en caso de tener que desalojar de emergencia el edificio en un incendio u otro evento.

B. Establecimiento de Posibles escenarios de incendio.

El establecimiento de escenarios de incendio está determinado por la influencia de las diferentes variables que rodean la implantación del proyecto, así salen a relucir aspectos muy importantes como el hecho de que se hayan contemplado en la etapa de anteproyecto arquitectónico únicamente las escaleras de emergencia, por lo que los escenarios están basados en un nivel mínimo de protección.

⁵ TecnoControl S.A. Informe Técnico Mecánica de Suelos. Fecha 17/12/2008.

⁴ Comunicación personal con estudiantes residentes.

⁶ Comunicación personal. Reunión equipo de diseño. Fecha 14/08/2009.

1. Posibles situaciones de riesgo de incendio.

Considerando las condiciones del lugar donde se establecerá el edificio además de las características de la población, los escenarios de incendio que se pueden analizar dependerán básicamente de las prácticas y comportamientos de los ocupantes, especialmente porque según el cuestionario aplicado a los mismos residentes de las residencias actuales (Ver Apéndice I); dentro del ambiente de residencias suceden muchos incidentes por malas prácticas y costumbres de los estudiantes; cuya ocurrencia no trasciende a los encargados de residencias. Esto respalda en parte, la necesidad de establecer una estrategia basada en la detección y supresión automática de incendios. A continuación se exponen diferentes escenarios de incendio, que, según la información recopilada en las entrevistas y cuestionario aplicados; se pueden presentar en el edificio en estudio:

Cuadro 11. Resumen establecimiento de los posibles escenarios de incendio para el edificio de Residencias Estudiantiles del ITCR

Tipo de escenario	Inicio del incendio	Momento	Evento	Carga de fuego del área (BTU/m²)	Población afectada	Áreas directamente afectada	Indirectamente afectada
MLH	Área de Cocinas	12md y 9pm	Explosión de ollas en la cocina, siendo afectados productos de materiales combustibles	11207	24 personas (Estimado) 18 personas (estimado	Social, Elevadores Pasillo central de circulación,	Ascensores, Oficina de encargado de residencias
	Área de Lavandería	12 mn	Corto circuito por sobrecarga	13106	población de las habitaciones	Escalera de emergencia	Habitaciones Ala Noroeste
wcs	Habitaciones ala noreste	12 mn	Incendio por dejar velas u otros elementos encendidos	138607	18 personas (Estimado)	Habitaciones conexas del ala este	Pasillos de circulación, Residencias C y D
	Habitaciones ala noroeste	12 mn	Incendio por dejar velas u otros elementos encendidos	138607	18 personas (Estimado)	Habitaciones conexas del ala oeste	Pasillos de circulación
MLH	Cuarto eléctrico	12 mn	Corto circuito por sobrecarga	12 520	18 personas (Estimado)	Lavandería, Habitaciones	Pasillos

Fuente: Marín Z 2009

Es importante indicar que el proyecto de las nuevas residencias estudiantiles es uno de los proyectos con el presupuesto más elevado para su construcción que puede alcanzar hasta 4 millones de dólares⁷ éste es uno de los justificantes de la necesidad de proteger dicho edificio como patrimonio de la institución. Los eventos descritos son muy habituales en residencias estudiantiles, ya que, y las características de los mismos refieren principalmente a que los incendios en este tipo de edificios son más comunes durante el atardecer y los fines de semanas, esto significa que los estudiantes están dentro de la ocupación en condición no alerta, es necesario agregar que, existe una relación entre los escenarios planteados en las cocinas y dormitorios; ya que, mientras la mayoría de los incendios están vinculados a actividades en la cocina (platos calientes, microondas, parrillas portátiles, etc.), la mayoría de las muertes por incendios ocurren en el dormitorio (CPSC 2007).

Es por ello que los eventos que se identificaron como peores escenarios tienen fundamento en que las habitaciones de los estudiantes, que son los lugares en los que se almacenan prácticamente todas las pertenencias; que son generalmente, materiales con una alta carga de fuego (Ver Apéndice IV) lo que contribuye a la rápida expansión de un posible incendio.

Al analizar la secuencia de un eventual incendio en una de las habitaciones, se tiene que hay dos posibles situaciones que pueden definir su propagación, una es que no se detecte el incendio y la otra que al combatirlo no se pueda extinguir. Esta secuencia está basada en situaciones verídicas que se han presentado en las residencias, que han generado eventos de este tipo, en los que algunos estudiantes han dejado encendidas velas en los escritorios, luego se han retirado y dejan las habitaciones cerradas; lo que ha provocado conatos de incendio que son percibidos por otros residentes al notar que sale humo de la habitación⁸, es necesario indicar que ésta es la causa de la mayoría de muertes y lesiones en incendios dentro de residencias estudiantiles (CPSC 2007). Además estructuralmente

_

^{7,6} Comunicación personal Ingeniero Saúl Fernández .Tema: Proyecto de Residencias Estudiantiles. Fecha:6/08/2009

⁸Comunicación personal Licda María Félix Murillo .Tema: Registro situaciones de incendios en Residencias. Fecha: 10/09/2009

es donde los acabados interiores están diseñados con elementos de madera y materiales combustibles⁹.

La carga de fuego es un factor determinante en caso de un siniestro, tal es el caso del escenario del área de lavado, ya que, aún cuando las actividades que se realizan allí no son críticas o causantes directos de un incendio, como en el caso de las cocinas o dormitorios; si se almacenan grandes cantidades de material textil, además de almacenamiento de cajas de cartón y material para reciclaje esto, porque son condiciones frecuentes en las residencias actuales, lo que aumenta la carga combustible de materiales y por tanto, acelera la propagación de un incendio en el área.

Este escenario se puede presentar en cualquiera de los niveles del edificio además, puede ser causado ya sea por, los cambios de voltaje o llamados "picos de voltaje" que pueden generar cortocircuitos, situaciones de mantenimiento o inclusive alteraciones provocadas por alguna persona (vandalismo) que provoquen chispas y por tanto un posible incendio.

Una condición que se debe contemplar es que en las lavanderías se van a instalar los ductos para la basura que recorren los diferentes niveles del edificio, por lo que en un posible incendio los humos de combustión se desplazarán hacia las salidas del recinto que encuentre a su paso, es por esto que tal como se expuso en la matriz de especificaciones este tipo de ductos debe contar con válvulas o compartimentos cortafuego, con el fin de separar las diferentes secciones del mismo y evitar este tipo de fenómenos, puesto que los humos afectarían el resto de los niveles del edificio que podrían tanto afectar la salud de las personas, la evacuación del edificio así como dañar la infraestructura y los activos de la institución en caso de un conato de incendio.

Esta contribución al transporte de humos se puede explicar según la ley de gases ideales, ya que, a bajas presiones y altas temperaturas la densidad de un gas decrece (Cengel 2006) por lo que las tuberías fungen como salidas de los gases que se van a dirigir de un sitio con mayor presión a un sitio con menor presión, lo que provoca que se establezcan el conjunto de corrientes que transporten estos productos de la combustión a través de los

ductos. Una evidencia de este tipo de fenómenos se produjo en un incendio en el Instituto Nacional de Seguros en el cual aunque no hubo vidas que lamentar si se dieron pérdidas por daño de los activos en uno de los niveles del edificio¹⁰

Es necesario añadir que, en todos los escenarios a esa hora prácticamente las únicas personas que se mantienen dentro del campus del ITCR son los estudiantes residentes y el personal de seguridad que como se expuso en el cuadro 3 realizan recorridos de vigilancia cada 15 min en este sector, recorridos que en la realidad no se realizan regularmente tal y como lo expresan los estudiantes de las residencias actuales, esto provoca que haya una mayor vulnerabilidad de los estudiantes residentes para hacer frente y atender una emergencia.

Otro factor relacionado y que influye significativamente en la eficacia de la atención de la emergencia, durante el desarrollo de los escenarios de incendio que se proponen, es la inexistencia de una línea de comunicación de emergencias, tanto a nivel interno como externo, ya que en el desarrollo de la emergencia cuando los estudiantes tengan que solicitar ayuda, según la organización administrativa del Programa de Residencias tendrían que pasar por una serie de tiempos de espera, cuyos lapsos podrían ser cruciales para salvaguardar la seguridad de las personas y el patrimonio infraestructural, tal y como se muestra en el siguiente diagrama de flujo de la estrategia de comunicación que se lleva a cabo la actual organización administrativa de atención de emergencias, para cada escenario.

_

¹⁰ Comunicación personal con PhD Paul Deliens Fuentes y Departamento de ingeniería de Bomberos. Tema Incendio producido en el edificio del INS. Fecha: 31/08/2009

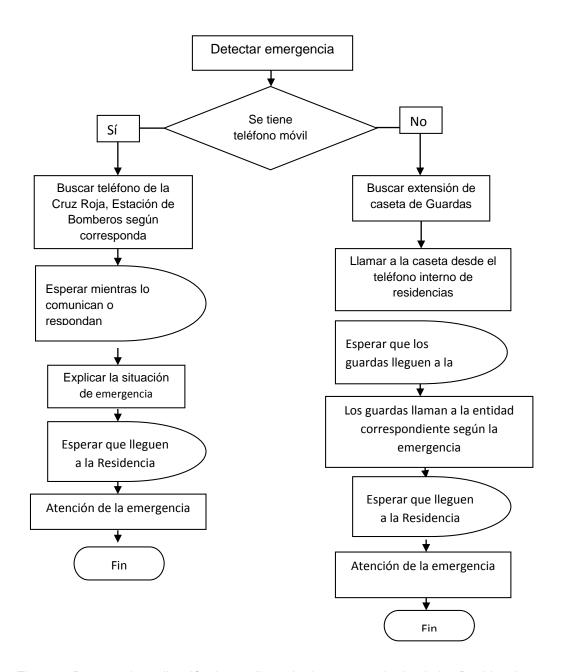


Figura 7. Proceso de realización de una llamada de emergencia desde las Residencias Estudiantiles.

Fuente: Marín Z 2009

Esta situación puede provocar por ejemplo que las consecuencias de un posible incendio se incrementen en magnitud y gravedad, esto no sólo para el peor de los escenarios sino, para cualquiera de las otras situaciones expuestas o emergencia de otra índole; especialmente porque aumenta el tiempo de respuesta ante la emergencia.

En general para el establecimiento de estos escenarios se contemplaron momentos en los cuales la población residente se encuentra en su mayoría dentro del edificio, por tanto, la población afectada sea mucho mayor; sin embargo debe considerarse el aumento de la población por la suma de acompañantes lo que aumentaría la cantidad de personas expuestas a daños, otro punto es el que los encargados o administradores del edificio y los conserjes no se encuentren en la edificación esto hace que los estudiantes deban enfrentarse solos a la atención de la emergencia.

Otro aspecto importante es que, los comportamientos y actitudes de los estudiantes residentes son factores primordiales como posibles causas de los diferentes eventos, esto debido a que el reglamento existente para el programa de residencias es muy permisivo y además sólo contempla aspectos de restricción de consumo de drogas en las instalaciones, cocinar dentro de los dormitorios (Gaceta ITCR 2009), por lo que esto deja por fuera del mismo, situaciones que pueden ser causantes de emergencias, además limita el control sobre las actividades de los residentes y por tanto, esto podría ser una barrera para el correcto funcionamiento y eficacia de las especificaciones técnicas de seguridad humana y protección contra incendios que se implementen en el edificio.

V. CONCLUSIONES

La población que va a servirse del edificio de residencias estudiantiles es una población que se caracteriza por la rotación constante lo que dificulta la formación continua en materia de seguridad humana y protección contra incendios.

La presencia de estudiantes ajenos a residencias en los períodos comprendidos entre la semana 8 y 16 de cada semestre, crea la posibilidad de que se sobrepase en algún momento la carga de ocupación para la que fue diseñado el edificio.

Las especificaciones técnicas genéricas de seguridad humana y protección contra incendios son adaptables y aplicables, según criterios como lo son tipo de ocupación, población que va a servir, número de niveles, materiales de construcción y aquellos que vayan a ser introducidos o almacenados en el mismo.

No existe actualmente ningún tipo de estrategia desde la administración del Programa de Residencias para atención de emergencias ni seguridad humana y protección contra incendios, esto combinado con préstamo de las instalaciones de Residencias estudiantiles a grupos externos podría provocar pérdidas humanas en caso de un desastre natural o incendio; ya que las personas podrían tomar decisiones equivocadas producto de la no familiarización con el edificio.

Aún cuando según el tipo de ocupación del edificio de Residencias estudiantiles debe ser considerado de riesgo moderado, al contemplar los materiales que pueden introducir los estudiantes puede provocar la alteración de esta clasificación.

La ubicación del proyecto en una zona de actividad sísmica, representa un factor exógeno que contribuye a la vulnerabilidad del sitio donde va a ser construido el mismo. Los factores de interacción social, medio construido y geológico representan factores exógenos que pueden modificar las estrategias de acción para enfrentar una situación de emergencia y modificar también los tipos de especificaciones técnicas de seguridad humana y protección contra incendios que se propongan para el edificio.

Las prácticas y comportamientos inseguros pueden ser causa principal del inicio de un incendio.

No existe una línea de comunicación efectiva en caso de emergencias, ya que la población estudiantil no tiene un enlace directo para comunicarse con entidades como la estación de bomberos o la Cruz Roja costarricense.

La organización administrativa y disciplinaria no contribuye a la regulación asertiva de las actividades y convivencia dentro del edificio de Residencias estudiantiles cuando éste se mantenga ocupado.

VI. RECOMENDACIONES

La formación de la población estudiantil es indispensable, sin embargo tiene que estar dirigida estratégicamente para incluir dentro de las actividades obligatorias del Programa de Residencias estudiantiles la temática de la seguridad humana y protección contra incendios.

Debe considerarse la instalación de sistemas automáticos de supresión de incendios, debido a la fluctuación constante de la población ocupante del edificio. Ya que las especificaciones que contempla la normativa referente a seguridad humana y protección contra incendios deben ser tomadas en cuenta según el contexto del edificio de residencias estudiantiles, tal es el caso de los medios de supresión, que para este tipo de edificio debe establecerse un sistema de rociadores automáticos, según lo establece la NFPA 13 sobre instalaciones de este tipo de sistemas.

Las medidas técnicas que se diseñen para la evacuación de personas y supresión de incendios deben optimizarse para no sobrecargar la capacidad de carga de ocupantes de las rutas de evacuación y medios de egreso.

Establecer una estrategia planificada y estructurada de formación e información con el fin de que, cualquier persona perteneciente al programa o ajena al mismo que se encuentre dentro del edificio conozca las acciones que puede ejecutar en caso de emergencia tales como: croquis de las rutas de evacuación, señalización, establecimiento de zonas de reunión, protocolos para el establecimiento de simulacros, capacitaciones, material formativo, contratos de préstamo de instalaciones.

Regular el tipo y cantidad de materiales que introducen los estudiantes al edificio con el fin de mantener controlada la carga de fuego, a través del establecimiento de medidas disciplinarias en el Reglamento para el funcionamiento del programa de residencias estudiantiles del ITCR.

Debe corroborarse que la estructura del edificio esté diseñada con características antisísmicas, de acuerdo con el Código sísmico de Costa Rica.

Dentro de las estrategias de evacuación debe contemplarse, la evacuación en caso de terremoto, debido a la influencia sísmica de la zona. Se deben contemplar los aspectos como la cercanía con la carretera, las líneas de alta tensión y las estructuras vecinas a la

hora de formular las estrategias para hacer frente a situaciones de emergencia. Así como tipos de alarma, rutas de evacuación.

Establecer una línea de comunicación efectiva que permita independizar y enlazar directamente al edificio de Residencias estudiantiles con los organismos de atención de emergencias con el fin de disminuir el tiempo de respuesta a la emergencia.

Considerar la inclusión de aspectos de seguridad humana y protección contra incendios dentro del Reglamento para el funcionamiento de Residencias estudiantiles del ITCR así como medidas y sanciones disciplinarias para evitar y disminuir los comportamientos y acciones que puedan causar el inicio de un incendio.

VII. ALTERNATIVA DE SOLUCIÓN

A. Especificaciones técnicas de seguridad humana.

La incorporación de la Seguridad humana y protección contra incendios, debe contemplar el establecimiento de las características estructurales del edificio, especialmente los medios de egreso y áreas de circulación, a continuación se presenta una matriz con el establecimiento de criterios de diseño del proyecto de infraestructura en estudio que deben ser incorporadas:

Cuadro 12. Criterios de las especificaciones técnicas que no se han contemplado en el diseño actual del edificio.

Criterio	Especificación técnica	Cantidad	Ubicación
			Ubicadas en las salidas de
			emergencia correspondientes a cada
Puertas de emergencia	Barras antipanico, resistencia contra el fuego de al menos 1 hora	8	nivel.
			Ubicadas en los pasillos, salidas de
lluminación de			emergencia, escaleras
emergencia	lluminación mínima de 300 lúmenes o 10.8 lux	20	convencionales y de emergencia.
Dimensiones de	Huella: 0,30 m, Contrahuella: 0,14m, Pasamanos a 0,90m, Pared		Escaleras convencionales y de
escaleras	corta fuego	No aplica	emergencia.
			Cada una estará ubicada en la salida
			de emergencia correspondiente a
Al	O:4- 400 dB		cada área del edificio
Alarmas de emergencia	Sonido 100 dB	ŏ	cada area dei edilicio

Fuente: Marín Z 2009.

Otra de las especificaciones que deben ser incorporadas, son las rutas de evacuación; se diseñaron dos rutas, una dirigida a la sección noroeste del edificio y la otra al sector noreste, para las cuales se calculó un tiempo de evacuación (Ver Apéndice V), por ejemplo, considerando la sección de la ruta más crítica (el desplazamiento desde el cuarto nivel) se obtiene un tiempo de 10min. y 8 min. respectivamente, es necesario indicar que se utilizaron factores de corrección por oscuridad y el uso de escaleras durante el recorrido; bajo las condiciones de los escenarios planteados. La representación gráfica de éstas rutas y el establecimiento de las zonas de refugio, se indica detalladamente en el Programa de administración de la seguridad humana y protección contra incendios.

Otras de las especificaciones que se deben contemplar son la señalización de seguridad y la distribución de la misma (Ver Apéndice VI) indicada para el sistema de protección contra incendios y rutas de salvamento o evacuación, dicha señalización debe estar normada según las disposiciones de la NFPA 101 y el Decreto Ejecutivo 12715-MEIC para el uso de colores de seguridad. Esta señalización se encontrará ubicada en sitios estratégicos del

edificio. A continuación se presentan las principales categorías para la selección de la señalización correspondiente:

Cuadro 13. Señalización de seguridad humana y protección contra incendios.

Señalización	Ejemplo	Función	Ubicación	Características especiales
Flechas de evacuación		Dirigir a las personas, respecto a la dirección de la ruta de evacuación	A lo largo de la ruta de evacuación, en la pared del pasillo.	Deben ser flechas color verde, fotoluminiscentes,
Salida de emergencia	SALIDA DE Emergencia	Indicar la ubicación de la salida de emergencia.	Estarán ubicadas sobre cada una de las puertas de emergencia de todos los niveles del edificio.	Letra legible, Fondo verde con letras blancas.
Escalera de emergencia	USE PECCAL PRANCE MATERIAL PRANCE PRACE PRANCE PRACE PRANCE PRANC	Indicar la localización de las escaleras de emergencia.	Ubicadas en la ruta de evacuación, en el área que comunica directamente hacia las escaleras.	Diagrama que indique la localización de escaleras de emergencia, debe ser de fondo verde con diagramas en color blanco.
Extintores portátiles	EXTINTOR DE FUEGO	Demarca la ubicación de los gabinetes con extintores, distinguir los extintores como parte del sistema de combate contra incendios.	Los extintores estarán situados en la pared entre el área de las cocinas y el área social.	Los gabinetes deben estar pintados con franjas rojoblanco, debe haber un rótulo que indique que allí están los extintores (Fondo blanco y letras rojas), debe existir un rótulo que indique los pasos para hacer uso de cada uno de los extintores.
Sistema de rociadores		Demarcar localización de la tubería, tanque de almacenamiento,bomba contra incendios	A lo largo del sistema de rociadores.	El sistema incluyendo los elementos mencionados deben estar pintados de color rojo.
Alarma de emergencia manual	ALAHMA INCENDIO	Rotulación que indique localización de la alarma de emergencia	Localizada en cada salida de emergencia de cada nivel del edificio.	Rotulación con fondo rojo y letras blancas, fotoluminiscente.

Fuente: Marín Z 2009

La implementación de señalización requiere la inversión y adquisición de las señales correspondientes, es por ello que se plantea la siguiente estimación de costos directos de este proceso:

Estimación de costos para señalización:

Cuadro 14. Estimación de costos para la incorporación de la señalización en los cuatro niveles del edificio.

Rubro	Cantidad	Costo unitario	Costo total
	24		
Flechas de evacuación	unidades	3907	93768
Salida de emergencia	2 unidades	13703	27406
Ruta de salvamento	2 unidades	13703	27406
Escaleras de			
emergencia	6 unidades	13703	82218
Señalización extintores	4 unidades	19851	79404
Señalización alarma de			
emergencia	8 unidades	3907	31256
Pintura anticorrosiva	4 galones	18500	74000
·	¢/15/58		·

¢415458

B. Evaluación de las especificaciones técnicas y sistemas de detección y supresión de incendios.

Según el panorama que rodea el establecimiento del nuevo edificio de Residencias Estudiantiles se proponen dos alternativas para la incorporación de los sistemas de protección contra incendios dentro de las que se encuentran:

a. colocación de extintores portátiles que sirvan a las áreas comunes del edificio (Salas de estar, lavandería y cocinas) y detectores de humo en los dormitorios y cocinas del edificio colocación de extintores portátiles y detectores de humo en las cocinas junto con la instalación de un sistema de rociadores que cubra las áreas de lavandería y los dormitorios.

Para la selección de la mejor alternativa se realizó un análisis de factibilidad (Ver Apéndice VII) considerando variables como, el tipo de población usuaria del edificio, los posibles escenarios de incendio, ventajas y desventajas de los elementos de cada alternativa.

Además se tomó en cuenta el grado de efectividad de cada una, utilizando el método FOSM (First Order Second Moment) (con ayuda del software STRUREL COMREL 8.0) relacionando el margen de escape de las personas, para cada uno de los escenarios propuestos en el apartado de análisis de la situación actual (Ver Apéndice VIII) con la alternativa de diseño respectiva. A continuación se presentan los criterios más importantes de este análisis:

Cuadro 15. Criterios de confiabilidad según FOSM

Criterio	Propuesta A	Propuesta B
Índice de confiabilidad β	1.27	4.056
Probabilidad de fallo	0.1	0.0000249
Factores parciales de seguridad	1.27	3.6

Fuente: Marín Z 2009.

Se define entonces diseñar la propuesta "B", ya que estos criterios representan tres niveles de selección para diseños en el área de seguridad contra incendios, que son usados normalmente como coeficientes de selección (Frantzich 1998). En el caso de la probabilidad de fallo se tiene que bajo las condiciones de los escenarios, para ambas propuestas, no llega al 1%, debido a que utilizan sistemas de detección automática de incendio. Es así como adquieren gran importancia los factores parciales de seguridad y el índice de fiabilidad para la designación de la alternativa de diseño; ya que la capacidad de supresión del incendio de los rociadores automáticos y el combate de la expansión del fuego es mucho mayor, así como aumenta el tiempo o margen de escape; estas situaciones explican la diferencia tan amplia entre ambas propuestas. A continuación se muestra esta diferencia de la eficacia de dos elementos de cada alternativa, en el escenario de un incendio cuyo foco inicia en las cortinas de una de las habitaciones:

Cuadro 16. Comparación de condiciones según elemento de detección de incendios.

Condición	-	Temperatura inferior °C	Transferencia de calor KW/m²
Sin elementos de			
protección de			
incendios	267	69	17,56
Rociador			
automático	86.4	35.9	0.333
Detector de humo	162	48	2,068

Fuente: Simulador CFAST 2009

Se nota como inclusive las temperaturas máximas que se pueden alcanzar, así como la transferencia de calor del foco de incendio hacia la habitación disminuye considerablemente al utilizar medios de detección automática de incendios, lo que implica que se puede controlar de una mejor manera la expansión del incendio; así como el incremento de la protección de las personas y del patrimonio de la institución.

Siendo la propuesta "B", la que proporciona mayor protección al edificio y que también tiene el respaldo de la NFPA 101 para este tipo de infraestructura, a continuación se detalla las características del diseño del sistema de protección contra incendios que se propone instalar en el edificio de Residencias estudiantiles.

C. Sistema de supresión de incendios.

Se estableció la instalación de un sistema de rociadores que permita la supresión automática de incendios, los cuales estarán ubicados en sitios estratégicos de la edificación (dormitorios y áreas de lavado), a continuación se detallan las características de los principales elementos de este sistema de supresión:

Cuadro 17. Características de los elementos del sistema de supresión de incendios.

Elemento	Característica	Cantidad	Ubicación
Tubería	Tubería de hierro dúctil, diámetros nominales de 3/4 y 6 pulgadas.	91.58 m.	Distribución se detalla en Apéndice IV
Bomba	Presión Máxima 175 psi, presión de operación 65 psi, potencia 5 hp, caudal total 2600 L/min.	1	Sala de bombeo
Bomba Jockey	Compuesto por un tanque pulmón construido en chapa de acero decapado de 4,76 mm de espesor con una capacidad de 100 L en la parte inferior llevara dos cuplas de 2" de diámetro de entrada y salida y en el fondo una cupla de 1" para limpieza.	1	Sala de bombeo
Cabezas de rociadores	Rango de temperatura de 53ºC a 173ºC, factor K es 5.6, caudal 50 L/min	52	1 en cada dormitorio del edificio, 1 en cada cuarto de lavado
Tanque elevado de agua	Volumen de 216 metros cúbicos, diámetro de 6 m, altura 8 metros, contará con escalera para la inspección mantenimiento, indicadores de nivel de agua, abastecimiento de agua del mismo sistema de agua para el edificio de Residencias Estudiantiles, material: acero empernado.	1	Contiguo a la Sala de Bombeo
Válvula check	Válvula de retención universal de acero fundido, extremos bridados ANSI 150 B16.5, diámetros: 2" a 10"	8	Tramos de la tubería
Válvula de alivio	Presión de apertura: 15 a 9612 psi / 1 a 675 kg/cm2	1	Salida de la bomba contra incendios
Válvulas de compuerta	Presión de trabajo 125/200 psi, temperatura 178ºC, cuerpo de Hierro Fundido e interiores de bronce ASTM B 584.	1	Tubería tramo antes de entrar al edificio

Fuente: Marín Z 2009.

El sistema completo de rociadores, está diseñado para funcionar de forma autónoma hasta por 90 min., tal y como lo muestran los cálculos del succión del mismo (Ver Apéndice IX), éste dará protección directa a las áreas de lavado y dormitorios de todos los niveles del edificio (Ver distribución del sistema en Apéndice X), la tubería del mismo será construida de hierro dúctil que va desde el tanque elevado y sala de bombeo el cual se ubicará en el sector noroeste del terreno, aprovechando la elevación de las curvas de nivel en esa área; para facilitar el flujo de agua por la tubería. Es necesario indicar que el suministro de agua

al tanque se realizará compartiendo el mismo sistema de abastecimiento de agua del edificio, condición que es permitida por la NFPA 13 R: Para la instalación de sistemas de rociadores automáticos; por esta razón el tanque debe contar con filtros limpiadores, esto para evitar que partículas de polvo u otro material obstaculicen el flujo de agua por los orificios de las cabezas de rociador.

A continuación se detallan aquellos elementos que brindarán apoyo al sistema de rociadores en las áreas de las cocinas y el resto del edificio:

1. Elementos de apoyo del sistema de supresión contra incendios.

Es necesario que exista un sistema de apoyo para el correcto funcionamiento del sistema de supresión y además que permita asegurar la integridad física de las personas en caso de una emergencia, para lo cual se propone instalar detectores de humo en las cocinas de cada ala del edificio de Residencias Estudiantiles, en vista que ahí se pueden dar conatos de incendio cuando están siendo utilizadas por los residentes, se ubicará una batería de extintores portátiles para fuego clase A,B,C con agua y polvo químico respectivamente como agentes extintores.

Cuadro 18. Características de los extintores propuestos para el edificio de residencias estudiantiles.

Clase de Extintor	Características	Cantidad	Ubicación	Justificación
Batería de polvo químico y agua a presión	4,59 kg cada uno, Descarga mínima 8 s.	4 extintores de polvo químico , 4 extintores de agua a presión	Una batería por cada nivel, en el área de las cocinas	Tipo de riesgo ordinario, posibles conatos de incendio en las cocinas del edificio en los que se pueden dar fuegos clase A,B y C.
Detectores de humo	Tipo fotoeléctrico	8	Un detector de humo en cada área de cocinas de todos los niveles	Posibles conatos de incendio en las cocinas.

Fuente: Marín Z 2009.

1. Estimación de costos del sistema de detección y supresión de incendios.

A continuación se presenta un presupuesto general por la adquisición de los diferentes elementos del sistema de protección contra incendios, cabe destacar que no incluye costos por mano de obra en la instalación, ni los costos por mantenimiento:

Cuadro 19. Estimación de presupuesto por compra de elementos del sistema de rociadores automáticos.

Elemento	Costo unitario	Costo Total		
	Hierro dúctil precio			
Tubería	tubería 3.05m: 37000	555000		
Cabeza de				
rociador	5386.5	280098		
Extintores fuego				
Clase A,B y C.	32300	258400		
Detectores de				
humo	11540	92320		
Alarma de				
emergencia	7371	58968		
Dispositivo para				
Luces de				
emergencia	42525	170100		
Bomba jockey				
Bomba contra				
incendios	1116495	1116495		
Generador				
eléctrico	141544	141544		
Filtro para agua	8809	8809		
	Tanque de acero 249			
Tanque elevado	metros cúbicos: 697080	697080		
Presupuesto	3378814			

Fuente: Marín Z 2009

El éxito de la incorporación de las especificaciones técnicas de seguridad humana y protección contra incendios sólo puede alcanzarse, si se llevan a cabo actividades de gestión, en pro de aumentar la eficiencia del sistema mecánico de detección y supresión de incendios así como la formación de la población residente para asegurar el bienestar de la misma en caso de una emergencia, para lo cual se propone el siguiente programa de gestión:

D. Programa de Administración de la Seguridad Humana y Protección contra incendios para el nuevo edificio de residencias estudiantiles.

I. Introducción

Actualmente, el ITCR no cuenta con una política definida en el área de Seguridad e Higiene, ni en la rama específica de seguridad humana y protección contra incendios; es por ello que se propone la siguiente declaración de política para el programa específico de seguridad humana y protección contra incendios de residencias estudiantiles.

A. Declaración de Política de compromiso con el Programa de administración de la seguridad humana y protección contra incendios para el nuevo edificio de residencias estudiantiles.

El Instituto Tecnológico de Costa Rica reconoce su responsabilidad en la misión de crear, mantener y mejorar un ambiente saludable y seguro para todos los individuos beneficiarios de la institución. Con este fin, con mira a la construcción del nuevo edificio de Residencias Estudiantiles la universidad está comprometida a proporcionar recursos y apoyo razonable para el desarrollo, implementación y mantenimiento de un programa eficaz seguridad contra incendios y protección humana, contribuyendo al bienestar y seguridad de los estudiantes residentes durante su estancia en la institución.

B. Propósito

La intención del programa de Seguridad humana y protección contra incendios es la instauración de procedimientos uniformes para estudiantes, funcionarios y visitantes en caso de emergencia en el edificio de Residencias Estudiantiles, estas directrices están de acuerdo con el Código de Seguridad Humana NFPA 101, Ley 7600 de Igualdad de Oportunidad para personas con discapacidad, Reglamento de Seguridad Humana. Así, el Programa de seguridad humana y protección contra incendios se compromete a:

- -Contribuir con la seguridad y la calidad en la estancia de los estudiantes residentes, asegurando su bienestar e integridad física.
- -Brindar una formación complementaria a los estudiantes residentes para dar respuesta en los procedimientos de emergencia.
- -Su prioridad principal será salvaguardar la vida humana y el patrimonio institucional del ITCR representado en el edificio de Residencias Estudiantiles.

II. Objetivos del programa

A. Objetivo general

Establecer medidas administrativas y de prevención para la gestión de la seguridad humana y protección contra incendios según las especificaciones que se implementarán en las Residencias Estudiantiles.

B. Objetivos específicos

Desarrollar una estrategia de formación para la población residente sobre seguridad humana y protección contra incendios.

Establecer medidas administrativas para la gestión de los sistemas de seguridad humana y supresión contra incendios.

III. Responsabilidades

Vicerrectoría de Vida Estudiantil y Servicios Académicos: ente representante directo de la Rectoría del ITCR, tiene a su cargo el diseño, prestación e implementación de servicios y programas de asistencia y asesoría que faciliten sus condiciones de bienestar, aprovechamiento académico y desarrollo humano y profesional. (ITCR 2009).

Departamento Financiero Contable: encargado de administrar los programas de financiamiento estudiantil, así como asumir la contabilidad de los recursos de los distintos programas activos del ITCR, dentro del Programa de seguridad humana y protección contra incendios este departamento tiene la función de expender y ejecutar los presupuestos para cada uno de los recursos y actividades que se desarrollen dentro del mismo.

Oficina de Seguridad e Higiene: es el responsable de realizar las inspecciones preventivas del sistema de rociadores automáticos, luces de emergencia, extintores portátiles, también de la presentación del informe correspondiente a cada una de ellas. Tiene la función de asesor en la coordinación de las capacitaciones a los estudiantes residentes y en los procesos de realización de simulacros de evacuación.

Comisión de Salud Ocupacional: ente asesor y regulador de las actividades del programa, debe velar por el seguimiento del mismo.

Encargado (a) de Residencias Estudiantiles: encargado (a) de coordinar las inspecciones de mantenimiento, vela por el cumplimiento de las actividades, debe velar por el buen comportamiento y los hábitos correctos de convivencia y en caso de no cumplirse ejecuta las sanciones correspondientes al capítulo 7 del Reglamento para el funcionamiento del programa de residencias estudiantiles.

Departamento de Vigilancia y Seguridad: su función es la vigilancia periódica de las instalaciones de las residencias estudiantiles, así como contactar a los organismos externos de atención de emergencias (Estación de Bomberos de Cartago, Cruz Roja costarricense, Policía) según la línea de comunicación de emergencia.

IV. Recursos.

Se deberá destinar de forma permanente una partida especial del presupuesto anual del Programa de residencias estudiantiles del ITCR, para el desarrollo de las actividades de gestión del programa de seguridad humana y protección contra incendios; dirigidas a la formación de la población residente y mantenimiento del sistema de detección y supresión de incendios.

Según la definición de puestos de trabajo que se tiene en el ITCR¹¹, las labores de mantenimiento de equipos y dispositivos, estarán a cargo del departamento de Administración de Mantenimiento y la oficina de Seguridad e Higiene de la institución, esta última también está encargada de la inspección de cualquier sistema de detección, supresión o combate de incendios; por lo que los recursos que se asignan actualmente para estas labores deben ser incrementados para la inclusión de este nuevo edificio dentro de sus funciones.

- V. Procedimiento para la gestión preventiva del mantenimiento de las especificaciones técnicas de seguridad humana y protección contra incendios implementadas en el edificio.
 - A. Procedimiento para las inspecciones de los medios de supresión de incendio.

1. Descripción:

La estrategia para la inspección de incendios constituye aquella actividad que se llevará a cabo para verificar el correcto estado de los medios de supresión de incendios, como sistema de rociadores y extintores; pretende identificar a tiempo, condiciones que puedan afectar el funcionamiento de los mismos.

¹¹ Comunicación personal departamento de Recursos Humanos, ITCR, Fecha 16 de noviembre de 2009.

1.1. Guía para la inspección de los medios de supresión de incendio.

Los responsables de llevar a cabo esta actividad deberán seguir una serie de tareas para realizar una inspección correcta de los elementos de los medios de supresión, estas actividades se describen en la figura siguiente:

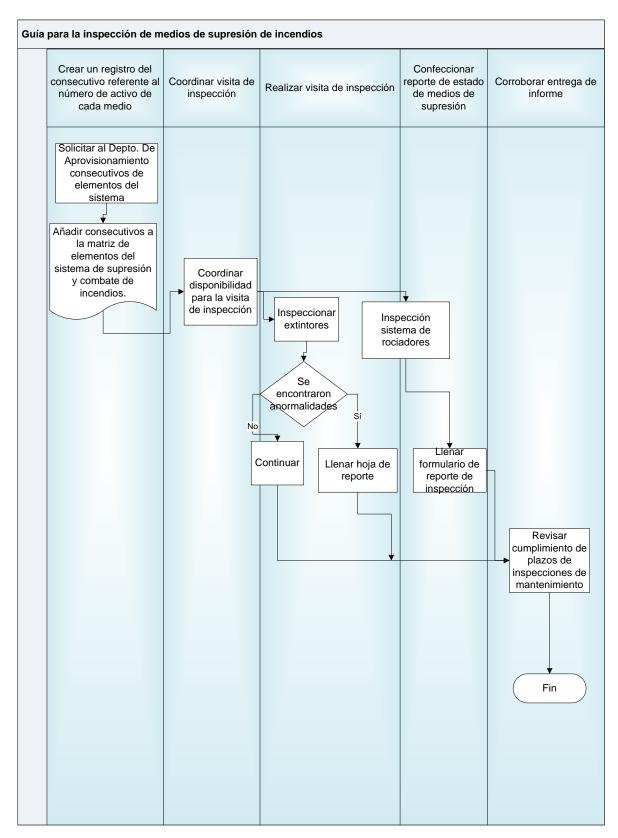


Figura 1. Guía para la inspección de mantenimiento de los elementos del sistema de

protección contra incendios.

Fuente: Marín Z 2009

Esta guía de inspección llevará un proceso que se debe realizar dos veces al año, una vez cada semestre, ya que así se asegura que el sistema está en correcto funcionamiento en los períodos de ocupación crítica del edificio, esto según la dinámica de la población estudiantil dentro del mismo. El procedimiento de inspección de cada uno de los elementos del sistema se ejecutará mediante la intervención de diferentes responsables, con el fin de proyectarlo como una actividad descentralizada; a continuación se describe la relación entre actividades y responsables:

Cuadro 1. Matriz de Asignación de Responsabilidades (RAM) para la Guía de inspecciones de mantenimiento.

Fuente: Marín Z 2009

	Actividad								
Responsable	Registro de consecutivo		Coordinar visita	Realizar visita de inspección		reporte de	Responsable documento de inspección		
	Solicitar consecutivos al Depto. De Aprovisionamiento	Completar Matriz del Sistema contra incendios	Coordinar disponibilidad	Inspeccionar extintores	Inspección del Sistema de Rociadores	Completar Formulario de inspección	Verificar cumplimiento dee inspecciones		
Encargado de Salud Ocupacional				Χ	Χ	Χ			
Encargada de Residencias estudiantiles	Х	X	Х				Х		
Consejo de Residencias							Х		
Departamento de Financiero contable									

Es necesario aclarar que la realización de la inspección de campo no sustituye las inspecciones de mantenimiento obligatorias que especifica el fabricante, revisión mensual estado de equipo, pruebas hidrostáticas (extintores de CO₂, bomba contra incendios cada 5 años, y sistema de rociadores), llenado anual de extintores, entre otras; ya que lo que

busca es velar de forma periódica, por el buen estado y funcionamiento del sistema, a continuación se detallan 2 formularios para la realización de la inspección propuesta:

Cuadro 2. Formulario para la inspección del sistema de rociadores.

Formulario para la inspección de	mante	nimier	nto del Sistema de Rociadores
Edificio de Re	sidenc	ias Est	udiantiles
Elemento	Sí	No	Observaciones
1. Bomba contra incendios			
Válvulas de seguridad se encuentran			
cerradas y en buen estado			
Tubería sin signos de corrosión			
Succión			
Presión estática de la bomba se			
mantiene en el rango de			
funcionamiento			
2. Tanque elevado de almacenamiento			
de agua			
Filtros están sin obstrucciones ni			
exceso de basura y desechos			
Material de construcción del tanque sin			
signos de deterioro o corrosión			
Nivel de agua de al menos 216 m3			
3. Tubería			
Tubería sin signos de corrosión			
Pintura de color rojo en buen estado			
Válvulas, codos y accesorios ajustadas			
correctamente			
Válvulas, codos y accesorios sin signos			
de golpes o torceduras			
4. Cabezas de rociadores			
Sin objetos ni obstrucciones en la			
boquilla			
Buen estado de la estructura			
Soportes de rociadores sin corrosión			
Soportes se encuentran ajustados			

Fuente: Marín Z 2009

Cuadro 3. Formulario para la inspección de los extintores y gabinete de los mismos.

Formulario para la inspecció	in de manter	nimiento de	Extintores.
Edificio de Res	idencias Est	udiantiles	
Elemento	Sí	No	Observaciones
Gabinetes de extintores no			
presentan signos de deterioro.			
Vidrio del gabinete se			
encuentra intacto.			
Fecha del revisión del extintor			
está vigente			
Seguro metálico se encuentra			
cerrados y sin signos de			
deterioro.			
Marchamo se encuentra sin			
alteraciones, intacto y sin signos			
de deterioro.			
Se encuentran los 2 extintores			
por gabinete.			
Señalización se encuentra en su			
lugar.			
Señalización se encuentra sin			
signos de deterioro.			

Fuente: Marín Z 2009

Estos formularios deben ser conservados y archivados por el encargado (a) de residencias estudiantiles, quien debe velar por el cumplimiento de estas inspecciones y en caso de que se presente un reporte de anomalía o daño de equipo, debe realizar la boleta correspondiente dirigida al departamento de mantenimiento, con copia a la oficina de Seguridad e Higiene, para su correspondiente trámite.

VI. Procedimientos de emergencia para el edificio de Residencias estudiantiles.

A. Procedimientos para evacuación y atención de emergencia.

1. Objetivo:

Asegurar de una forma práctica y sencilla que las personas no sufran daños o heridas por causa de un incendio, mientras esté ocupado el edificio de residencias estudiantiles.

1.1. Prioridades de evacuación en una emergencia:

La primera prioridad de la evacuación es asegurarse que todas las personas que puedan sufrir daño sean protegidas y las acciones tomadas para garantizar su seguridad.

2. Estrategia de actuación:

Deberá definirse un procedimiento de actuación para las distintas fases de una emergencia en caso de incendio, este pretende ser una guía para dirigir los comportamientos de las personas hacia aquellas acciones que mantengan su seguridad y la del resto de los ocupantes. A continuación se detallan las acciones a tomar bajo distintas situaciones en caso de un incendio:

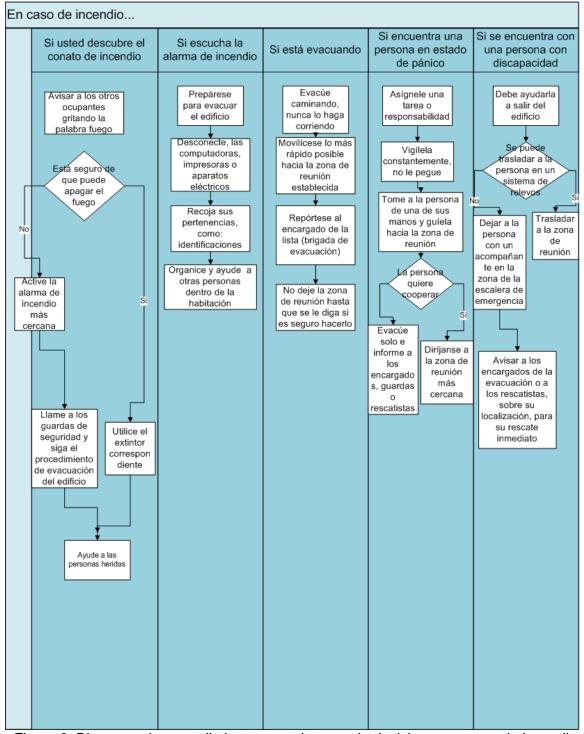
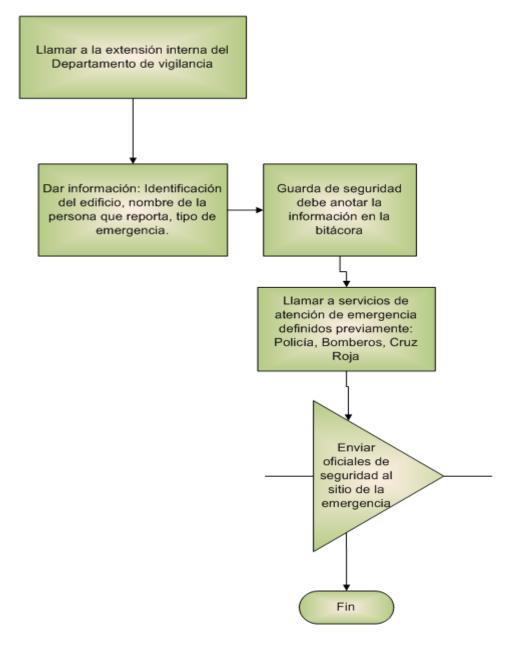



Figura 2. Diagrama de procedimientos para la toma de decisiones en caso de incendio.

Fuente: Marín Z 2009.

2.1. Línea de comunicación

La correcta atención de una emergencia depende de la agilidad y rapidez con que se comunique la emergencia, a continuación se presenta la línea de comunicación que debe seguirse en caso de emergencia:

Fuente: Marín Z 2009.

3. Evacuación para personas con discapacidad

La evacuación del edificio de residencias estudiantiles implica la salida de todas las personas de la edificación, sin embargo, en el caso de las personas con movilidad reducida es necesario que se establezca un plan específico de evacuación por lo que se propone el "Sistema de amigos", que se detalla a continuación:

3.1. Sistema de amigos

Durante los primeros días de cada semestre la persona con discapacidad debe comentar con el encargado (a) de residencias sobre la necesidad de un compañero, si la alarma de evacuación se activa.

Se deben considerar varios amigos en diferentes lugares donde la persona con discapacidad puede estar durante una alarma y discutir su plan de evacuación con sus amigos (especialmente los coordinadores de alas de residencias).

La persona con discapacidad debe explicar qué tipo de ayuda necesita durante una alarma de incendio.

Se debe Planear y practicar el procedimiento o la evacuación durante una alarma de incendio, en los simulacros establecidos y cuando se considere necesario

Si es posible, su compañero debe asegurar su ubicación, capacidad y necesidad de asistencia durante una alarma de incendios.

3.2. Reconocer sus capacidades y limitaciones para la evacuación del edificio

Cuando la evacuación se realice en sentido horizontal, debe hacerse alejándose del fuego hasta llegar a una distancia segura de la amenaza o una salida o puerta de la escalera.

La mayoría de las escaleras de incendios son recintos puntuación que se puede utilizar como áreas de asistencia de rescate para las personas que necesitan asistencia salir del edificio.

Personas que utilizan sillas de ruedas deben ser llevados a un área de asistencia de salvamento (por lo general los desemboques de escaleras) o quedarse donde están

ubicados. Esta operación requiere que su compañero notifique a los encargados de rescate, de su ubicación una vez que llegue a la zona de reunión

Las personas con impedimentos de movilidad, pero sin la necesidad de una silla de ruedas tendrá que tratar de evacuar el edificio, permitiendo que el paso, cuando sea necesario, en áreas como las escaleras.

Personas con discapacidades físicas, tales como problemas auditivos, puede necesitar habitaciones equipadas con las señales de advertencia adicional para informarles de la activación de la alarma de incendios, este sistema debe evaluarse según la necesidad particular del estudiante. Un amigo puede ser necesario para notificar o ayudar a los discapacitados físicos durante una emergencia.

Las personas que tienen impedimentos visuales, necesitarán un amigo para que les ayude a en la evacuación, esto es considerado, ya que existen condiciones de estrés que se pueden manejar durante la emergencia.

El procedimiento correcto de evacuación del edificio de residencias debe establecerse respecto a las rutas establecidas como rutas de evacuación, por eso deben colocarse croquis informativos que dirijan a las personas en el proceso de evacuación del edificio; tal y como se muestra en las siguientes figuras:

Instrucciones de evacuación:

Siga las instrucciones de la persona encargada de la evacuación (definida en los talleres de formación).

Salga del edificio por la salida de emergencia más cercana.

Ayude a las personas con discapacidad a escapar por la ruta de evacuación más cercana

No recoja artículos personales

No entre al edificio hasta que se le avise que es seguro.

Descubrimiento de fuego u otra emergencia:

Active la alarma de emergencia.

No cierre las puertas y ventanas que puedan restringir la emergencia, sólo si es seguro hacerlo.

Notifique al Departamento de Seguridad del ITCR a la extensión: 2312

Dé la siguiente información:

Residencias Estudiantiles Edificio _____.

Nombre de quien reporta la emergencia.

Habitación o área, nivel.

Tipo de emergencia, ejemplo: incendio, electrocución

Figura 3. Croquis de evacuación Nivel 1

Fuente: Marín Z 2009

Instrucciones de evacuación:

Siga las instrucciones de la persona encargada de la evacuación definida en los talleres de formación).

Salga del edificio por la salida de emergencia más cercana.

Ayude a las personas con discapacidad a escapar por la ruta de evacuación más cercana

No recoja artículos personales

No corra, utilice las escaleras de emergencia NUNCA el ascensor, para evacuar.

No entre al edificio hasta que se le avise que es seguro

Descubrimiento de fuego u otra emergencia:

Active la alarma de emergencia.

No cierre las puertas y ventanas que puedan restringir la emergencia, sólo si es seguro hacerlo.

Notifique al Departamento de Seguridad del ITCR a la extensión: 2312

Dé la siguiente información:

Residencias Estudiantiles Edificio _____.

Nombre de quien reporta la emergencia.

Habitación o área, nivel.

Tipo de emergencia, ejemplo: incendio, electrocución.

Figura 4. Croquis de evacuación Niveles 2-4

Fuente: Marín Z 2009.

VII. Responsabilidad del desarrollo e implementación de los procedimientos de emergencia.

A. Plan de Formación y Capacitación de la población.

1 Capacitación para estudiantes residentes.

La formación en Seguridad humana y protección contra incendios de los estudiantes residentes y personal administrativo, estará constituida por los siguientes contenidos:

-Establecimiento de procedimientos seguros de evacuación.

El entrenamiento de evacuación de emergencia el cual debe ser coordinado por el encargado de la Oficina de seguridad e higiene y la Comisión de Salud Ocupacional. Esta formación se centrará en los diferentes tipos de emergencias y como responder adecuadamente a cada situación de emergencia, se discutirá el plan de Evacuación de Emergencia así como la formación de la brigada estudiantil de evacuación (esta se redefinirá todos los años, debido a la rotación estudiantil constante).

-Comportamientos y hábitos de convivencia en las Residencias Estudiantiles.

Se realizará un taller basado en juegos vivenciales y sesiones de discusión, se trabajarán los temas de comportamientos seguros en Residencias estudiantiles, sanc

-Uso y manipulación correcta de extintores.

Capacitación para el uso correcto de extintores de incendios será ofrecida por la oficina de Seguridad e Higiene, Comisión de Salud Ocupacional, o persona designada por contratación externa. Esta formación se centrará en la técnica de pase, los diferentes tipos de extintores y permite a cada individuo la oportunidad de manejar un extintor y apagar el fuego con el extintor.

2. Modalidad:

Para llevar a cabo esta actividad se destinarán 3 horas para la realización de talleres durante el Festival anual de estudiantes residentes "La REU", considerando que los estudiantes deben participar obligatoriamente a las actividades de este festival.

3. Responsables:

La planificación y desarrollo de este taller estará a cargo de las siguientes personas:

Cuadro 4. Matriz de asignación de Responsabilidades para la realización del Taller de formación.

	Taller de Formación a Estudiantes Residentes y Personal Administrativo								
		Planificaci	ón	Durante	la actividad	Después del simulacro			
Responsable	Definir Fecha y hora	Aprobar presupuesto	Planificar Actividades del taller	Dirección de la actividad	Supervisión	Evaluación de actividades del taller	Informe de capacitación		
Vice-rectoría de Vida Estudiantil		X							
Departamento Financiero-Contable		X							
Comisión de Salud Ocupacional			X		X	x			
Encargado de Residencias Estudiantiles	Х			х					
Encargado del taller				х		Х	х		
Consejo de Estudiantes Residentes	Х			Х					
Encargado de Oficina de Seguridad e Higiene			х		X				
Coordinadores del edificio de Residencias Estudiantiles									

Fuente: Marín Z 2009

Es necesario indicar que aún cuando este taller se realizará anualmente, debido a la fluctuación de la población residente; el primer semestre de cada año lectivo durante la reunión de recibimiento de los nuevos estudiantes se dedicará un espacio de

"Sensibilización hacia la seguridad" de al menos 15 minutos para brindar información a los mismos sobre; las rutas y procedimientos de evacuación, ubicación de los equipos de seguridad, línea de comunicación en caso de emergencia, hábitos y comportamientos, así como medidas disciplinarias del Reglamento para el funcionamiento del Programa de Residencias estudiantiles del Instituto Tecnológico de Costa Rica, esta actividad estará a cargo de los estudiantes coordinadores de cada ala del edificio y la brigada de evacuación establecida durante los talleres de la REU.

B. Ejercicios de evacuación

Los ejercicios de evacuación son la parte más importante del entrenamiento para procedimientos de emergencia, deberán realizarse una vez al año, a través de simulacros planificados; las actividades que son requeridas para llevar a cabo este ejercicio se detallan a continuación en la siguiente matriz de asignación de responsabilidades:

Cuadro 5. Matriz de Asignación de Responsabilidades para la realización de ejercicios de evacuación (simulacros).

			Entrenamiento de pr	rocedimiento	s de emergeno	ia		
	Prog	ramación para l	os simulacros	Durante (el simulacro	Después del simulacro		
Responsable	Definir Fecha y hora	Definir participantes	Asegurar que los ocupantes del lugar conozcan los procedimientos de evacuación	Dirección de la actividad	Supervisión	Evaluación de procedimiento de evacuación	Informe de procedimie nto	
Vice-rectoría de Vida Estudiantil					X	Х		
Comisión de Salud Ocupacional	х		х	Х	Х	х	Х	
Encargado de Residencias Estudiantiles	х	Х				Х	х	
Consejo de Estudiantes Residentes						х		
Encargado de Oficina de Seguridad e Higiene				X	X	X		
Coordinadores del edificio de Residencias Estudiantiles	·		Х					

Fuente: Marín Z 2009.

Las actividades referentes a la supervisión de la actividad y a la evaluación de los procedimientos estarán dirigidas principalmente a registrar que el desalojo del edificio se dé de una forma ordenada, que se utilicen las salidas correspondientes para la evacuación

en caso de emergencia, la utilización de las zonas de reunión establecidas, es necesario aclarar que en el caso de la Comisión de Salud Ocupacional tendrá participación dentro de las actividades en la dirección y evaluación; sin embargo, su papel será de organismo asesor y regulador.

VIII. Propuesta de Sanciones y prohibiciones del Reglamento de Residencias Estudiantiles.

Considerando que una parte del programa para una correcta administración de la Seguridad humana y protección contra incendios, requiere el control de las actividades y la convivencia en el edificio de residencias estudiantiles; se propone la incorporación de los siguientes artículos al Reglamento para el funcionamiento del programa de Residencias Estudiantiles del Instituto Tecnológico de costa Rica:

Prohibiciones:

- Velas, quemadores de incienso, quemadores de popurrí, lámparas de aceite, antorchas, etc están prohibidos en las residencias.
- El uso y almacenamiento (dentro de las habitaciones de residencias) de gasolina, queroseno, líquido para encender carbón, materiales de arte como la pintura, pintura con base de aceite o cualquier líquido inflamable similar.
- Artículos combustibles, tales como tapices, sábanas, redes, grandes cantidades de papel, y otros materiales similares, no deben estar colgados o colgando de las paredes, ventanas, techos, salas o salidas.
- Anuncios o folletos no deben ser colocados en las paredes de pasillo, las puertas de la escalera, en las escaleras regulares y de emergencia, cerca de botones de llamada del ascensor o de las alarmas de emergencia, únicamente se permitirán en las pizarras informativas dispuestas para tal fin.
- Sobrecargar los circuitos de las habitaciones.
- Cubrir, colgar o colocar cualquier objeto en detectores de humo, detectores de calor o en los rociadores automáticos.

Capítulo 7. Régimen disciplinario.

Artículo 25. Falta leve:

Activación de las alarmas de emergencia y evacuación del edificio.

Ausencia injustificada en los talleres de formación de procedimientos de evacuación

y uso de extintores.

Conducta irreverente en los simulacros de evacuación, que interrumpa la realización

exitosa de los mismos.

Se considerarán faltas leves las prohibiciones referentes a seguridad contra

incendios que ya se expusieron.

Sanción: Amonestación escrita por parte del o la encargada de Residencias Estudiantiles

la primera vez de cometida la falta.

Artículo 26. Faltas Graves

-Se considerará una falta grave el daño intencional a los elementos que constituyen

el sistema de supresión contra incendios instalado en el edificio de Residencias

Estudiantiles.

-Daño intencional a la señalización dispuesta en el edificio, puertas de emergencia,

alarmas de incendio.

Sanción: Referencia al Tribunal Disciplinario Formativo.

Activación de una de las cabezas de rociadores de forma intencional.

Sanción: Referencia al Tribunal Disciplinario Formativo.

IX. Estrategia de Seguimiento del programa

86

El éxito del programa de Gestión de la Seguridad humana y protección contra incendios, requiere del compromiso de los responsables de cada actividad; de tal manera que se logre de forma integral la consecución de todas las actividades. Para llevar un control de las actividades que se realizan se presenta la siguiente matriz de responsabilidades:

Cuadro 6. Matriz para el control de responsabilidades de cada actividad.

Actividad	Entregable	Indicador	Responsable de la actividad	Responsable de la evaluación
Inspecciones de mantenimiento		Condiciones de elementos del sistema	Encargado de la oficina de Seguridad e Higiene	Encargado (a) de Residencias Estudiantiles
Taller de capacitación	Evaluaciones de los talleres	Conocimientos adquiridos	Encargado de la oficina de Seguridad e Higiene	Encargado (a) de Residencias Estudiantiles
Sesiones de información	Bitácora de la reunión	Información suministrada a los estudiantes	Estudiantes coordinadores	Encargado (a) de Residencias Estudiantiles
Simulacros de evacuación	Informe de evacuación	correcto de las rutas de evacuación, evacuación	Ocupacional, Encargado de	Consejo de Estudiantes residentes, Encargado de Residencias Estudiantiles, Vicerrectoría de Vida Estudiantil

Fuente: Marín Z 2009.

X. Informe de lecciones aprendidas

Se presentará un informe de lecciones aprendidas del programa, cada año frente a la Asamblea General de Estudiantes Residentes, esto con el fin de que las autoridades de la institución así como, la población residente conozcan los avances e inversiones del programa.

XI. Bibliografía consultada

Appalachian State University. (2008). Housing anda Residence Life Fire Safety Program. Extraído el 1 de octubre de 2009 del Sitio Web de la Appalachian State University, disponible

http://www.safety.appstate.edu/documents/HOUSINGANDRESIDENCELIFEFIRESAFETY PROGRAM_000.pdf

Griffith University. (2008). Safety Management Plan. Extraído el 5 de octubre de 2009 del Sitio Web de Griffith University, disponible en: http://www.griffith.edu.au/ofm/emergencies/content managementplan.html.

Griffith University. (2008). Building Evacuation Plans. Extraído el 5 de octubre de 2009 del Sitio Web de Griffith University, disponible en: http://www.griffith.edu.au/ofm/emergencies/content evacuationplans.html.

ISO Organization. (2009). ISO 27001:Information Security Standard. Extraído 1 de octubre de 2009 del Sitio Web de PRAXIOM Organization. Disponible en: http://www.praxiom.com/iso-27001.htm.

PRAXIOM Organization. (2009). How to develop our own Human Safety and Security Management Program. Extraído 1 de octubre de 2009 del Sitio Web de PRAXIOM Organization. Disponible en: http://www.praxiom.org/human-security-program.htm.

The University of Western Australia. (2009). Emergency: Fire and Evacuation. Extraído el 5 de octubre de 2009 del sitio Web de The University of Western Australia, disponible en: http://www.safety.uwa.edu.au/policies/emergency_fire_and_evacuation.

The University of Western Australia. (2009). Implementation of Emergency Procedures. Extraído el 5 de octubre de 2009 del sitio Web de The University of Western Australia, disponible en: http://www.safety.uwa.edu.au/policies/emergency fire and evacuation

VIII. BIBLIOGRAFÍA

1. Libros

Cengel, Y. (2006). Mecánica de fluidos: fundamentos y aplicaciones (1ª ed.). México: McGraw Hill.

ITCR. 2009. Gaceta del Instituto Tecnológico de Costa Rica N 275 (21 de mayo de 2009)

Hernández, Roberto. Metodología de la investigación. Mc Graw Hill, México 2006

INS. (2007). Reglamento de Seguridad Humana y Protección contra incendios. Costa Rca.

Mc Colum D. (1995). Construction Safety Planning. Nueva York: Estados Unidos. Editorial John Wiley and Sons.

Purkiss J. 2007. Fire safety engineering : design of structures. 2da edición. Editorial. Oxford. Butterworth-Heinemann

2. Internet

Ahrens M. (2008). Hotel and Motel Structure Fires. Extraído 22 de abril de 2009 del Sitio Web de la National Fire Protection Association: http://www.nfpa.org/assets/files//PDF/Hotelsfactsheet.pdf.

Appalachian State University. (2008). Housing anda Residence Life Fire Safety Program. Extraído el 1 de octubre de 2009 del Sitio Web de la Appalachian State University, disponible en:

http://www.safety.appstate.edu/documents/HOUSINGANDRESIDENCELIFEFIRESAFETY PROGRAM_000.pdf

Bilal A, White G. (1987). Reliability-Conditioned Partial Safety Factors. Journal of Estructural Engineering 113(2):279-294. Extraído 25 de abril de 2009 del Sitio Web ASCE Research Library: http://cedb.asce.org/cgi/WWWdisplay.cgi?8700197

Cabral L. (2003). The development of a fire safety education program for the Residences Halls of California State University, Fresno. Extraído 22 de abril de 2009 del Sitio Web de la Universidad de Fresno, California: http://www.csufresno.edu/catoffice/archives/0203/financial.html.

Campagnola P, Hebner M, Kern G. (2004). College Housing fire safety. Extraído 22 de abril de 2009 del <u>Sitio</u> Web del Washington Project Center: http://www.wpi.edu/Pubs/E-project/Available/E-project-120304-111835/unrestricted/CPSC_FINAL_IQP.pdf

http://www.cpsc.gov/cpscpub/spanish/07279s.html

Espinoza F. (1999). Determinación de características dinámicas de estructuras. Extraído 24 de abril de 2009 del Sitio Web de la Universidad Politécnica de Catalunya: http://www.tdx.cat/TDX-0731102-151724.

Flynn C. (2007). Campus and Dorm Fires. Extraído 22 de abril de 2009 del Sitio Web de la National Fire Protection Association.: http://www.nfpa.org/itemDetail.asp?categoryID=711&itemID=19560&cookie%5Ftest=1

Frantzich. (s.f). Fire Safety Risk Analysis of a Hotel; How to Consider Parameter Uncertainty.Extraído 26 de abril de 2009 del Sitio Web de la Universidad de Lund: http://luur.lub.lu.se/luur?func=downloadFile&fileOld=1268060.

Frantzich. (1998). Fire safety design based on calculations: Uncertainty analysis and safety verification. http://130.235.7.155/publikationsdb/docs/1016.pdf

Hadjisophocleous G. (1998). Literature Review of Performance-Based Fire Codes and Design Environment. Journal of Fire Protection Engineering, Vol. 9, No. 1, 12-40. Extraído 24 de abril de 2009 del Sitio Web de Sage Journals Online. http://ife.sagepub.com/cgi/content/abstract/9/1/12.

IET. 2009. Quantified Risk Assessment Techniques Part 2: Event Tree Analysis ETA. Extraído 5 de mayo de 2009 : www.theiet.org/factfiles/health/hsb26b.cfm?type=pdf.

Lundin J. (2006). Fire Risk Control in a Performance-Based Regulatory System – Challenges and Shortcomings. Extraído 24 de mayo de 2009 del Sitio Web de Sage Journals Online: http://jfe.sagepub.com/cgi/content/abstract/15/1/19

Magnusson S, Frantzich H, Harada K. (1996). Fire safety design based on calculations: Uncertainty analysis and safety verification. Fire Safety Journal 27(4):305-334. Extraído del Sitio Web de INIST: http://cat.inist.fr/?aModele=afficheN&cpsidt=2622646.

NFPA. (2001)Incendio en un Club Estudiantil Universitario Chapel Hill, NC. Extraído 22 de abril de 2009 del Sitio Web de la National Fire Protection Association: http://www.nfpa.org/assets/files/PDF/OS%20-%20IncendioChapel%20Hill.pdf.

NFPA. (2001). Incendio en un Dormitorio Franklin, Massachussetts. Extraído 22 de abril de 2009 del Sitio Web de la National Fire Protection Association: http://www.nfpa.org/assets/files/PDF/OS%20-%20IncendioDormitorioFranklin.pdf

NFPA. (2001). Incendio en un Club Social Universitario Berkeley, California. Extraído 22 de abril de 2009 del Sitio Web de la National Fire Protection Association: http://www.nfpa.org/assets/files/PDF/OS%20-%20IncendioBerkeley.pdf.

ODF (Oregon Department of Forestry). (2004). Fire Protection Coverage Working Group: White Paper. Extraído 24 de mayo de 2009 del Sitio Web de la Universidad Estatal de Oregon, Estados Unidos: http://ir.library.oregonstate.edu/jspui/bitstream/1957/2814/1/fire_prot_coverage_report_fina l.pdf

Peacok. (2008). CFAST – Consolidated Model of Fire Growth and Smoke Transport (Version 6) User's Guide. Extraído 8 mayo de 2009 del Sitio Web del National Institute of Standards and Technology: http://www.bfrl.nist.gov/866/fmabbs.html#CFAST

PRAXIOM Organization. (2009). How to develop our own Human Safety and Security Management Program. Extraído 1 de octubre de 2009 del Sitio Web de PRAXIOM Organization. Disponible en: http://www.praxiom.org/human-security-program.htm.

Sherif M. (2002). Safety Climate in Construction Site Environments. Journal of Construction, Engineering and Management (128)5:375-384. Extraído 24 de abril de 2009 del Sitio Web de ASCE Research Library: http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JCEMD4000128000 005000375000001&idtype=cvips&gifs=yes

Soares C, Texeira P. (2000). Probabilistic modelling of offshore fires. Fire Safety Journal 34(1): 25-45. Extraído 24 de mayo de 2009 del Sitio Web de la Base de datos Elsevier BV: http://www.sciencedirect.com/science? ob=ArticleURL&_udi=B6V37-3YJYH042&_user=84800&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059869&_v
ersion=1&_urlVersion=0&_userid=84800&md5=4abb2b4fce021aa05b17ffec34b629b9

Reese S. (2003). 21st century dormitory. Extraído 22 de abril de 2009 del Sitio Web Bnet: http://findarticles.com/p/articles/mi_qa3737/is_200309/ai_n9301387/

USFA. (2009). Student killed in off-campus fire in Plattsburgh, New York. Extraído 28 abril de 2009 del Sitio Web de del journal Fire Watch: http://www.campus-firewatch.com/press/2009/plattsburgh.html

USFA. (2006).Fire Safety 101: A Factsheet for Colleges & Universities. Extraído 28 de abril 2009 del Sitio Web de la U.S Fire Administration (USFA): http://www.usfa.dhs.gov/citizens/college/101.shtm.

IX. APÉNDICES

Apéndice I. Cuestionario de aplicación a los estudiantes residentes.

Cuestionario Estudiantes Residentes

Consideraciones:

- Este cuestionario es de carácter anónimo.
- Aplicable a estudiantes residentes.

Favor contestar lo que se le solicita a continuación:

1.	¿Cuánto tiempo lleva viviendo en Residencias estudiantiles?
	I Semestre
	I Año
	Más de tres años
	¿Invita usted a compañeros no residentes a estudiar en las residencias?Sí
	No
3.	¿Cuántas personas suele invitar?
	1
	2
	Más de tres
	Ninguno
4.	¿Recuerda usted algún incidente que se haya desarrollado en la residencia en la que usted
	vive?
	Sí
	Cuál?

Nο

5. ¿Ha recibido formación en la temática de emergencias, protección contra incendios o seguridad humana?

__Sí __No

Apéndice II. Matriz comparativa de los estándares de Seguridad humana y protección contra incendios aplicable al edificio de Residencias Estudiantiles.

	Estándar o Normativa aplicable	de Seguridad Humana y I	Protección contra incendios
Criterio de diseño	NFPA 101	Reglamento de Seguridad Humana	Ley 7600
	Resid. Estud.	Resid. Estud.	Resid. Estud.
Medios de egreso	Los medios de egreso deben estar protegidos con paredes que tengan al menos 1 hora de protección contra el fuego	Salidas de emergencia y Salidas ordinarias deben estar separadas entre sí al menos la mitad de la longitud del edificio	-
Superficie para caminar en medios de acceso	Cambios abruptos en la elevación no deben exceder 0,6 cm	-	-
Rampas de acceso	Ancho mínimo 1,20 m, pendiente menor a 10%	-	Ancho mínimo: 1,12m; pendiente máxima 1 en 12;
Escaleras	Huella: 0,30 m, Contrahuella: 0,14m, Pasamanos a 0,90m	-	-
Pasillos	Uso común 1,20m, pasillos interiores 0,90 m	Ancho mínimo 1,20 m	-

	Estándar o Normativa aplicable	de Seguridad Humana y F	Protección contra incendios
Criterio de diseño	NFPA 101	Reglamento de Seguridad Humana	Ley 7600
	Resid. Estud.	Resid. Estud.	Resid. Estud.
Ascensores	-	-	Dimensiones mínimas interiores: 1,10m X1,40m, señalización braille y auditiva
Puertas	Espacio libre 0,90m, resistencia contra el fuego no menor a 1 hora	-	Espacio libre de al menos 0,90 m
Iluminación medios de egreso	Míinimo 300 Lúmenes	-	-
Dispositivos (apagadores, picaportes)	Altura 0,90-1,20m	-	-
Sitios de estacionamientos reservados	-	-	3,30 m X 5m con rampa que permita el acceso a la entrada principal
Capacidad de ocupación	Mínimo 18,6 m² libres por persona	-	-
Estructura	Las paredes que dividan secciones horizontales deberán brindar una barrera de al menos 2 horas de resistencia al fuego	Ídem NFPA 101	-
Sistema de supresión de incendio	Este tipo de edificio debe estar protegido con un sistema de rociadores automáticos	-	-
Riesgo del edificio	Riesgo Moderado	Riesgo Moderado	-

Apéndice III. Muestra de cálculo de valoración de la evaluación de sitio.

Evaluación de sitio

Comp	onente Bioclim	iático								
					Calidad	1			'	
Е	Orientación	Viento	Precipitación	Ruidos	del Aire	1	Р	F	EXPXF	PXF
1						<u> </u>	3	0	0	0
2	X	Х				<u></u>	2	2	8	4
3			Х			,	1	1	3	1
	Valor Total							•	11	5

Comp	onente Geología			-						
					Rangos					
					de	Calidad del				
E	Sismicidad	Erosión	Deslizamiento	Vulcanismo	Pendiente	suelo	Р	F	EXPXF	PXF
1							3	0	0	0
2	X	Х		Х			2	3	18	6
3			X				1	1	3	1
	Valor Total								21	7

	Hidrolog.	Hidrolog.		Áreas						
E	Suelos Agrícolas	Superficie	Subterr.	Mar y lagos	Frágiles	Sedimentación	Р	F	EXPXF	PXF
1						Х	3	1	3	3
2							2	0	0	0
3	Х	X	Х	Х	Х		1	5	15	5
	Valor Total						<u>-1</u>		18	8

Comp	onente Medio construi	do						
			Acceso a					
Е		Accesibilidad	Servicios		Р	F	EXPXF	PXF
1					3	0	0	0
2					2	0	0	0
3		X	Х		1	2	6	2
	Valor Total				•		6	2

Componente de interacción (Contaminación)

					Escuelas				
	Desecho sólido y	Industrias	Líneas de alta	Peligro	y lugares				
E	líquido	contaminantes	tensión	Explosión/Incendio	de vicio	Р	F	EXPXF	PXF
1			X		Х	3	1	3	3
2						2	0	0	0
3	X	Х		х		1	3	9	3
	Valor Total							12	6

Componente institucional social

	Conflictos	Seguridad	Marco			Ī		
	Connictos	Segundad	Iviai CO					
E	terrotoriales	ciudadana	Jurídico		Р	F	EXPXF	PXF
1					3	0	0	0
2		X			2	1	4	2
3	X		Х		1	2	6	2
	Valor Total						10	4

Evalua de siti Apéndice IV. Muestra de cálculo para determinación de carga de fuego.

Información de las áreas del edificio de Residencias								
Área	Cocinas							
Area de edificación 600(4	6,4 m ²	Número de niv	/eles:	4				
Ubicación: M	lódulo central del edificio							
		Componente	Material	Igneabilidad	Observaciones			
		Pisos	Concreto	M 0				
				M 0	Aluminio			
Tine constructive v meterial		Paredes	Concreto	M 0	Mampostería			
Tipo constructivo y material	es	Ventanas	vidrio	M 0	Polarizado			
		Cielo raso	raso Fibrolit M 0					
		Techos	Metal	M 0	De Zinc			
Inventario de materiales almacenados en la	Material	Peso (kg)	BTU	Carga de Fuego				
edificación:	Madera	100	4000	8620,69				
	Mesas	20	4000	1724,14				

	Sillas		10		OTAL=	862,07 11206,90
Información Áreas del edit	icio de Residencias					
Área	Área social					
Area de edificación 600(m²)	25 m ²	Número de ni	veles:	4		
Ubicación:	Módulo central	-				
		Componente	Material	Igneabilidad	d Obse	rvaciones
		Pisos	Concreto	M 0		
		Marco	Metal	M 0	Alum	inio
		Paredes	Concreto	M 0 Ma		postería
Tipo constructivo y materi	ales	Puerta	Metal	M 0		
		Ventana	Vidrio	M 0	Polar	izado
		Malla	Metal	M 0	Elect	rosoldada
		Cielo raso	Gypson			
		Techos	Metal	M 0	Tech	o de Zinc
Inventario de materiales	Material	Peso (kg)	BTU	Carga of Fuego	de	
almacenados en la edificación:	Mesas	30	4000	4800,00		
	Sillas	25	4000	4000,00		
	Textil	50	6000	12000,00		

Información de las áreas del edificio de Residencias								
Área	Lavandería							
Area de edificación 600(m²)	Número de niveles: 1							
Ubicación:								
		Componente	Material	Igneabilidad	Observaciones			
		Pisos	Concreto	M 0				
		Marco	Metal	M 0	De aluminio			
		Paredes	Concreto	M 0	Mampostería			
Tipo constructivo y materi	ales	Puerta	Metal	M 0				
		Ventana	Vidrio	M 0	Polarizado			
		Cielo raso	Gypson	M 0				
		Malla	Metal	M 0	Electrosoldada			
		Techos	Metal	M 0	De Zinc			
Inventario de materiales almacenados en la edificación:	Material	Peso (kg)	BTU	Carga de Fuego				

Papel	20	4000	5242,46
Cartón	10	4000	2621,23
Textil	20	4000	5242,46
		TOTAL=	13106,16

Información de las áreas del edificio de Residencias								
Área	Habitaciones Ala noreste							
Area de edificación	m ²	Número de ni	veles:	3				
Ubicación:	Costado Este de la entrada principal de la	planta						
		Componente	Material	Igneabilidad	Observaciones			
		Pisos	Cerámica	M 0	Antideslizante			
		Marco	Metal	M 0	De aluminio			
	Paredes	Concreto	M 0	Mampostería				
Tipo constructivo y materi	inles	Cielo raso	Gypson	M 0				
ripo constructivo y materi	idies	Puerta	Madera					
		Ventana	Vidrio	M 0				
		Malla	Metal	M 0	Electrosoldada			
		Persianas	Plástico		PVC			
		Techos	Metal	M 0	De Zinc			
Inventario de materiales almacenados en la	Material	Peso (kg)	BTU	Carga de Fuego	Tipo de fuego, peligrosidad del material (toxicos liberados en la combustion y oscuras)y compatibilidad con agente extintor.			
edificación:	Papel	15	4000	243,31	Tipo de fuego A, extintor A de agua y espuma			
	Textil	30	10000	29211,30	Tipo de fuego A, extintor A de agua y espuma			

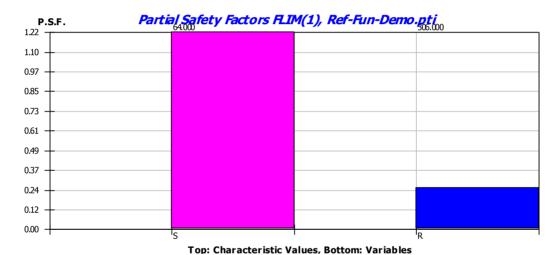
Mesas	6	4000	2336,90
Sillas	4	4000	1557,94
Cartón	2	6000	1168,45
Madera	30	4000	11684,52
		TOTAL=	138607,24

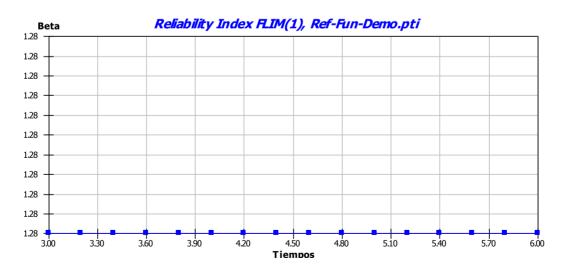
Apéndice V. Cálculos de las rutas de evacuación para el edificio de residencias estudiantiles.

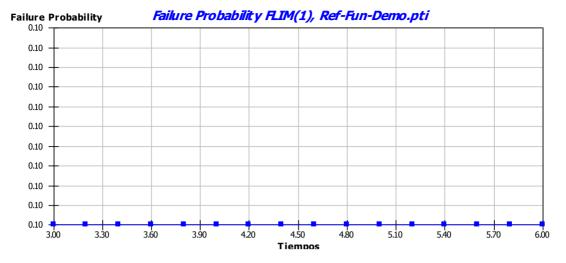
Modelo de alternativas, tiempos y movimientos para evacuación de residencias estudiantiles

Escenario	Lugar de trabajo en planta ha ser evacuado	Cantidad de población a evacuar	Rutas de evacuación y sus distancias a diferentes puntos de reunión	Velocidad de evacuación. Bajo condicion optima una persona camina 100 m. en 133.33 segundos / 2.2	Tiempo de evacuación bajo condición optima	Factores de Ajuste por reducción de velocidad	Tiempo real de evacuación Ruta A
	Incendio en Habitaciones Ala Noroeste primer nivel	17	71	2.2	1.562	4.1	6
Incendio en	Incendio en Habitaciones Ala Noroeste segundo nivel	17	73.5	2.2	1.617	5.85	9
Habitaciones Ala Noroeste	Incendio en Habitaciones Ala Noroeste tercer nivel	17	76	2.2	1.672	5.85	10
	Incendio en Habitaciones Ala Noroeste cuarto nivel	17	78.5	2.2	1.727	5.85	10
	Incendio en Habitaciones Ala Noreste primer nivel	17	53.5	2.2	1.177	4.1	5
Incendio en Habitaciones Ala	Incendio en Habitaciones Ala Noreste segundo nivel	17	56	2.2	1.232	5.85	7
Noreste primer nivel	Incendio en Habitaciones Ala Noreste tercer nivel	17	58.5	2.2	1.287	5.85	8
	Incendio en Habitaciones Ala Noreste cuarto nivel	17	61	2.2	1.342	5.85	8

Apéndice VI. Distribución gráfica de las especificaciones técnicas de seguridad humana.

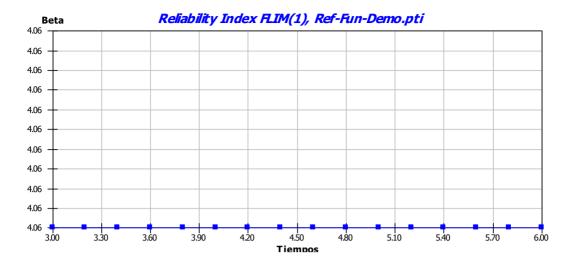

Apéndice VII. Análisis de factibilidad de dos propuestas para la protección contra incendios en el edificio de Residencias estudiantiles.

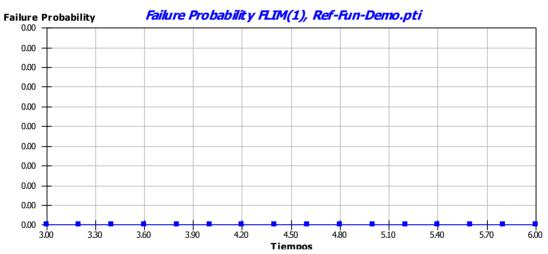

	Ventajas	Desventajas
Propuesta 1	Menor costo de instalación, menor costo por mantenimiento, Detección de automática en área de frecuentes conatos (cocinas).	Requiere mayor formación de personal, expone a los estudiantes a recibir daño al combatir el incendio, no es funcional debido a la rotación continua de estudiantes, no cumple todos los criterios de la Norma NFPA 101, depende del fallo humano para utilizar el equipo.
Propuesta 2	Menor probabilidad de fallo, detección automática del incendio, funcional en horarios en los que el edificio está desocupado o las personas no se encuentran en estado de alerta, cumple con requerimientos de NFPA 101 para este tipo de edificios, no depende directamente de las personas, sistema autónomo y autosuficiente.	Mayor costo de instalación, mayor inversión por mantenimiento del sistema, Definido para los escenarios MLH y WCS propuestos.


Apéndice VIII. Determinación de Margen de escape para los escenarios propuestos, según la alternativa a diseñar.

Propuesta 1. Extintores, Detectores de humo.

Escenario	S	D	T inv.	R fire	R neigb	E	T button	R
						No		
						considerad		
						o, ya está		
						en los otros		
Incendio en Habitación Ala noreste	170	20	43.3333333	43.3333333	0	tiempos	0	106.666667
Incendio en Habitación Ala noroeste	170	20	0	43.3333333	0		0	63.3333333
Cuarto eléctrico	900	20	53.3333333	14	0		1.5	88.8333333
Área de cocinas	120	20	20		0		0	40
Lavandería	170	20	0		0		0	20
							Promedio R	64
							Desviación	
Promedio S	306						estándar	35
DS	333							




Propuesta 2. Sistema de rociadores automáticos, Detectores de humo.

Escenario	S	D	T inv.	R fire	R neigb	E	T button	R
Incendio en Habitación Ala noreste	900	20	0	43.3333333		No considerado, ya está en los otros tiempos	0	63.3333333
mendio en nastación Ala noreste	500	20		43.333333		otros tiempos	·	03.333333
Incendio en Habitación Ala noroeste	900	20	0	43.3333333	0		0	63.3333333
Cuarto eléctrico	900	20	53.3333333	14	0		1.5	88.8333333
Área de cocinas	120	1	20	11.3333333	0		0	32.3333333
Lavandería	900	20	0	0	0		0	20
							Promedio Tiempo R	54
Promedio Tiempo S	744						DS	27
DS	349							

Top: Characteristic Values, Bottom: Variables

Apéndice IX. Memoria de cálculo para el sistema de rociadores automáticos.

1. Cálculo de la Succión

Cálcu	los de Pé	rdidas de	e carga en la Succión				
Parámetros de Entrad	la		Parámetros o	de Entra	da		
Diámetro (D)	202.740		Accesorios	Cantd.	L. Equiv	Sub Total	
	0.203	m	Longitud Tubería Recta	12		12	m
Diámetro Nominal de Tubería (D)	8	pulg					
Caudal (Q)	1000.00	GPM					
	2600.00	I/min	Entrada Proyectada Tanque	1	0.9144		
			Check	1	9.7536	9.75	m
	0.043	m3/s					-
Velocidad del Fluido (V) (0,6 a 3m/s)	1.34	m/s					
Altura Gerométrica (Hg)	-7.00	m					
Rugosidad Acero	120						
			Longitud Equivalente			22.67	m
Cálculo de Caída de Presión	Tubería		Basado en:				
			Table 8-4.3.1 Equivalent Schedule	e 40 Ste	el Pipe L	ength Chai	rt
Caudal (Q)	0.043	m3/s	Presión Estática				
Coeficiente de Rugosidad (C)	120						
Longitud de Total Equivalente (L)	22.668	m	Pérdidas en tubería (Hf)	0.25	mca		
Diámetro de Tubería (D)	0.203	m	Altura Geométrica (Hg)	-7.00	m		F
Pérdidas de Presión (Hf)	0.246	mca	Presión Estática Succión (Hes)	-6.75	mca		
Pérdidas de Presión (Hf)	0.349	psi	Presión Estática Succión (Hes)	-9.60	psi		
Presión Dinámica			Presión Total				_
Velocidad (V)	1.342	m/s	Presión Estática Succión (Hes)	-6.75	mca		
Densidad (p)	998.000	kg/m3	Presión Dinámica Succión (Hds)	0.09	m		
Presión Dinámica Succión (Hds)	0.092	mca	Presión Total Succión (Hts)	-6.66	mca		
Presión Dinámica Succión (Hds)	0.130	psi	Presión Total Succión (Hts)	-9.47	psi		

2. Cálculo de pérdida de carga en ruta crítica.

Calculos de Perdi	ias de Câ	rga en la	Descarga a traves de la Ruta Critica					
D-1			A	0-11		0.1. 7.1.1		D. (
Parámetros de Entrada			Accesorios			Sub. Total		Diám
Diámetro (D)	154.00		Longitud Tubería Recta	91.58		91.58	m	
5.4	0.1540				_			
Diámetro Nominal de Tubería (D)	6	pulg	Te siguiendo recto	1	_			
0 11/0		0011	Check	1	13	13.00	m	(
Caudal (Q)	686.00		5 1 11 0 0					_
	2596.51	I/min	Reducción 8 a 6	1				8at
			Te siguiendo recto	6	0.0111			
	0.04	m3/s	Te doblando	0				(
			Compuerta	2				(
Velocidad del Fluido (V) (0,6 a 3 m/s)	2.32	m/s	Codos 45	8	2.1336	17.07	m	(
Altura Gerométrica (Hg)	6.00	m	Reducción 6 a 5	1	1.11	1.11	m	6a5
			Codos 90	7	3.6576	25.60	m	
Rugosidad Acero	120		Presión	1	2.7432	2.74	m	
			Compuerta	1	0.6096	0.61	m	
			Alarma	1	0.6096	0.61	m	
			Longitud Equivalente			160.75	m	
			Basado en:			100.70		
			Table 8-4.3.1 Equivalent Schedule 4	10 Steel	Pine Lena	th Chart		
Cálculo de Caída de Presión	Tubería		Table 6 4.5.1 Equivalent constant		i ipo zong	ur onare		
Calcalo do Calda do Fredion	rabona		Presión Estática					
Caudal (Q)	0.04	m3/s	Presión Requerida por Elemento		mca			
Coeficiente de Rugosidad (C)	120		Pérdidas en tubería (Hf)	6.64	mca			
Longitud de Total Equivalente (L)	160.75		Altura Geométrica (Hg)	6.00				
Diámetro de Tubería (D)	0.15							
			Presión Estática Descarga (Hed)	131.64	mca			
Pérdidas de Presión (Hf)	6.64	mca						
r cranado do r rocion (r ny			Presión Estática Descarga (Hed)	187.13	psi			
Pérdidas de Presión (Hf)	9.43	psi	, rooten Zotanoa z oodanga (rida)		p			
Presión Dinámica			Presión Total					
Velocidad (V)	2.32	m/s	Presión Estática Descarga (Hed)	131.64	mca			
Densidad (p)	998.00		Presión Dinámica Descarga (Hdd)	0.27				
	222.00			5.21				
Presión Dinámica Descarga (Hdd)	0.27	mca	Presión Total Descarga (Htd)	131.91	mca			
5 11 51 1 5	0.55		D :/ T.I.D #:::	107.55				
Presión Dinámica Descarga (Hdd)	0.39	psi	Presión Total Descarga (Htd)	187.52	psi			

3. Cálculo de pérdida de carga total de la bomba.

		Parame	etros finales Selección de Bomba		
Presión Total Bor	mba		Comprol	bación NSPHd	
Presión Total Succión (Hts)	-6.66	mca	Presión Atmosférica (Po)	8 64	mca
Presión Total Ruta Crítica (Htd)	204.34		Altura Geométrica (Hg)	-7.00	
,			Perdidas por Fricción (Hf)	0.25	mca
Presión Total Bomba (Ht)	197.67	mca	Presión de Vapor (Hv)	0.25	mca
Presión Total Bomba (Htd)	281.01	psi	NPSHd	15.14	mca
			NPSHd	21.53	psi
Caudal Total Bor	nba				
			Prueba de	NPSHd > NPSHr	
Caudal Total Bomba	0.04	m3/s			
			NPSHd	21.53	psi
Caudal Total Bomba	686.92	GPM	NPSHr	20.00	psi
Calculo del Tano	que		¿Tubería de succión Adecuada?	SI, mantener diámetro	
Caudal Total	0.04	m3/s			
Tiempo de Funcionamiento	90.00	min	Conversones mca psi	mca	46
				psi	65.39
Volumen del Tanque	216.00	m3			
Diametro Tanque	6	m			
Altura Tanque	8	m			
Volumen Tanque	226.19	m3			

4. Determinación de diámetros de tubería.

	Selección y velocidad en Tuberías												
Tramo	Longitud	Caudal	Caudal	Velocidad	Diám Intern	Diam Nom	SDR	Rugosidad					
	(m)	(L/min)	(m3/s)	(0,6 a 3 m/s)	(mm)	Pulg		С					
Succión	12	2600	0.0433	2	166.09	6 2/4	13.5	120					
Ramales		50	0.0008	2.5	20.60	3/4	13.5	120					
Verticales		2600	0.0433	2.75	141.64	5 2/4	13.5	120					
Accesorios		50	0.0008	3	18.81	3/4	13.5	120					

Nota: Distribución es idéntica para niveles 2-4.

X. ANEXOS

Anexo I.HISTOGRAMA DE EVALUACIÓN DEL SITIO

No	mbre del pro	yecto:								
Dir	ección exact	a del proy	recto:							
li —										
TI	PO DE P	ROYEC	TO: SALUD							
С	OMPONE	NTE BI	OCLIMATICO							
E	ORIENTACION	VIENTO	PRECIPITACION	RUIDOS	CALIDAD		Р	F	EXPXF	PxF
					DEL AIRE					
1	X		X				3	2	6	6
2		x			Х		2	2	8	4
3				x			1	1	3	1
V	ALOR TOTA	L= ExPxF	//PxF= 17/11						17	11
С	OMPONE	NTE G	EOLOGIA							
E	SISMICIDAD	EROSION	DESLIZAMIENTO VUL	CANISMO	RANGOS	CALIDAD SUELO	Р	F	EXPXF	PxF
					DE PENDIEN					
1							3			
2							2			

3							1			
VA	ALOR TOTA	L= ExPxF/P	PxF=		1			·		
C	OMPONE	NTE EC	OSISTEM <i>A</i>	1						
E	SUELOS	HIDROLO	HIDROLO	MAR Y LAGOS	AREAS	SEDIMENTACION	Р	F	EXPXF	PxF
	AGRICOLAS	SUPERFIC	SUBTERRANEA		FRAGILES					
1							3			
2							2			
3							1			
VA	LOR TOTA	L= ExPxF/I	 PxF=				1			
C	OMPONE	NTE ME	DIO CONS	TRUIDO						
						_				
E	RADIO	ACCESIBILIDAD	ACCESO SERVICIOS	A			Р	F	EXPXF	PxF
1							3			
2							2			
3							1			
VA	LOR TOTA	L= ExPxF/I	PxF=							
C	OMPONE	NTE DE	INTERAC	CION (CON	ΓΔΜΙΝΔΟ	:IÓN)				
	OIIII OIII		INTERACT			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Ε	DESECHO	INDUSTRIA	LINEAS	PELIGRO	ESCUELAS LUGARES	Y DE	Р	F	EXPXF	PxF
	SÓLIDO Y LIQUIDO	CONTAMINANTE	ES ALTA TENSIO	DN EXPLOSION INCENDIO	VICIO					
1							3			
2							2			
3							1			

_	CONFLICTOS	SEGURIDAD	MARCO JURIDICO		F	>		EXPXF	Px
E	TERRITOR.	CIUDADANA					F		
1					3	3			
2					2	2			
3					1				
	OMPONENT OCLIMATION								
								LUACION	
႘									
	EOLOGÍA								
G	EOLOGÍA COSISTEM <i>A</i>	4							
G E(
G E(COSISTEMA EDIO CONST		NACIÓN)						

VALOR TOTAL= ExPxF/PxF=

IDAD DE EVALU	ADOR DEL SITIO, DOY F
DE CON LA SITUA	CIÓN ACTUAL DEL SITIO.
T	<u> </u>
a Firma	Fecha
Firma	Fecha
	DE CON LA SITUA

	BIOCLIMATICO	I			
EVALUACION	ORIENTACION	VIENTO	PRECIPITACION	RUIDOS	CALIDAD DEL AIRE
	El terreno donde se	En el territorio objeto de	En el territorio se	Se registra en el sitio	El sitio se ubica dentro de un territorio
	ubicará el proyecto es	estudio prevalecen	presenta un régimen	altos niveles de ruido,	muy afectado por la contaminación del
	rectangular o de	durante el año vientos	severo de	superiores a los 50 dBA.	aire debido a la presencia de
1	forma irregular con el	con velocidades	precipitaciones que llega	o se sitúa a distancias	numerosas fuentes, alta persistencia
	eje longitudinal N-S o	superiores a 10.8	a superar	menores de 60 metros	en el año de malos olores y polvo en
	S-E o	m/seg, ocasionando	frecuentemente la media	de vías con alta	suspensión, baja capacidad de
	S-O	dificultad al caminar. Se	del territorio presentando	intensidad del tránsito	dispersión de la atmósfera o a
		presentan	períodos poco	(>40000 veh/24h) u otras	distancias menores de 20 metros de
		ocasionalmente	diferenciados durante el	fuentes productoras de	vías con circulaciones de vehículos
		tornados. O prevalecen	año. El régimen de	ruidos (industrias,	superiores a los 4000 vehículos en 24
		calmas en un 70 % del	precipitaciones puede	aeropuertos y mercados)	horas
		año	causar importantes		
			afectaciones a la		
			prestación del servicio		
	El terreno donde se	En el territorio objeto de	En el territorio se	Se registra en el sitio	El sitio se ubica dentro de un territorio
	ubicará el proyecto es		presenta un régimen	_	medianamente afectado por la
		durante el año vientos			contaminación del aire debido a la
				-	presencia de algunas fuentes,
	longitudinal se orienta				estacionalmente se pueden presentar
	iongitudinal se offerita	3.5 y 7.9 m/seg,	Supera la media del	existii luelites de luidos	estacionalmente se pueden presentar

ſ		en la dirección N-E o	ocasionando que se	territorio con períodos	aisladas que no	malos olores y polvo en suspensión,
		N-O hasta 22 grados	levante polvo y papeles.	diferenciados y las	perjudican el servicio y	pero se observa buena capacidad
	2	respecto al Norte	No se presentan	afectaciones que se	el bienestar psíquico del	dispersante de la atmósfera o a
			tornados. O prevalecen	pudiera presentar al	paciente	distancias entre 20 y 60 metros de vías
			calmas entre un 40 y 70	servicio no son		con circulaciones de vehículos 2000 y
			% del año	significativas		4000 vehículos en 24 horas
-		Terreno con cualquier	En el territorio objeto de	En el territorio se	Se registra en el sitio	El sitio se ubica dentro de un territorio
		forma pero el eje	estudio prevalecen	presenta un régimen	niveles de ruido	poco o no afectado por la
		longitudinal se orienta	durante el año vientos	seco o de	insignificantes con	contaminación del aire, buena
	3	en dirección E - O	con velocidades medias	precipitaciones normales	niveles inferiores a los	capacidad dispersante de la atmósfera,
			inferiores a 5.5 m/seg,	y las afectaciones que se	40 dBA . Se corresponde	escasa circulación vehicular a
			Se pueden presentar	pudieran originar al	con un medio urbano	distancias mayores de 60 metros,
			calmas hasta en un 20	servicio son ocasionales	tranquilo	pueden presentarse emanaciones de
			% del año			polvo u otras sustancias
						ocasionalmente

COMPONENTE GE	EOLOGIA
----------------------	----------------

EVALUACIONI	SISMICIDAD	EROSION	DESLIZAMIENTOS	VULCANISMO	RANGOS DE	CALIDAD DEL
EVALUACION					PENDIENTE	SUELO
	El sitio se ubica sobre	En al tarritaria	El citio co ubico on	El citio dondo co	Los rangos do	Si al provecto
			zona de alto peligro	·	1	requiere estudio de
	comprobada, dudosa o		•	'		suelo y este se
	dentro de la longitud		•			ubica en suelos con
	probable de esta o	·		próximo a volcanes	· .	
	existen fallas sísmicas					menor a 1 kg/cm2
	comprobadas o dudosas					y/o presencia del
	a distancias menores de	, ,	•	muy frecuente y se		manto freático al
	20 m del sitio o el sitio se		,	•		mismo nivel o
1	ubica en territorios de	área. Se	del 15%, presencia de	proximidad del		inferior de la
	alta peligrosidad	observan raíces	erosión acusada y/o	proyecto que este		profundidad de
	sísmica ya sea de origen	expuestas.	terrenos inestables	puede sufrir daños		fundación y/o
	geológico o volcánico	Cárcavas de 7.5		debido a la		presencia de
	con intensidades	a 15 cm de		emanación de gases,		arcillas con alto
	esperadas en la escala	profundidad a		cenizas, piroclastos,		índice de
	de Rischter mayores de	intervalos de 1.50		lavas o las		plasticidad o
	5 y/o la presencia de	m. Numerosas		consecuencias de los		expansivas.
	suelos arenosos	líneas de drenaje.		movimientos o		0' -1
	potencialmente licuables	El proceso de		sacudidas del suelo		Si el proyecto no
	o a distancias de	recuperación del				requiere estudios
	edificaciones, bancos de	suelo puede ser				de suelos y este se
	transformadores o	muy costoso				ubica en terrenos
	tanques elevados					con presencia del
	-					manto freático al

	menores1/3 de su altura					mismo nivel o
	o diferencias altitudinales					inferior de la
	de terrenos arenosos					profundidad de
	mayores de 2.00 metros					fundación y/o
						presencia de
						arcillas con alto
						índice de
						plasticidad o
						expansivas.
	El sitio no se ubica	En el territorio	Aunque en el territorio	Aunque existen	Los rangos de	Si el proyecto
	próximo a fallas sísmicas	donde se ubica el	donde se ubica el	volcanes activos en	pendientes son	requiere estudio de
	de ningún tipo. El peligro	sitio se observan	proyecto existe el	el territorio donde se	costosos para la	suelo y el sitio se
	sísmico es medio con	síntomas de un	riesgo de	emplaza el proyecto,	construcción, pero	ubica en suelos con
	intensidades esperadas	moderado	deslizamientos no se	debido a la distancia	construible entre	Resistencia entre 1
2	de 3 a 4.8 en la escala de	proceso de	prevén afectaciones	entre estos, se	el 6 y el 12%	y 1.5 kg/cm2 y/o
	Rischter. Puede recibir	erosión con	al sitio debido a la	considera que los		presencia del
	ocasionalmente	predominio de la	posición respecto a la	efectos de la		manto freático por
	sacudidas originadas por	cubierta vegetal	pendiente o altitud	actividad volcánica		debajo del nivel de
	actividad volcánica.	en la mayor parte		podrían dañar el		fundación pero a
	Pueden existir	del área. Pueden		proyecto de forma		menos de 5.00. No
	edificaciones altas,	presentarse		excepcional		hay presencia de
	bancos de	pequeñas				arcillas plásticas o
	transformadores o	cárcavas a				expansivas
	tanques elevados a	intervalos de 3.00				

Г		J'-1	F				0: -1
		distancias mayores de 20	m. Escasas				Si el proyecto no
		y menores de 30 metros	líneas de drenaje				requiere estudio de
		y/o diferencias	. El proceso de				suelo se observan
		altitudinales (taludes)	recuperación del				buenas cualidades
		menores de 2.00 de	suelo no es muy				para la
		altura	costoso				construcción
-			To al tamitania	Co. al tamitania dan da	Nia audatan unlanga	1	C: al massacta
		El sitio se ubica en un					Si el proyecto
	3	territorio de baja	donde se ubica el	se ubica el proyecto	activos donde se	pendiente son	requiere estudio de
	3	peligrosidad sísmica y/o	proyecto No hay	no existe riesgo de	emplaza el proyecto	óptimos entre el 1	suelo y el proyecto
		terrenos rocosos. No se	evidencias	deslizamiento	o la distancia entre	y el 6 %	se ubica en suelos
		ubican edificaciones en	visuales de		los volcanes con		con Resistencia
		un radio de 30.00 y/o no	erosión en el		actividad y el		igual o mayor a 1.5
		existen diferencias	suelo		proyecto es tal que		kg/cm2 y/o la
		altitudinales del terreno			no existe posibilidad		presencia del
		(taludes). Las			de que el proyecto		manto freático es
		intensidades esperadas			sufra las		mayor de 6.00
		pueden alcanzar hasta 3			consecuencias de la		
		en la escala de Rischter			actividad volcánica		

COMPONENTE ECOSISTEMA

E) / A I I I A O I O N I	SUELOS	HIDROLOGIA	HIDROLOGIA	MAR Y LAGOS	ÁREAS	SEDIMENTACION
EVALUACION	AGRÍCOLAS	SUPERFICIAL	SUBTERRÁNEA		FRÁGILES	
		SUPERFICIAL	SUBTERNANEA		FRAGILES	
	El sitio donde se	Existen ríos,	En el sitio o a	El sitio se ubica	El sitio se ubica	El sitio donde se
	ubica el proyecto se	arroyos, de forma	distancias menores	dentro de la cota de	dentro o muy	ubica el proyecto se
	encuentra a menos	temporal o	de 20 m se ubican	los derechos	próximo (200	encuentra en una
	de 20 metros de	permanente a	importantes flujos de	naturales de lagos,	metros) a zonas	zona receptora de
	suelos cultivables	distancias próximas	agua subterráneas a	embalses y presas,	ambientalmente	depósitos de
	con caña de azúcar	al sitio combinada	profundidades	creando el riesgo	frágiles como	sedimentos o tierra
1	u otros tipos de	con una cota	menores de 10 m con	inminente de ser	pantanos,	debido a la
	suelos agrícolas	altimétrica que	terrenos que poseen	afectado por grandes	humedales, zona de	presencia de
	donde la técnica de	hacen evidente el	una alta tasa de	precipitaciones	reserva natural o	erosión acusada, o
	cultivo conlleve al	peligro de	infiltración y/o se tiene		espacios protegidos	tipos de suelos
	uso de la quema o	inundación . O no	la certeza técnica		para especies en	pocos cohesivos
	aerosoles en forma	existen fuentes de	para considerar que		peligro de extinción,	que pueden
	de plaguicidas de	agua superficiales	la ubicación del		zonas de	ocasionar la
	forma frecuente,	próximas al sitio,	proyecto de salud, el		nidificación u otras	modificación de la
	pudiendo con estas	pero las pendientes	relieve y la posición		y se tiene la certeza	topografía del sitio
	acciones afectar el	son inferiores al 1%	en el lugar, afectará		técnica de que el	ante intensas Iluvias
	normal	y hacen latente el	de forma irreversible		proyecto pudiera	o con el de cursar de
	funcionamiento de	peligro de	las fuentes de agua		causar daños	5 años
	la infraestructura de	inundación por falta	subterráneas que		ambientales o las	
	salud o dañar la	de drenaje y/o el	abastecen a		características del	
	salud de las	sitio se ubica en	comunidades		medio perjudiquen	
	personas y/o el	laderas de cerros o	situadas en un radio		el desarrollo del	
	grosor de la capa	elevaciones donde			servicio de salud	

	vegetal del suelo es	la escorrentía	de 300 metros aguas		También se	
	superior a 1.80	superficial es alta	abajo		consideran las	
	metros				áreas de alto valor	
					arqueológico	
	·		En el sitio o a			En el sitio donde se
		agua superficiales,		,	distancias próximas	, ,
	ubica el sitio se	pero debido a la	de 20 metros se	embalses y presas	(entre 250 y 500	pueden
	utilizan prácticas	cota altimétrica del	localizan fuentes de	pero la diferencia de	metros) de zonas	ocasionalmente
	agrícolas basada	sitio pudieran de	agua subterráneas a	altitud es superior al	ambientalmente	existir acumulación
	en la quema o la	forma excepcional	profundidades entre	menos en 1.50	frágiles pero no se	de depósitos en
2	fumigación de	alcanzar el	10 y 40 metros con	metros	tiene la certeza de	cuantías
	aerosoles de	proyecto, sin	terrenos que		que el	insignificantes
	plaguicidas, sin	peligros de	alcanzan una baja		emplazamiento	debido a la ausencia
	embargo las	inundación y daños	tasa de infiltración y		pueda causar	de erosión y/o
	afectaciones al sitio	a las estructuras. O	pudiendo la		importantes daños	buena estabilidad
	se pueden	con rangos de	constitución del		al medio ambiente o	del suelo y la
	considerar aisladas	pendientes entre el	relieve causar daños		viceversa	acumulación no
	o pocos	1 y el 2% que ante	eventuales a las			llegaría a modificar
	significativas	grandes lluvias	aguas subterráneas			la topografía
		pudiera tener	y/o no existen fuentes			
		dificultad de	de agua subterráneas			
		drenaje y	que abastezcan a			
			comunidades en un			
		·	radio de 300 metros			
		causar daños	aguas abajo			
			- G			

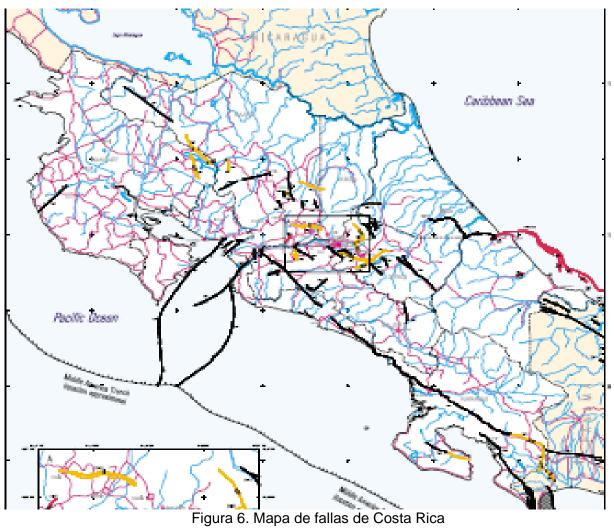
		Existen	terrenos	El sitio	donde se	No existe	en flujos	de	El sitio	se u	ubica a	El sitio	se ubica a	En el territorio do	onde
	•	agrícolas	próximos	ubica e	el proyecto	agua sub	terránea	s en	alturas	mayo	res de	distanci	as mayores	se ubica el proye	ecto
	3	al sitio	pero las	debido a	a su altitud y	el sitio o	si existe	n se	3.00 cor	respe	ecto a la	de 1 ki	m de zonas	no existe riesgo	o de
		técnicas	de cultivo	posición	n frente a las	sitúan		а	cota de	reba	alse de	ambient	almente	acumulación	de
		no son d	añinas. O	formas o	de agua que	profundid	ades		lagos y	emba	llses en	frágiles		depósitos	
		no existe	n terrenos	pudiera	n existir no	mayores	de	50	general						
		agrícolas	en un	tiene	ninguna	metros y	con terre	nos							
		radio de 4	00 metros	posibilio	lad de	muy pern	neables								
				inundars	se										

	RADIO	ACCESIBILIDAD	ACCESO A LOS
EVALUACION	KADIO	AGGEGIBIEIDAD	A00200 A 200
			SERVICIOS
			(ESTE COMPONENTE NO APLICA EN ZONAS
			RURALES)
	Cuando más del 50 %	No existe infraestructura y medios de transporte	En el sitio no existen los servicios de agua
	de la población atender	terrestre y fluvial que llegue al sitio donde se ubicará el	potable alcantarillado sanitario, electricidad y
	se encuentra situada a	proyecto, haciendo la accesibilidad muy dificultosa	comunicaciones. O existen los servicios pero no
	una distancia superior	durante cierta época del año e imposible durante la	es posible que el proyecto pueda conectarse a
	de 5 km caminado a pié	época de lluvias debido a cualquiera de las siguientes	ellos por insuficiencia o incapacidad del sistema.
	o más de 1 hora de viaje	causas:	
1	en autobús	Ausencia de vías de comunicación	
		Barreras naturales	
		Población dispersa	
		Unido a una baja densidad de beneficiarios	
	Cuando del 25 al 49 %	En el territorio donde se ubica el sitio existen caminos	De los 4 tipos de servicios básicos anteriormente
	de la población atender	utilizables sólo en ciertas épocas del año, aunque el	mencionados al menos existen dos o al menos
2	se encuentra situada a	servicio de salud recibirá pocas afectaciones porque la	es posible conectarse a dos
	una distancia entre	población a atender no se encuentra dispersa en el	
	superior de 5 km	territorio y existe una adecuada densidad de	
	caminado a pié o 1 hora	beneficiarios	
	de viaje en autobús		

		Cuando menos del 25 %	No existe dificultad para acceder al sitio del proyecto en	Existen al menos tres de los 4 servicios básicos
	•	de la población atender	cualquier época del año	anteriormente citados y es posible conectarse a
	3	se encuentra situada a		ellos
		una distancia superior		
		de 5 km caminado a pié		
		o 1 hora de viaje en		
		autobús		

COMPONENTE DE INTERACCION (CONTAMINACIÓN)

EVALUACIONI	DESECHOS	INDUSTRIAS	LINEAS DE	PELIGRO EXPL.	ESCUELAS
EVALUACION	SÓLIDOS Y LIQUIDOS	CONTAMINANTES	ALTA	E INCENDIOS	LUGARES DE
		LAS DISTANCIAS ESTAN DADAS EN LA MISMA	TENSIÓN		vicios
		DIRECCIÓN DEL VIENTO			
1	,	 menores de 1000 metros de industrias muy contaminantes: Fábricas de pinturas Ácidos nitrogenados Procesamiento de cuero Producción de Cueros O a distancia menores de 500 m de industrias contaminantes: Banco de materiales de construcción, Plantas de asfalto O a distancias menores de 300 metros de: Rastros 	metros de líneas transmisión de	El sitio donde se emplazará el proyecto se ubica a distancias menores de 25 metros de edificios o construcciones combustibles en 1 hora (viviendas o edificios de madera o minifalda). O a distancias menores de 180 metros de edificios con peligro de explosión (gasolineras o bodegas de	contiguo a una escuela o Centro de
		 Plantas de procesamiento de fibras vegetales 		materiales y gases explosivos)	


		O a distancias menores de		O a distancias	
				menores de 60 metros	
		100 metros de:		de depósitos de	
		Fábricas de fósforos		combustibles	
		• Vidrios		soterrados o aéreos y	
		Queseras		plantas de gas	
		Pescado en conserva		O el sitio se ubica a	
		Yeso y arcillas		distancias menores	
		Así como a distancias menores		de 1500 m de	
		de las establecidas para cualquier		polvorines, Unidades	
		fuente de contaminación según		militares o terrenos	
		normas nacionales e		minados	
		internacionales			
	El sitio de unios harlovente (en	El sitio se ubica por debajo de	El citio de ubico	El sitio de ubico	El sitio se ubica
	`	alguna de las normas anteriores			entre 100 y 400
	,	pero muy próximo a la norma o	•		,
		existen atenuantes como son las		-	
2		pantallas artificiales de protección		límite, pero existen	
	, ,	(edificios). O pantallas naturales	terision electrica	atenuantes como son	desarrono irriaritii
		como son masas de árboles y		pantallas de	
		arbustos de al menos 50 metros		•	El alta de la laca
		de ancho. En este caso puede		protección, barreras,	
	, ,	suceder que se cumpla con		de árboles, taludes u	
		·		otros elementos de	
	localizan cementerios a 1200	algunas normas y se incumpla		defensa natural . En	
	localizari cementenos a 1200	ulia		este caso puede	de vicio

	metros en la dirección de			suceder que se	
	barlovento			cumpla con varias	
				normas y se incumpla	
				una	
	El sitio se ubica a distancias	El sitio se ubica a la distancias	El sitio se ubica a	El sitio se ubica por	En el territorio de
	mayores de 1000 metros en la	indicadas en el caso 1 o a	distancias	encima de todas las	influencia del
3	dirección de barlovento y	distancias superiores	mayores de 80	normas anteriores	proyecto no se
	existen masas de árboles que		metros de líneas		ubican sitios de
	filtran el aire o a sotavento de		de transmisión de		vicio, escuelas o
	vertederos de desechos		electricidad de		centro de desarrollo
	sólidos a cielo abierto o		alta tensión		infantil
	desechos líquidos a cielo				
	abierto				Distancias iguales o
					mayores a 500 m

COMPONENTE INSTITUCIONAL Y SOCIAL								
EVALUACION	CONFLICTOS SEGURIDAD		MARCO LEGAL					
	TERRITORIALES	CIUDADANA						
1	sitio existen conflictos o litigios de carácter territorial (municipal) y la	El sitio se ubica dentro de zonas con altos índices de delincuencia común y/o zonas de enfrentamientos armados, secuestros, vandalismo, de forma que tal que estos hechos puedan afectar el normal desarrollo del servicio de salud	legales ambientales o de propiedad					
	desencadenar o agudizar conflictos de disputas territoriales							
2	ubica el sitio existen conflictos de		de legalización de normativas					

;		No existen conflictos ni litigios	Existen buenas alternativas de seguridad próximas al	El proyecto cumple con lo estipulado
		territoriales en la zona donde se	sitio dado por la calidad social del entorno y por la	en el marco legal ambiental y de la
	3	ubica el proyecto	posición del sitio	propiedad

Anexo III. Mapa de fallas geológicas de Costa Rica

Fuente: Red Sismológica Nacional

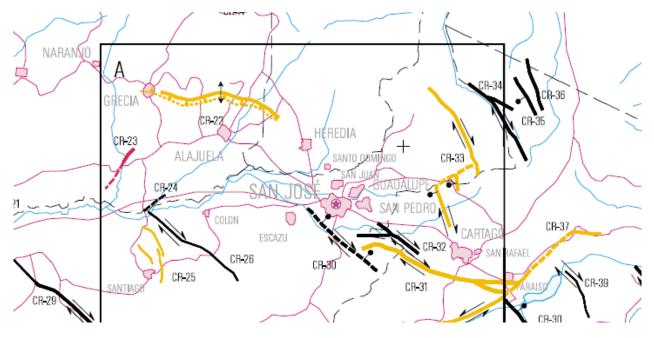


Figura 7. Corte de Fallas geológicas del Área Metropolitana

Fuente: Red Sismológica Nacional