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Abstract

With recently advances in technology (hardware and software) there is an interest of hu-

manity to have machines that behave like humans do. One aspect that researchers have

to overcome is how to imitate the cognitive processes of the brain; cognitive processes

like visual pattern recognition, speech recognition, space comprehension and so on. This

task needs an algorithm that receives raw information from the environment, thus a

signal processing method is needed to convert the raw input into useful information.

Computer Vision is an interesting field of research, because the process of capturing

images is simple and the hardware to process these images is available with current

technology. A natural cognitive process is tracking objects, for example humans (and

animals) can focus on an object of their interest and follow it with their eyes; humans

do this very easily but it is a very challenging problem for computers.

This research focuses on the field of video tracking process using an emerging technol-

ogy like Hierarchical Temporal Memory (HTM). HTM is a machine learning technique

that tries to imitated the Neocortex of the human brain, and then emulate cognitive

processes. This research is based on creating a video tracking algorithm that tries to

imitate the cognitive process of the brain.

Different approaches have been developed to face the video tracking problem, this

research was done using HTM network to achieve this purpose.
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CHAPTER 1

INTRODUCTION

“There are many things humans find

easy to do that computers are

currently unable to do”

Jeff Hawkins
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Chapter 1. Introduction

The computing power of a computer is greater than anyone could imagine in the past.

The main advantage using computers is their capability to process information faster

than a human can do it, in this context the advance in computer vision is remarkable.

Computer vision is a field that includes methods for acquiring, processing, analyzing and

understanding images (that come from electronic devices) to produce useful information

[Wik14].

Capturing video is simple, easy and accessible to any person with different devices.

Processing images from these devices have become an important and an interesting task,

because both software and hardware available choices. It is normal to think computer

vision as a task for robots, and how they can imitate a person. Besides this interesting

field (robotics) there are other areas that use computer vision to create applications,

for example: video surveillance, communication, interaction with environment, pattern

recognition, etc.

An important task in computer vision is to process an input image to “understand”

it, and then it can perform some action. So a capability to detect and track objects

of interest is needed. The process of estimating over time the location of one or more

objects using a camera is referred to as video tracking [MC11]. Improvement in tech-

nology (software and hardware) has brought the computational power to process this

task with good performance.

Another important term is object of interest known as target. What kind of target

does a system have to track? It depends on the needs, if a system needs to track

airplanes, it has to specialized in such objects, it has to recognize common patterns of

airplanes (edges, colors, shapes) to achieve this goal. The same happens with tracking

systems of persons, cars, cells (biology), animals, etc.
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Chapter 1. Introduction 1.1. Video Tracking

Figure 1.1 Motion capture. Taken from [Com09]

As seen in Figure 1.1, video tracking could be applied to a full body tracking (peo-

ple). This type of tracking is a common research issue, due to its relevance in robotics

and surveillance.

This research proposes a technique to tracking objects (people) using a new algo-

rithm based on an HTM classifier. In the first chapter there is an explanation of Video

Tracking concepts, main tasks and importance, also a description of HTM techniques

and background. Chapter two focuses on the hypothesis, objectives and scope, mean-

while the implementation details are presented in chapter three. Chapter four shows

up the experimentation and analysis of results; finally, conclusions and future work are

presented on chapter five.

1.1 Video Tracking

As mentioned before, Video Tracking is the process of finding the location of one or

more moving objects in each frame (image) of a video sequence [SS11], as shown in

Figure 1.2. A target is the object of interest that is tracked by a system; one system

can track animals, vehicles, micro-organisms or another specific object, but the tracking

3



Chapter 1. Introduction 1.1. Video Tracking

of people has an enormous amount of attention (see Section 1.1.1), because it can pro-

duce important information in areas like public transport, traffic congestion, tourism,

security and business intelligence (markets).

Figure 1.2 Object tracking: Graphical description. Taken from [Com09]

Maggio and Cavallaro [MC11] give us a formal general definition of the video-

tracking problem. For a single-target tracking (only one object to track) let I = {Ik :

k ∈ N} be the frames of a video, k represents time, and we have Ik ∈ EI , where EI

is the space of all possible images. The process of video tracking (only one target at a

time) is the estimation of a time series:

x = {xk : k ∈ N}, (1.1)

where xk is the current “state” of the system (it is the result of processing the image)

and xk ∈ ES, where ES is the space of all possibles states of the system. Video tracking

implies a time series, that need to map a set of input images (Ik) to a set of states (xk).

As a result, the set of all states x is known as trajectory of the target.

If the goal is to concurrently track multiple objects, concatenated all states into a

global state is necessary, for this purpose Pk is defined as:

Pk = {xk−1, xk−2, ..., xk−m}, (1.2)
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Chapter 1. Introduction 1.1. Video Tracking

where m is the total of targets in the scene at time k. Zhang et al. [ZLN08] use this kind

of model, they implemented a system where they have global data which is associated

to different objects for the tracking process; they associate specific features to each

object in the scene, producing an accurate system. Their implementation could face an

important problem of video tracking: occlusion, a term than will be explained later on.

1.1.1 Motivation

Many research fields are interested in Video tracking, for instance the entertainment

industry has a special interest because it needs a tracking system to capture character

movements and then mix it with another environment; also video gaming captures user

movements to interact with a video game console. In those cases person motion is

needed as shown in Figure 1.3, where human movement are tracked.

Figure 1.3 Motion capture. Taken from [MHM07]

Figure 1.4 shows another applications interested in Video Tracking. The following

list explains some important applications:

(a) Biological Research (Figure 1.4a): tracking bacteria for a better comprehension of

their behavior.

5



Chapter 1. Introduction 1.1. Video Tracking

(b) Medical Applications (Figure 1.4b): motion tracking to understand certain symp-

toms of a disease.

(c) Surveillance and Business Intelligence (Figure 1.4c): person tracking to analyze

costumers preferences or surveillance.

(d) Robotics (Figure 1.4d): human-robot interaction.

Figure 1.4 Applications of Video Tracking. Taken from [MC11, p. 3]

1.1.2 Challenges

The input for any tracking system is a video, which is composed of a sequence of frames.

Video has the particularity, that its content could be affected by environmental issues,

noise or target shape transformations. As Maggio and Cavallaro [MC11] show, there

are some challenges for a video tracking system to overcome.

The first one is clutter, which happens when the appearance of any object or the

background are similar to the appearance of the target and therefore may interfere

with its observation, as shown in Figure 1.5 where objects in background have similar

characteristics to the target.

6



Chapter 1. Introduction 1.1. Video Tracking

Figure 1.5 Example of clutter: objects in the background red boxes can distract the
system because are similar to the target. Left: similar color. Right: similar shape. Taken
from [Com01]

Changes in pose also difficult the video tracking, when a target rotates it could have

a lot of new features never seen before by the system. Illumination is another factor

than can complicate the tracking task, for example when the target moves from an

outdoor location to a building, colors may change. Also, when the image signal has

certain degree of noise, because of the input device or other external factors.

Figure 1.6 Example of occlusion: the target is partially occluded. Taken from [Com01]

Another difficult challenge is occlusion (as shown if Figure 1.6), when a target fails

to be observed while partially or totally occluded by other objects. For instance when

a person moves behind a car or any other object, there are some frames from the video

7



Chapter 1. Introduction 1.1. Video Tracking

sequence that lost the target. This last aspect (occlusion) is the main focus of this

research, the following Chapter will describe this it.

1.1.3 Tasks

Maggio and Cavallaro [MC11] point out that there are fundamental tasks for the video

tracking process. Here is a brief explanation of each task:

Feature extraction

Feature extraction is the first step of the tracking process. This task extracts the

relevant information for the system, Figure 1.7 shows a raw image.

Figure 1.7 A raw image. Taken from [MC11, p. 33]

There are three types of features, that can be extracted:

• Low-level features: some techniques for color are used here, also gradient tech-

niques. They analyze every pixel. Figure 1.8a shows an example where gradient

features are extracted.

• Mid-level features: analyze a subset of pixels. It tries to find structures like:

Edges, interesting points, regions, corners or uniform regions. Figure 1.8b shows

a border feature extraction results.

• High-level features: these techniques extract relevant information, like points

and their around or cluster of points. These are the most common techniques.

8



Chapter 1. Introduction 1.1. Video Tracking

Figure 1.8c shows an example of high level features, where the white car is the

object of interest.

Figure 1.8 Feature extraction types: a shows gradient features, b shows border features
and c shows template features. Taken from [MC11, p. 33]

Target Representation

Target representation is how to represent our target with the available information. As

shown in Figure 1.9 there are many ways to do a shape representation of the target.

Three approximations for this task are: a basic representation, that uses the center of

the target for controlling the tracking process. The articulate representation combines

areas and it does topological connections. Deformable representation detects multiple

regions or points of interest and tracks these parts.

9



Chapter 1. Introduction 1.1. Video Tracking

Figure 1.9 Target representation with shape: different shapes representations for video
tracking (basic, articulated and deformable). Taken from [MC11, p. 72]

Localization

Localization is the process to localize a target over time, given its initial position. Over

each frame the tracker estimates the current state xk using previous state xk−1.

One first approach is Single-hypothesis localization method, where one candidate

estimate (single hypothesis) is evaluated at any time. Some examples are Gradient-

based trackers that use image features to steer the tracking process. Using features

extracted from the current state and information from the previous state, this method

tries to follow the target. This algorithms also can use color histograms to measure

similarity along frames sequences. Figure 1.10a shows a graphical description of a

gradient-base tracking, where only one candidate is necessary for the tracking process.

Singh et al. [SS11] point some well known processes using this technique: Mean-shift

tracking, Kanade-Lucas-Tomasi tracker and the Kalman filter.

10



Chapter 1. Introduction 1.1. Video Tracking

(a) Gradient (b) Grid (c) Particle filtering

Figure 1.10 Different localization techniques. Taken from [MC11, Chapter 5]

A second approach to the localization task is Multiple-hypothesis method, it gener-

ates multiple tracking hypothesis for each frame (Figures 1.10b and 1.10c). It evaluates

multiple candidates, in every frame unlikely candidates are pruned and only the most

likely candidates are propagated. A Grid localization technique (Figure 1.10b) uses

deterministic procedures to define a grid and to distribute different candidates (they

function as sensors) over the target. One of the most popular technique is Particle Fil-

tering (Figure 1.10c), it is a technique that uses a probabilistic approximation (Monte

Carlo); where a lot of candidates are distributed along the target, every candidate

moves from frame to frame depending on its computation. Particle filtering is a very

accurate implementation, and overcomes problems like clutter and occlusion, due to its

multiple candidates, they can disappear or recalculate new ones.

1.1.4 Overall

The video tracking process can be defined as a process involving three tasks, as shown

in Figure 1.11.
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Chapter 1. Introduction 1.1. Video Tracking

Figure 1.11 A Video Tracking algorithm. Taken from [MC11, p. 6]

The video tracking algorithm needs the development of these tasks: the feature

extraction task (Section 1.1.3), target representation (Section 1.1.3) and localization

(Section 1.1.3), the latter is a task that need previous states of the tracking object. This

thesis proposes a new algorithm structure, where a classification process is implemented

to verify if the target is present in the frame. Therefor, it connects the feature extraction

task to the classifier, and the resulting answer of this classifier will tell us if the target

is in the frame or not. This is a different approach, the tasks of target representation

and localization were not implemented, because these tasks were out of the scope of

this thesis, as explained on Chapter 2. Our algorithm uses an emerging technology for

the classification process: HTM networks. This technology is explained in the following

section.
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Chapter 1. Introduction 1.2. HTM

1.2 HTM

The human brain has a component called neocortex. It performs the processes of visual

pattern recognition, understanding the spoken language, the sense of touch and space

comprehension [HB05]. Hierarchical Temporal Memory (HTM) is a model of algorithms

based on how the neocortex works.

HTM can be understood as a specialization of ANNs, because it uses the neuron1

concept (in HTM is more common use the term “cell” instead of “neuron”) but with

a different implementation and topology. The cells of HTM are arranged in columns,

these columns are arranged in regions and these regions are arranged in hierarchies. As

well as ANNs, the HTM networks need to be trained with datasets to store a large set of

patterns and sequences. It can learn many patterns (depending on the implementation).

1.2.1 Concepts

There are some important concepts to understand HTM. These concepts are impor-

tant to understand the structure of an HTM network and the relations between its

components.

Region

As Hawkins [HB05] explains, the concept of regions comes from biology where regions

are sets of cells connected to other regions in the neocortex. The neocortex has six

layers of cells, each layer has regions which are interconnected. Inside a layer cells,

these are arranged in columns.

1Note that the terms cell and neuron will be used interchangeably in this thesis.
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Chapter 1. Introduction 1.2. HTM

Figure 1.12 HTM region: it has a lot of cells that are arranged into arrays of columns.
Each cell has n connections. Taken from [HAD11, p. 11]

These biological concepts exist on HTM, Figure 1.12 shows a graphical architecture

of a region. An HTM region consists of a large number of cells, arranged into columns

and these ones are connected to other cells. A cell has n connections. This structure

was designed to try to imitate the neocortex.

Hierarchy

A hierarchy is a set of regions distributed into levels (hierarchy levels). These concepts

are very similar to the idea develop by Fan et al. [FXG10], where they use levels of

ANNs to build feature degrees and then obtained different levels of features, to do a

pattern recognition process. In HTM each region represents one level2 in the hierarchy,

lower levels represents raw features and as one ascend through the hierarchy complex

features are represented. Figure 1.13 shows this idea, where the first levels have small

features of an object and when combining them to higher levels, more complex features

are found and finally it will represent a more complex object.

2For our purpose level and region are synonyms.
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Figure 1.13 HTM hierarchy: a hierarchy comprised of four levels (regions).

It is important to emphasize that every region does not stores features but rather

patterns. As shown in Figure 1.12 every region is composed of cells and these cells store

our patterns.

As Hawkins et al. [HAD11] conclude, the main benefit of HTM and its hierarchical

topology is efficiency. It reduces training time (in contrast of ANNs) and memory

usage, because the pattern learning process at each level benefits the creation of high

level features and this is a beneficial aspect for the classification process. Also the

adjustment (feedback) of patterns is done very fast.

Prediction

As Hawkins et al. [HAD11] affirm, HTM can perform inference on inputs, it can match

these inputs to previous learned spatial and temporal patterns. By matching stored

sequences with current input, a region forms a prediction about what inputs will likely

arrive next. This is the most robust aspect of HTM: predictions. An HTM region

will make predictions based on the input, and the role of time is very important.

The sequences are important to learn patterns and their order in time is crucial for

making predictions. Hawkins et al. [HAD11] mentioned some key properties of HTM
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prediction:

• Prediction is continuous, here the order (role of time) is important.

• It occurs in every region at every level of the hierarchy.

• Predictions are context sensitive, they involved previous states and current inputs.

• It can predict multiple steps ahead in time (one, two, five steps).

Creating structures

A full (or complete) HTM implementation, use the following components:

(a) Raw data: it is the data in its simplest form, it can be integers, letters, floating

numbers, etc.

(b) Encoders: Encoders turn different data types into data SDRs (see Section 1.2.2).

(c) Spatial Pooler: it receives the data SDRs and chooses a subset of columns (from

its region). From data SDRs it creates an SDRs of columns from this region.

(d) Temporal Pooler: it receives the selected columns from the Spatial Pooler and it

does the connections between cells (synapses), also it updates these connections

over time. The most significant cells are known as the prediction cells.

(e) Cortical Learning Algorithm (CLA): it turns the prediction of the Temporal Pooler

into the predicted value.

One option to build a full (complete) implementation of HTM is to use the OPF,

which builds a full structure with all components and their connections, this research

used this framework. Another option for implementing HTM, is to use each component

in isolation, that is, use the Spatial Pooler or the Temporal Pooler individually. Our

approach also involves this option. Section 3 has a full explanation of the implemented
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algorithms using these two options. Another option is to use HTM from scratch, doing

a manually connection of the components, but this option was dismissed.

1.2.2 Training

The training process begins in the lower regions, once out HTM network has been

trained, it switches into inference mode, this produces an output for the next regions

to be train. This is process is repeated until the main higher region is reached. Every

region learns different patterns through cells, these cells are connected to other cells

and they are arranged into columns.

HTM also uses Sparse Distributed Representations (SDRs). It is a character-

istic of the neocortex. It can be explained as follows: all cells are interconnected, but

only a small percentage of these cells are active at one time of the process. It means

that an HTM network receives a big input, but during the training process the first

layer only needs a piece of that input, then higher layers need small pieces of that and

so on. Sparse is referred to this concept, only a small quantity of cells are active at a

time. Distributed means that the activation of different cells are needed to represent a

pattern.

Figure 1.14 Region of a HTM: just a few cells are active at a time, showing how SDRs
work. Taken from [HAD11, p. 11]

The cells activation function works with different cells, as shown in Figure 1.14 it
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Chapter 1. Introduction 1.3. Related work

is not necessary that cells must to be close to each other, it is not necessary for these

cells to be neighbors or belong to the same column.

1.3 Related work

There are many algorithms to address the video tracking problem. Our main concern

was to focus on some machine learning techniques to face this problem.

One option is to use ANNs, this model tries to simulate human neurons to respond

and they are interconnected. This approach receives an input, it processes this infor-

mation and it constructs an output; it is a very popular machine learning technique

for pattern recognition. Takaya and Malhotra [TM05] use this concept and applied it

to moving objects. It is an interesting approach but it is not accurate when trying

to recognize specific targets (like full body recognition). Mussi et al. [MPC07] use an

interesting approach where the input image is segmented to follow the target (they use

a training dataset for detecting the target) and then, they applied an Evolutionary Al-

gorithm to achieved the tracking process. Fan et al. [FXG10] did a remarkable research

tracking objects as a learning problem of estimating the location and the scale of an

object with previous information; they use a combination of ANNs to learn features.

This technique first extracts and combines local features of the input image, and these

features are combined by the subsequent layers in order to obtain higher order features,

these actions produce a very accurate method. This research is similar to HTM but

they do not developed a topology and distribution of neurons like the neocortex.

A distinct way to do pattern recognition is through SVMs. They use supervised

learning algorithms for classification. SVMs are not interested in simulating human

brain but to use an accurate classifier system to perform the pattern recognition task.

Avidan [Avi04] uses SVMs to track objects, in his work he is interested on a system

that detects and tracks the rear-end of vehicles from a video sequence taken by a
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forward looking camera mounted on a moving vehicle. He got interesting results but

he could not overcome some fundamental problems like target loss. And Asha et al.

[AKN12] developed a similar research: a vehicle detection with an aerial camera (aerial

surveillance). They combined Dynamic Bayesian Networks (probabilistic model using

temporal information) for tracking vehicles and SVMs as a classifiers.

Despite these two techniques (ANNs and SVMs) there is an emerging one: HTM.

In this Chapter HTM technology was described and it was the motivation of this thesis:

to use a model that simulated the brain structure to do a tracking task.
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CHAPTER 2

HYPOTHESIS, OBJECTIVES AND SCOPE

“You don’t understand anything

until you learn it more than one

way”

Marvin Minsky
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Many techniques have been used for the video tracking problem, most of them like

the particle filtering and gradient based tracking are very accurate. Most of the video

tracking challenges (see section 1.1.2) are overcome by combining different techniques.

The occlusion is an interesting challenge and overcoming it was the focus of this

research. To measure this aspect Occlusion Success Rate (OSR) will be used. This is

a rate created for this research, it is the rate between the quantity of frames (video

sequence) and the classifier hits, over a percentage of occlusion. When an OSR is high,

it means that over a specific percentage of occlusion the algorithm is accurate; otherwise

when OSR is low. So this rate helped to measure the accuracy degree of the different

implementations.

Some research have been done with ANNs and SVMs with interesting results (see

Section 1.3). All these techniques are accurate-localization algorithms, they need a step

of pre-learning a representation of the object (given by training datasets). This research

was based on the hypothesis that an algorithm can do a tracking process using HTM

networks to obtain a low OSR.

2.1 The Problem

In a research the most difficult challenge is to find the problem of study. As Booth et

al. [BCW08] pointed out: the problem is the starting point of any research, once you

have a practical problem, it inspires a question that nobody knows what it answer

is. In this point is when a researcher has found a research problem and with that at

hand, a researcher can start the whole process of finding an answer to that problem.

Figure 2.1 shows a graphical explanation of this idea.
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Figure 2.1 A research process, taken from [BCW08]

This thesis started on our interest on signal processing. Raw data is the most

important thing on signal processing and it depends on the problem, it can be difficult

to get it or it can be not. On that point we realized that video sequences are an easy

and available source of raw data, and video tracking was found as a very interesting

problem and an important topic in academic institutions (See section 1.1.1).

Based on the Figure 2.1, the practical problem found was: certain object tracking

algorithms do not overcome the occlusion challenge. It motivates a research question:

Can an object tracking algorithm using HTM Networks be more accurate than using

other techniques? It generated the research problem. Finally, this thesis responds to

that problem.

For the purpose of this thesis the term Occlusion Success Rate (OSR) was cre-

ated, as mentioned before. It can be defined as: given an occlusion challenge (partially
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occluded), it indicates the success rate of classification frames in a video sequence (a

specific quantity of frames).

2.2 Hypothesis

The thesis hypothesis was:

An Object Tracking algorithm that uses Hierarchical Temporal Memory Net-

works will get a statistically significant higher OSR, than using another clas-

sifications techniques.

The main focus is doing a tracking process trying to simulate the brain structure.

When a person visually tracks an object, it can be partially occluded, but that person

can continue with the tracking process. It is not a problem for the human brain but a

very challenging problem for a tracking system. This proposal is intended to train the

tracker to do an accurate tracking process over a different occlusion challenges on the

scene.

2.3 Objectives

2.3.1 Main Objective

To study the performance of Object Tracking algorithms using different classification

techniques.

2.3.2 Specific Objectives

• Develop a prototype of an Object Tracking algorithm using three different classi-

fiers: a HTM classifier, an ANNs classifier and a SVMs classifier.
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• Compare the results from the different algorithms.

• Develop a Design of Experiments (DoE) analysis combining different factors (and

their levels) over the implementations.

2.4 Scope

The scope is referred on what is going to be done by the researcher.

2.4.1 Deliverables

The following aspects describe the scope of this research, presented as deliverables:

• Four object tracking algorithms that uses different classifiers.

• A prototype that implements these algorithms to process a video sequence.

• Different data-sets and training-sets of video sequences to feed the prototype.

• Statistical Analysis of Experiments (DoE) to construct the conclusions.

2.4.2 Limitations

Due to limitations there are some things that this research will not take into account:

• Videos of different resolution.

• A complete system of video tracking.

• Another video tracking challenges, such as: illumination, clutter, video quality,

etc. (See section 1.1.2).

• Real time video analysis.

• Performance analysis of classifiers (time or complexity).
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• A theoretical analysis of the three different classifiers.

• Different types of target.

• Any other aspect outside the aforementioned deliverables.
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CHAPTER 3

IMPLEMENTATION

“Focus on the journey not the

destination. Joy is found not in

finishing an activity but in doing it”

Greg Anderson
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As mentioned in section 1.1.3 about the algorithm’s tasks, four different algorithms

were developed, using the described model in section 1.1.4.

3.1 Creating the algorithm

The four algorithms developed use three types of classification (ANNs, SVMs and

HTM). This is the list of algorithms:

1. HTM’s hard implementation: we use the name “Hard” to describe a full or com-

plete implementation of HTM, it means using all the HTM components, as de-

scribed in Section 1.2.1. This is a new implementation done and the details are

on Section 3.2.

2. HTM’s soft implementation: When we were developing this research, we real-

ized some advises from other researchers. We took their recommended version

for image recognition algorithm and adapted it to our problem. This implemen-

tation is a recommended algorithm from the Numenta Platform for Intelligent

Computing (NuPIC) researchers [Num15].

3. SVMs implementation: it is an implementation using one of the most State of the

Art libraries, it is described on Section 3.4.

4. ANNs As well as SVMs, it uses a strong research library, the Python-Based Rein-

forcement Learning, Artificial Intelligence and Neural Network Library (PyBRAIN).

Its description is on Section 3.5.

3.1.1 Components

Figure 1.11 shows the full implementation of our object tracking algorithm. The main

goal is to compare four different machine learning techniques (inside of an object track-

ing algorithm), that is why our algorithms differs from the normal video tracking im-
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plementation, we do not implemented the visualization and localization tasks; we were

interested on the classification result. Figure 3.1 shows the Object Tracking algorithm

structure developed for this research, it does not include any localization or visualiza-

tion task (as mentioned), because it is not the main issue of this research, the principal

focus was to detect a specific object over a sequence of frames, and then compare the

performance of the classifiers.

Figure 3.1 The Object Tracking algorithm structures, developed for this research.

In summary, four different types of algorithms were developed, and the result of

every run was the OSR. For doing the classification, first we needed to get useful

information from the raw data (frames), that is the the feature extraction process (as

shown in Figure 3.1). The next Section will explained the method used for doing this

task.

3.1.2 SIFT

As seen in Figure 3.1 the first task was the Feature Extraction, Scale-Invariant Feature

Transform (SIFT) was used to achieved this goal. Section 1.1.3 mentioned that there

are three types of features: low level, mid-level and high level features; SIFT features
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are classified as high level features because of the type of information it retrieves. This

technique was introduced by Lowe [Low99] and it is one of the most successful feature

extraction techniques. It does two main actions: it detects interest points from an

image (called interest point detector) and get a local descriptor from each point (called

the descriptor). As Solem points out [Sol12]: “SIFT features are invariant to scale,

rotation and intensity and can be matched reliably across 3D viewpoint and noise”, its

main advantage is to avoid differences in rotation and scale, these are some common

issues while analysing video frames, due to constant movement of the target.

Figure 3.2 One point detected by SIFT and the feature vector generated (the descriptor).
(a) a frame around an interest point, oriented according to the dominant gradient direction.
(b) an 8 bin histogram over the direction of the gradient in a part of the grid. (c) histograms
are extracted in each grid location. (d) the histograms are concatenated to form one long
feature vector. Taken from [Sol12]

Figure 3.2 explains the whole SIFT process. First, all interest points from the

image are detected using difference-of-Gaussian functions [Low99]. Then as Solem

[Sol12] describes, it takes the dominant gradient of the point based on the direction

and magnitude of the image gradient around each point (the direction can be seen in

Figure 3.2 (a)). Next, it takes a grid of subregions around the point (Figure 3.2 (a)) and

for each subregion computes an image gradient orientation histogram (Figure 3.2 (b)

shows one subregion histogram, Figure 3.2 (c) shows all subregion histograms). Finally,

the histograms are concatenated to form a descriptor vector (as shown in Figure 3.2
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(d)). The most common settings used are: 16 cells to describe the interest point (4 x

4) and each cell has a 8 bin histogram for a total of 128 values (4× 4× 8 = 128).

Figure 3.3 SIFT process on an image taken by us: the image on the left shows the original
image; the image on the right shows the processed image. The SIFT process first converts
the original image to gray scale and then the interest points are detected. A total of 3365
interest points on this image.

Figure 3.3 shows a SIFT process over an image, on the left the original image and

on the right the resulting interest points detection, for a total of 3365 interest points.

Each point has a descriptor of 128 values (floating values) for a total of 430720 values

for the image on Figure 3.3. This quantity is big for the available hardware used on

this research, that is why we implemented some restrictions: we use images of 50 pixels

(50× 50) and 12 interest points were chosen to apply this research.

To test the accuracy of the SIFT features a method was developed for matching

descriptors, we use a proposal from Lowe [Low99]. This is a robust criteria for matching

a feature in one image to a feature in another image, it uses the ratio of the distance to

the two closest matching features. Figure 3.4 shows the result of this method from two

different images, one image is similar to the image on Figure 3.3, and the other image

is edited to show just the child of the picture.
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Figure 3.4 Method for matching descriptors from two different images. Lower side images:
the image one (left lower side) and the image two (right lower side) to run the method. Upper
side images: the results from the method, they show the points that are equal from image
one (left upper side) and image two (right upper side).

The original images are shown on the left and right lower side, the resulting images

are shown on the left and right upper side. As seen there is an effective accuracy for

detecting the descriptors. This was a test to be ensure of the SIFT properties, the

next Section is going to specify the technique that we used in this research, due to the

limitations mentioned before.

3.1.3 Dense SIFT

Figure 3.5 shows an example of an image used for doing our classification process. It

is a person on the left side raising his hands (wearing a red shirt), this was one frame

of the videos we recorded. It is important to point out that this implementation is
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different to normal SIFT, because 12 static points are established and the radius of

each point is increased, to form a grid of circles, this implementation is called Dense

SIFT. The benefits of this approach is to have SIFT files of the same size and to

recognize any changes on the image. The current machine learning techniques chosen

for this research are classifiers, hence the importance of using SIFT files of the same

size. For this research we extracted features from images via Dense SIFT.

Figure 3.5 Our implementation of SIFT: it is an approach using a common technique
called Dense SIFT. Establishing 12 points and increasing their radius of each one. The image
is taken from one of the videos we recorded.

As Han et al. say [HLJ11], in summary, Dense SIFT can be described as: (a)

the location of each keypoint is not from the gradient feature of the pixel, but from

a predesigned location; (b) the scale of each keypoint is all the same which is also

predesigned; (c) the orientation of each keypoint is always zero. With this assumptions,

Dense SIFT can acquire more feature in less time than SIFT does.

Hassner et al. [HMZ12] also uses Dense SIFT to classify images and got better

results than using any another technique. Han et al. [HLJ11] also developed an inter-

esting research classifying people.
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3.1.4 Target

As Han et al. [HLJ11] did, this research focuses on people. As mentioned in Section

1.1.1, there are many interesting applications where object tracking can be used. Lo-

cating people in a video sequence have many potential applications, such as: building

security, person recognition, human computer interaction and so on.

3.1.5 Scenario

The video sequences where done bearing in mind two types of scenarios. Figure 3.6

shows an example of these two types: a simple scenario (3.6 left) which has a white

background and only a few objects for a future target interaction (and the occlusion

challenges); and a complex scenario which has more objects, distance and light contrast.

These two types of scenario helped to have a diversity of experiments.

Figure 3.6 Two types of scenarios: simple (left) and complex (right).

3.2 HTM Hard

HTM is a methodology for creating Neural Networks, the team behind HTM are aware

of it (Hawkins et al. [HAD11]), but the main difference is the logic used and the struc-

ture behind this machine learning technique, as explain in Section 1.2. The framework
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NuPIC gives the proper environment to use HTM. There are many possible ways to

use HTM, as pointed in Section 1.2.1. We created a new algorithm based on a full

structure of HTM.

3.2.1 OPF

In order to create a complete structure of an HTM network (as shown in Figure 3.7) the

Online Prediction Framework (OPF) tool was used. This is a framework which creates

an HTM structure with all components of this technology. In Section 1.2.1 is a brief

explanation of each module.

Figure 3.7 A complete structure of a HTM network. It is a complete hierarchy.

It is important to say that a HTM structure is a prediction technique, as mentioned

in Section 1.2.1. That is why a deep modification had to be done (based on Costa’s

proposal [Cos14]), because a classifier is needed. The first step was to create a model

in OPF, this model is created to handle streaming data but in a low scale, for example

receiving one to ten values at a time; as told in Section 3.1.3 we use 12 interest points

(from a Dense SIFT process), each point has 128 values (from the descriptor), for a

total of 1536 values (12 × 128). Figure 3.7 shows an OPF structure of HTM, it uses

all the components: encoders, Spatial Pooler, Temporal Pooler and the CLA classifier.

We modified an OPF model in the following aspects:

(a) The input size: the model was modified to accept 1536 floating values. Each value

has to be encoded into a 121 SDRs, thus an input of 185856 (1.536 × 121) was

done. Every frame needs this input and one second has 15 frames (we are using a
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low resolution of video, just 50 pixels), that is a number of 2787840 (2.79 million)

values processed in one second.

(b) Inference: previously it was said that HTM is meant to do predictions (see Section

1.2.1), and every component of HTM is prepared for this task. So in the OPF model

this option was change to do Non Temporal Classification, it means that our model

will not take the factor time into account. Our goal is to do just a classification

task.

(c) Other components: the Spatial Pooler and the Temporal Pooler were modified to

accept our input size (185856 values).

(d) Classifier result: to do classification, only one predicted value was enabled. Thus

when an input sequence is processed, the predicted value is going to be the classi-

fication result. In summary, we are manipulating this prediction framework to do

a classification task.

Algorithm 1 HTM Hard

Precondition: frames are preprocessed files in a form of SIFT files, answers are the
expecting results (correct results).

1: function Classify(frames, answers)
2: encodedFrames ← frames . Encode all entries
3:

4: for i← 1 to encodedFrames.size do
5: spResult ← SP (encodedFramesi)
6: tpResult ← TP (spResult)
7: predictedV alue ← CLA(tpResult)
8:

9: if predictedV alue = answersi then
10: δ ← δ + 1
11: end if
12: end for
13:

14: OSR ← answers.size
δ

. OSR: Occlusion Success Rate
15: return OSR
16: end function
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As can be seen in Algorithm 1 there is a sequence process. First the raw data (in

our case SIFT files) is converted into SDRs by the encoders (line 2). Then, these SDRs

are processed by the Spatial Pooler (line 6) and its output is processed by the Temporal

Pooler (line 7); finally by the CLA (line 8). The latter one gives a predicted value,

that is, our classification result. The last step of the algorithm is to calculate the OSR

(lines 10 to 12) previously defined in Section 2.1.

The training algorithm is similar as the shown in Algorithm 1, the difference is that

the learning process is activated on training and there is no calculation of the OSR.

An interesting aspect of this implementation is that the processing time is very

high than the other implementations. A simple run of this algorithm can take 60 or

70 times more than others. This is because the original entry of 1536 has to become

in an entry of 185856 (explained in Section 3.2.1) and the OPF model has to build all

the structure and relations between components, this produces a significant consume of

computational resources. But this is not an important issue (available resources), what

matters is the accuracy of the classification process.

3.3 HTM Soft

The previous Section explained a full implementation of HTM (Figure 3.7), using the

OPF tool. This Section presents another way to use HTM, combining a module of HTM

(specifically the Spatial Pooler) with a popular method for classification (specifically

the kNN). Figure 3.8 shows the components used on this implementation.
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Figure 3.8 A simpler implementation of HTM. Spatial Pooler directly connected to a kNN
classifier.

kNN is one of the most used methods for classification, it simple compares an

object (in our case a vector of values) to be classified with all objects in a training

set with known class labels and lets the k nearest vote for which class to assign. Into

NuPIC there is an implementation of this algorithm and some researches have used

this implementation to classify images, the official documentation of NuPIC advises

the use of this implementation for vision problems [Num15]. An individual Spatial

Pooler module plus the kNN algorithm was used to implement this approach.

Algorithm 2 HTM Soft

Precondition: frames are preprocessed files in a form of SIFT files, answers are the
expecting results (correct results).

1: function Classify(frames, answers)
2:

3: for i← 1 to frames.size do
4: spResult ← SP (framesi)
5: resultingClass ← kNN(spResult)
6:

7: if resultingClass = answersi then
8: δ ← δ + 1
9: end if

10: end for
11:

12: OSR ← answers.size
δ

13: return OSR
14: end function

This implementation only uses the Spatial Pooler module from HTM, unlike HTM

Hard implementation (as shown in Figure 3.8) that uses more components. Algorithm

2 shows that the layer encoders is not used here. The first step is to send the raw data
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(SIFT values) to the Spatial Pooler (line 4), this produces an output with the form of

a SDRs, this output is called active array ; then, this active array is send to the kNN

classifier (line 5), and it responses with the class (hopefully the correct one).

3.4 SVMs

SVMs are a very popular type of classifiers. As Solem [Sol12] explains: a SVMs finds

a linear separating hyperplane with the best possible separation between two classes.

With a feature vector (a SIFT point in our case) x, the decision function is:

f(x) = w · x− b (3.1)

where w is the hyperplane normal and b an offset constant, they are found by solving

an optimization problem on a training set of labelled feature vectors xi (SIFT points)

with labels (categories) yi ∈ {−1, 1} so that the hyperplane has maximal separation

between the two classes. The normal is a linear combination of some of the training

feature vectors:

f(x) =
n∑
i

αiyixi (3.2)

where n is a subset of training vectors, as a result our final decision function is:

f(x) =
n∑
i

αiyixi · x− b (3.3)

The selected training vectors xi are called support vectors because they help define

the hyperplane. If the feature vectors (the inputs) are non-linear, it uses kernel functions
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to map features vectors to a different dimensional space. These kernel functions replace

the inner product of the classification function, xi ·x (on Equation 3.3), with a function

k(xi, x). A linear kernel was used in our implementation, it is just a simple case where

k(xi, x) = xi · x.

LibSVM is a library providing a commonly used implementation of SVMs [CL01] and

it was the library used here. The Algorithm 3 shows the pseudocode of the implemented

algorithm. As it can be seen, this code is simpler than the previous codes; it just needs

the raw input (SIFT vectors), then it starts the classification process (line 4) and finally

it calculates the OSR.

Algorithm 3 SVMs

Precondition: frames are preprocessed files in a form of SIFT files, answers are the
expecting results (correct results).

1: function Classify(frames, answers)
2:

3: for i← 1 to frames.size do
4: resultingClass ← SVM(framesi)
5:

6: if resultingClass = answersi then
7: δ ← δ + 1
8: end if
9: end for

10:

11: OSR ← answers.size
δ

12: return OSR
13: end function

Figure 3.9 shows the visual connection of the components used on this implemen-

tation. The factor of time was not required, but it is interesting to point that this was

the fastest implemented algorithm.
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Figure 3.9 The SVMs implementation, it receives directly the raw data.

3.5 ANNs

ANNs are a technique of machine learning inspired in biological neurons and their

connections, to exchange messages between each other. Also they have weights that

can be adjusted to learn patterns.

Algorithm 4 ANNs

Precondition: frames are preprocessed files in a form of SIFT files, answers are the
expecting results (correct results).

1: function Classify(frames, answers)
2:

3: for i← 1 to frames.size do
4: resultingClass ← ANN(framesi)
5:

6: if resultingClass = answersi then
7: δ ← δ + 1
8: end if
9: end for

10:

11: OSR ← answers.size
δ

12: return OSR
13: end function

Algorithm 4 shows up the implemented algortihm with ANNs. It presents the same

structure of the SVMs algorithm, because it can receive the created raw data (our SIFT

vectors). PyBRAIN introduced by Schaul et al. [Sch+10], was used to implement an

ANNs. In Figure 3.10 the structure of this implementation can be seen. Similar to the

SVMs implementation, this algorithm can receive our raw data (SIFT vector) without

any previous processing.
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Figure 3.10 The ANNs implementation, it receives directly the raw data.

A Feedforward Neural Network was implemented to do the classification task.

With this kind of ANNs, the information moves in only one direction: forward; from

the inputs through the hidden nodes and later to the output nodes. The selected

configuration was: an input layer that accepts 1536 values (the size of the SIFT vector)

and the output layer has just three neurons, because it has to show the result of the

classification task with few neurons.

This implementation only has one hidden layer, as Bishop says [Bis95] if there is

only one input, there seems to be not advantage to using more than one hidden layer.

The quantity of neurons in a hidden layer is a very challenging problem, because this

unit depends on: the number of inputs and outputs, the number of training cases,

the amount of noise in the targets, the architecture, and many others factors. In

most situations, there is no way to determine the best number of hidden units without

training several configurations and comparing accuracy. That is why the rule of thumb

was chosen to establish this unit, as Blum explains [Blu92] (p. 60): this unit must

be selected as a number somewhere between the input layer size and the output layer

size. For simplicity the number of 80 neurons was selected, because our low number of

classes.
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CHAPTER 4

EXPERIMENTATION, RESULTS AND ANALYSIS

“The true method of knowledge is

experiment”

William Blake
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It is necessary to test the hypothesis, Design of Experiments (DoE) was used for

achieving this goal. DoE is referred to a statistical model to find out if specific factors

influence over a variable of interest, and if there is any influence, quantify it [FR01].

ANOVA is a vital tool for DoE, it compares the variance among the factor means

versus the variance of individuals within the specific factors. The following section will

describe the DoE components.

4.1 DoE components

Response Variable

Response variables depend on what is our focus of study. This research is based on

object tracking to study different classification techniques (like HTM) and compare

their results. The factors and levels (in the following section) were defined as a result

of one response variable. The main goal is to know if these factor have an influence

over these response variables.

Our response variable was:

• OSR: previously define in Section 2.1. It measures the percentage of classifying

hits in a video sequence. This rate helped to measure the different classifiers

accuracy.

Factors and Levels

During the experimentation the results are affected by different factors. It is mandatory

to know which factors have a real influence and measure that influence; thus it is

necessary to establish these factors. Here our factors are:

• Technique: classification technique to be used during the Object Tracking pro-

cess, these techniques were defined in Section 3.
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• Training-set: the size of the training set of the algorithm. There are three sizes,

Table 4.1 in column Training-set shows them, it is the column labeled Training-

set.

• Occlusion: the percent of occlusion of the target. As mentioned in Section 3.1.4,

the targets are people (human shape). It is important to say that during tests

a person was occluded a given percentage (showed on Table 4.1 on the column

Occlusion(%)).

• Scenario: the complexity of the scenario. Only two scenarios were done (specified

on Section 3.1.5).

There could be more interesting factors but due to time and budget limitations,

only four factors were evaluated. Table 4.1 shows up the factors mentioned above and

the corresponding levels of each factor, known as experimental domain.

Factors
Technique Training-set Occlusion(%) Scenario

Levels

HTM Hard 38 75 Simple
HTM Soft 176 50 Complex
ANNs 474 25
SVMs 0

Table 4.1 Factors and levels to be analyzed in this research.

As a result, Table 4.1 gives us a number of 96 combinations (4 × 3 × 4 × 2 = 96)

and the number of replicas is 4, for a total of 384 runs. This number was chosen

because during every run a video sequence is analyzed and each video sequence can

have hundreds of frames. In out case, these are some examples:

• For training: one replica does a 32 training runs of 38 frames, 32 of 176 and 32

of 474 frames, for a total of 22016 classification tasks.
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• For testing: one replica does a 24 testing runs for every occlusion challenge (0%,

25%, 50%, 75%), each testing run has a 180 frames, for a total of 17280.

• Each replicas does a 39296 classification tasks, for a total of 157184 classification

tasks.

Software

The software used to statistical computing was R1. It is very widely used among statis-

ticians and researchers for data analysis [Iha98].

4.2 Data

The data are a set of videos, these videos are of low quality (50×50 pixels) for simplic-

ity and there was a hardware computing restriction: the HTM Hard implementation

requires approximately 600 times more Random Access Memory (RAM) than the other

implementation; because it has to build the full OPF structure and there is not precal-

culated values. Also these videos only have 15 frames per second. These videos were

done with the following rules:

1. Every replica has two types of scenario (subreplicas): simple and complex (as

explained in Section 3.1.5).

2. Each subreplica has a 36 seconds train video, for a total of 540 frames (36 ×

15frames). Depending on the size of the training set (see Table 4.1), the different

algorithms were trained.

3. This research focuses on 3 classes: a male, a female and the background. For the

background 2 videos were taken, with different positions of the occlusion objects.

1Available on the site: www.r-project.org
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The videos were done with our targets moving all over the scene, with different

occlusion percentage.

4. For every subreplica there were a 12 seconds test video for every occlusion per-

centage, that is, 4 videos of occlusion challenge for the male target and 4 videos

for the female target.

Figure 4.1 Occlusion challenges at different percentage: (a) 0% of occlusion, (b) 25% of
occlusion, (c) 50% of occlusion, (d) 75% of occlusion. In every image, the target is enclosed
in a red circle for visualization purposes, but it is not present on real data.

These rules help to make all the replicas videos, every replica had a total of 24

videos. The summary of the replica is:

• Background 1: the background with occlusion objects.

• Background 2: the background with occlusion objects in different positions.

• Training sets: the targets (male and female) moving on the scene (2 videos, one

for each target).

• Testing sets: one video for every target, implementing an occlusion percentage

(0%, 25%, 50% or 75%). Examples of these occlusion percentages can be seen on

Figure 4.1.
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4.3 Results

4.3.1 First “Look” at the data

Figure 4.2 shows the resulting histogram of data frequency plot. As can be seen it does

not have a normal distribution, this is a positive aspect due to some interesting “peaks”

in the histogram.

Figure 4.2 Histogram of data frequency.

Is important to remember that this plot shows the frequency of the response variable

(OSR). There are three values to stand out: 0.0, 0.5 and 1.0 (our “peaks”). The first

one is the value where the classifier failed completely, as mentioned in Section 4.2, the

data has a low quality (due to some limitations, see Section 4.2). Hence the classifiers

tend to failed. The second “peak” of 0.5 can be explained for the quantity of classes

presented in the data. In our data set only two classes were taken into account to

classify (male and female), thus there is more chances to get just the 50% of accuracy;
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probably if more classes were used, this “peak” could be more distributed. The third

“peak” is the 1.0, where the classifiers got the 100% of accuracy; an interesting aspect

is that this value is isolated, from the middle of this plot to the right, the value of 1.0 is

the highest, showing that there are specific conditions that helped to have a complete

accuracy.

Figure 4.3 shows the histogram frecuency for every classification technique. They

preserve the pattern from the general histogram (Figure 4.2), but there are some inter-

esting aspects. The first aspect is that HTM Hard (Figure 4.3a) focuses mainly in the

0.5 peak, its rates are very consistent. HTM Soft (Figure 4.3b) has more distribution

and a more failures. Hard and Soft have few complete (1.0) success rates.

Figure 4.3 Histogram of data frequency for every technique: (a) HTM Hard, (b) HTM Soft,
(c) SVMs, (d) ANNs.

Figure 4.3c shows the histogram for the SVMs, which is constant with the general

histogram and it has a better 1.0 hits. Finally the ANNs (Figure 4.3d) shows more

failures (0.0) and from 0.0 to 0.5 a normal distribution, which means it can be similar
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to random values.

4.3.2 ANOVA

To use ANOVA, it is necessary to establish a null hypothesis and an alternative hy-

pothesis; also it is necessary to accomplish three assumptions.

Alternative and null hypotheses

The hypotheses of interest in ANOVA are as follows:

H0 : µ1 = µ2 = µ3 = ... = µk (4.1)

H1 : ∃µj 6= µ j = 1, 2, ..., k (4.2)

The null hypothesis in ANOVA (equation 4.1) is always that there is no difference

in means. And the alternative hypothesis (equation 4.2) is always that the means are

not all equal.

Assumptions

As Anderson and Whitcomb explain [AW07] (p. 65), for statistical purposes it is as-

sumed that residuals are normally distributed and independent with constant variance;

ANOVA requires the accomplishment of these assumptions. Two plots and one action

are recommended to check the statistical assumptions:

• Q-Q plot: it is a probability plot for determining if two data sets come from

populations with a common distribution. In our case these two data sets are:

the standardized residuals (quantiles) and theoretical quantiles of the response
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variable. If the two sets come from a population with the same distribution, the

points should fall approximately along a 45 degree reference line.

• Residuals vs fitted values plot: it is a scatter plot of residuals on the y axis and

fitted values (predicted values/responses) on the x axis. It is a tool for detecting

non-linearity, unequal error variances and outliers. Ideally the vertical spread of

data will be approximately the same from left to right.

• Independence of observations: it is a requirement to randomize the order of an

experiment. Randomization acts as an insurance against the effects of lurking

time-related variables.

Checking the assumptions

The first step was to randomize the run order to achieve the independence of observa-

tions, that way this assumption was completed.

Figure 4.4 shows the Q-Q plot, as indicated before, it determines if the standardized

residuals and theoretical quantiles have a common distribution. As seen in Figure 4.4

the points fall along the reference line (the 45 degree continuous line).

The deviations from linear are very small, so it supports the assumption of normality.

If any nonlinear patterns had been seen, such an “S” shape, a transformation should

had been necessary; in this case it is not.
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Figure 4.4 Q-Q plot: standardized residuals (quantiles) and theoretical quantiles of the
response variable.

The second recommended plot is shown on Figure 4.5, the residuals vs fitted val-

ues plot. As can be seen on Figure 4.5 the vertical and horizontal spread of data is

approximately the same, it is hard to identify if one side has more circles than any

other.

There is not a megaphone (<) pattern, where the residuals increase with the pre-

dicted level; this is not the case, it is not a definite increase in residuals with predicted

level, which supports the statistical assumption of constant variance.
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Figure 4.5 Residuals vs fitted values (predicted responses) plot.

4.3.3 Analysis of results

The Table 4.2 is an ANOVA table, with Degrees of Freedom, Sum of Squares, Mean of

Squares, the F values and Probability values (shown as Pr(>F)).

On this table the probability value of Technique:Occlusion is 7.15−5, with a signif-

icance of 0. It means that there is a complete confidence that the interaction of these

factors is significant. With this aspect, at this point the null hypothesis (as mentioned

in Section 4.3.2) is rejected.

There are another two interesting results: Technique with a probability value of

0.0022, that is a 99.78% confidence that our response variable is significantly affected

by this factor; a similar issue happens with the factor Occlusion, with a probability
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Df Sum Sq Mean Sq F value Pr(>F)

Technique 3 0.96 0.32 4.97 0.0022
Training.Set 1 0.03 0.03 0.54 0.4623
Occlusion 1 0.51 0.51 8.02 0.0049
Scenario 1 0.16 0.16 2.50 0.1148
Technique:Training.Set 3 0.41 0.14 2.12 0.0970
Technique:Occlusion 3 1.44 0.48 7.49 7.15e-05
Training.Set:Occlusion 1 0.01 0.01 0.11 0.7369
Technique:Scenario 3 0.31 0.10 1.62 0.1840
Training.Set:Scenario 1 0.06 0.06 0.95 0.3303
Occlusion:Scenario 1 0.08 0.08 1.20 0.2746
Technique:Training.Set:Occlusion 3 0.06 0.02 0.33 0.8012
Technique:Training.Set:Scenario 3 0.20 0.07 1.05 0.3695
Technique:Occlusion:Scenario 3 0.06 0.02 0.30 0.8247
Training.Set:Occlusion:Scenario 1 0.03 0.03 0.40 0.5255
Technique:Training.Set:Occlusion:Scenario 3 0.06 0.02 0.30 0.8256
Residuals 352 22.57 0.06

Table 4.2 ANOVA table

value of 0.0049, there is a 99.51% confidence that this factor is significant. As a result

of Table 4.2, the next step is to analyze each significant element.

Technique

The Technique is the one of the significant factors, on Figure 4.6 the box plot (as define

by Massart et al. [Mas+05]) for this factor is shown. This box plot helps to identify

the middle 50% of the data, the median (the thick horizontal line inside the boxes) and

the extreme points. One aspect is that the technique of ANNs has the lowest quartile 2

and the lowest median, showing that this technique tend to failed more than the others.

HTM Hard and SVMs have similar boxes and median, but SVMs has the upper

quartile and the median slightly higher, given better results. Also the maximum point

of the SVMs and ANNs reaches the OSR value of 1.0 unlike the others, showing that

these technique were accurate in some runs (with specific conditions).

2Quartile: the quartiles of a ranked set of data values are the three points that divide the data set
into four equal groups, each group comprising a quarter of the data.
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Figure 4.6 Box plot for the significant factor Technique.

Finally the most interesting aspect is the HTM Hard box, it encloses its 50% of values

in the thinnest box and the smallest range from the upper quartile to the maximum

point and from the lower quartile to the minimum point. This means that most of the

values from this technique are around the OSR value of 0.5, this is a similar value to

the others, but showing that this particular one tends to have less failures during tests.

The Figure 4.6 also shows many outliers, which is normal because of the small range of

quartiles. Comparing with the other techniques, these outliers represents that failures

and hits are atypical; anyway it is the most stable one (because its small range).

Occlusion

Figure 4.7 shows the factor Occlusion against OSR. As a result of this plot we can

point out that when there is an increment of the occlusion value (0, 25, 50, 75) the

lower boundary of the box gets closer to the OSR value of 0.0, an expected issue,

because if the occlusion challenge is raising its value, it becomes more difficult for a
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classifier to hit.

Figure 4.7 Box plot for the significant factor Occlusion.

The median for 25 and 50 have a similar value, it has sense because targets (in our

case: people) are more representative from the hips to the head. Another aspect is that

25, 50 and 75 have approximately their upper box boundary near of the 0.5 OSR value,

but the box of 0 starts on 0.6, showing that with 0% of occlusion there are more hits,

but it has the lowest boundary and the lowest median, this issue indicates that some

conditions produced this decrement (with the interaction plot analysis this decrement

will be clarified).

Interaction: Technique and Occlusion

The last aspect to analyze as a result of the Table 4.2 (ANOVA table) is the interaction

of the factors: Technique and Occlusion. As Anderson and Whitcomb [AW07] define:

Interactions occur when the effect of one factor depends on the level of the other. The

first aspect to notice is that from left to right there is a trend to decrease, which is
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expected due to the difficulty to classify when the occlusion is higher.

The second aspect clearly shown on Figure 4.8 is that HTM Hard and SVMs have

an acceptable performance, unlike HTM Soft and ANNs. It would be obvious to think

that with 0% of occlusion the techniques would have the best performance, but there is

a fact: with 0% of occlusion, the targets have more freedom to move, in our videos the

targets tend to move faster and all over the scene. The targets had 0% of occlusion but

more flexibility and freedom of movements. This is an excellent aspect for this research,

because this aspect is similar to real world behaviour.

Hence the best performance of HTM Hard and SVMs indicates that they are better

to track objects in video sequences, with real movements of the targets. The other

values for occlusion (25, 50, 75) limited the movement of the targets and the behaviour

of the targets was limited to a specific zones of the scene.

Figure 4.8 Interaction plot between the most significant factors: technique and occlusion.
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If we put our focus on the HTM Soft development, leaving aside the 0% aspect,

it has the best performance on the values of 25% and 50% of occlusion, and it has

an acceptable performance on 75%. This is a positive result but the crash on the

value 0% makes this implementation not good. Because it means that it has not the

accuracy required when the target moves freely, and this is an important aspect in a

video tracking issue.

Similar to HTM Soft, the ANNs implementation, has a bad performance on 0%

of occlusion, thus it is not an accurate technique for moving objects. Its behaviour

with 25% is acceptable (similar to SVMs and HTM Hard) but decreases in 50% and

it has an acceptable one with 75%. Based on Figure 4.3d, where it shows a normal

histogram distribution (from 0.0 to 0.5) and the Figure 4.8, the performance of this

implementation is not accurate and the other algorithms have better results.

About the SVMs implementation, besides its remarkable performance on 0%, it

shows an acceptable performance on 25% and 50% (HTM Hard as well), it is almost

equal, because the most significant features of the target (people) are from the hips

to the head (as mentioned in the previous Section). But surprisingly, it decreases

dramatically on the 75%; the occlusion of this type produces the worst results of all

classifiers.

Finally the HTM Hard shows another remarkable performance on 0% (as mentioned

before) and acceptable 25% and 50% results. And the most interesting fact was its

performance on 75% occlusion, where it was the best classifier. The SVMs and this

algorithm are the most stable implementations.

4.3.4 Discussion

The use of Feed Forward Neural Network did not behave as expected, it was difficult

for this technique to get hits from different videos, its histogram shows a pattern of

random values, it got the lowest OSR in almost all occlusion challenges and it failed
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with 0% of occlusion, when the target moves more freely. This type of ANNs is not

efficient to face this problem, another type of ANNs can be test to see its accuracy (like

Recurrent Neural Networks).

The Support Vector Machines algorithms is a feasible option for this kind of problem,

because it had good results with 0%, 25% and 50%; with 75% it decreased but it had

some positive hits. Also it was the fastest implementation to run, despite the time

was not a measured factor (it was not the interest of this research) it is important

to express the experience from these experiments. Thus using SVMs to create object

tracking algorithms (in the classification task) is feasible.

On the other hand we have the HTM implementations (Hard and Soft algorithms).

The Soft algorithm, with 25% and 50% it got the best results and an acceptable one

with 75%. But as well as ANNs, it had a bad performance on 0% of occlusion; which

means that with more target unexpected movements, it could not hit; that is why this

implementation is not recommended. It is important to remember that this implemen-

tation was done using the Spatial Pooler and the kNN classifier, so an interesting aspect

would be the combination of the Spatial Pooler with SVMs (which got better results),

or another top level classifier.

The other option of HTM was the Hard implementation. As mentioned in Section

3.2.1, this was the slowest algorithm, there are many reasons for this duration (the OPF

was not conceive to process streaming data, the use of Encoders, etc.) but the important

thing is that it is not feasible the implementation of this algorithm with the available

hardware, it lasted 60 or 70 times more than other implementations. Besides this

situation (time), it had the most stable performance; it is remarkable its development

in the two more challenges aspects: with 0% of occlusion with a moving target, it had

a performance similar to the SVMs implementation, and with 75% of occlusion it had

the best OSR value. In general, this is the most stable implementation, it got the

best results, it is not feasible the implementation of this algorithm with the available
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hardware, but this limitation may be negligible in a few years.

Some concerning issues of Object Tracking like the scenario or the size of the training

set are not significant, for this specific problem these machine learning techniques can

run with small data sets. Also the complexity of the scenario does not influence over

the accuracy of the process, which is good for real world problems.
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CONCLUSIONS AND FUTURE WORK

“A good conclusion leaves a clear

statement of your point and renewed

appreciation of its significance”

The Craft of Research
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The main concern of this research was to use Artificial Intelligence methods to imitate

our brain solving a human cognitive issue, recognize objects and track them with sight.

Four different algorithms were developed, compared and analyzed.

5.1 Conclusions

This thesis has shown the development of a new algorithm using the OPF tool to

implement an HTM structure to classify patterns. With the results obtained, there is

statistical evidence that supports our hypothesis. Using this Object Tracking algorithm,

which implements HTM as a classifier, we got a statistically significant higher OSR than

using other classification techniques.

We presented this new algorithm modifying the OPF input module, and it improves

the OSR results. But we got an unexpected issue: the execution time. It increases

considerably than the other implementations. In a normal execution it lasted 60 or 70

times more, because of the complexity of the model in memory. That is why, with the

available hardware it is not feasible its implementation to huge amount of streaming

data.

In addition to this results, the implementation using SVMs had remarkable OSR

results, moreover it was the fastest algorithm. It is feasible to implement this algorithm

for this kind of problem. On the other hand it is not recommendable to use Feedforward

ANNs or the Soft algorithm, because of their poor performance.

We also provided more evidence to support the idea of the use ofSIFT features to

pattern recognition. We used the well known technique of Dense SIFT and due to the

given results, it is an excellent tool for the Feature Extraction task. Furthermore, we

prove that with few SIFT points, the results are satisfactory; it is not necessary to

process big amount of information to get acceptable results.

We also discovered that SVMs and HTM Hard have more sensibility to targets
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movements, proving that these machine learning techniques are accurate with small

quantity of SIFT points. This sensibility is essential for any Object Tracking algorithm,

due to recognize the target in different situations or noise.

5.2 Future work

This research has led open many questions to work on. There is some future work:

1. It would be interesting to test another combination of technologies, for example:

Recurrent Neural Networks, Bayesian networks, Reinforcement learning, Sparse

dictionary learning, Genetic algorithms. It would be interesting comparing these

results with another implementation of HTM, in this research the OPF and Spatial

Pooler plus kNN were used; but there are another ways to create HTM algorithms,

like the Network framework, where independent modules can be used, or build

manually the structure. Also the Spatial Pooler can be combined with another

top level classifier (instead of the kNN classifier), like the SVMs classifier or any

other.

2. Also to work with high quality video resolution, here the 50×50 pixels resolutions

was used due to the HTM Hard’s implementation, but if another options are used,

it is feasible to run these algorithms over high resolution videos.

3. Another issue is to use more Dense SIFT points, due to restriction in this research,

the number of 12 points was imposed. But on future implementation another

magic number can be used, for example 60, 90, 500 points; especially if it is

applied over high resolution video.

4. Furthermore, to combine classifying processes with State of the Art tracking algo-

rithms, for example the Particle Filtering. This combination can help to overcome

occlusion issues and a lot more issues like: clutter, rotation, illumination, etc.
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5. And another interesting issue is to use another Feature Extraction techniques,

here the Dense SIFT process was implemented to extract interest points; but

another techniques can be used to test the accuracy in the classification process.

63



BIBLIOGRAPHY

[AKN12] G.S Asha, K.Arun Kumar, and D. David Neels Pon Kumar. “A Real Time
Video Object Tracking Using SVM”. In: Internacional Journal of Enge-
neering Science and Innovative Technology (IJESIT) 1.2 (2012), pp. 302–
312.

[Avi04] Shai Avidan. “Support Vector Tracking”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 26.8 (2004), pp. 1064–1072. doi: 10.
1109/TPAMI.2004.53.

[AW07] Mark Anderson and Patrick Whitcomb. DoE Simplified. Boca Raton, FL,
USA: CRC Press, Taylor and Francis Group, 2007.

[BCW08] Wayne Booth, Gregory Colomb, and Joseph Williams. The Craft of Re-
search. Chicago, CH, USA: The University of Chicago Press, Third Edition,
2008.

[Bis95] C.M. Bishop. “Neural Networks for Pattern Recognition”. In: (1995).

[Blu92] A. Blum. “Neural Networks in C++”. In: (1992).

[CL01] Ching-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vec-
tor machines. 2001. url: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
(visited on 4/2/2015).

[Com01] Reading University Computational. Performance Evaluation of Tracking
and Surveillance. A dataset for Computer Vision and Pattern Recogni-
tion. 2001. url: ftp.pets.reading.ac.uk/pub/PETS2001 (visited on
2/25/2001).

[Com09] Reading University Computational. Performance Evaluation of Tracking
and Surveillance. A dataset for Computer Vision and Pattern Recognition.
2009. url: www.cvg.rdg.uk/PETS2009/a.html (visited on 3/15/2009).

[Cos14] Allan Costa. Nupic Classifier MNIST. 2014. url: http://github.com/
allanino/nupic-classifier-mnist (visited on 8/8/2014).
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