
Power, Reliability, Performance: One System to Rule Them All

Bilge Acun, Akhil Langer, Esteban Meneses, Harshitha Menon, Osman Sarood, Ehsan Totoni, Laxmikant V. Kalé

Traditionally, the emphasis of High Performance Com-
puting (HPC) data centers and applications has been on
performance. However, it is anticipated that future gener-
ation supercomputing systems will face major challenges
in reliability, power management, and thermal variations.
Disruptive solutions are required to optimize performance
in the presence of these challenges. We believe that a smart
parallel runtime system that is part of each job, and that
interacts with an adaptive resource manager for the whole
machine, is key to overcome the challenges of next gener-
ation supercomputing data centers. We have demonstrated
that a smart and adaptive runtime system can:

• improve efficiency in a power-constrained environ-
ment [1],

• increase performance with load balancing algo-
rithms [2],

• control the reliability of supercomputers with substan-
tial thermal variations [3],

• configure hardware components to operate within
power constraints and/or to save energy [4], [5].

Although these research directions were developed in
isolation, they indicate that smart runtime systems have a
great potential to overcome the barriers towards exascale
computing. What the HPC community lacks is an integrated
solution that combines past research into a single system
that optimizes across multiple dimensions. We propose a
comprehensive design in which the data center resource
manager:

• dynamically interacts with the individual runtime sys-
tems of jobs,

• optimizes for both performance and power consump-
tion, and

• operates in an environment with system failures under
constraints supplied by users or administrators.

At the heart of the proposed solution for power-efficiency,
reliability and performance of an HPC data center lies an
adaptive and dynamic parallel runtime system. An adaptive
runtime system can migrate tasks and data from one proces-
sor to any other processor available to the job. This ability
can solve many challenges that upcoming supercomputers
face - application load imbalance across processors, high
fault rates, power and energy constraints, and thermal vari-
ations. These challenges are often contradictory in terms of
their requirements. For example, applying power and tem-

perature constraints can compromise performance and lead
to load imbalance across processors. We strive to achieve a
healthy balance where we try to maximize performance in
presence of the known as well as contingent constraints and
events.

In Figure 1, we show a unified diagram of several im-
portant components of a data center, their functions and
interactions with each other in order to address the chal-
lenges of power, reliability, and performance. Currently, data
center users are primarily concerned about the performance
of their job. In future, however, power consumption of their
jobs may become a major concern. On the other hand, the
data center administrators have different and more complex
concerns - while they want to guarantee good performance
to individual jobs, they need to ensure that the total power
consumption of the data center does not exceed its allocated
budget and that the job throughput of the data center remains
high despite node failures and thermal variations. We achieve
the objectives of both users and system administrators by
allowing dynamic interaction between the system resource
manager/scheduler and the job runtime system. While the
job scheduler strives to allocate the system resources op-
timally to the jobs based on their power and performance
characteristics, the job runtime system implements the de-
cision of the job scheduler by being malleable to shrink or
expand itself to the nodes assigned by the scheduler and
by doing dynamic load balancing whenever beneficial. Fur-
thermore, the runtime system can turn on/off or reconfigure
various hardware components without impacting application
performance, if adequate hardware control is provided by
vendors. Our evaluations demonstrate that these runtime
capabilities result in greater power efficiency for common
HPC applications.

AN ADAPTIVE RUNTIME SYSTEM FOR HPC

An adaptive runtime is an essential component of a system
optimized for power efficiency, reliability and performance.
Adaptive runtime systems enable dynamic collection of
performance data, dynamic task migration (load balancing),
temperature restraint and power capping with optimal per-
formance.

CHARM++ is a C++ based parallel programming frame-
work supported by an adaptive runtime system, which en-
hances user productivity and allows programs to run portably
from small multicore computers (laptops, phones) to the



Users

Runtime System
(RTS)

Processors

Runtime System
(RTS)

Job
Submission

System Administrator

System Level Constraints: Power Caps, Hardware Configurations
Job Allocation and Termination Decisions

Power Aware Perf Modeling
Hardware Configuration 

Selection

Job selection
Resource Allocation

Resource Manager

Job Profiler Scheduler

Execution
Framework

• Launch Jobs
• Shrink/Expand Jobs
• Job Cleanup
• Apply Power Caps
• Hardware Configs

Figure 1: Figure shows overall system design with two major components interacting with each other: Resource Manager
and the Runtime System.

largest supercomputers [6]. It enables users to easily expose
and express much of the parallelism in their algorithms while
automating many of the requirements for high performance
and scalability. CHARM++ has been in production use since
2001 and it has thousands of users across a wide variety of
computing disciplines with multiple large scale applications
including: NAMD for molecular dynamics, ChaNGa for
cosmology, OpenAtom for quantum chemistry simulations,
and many others [6].

CHARM++ has three main attributes: over-decomposition,
asynchronous message-driven execution, and migratability.
Over-decomposition entails having the programmer divide
the computation in an application into small work and data
units so that there are many more such units than the
number of processors. Message-driven execution involves
scheduling work units based on when a message is received
for them. Migratability refers to the ability to move data and
work units between processors. These attributes enable the
CHARM++ adaptive runtime system to provide many useful
features including dynamic load balancing, fault tolerance,
and job malleability (shrink-expand the number of proces-
sors the application is running on).

CHARM++ collects information about the application and
the system in a distributed database including loads of
processors, loads of each object, communication patterns,
and core temperatures. When the number of processors are
large, centralized data collection becomes a performance
bottleneck. Therefore, data collection and decision making
are done in a hierarchical fashion. This information is
used by different modules of the adaptive runtime to make
decisions such as improving load balance, handling faults,
and enforcing power constraints.

Load balancing: CHARM++ uses a measurement-based
mechanism for load balancing. It relies on a heuristic known
as the principle of persistence, which states that for over-
decomposed iterative applications, the computation load and
the communication pattern of tasks or objects tend to persist
over time. It uses the load statistics of the application code
collected by the runtime system. This has the advantage
that it provides an automatic, application independent way
of obtaining the load statistics without any input from the
user. The system also allows the user to specify predicted
loads overriding system predictions. Using the load statistics,
CHARM++ executes a chosen load balancing strategy to de-
termine a mapping of objects to processors and then carries
out migrations based on this mapping. CHARM++ consists
of a suite of load balancers including several centralized,
distributed and hierarchical strategies. The runtime system
can also automate the decision of when to call the load
balancer [7]. It can use the instrumented load information to
predict the future load and make load balancing decisions.
It automatically triggers load balancing when imbalance is
detected and when the benefit of load balancing is estimated
to be more than its overhead.

Fault tolerance: The CHARM++ runtime system imple-
ments both proactive and reactive strategies for reliabil-
ity [8]. In the proactive techniques, the runtime system
evacuates all objects from a node that a monitoring system
predicts is going to crash soon. Since failure prediction
is not completely accurate, the reactive techniques recover
the information lost after a failure brings down one node
of the system. Those latter strategies are mostly based on
checkpoint/restart. Therefore, the global application’s state
is routinely stored and recovery implies retrieving a prior



Shrink/Expand 
Decision

Power
 Caps

Resource
 Manager

Processor 1

Migration /
Load Balancing 

Module

Power Resiliency 
Module

Objects

Local 
Manager

Power Cap

Temperature

Processor 2

Objects

Local 
Manager

Power Cap

Temperature

Processor Load Information
Processor Temperatures
Migration Decisions

Figure 2: Various components of the adaptive runtime sys-
tem and their interaction with resource manager.

global state.
Shrink-expand: The migratability of CHARM++ objects

enables a unique ability called job malleability; during
runtime, a job can shrink (decrease) or expand (increase)
the number of nodes it is running on. This feature does
not require any additional code from the application de-
veloper [9]. Shrink or expand operations can be triggered
by an external command or it could be an internal deci-
sion made by the runtime. During a shrink operation, the
runtime system reduces the number of processors that the
application is running on. First, it moves the objects away
from the processors that are not going to be used anymore.
The unused processors can then be returned back to the
resource manager. For an expand operation, the runtime
launches new processes on the additional processors that
the resource manager has allocated and distributes objects
from current processors to the newly allocated processors. In
addition to moving objects, the runtime system must adjust
its distributed data structures, including spanning trees and
location managers.

Figure 2 shows the internal components and functioning
of the CHARM++ Runtime System (RTS). There are three
important components of the RTS - Local Manager (LM),
Load Balancing Module (LBM), and Power Resiliency Mod-
ule (PRM). Each processor has an LM that is responsible
for managing the objects residing on that processor and
for interacting with other components of the RTS. The LM

of each processor periodically sends its total compute load
and compute load of each of its objects to the LBM, and
the CPU temperature is sent to the PRM. LBM makes
the load balancing decisions and it also redistributes load
in response to shrink-expand commands from the resource
manager. Object migration decisions are communicated to
the respective LM by the LBM. PRM, on the other hand, is
responsible for ensuring that the CPU temperatures remain
below the job specific temperature threshold (determination
of this threshold is shown in Figure 5). The PRM controls
CPU temperature by adjusting the power cap of the CPU.
When a processor’s temperature is above the threshold, its
power cap is lowered. And when the temperature is well
below the desired threshold, the corresponding power cap
is increased while ensuring that the total power of the job
remains below the power budget allocated to the job (the
determination of this budget is described in the next section).
Jobs may not have administrator rights to constrain the
power consumption of their CPUs. Therefore, the new power
caps are communicated to the resource manager which
applies them to each CPU.

THROUGHPUT MAXIMIZATION UNDER A POWER
BUDGET

The U.S. Department of Energy has set a power limit
of 20MW for an exascale supercomputer that it is willing
to purchase and deploy. We demonstrate that power aware
resource management along with malleable jobs can lead to
significant improvements in job throughput of a data center
running under a power budget.

Recent advances in processor hardware design allow users
to control the amount of power consumed by the processor
using software with Running Average Power Limit (RAPL)
driver. Processors can be power capped to run below their
Thermal Design Power (TDP) value, where TDP is the
maximum amount of power a processor can consume. The
maximum number of nodes in a data center with a power
budget is determined by the TDP of the nodes. Power
capping makes it possible to control the power consumption
of nodes and thus have additional nodes while remaining
within the power budget of the data center. This is called
an overprovisioned system [10]. Earlier research shows that
an increase in the power allocated to a processor does
not yield a proportional increase in job’s performance [1].
Different jobs react differently to an increase in power
allocated to the CPU. The idiosyncrasies in jobs performance
based on allocated CPU power, points to the possibility
of running different applications at different power levels.
Overprovisioned systems can significantly improve perfor-
mance of applications that are not sensitive to CPU power
by capping CPU powers to values well below their TDP and
adding more nodes to get benefits from strong scaling. The
Power Aware Resource Manager (PARM) [1] leverages this
capability by optimally distributing the available resources



to the jobs - the total power budget of the data center and
the compute nodes.

The response of an application to CPU power can be
captured by its power-aware speedup [11]. The power-aware
speedup is the ratio of the execution time of a job running
on a CPU capped at a certain power level compared to the
execution time of the same job when running on the lowest
allowed power level allowed by the CPU [1]. A higher
value for power-aware speedup implies that the application
is sensitive to changes in the amount of power allocated to
the CPU.

Figure 3: Power-aware speedups of four applications run-
ning on 20 nodes. The applications vary from being CPU
intensive to memory intensive.

Figure 3 shows power-aware speedups of four HPC appli-
cations having different characteristics under different CPU
power caps [1] (The minor deviations from the monotonic
behavior in the Figure are likely due to external factors
such as OS jitter, network delays, etc.). LeanMD, which
is a molecular dynamics application has the highest power-
aware speedup since is the most CPU intensive one. Whereas
Jacobi2D, which is a stencil application, has the lowest since
it is memory intensive. PARM makes scheduling decisions
by selecting jobs and their resource configurations (power
budget and compute nodes) such that the total power-aware
speedup of running jobs is maximized.

PARM is an essential part of the overall system we
propose in this work. It dynamically interacts with the
adaptive runtime system of jobs, the system hardware, the
user and the system administrator to perform several critical
tasks (Figure 1). There are three important components of
PARM:

• Job Profiler: Before a job is added to the scheduler
queue, it is profiled to develop a power-aware strong
scaling model that is used to calculate the power
aware speedups. This profiling mechanism has negli-
gible overhead as it is sufficient to run the application
for a few iterations to get the necessary data points.

0.68X

1X

0.59X

1X

0.79X

0.66X

Figure 4: Comparison of average completion time of jobs
with SLURM and PARM, in Rigid(R) and Malleable(M)
variants. SetL has jobs that have low sensitivity to CPU
power and SetH has jobs that have high sensitivity.

• Scheduler: PARM implements its resource allocation
optimization strategy as an Integer Linear Program
(ILP) with the objective of maximizing power-aware
speedup of running jobs under power constraints.
Whenever a new job arrives or a running job termi-
nates, PARM’s scheduler is triggered, and re-optimizes
scheduling and resource allocation decisions. PARM’s
ILP is fast enough to run frequently with negligible
overhead [1].

• Execution Framework: This component implements
the scheduler decisions by launching jobs, sending
shrink/expand decisions to the runtime system of
the jobs, and by applying power caps on compute
nodes. Job runtime systems interact with the execution
framework to convey job termination, completion of
shrink/expand operation and any changes to CPU power
caps as determined by PRM module of the runtime
system.

Figure 4 shows the benefits of using PARM as compared
to power-unaware SLURM which is an open source resource
manager used in many supercomputers. Two versions of
PARM are compared - PARM-Rigid and PARM-Malleable.
In PARM-Rigid, node allocation decision to any job is rigid,
that is it cannot be changed once the job starts running.
PARM-Malleable, on the other hand, has an additional de-
gree of freedom that allows it to change the nodes allocated
to a running job which is made possible by the shrink/expand
feature of CHARM++ . The number at the top of each bar in
Figure 4 represents average completion time as a percentage
of the average completion time using SLURM scheduler.
PARM-Malleable was able to reduce average completion
time of jobs by up to 41%. The effects of reducing the CPU
power on performance are large for jobs with high power
sensitivity (SetH). Therefore, the benefits of adding more



nodes at the cost of reducing CPU power are small with
SetH. Consequently, PARM gives less performance benefit
over SLURM with SetH as compared to SetL.

IMPROVING RELIABILITY THROUGH TEMPERATURE
RESTRAINT AND LOAD BALANCING

Checkpoint/restart is the most popular mechanism to
provide fault tolerance in HPC. The total execution time
T of an application, on an unreliable system, is given by
the equation:

T = Tsolve + Tcheckpoint + Trecover + Trestart

where Tsolve represents the total effort required to solve
the problem; Tcheckpoint accumulates all the time spent on
saving the checkpoints of the system; Trecover stands for
the total work that is lost and must be recovered as a result
of failures in the system; Trestart is usually constant and
represents the amount of time required to resume execution
after a crash. A system using checkpoint/restart has to
choose an appropriate checkpoint period (denoted by τ ).
There is a delicate balance in the value of τ . A long
value of τ (low checkpoint frequency) decreases Tcheckpoint,
but may increase Trecover. Conversely, a short value of τ
(high checkpoint frequency) means a reduced Trecover, but
may enlarge Tcheckpoint. The optimum value of τ strongly
depends on the mean-time-between-failures (MTBF) of the
system.

The MTBF of an electronic component is directly affected
by its temperature. That relation is usually exponential and
there is some experimental evidence that a 10◦C increase
on a processor’s temperature decreases its MTBF in half [3].
Therefore, the reliability of a system can be controlled by
restraining the temperature of its components. The cooler
the system runs, the more reliable it is, but the slower it
runs. That is because temperature constraints are realized
by restraining the power of the CPU. This interplay between
power management and reliability has been studied in other
context [12]. The runtime allows each core to work at
the maximum possible power as long as it is within the
maximum temperature threshold. If any of the cores goes
above the maximum temperature threshold, their power is
further reduced causing its temperature to fall. However,
this can cause a performance degradation for tightly cou-
pled applications due to thermal variations. The LBM will
automatically detect any load imbalance and will make the
load balancing decisions [2].

The runtime system must strike a balance in the tem-
perature at which each component should be restrained.
Moreover, that balance depends on the application. Different
codes generate different thermal profiles on the system at
different stages of the application. Some codes are more
compute intensive and tend to heat up the processors more
quickly. Appropriate, application-based temperature thresh-
olds are stored as part of the Job Profiler in Figure 1. In the

end, the runtime system aims at reducing the total execution
time of an application, considering the MTBF of the system
and subject to the power limitations [3].

Figure 5: Reduction in execution time and change in MTBF
for different temperature thresholds

Figure 5 shows percentage reduction in execution time
after constraining core temperatures to different thresholds
for two different applications. The reduction in execution
time shown in Figure 5 is calculated compared to the base-
line case where processor temperature is not constrained.
Figure 5 also shows the ratio of MTBF for the machine using
our scheme relative to the baseline case where core temper-
atures are not constrained. For example, by restraining core
temperatures to 42◦C in case of Jacobi2D, the MTBF for
the machine increased 2.3 times while the execution time
reduced by 12% compared to the baseline case where core
temperatures are not constrained. The inverted U shape of
both the curves strongly suggests a trade-off between relia-
bility (MTBF) and the slowdown induced by the temperature
restraint.

The resource manager sends the PRM of the runtime
system (Figure 2) the upper bounds of the temperatures that
honor the power envelope of the system. Those temperature
values are used as input to an internal resilience component
in PRM and they will be changed according to the algo-
rithms that optimize performance and consider the MTBF of
the system and the characteristics of the application running.
The output will be propagated to further components in
PRM that will later consolidate the final power limits and
they will be communicated back to the resource manager. A
dynamic runtime system is fundamental in controlling the
reliability of the system and honoring the power envelope
at the same time. Since thermal variations are dynamic, a
reactive runtime system efficiently responds to those changes
and provides a healthy balance between performance and
reliability in the system. In addition, a broader range of
reliability concerns can be addressed by this scheme. Soft
errors (e.g. bit flips caused by high-energy particles) can



also be addressed in tandem with hard errors [13]. Circuits
using near-threshold voltage will introduce a more complex
scenario with higher performance variability and higher
transient-failure rate.

DYNAMIC CONFIGURATION OF SYSTEM COMPONENTS

The runtime system can take advantage of the currently
available hardware “knobs” for controlling power such as
frequency scaling and power capping. However, greater
power savings are possible if there is more runtime con-
trol over hardware components. We demonstrate, via cycle
accurate simulations, that the runtime system can turn off
or reconfigure many components without significant perfor-
mance penalty based on the properties of the running HPC
application.

HPC systems should ideally be energy proportional; the
hardware components should consume power and energy
only when their functionality is being used. However, net-
work links are always “on”, independent of their utilization.
In addition, processor caches consume large amounts of
power, even when they are not improving the performance
of the running application. We propose a runtime system
approach that can save this wasted energy by dynamically
re-configuring the hardware based on the application needs.

Caches consume up to 40% of a processor’s power [4]. A
large fraction of cache power consumption can be saved by
turning off some cache banks in cases where the application
performance would not be degraded. Many common HPC
applications cannot take advantage of the caches effectively.
For example, molecular dynamics applications typically
have small working data sets and do not need the large last
level caches(LLC). On the other hand, grid-based physical
simulation applications typically have very large data sets
that do not fit in caches and the data reuse in cache is
minimal. However, the hardware is not able to predict
the application behavior. Therefore, we propose a runtime
system approach where the runtime uses profiling data to
reconfigure the cache to save power without significant
performance loss. Using a set of representative HPC applica-
tions, our previous study demonstrates that on average, 67%
of cache energy can be saved with only 2.4% performance
penalty [4].

A similar approach applies to HPC networks as well.
Networks consume up to 30% of system power even when
there is no communication since the links are always on. Our
previous study demonstrates that typical HPC applications
do not use a large fraction of the links in most of their
execution time [5]. The reason is that HPC topologies such
as Dragonfly are designed to handle the most challenging
communication patterns such as all-to-alls in FFT modules.
However, typical applications have sparse communication
patterns such as nearest neighbor that cannot exploit the
massive number of links in HPC networks like Dragonfly.
We propose using the runtime system to turn the links on and

off adaptively. This hardware configuration case is harder to
handle since the usage of network links can be impacted
by features such as adaptive routing. Therefore, the runtime
system should handle different hardware designs based on
their exact specification. Our results demonstrate that up to
80% of the power consumption of network links can be
saved using our adaptive runtime strategy [5].

FINAL REMARKS

Important challenges, such as power, reliability, and ther-
mal variations, loom in the future of supercomputing. Ad-
dressing these concerns is imperative to harness the next
generation of high performance machines. We propose a
unified system design with a smart runtime system which
interacts with the system resource manager.

The combined system offers several important features.
First, it honors the power constraints by wisely schedul-
ing jobs and re-allocating their resources when utilization
changes. Second, it controls the reliability by a temperature-
aware module that cools down the system to an application-
based optimal level. Third, it can re-configure the hardware
via the runtime without sacrificing performance.

ABOUT THE AUTHORS

Bilge Acun is a Ph.D. student in the Department of
Computer Science at University of Illinois at Urbana-
Champaign. Her research interests include power-aware
software design, malleability and variability in large-scale
applications. acun2@illinois.edu.

Akhil Langer is a Software Engineer at Intel Corporation.
His research interests include scalable distributed algorithms
and power and communication optimizations in HPC. He
received his Ph.D. in Computer Science from University of
Illinois at Urbana-Champaign. akhil.langer@intel.com.

Esteban Meneses is an Assistant Professor in the
School of Computing at the Costa Rica Institute of
Technology. His research interests include reliability
in HPC systems, parallel-objects application design,
and accelerator programming. He received his Ph.D.
in Computer Science from the University of Illinois at
Urbana-Champaign. esmeneses@tec.ac.cr.

Harshitha Menon is a Ph.D. student in the Department
of Computer Science at University of Illinois Urbana
Champaign. Her research interests include scalable load
balancing algorithms and adaptive runtime techniques
to improve the performance of large-scale applications.
gplkrsh2@illinois.edu.

Osman Sarood is a Software Engineer at Yelp Inc. His
research interests include performance optimization for
parallel and distributed computing under power and energy



constraints. He received his Ph.D. in Computer Science
from the University of Illinois at Urbana-Champaign.
osarood@yelp.com.

Ehsan Totoni is a Research Scientist at Intel Labs.
His research interests include programming systems for
HPC and big data analytics. He received his Ph.D. in
Computer Science from the University of Illinois at
Urbana-Champaign. ehsan.totoni@intel.com.

Laxmikant V. Kale is a professor of Computer Science De-
partment at the University of Illinois at Urbana-Champaign.
His research interests include various aspects of parallel
computing, with a focus on enhancing performance and pro-
ductivity via adaptive runtime systems. kale@illinois.edu.

REFERENCES

[1] O. Sarood, A. Langer, A. Gupta, and L. V. Kale, “Maximizing
throughput of overprovisioned hpc data centers under a strict
power budget,” in Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’14. New York, NY, USA: ACM,
2014.

[2] O. Sarood, P. Miller, E. Totoni, and L. V. Kale, “‘Cool’
load balancing for high performance computing data centers,”
in IEEE Transactions on Computer - SI (Energy Efficient
Computing), September 2012.

[3] O. Sarood, E. Meneses, and L. V. Kale, “A ‘cool’ way of
improving the reliability of HPC machines,” in Proceedings
of The International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Denver, CO, USA,
November 2013.

[4] E. Totoni, J. Torrellas, and L. V. Kale, “Using an adaptive
hpc runtime system to reconfigure the cache hierarchy,” in
Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, ser. SC
’14. New York, NY, USA: ACM, 2014.

[5] E. Totoni, N. Jain, and L. Kale, “Power management of
extreme-scale networks with on/off links in runtime systems,”
ACM Transactions on Parallel Computing, 2014.

[6] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida,
X. Ni, M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and
L. Kale, “Parallel programming with migratable objects:
Charm++ in practice,” ser. SC, 2014.

[7] H. Menon, N. Jain, G. Zheng, and L. V. Kalé, “Automated
load balancing invocation based on application characteris-
tics,” in IEEE Cluster 12, Beijing, China, September 2012.

[8] E. Meneses, X. Ni, G. Zheng, C. Mendes, and L. Kale,
“Using migratable objects to enhance fault tolerance schemes
in supercomputers,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 26, no. 7, pp. 2061–2074, July 2015.

[9] A. Gupta, B. Acun, O. Sarood, and L. V. Kale, “Towards real-
izing the potential of malleable parallel jobs,” in Proceedings
of the IEEE International Conference on High Performance
Computing, ser. HiPC ’14, Goa, India, December 2014.

[10] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R.
de Supinski, “Exploring hardware overprovisioning in power-
constrained, high performance computing,” in Proceedings

of the 27th international ACM conference on International
conference on supercomputing. ACM, 2013, pp. 173–182.

[11] R. Ge and K. W. Cameron, “Power-aware speedup,” in
2007 IEEE International Parallel and Distributed Processing
Symposium. IEEE, 2007, pp. 1–10.

[12] R. Melhem, D. Mossé, and E. M. Elnozahy, “The interplay of
power management and fault recovery in real-time systems,”
IEEE Trans. Comput., vol. 53, no. 2, pp. 217–231, Feb. 2004.

[13] X. Ni, E. Meneses, N. Jain, and L. V. Kale, “Acr: Automatic
checkpoint/restart for soft and hard error protection,” in
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13.
IEEE Computer Society, Nov. 2013.


