
Sensibility analysis of the Trace Transform on Land
Coverage Images

Ricardo Román Brenes
Centro Nacional de Alta Tecnologı́a and

Instituto Tecnológico de Costa Rica
Costa Rica

Email: rroman@ic-itcr.ac.cr, rroman@cenat.ac.cr

Francisco Torres-Rojas
Instituto Tecnológico de Costa Rica

Costa Rica
Email: torresrojas@gmail.com
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Abstract—Aerial or satellital images may be used to produce
terrain coverage maps, which in time are a very useful and
important tool for decision-making in several fields including bio-
diversity, telecommunications and natural disaster management.
The Trace Transform method can be used to process these images.
This method extracts features from the images by applying a
series of functionals to produce a numeric representation that
will be used for classification later on. This model depends on
several factors in order to have an efficient operation, among
them, the frequency parameters of the traces, classifier type and
land coverage. Experimentation on feature extraction time and
precision rate revealed that the frequency parameters, specially
∆τ , and the classifier type can affect both of them.

I. INTRODUCTION

At PRIAS1, CeNAT’s2 environmental sensing laboratory,
land coverage maps are produced using aerial or satellital
images.

These maps are an important tool for decision makers,
policy makers and administrative staff, among others, in areas
like risk control, natural disaster management and biodiversity
[1]. These products show a graphical distribution of an attribute
overlayed on a map [2].

As of today at PRIAS, the process for creating a land
coverage map has little computer assistance: the geographer
takes the image from which the map is to be created, and on
top of it, he or she draws polygons according to the kind of
land it is: forest, water bodies or urban zones. This is a time-
consuming and monotonous task that can be automated to a
certain degree. PRIAS maintains a collection of over 13000
unclassified images, coming from different sources [3] [4].

The Trace Transform (TT) [5] has characterized and clas-
sified successfully and automatically different types of images
[6] [7] [8]. This method extracts features associated with the
image using several functionals, one after another, to reduce
the complexity of the image. This reduced version of the
image is known as Triple Feature (TF) and is the one used
for classification.

At CNCA3, CeNAT’s computing research lab, a prototype

1Programa de Investigaciones Aerotransportadas y Sensores Remotos; in
English Airborne Research and Remote Environmental Sensing Program

2Centro Nacional de Alta Tecnologı́a; in English National Center for
Advanced Technology

3Colaboratorio Nacional de Computación Avanzada; in English National
Collaboratory for Advanced Computing

implementation of TT was developed and used to classify
experimental data with good results [9]. The next step will
be to test the improved method using real data from PRIAS.

TT can have a considerable run-time, depending on several
factors that will be explained further on. In [9], tests on 5000
× 5000 pixel images lasted an average of 3.7 hours. In order
to reach a good precision level, several functionals have to be
applied. The aerial images from PRIAS have sizes of at least
4000 × 4000 pixels [4]. Therefore it is of special importance
that TT uses the right functional parameters in order to make
it work in an efficient way.

This paper will review the TT algorithm, describe the
experiments performed so far, to assess the influence of the
parameters and the obtained results and outline future work.
All the images, code and scripts are available at http://cluster.
cenat.ac.cr/wordpress/?p=90

II. THE TRACE TRANSFORM

TT is a feature extraction method. Its basic idea is to draw
lines (called emphtraces) over an image, from where pixels are
sampled in order to transform it into a much simpler version
but with an equally powerful meaning.

A detailed description of the algorithm can be found in
[10], yet here the most relevant details are mentioned.

TT sweeps through an image I with lines, that can be
defined by two parameters: ρ and φ. Let o be the center of I .
From o, ρ is a distance and φ is an angle from a coordinate
axis centered at o. A trace τ (line) is made such that it is
tangent to the circle of radius ρ at angle φ, as it is shown in
figure 1.

The model also has three frequency parameters:

• ∆ρ (dRho): defines the length in pixels from o. If
∆ρ=1 there will be traces each pixel, if ∆ρ=2, traces
will be made every 2 pixels, and so on.

• ∆φ (dPhi): determines the interval in degrees in which
the trace will be made. If ∆φ=1o, traces will be made
every degree, for a total of 360 lines. If it has a value
of 90o, traces will be made every right angle, for a
total of 4 lines.

• ∆τ (dTau): over τ , this parameter defines which pixels
are taken into account for feature extraction. If ∆τ=1,
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Fig. 1. Traces from a Trace Transform parameters.

all the pixels of the line will be used. If its value is
2, then every other pixel will be used, and so on.

Both ∆φ and ∆ρ function like polar coordinates. Following
the pixel selection three functionals will be applied in suc-
cession; the pixels that are touched by these τ lines and that
comply with ∆τ in I will be the ones used as input for the first
functional T , or trace functional. The result, a first reduction
of I , is a two-dimensional array (that can be interpreted as a
2D image), IT , defined in terms of parameters of φ and ρ.
The next step is to take each column of IT and use it as input
for functional P, or diametric functional. This will generate an
array IP defined in terms of φ. Finally, the last functional, Φ
or circus functional, is applied to this array to create a single
decimal number called IΦ or Triple Feature (TF). This process
can be seen in figure 2.

It is possible to use more than one functional T. We can use
several that can be indexed in a table of functionals T. These
produce multiple IT , which can be called IτT , where τ is the
index number of that functional in the table of functionals T.
Using multiple functionals in the three parts of the TT has
shown to be a good practice, since it will produce an array of
TF that can be more representative of I than a single TF.

Once all the desired TF are extracted, these arrays have to
be classified. For this task any kind of computational classifer
may be used. Methods like artificial neural networks, support-
vector machines, clustering and regressions are all valid.

III. EXPERIMENTATION

Two experiments were designed to test the sensitivity of
TT when the frequency parameters are changed from the
default set (∆τ=1, ∆ρ=1 ∆φ=1o), following the multifactorial
experiment design from [11].

A. Experiment A: Feature Extraction Run-time.

The first experiment measured the influence of the factors
(independent variables) ∆τ , ∆ρ, ∆φ and land coverage type
on the response variable (dependant variable) time. The levels
of each factor are:

Fig. 2. Graphical flow of the Trace Transform.

• ∆τ (pixels): 1, 2 and 3.

• ∆ρ (pixels): 1, 2 and 3.

• ∆φ (degrees): 0.5o, 1o and 2o.

• Land coverage (types): Forest, water, rural, urban and
plantation.

Given these levels and that there are 32 images per land
coverage type, there is a total of 4320 (3 ∗ 3 ∗ 3 ∗ 32 ∗ 5) runs
per replica (3), which yields a total of 12960 executions of the
TT.

Using a script all the executions were automated to run
all the combinations of the factor’s levels. Each execution
produced two results: the feature extraction run-time execution
and a 5580 TF array for each of the images. The first was used
in experiment A and the second was used in experiment B.

1) Dataset: The dataset used to generete the TFs contains
160 images previously classified by an expert geographer.
There are 32 images for each land coverage type taken in Costa
Rica during the Carta 2005 Mission [3]. Some examples can
be seen in figure 3. Each image is 500 × 500 pixels.

2) Implementation of the TT: The program used in [9] was
modified so that the frequency parameters could be loaded into
execution instead of using the default set. The operating system
is in charge of taking the time for the feature extraction. Each
instance of the program operated over one image, so multiple
programs could be launched in different machines to run over
the dataset.
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Fig. 3. Examples of land coverage types. Each column has images of a different land coverage, respectively: water, forest, rural, plantation and urban.

The program ran on CNCA’s computing cluster. Five nodes
were used, each with 32GB of RAM, Xeon E5530 processors
and running CentOS 6.5.

3) Functionals: Functional selection is critical for a good
extraction process, and is a research topic in itself. The
functionals used here were those that showed the best results
in classifying textures in [8] and [10].

B. Experiment B: Classification Precision

The second experiment measured the influence of ∆τ , ∆ρ,
∆φ and the classifier on the precision rate. The levels for factor
classifier are: KMeans, SMO, LogitBoost and BayesNet. The
levels for the other factors are the same as in experiment A.

A new field was added to each of the TF array (one for each
image and parameter configuration) produced in experiment A,
the land-coverage type of it’s original image, so the classifiers
can evaluate the array’s ability to represent the image.

The data mining tool WEKA [12]4 was used to test the
classifiers. Although there are other statistical tools available,
like R [13]5, WEKA was chosen due to its vast list of
publications6, familiarity of use and output standards.

A total of 108 classifications were produced. Their output,
among others, included a confusion matrix, recall and precision
ratings and the method’s particular output. The precision rates
were taken and tabulated and as well as in the first experiment,
were analyzed with ANOVA.

The precision rate is calculated using the confusion matrix
and the following function:

Precision =
∑ Correctly classified instances

Instance total
(1)

4http://www.cs.waikato.ac.nz/ ml/weka/
5http://www.r-project.org/about.html
6http://www.cs.waikato.ac.nz/ml/publications.html

1) Classifiers: Four classifiers were selected to weigh the
effects on precision. Each one has a different nature: clustering,
function-based, regression and Bayesian.

The first one is the basic clustering algorithm, k-means
[14], named “simpleKMeans” in WEKA. It was set up to use
the whole dataset for training, 500 iterations and Euclidean
distance.

The second one is a support-vector machine learning
algorithm, using Platt’s Sequential Minimal Optimization [15],
known as “SMO” in WEKA. The setup used a polynomial
kernel function, an acceptable error of 1.0E-12 and a normal-
ization filter on the data. The dataset partition followed a cross-
validation with 10 folds. This is a much more robust algorithm
than the clustering and so it was expected to perform better.

The third one is a regression based algorithm, LogitBoost
[16] with the same name in WEKA. It was used with the
default parameters.

The fourth and last one is a Bayes network [17], named
“BayesNet” in WEKA which also ran with the default param-
eters.

IV. RESULTS AND ANALYSIS

As was said before, the results of both experiments were
tabulated and ran through ANOVA. The statistical procedure
Analysis of Variance checks k samples obtained from k
populations, and determines if there is statistical evidence that
some of them have different means [11]. Unfortunately the
data on either of the experiments did not follow ANOVA’s
assumptions (random error normally and independently dis-
tributed with mean 0.0 and constant variance) and thus a
ranking transformation was applied to bypass these problems.
The longer the time, the higher the rank; the fastest extraction
time was of 5.177 seconds, which is rank 1. The slowest
extraction time was of 216.606 seconds, which is rank 12960.
The statistic package R was used for this analysis.
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TABLE I. ANOVA TABLE FOR FEATURE EXTRACTION TIME.

Factor Df Sum Sq Mean Sq F value Pr(>F)

dTau 1 6.056e+10 6.056e+10 9.681e+04 <2e-16
dPhi 1 7.188e+10 7.188e+10 1.149e+05 <2e-16
dRho 1 3.796e+10 3.796e+10 6.068e+04 <2e-16
coverage 4 2.135e+07 5.338e+06 8.533e+00 7.15e-07
dTau:dPhi 1 5.291e+07 5.291e+07 8.458e+01 <2e-16
dTau:dRho 1 1.383e+08 1.383e+08 2.211e+02 <2e-16
dPhi:dRho 1 1.108e+03 1.108e+03 2.000e-03 0.966
dTau:coverage 4 2.380e+06 5.951e+05 9.510e-01 0.433
dPhi:coverage 4 8.064e+04 2.016e+04 3.200e-02 0.998
dRho:coverage 4 1.340e+05 3.351e+04 5.400e-02 0.995
dTau:dPhi:dRho 1 2.709e+09 2.709e+09 4.330e+03 <2e-16
dTau:dPhi:coverage 4 1.172e+06 2.929e+05 4.680e-01 0.759
dTau:dRho:coverage 4 6.292e+04 1.573e+04 2.500e-02 0.999
dPhi:dRho:coverage 4 8.207e+05 2.052e+05 3.280e-01 0.859
dTau:dPhi:dRho:coverage 4 4.000e+05 1.000e+05 1.600e-01 0.959

Residuals 12920 8.082e+09 6.256e+05

A. Experiment A

The ANOVA table for the experiment A is shown in table
I. The relevant factors and interactions are: ∆τ , ∆τ , ∆ρ, land
coverage type, ∆τ and ∆ρ, ∆τ and ∆φ, ∆τ and ∆ρ and ∆φ.

The four main factors all show influence on the response
variable, plots of these effects can be found in figure 4. As the
frequency parameters get larger, it takes less time to generate
the TFs, which is something that was expected. The finer the
sweep (smaller values on frequency) the longer the time the TT
takes to extract features. The effect on the land-coverage factor
is uncertain, although statistically significative, the difference
between times vary from 31.323 seconds at rank 6400 to
31.354 seconds at rank 6500.5; rural coverages take slightly
less time than the others.

The second level interactions between ∆τ and the other
two frequency parameters are in figure 5. Both interactions
behave similarly, as ∆τ and the other parameter increase
together, it takes less time to extract the features. This does not
occur with ∆ρ, ∆φ or the land-coverage type. These results
make ∆τ stand out from the others.

Finally the third level interaction between the three fre-
quency parameters is shown in figure 6. Again the changes on
∆τ affect time: the larger the parameter, the longer it takes.
It can be seen in the plots that with ∆τ = 1 the lines are
clustered at the top; with ∆τ = 3, they are clustered at the
bottom and with ∆τ = 2, they are in the middle. Also ∆ρ,
∆φ both decrease toghter. This, again, stresses the importance
of the right selection on ∆τ .

B. Experiment B

The ANOVA table for the experiment B is shown in table
II. It is worth noticing that in this analysis a low rank means
a high precision; so the bottom part of the plot has a high
precision rate (low ranking) and low precision rate is at the
top (high ranking). The relevant factors and interactions are:
∆τ , classifier; ∆τ and classifier.

The factor ∆τ has little effect on the precision, although
statistically significative, this can be seen on plot (a) of figure

(a) ∆τ and ∆φ

(b) ∆τ and ∆ρ

Fig. 5. Means of second level interactions in experiment A

TABLE II. ANOVA TABLE FOR CLASSIFIER PRECISION.

Factor Df Sum Sq Mean Sq F-value Pr(>F)

dTau 1 1168 1168 4.622 0.034752
dPhi 1 89 89 0.353 0.553947
dRho 1 133 133 0.528 0.469773
classifier 3 72454 24151 95.560 <2e-16
dTau:dPhi 1 58 58 0.230 0.632989
dTau:dRho 1 248 248 0.979 0.325495
dPhi:dRho 1 0 0 0.000 0.989759
dTau:classifier 3 5793 1931 7.641 0.000157
dPhi:classifier 3 1384 461 1.825 0.149661
dRho:classifier 3 1970 657 2.598 0.058362
dTau:dPhi:dRho 1 462 462 1.827 0.180523
dTau:dPhi:classifier 3 664 221 0.876 0.457247
dTau:dRho:classifier 3 62 21 0.082 0.969620
dPhi:dRho:classifier 3 208 69 0.275 0.843459
dTau:dPhi:dRho:classifier 3 474 158 0.625 0.601146

Residuals 76 19208 253
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(a) ∆τ (b) ∆ρ

(c) ∆φ (d) Coverage

Fig. 4. Means of main factors of experiment A

7. Plot (b) shows the effect of the classifier on precision
rate, and here, heavy differences can be seen: K-means being
by far the worst and LogitBoost being the best. K-means
is a simple algorithm that depends heavily on the starting
position of the centroids and the iterations. On the other
hand LogitBoost relies on additive regression, that builds up a
solution iteratively until it reaches certain level, so this makes
it a far more precise process. On average the precision rate for
K-means was 59.52%, BayesNet 88.75%, SMO 90.23% and
LogitBoost 91.34%.

The second level interaction between ∆τ and the classifier
is in figure 8. Here it can be seen once again the heavy effect
of the classifier; with ∆τ=1, the finer sweep, LogitBoost has
a much better rank precision than any of the other classifier.
When ∆τ=2, the places change, with SMO having a better
performance than any other classifier, but having LogitBoost in
close pursuit. At the coarse sweep, LogitBoost remains second
to SMO in ranking precision. Given the ranking transforma-
tion, the raw data shows that LogitBoost is the better classfier,
with SMO in close pursuit.

The main outcome that can be deduced from experiment
A is that the larger the frequency parameters, the faster the
extraction time is, with ∆τ being the factor that has the biggest

effect on time, since this is the parameter that selects which
pixels will be used in extracting the features. On the other hand
from experiment B, the precision rate appears to be in direct
correspondance with the classifier and in a smaller degree of
∆τ . Both experiments are bonded with one relevant factor,
again, ∆τ . Also there’s an emerging property of the TT, it
seems that depending on the classifier, it may not be worth
making finer sweeps. The gain in precision does not justify
the time taken, in particular when it is known that the real-
life images are bigger than the ones used in these tests. On
average the finer sweep with ∆τ = 1, ∆ρ = 1 and ∆φ = 1
took 206.838 seconds while the coarser sweep with ∆τ = 3,
∆ρ = 3 and ∆φ = 2 took 5.634 seconds. With the finer
configuration and the best classifier LogitBoost, the precision
rate hit a 95.00% an with the coarser configuration, a 89.38%.
Gaining 5% in aerial image classification might not be of much
help; but if the image is a CAT scan of the brain seaching for
cancer, it might save lives.

V. CONCLUSIONS

This study proposed two experiments to evaluate the influ-
ence of the frequency parameters, land coverage and classifier
to the feature extraction time and precision rate of the Trace
Transform on land coverage images. The first experiment
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(a) ∆τ=1 and ∆ρ and ∆φ

(b) ∆τ=2 and ∆ρ and ∆φ

(c) ∆τ=3 and ∆ρ and ∆φ

Fig. 6. Means of third level interaction of experiment A

(a) ∆τ

(b) Classifier

Fig. 7. Means of ∆τ and classifier factors for experiment B.

Fig. 8. Means of second level interaction in experiment B
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showed how extraction time decreases as do the parameters and
that the land coverage type influence was not very important.
The second experiment revealed that the classifier is the main
factor to influence precision rate. The study showed that TT
can be optimized both at the parameter selection and the
classifier choice.

VI. FUTURE WORK

The next step is to build a land-coverage map generator
using the classification given by the TT. Benchmarking would
be recommened as well on different execution platforms. The
prototype can be modified in order for it to work with batches
of images. Another approach is to use an analysis window
on larger images, rather than to segment that large image and
pass those smaller ones to the TT. A study should be made
to see if the window size can influence the map’s precision.
The application of TT to other types of images is encouraged,
specially in the medical sciences, where there would be large
datasets available that have already been studied.
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