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las respectivas citas bibliográficas. En consecuencia, asumo la responsabilidad total por

el trabajo de tesis realizado y por el contenido del presente documento.

Carl Michael Grüner Monzón
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Resumen

El modelado de forma tiene aplicaciones en áreas de la ciencia y la industria. Los al-

goritmos clásicos se basan en métodos lineales y en distribuciones normales unimodales

que no son apropiados para modelar deformaciones presentes en señales naturales. Este

trabajo presenta un nuevo modelo de forma basado en aprendizaje de diccionario capaz

de representar estas deformaciones.

En primer lugar se entrena un diccionario mediante K-SVD y OMP. Posteriormente éste se

utiliza como modelo para representar formas mediante un vector disperso. Se demuestran

las capacidades de reducción de ruido aditivo del modelo con la limitante de que el mismo

puede representar también formas inválidas.

Posteriormente, para compensar la limitación del modelo de diccionario, se desarrolla

un método de filtrado de ruido no lineal basado en proyecciones ortogonales sobre una

variedad. Esta extensión asegura que la forma de salida sea válida.

Finalmente se presenta el algoritmo iterativo completo. En esta etapa, la aplicación

ofrece una primera aproximación de la forma que se desea segmentar. Ésta se modela

utilizando el diccionario y seguidamente se proyecta al manifold donde se asegura que la

aproximación actual sea una forma válida. Este proceso se repite hasta que se alcanza el

criterio de convergencia establecido. Se demuestra cómo el método propuesto es capaz de

modelar deformaciones de forma tanto lineales como no-lineales con alto grado de éxito.

Palabras clave: aprendizaje de diccionario, K-SVD, modelo de forma, OMP, variedad





Abstract

Shape modeling has applications in science and industry fields. The existing algorithms

are based on linear methods and on unimodal normal distributions not appropriate to

model deformations present in natural signals. This work presents a novel shape model

based on dictionary learning which is capable of representing these deformations.

First a dictionary is trained through K-SVD and OMP. Then it is used as a model to

represent shapes using a sparse weighting vector. The denoising properties of the model

are shown for additive noise, but with the limitation that it can also represent invalid

shapes.

Afterwards, in order to compensate for the dictionary model limitation, a non-linear

denoising method is developed based on orthogonal manifold projections. This extension

ensures that the output is always a valid shape.

Finally the complete iterative algorithm is presented. In this stage, the application o↵ers

an initial approximation of the shape to segment. The shape is modeled using the dic-

tionary and projected to the manifold whereby a valid shape is ensured. This process is

repeated until an established convergence criteria is met. It is shown how the proposed

method is capable of modeling both linear and non-linear deformations with high success.

Keywords: dicionary learning, K-SVD, manifold, OMP, shape model
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Chapter 1

Introduction

A flexible shape model is a mathematical description of a shape that allows deformations

according to a set of previously defined constraints. These constraints typically arise from

a priori knowledge of the object’s characteristics, statistical analysis or training processes,

among others. Flexible shape models have various applications in industrial and scientific

areas, and is a central building block in tasks such as segmentation, denoising, tracking and

classification. Moreover, they are used as the foundations for more complex problems on

specialized applications on the medical field [11, 13, 34, 43], computer graphics [17, 50, 67]

and manufacturing industry in general [14, 30, 26].

Flexible shape models have been an active research field for more than thirty years. Kass

et al. developed Active Contour Models (ACM) in 1988 [39]. Their approach uses an

energy-minimizing spline such that the snake adapts to nearby features. Deformation

restrictions are applied using simple, local shape constraints. Yuille et al. [74] and Lipson

et al. [42] proposed hand-crafted models based on geometric parts that represent image

features. The main limitation of this technique is that the models are application specific

and need to be tailored for each problem. Other approaches include Fourier based models

[64], 3D to 2D fitting projections [44] and models of vibrating clay [63].

One frequently cited approach is the Active Shape Model (ASM) proposed by Cootes and

Taylor in 1992 [15]. The framework assumes a single mode Gaussian distribution for the

training data and the shape is modeled using the Principal Component Analysis (PCA).

Then, the deformations can be modeled by restricting the eigenvectors with the largest

associated variance and discarding the remaining ones. This linear model is not capable

to describe shape deformations such as the ones found in biological microorganisms. This

limitation was already highlighted by the original authors in [12].

Attempts to overcome this limitations lead to more recent shape models. Several proposals

have been made using Mercer kernels [3] to model complex distributions in the shape input

space. Other techniques use manifold learning [56] to describe the data distribution of

the shape space learning from a training set. Boltzmann machines [23] on the other hand

are generative stochastic neural networks capable of learning complex distributions from

1



2 1.1 Objectives and document structure

a set of training data.

Sparsity of natural signals can be leveraged to keep the simplicity of linear models but

not restricting the shape distribution to any parametric distribution. Such models learn a

dictionary from a training set that serves as a non-orthogonal overcomplete frame custom

to the shape space.

1.1 Objectives and document structure

The objective of this project is to develop a dictionary based shape model capable of

modeling non-linear deformations. Additionally, it aims to determine how to learn the

appropriate dictionary from a training set, measure the model performance in additive

and non-linear noise scenarios and finally provide a framework to use the shape model for

image segmentation.

The document is structured as follows: in chapter 2 the theoretical foundations that

support the rest of the document are presented. Next, in chapter 3 the proposed solution

is introduced. In chapter 4 the performance of the developed system and its components

are tested against additive and non-linear noise. The results obtained are analyzed against

the theory presented in previous chapters. Finally, in chapter 5 the project conclusions

are summarized along with suggestions for future work.



Chapter 2

Methods

2.1 Isomap

2.1.1 Overview

The Isomap algorithm is titled by its authors in [66] as a global geometric framework

for nonlinear dimensionality reduction. The objective is to find the number of degrees

of freedom of the underlying manifold in a high dimensional problem. Mathematically,

given a d dimensional set S 2 Rd where the meaningful information structure of the data

embeds a k dimensional manifold M 2 Rk, k < d, Isomap aims to find k using a discrete,

finite subset of the original set.

The problem statement can be better understood with the following example. Consider

figure 2.1 where faces with two di↵erent pose variables and one additional azimuthal

lightning angle are plotted in a coordinate axis.

The input faces are 64⇥64 pixels brightness images described as 4096 dimensional vectors.

The horizontal and vertical axes represent the left-right and up-down poses respectively.

The vectors are plotted as points in these axes according to their current pose. A third

dimension represents the azimuthal light angle. As it may be seen, one 4096 dimensional

point can be accurately described by only three dimensions. Intuitively, this means that

the original set of faces F 2 R4096 live in an embedded lower dimensional manifold M 2
R3. Figure 2.2 shows the dimension approximation achieved by Isomap for the face pose

examples in Figure 2.1 by means of the residual variance [66].

The plot reveals that 3 (marked with an arrow) is the lowest dimensionality capable of

approximating the input face before increasing the residual variance. This coincides with

the fact that the faces in the set may vary their horizontal and vertical pose plus the

azimuthal light angle over them. Hence, a 3-dimensional point su�ces to represent a

point in the higher 4096-dimensional space.

3



4 2.1 Isomap

Figure 2.1: High 4096-dimensional input faces plotted in a lower 3-dimensional space (from

[66]

.
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Figure 2.2: Dimensionality reduction computed by Isomap [66]

2.1.2 Algorithm

The Isomap algorithm can be summarized as in Algorithm 1.

Algorithm 1 Isomap algorithm

1: Construct neighborhood graph

2: Compute shortest paths

3: Construct d-dimensional embedding
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Neighborhood graph

First, in step 1, the neighborhood graph G is constructed from a set of input samples.

The criteria to select the appropriate neighbors of each sample is described in further

sections. The link between the node and each of its neighbors is weighted based on the

euclidean distance between them.

These data points live in a lower dimensional embedded manifold and, hence, only certain

positions are valid. Consider the example of a swiss roll data set as shown in figure 2.3.

Figure 2.3: The swiss roll data set [66]

The points s
i

2 R3 belong to a 3-dimensional Euclidean space but the underlying data

structure forms a plane rolled inwards. Thus, two dimensions su�ce to locate a point in

this surface and the data is said to live in an embedded 2-dimensional manifold M 2 R2.

It is of interest to analyze the relationship between points in the manifold. Geodesics are

curves in surfaces that play a role analogous to that of straight lines in a plane. Stated in

another way, a geodesic c is the curve whose tangent vector field remains constant along

c (refer to [7] for a more detailed mathematical description). Consider the two samples

highlighted in Figure 2.3. The Euclidean distance between them (the discontinuous line)

is shorter than the geodesic distance (the continuous line). Comparing samples based

on the former might erroneously raise fake similitudes between them, while the geodesic

reveals that they are more distant apart on the surface.

Geodesic approximation

In step 2, the geodesic distance between two points in the manifold is estimated by finding

the shortest path in the graph joining the two nodes based on the link weights. Figure 2.4

shows the graph generated from the swiss roll data set.

The red line shows the geodesic approximation based on the graph’s links. Typically, this

is done using Floyd’s O(N3) algorithm [59, 31].



6 2.2 Manifold reconstruction

Figure 2.4: Graph approximating geodesics on the swiss roll [66]

Low dimensional embedding

In step 3, the geodesic distances between all the nodes in the graph are used to estimate

the d-dimensional embedding. This is done by applying multidimensional scaling, or

MDS, to the distances graph. Refer to [73] for a description of this algorithm.

Figure 2.5 shows the swiss roll graph after the embedding. The surface is e↵ectively

represented by a 2-dimensional plane. The blue line shows the actual geodesic of the

Figure 2.5: 2-dimensional embedding of the swiss roll graph [66]

manifold and the red line shows the Isomap approximation based on the given data set.

The current project makes use exclusively of the step 1 of algorithm along with all the

convergence proofs associated to it. Therefore, the further sections will describe the

neighborhood graph construction step in detail. For a description of the remaining parts

of the algorithm refer to the original publications [6, 66].

2.2 Manifold reconstruction

As described on section 2.1.2, an approximation of the manifold M 2 Rk embedded in

the Euclidean space Rd is obtained by means of a finite, discrete set of input samples
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{x
i

} ⇢ M. Let d
M

be the manifold metric induced by the natural Riemannian structure

on M (induced from the Euclidean metric on Rd) defined as:

d
M

(x, y) = inf
�

{length(�)} (2.1)

where � defines the set of curves connecting x to y in M. A good approximation of the

manifold is such that the geodesic distance estimated by the reconstruction is su�ciently

close to the one given by d
M

.

2.2.1 Approximation resemblance conditions

A graph G is defined by connecting each sample {x
i

} to its respective set of neighbors

{x
j

}. The criteria to define {x
j

} are detailed later in this document. Given such a graph,

a new metric d
G

defined as

d
G

(x, y) = min
P

{kx0 � x1k+ · · ·+ kx
p�1 � x

p

k} (2.2)

where x and y belong to {x
i

} and P = (x
o

, · · · , x
p

) varies over all the paths along the

edges of G connecting x(= x0) to y(= x
p

). The degree to which the graph metric d
G

resembles the real manifold metric d
M

is given by

(1� �1) dM (x, y)  d
G

(x, y)  (1 + �2) dM (x, y) (2.3)

where �1,�2 < 1 are positive real numbers. Given the following assumptions[6]

1. The graph G contains all edges x, y of length kx� yk  ✏
min

.

2. All edges of G have length kx� yk  ✏
max

.

3. The data set {x
i

} satisfies the �-sampling condition in M.

4. The submanifold M is geodesically convex.

then (2.3) holds for every x, y if provided [72]

1. ✏
max

< s0 where s0 is the minimum branch separation of M.

2. ✏
max

 (2/⇡) r
o

p
24�1, where r0 is the minimum radius of curvature of M.

3. �  �2✏min

/4

The variables ✏
min

, ✏
max

and � are positive real numbers. The �-sampling condition states

that for every point m in M there is a data point x
i

for which d
M

(m, x
i

)  �.

As it may be seen, the sampling process and representativity of the input set {x
i

} has a

direct influence in how well G estimates the original manifold M and can be quantified

using (2.3).
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2.2.2 Neighborhood selection

Let {x
i

} ⇢ M be the sample data set chosen randomly from a Poisson distribution with

density function ↵. For a su�ciently high density ↵ of data points, a neighborhood size

can always be chosen large enough that the graph will have a path that is considered

a good approximation of the geodesic distance d
M

, but small enough to prevent edges

that short circuit the manifold’s geometry [6, 66]. Isomap proves this statement for two

di↵erent neighborhood construction rules that may be suitable for di↵erent applications.

✏-Isomap rule

Given a data point x
i

2 M, the ✏-Isomap rule defines its neighborhood N
i

⇢ M as the set

of connections x
i

x
j

such that kx
i

� x
j

k < ✏ for a chosen positive ✏ 2 R. Mathematically

N
i

:= {x
j

: kx
i

� x
j

k < ✏, i 6= j, x
j

2 M, x
i

2 M} (2.4)

Conditions 1 and 2 of section 2.2.1 are satisfied if ✏
min

 ✏  ✏
max

. Let µ > 0 and � > 0 be

given, then the �-sampling condition is satisfied with probability at least 1� µ provided

that

↵
min

> log (V/µV
min

(�/4)) /V
min

(�/2) (2.5)

where V is the volume of M and V
min

(r) is defined to be the volume of the smallest

metric ball in M.

Finally, the inequalities in (2.3) hold with probability at least 1� µ for the ✏-Isomap rule

if additionally

↵
min

>
h

log
⇣

V/µ⌘
d

(�2✏/16)
d

⌘i

/⌘
d

(�2✏/8)
d (2.6)

where ⌘
d

is the volume of the unit ball in Rd and �1, �2 and µ are given.

K-isomap rule

Given a data point x
i

2 M, the K-Isomap rule defines its neighborhood N
i

⇢ M as the

set of the K nearest connections x
i

x
j

. The term nearest refers to the Euclidean metric.

Let �1, �2 and µ be given and ✏ > 0 be chosen such that the conditions in section 2.2.1

are met. Additionally let A = ↵
max

/↵
min

be the bounded variation of the distribution ↵.

By setting the ratio

K + 1

↵
min

=
⌘
d

(✏/2)2

2
(2.7)
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and ensuring that the following conditions are satisfied

↵
min

>
h

log
⇣

V/µ⌘
d

(�2✏/16)
d

⌘i

/⌘
d

(�2✏/8)
d (2.8)

e�(K+1)/4  µ⌘
d

(✏/4)d /4V (2.9)

(e/4)(K+1)/2  µ⌘
d

(✏/8)d /16AV (2.10)

then the inequalities in (2.3) hold with probability at least 1� µ for the K-Isomap rule.

2.3 Dictionary Learning

2.3.1 Overview

Signals can often be represented in a simpler way than the one provided by the acquisition

process. For example, when describing a pure tone, it is not necessary to enumerate all the

samples with their respective values to understand the nature underneath the signal, but

it su�ces to point out the frequency of the tone and its sampling frequency. This not only

provides a more sober description of the measurement, but outstands useful information

of the signal and makes it easier to store, transport and consume. The same principle

applies when the pure tone example is extended to a more complex signal, like the one

produced by a musical instrument. A very good approximation of the original signal can

be obtained by taking into account the most significant frequency components, and again,

without the need of the complete set of samples. This can be graphically appreciated on

figure 2.6. This is known as the sparse property of the signals.

Natural signals are said to be sparse. Sparsity is a characteristic that states that, by

using the appropriate basis vectors, signals can be described with only a few dimensions.

For the ideal pure tone example, all the frequency coe�cients are zero except for the

ones corresponding to the tone. This signal over time is dense but it’s sparse when

described in the frequency domain. For more realistic applications, the least significative

components would be set to zero and still get an accurate approximation of the original

signal. Mathematically, this can be described as:

yyy = ���aaa+ ⌘ =
m

X

k=1

a
k

�
k

+ ⌘ (2.11)

where ��� 2 Rn⇥m is known as the dictionary (the basis vectors) and aaa 2 Rm is the

vector that weights the dictionary to get the original signal yyy 2 Rn. For ��� to induce

sparsity, dictionaries larger than the dimension n of the signal are used, so when (n < m)

is true, ��� is known to be an overcomplete dictionary[40, 68, 53]. The approximation

error or residual ⌘ is raised when performing the dimensionality reduction, say setting the

coe�cients below a specified threshold to zero for aaa to be truly sparse.



10 2.3 Dictionary Learning

[Sparse representation of a pure tone by Fourier series]

[Sparse approximation of a square signal by Fourier series]

Figure 2.6: Images generated by applet in http://www.falstad.com/fourier/

Under the premise that natural signals tend to be sparse, it is desirable to find the

dictionary that best takes advantage of this property. This is the principle of parsimony

or the Occam’s razor idea: the simplest explanation to a given phenomena should be

preferred over more complex ones [4, 58].

Traditional Sparse Representations

Several well known sparse representations for dense signal analysis are widely used. For

the example in figure 2.6, the Fourier series represent the signal over time in the sparse

frequency domain. In the same way, Wavelets can serve as sparse representations for im-

ages, and Gabor filter banks can minimize the amount of information required to transmit

an audio signal. These can be though of as o↵-the-shelf generic dictionaries, which on

several occasions are su�cient to fulfill the requirements of particular applications.

Similarly, other techniques perform transformations over the data space to obtain a bet-

ter representation of the signal. For example, the Principal Component Analysis (PCA)

method performs a transformation to the signal to be represented over a new basis, in

which the direction of the maximum variance of the signal is set as a basis vector. Typi-

cally, this results on a few significant coe�cients followed by several negligible ones. The

latter can be discarded as a dimensionality reduction step, leveraging again the sparsity

characteristic of natural signals. Meanwhile, Independent Component Analysis (ICA)

provides a smarter data representation method where di↵erent sources of a signal can

be separated into a weighted vector of coe�cients based on the source level of influence.

When used with signals with small number of sources, this technique is likely to expose a

http://www.falstad.com/fourier/
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sparse representation of the original signal, where the non-zero coe�cients represent the

di↵erent sources.

There are situations, however, for which these generic methods are not enough. For

example, high bandwidth signals may not benefit from a spectrum representation or,

simply, there is another representation which models the signal in a sparser way. PCA is

limited to linear transformations, while ICA maximum dictionary size is subject to the

signal dimensionality. Natural signals often require non-linear representations with huge

amount of possible sources. In those cases, a custom dictionary is necessary.

The Dictionary Learning Goal

Some signals cannot be properly described with generic dictionaries as the ones exem-

plified in the previous section. Some applications require a higher accuracy or sparsity

than the one o↵-the-shelve dictionaries can provide. In those cases, it is desirable to find

a custom dictionary that meets the problem constraints, i.e. find a representation that

induces the sparsity property of the signal, bounded to some residual constrain. This

general optimization problem is formulated as

min
a

kaaak0 subject to yyy = ���aaa+ ⌘, k⌘k22 < ✏ (2.12)

The k · k0 operator is known as the l0 “norm”, which is not a norm in the strict mathe-

matical sense, but is treated to one as it is the limit of the l
p

norms when p tends to zero.

The l0 “norm” measures the amount of non-zero elements in a vector or, in other words,

the sparsity of the signal. This “norm” is often referred to as the cardinality operator,

symbolized by #{·} or card{·} [58].

The most common methods to solve (2.12) follow a two step algorithm: sparse coding

and dictionary update. The sparse coding step assumes a fixed dictionary and minimizes

the residual while inducing sparsity. On the other hand, the dictionary update fixates the

sparse vector aaa found on the previous step and proceeds to update the dictionary based

on di↵erent criteria. These steps are repeated until the solution is proven to converge.

2.3.2 Sparse Coding

Given a fixed dictionary, sparse coding looks for the input vector that better approximates

the measurement with the least amount of non-zero coe�cient as possible. This is known

as the bi-criterion. One first approach would be to minimize the residual subject to c non-

zero coe�cients (where c goes from 1 to n), but in general this would require to compute

all the n!/(c!(n � c)!) choices which is computationally unfeasible. [8, 22]. The rest of

this section describe di↵erent techniques designed to solve this NP-Hard minimization

problem.
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Generic Methods

The first set of algorithms solve the sparse coding iteratively by using the strict problem

definition on (2.12). They are agnostic to the problem’s nature and hence are cataloged

here as generic methods. It should be noted that the algorithms below do not induce

sparsity, so they are often used along with sparsity inducing dictionaries. One of the

most common approaches is the matching pursuit algorithm (MP). This algorithm takes

a fixed dictionary and iteratively computes the set of coe�cients that produce the largest

inner product with the current residual. This process is repeated until convergence [24,

22, 32, 48, 68]. Similar to the MP, the orthogonal matching pursuit OMP computes

inner products, but finds the orthogonal projection of the signal onto the dictionary

atoms, lending better results at a higher computational cost [54, 22, 61]. Furthermore,

the stagewise OMP (StOMP) takes a fixed number of stages where many coe�cients can

enter the model per stage, rather than only one as in the OMP. This algorithm is preferred

for large scale problems [18, 24]. These methods are greedy algorithms.

This project makes use of the OMP algorithm for the sparse coding step. A more detailed

description of the algorithm can be found in section 2.4

Convex Relaxation Methods

The minimization problem in (2.12) is a NP-hard problem. This makes it computationally

very expensive, due to the fact that the l0 “norm” is not convex [58, 62, 4, 8]. On the

contrary, the authors on [8] describe well known algorithms to solve convex optimization

problems. This is true at the point that a problem is said to be solved if it can be

expressed as a convex one. By finding a convex approximation for (2.12) a variety of

e�cient solving algorithms come into play. These algorithms have the advantage of being

sparse inducing contrary to the ones presented on the previous section, at the cost of

computational complexity.

The process of replacing a non-convex function by a convex one is known as relaxation.

In [58] it is proven how the l1 norm is the best approximation for the l0 “norm” from

a geometrical point of view. Given this, the sparsity inducing optimization problem on

(2.12) can be reformulated as (2.13).

min
a

kyyy ����aaak22 + �kaaak1 (2.13)

where � is a problem parameter that controls the tradeo↵ between the signal approxi-

mation and the induced sparsity. The problem in (2.13) is a combination of two convex

functions and hence, convex itself. This strategy is a regularization problem, where it is

sought for a ��� and a aaa that minimizes the maximum likelihood with yyy, with the least

non-zero aaa coe�cients as possible. The expression above is a well know problem which

has been widely studied and is commonly known as basis pursuit [10] or as the LASSO

problem [70].
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One common solution is to reformulate the expression on (2.13) as a standard mathemat-

ical problem, which allows a wide variety of tools to solve them. For example, (2.13) can

be expressed as a quadratic program (QP) of the form

min
a+,a�2Rn

+

kyyy ����aaa+ +���aaa�k22 + �(1>aaa+ + 1>aaa�) (2.14)

which can be easily solved using general purpose toolboxes. Similar methods are studied

by expressing the problem as linear programming (LP), second order cone programming

(SOCP), semidefinite programming (SDP), among others. See [4, 8] for a detailed expla-

nation and further examples.

Taking advantage of the convex relaxation, algorithms like FOCUSS (FOcal Underde-

termined System Solver) [40, 27] iteratively solve the problem based on weighted norm

minimization, with weights being dependent of the preceding iterative solutions. Another

class of algorithms named ISTA and FISTA ([Fast] Iterative Shrinkage-Thresholding Al-

gorithms) [29, 5], from the family of proximal forward-backward iterative scheme, present

solutions that are known to have a non-asymptotical convergence rate in the order of

O(1/k) and O(1/k2) for the sequence {x
k

}, where k is the iteration counter. Similarly,

the LARS (Least Angle Regression)[19] and the StLARS (Stepwise LARS)[24] are algo-

rithms whose computational performance are very close to that of the greedy methods

but with the advantage of inducing sparsity.

As in many other optimization problems, steepest descent techniques can provide a so-

lution. For convex problems where the subgradient of the objective function can be

computed e�ciently (as the LASSO problem is), Subgradient Descent (SD) [47, 4, 8]

may be used. In a similar way, Coordinate Descent (CD) [57, 29, 25] provides a solution

method where the objective function is optimized with respect to one variable at a time.

These methods provide slow convergence solutions which do not induce sparsity and with

inferior performances than the other algorithms presented in this section.

The authors on [4] present a quantitative comparison between several of the di↵erent

optimization algorithms above by presenting speed benchmarks.

2.3.3 Dictionary Update

Dictionary update is the second part of the two step dictionary learning process. During

this passage, the vector aaa is kept constant and the dictionary��� is updated based on criteria

like residual minimization, sparsity induction or maximum likelihood, among others.

Probabilistic Methods

The origins of dictionary learning can be found on one of the first algorithms developed

on the field: Sparse Coding [53]. This title should not be confused with the previous

section, which has the same name. In that work, Olshausen and Fieldt proposed that the
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visual area V1 in the human cortex follows a sparse coding model. Their approach was a

statistical one, where the overcomplete dictionary �⇤�⇤�⇤ is trained such that

�⇤�⇤�⇤ = argmin
���

[logP (yyy|���)]

= argmin
���



log

Z

a

P (yyy|aaa,���)P (aaa)da

�

(2.15)

The integral on (2.15) is di�cult to compute for highly dimensional aaa. To overcome that,

the authors work under two assumptions where [68, 53]:

• P (aaa) is a product of Laplacian distributions for each coe�cient.

• The noise ⌘ is modeled as normal zero mean noise.

Under these assumptions, (2.15) can be approximated as

argmin
�,a

kyyy ����aaak22 + �kaaak1 (2.16)

The result in (2.16) resembles accurately the expression in (2.13). Thus, it is not surprising

that the same methods described in section 2.3.2 serve as a solution for the dictionary

update step. Many enhancements have been made to the common algorithms in section

2.3.2, enhancements which may be applied to the sparse coding step as well. For example,

the Method of Optimal Directions (MOD) [21, 68] and the the Maximum a Posteriori

(MAP)[40, 68] are some of the extended methods for the ones presented on 2.3.2.

Clustering Methods

Clustering methods are mainly based on the K-means algorithm [37, 60]. The most

common method, which serves as base for clustering variations, is called the K-SVD

[1, 61, 68, 24].

In the original work [2], the authors propose the optimization problem as

min
�,a

kyyy ����aaak2
F

subject to 8i, ka
i

k0  T0 (2.17)

which resembles (2.12).

The algorithm then, can be performed as a two staged process. First, the sparse coding

stage is performed by means of any pursuit method, like the ones presented on section

2.3.2. Next, for the dictionary update (or codebook update) stage, the coe�cients in aaa

are grouped to the nearest atom �
i

, usually using the Euclidean l2 distance. Then, the

dictionary is updated by performing the SVD decomposition, e↵ectively minimizing the

residual. Therefore, the name of the algorithm is due to the SVD decomposition of the

K columns of the dictionary and the resemblance with the K-means method.
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Numerous variations of the K-SVD have raised with several enhancements to the original

algorithm. For example, Qiang Zhang and Baoxin Li on [75] propose the DK-SVD, or

Discriminative K-SVD which extends the original technique by incorporating the clas-

sification error into the objective function. This increases the method representational

power as well as its classifying performance.

Similarly, Boris Mailhé et al. in [46] propose a shift invariant dictionary learning as an

extension of the regular K-SVD algorithm. Shift invariant dictionaries are helpful for long

signals where the same pattern appears in several parts of the signal. Rubinstein et al. in

[61] propose the Analysis K-SVD, which uses an analysis operator (see [33]) known as the

analysis dictionary, instead of the regular synthetic dictionary. Other approaches include

the Kernel Dictionary Learning [51] which proposes an extension of the K-SVD and the

MOD method to be non-linear. This proves to present improved performance specially

when data is in presence of noise.

Other authors classify specific K-SVD implementations by the algorithms used to perform

the internal sparse coding updates. For example, the StOMP-ASVD is a variation of the

original K-SVD algorithm that performs the sparse coding by means of the stagewise

OMP, and the approximate SVD (ASVD) is used instead of regular algorithm. Similarly

the LARS-ASVD uses a combination of the LARS method along with the ASVD[24].

This project makes use of the K-SVD dictionary learning method for the dictionary update

step. Refer to section 2.5 for a detailed description of the algorithm.

Alternative Dictionary Learning

Besides the classic, and now, widely spread dictionary learning methods presented on

the previous sections, novel approaches have been developed in the past years. These

techniques, although based on the common dictionary learning basis, leverages di↵erent

mathematical techniques to produce highly tailored dictionaries. The current section

present some examples of novel dictionary learning algorithms.

Non-Negative Matrix Factorization (NNMF) is another data-adaptive representation al-

gorithm as PCA, ICA and Dictionary Learning are. In its most generic form, NNMF is

postulated as

XdN = W drHrN + E (2.18)

There are several important characteristics that can be derived from (2.18). The first

of them, is that NNMF produces a sparse representation. Another important property

of this method is that it does not consider inherent domain knowledge embedded in the

data. This is considered to be a weakness in applications such as classification, where the

prior knowledge of labels is desirable [16].

Novel algorithms have combined NNMF with Dictionary Learning to obtain the named

Non-negative Sparse Coding (NNSC) [16, 35, 20, 41]. These methods, work by minimizing
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(2.13) with the di↵erence that the dictionary and the sparse vector are updated with:

aaat+1 = aaat. ⇤ (���Txxx)./(���T���aaat + �) (2.19)

���0 = ���t � µ(���taaa� xxx)aaaT (2.20)

Other novel approaches try to combine the sparse coding and dictionary update into one

joint stage. For example, Rakotomamonjy in [57] propose the one-step block-coordinate

proximal gradient descent algorithm to perform joint dictionary learning. The proposed

method is proven to be faster than some of the most popular methods (e.g. K-SVD).

Other academic work, mainly for image classification, attempt to include spatial locality

information in the dictionary learning process. In [71], the author retrieve this information

by the Scale-Invariant Features Transform (SIFT)[45]. For the sparse coding stage FISTA

is implemented, followed by a customized version of the dictionary update. The latter

updates the dictionary atoms by taking into account spatial locality information. A

similar approach was taken by Oliveira, G.L. et al. in [52]. Rather than taking SIFT

analytics into account in the dictionary update step, the authors combine a sparse coding

dictionary learning, a spatial constraint coding stage and an online classification method

to improve object recognition in a novel method called Sparse Spatial Coding (SSC). Both

methods prove that by including spatial information in the dictionary learning process,

more stable sparse vectors are obtained. On the downside, the performance of these

algorithms is inferior than other supervised learning methods.

2.4 Orthogonal matching pursuit

Orthogonal Matching Pursuit, or OMP, is a recursive algorithm to compute representa-

tions of functions with respect to non-orthogonal and possibly overcomplete dictionaries

[55]. Pati, Rezaiifar and Krishnaprasad (1993) formulated it originally as a solution for

wavelet decomposition, but today is one of the most popular methods for sparse coding

in dictionary learning applications for its proven rapid convergence and simple implemen-

tation.

2.4.1 Matching Pursuit

OMP is an extension of Zhang and Mallat’s Matching Pursuit (MP)[49]. Given a dictio-

nary � 2 Rn⇥p in a Hilbert space H, then

� = {x
i

} (2.21)

V = Span{x
n

} (2.22)

W = V

? (2.23)
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where Span is an operator that returns the space spanned by a the given set of vectors

and x

i

are the atoms of the dictionary assumed to be normalized (kx
n

k = 1). MP finds

the orthogonal projection P
V

f of f onto V of the form

P
V

f =
X

n

a
n

x

n

(2.24)

Each iteration k can be expressed in a recursive way as

f =
k

X

i=1

a
i

x

n

i

+R

k

f

= f

k

+R

k

f

where f

k

and R

k

f are the k-th approximation and residual (error) respectively.

The MP algorithm is formulated as

Algorithm 2 MP algorithm

1: Set

R0f = f

f0 = 0

k = 1

2: Compute inner products

{hR
k

f ,x
n

i}
n

3: Find n
k+1 such that

�

�

⌦

R

k

f ,x
n

k+1

↵

�

� � ↵ sup
j

|hR
k

f ,x
j

i|

where 0 < ↵  1

4: Update

f

k+1 = f

k

+
⌦

R

k

f ,x
n

k+1

↵

x

x

k+1

R

k+1f = R

k

f � ⌦

R

k

f ,x
n

k+1

↵

x

x

k+1

5: Increment k and repeat 2-5 until some convergence criterion has been satisfied.

The MP algorithm is proven to converge asymptotically after a finite number N of

iterations[36]. Thus, we have

f

N

=
N�1
X

k=0

⌦

R

k

f ,x
n

k+1

↵

x

n

k+1
(2.25)
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The approximation after each iteration is sub-optimal and, hence, a same atom x

i

may

be selected multiple times.

2.4.2 Orthogonal Matching Pursuit

The OMP extends the original MP to update the model so that with each iteration the

residual is orthogonal to the current projection. This is

f =
k

X

n=1

ak
n

x

n

+R

k

f , with hR
k

f ,x
n

i = 0 (2.26)

for n = 1, · · · , k. The k superscript in ak
n

show the dependence of these coe�cients on

the model order. The algorithm is modified as

Algorithm 3 OMP algorithm

1: Set

R0f = f

f0 = 0

c0 = ;
k = 1

2: Compute inner products

{hR
k

f ,x
n

i}
n

3: Find n
k+1 such that

�

�

⌦

R

k

f ,x
n

k+1

↵

�

� � ↵ sup
j

|hR
k

f ,x
j

i|

where 0 < ↵  1. Update c

k+1 = n
k+1 [ c

k

4: Compute the orthogonal projection matrix onto �(c
k+1)

P�(ck+1) = �(c
k+1)(�(c

k+1)
T�(c

k+1))
�1�(c

k+1)
T

5: Update

f

k+1 = P�(ck+1)f

R

k+1f = (I � P�(ck+1))f

6: Increment k and repeat 2-5 until some convergence criterion has been satisfied.

By updating {a
i

} so that the residual is orthogonal to the current approximation, the

OMP is proven to converge at most at n iterations, where n is the amount of atoms in

the dictionary � [9].
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2.4.3 OMP for sparse signal recovery

Recovery of sparse signals corrupted by noise is a fundamental problem in signal process-

ing. This problem can be stated as

y = �a+ ✏ (2.27)

where y 2 Rn is the corrupted signal, � 2 Rn⇥p is the dictionary, a 2 Rp is the possibly

sparse weighting vector and ✏ is the noise component.

It has been proven by Tropp in [69] that, in the noiseless case, the Mutual Incoherence

Property (MIP) is a su�cient condition for recovering a sparse a exactly. Let µ be the

mutual incoherence

µ = max
i 6=j

|h�
i

,�
j

i| (2.28)

then, the MIP is defined as

µ <
1

2k � 1
(2.29)

where k is the l0-norm of a in (2.27).

This condition was extended in [9] for the case in which noise is present so that the exact

a may be recovered if additional constraints are fulfilled. Three di↵erent noise models

were considered. The further sections summarize the results obtained for each of them.

For all the cases, k is the l0-norm of a, r
i

is the OMP residual at the current iteration

and µ is the mutual incoherence defined in (2.28). For the proof of all the conditions

described and additional mathematical details refer to [9].

l2 bounded noise

The l2 bounded noise is such that

k✏k < b2 (2.30)

Assume (2.29) and (2.30) are true, then a can be exactly recovered if the stopping con-

dition is set so that

kr
i

k < b2 (2.31)

and all the non-zero coe�cients of a satisfy

|a
i

| � 2b2
1� (2k � 1)µ

(2.32)
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In many applications it is common to recover only the components of a that have sig-

nificant magnitude and discard the ones with small values. The later can be achieved

by OMP by setting the following stopping rule and non-zero a
i

coe�cient constraints

respectively

kr
i

k 
 

1 +
(1 + (k � 1)µ)2

p
k

1� (2k � 1)µ

!

b2 (2.33)

|a
i

| �
 

(1 + (k � 1)µ)2
p
k

(1� (k � 1)µ)(1� (2k � 1)µ)
+

2

1� (k � 1)µ

!

b2 (2.34)

l1 bounded noise

The l1 bounded noise is such that

k�T

✏k1  b1 (2.35)

Assume (2.29) and (2.30) are true, then a can be exactly recovered if the stopping con-

dition and non-zero a
i

coe�cient constraints are

k�T r
i

k1  b1 (2.36)

|a
i

| � 2b1
1� (2k � 1)µ

 

1 +

p
k

p

1� (k � 1)µ

!

(2.37)

Again, to have OMP recovering the significant coe�cients only, (2.36) and (2.37) are

modified such that

k�T r
i

k1 
 

1 +
2
p
k(1 + (k � 1))µ

1� (2k � 1)µ

!

Cb1 (2.38)

with C = 1 +

p
k

p

1� (k � 1)µ

|a
i

| �
✓

6k

1� (2k � 1)µ
+ 4

p
k

◆

(1 +
p
2k)b1 (2.39)

Gaussian Noise

Results in the previous sections hold for the case of the Gaussian noise since it is essentially

bounded. Let a noise vector follow a Gaussian distribution

✏ ⇠ N(0, �2, I
n

) (2.40)
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then two bounds can be defined as

B2 =

⇢

✏ : k✏k  �
q

n+ 2
p

n log n

�

(2.41)

B1(⌘) =
n

✏ : k�T

✏k1  �
p

2(1 + ⌘) log p
o

This project makes use specifically of the B2 bounding. Then, the Gaussian error ✏ ⇠
N(0, �2, I

n

) satisfies

P (✏ 2 B2) � 1� 1

n
(2.42)

Assuming (2.29) and (2.30) true, the stopping condition and non-zero a
i

coe�cient con-

traint

|a
i

| � 2�
p

n+ 2
p
n log n

1� (2k � 1)µ
(2.43)

kr
i

k2  �
q

n+ 2
p

n log n (2.44)

ensure OMP will recover a with probability at least 1� 1/n

To recover only the most significant a
i

coe�cients (2.43) is modified as

|a
i

| �
✓

6k

1� (2k � 1)µ
+ 4

p
k

◆

(1 +
p
2k)

p

2(1 + ⌘) log p (2.45)

so that the latter holds with probability at least 1� p⌘
p
2 log p.

2.5 K-SVD

K-SVD is a dictionary learning algorithm developed by Aharon et al. in [2]. It is consid-

ered a generalization of the well-known K-means[38] as it implements iterative clustering

to define the atoms of a dictionary.

2.5.1 Overview

Let � 2 Rn⇥k be an overcomplete dictionary (n < k) such that

y ⇡ �x
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satisfying

ky ��xk  ✏

where y 2 Rn is the target signal and x 2 Rk is a sparse vector that represents y as a

linear combination of the atoms �
i

of the dictionary.

In the extreme sparse case, the target is represented by the closest atom, say

min
�,X

�kY ��Xk2
F

 

subject to 8i,x
i

= e

k

for some k (2.46)

where e is a vector taken from the trivial basis X = {x
i

} and Y = {y
i

}. This problem is

known as vector quantization (VQ)1[28]. K-means is known to be the preferred method

to find the atoms in the VQ dictionary. Intuitively this makes sense since the algorithm

finds k centroids (atoms) that best represent each target.

The expression in (2.46) may be written as

min
�,X

�kY ��Xk2
F

 

subject to 8i, kx
i

k0  T0 (2.47)

where kx
i

k = 1 and T0 = 1.

It is of interest to drop the T0 condition such that more than one atom are used to

approximate the target. Thus, the K-means algorithm needs to be generalized for this

scenario. K-SVD provides such generalization to the point that when T0 = 1, K-means

is performed.

2.5.2 Algorithm

The problem in (2.47) can be decomposed as

kY ��Xk2
F

=

�

�

�

�

�

 

Y �
X

j 6=k

�
j

x

j

T

!

��
k

x

k

T

�

�

�

�

�

2

F

= kE
k

��
k

x

k

T

k2
F

(2.48)

where E

k

is the error for all the N examples when the k-th atom is removed, �
k

is the

k-th atom and x

k

T

is the k-th row in X. Intuitively, this row stands for the coe�cients

in X that use the k-th atom. Additionally, a sparse inducing step is added. Let w
k

be

the set of indices pointing to examples {y
i

} that use the atom �
k

1The original VQ problem formulation may di↵er from (2.46), but the intrinsic problem remains the

same
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w
k

= i : 1  i  k,xk

T

(i) 6= 0

then define !

k

as the matrix of size n ⇥ |w
k

| with ones on the (w
k

(i), i)-th entries and

zeros elsewhere. Now

x

k

R

= x

k

T

!

k

E

R

k

= E

k

!

k

are the versions of x
k

and E

k

containing only the non-zero coe�cients. Finally SVD[65]

can provide a direct solution to minimize kER

k

��
k

x

k

R

k as ER

k

= U�v

T such that

�̃
k

= U1 where U1 is the first column of U (2.49)

x

k

R

= �1,1V1 where V1 is the first column of V (2.50)

The algorithm can be summarized as shown in Algorithm 4.

Algorithm 4 K-SVD algorithm

1: Initialize

�(0) 2 Rn⇥k

J = 1

Sparse Coding :

2: Use any pursuit algorithm to solve

i = 1, 2, · · · , N min
x

i

{ky
i

��x

i

k22} subject to kx
i

k0  T0

Dictionary Update:

3: for all column k = 1, 2, · · · , K in �(J�1) do

4: Compute the overall error matrix E

k

E

k

= Y �
X

j 6=k

�
j

x

j

T

5: Apply SVD to the reduced E

R

k

and mxk

R

and update

�̃
k

= U1

x

k

R

= �1,1V1

6: J = J + 1

7: end for
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Chapter 3

Active Dictionary Models

3.1 Landmark Shape Representations

An object in a two dimensional image can be described by the boundaries and/or sig-

nificant internal locations of the object of interest. A su�ciently good approximation

is achieved by selecting a set of connected points lying on these boundaries. Thus, a

fixed amount k of landmarks are placed homogeneously around the outline as shown in

figure 3.1.

Figure 3.1: Landmark shape representation for a nematode

25
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These k landmarks l
i

2 R2, i = 1, · · · , k can be combined into a vector v 2 Rd such that

v = [x0, y0, x1, y1, · · · , xk�1, yk�1]
T (3.1)

with dimensionality d = 2k. This vector will be referred to from now on as the shape of

the object.

The shapes are, hence, points in Rd. When equipped with the l2-norm, the algebraic

structure hR, k · ki is a Banach space, which implies a topological space with the topology

spanned by the norm. Finally, it will be assumed that on the neighborhood of each point

the ' isomorphism

' : Rd ! Rd

is valid for the identity function and that the space is locally Euclidean. Thus, the shapes

belong to the manifold of the vectors v 2 Rd of all valid shapes.

Geometrically, noise can be considered as deviations of the sample from this manifold.

By restricting shapes to the manifold it can be ensured that only valid deformations are

allowed. Dictionary learning provides a mean of representing the manifold’s complex

geometry by learning a custom frame.

3.2 Dictionary Models

The denoising and generative capacities of dictionary learning, described in section 2.3,

are used to generate a model capable of reconstructing an object’s shape from an initial

noisy image.

3.2.1 Training the Dictionary

Let M 2 Rd be the manifold of the valid vermiform shapes as described in section 3.1,

and let T ⇢ M be a training set which is assumed to be su�ciently representative of the

manifold varieties. The KSVD algorithm described in section 2.5 is used altogether with

the OMP described in section 2.4 to learn the appropriate dictionary � 2 Rd⇥k such that

y = �x

for every y 2 M.

The dimensions of the dictionary are chosen such that the dictionary is overcomplete,

meaning that

k > d

which induces sparsity in the weighting vector w 2 Rk.

It should be noted that the atoms �

i

2 Rd do not necessarily live in the manifold M.

Similarly, not all the linear combinations of the atoms generate a valid vermiform shape.
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However, the it can be shown [55] that for

M = max
↵

i

2�\�(T )

�k(�(T )T�(T ))�1�(T )T↵
i

k1
 

(3.2)

T = {i : ↵
i

6= 0} (3.3)

the condition

M < 1 (3.4)

is called the Exact Recovery Condition or ERC and it is a su�cient condition for the

recovery of signals in the noiseless case.

3.2.2 Sparse Modeling

Let � 2 Rd⇥k be a dictionary learned by the methods described in the previous section.

The minimization problem

min
x

{ky ��xk2 + kxk0}
now aims to find the vector x 2 Rk that weights the atoms in the dictionary such that the

distance between the approximation and the target y 2 Rd is minimized while sparsity is

induced. Both the target and the approximation are shapes as described in section 3.1.

The dictionary is used as a model to recover a valid shape from a noisy measurement.

Therefore the approximation distance must not be minimized to the point where the noise

component is modeled, but just enough to restore the underlying shape. To solve this

problem, the OMP algorithm is used. Section 2.4 introduced the fact that OMP can

recover the exact original signal if certain conditions are fulfilled. Generally speaking,

given the mutual incoherence

µ = max
i 6=j

{h�
i

· �
j

i}

OMP will recover the target image as long as

µ <
1

2n� 1

where n is the l0 norm of x. It is observed that the dictionary � was previously trained

and hence the previous inequality may be rewritten as

n <
1

2µ
+

1

2
(3.5)

Since n represents the amount of non-zero elements in x, it must be true that n 2 N.
Furthermore, since sparsity is kept as a priority, n is chosen to be the smallest integer for

which (3.5) is true:
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n =

⇠

1

2µ
+

1

2

⇡

(3.6)

This is proven to be true for noiseless scenarios [55, 9]. When noise components are added

to the signal to be recovered, additional criteria is to be taken into account for di↵erent

kinds of models as described in sections 2.4.3 and 2.4.3 for bounded noise and 2.4.3 for

Gaussian noise. These additional conditions may be fulfilled if the training set is chosen

to be representative enough.

The OMP algorithm is proven to converge in scenarios where bounded or Gaussian noise

is added to the signal. For non-Gaussian and highly non-linear noise, additional post

processing is required. The following section describes the proposed approach.

3.3 Geodesic Projection

The geodesic projection algorithm, or simply GP, aims to find the projection of a sample

onto a manifold by using a random, discrete subset of the later and interpolating using

approximate geodesics. To illustrate GP, a 1-dimensional manifold embedded in R3 will

be used as an example. Figure 3.2 shows such manifold as the green samples, and the

signal to project as the red mark.

Figure 3.2: 1-dimensional manifold embedded in R3

Let M 2 Rd be the manifold of all the valid shapes as described in section 3.1. Given

a su�ciently dense training set T , a good approximation of the underlying manifold can
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be reconstructed. Knowing that

T ✓ M
the graph G is constructed by following the Isomap k-rule described in section 2.2.2. The

graph constant is chosen such that k = d. Therefore, each graph node is connected to its

nearest d samples in T . If the � criterion is fulfilled, the edges connecting the nodes are

considered as a su�ciently good approximation of the manifold geodesics. From now on,

this condition will be assumed true and without loss of generality the graph edges and

the manifold geodesics will be referred to as equivalents. Figure 3.3 shows the graph for

the example manifold.

Figure 3.3: k-rule graph of the example manifold

Given a sample s 2 Rd, the origin o

s

2 T is defined as

o

s

= argmin
t2T

{s� t} (3.7)

and G
o

⇢ G is the set of nodes of G connected to o

s

by the k-rule. A new base set is

then defined as

S 0
B

o

:= {g � o

s

: g 2 G
o

} (3.8)

S
B

o

:=

⇢

b

kbk : b 2 S 0
B

o

�

(3.9)

The elements in S 0
B0

are vectors whose lengths are equal to the geodesic distance of the

respective samples in G
o

from the origin. The elements in S
B0 span a base B

o

2 Rd⇥d

conveniently defined in matrix form as
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B

o

= [b0 b1 · · · b
d

] (3.10)

where b

n

2 S
B

o

are column vectors. The square matrix B

o

is the normalized base from

the view point of the origin o

s

. An equivalent matrix is generated from the elements in

b0
i

2 S 0
B0

B

0
o

= [b00 b
0
1 · · · b0

d

] (3.11)

Assuming that B0 is non-singular, any sample s 2 Rd is expressed as a linear combination

of the former, given as

s

o

= s� o (3.12)

projM s

o

= B

o

w (3.13)

w = (BT

o

B

o

)�1
B

T

o

s0 (3.14)

It is necessary to limit this generation capacity to samples in M. If the dimensionality of

the embedded manifold m  d were known, intuition suggests to set the graph variable

to k = m and express s using the dimensional reduced base. However, since the manifold

is being approximated by the training set, measurement noise in the samples could span

additional dimensions and likely lead to the whole Rd being spanned due the this erroneous

assumption.

To overcome this situation, B0
o

can be thought of as a hypertriangle in G. The manifold

projection of s onto B

0
0 can then be approximated by truncating the projection to the

interior of this hypertriangle.

3.3.1 Barycentric Matching Pursuit

Barycentric matching pursuit, or simply BMP, is a modification to the classical MP where

the projection of the sample to represent is confined to the interior of a hypertriangle. Its

name is derived from the Barycentric coordinates, where a point location is expressed in

terms of the sides of a triangle. Thus, given a hypertriangle t 2 Rd⇥d+1, each vertex is

expressed as a point t
i

2 Rd. Then a point p 2 Rd is expressed in terms of the triangle as

p = ↵0t0 + ↵1t1 + · · ·+ ↵
d

t

d

+ ↵
d+1td+1 (3.15)

subject to

1 = ↵0 + ↵1 + · · ·+ ↵
d

+ ↵
d+1 (3.16)

Furthermore, the point is in the interior of the hypertriangle if

0 < ↵0,↵1, · · · ,↵d

,↵
d+1 < 1 (3.17)



3 Active Dictionary Models 31

If one vertex is used as the origin one dimension can be respectively dropped. Using

(3.15), (3.16) and (3.17), BMP is expressed as the minimization problem

min
x

ky ��xk subject to

↵0 + ↵1 + · · ·+ ↵
d

 1

0 < ↵0,↵1, · · · ,↵d

< 1

The algorithm is similar to the MP but restricting the projections to the inside of the

hypertriangle. Note that in BMP, the dictionary must not be normalized so the edges

reflect the actual hypertriangle side lengths. The BMP algorithm goes as

Algorithm 5 Barycentric Matching Pursuit

1: Set

R

k

= f

y = 0

k = 1

2: Compute inner products

{hR
k

f ,�
n

i}
n

3: Find n
k+1 such that

�

�

⌦

R

k

,�
n

k+1

↵

�

� � ↵ sup
j

|hR
k

,�
j

i|

where 0 < ↵  1

4: Truncate so that 0  ⌦

R

k

,�
n

k+1

↵  1

5: Update

y

k+1 = y

k

+
⌦

R

k

,�
n

k+1

↵

�

x

k+1

6:7: Confine to hypertriangle

y

k+1 = y

k+1/kyk+1k1
8: Update the residual

R

k+1 = R

k

� y

k+1

9: Increment k and repeat 2-5 until some convergence criterion has been satisfied.

Figure 3.4 shows the result of the BMP algorithm. The black mark is the projection of

the green mark confined to the hypertriangle. Without the confinement, the whole R3

space could be spanned by the axes due to the intrinsic noise in the samples and the

resulting mark would not lie in the manifold.

Finally, the resulting projection is shown in Figure 3.5.
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Figure 3.4: BMP for the example 1-dimensional manifold example

Figure 3.5: Geodesic projection for the 1-dimensional example

3.3.2 Active Dictionary Models

ADM, or Active Dictionary Models, is an iterative algorithm for image level segmentation.

It is specially useful where non-linear signals with non-linear variations are to be identified.

It is also useful for scenarios where Gaussian and other non-linear noise components

are present. This may include measurement noise, overlaps with other objects and self-
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occlusions.

The algorithm uses dictionary models (see section 3.2) and geodesic projections (see sec-

tion 3.3) to iteratively detect an object of interest in a noisy environment. There is no

point of reference to compute an error with each iteration and, hence, the convergence

of the algorithm must not depend on such. Being so, the algorithm is assumed converge

when

ky
i

� y

i�1k < ✏ (3.18)

where y

n

is the approximation achieved on the n-th iteration and ✏ is the stop condition

that is selected according to the needs of the application. Intuitively, this means that

ADM has converged when the modeled image of the current iterations varied by less than

✏ with respect to the model of the previous iteration. The shapes are described in a

landmark shape representation described in section 3.1.

The proposed algorithm is summarized in Fig. 6

Algorithm 6 Active Dictionary Models

1: Learn � using KSVD and OMP (section 3.2.1)

2: Set y0 = 1, i = 1

3: Provide an image-level approximation based on y0

4: Minimize min
x

{ky ��xk2 + kxk0} using OMP (section 3.2.2)

5: Set y
i

= �x

6: Project to the manifold using GP (section 3.3)

7: if ky
i

� y

i�1k2 < ✏ then

8: Exit

9: else

10: Repeat starting from 3

11: end if

The image-level approximation in Fig. 6 is a rough estimate of the target signal based on

the previous ADM iteration output. It typically uses local image features such as borders

to move the current landmarks to a more appropriate location. This new locations will

then be restricted by ADM to represent valid deformations. This process is repeated until

convergence.

Dictionary Models are used before Geodesic Projection. The former performs denoising

in a shape-aware manner, while GP restricts the output shape to the manifold. According

to the di↵erent application requirements, these steps may be independently removed or

interchanged thanks to the modular design of the framework. Similarly, ADM does not re-

strict the image-level approximation since this step is completely application-dependent.

The quality of this approximation has a direct impact in the convergence of the algo-

rithm. The naming convention in Table 3.1 is assumed in this document for the di↵erent

algorithm variations.
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Table 3.1: Naming conventions for ADM variations

Name Description

ADM-DM Active Dictionary Models using Dictionary Models only

ADM-GP Active Dictionary Models using Geodesic Projections only

ADM Active Dictionary Models with both DM and GP



Chapter 4

Results and Analysis

In this chapter the results of the tests performed to the framework are presented. First, the

data set used on the tests is presented. Next, Dictionary Models and Geodesic Projections

are independently evaluated. Finally, the full iterative algorithm is tested in its di↵erent

variants.

4.1 Data Set

To test the proposed solution a set of manually segmented data is used. As described in

chapter 1, biological microorganisms such as nematodes present non-linear deformations

that the proposed method can model. Throughout the experiments presented in this

chapter a set of 500 manually segmented nematodes is used. The samples contain 40

landmarks in 2 dimensions each, giving y 2 R80. Furthermore the landmarks are rotated

such that the head and tail of every nematode correspond to the 0-th and 20-th point

respectively. Figure 4.1 show some shape examples from the nematode data set.

Figure 4.1: Example nematode samples

Additionally, the solution is tested by adding artificial l2 bounded Gaussian noise as

described in section 2.4.3. Figure 4.2 shows a set of noise samples ✏ 2 Rn obtained from

a normal distribution N (0, I
n

�). The used model parameters produce large distortions,

which intend to model the common errors on real applications while fitting the shape to

the image information.

It can be seen that for n = 80 and � = 0.1 the l2 bound in (2.41) is b2 = 0.10837. In

Figure 4.2, 99.4% (3 out of 500) of the samples exceed the bound. This is congruent with

35
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Figure 4.2: l2 bounded noise with � = 0.01

(2.42) in which the bound holds with probability 99.875%.

4.2 Dictionary Models

The following section tests the performance of the dictionary models described in sec-

tion 3.2 using a dictionary � learned using K-SVD as described in section 2.5.

First, the target signals y and a fixed l2 bounded error ✏2 are chosen to generate noisy

signals y

n

= y + ✏2. Using OMP, y and y

n

are recovered in the form of y = �x and

y

n

= �x

n

respectively. Figure 4.3 shows the average approximation error for di↵erent

values of sparsity for a validation set of 50 shapes. The recovery of the noisy and noise-free

inputs are shown in the blue and green curves respectively.

The error decreases until a turning point at 13 non-zero coe�cients. At this point, the

noise starts being modeled by the dictionary. On the other hand, the recovery error in

the noise-free signal (green curve) continues decreasing asymptotically to convergence.

Figure 4.4 shows a qualitative evaluation for a noisy x

n

and noise-free x reconstruction

using di↵erent amount of non-zero coe�cients.

Note that using one non-zero coe�cient for both noisy and noise-free data, the same initial

atom is selected. At 13 non-zero coe�cients both cases provide a good approximation of

the target shape. Finally, at 80 non-zero coe�cients the noisy approximation has modeled
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Figure 4.3: Average Error vs kxk0 for noise-free and noisy input signals
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k✏k2 = 5.657e� 07

Figure 4.4: Nematode reconstructions for di↵erent kxk0 values and � = 0.01



38 4.2 Dictionary Models

the shape including the additive noise while the noise-free approximation decreased the

error even more.

Next, the amount of non-zero coe�cients is kept fixed and the magnitude of the additive

noise is increased. Figure 4.5 shows the average approximation error against an increasing

� for a fixed kx
n

k = 10. Similarly, a validation set of 50 shapes is used.

It shows that in this case the approximation error is directly proportional to the additive

noise. Alternatively, if the noise bound remains fixed, the approximation error is expected

to remain within a constant range as well. Figure 4.6 shows a qualitative evaluation of a

single nematode modeled for di↵erent values of �.

Knowing that the model can approximate an input shape with bounded additive noise

using a sparse vector, it is interesting to plot the sparsity of the best approximation for

di↵erent �. Figure 4.7 plots the model reconstruction capacity for di↵erent noise magni-

tudes for a validation data set of 50 shapes. It shows that as the bounded noise increases,

the best possible approximation is given by vectors with lower amount of non-zero co-

e�cients each time, in an attempt to avoid modeling the interference. Accordingly, the

approximation error increases until it stabilizes around 0.2 even though the noise bound

continues to increase. Similarly, the l0 norm stabilizes between 1 and 2 approximately.

This specific error limit is directly related to the variability and representativeness of the

atoms in the dictionary. In other words, the nearest cluster centroid computed by K-SVD

is distanced 0.2 (Euclidean metric) from that specific sample.

Finally, the dictionary model is tested under highly non-linear noise conditions. This is

done by overlapping two nematodes. Figure 4.8 shows an example for di↵erent amount

of non-zero coe�cients.

It can be noted that for the cases in which more than one atom is used, the model attempts

to represent the non-linearities producing invalid shapes.

Table 4.1 summarizes the results of the dictionary models for the noise-free, bounded

normal and non-linear noise conditions. A set of 50 validation nematodes was used and

the condition k✏k2 < 3⇥ 10�3 was chosen as the recovery condition. Again, � = 0.01 was

chosen for the Gaussian noise and nematode overlaps for the non-linear noise.

Table 4.1: Summary of the dictionary models under di↵erent noise conditions

Condition Success (%)

Noise free 100

Bounded noise 100

Non-linear noise 0

The dictionary model was able to represent the whole validation set appropriately in

the noise-free and the additive bounded noise conditions. However, when non-linear

interference is present, as in the case of the overlaps, the model is not able to recover any

shape in the set and returned invalid shapes.
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4.3 Geodesic Projections

The data set is now used to test the geodesic projection algorithm. As a starting point,

di↵erent levels of l2 bounded noise are applied to the input shapes. Figure 4.9 plots the

average approximation error against di↵erent noise magnitudes for a validation set of 50

shapes.

The blue curve reveals that even though the output shapes are valid nematodes, the

distance from the original nematode increases along with the noise bound. Similar to the

dictionary models in the previous section, as � increases the error oscillates around 0.2.

This is due to the manifold’s variability and representativeness, where similar samples

are projected onto the manifold within a sphere of radius 0.2. More dense manifolds may

lead to reduced errors at the risk of short-circuiting the manifold curvatures. Refer to

section 2.1 for more details.

Figure 4.10 shows a qualitative evaluation of the projected output for di↵erent noise

bounds. It shows that regardless of the noise level the output shape is a valid nematode.

Stated di↵erently, the projected sample always belongs to the manifold.

Finally Figure 4.11 shows a qualitative evaluation for three pairs of overlapping nematodes

It shows that even though the approximation does not resemble neither of the overlapping

nematodes, it is a valid shape. In other words, the approximation was properly projected

to the manifold.

4.4 Active Dictionary Models

Both, Dictionary Models and Geodesic Projections, proved to properly model nematodes

with additive l2 bounded Gaussian noise, including the trivial noise-free case. However,

neither of them were able to segment a nematode in high non-linear noise cases. ADM

combines the benefits of both algorithms into several iterations to overcome this problem.

The following section evaluates the performance of Active Dictionary Models and its

di↵erent variations using a validation set of 50 shapes. The image iteration step of the

algorithm was simulated by truncating each point in the current approximation to the

nearest point in the original image.

4.4.1 ADM-DM

First, ADM is tested using Dictionary Models as the deformable shape model. Since the

overlaps are artificially generated the target signal y is known. The error is obtained

by comparing the approximation against the target, as ✏2 = ky � �xk2. Figure 4.12

shows a cumulative histogram of the amount of approximations whose error at the 20-th

iteration is less than ✏2 in the x axis. Figure 4.13 plots the approximation error in each

iteration achieved with ADM using Dictionary Models. Additionally, for a qualitative
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(b) (c)(a)

Figure 4.11: Projections onto the manifold for overlapping nematodes

evaluation, the model is plotted against the overlap for the first, one intermediate and

the final iteration. It shows how, as mentioned in section 4.2, the approximation in the

first iteration corresponds to an invalid shape.

4.4.2 ADM-GP

Next, ADM is tested using Geodesic Projections as the deformable shape model. The

error definition is the same as the previous section. Figure 4.14 shows the cumulative

histogram of the amount of approximations whose error at the 20-th iteration is less than

✏2 in the x axis. It shows how the x axis is on the magnitude of 10�3, compared to 10�2

in the ADM-DM histogram. Figure 4.15 plots an example of the approximation error

in each iteration for ADM using Geodesic Projections. Additionally, for a qualitative

evaluation, the model is plotted against the overlap for the first, one intermediate and

the final iteration. Compared to ADM-DM, the error curve for the ADM-GP algorithm

decreases at a higher rate and stabilizes at a lower value, outperforming ADM-DM.

4.4.3 ADM

Finally, ADM is tested using Dictionary Models plus Geodesic Projections as the de-

formable shape model. The error definition is the same as the previous sections. Fig-

ure 4.16 shows the cumulative histogram of the amount of approximations whose error

at the 20-th iteration is less than ✏2 in the x axis. Figure 4.17 plots an example of the

approximation error in each iteration for ADM using Dictionary Models and Geodesic

Projections. Additionally, for a qualitative evaluation, the model is plotted against the

overlap for the first, one intermediate and the final iteration. It shows how, of all the

three algorithms, the error curve of ADM has the steepest decrease.

Finally, Figure 4.18 compares the results of the di↵erent ADM variants by overlapping

the cumulative histograms presented in the previous sections. It shows that ADM-DM

has the lowest performance of the three algorithms having the errors at the 20-th iteration

above 9⇥ 10�3, compared to ADM and ADM-GP who have errors above 1⇥ 10�3 at the

same iteration. On the other hand, ADM presents a higher slope than ADM-GP from 0

to 7 ⇥ 10�3, from where both algorithms continue to perform similarly. ADM provides

the fastest convergence from all the three algorithms.
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Chapter 5

Conclusions

This work proposes a novel approach of shape modeling called Active Dictionary Models,

which combines dictionary learning along with sparse approximation for shape-aware

linear denoising, and a proposed Geodesic Projection method based on projections onto

the manifold for shape restriction and non-linear denoising. No other contour model was

found in the literature capable of representing the set of nematode shapes used to evaluate

this method.

Dictionary learning was successfully used to develop a shape model capable of representing

non-linear deformations present in natural signals.

K-SVD is used to successfully learn an overcomplete dictionary from a training set, such

that new signals can be represented in a sparse way. OMP is used to successfully find

this sparse representation by weighting the atoms in the dictionary. These algorithms

constitute an initial Dictionary Model.

The sparse representations of the Dictionary Model are capable of successfully denoising

input signals corrupted with additive Gaussian noise. The approximation error of DM

is directly proportional to the variance of the additive noise for a fixed l0-norm. If this

sparsity constraint is relaxed, the approximation error converges to a maximum value

intrinsic to the learned dictionary.

Dictionary Models are not able to represent signals corrupted by non-linear noise as in

the case of nematode overlaps. When the dictionary was subjected to non-linear noise,

invalid shapes were modeled.

The proposed method, Geodesic Projection, successfully limits the output signals to valid

shapes by projecting the samples onto the approximated manifold. Barycentric Matching

Pursuit is capable of finding this projection by minimizing the error against a point

confined to a hypertriangle in the manifold.

GP proved to properly denoise an input signal corrupted by additive Gaussian noise. The

approximation error converges to a maximum value intrinsic to the manifold approxima-

tion, as the variance of the noise increases. On the other hand, the Geodesic Projection
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model is unable to represent non-linear interferences as the overlaps. However, opposite

to DM, the output signals are valid shapes.

The proposed method ADM is capable of representing non-linear interferences as signal

overlaps. The modular design of the framework allows the modeling components to be

attached and detached independently. Similarly, the framework is completely independent

to the image approximation step, allowing it to be customized for custom applications.

ADM-DM presents the lowest convergence rate of the three algorithms. Additionally, the

shapes modeled using this variant converge with the highest errors. Furthermore, the

ADM-DM model may output invalid shapes at the initial iterations. ADM-GP approxi-

mation error, on the other hand, converges at a higher rate than ADM-DM. The shapes

modeled by this variant converge with error ten times lower than the first algorithm.

Additionally, the model outputs a valid shape at any iteration. Finally, ADM presents

the best performance of the three algorithms. It presents the steepest error decrease rate

and the highest success rate, at the cost of performing both DM and GP.

For future work an increase in the performance of the DM component can be pursuit by

using improved learning techniques. K-SVD does not induce incoherency in the learned

dictionaries. Incoherent dictionaries induce sparsity, increasing the model’s representative

and denoising power. Similarly, the sparse coding step may be enhanced by using sparsity

inducing techniques.

GP, on the other hand, may be enhanced by improving BMP directly. The orthogonality

extensions in OMP may be extrapolated to BMP to improve the convergence rate of the

algorithm. Additionally, alternative graph approximations may be explored in pursuit of

better manifold approximations and reduced computational power.
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